Structural features based genome-wide characterization and prediction of nucleosome organization
2012-01-01
Background Nucleosome distribution along chromatin dictates genomic DNA accessibility and thus profoundly influences gene expression. However, the underlying mechanism of nucleosome formation remains elusive. Here, taking a structural perspective, we systematically explored nucleosome formation potential of genomic sequences and the effect on chromatin organization and gene expression in S. cerevisiae. Results We analyzed twelve structural features related to flexibility, curvature and energy of DNA sequences. The results showed that some structural features such as DNA denaturation, DNA-bending stiffness, Stacking energy, Z-DNA, Propeller twist and free energy, were highly correlated with in vitro and in vivo nucleosome occupancy. Specifically, they can be classified into two classes, one positively and the other negatively correlated with nucleosome occupancy. These two kinds of structural features facilitated nucleosome binding in centromere regions and repressed nucleosome formation in the promoter regions of protein-coding genes to mediate transcriptional regulation. Based on these analyses, we integrated all twelve structural features in a model to predict more accurately nucleosome occupancy in vivo than the existing methods that mainly depend on sequence compositional features. Furthermore, we developed a novel approach, named DLaNe, that located nucleosomes by detecting peaks of structural profiles, and built a meta predictor to integrate information from different structural features. As a comparison, we also constructed a hidden Markov model (HMM) to locate nucleosomes based on the profiles of these structural features. The result showed that the meta DLaNe and HMM-based method performed better than the existing methods, demonstrating the power of these structural features in predicting nucleosome positions. Conclusions Our analysis revealed that DNA structures significantly contribute to nucleosome organization and influence chromatin structure and gene expression regulation. The results indicated that our proposed methods are effective in predicting nucleosome occupancy and positions and that these structural features are highly predictive of nucleosome organization. The implementation of our DLaNe method based on structural features is available online. PMID:22449207
TFBSshape: a motif database for DNA shape features of transcription factor binding sites.
Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo
2014-01-01
Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.
TFBSshape: a motif database for DNA shape features of transcription factor binding sites
Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo
2014-01-01
Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955
Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates
Gwon, Gwang Hyeon; Jo, Aera; Baek, Kyuwon; Jin, Kyeong Sik; Fu, Yaoyao; Lee, Jong-Bong; Kim, YoungChang; Cho, Yunje
2014-01-01
The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends. PMID:24733841
3DNALandscapes: a database for exploring the conformational features of DNA.
Zheng, Guohui; Colasanti, Andrew V; Lu, Xiang-Jun; Olson, Wilma K
2010-01-01
3DNALandscapes, located at: http://3DNAscapes.rutgers.edu, is a new database for exploring the conformational features of DNA. In contrast to most structural databases, which archive the Cartesian coordinates and/or derived parameters and images for individual structures, 3DNALandscapes enables searches of conformational information across multiple structures. The database contains a wide variety of structural parameters and molecular images, computed with the 3DNA software package and known to be useful for characterizing and understanding the sequence-dependent spatial arrangements of the DNA sugar-phosphate backbone, sugar-base side groups, base pairs, base-pair steps, groove structure, etc. The data comprise all DNA-containing structures--both free and bound to proteins, drugs and other ligands--currently available in the Protein Data Bank. The web interface allows the user to link, report, plot and analyze this information from numerous perspectives and thereby gain insight into DNA conformation, deformability and interactions in different sequence and structural contexts. The data accumulated from known, well-resolved DNA structures can serve as useful benchmarks for the analysis and simulation of new structures. The collective data can also help to understand how DNA deforms in response to proteins and other molecules and undergoes conformational rearrangements.
The unusual and dynamic character of PX-DNA
Niu, Dong; Jiang, Hualin; Sha, Ruojie; ...
2015-07-15
PX-DNA is a four-stranded DNA structure that has been implicated in the recognition of homology, either continuously, or in an every-other-half-turn fashion. Some of the structural features of the molecule have been noted previously, but the structure requires further characterization. Here, we report atomic force microscopic characterization of PX molecules that contain periodically placed biotin groups, enabling the molecule to be labeled by streptavidin molecules at these sites. In comparison with conventional double stranded DNA and with antiparallel DNA double crossover molecules, it is clear that PX-DNA is a more dynamic structure. Moreover, the spacing between the nucleotide pairs alongmore » the helix axis is shorter, suggesting a mixed B/A structure. Circular dichroism spectroscopy indicates unusual features in the PX molecule that are absent in both the molecules to which it is compared.« less
Schiffels, Daniel; Szalai, Veronika A; Liddle, J Alexander
2017-07-25
Robust self-assembly across length scales is a ubiquitous feature of biological systems but remains challenging for synthetic structures. Taking a cue from biology-where disparate molecules work together to produce large, functional assemblies-we demonstrate how to engineer microscale structures with nanoscale features: Our self-assembly approach begins by using DNA polymerase to controllably create double-stranded DNA (dsDNA) sections on a single-stranded template. The single-stranded DNA (ssDNA) sections are then folded into a mechanically flexible skeleton by the origami method. This process simultaneously shapes the structure at the nanoscale and directs the large-scale geometry. The DNA skeleton guides the assembly of RecA protein filaments, which provides rigidity at the micrometer scale. We use our modular design strategy to assemble tetrahedral, rectangular, and linear shapes of defined dimensions. This method enables the robust construction of complex assemblies, greatly extending the range of DNA-based self-assembly methods.
DNA Based Molecular Scale Nanofabrication
2015-12-04
structure. We developed a method to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer...to produce nanoscale patterns on SAM. (d) Studied the molecular imprinting of DNA origami structure using polymer substrates. Developed a high... imprinting using DNA nanostructure templates. Soft lithography uses polymeric stamps with certain features to transfer the pattern for printing
Ong, Luvena L; Ke, Yonggang
2017-01-01
DNA nanostructures are a useful technology for precisely organizing and manipulating nanomaterials. The DNA bricks method is a modular and versatile platform for applications requiring discrete or periodic structures with complex three-dimensional features. Here, we describe how structures are designed from the fundamental strand architecture through assembly and characterization of the formed structures.
Animal Mitochondrial DNA Replication
Ciesielski, Grzegorz L.; Oliveira, Marcos T.; Kaguni, Laurie S.
2016-01-01
Recent advances in the field of mitochondrial DNA (mtDNA) replication highlight the diversity of both the mechanisms utilized and the structural and functional organization of the proteins at mtDNA replication fork, despite the simplicity of the animal mtDNA genome. DNA polymerase γ, mtDNA helicase and mitochondrial single-stranded DNA-binding protein- the key replisome proteins, have evolved distinct structural features and biochemical properties. These appear to be correlated with mtDNA genomic features in different metazoan taxa and with their modes of DNA replication, although a substantial integrative research is warranted to establish firmly these links. To date, several modes of mtDNA replication have been described for animals: rolling circle, theta, strand-displacement, and RITOLS/bootlace. Resolution of a continuing controversy relevant to mtDNA replication in mammals/vertebrates will have a direct impact on the mechanistic interpretation of mtDNA-related human diseases. Here we review these subjects, integrating earlier and recent data to provide a perspective on the major challenges for future research. PMID:27241933
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
NASA Astrophysics Data System (ADS)
Snodin, Benedict E. K.; Randisi, Ferdinando; Mosayebi, Majid; Šulc, Petr; Schreck, John S.; Romano, Flavio; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.; Doye, Jonathan P. K.
2015-06-01
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na+] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.
Introducing improved structural properties and salt dependence into a coarse-grained model of DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.
2015-06-21
We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including thosemore » corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.« less
Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.
Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi
2017-09-22
DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.
Identification of DNA-Binding Proteins Using Structural, Electrostatic and Evolutionary Features
Nimrod, Guy; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2009-01-01
Summary DNA binding proteins (DBPs) often take part in various crucial processes of the cell's life cycle. Therefore, the identification and characterization of these proteins are of great importance. We present here a random forests classifier for identifying DBPs among proteins with known three-dimensional structures. First, clusters of evolutionarily conserved regions (patches) on the protein's surface are detected using the PatchFinder algorithm; previous studies showed that these regions are typically the proteins' functionally important regions. Next, we train a classifier using features like the electrostatic potential, cluster-based amino acid conservation patterns and the secondary structure content of the patches, as well as features of the whole protein including its dipole moment. Using 10-fold cross validation on a dataset of 138 DNA-binding proteins and 110 proteins which do not bind DNA, the classifier achieved a sensitivity and a specificity of 0.90, which is overall better than the performance of previously published methods. Furthermore, when we tested 5 different methods on 11 new DBPs which did not appear in the original dataset, only our method annotated all correctly. The resulting classifier was applied to a collection of 757 proteins of known structure and unknown function. Of these proteins, 218 were predicted to bind DNA, and we anticipate that some of them interact with DNA using new structural motifs. The use of complementary computational tools supports the notion that at least some of them do bind DNA. PMID:19233205
Moody, Colleen L; Tretyachenko-Ladokhina, Vira; Laue, Thomas M; Senear, Donald F; Cocco, Melanie J
2011-08-09
The cytidine repressor (CytR) is a member of the LacR family of bacterial repressors with distinct functional features. The Escherichia coli CytR regulon comprises nine operons whose palindromic operators vary in both sequence and, most significantly, spacing between the recognition half-sites. This suggests a strong likelihood that protein folding would be coupled to DNA binding as a mechanism to accommodate the variety of different operator architectures to which CytR is targeted. Such coupling is a common feature of sequence-specific DNA-binding proteins, including the LacR family repressors; however, there are no significant structural rearrangements upon DNA binding within the three-helix DNA-binding domains (DBDs) studied to date. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the CytR DBD free in solution and to determine the high-resolution structure of a CytR DBD monomer bound specifically to one DNA half-site of the uridine phosphorylase (udp) operator. We find that the free DBD populates multiple distinct conformations distinguished by up to four sets of NMR peaks per residue. This structural heterogeneity is previously unknown in the LacR family. These stable structures coalesce into a single, more stable udp-bound form that features a three-helix bundle containing a canonical helix-turn-helix motif. However, this structure differs from all other LacR family members whose structures are known with regard to the packing of the helices and consequently their relative orientations. Aspects of CytR activity are unique among repressors; we identify here structural properties that are also distinct and that might underlie the different functional properties. © 2011 American Chemical Society
Role of indirect readout mechanism in TATA box binding protein-DNA interaction.
Mondal, Manas; Choudhury, Devapriya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay
2015-03-01
Gene expression generally initiates from recognition of TATA-box binding protein (TBP) to the minor groove of DNA of TATA box sequence where the DNA structure is significantly different from B-DNA. We have carried out molecular dynamics simulation studies of TBP-DNA system to understand how the DNA structure alters for efficient binding. We observed rigid nature of the protein while the DNA of TATA box sequence has an inherent flexibility in terms of bending and minor groove widening. The bending analysis of the free DNA and the TBP bound DNA systems indicate presence of some similar structures. Principal coordinate ordination analysis also indicates some structural features of the protein bound and free DNA are similar. Thus we suggest that the DNA of TATA box sequence regularly oscillates between several alternate structures and the one suitable for TBP binding is induced further by the protein for proper complex formation.
Identification of DNA-binding proteins using structural, electrostatic and evolutionary features.
Nimrod, Guy; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2009-04-10
DNA-binding proteins (DBPs) participate in various crucial processes in the life-cycle of the cells, and the identification and characterization of these proteins is of great importance. We present here a random forests classifier for identifying DBPs among proteins with known 3D structures. First, clusters of evolutionarily conserved regions (patches) on the surface of proteins were detected using the PatchFinder algorithm; earlier studies showed that these regions are typically the functionally important regions of proteins. Next, we trained a classifier using features like the electrostatic potential, cluster-based amino acid conservation patterns and the secondary structure content of the patches, as well as features of the whole protein, including its dipole moment. Using 10-fold cross-validation on a dataset of 138 DBPs and 110 proteins that do not bind DNA, the classifier achieved a sensitivity and a specificity of 0.90, which is overall better than the performance of published methods. Furthermore, when we tested five different methods on 11 new DBPs that did not appear in the original dataset, only our method annotated all correctly. The resulting classifier was applied to a collection of 757 proteins of known structure and unknown function. Of these proteins, 218 were predicted to bind DNA, and we anticipate that some of them interact with DNA using new structural motifs. The use of complementary computational tools supports the notion that at least some of them do bind DNA.
Nucleic acid nanomaterials: Silver-wired DNA
NASA Astrophysics Data System (ADS)
Auffinger, Pascal; Ennifar, Eric
2017-10-01
DNA double helical structures are supramolecular assemblies that are typically held together by classical Watson-Crick pairing. Now, nucleotide chelation of silver ions supports an extended silver-DNA hybrid duplex featuring an uninterrupted silver array.
Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines
NASA Astrophysics Data System (ADS)
Elbaz, Johann; Cecconello, Alessandro; Fan, Zhiyuan; Govorov, Alexander O.; Willner, Itamar
2013-06-01
DNA nanotechnology is a rapidly developing research area in nanoscience. It includes the development of DNA machines, tailoring of DNA nanostructures, application of DNA nanostructures for computing, and more. Different DNA machines were reported in the past and DNA-guided assembly of nanoparticles represents an active research effort in DNA nanotechnology. Several DNA-dictated nanoparticle structures were reported, including a tetrahedron, a triangle or linear nanoengineered nanoparticle structures; however, the programmed, dynamic reversible switching of nanoparticle structures and, particularly, the dictated switchable functions emerging from the nanostructures, are missing elements in DNA nanotechnology. Here we introduce DNA catenane systems (interlocked DNA rings) as molecular DNA machines for the programmed, reversible and switchable arrangement of different-sized gold nanoparticles. We further demonstrate that the machine-powered gold nanoparticle structures reveal unique emerging switchable spectroscopic features, such as plasmonic coupling or surface-enhanced fluorescence.
DNAproDB: an interactive tool for structural analysis of DNA–protein complexes
Sagendorf, Jared M.
2017-01-01
Abstract Many biological processes are mediated by complex interactions between DNA and proteins. Transcription factors, various polymerases, nucleases and histones recognize and bind DNA with different levels of binding specificity. To understand the physical mechanisms that allow proteins to recognize DNA and achieve their biological functions, it is important to analyze structures of DNA–protein complexes in detail. DNAproDB is a web-based interactive tool designed to help researchers study these complexes. DNAproDB provides an automated structure-processing pipeline that extracts structural features from DNA–protein complexes. The extracted features are organized in structured data files, which are easily parsed with any programming language or viewed in a browser. We processed a large number of DNA–protein complexes retrieved from the Protein Data Bank and created the DNAproDB database to store this data. Users can search the database by combining features of the DNA, protein or DNA–protein interactions at the interface. Additionally, users can upload their own structures for processing privately and securely. DNAproDB provides several interactive and customizable tools for creating visualizations of the DNA–protein interface at different levels of abstraction that can be exported as high quality figures. All functionality is documented and freely accessible at http://dnaprodb.usc.edu. PMID:28431131
2017-01-01
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance. PMID:28750166
Falconi, M; Oteri, F; Eliseo, T; Cicero, D O; Desideri, A
2008-08-01
The structural dynamics of the DNA binding domains of the human papillomavirus strain 16 and the bovine papillomavirus strain 1, complexed with their DNA targets, has been investigated by modeling, molecular dynamics simulations, and nuclear magnetic resonance analysis. The simulations underline different dynamical features of the protein scaffolds and a different mechanical interaction of the two proteins with DNA. The two protein structures, although very similar, show differences in the relative mobility of secondary structure elements. Protein structural analyses, principal component analysis, and geometrical and energetic DNA analyses indicate that the two transcription factors utilize a different strategy in DNA recognition and deformation. Results show that the protein indirect DNA readout is not only addressable to the DNA molecule flexibility but it is finely tuned by the mechanical and dynamical properties of the protein scaffold involved in the interaction.
DNA-nanoparticle assemblies go organic: macroscopic polymeric materials with nanosized features.
Mentovich, Elad D; Livanov, Konstantin; Prusty, Deepak K; Sowwan, Mukules; Richter, Shachar
2012-05-30
One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network.
Kelman, Lori M; Kelman, Zvi
2014-01-01
DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.
High-resolution AFM structure of DNA G-wires in aqueous solution.
Bose, Krishnashish; Lech, Christopher J; Heddi, Brahim; Phan, Anh Tuân
2018-05-17
We investigate the self-assembly of short pieces of the Tetrahymena telomeric DNA sequence d[G 4 T 2 G 4 ] in physiologically relevant aqueous solution using atomic force microscopy (AFM). Wire-like structures (G-wires) of 3.0 nm height with well-defined surface periodic features were observed. Analysis of high-resolution AFM images allowed their classification based on the periodicity of these features. A major species is identified with periodic features of 4.3 nm displaying left-handed ridges or zigzag features on the molecular surface. A minor species shows primarily left-handed periodic features of 2.2 nm. In addition to 4.3 and 2.2 nm ridges, background features with periodicity of 0.9 nm are also observed. Using molecular modeling and simulation, we identify a molecular structure that can explain both the periodicity and handedness of the major G-wire species. Our results demonstrate the potential structural diversity of G-wire formation and provide valuable insight into the structure of higher-order intermolecular G-quadruplexes. Our results also demonstrate how AFM can be combined with simulation to gain insight into biomolecular structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seongmin; Verdine, Gregory L.; Harvard)
2010-01-14
Adenine DNA glycosylase catalyzes the glycolytic removal of adenine from the promutagenic A {center_dot} oxoG base pair in DNA. The general features of DNA recognition by an adenine DNA glycosylase, Bacillus stearothermophilus MutY, have previously been revealed via the X-ray structure of a catalytically inactive mutant protein bound to an A:oxoG-containing DNA duplex. Although the structure revealed the substrate adenine to be, as expected, extruded from the DNA helix and inserted into an extrahelical active site pocket on the enzyme, the substrate adenine engaged in no direct contacts with active site residues. This feature was paradoxical, because other glycosylases havemore » been observed to engage their substrates primarily through direct contacts. The lack of direct contacts in the case of MutY suggested that either MutY uses a distinctive logic for substrate recognition or that the X-ray structure had captured a noncatalytically competent state in lesion recognition. To gain further insight into this issue, we crystallized wild-type MutY bound to DNA containing a catalytically inactive analog of 2'-deoxyadenosine in which a single 2'-H atom was replaced by fluorine. The structure of this fluorinated lesion-recognition complex (FLRC) reveals the substrate adenine buried more deeply into the active site pocket than in the prior structure and now engaged in multiple direct hydrogen bonding and hydrophobic interactions. This structure appears to capture the catalytically competent state of adenine DNA glycosylases, and it suggests a catalytic mechanism for this class of enzymes, one in which general acid-catalyzed protonation of the nucleobase promotes glycosidic bond cleavage.« less
Electronic fingerprints of DNA bases on graphene.
Ahmed, Towfiq; Kilina, Svetlana; Das, Tanmoy; Haraldsen, Jason T; Rehr, John J; Balatsky, Alexander V
2012-02-08
We calculate the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T), deposited on graphene. We observe significant base-dependent features in the LDOS in an energy range within a few electronvolts of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases in scanning tunneling spectroscopy (STS) experiments that perform image and site dependent spectroscopy on biomolecules. Thus the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. © 2012 American Chemical Society
Vrljicak, Pavle; Tao, Shijie; Varshney, Gaurav K; Quach, Helen Ngoc Bao; Joshi, Adita; LaFave, Matthew C; Burgess, Shawn M; Sampath, Karuna
2016-04-07
DNA transposons and retroviruses are important transgenic tools for genome engineering. An important consideration affecting the choice of transgenic vector is their insertion site preferences. Previous large-scale analyses of Ds transposon integration sites in plants were done on the basis of reporter gene expression or germ-line transmission, making it difficult to discern vertebrate integration preferences. Here, we compare over 1300 Ds transposon integration sites in zebrafish with Tol2 transposon and retroviral integration sites. Genome-wide analysis shows that Ds integration sites in the presence or absence of marker selection are remarkably similar and distributed throughout the genome. No strict motif was found, but a preference for structural features in the target DNA associated with DNA flexibility (Twist, Tilt, Rise, Roll, Shift, and Slide) was observed. Remarkably, this feature is also found in transposon and retroviral integrations in maize and mouse cells. Our findings show that structural features influence the integration of heterologous DNA in genomes, and have implications for targeted genome engineering. Copyright © 2016 Vrljicak et al.
Human Chromosome 7: DNA Sequence and Biology
Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.; Fernandez, Bridget A.; Kanematsu, Emiko; Gentles, Simone; Christopoulos, Constantine C.; Choufani, Sanaa; Kwasnicka, Dorota; Zheng, Xiangqun H.; Lai, Zhongwu; Nusskern, Deborah; Zhang, Qing; Gu, Zhiping; Lu, Fu; Zeesman, Susan; Nowaczyk, Malgorzata J.; Teshima, Ikuko; Chitayat, David; Shuman, Cheryl; Weksberg, Rosanna; Zackai, Elaine H.; Grebe, Theresa A.; Cox, Sarah R.; Kirkpatrick, Susan J.; Rahman, Nazneen; Friedman, Jan M.; Heng, Henry H. Q.; Pelicci, Pier Giuseppe; Lo-Coco, Francesco; Belloni, Elena; Shaffer, Lisa G.; Pober, Barbara; Morton, Cynthia C.; Gusella, James F.; Bruns, Gail A. P.; Korf, Bruce R.; Quade, Bradley J.; Ligon, Azra H.; Ferguson, Heather; Higgins, Anne W.; Leach, Natalia T.; Herrick, Steven R.; Lemyre, Emmanuelle; Farra, Chantal G.; Kim, Hyung-Goo; Summers, Anne M.; Gripp, Karen W.; Roberts, Wendy; Szatmari, Peter; Winsor, Elizabeth J. T.; Grzeschik, Karl-Heinz; Teebi, Ahmed; Minassian, Berge A.; Kere, Juha; Armengol, Lluis; Pujana, Miguel Angel; Estivill, Xavier; Wilson, Michael D.; Koop, Ben F.; Tosi, Sabrina; Moore, Gudrun E.; Boright, Andrew P.; Zlotorynski, Eitan; Kerem, Batsheva; Kroisel, Peter M.; Petek, Erwin; Oscier, David G.; Mould, Sarah J.; Döhner, Hartmut; Döhner, Konstanze; Rommens, Johanna M.; Vincent, John B.; Venter, J. Craig; Li, Peter W.; Mural, Richard J.; Adams, Mark D.; Tsui, Lap-Chee
2010-01-01
DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate genes for developmental diseases including autism. PMID:12690205
Moving beyond Watson-Crick models of coarse grained DNA dynamics.
Linak, Margaret C; Tourdot, Richard; Dorfman, Kevin D
2011-11-28
DNA produces a wide range of structures in addition to the canonical B-form of double-stranded DNA. Some of these structures are stabilized by Hoogsteen bonds. We developed an experimentally parameterized, coarse-grained model that incorporates such bonds. The model reproduces many of the microscopic features of double-stranded DNA and captures the experimental melting curves for a number of short DNA hairpins, even when the open state forms complicated secondary structures. We demonstrate the utility of the model by simulating the folding of a thrombin aptamer, which contains G-quartets, and strand invasion during triplex formation. Our results highlight the importance of including Hoogsteen bonding in coarse-grained models of DNA.
DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features
2012-01-01
Background One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Method Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. Results and conclusions One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network. PMID:22646980
Siponen, Marina I.; Wisniewska, Magdalena; Lehtiö, Lari; Johansson, Ida; Svensson, Linda; Raszewski, Grzegorz; Nilsson, Lennart; Sigvardsson, Mikael; Berglund, Helena
2010-01-01
The early B-cell factor (EBF) transcription factors are central regulators of development in several organs and tissues. This protein family shows low sequence similarity to other protein families, which is why structural information for the functional domains of these proteins is crucial to understand their biochemical features. We have used a modular approach to determine the crystal structures of the structured domains in the EBF family. The DNA binding domain reveals a striking resemblance to the DNA binding domains of the Rel homology superfamily of transcription factors but contains a unique zinc binding structure, termed zinc knuckle. Further the EBF proteins contain an IPT/TIG domain and an atypical helix-loop-helix domain with a novel type of dimerization motif. The data presented here provide insights into unique structural features of the EBF proteins and open possibilities for detailed molecular investigations of this important transcription factor family. PMID:20592035
Structure of chromatin and the linking number of DNA.
Worcel, A; Strogatz, S; Riley, D
1981-01-01
Recent observations suggest that the basic supranucleosomal structure of chromatin is a zigzag helical ribbon with a repeat unit made of two nucleosomes connected by a relaxed spacer DNA. A remarkable feature of one particular ribbon is that it solves the apparent paradox between the number of DNA turns per nucleosome and the total linking number of a nucleosome-containing closed circular DNA molecule. We show here that the repeat unit of the proposed structure, which contains two nucleosomes with -1 3/4 DNA turns per nucleosome and one spacer crossover per repeat, contributes -2 to the linking number of closed circular DNA. Space-filling models show that the cylindrical 250-A chromatin fiber can be generated by twisting the ribbon. Images PMID:6940168
Kim, Kyung-Il; Lee, Seonghyun; Jin, Xuelin; Kim, Su Ji; Jo, Kyubong; Lee, Jung Heon
2017-01-01
Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An unconventional family 1 uracil DNA glycosylase in Nitratifractor salsuginis.
Li, Jing; Chen, Ran; Yang, Ye; Zhang, Zhemin; Fang, Guang-Chen; Xie, Wei; Cao, Weiguo
2017-12-01
The uracil DNA glycosylase superfamily consists of at least six families with a diverse specificity toward DNA base damage. Family 1 uracil N-glycosylase (UNG) exhibits exclusive specificity on uracil-containing DNA. Here, we report a family 1 UNG homolog from Nitratifractor salsuginis with distinct biochemical features that differentiate it from conventional family 1 UNGs. Globally, the crystal structure of N. salsuginisUNG shows a few additional secondary structural elements. Biochemical and enzyme kinetic analysis, coupled with structural determination, molecular modeling, and molecular dynamics simulations, shows that N. salsuginisUNG contains a salt bridge network that plays an important role in DNA backbone interactions. Disruption of the amino acid residues involved in the salt bridges greatly impedes the enzymatic activity. A tyrosine residue in motif 1 (GQDPY) is one of the distinct sequence features setting family 1 UNG apart from other families. The crystal structure of Y81G mutant indicates that several subtle changes may account for its inactivity. Unlike the conventional family 1 UNG enzymes, N. salsuginisUNG is not inhibited by Ugi, a potent inhibitor specific for family 1 UNG. This study underscores the diversity of paths that a uracil DNA glycosylase may take to acquire its unique structural and biochemical properties during evolution. Structure data are available in the PDB under accession numbers 5X3G and 5X3H. © 2017 Federation of European Biochemical Societies.
Crystal structure of the Rous sarcoma virus intasome
Yin, Zhiqi; Shi, Ke; Banerjee, Surajit; ...
2016-02-17
Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNAmore » remained elusive. In this paper, we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Finally, our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.« less
The rolling-circle melting-pot model for porcine circovirus DNA replication
USDA-ARS?s Scientific Manuscript database
A stem-loop structure, formed by a pair of inverted repeats during DNA replication, is a conserved feature at the origin of DNA replication (Ori) among plant and animal viruses, bacteriophages and plasmids that replicate their genomes via the rolling-circle replication (RCR) mechanism. Porcine circo...
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations
Yoo, Jejoong; Aksimentiev, Aleksei
2013-01-01
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
Yoo, Jejoong; Aksimentiev, Aleksei
2013-12-10
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Zhiqi; Shi, Ke; Banerjee, Surajit
Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNAmore » remained elusive. In this paper, we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Finally, our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.« less
Osada, Naoki; Akashi, Hiroshi
2012-01-01
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.
Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA
NASA Astrophysics Data System (ADS)
Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan
2018-05-01
Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.
DNA breaks and end resection measured genome-wide by end sequencing | Center for Cancer Research
About the Cover The cover depicts a ribbon of DNA portrayed as a city skyline. The central gap in the landscape localizes to the precise site of the DNA break. The features surrounding the break denote the processing of DNA-end structures (end-resection) emanating from the break location. Cover artwork by Ethan Tyler, NIH. Abstract
Assessing Diversity of DNA Structure-Related Sequence Features in Prokaryotic Genomes
Huang, Yongjie; Mrázek, Jan
2014-01-01
Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches. PMID:24408877
Nucleic Acid Engineering: RNA Following the Trail of DNA.
Kim, Hyejin; Park, Yongkuk; Kim, Jieun; Jeong, Jaepil; Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum
2016-02-08
The self-assembly feature of the naturally occurring biopolymer, DNA, has fascinated researchers in the fields of materials science and bioengineering. With the improved understanding of the chemical and structural nature of DNA, DNA-based constructs have been designed and fabricated from two-dimensional arbitrary shapes to reconfigurable three-dimensional nanodevices. Although DNA has been used successfully as a building block in a finely organized and controlled manner, its applications need to be explored. Hence, with the myriad of biological functions, RNA has recently attracted considerable attention to further the application of nucleic acid-based structures. This Review categorizes different approaches of engineering nucleic acid-based structures and introduces the concepts, principles, and applications of each technique, focusing on how DNA engineering is applied as a guide to RNA engineering.
Poomsuk, Nattawee; Vilaivan, Tirayut; Siriwong, Khatcharin
2018-06-12
Peptide nucleic acid (PNA) is a powerful biomolecule with a wide variety of important applications. In this work, the molecular structures and binding affinity of PNA with a D-prolyl-2-aminocyclopentane carboxylic acid backbone (acpcPNA) that binds to both DNA and RNA were studied using molecular dynamics simulations. The simulated structures of acpcPNA-DNA and acpcPNA-RNA duplexes more closely resembled the typical structures of B-DNA and A-RNA than the corresponding duplexes of aegPNA. The calculated binding free energies are in good agreement with the experimental results that the acpcPNA-DNA duplex is more stable than the acpcPNA-RNA duplex regardless of the base sequences. The results provide further insights in the relationship between structure and stability of this unique PNA system. Copyright © 2018 Elsevier Inc. All rights reserved.
Gold nanocrystals with DNA-directed morphologies.
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun
2016-09-16
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Gold nanocrystals with DNA-directed morphologies
NASA Astrophysics Data System (ADS)
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun
2016-09-01
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Ranganathan, Sridevi; Cheung, Jonah; Cassidy, Michael; Ginter, Christopher; Pata, Janice D; McDonough, Kathleen A
2018-01-09
Mycobacterium tuberculosis (Mtb) encodes two CRP/FNR family transcription factors (TF) that contribute to virulence, Cmr (Rv1675c) and CRPMt (Rv3676). Prior studies identified distinct chromosomal binding profiles for each TF despite their recognizing overlapping DNA motifs. The present study shows that Cmr binding specificity is determined by discriminator nucleotides at motif positions 4 and 13. X-ray crystallography and targeted mutational analyses identified an arginine-rich loop that expands Cmr's DNA interactions beyond the classical helix-turn-helix contacts common to all CRP/FNR family members and facilitates binding to imperfect DNA sequences. Cmr binding to DNA results in a pronounced asymmetric bending of the DNA and its high level of cooperativity is consistent with DNA-facilitated dimerization. A unique N-terminal extension inserts between the DNA binding and dimerization domains, partially occluding the site where the canonical cAMP binding pocket is found. However, an unstructured region of this N-terminus may help modulate Cmr activity in response to cellular signals. Cmr's multiple levels of DNA interaction likely enhance its ability to integrate diverse gene regulatory signals, while its novel structural features establish Cmr as an atypical CRP/FNR family member. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mirror image DNA nanostructures for chiral supramolecular assemblies.
Lin, Chenxiang; Ke, Yonggang; Li, Zhe; Wang, James H; Liu, Yan; Yan, Hao
2009-01-01
L-DNA, the mirror image of natural D-DNA, can be readily self-assembled into designer discrete or periodic nanostructures. The assembly products are characterized by polyacrylamide gel electrophoresis, circular dichroism spectrum, atomic force microscope, and fluorescence microscope. We found that the use of enantiomer DNA as building material leads to the formation of DNA supramolecules with opposite chirality. Therefore, the L-DNA self-assembly is a substantial complement to the structural DNA nanotechnology. Moreover, the L-DNA architectures feature superior nuclease resistance thus are appealing for in vivo medical applications.
Gorodetsky, Alon A.; Buzzeo, Marisa C.
2009-01-01
The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370
Plasmonic nanostructures through DNA-assisted lithography
Shen, Boxuan; Linko, Veikko; Tapio, Kosti; Pikker, Siim; Lemma, Tibebe; Gopinath, Ashwin; Gothelf, Kurt V.; Kostiainen, Mauri A.; Toppari, J. Jussi
2018-01-01
Programmable self-assembly of nucleic acids enables the fabrication of custom, precise objects with nanoscale dimensions. These structures can be further harnessed as templates to build novel materials such as metallic nanostructures, which are widely used and explored because of their unique optical properties and their potency to serve as components of novel metamaterials. However, approaches to transfer the spatial information of DNA constructions to metal nanostructures remain a challenge. We report a DNA-assisted lithography (DALI) method that combines the structural versatility of DNA origami with conventional lithography techniques to create discrete, well-defined, and entirely metallic nanostructures with designed plasmonic properties. DALI is a parallel, high-throughput fabrication method compatible with transparent substrates, thus providing an additional advantage for optical measurements, and yields structures with a feature size of ~10 nm. We demonstrate its feasibility by producing metal nanostructures with a chiral plasmonic response and bowtie-shaped nanoantennas for surface-enhanced Raman spectroscopy. We envisage that DALI can be generalized to large substrates, which would subsequently enable scale-up production of diverse metallic nanostructures with tailored plasmonic features. PMID:29423446
Structure–Function Studies of DNA Polymerase λ
2015-01-01
DNA polymerase λ (pol λ) functions in DNA repair with its main roles considered to be filling short gaps during repair of double-strand breaks by nonhomologous end joining and during base excision repair. As indicated by structural and biochemical studies over the past 10 years, pol λ shares many common properties with other family X siblings (pol β, pol μ, and terminal deoxynucleotidyl transferase) but also has unique structural features that determine its specific functions. In this review, we consider how structural studies over the past decade furthered our understanding of the behavior and biological roles of pol λ. PMID:24716527
Large-scale oscillation of structure-related DNA sequence features in human chromosome 21
NASA Astrophysics Data System (ADS)
Li, Wentian; Miramontes, Pedro
2006-08-01
Human chromosome 21 is the only chromosome in the human genome that exhibits oscillation of the (G+C) content of a cycle length of hundreds kilobases (kb) ( 500kb near the right telomere). We aim at establishing the existence of a similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi- and tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10- or 11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting or unwinding, stiffness, and a putative tendency for nucleosome formation.
GBshape: a genome browser database for DNA shape annotations
Chiu, Tsu-Pei; Yang, Lin; Zhou, Tianyin; Main, Bradley J.; Parker, Stephen C.J.; Nuzhdin, Sergey V.; Tullius, Thomas D.; Rohs, Remo
2015-01-01
Many regulatory mechanisms require a high degree of specificity in protein-DNA binding. Nucleotide sequence does not provide an answer to the question of why a protein binds only to a small subset of the many putative binding sites in the genome that share the same core motif. Whereas higher-order effects, such as chromatin accessibility, cooperativity and cofactors, have been described, DNA shape recently gained attention as another feature that fine-tunes the DNA binding specificities of some transcription factor families. Our Genome Browser for DNA shape annotations (GBshape; freely available at http://rohslab.cmb.usc.edu/GBshape/) provides minor groove width, propeller twist, roll, helix twist and hydroxyl radical cleavage predictions for the entire genomes of 94 organisms. Additional genomes can easily be added using the GBshape framework. GBshape can be used to visualize DNA shape annotations qualitatively in a genome browser track format, and to download quantitative values of DNA shape features as a function of genomic position at nucleotide resolution. As biological applications, we illustrate the periodicity of DNA shape features that are present in nucleosome-occupied sequences from human, fly and worm, and we demonstrate structural similarities between transcription start sites in the genomes of four Drosophila species. PMID:25326329
Lau, Kai Lin; Sleiman, Hanadi F
2016-07-26
Given its highly predictable self-assembly properties, DNA has proven to be an excellent template toward the design of functional materials. Prominent examples include the remarkable complexity provided by DNA origami and single-stranded tile (SST) assemblies, which require hundreds of unique component strands. However, in many cases, the majority of the DNA assembly is purely structural, and only a small "working area" needs to be aperiodic. On the other hand, extended lattices formed by DNA tile motifs require only a few strands; but they suffer from lack of size control and limited periodic patterning. To overcome these limitations, we adopt a templation strategy, where an input strand of DNA dictates the size and patterning of resultant DNA tile structures. To prepare these templating input strands, a sequential growth technique developed in our lab is used, whereby extended DNA strands of defined sequence and length may be generated simply by controlling their order of addition. With these, we demonstrate the periodic patterning of size-controlled double-crossover (DX) and triple-crossover (TX) tile structures, as well as intentionally designed aperiodicity of a DX tile structure. As such, we are able to prepare size-controlled DNA structures featuring aperiodicity only where necessary with exceptional economy and efficiency.
The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage.
Prakash, Aishwarya; Doublié, Sylvie; Wallace, Susan S
2012-01-01
During the initial stages of the base excision DNA repair pathway, DNA glycosylases are responsible for locating and removing the majority of endogenous oxidative base lesions. The bifunctional formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of the Fpg/Nei family, one of the two families of glycosylases that recognize oxidized DNA bases, the other being the HhH/GPD (or Nth) superfamily. Structural and biochemical developments over the past decades have led to novel insights into the mechanism of damage recognition by the Fpg/Nei family of enzymes. Despite the overall structural similarity among members of this family, these enzymes exhibit distinct features that make them unique. This review summarizes the current structural knowledge of the Fpg/Nei family members, emphasizes their substrate specificities, and describes how these enzymes search for lesions. Copyright © 2012 Elsevier Inc. All rights reserved.
Influence of DNA sequence on the structure of minicircles under torsional stress
Wang, Qian; Irobalieva, Rossitza N.; Chiu, Wah; Schmid, Michael F.; Fogg, Jonathan M.; Zechiedrich, Lynn
2017-01-01
Abstract The sequence dependence of the conformational distribution of DNA under various levels of torsional stress is an important unsolved problem. Combining theory and coarse-grained simulations shows that the DNA sequence and a structural correlation due to topology constraints of a circle are the main factors that dictate the 3D structure of a 336 bp DNA minicircle under torsional stress. We found that DNA minicircle topoisomers can have multiple bend locations under high torsional stress and that the positions of these sharp bends are determined by the sequence, and by a positive mechanical correlation along the sequence. We showed that simulations and theory are able to provide sequence-specific information about individual DNA minicircles observed by cryo-electron tomography (cryo-ET). We provided a sequence-specific cryo-ET tomogram fitting of DNA minicircles, registering the sequence within the geometric features. Our results indicate that the conformational distribution of minicircles under torsional stress can be designed, which has important implications for using minicircle DNA for gene therapy. PMID:28609782
Chemical biology on the genome.
Balasubramanian, Shankar
2014-08-15
In this article I discuss studies towards understanding the structure and function of DNA in the context of genomes from the perspective of a chemist. The first area I describe concerns the studies that led to the invention and subsequent development of a method for sequencing DNA on a genome scale at high speed and low cost, now known as Solexa/Illumina sequencing. The second theme will feature the four-stranded DNA structure known as a G-quadruplex with a focus on its fundamental properties, its presence in cellular genomic DNA and the prospects for targeting such a structure in cels with small molecules. The final topic for discussion is naturally occurring chemically modified DNA bases with an emphasis on chemistry for decoding (or sequencing) such modifications in genomic DNA. The genome is a fruitful topic to be further elucidated by the creation and application of chemical approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Metallic Nanostructures Based on DNA Nanoshapes
Shen, Boxuan; Tapio, Kosti; Linko, Veikko; Kostiainen, Mauri A.; Toppari, Jari Jussi
2016-01-01
Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects. PMID:28335274
In and out of the minor groove: interaction of an AT-rich DNA with the drug CD27
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acosta-Reyes, Francisco J.; Dardonville, Christophe; Koning, Harry P. de
New features of an antiprotozoal DNA minor-groove binding drug, which acts as a cross-linking agent, are presented. It also fills the minor groove of DNA completely and prevents the access of proteins. These features are also expected for other minor-groove binding drugs when associated with suitable DNA targets. The DNA of several pathogens is very rich in AT base pairs. Typical examples include the malaria parasite Plasmodium falciparum and the causative agents of trichomoniasis and trypanosomiases. This fact has prompted studies of drugs which interact with the minor groove of DNA, some of which are used in medical practice. Previousmore » studies have been performed almost exclusively with the AATT sequence. New features should be uncovered through the study of different DNA sequences. In this paper, the crystal structure of the complex of the DNA duplex d(AAAATTTT){sub 2} with the dicationic drug 4, 4′-bis(imidazolinylamino)diphenylamine (CD27) is presented. The drug binds to the minor groove of DNA as expected, but it shows two new features that have not previously been described: (i) the drugs protrude from the DNA and interact with neighbouring molecules, so that they may act as cross-linking agents, and (ii) the drugs completely cover the whole minor groove of DNA and displace bound water. Thus, they may prevent the access to DNA of proteins such as AT-hook proteins. These features are also expected for other minor-groove binding drugs when associated with all-AT DNA. These findings allow a better understanding of this family of compounds and will help in the development of new, more effective drugs. New data on the biological interaction of CD27 with the causative agent of trichomoniasis, Trichomonas vaginalis, are also reported.« less
Capturing snapshots of APE1 processing DNA damage
Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.; ...
2015-10-12
DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. Here we report multiple high-resolution human APE1-DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1-DNA structures with a T-G mismatch 5' to the AP site, representing a clustered lesion occurring in methylatedmore » CpG dinucleotides. Moreover, these structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. Finally, these snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage.« less
Menchise, Valeria; De Simone, Giuseppina; Tedeschi, Tullia; Corradini, Roberto; Sforza, Stefano; Marchelli, Rosangela; Capasso, Domenica; Saviano, Michele; Pedone, Carlo
2003-01-01
Peptide nucleic acids (PNAs) are oligonucleotide analogues in which the sugar-phosphate backbone has been replaced by a pseudopeptide skeleton. They bind DNA and RNA with high specificity and selectivity, leading to PNA–RNA and PNA–DNA hybrids more stable than the corresponding nucleic acid complexes. The binding affinity and selectivity of PNAs for nucleic acids can be modified by the introduction of stereogenic centers (such as d-Lys-based units) into the PNA backbone. To investigate the structural features of chiral PNAs, the structure of a PNA decamer containing three d-Lys-based monomers (namely H-GpnTpnApnGpnAdlTdlCdlApnCpnTpn-NH2, in which pn represents a pseudopeptide link and dl represents a d-Lys analogue) hybridized with its complementary antiparallel DNA has been solved at a 1.66-Å resolution by means of a single-wavelength anomalous diffraction experiment on a brominated derivative. Thed-Lys-based chiral PNA–DNA (LPD) heteroduplex adopts the so-called P-helix conformation. From the substantial similarity between the PNA conformation in LPD and the conformations observed in other PNA structures, it can be concluded that PNAs possess intrinsic conformational preferences for the P-helix, and that their flexibility is rather restricted. The conformational rigidity of PNAs is enhanced by the presence of the chiral centers, limiting the ability of PNA strands to adopt other conformations and, ultimately, increasing the selectivity in molecular recognition. PMID:14512516
Lukman, Suryani; Lane, David P.; Verma, Chandra S.
2013-01-01
The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD). In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs). Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3). Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart). Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1) a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2) possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site. PMID:24324553
Ma, Zhipeng; Huang, Yunfei; Park, Seongsu; Kawai, Kentaro; Kim, Do-Nyun; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Yamada, Hirofumi; Tabata, Osamu
2018-01-01
DNA origami methods enable the fabrication of various nanostructures and nanodevices, but their effective use depends on an understanding of their structural and mechanical properties and the effects of basic structural features. Frequency-modulation atomic force microscopy is introduced to directly characterize, in aqueous solution, the crossover regions of sets of 2D DNA origami based on different crossover/nick designs. Rhombic-shaped nanostructures formed under the influence of flexible crossovers placed between DNA helices are observed in DNA origami incorporating crossovers every 3, 4, or 6 DNA turns. The bending rigidity of crossovers is determined to be only one-third of that of the DNA helix, based on interhelical electrostatic forces reported elsewhere, and the measured pitches of the 3-turn crossover design rhombic-shaped nanostructures undergoing negligible bending. To evaluate the robustness of their structural integrity, they are intentionally and simultaneously stressed using force-controlled atomic force microscopy. DNA crossovers are verified to have a stabilizing effect on the structural robustness, while the nicks have an opposite effect. The structural and mechanical properties of DNA origami and the effects of crossovers and nicks revealed in this paper can provide information essential for the design of versatile DNA origami structures that exhibit specified and desirable properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.
Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom
2010-07-27
Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.
Crystal Structure of the GRAS Domain of SCARECROW-LIKE7 in Oryza sativa
Li, Shengping; Zhao, Yanhe; Zhao, Zheng; Wu, Xiuling; Sun, Lifang; Liu, Qingsong; Wu, Yunkun
2016-01-01
GRAS proteins belong to a plant-specific protein family with many members and play essential roles in plant growth and development, functioning primarily in transcriptional regulation. Proteins in the family are minimally defined as containing the conserved GRAS domain. Here, we determined the structure of the GRAS domain of Os-SCL7 from rice (Oryza sativa) to 1.82 Å. The structure includes cap and core subdomains and elucidates the features of the conserved GRAS LRI, VHIID, LRII, PFYRE, and SAW motifs. The structure is a dimer, with a clear groove to accommodate double-stranded DNA. Docking a DNA segment into the groove to generate an Os-SCL7/DNA complex provides insight into the DNA binding mechanism of GRAS proteins. Furthermore, the in vitro DNA binding property of Os-SCL7 and model-defined recognition residues are assessed by electrophoretic mobility shift analysis and mutagenesis assays. These studies reveal the structure and preliminary DNA interaction mechanisms of GRAS proteins and open the door to in-depth investigation and understanding of the individual pathways in which they play important roles. PMID:27081181
Recurrence time statistics: versatile tools for genomic DNA sequence analysis.
Cao, Yinhe; Tung, Wen-Wen; Gao, J B
2004-01-01
With the completion of the human and a few model organisms' genomes, and the genomes of many other organisms waiting to be sequenced, it has become increasingly important to develop faster computational tools which are capable of easily identifying the structures and extracting features from DNA sequences. One of the more important structures in a DNA sequence is repeat-related. Often they have to be masked before protein coding regions along a DNA sequence are to be identified or redundant expressed sequence tags (ESTs) are to be sequenced. Here we report a novel recurrence time based method for sequence analysis. The method can conveniently study all kinds of periodicity and exhaustively find all repeat-related features from a genomic DNA sequence. An efficient codon index is also derived from the recurrence time statistics, which has the salient features of being largely species-independent and working well on very short sequences. Efficient codon indices are key elements of successful gene finding algorithms, and are particularly useful for determining whether a suspected EST belongs to a coding or non-coding region. We illustrate the power of the method by studying the genomes of E. coli, the yeast S. cervisivae, the nematode worm C. elegans, and the human, Homo sapiens. Computationally, our method is very efficient. It allows us to carry out analysis of genomes on the whole genomic scale by a PC.
Structure of a bacterial RNA polymerase holoenzyme open promoter complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka
2015-09-08
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Addition of an RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σA dissociation.« less
Structure of a bacterial RNA polymerase holoenzyme open promoter complex
Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka; ...
2015-09-08
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Additionally a RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σ A dissociation.« less
DNA-Based Enzyme Reactors and Systems
Linko, Veikko; Nummelin, Sami; Aarnos, Laura; Tapio, Kosti; Toppari, J. Jussi; Kostiainen, Mauri A.
2016-01-01
During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme) cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications. PMID:28335267
Sequence-dependent DNA flexibility mediates DNase I cleavage.
Heddi, Brahim; Abi-Ghanem, Josephine; Lavigne, Marc; Hartmann, Brigitte
2010-01-08
Understanding the preference of nonspecific proteins for certain DNA structural features requires an accurate description of the properties of free DNA, especially regarding their possible predisposition to adopt a conformation that favors the formation of a complex. Exploiting previous exhaustive NMR studies performed on free DNA oligomers, we investigated the molecular basis of DNase I sensitivity under conditions where DNase I binding limits the probability of cleavage. We showed that cleavage intensity was correlated with adjacent 3' phosphate linkage flexibility, monitored by (31)P chemical shifts. Examining NMR-refined DNA structures highlighted that sequence-dependent flexible phosphates were associated with large minor groove variations that may promote the affinity of DNase I, according to relevant DNA-protein complexes. In sum, this work demonstrates that specificity in DNA-DNase I interaction is mediated by DNA flexibility, which influences the induced-fit transitions required to form productive complexes.
GBshape: a genome browser database for DNA shape annotations.
Chiu, Tsu-Pei; Yang, Lin; Zhou, Tianyin; Main, Bradley J; Parker, Stephen C J; Nuzhdin, Sergey V; Tullius, Thomas D; Rohs, Remo
2015-01-01
Many regulatory mechanisms require a high degree of specificity in protein-DNA binding. Nucleotide sequence does not provide an answer to the question of why a protein binds only to a small subset of the many putative binding sites in the genome that share the same core motif. Whereas higher-order effects, such as chromatin accessibility, cooperativity and cofactors, have been described, DNA shape recently gained attention as another feature that fine-tunes the DNA binding specificities of some transcription factor families. Our Genome Browser for DNA shape annotations (GBshape; freely available at http://rohslab.cmb.usc.edu/GBshape/) provides minor groove width, propeller twist, roll, helix twist and hydroxyl radical cleavage predictions for the entire genomes of 94 organisms. Additional genomes can easily be added using the GBshape framework. GBshape can be used to visualize DNA shape annotations qualitatively in a genome browser track format, and to download quantitative values of DNA shape features as a function of genomic position at nucleotide resolution. As biological applications, we illustrate the periodicity of DNA shape features that are present in nucleosome-occupied sequences from human, fly and worm, and we demonstrate structural similarities between transcription start sites in the genomes of four Drosophila species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Recent Advances in the Structural Mechanisms of DNA Glycosylases
Brooks, Sonja C.; Adhikary, Suraj; Rubinson, Emily H.; Eichman, Brandt F.
2012-01-01
DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities. PMID:23076011
2014-01-01
Background Cycas simplicipinna (T. Smitinand) K. Hill. (Cycadaceae) is an endangered species in China. There were seven populations and 118 individuals that we could collect were genotyped in this study. Here, we assessed the genetic diversity, genetic structure and demographic history of this species. Results Analyses of data of DNA sequences (two maternally inherited intergenic spacers of chloroplast, cpDNA and one biparentally inherited internal transcribed spacer region ITS4-ITS5, nrDNA) and sixteen microsatellite loci (SSR) were conducted in the species. Of the 118 samples, 86 individuals from the seven populations were used for DNA sequencing and 115 individuals from six populations were used for the microsatellite study. We found high genetic diversity at the species level, low genetic diversity within each of the seven populations and high genetic differentiation among the populations. There was a clear genetic structure within populations of C. simplicipinna. A demographic history inferred from DNA sequencing data indicates that C. simplicipinna experienced a recent population contraction without retreating to a common refugium during the last glacial period. The results derived from SSR data also showed that C. simplicipinna underwent past effective population contraction, likely during the Pleistocene. Conclusions Some genetic features of C. simplicipinna such as having high genetic differentiation among the populations, a clear genetic structure and a recent population contraction could provide guidelines for protecting this endangered species from extinction. Furthermore, the genetic features with population dynamics of the species in our study would help provide insights and guidelines for protecting other endangered species effectively. PMID:25016306
Although the process of glycolysis is highly conserved in eukaryotes, several glycolytic enzymes have unique structural or functional features in spermatogenic cells. We previously identified and characterized the mouse complementary DNA (cDNA) and a gene for 1 of these enzymes, ...
Miyahara, Tomoo; Nakatsuji, Hiroshi; Sugiyama, Hiroshi
2016-11-17
The helical structures of DNA and RNA are investigated experimentally using circular dichroism (CD) spectroscopy. The signs and the shapes of the CD spectra are much different between the right- and left-handed structures as well as between DNA and RNA. The main difference lies in the sign at around 295 nm of the CD spectra: it is positive for the right-handed B-DNA and the left-handed Z-RNA but is negative for the left-handed Z-DNA and the right-handed A-RNA. We calculated the SAC-CI CD spectra of DNA and RNA using the tetramer models, which include both hydrogen-bonding and stacking interactions that are important in both DNA and RNA. The SAC-CI results reproduced the features at around 295 nm of the experimental CD spectra of each DNA and RNA, and elucidated that the strong stacking interaction between the two base pairs is the origin of the negative peaks at 295 nm of the CD spectra for both DNA and RNA. On the basis of these facts, we discuss the similarities and differences between RNA and DNA double-helical structures in the CD spectroscopy based on the ChiraSac methodology.
Stability of DNA Origami Nanoarrays in Cell Lysate
Mei, Qian; Wei, Xixi; Su, Fengyu; Liu, Yan; Youngbull, Cody; Johnson, Roger; Lindsay, Stuart; Yan, Hao; Meldrum, Deirdre
2012-01-01
Scaffolded DNA origami, a method to create self-assembled nanostructures with spatially addressable features, has recently been used to develop water-soluble molecular chips for label-free RNA detection, platforms for deterministic protein positioning, and single molecule reaction observatories. These applications highlight the possibility of exploiting the unique properties and biocompatibility of DNA nanostructures in live, cellular systems. Herein, we assembled several DNA origami nanostructures of differing shape, size and probes, and investigated their interaction with lysate obtained from various normal and cancerous cell lines. We separated and analyzed the origami–lysate mixtures using agarose gel electrophoresis and recovered the DNA structures for functional assay and subsequent microscopic examination. Our results demonstrate that DNA origami nanostructures are stable in cell lysate and can be easily separated from lysate mixtures, in contrast to natural, single- and double-stranded DNA. Atomic force microscope (AFM) and transmission electron microscope (TEM) images show that the DNA origami structures are fully intact after separation from cell lysates and hybridize to their targets, verifying the superior structural integrity and functionality of self-assembled DNA origami nanostructures relative to conventional oligonucleotides. The stability and functionality of DNA origami structures in cell lysate validate their use for biological applications, for example, as programmable molecular rafts or disease detection platforms. PMID:21366226
DSSR-enhanced visualization of nucleic acid structures in Jmol
Hanson, Robert M.
2017-01-01
Abstract Sophisticated and interactive visualizations are essential for making sense of the intricate 3D structures of macromolecules. For proteins, secondary structural components are routinely featured in molecular graphics visualizations. However, the field of RNA structural bioinformatics is still lagging behind; for example, current molecular graphics tools lack built-in support even for base pairs, double helices, or hairpin loops. DSSR (Dissecting the Spatial Structure of RNA) is an integrated and automated command-line tool for the analysis and annotation of RNA tertiary structures. It calculates a comprehensive and unique set of features for characterizing RNA, as well as DNA structures. Jmol is a widely used, open-source Java viewer for 3D structures, with a powerful scripting language. JSmol, its reincarnation based on native JavaScript, has a predominant position in the post Java-applet era for web-based visualization of molecular structures. The DSSR-Jmol integration presented here makes salient features of DSSR readily accessible, either via the Java-based Jmol application itself, or its HTML5-based equivalent, JSmol. The DSSR web service accepts 3D coordinate files (in mmCIF or PDB format) initiated from a Jmol or JSmol session and returns DSSR-derived structural features in JSON format. This seamless combination of DSSR and Jmol/JSmol brings the molecular graphics of 3D RNA structures to a similar level as that for proteins, and enables a much deeper analysis of structural characteristics. It fills a gap in RNA structural bioinformatics, and is freely accessible (via the Jmol application or the JSmol-based website http://jmol.x3dna.org). PMID:28472503
Hine, P M; Wakefield, St J; Mackereth, G; Morrison, R
2016-09-26
The morphogenesis of large icosahedral viruses associated with lymphocystis-like lesions in the skin of parore Girella tricuspidata is described. The electron-lucent perinuclear viromatrix comprised putative DNA with open capsids at the periphery, very large arrays of smooth endoplasmic reticulum (sER), much of it with a reticulated appearance (rsER) or occurring as rows of vesicles. Lysosomes, degenerating mitochondria and virions in various stages of assembly, and paracrystalline arrays were also present. Long electron-dense inclusions (EDIs) with 15 nm repeating units split terminally and curled to form tubular structures internalising the 15 nm repeating structures. These tubular structures appeared to form the virion capsids. Large parallel arrays of sER sometimes alternated with aligned arrays of crinkled cisternae along which passed a uniformly wide (20 nm) thread-like structure. Strings of small vesicles near open capsids may also have been involved in formation of an inner lipid layer. Granules with a fine fibrillar appearance also occurred in the viromatrix, and from the presence of a halo around mature virions it appeared that the fibrils may form a layer around the capsid. The general features of virogenesis of large icosahedral dsDNA viruses, the large amount of ER, particularly rsER and the EDIs, are features of nucleo-cytoplasmic large DNA viruses, rather than features of 1 genus or family.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.
DNA apurinic-apyrimidinic (AP) sites are prevalent noncoding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA-repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive, owing in part to limited structural information. Here we report multiple high-resolution human APE1-DNA structures that divulge new features of the APE1 reaction, including the metal-binding site, the nucleophile and the arginine clamps that mediate product release. We also report APE1-DNA structures with a T-G mismatch 5' to the AP site, representing a clustered lesion occurring in methylatedmore » CpG dinucleotides. Moreover, these structures reveal that APE1 molds the T-G mismatch into a unique Watson-Crick-like geometry that distorts the active site, thus reducing incision. Finally, these snapshots provide mechanistic clarity for APE1 while affording a rational framework to manipulate biological responses to DNA damage.« less
Signatures of DNA target selectivity by ETS transcription factors
Kim, Hye Mi
2017-01-01
ABSTRACT The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation. PMID:28301293
Signatures of DNA target selectivity by ETS transcription factors.
Poon, Gregory M K; Kim, Hye Mi
2017-05-27
The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.
Capturing Snapshots of APE1 Processing DNA Damage
Freudenthal, Bret D.; Beard, William A.; Cuneo, Matthew J.; Dyrkheeva, Nadezhda S.; Wilson, Samuel H.
2015-01-01
DNA apurinic-apyrimidinic (AP) sites are prevalent non-coding threats to genomic stability and are processed by AP endonuclease 1 (APE1). APE1 incises the AP-site phosphodiester backbone, generating a DNA repair intermediate that is potentially cytotoxic. The molecular events of the incision reaction remain elusive due in part to limited structural information. We report multiple high-resolution human APE1:DNA structures that divulge novel features of the APE1 reaction, including the metal binding site, nucleophile, and arginine clamps that mediate product release. We also report APE1:DNA structures with a T:G mismatch 5′ to the AP-site, representing a clustered lesion occurring in methylated CpG dinucleotides. These reveal that APE1 molds the T:G mismatch into a unique Watson-Crick like geometry that distorts the active site reducing incision. These snapshots provide mechanistic clarity for APE1, while affording a rational framework to manipulate biological responses to DNA damage. PMID:26458045
OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.
Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry
2014-01-01
We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.
Lee, Joon-Hwa; Park, Chin-Ju; Shin, Jae-Sun; Ikegami, Takahisa; Akutsu, Hideo; Choi, Byong-Seok
2004-01-01
The cis-syn cyclobutane pyrimidine dimer (CPD) is a cytotoxic, mutagenic and carcinogenic DNA photoproduct and is repaired by the nucleotide excision repair (NER) pathway in mammalian cells. The XPC-hHR23B complex as the initiator of global genomic NER binds to sites of certain kinds of DNA damage. Although CPDs are rarely recognized by the XPC-hHR23B complex, the presence of mismatched bases opposite a CPD significantly increased the binding affinity of the XPC-hHR23B complex to the CPD. In order to decipher the properties of the DNA structures that determine the binding affinity for XPC-hHR23B to DNA, we carried out structural analyses of the various types of CPDs by NMR spectroscopy. The DNA duplex which contains a single 3' T*G wobble pair in a CPD (CPD/GA duplex) induces little conformational distortion. However, severe distortion of the helical conformation occurs when a CPD contains double T*G wobble pairs (CPD/GG duplex) even though the T residues of the CPD form stable hydrogen bonds with the opposite G residues. The helical bending angle of the CPD/GG duplex was larger than those of the CPD/GA duplex and properly matched CPD/AA duplex. The fluctuation of the backbone conformation and significant changes in the widths of the major and minor grooves at the double T*G wobble paired site were also observed in the CPD/GG duplex. These structural features were also found in a duplex that contains the (6-4) adduct, which is efficiently recognized by the XPC-hHR23B complex. Thus, we suggest that the unique structural features of the DNA double helix (that is, helical bending, flexible backbone conformation, and significant changes of the major and/or minor grooves) might be important factors in determining the binding affinity of the XPC-hHR23B complex to DNA.
Lin, C H; Patel, D J
1997-11-01
Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.
An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.
Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J
2007-07-13
In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.
Protein–DNA Interactions: The Story so Far and a New Method for Prediction
Jones, Susan; Thornton, Janet M.
2003-01-01
This review describes methods for the prediction of DNA binding function, and specifically summarizes a new method using 3D structural templates. The new method features the HTH motif that is found in approximately one-third of DNAbinding protein families. A library of 3D structural templates of HTH motifs was derived from proteins in the PDB. Templates were scanned against complete protein structures and the optimal superposition of a template on a structure calculated. Significance thresholds in terms of a minimum root mean squared deviation (rmsd) of an optimal superposition, and a minimum motif accessible surface area (ASA), have been calculated. Inmore » this way, it is possible to scan the template library against proteins of unknown function to make predictions about DNA-binding functionality.« less
Single molecule analysis of Thermus thermophilus SSB protein dynamics on single-stranded DNA.
Zhang, Jichuan; Zhou, Ruobo; Inoue, Jin; Mikawa, Tsutomu; Ha, Taekjip
2014-04-01
Single-stranded (ss) DNA binding (SSB) proteins play central roles in DNA replication, recombination and repair in all organisms. We previously showed that Escherichia coli (Eco) SSB, a homotetrameric bacterial SSB, undergoes not only rapid ssDNA-binding mode transitions but also one-dimensional diffusion (or migration) while remaining bound to ssDNA. Whereas the majority of bacterial SSB family members function as homotetramers, dimeric SSB proteins were recently discovered in a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Here we show, using single-molecule fluorescence resonance energy transfer (FRET), that homodimeric bacterial SSB from Thermus thermophilus (Tth) is able to diffuse spontaneously along ssDNA over a wide range of salt concentrations (20-500 mM NaCl), and that TthSSB diffusion can help transiently melt the DNA hairpin structures. Furthermore, we show that two TthSSB molecules undergo transitions among different DNA-binding modes while remaining bound to ssDNA. Our results extend our previous observations on homotetrameric SSBs to homodimeric SSBs, indicating that the dynamic features may be shared among different types of SSB proteins. These dynamic features of SSBs may facilitate SSB redistribution and removal on/from ssDNA, and help recruit other SSB-interacting proteins onto ssDNA for subsequent DNA processing in DNA replication, recombination and repair.
DSSR-enhanced visualization of nucleic acid structures in Jmol.
Hanson, Robert M; Lu, Xiang-Jun
2017-07-03
Sophisticated and interactive visualizations are essential for making sense of the intricate 3D structures of macromolecules. For proteins, secondary structural components are routinely featured in molecular graphics visualizations. However, the field of RNA structural bioinformatics is still lagging behind; for example, current molecular graphics tools lack built-in support even for base pairs, double helices, or hairpin loops. DSSR (Dissecting the Spatial Structure of RNA) is an integrated and automated command-line tool for the analysis and annotation of RNA tertiary structures. It calculates a comprehensive and unique set of features for characterizing RNA, as well as DNA structures. Jmol is a widely used, open-source Java viewer for 3D structures, with a powerful scripting language. JSmol, its reincarnation based on native JavaScript, has a predominant position in the post Java-applet era for web-based visualization of molecular structures. The DSSR-Jmol integration presented here makes salient features of DSSR readily accessible, either via the Java-based Jmol application itself, or its HTML5-based equivalent, JSmol. The DSSR web service accepts 3D coordinate files (in mmCIF or PDB format) initiated from a Jmol or JSmol session and returns DSSR-derived structural features in JSON format. This seamless combination of DSSR and Jmol/JSmol brings the molecular graphics of 3D RNA structures to a similar level as that for proteins, and enables a much deeper analysis of structural characteristics. It fills a gap in RNA structural bioinformatics, and is freely accessible (via the Jmol application or the JSmol-based website http://jmol.x3dna.org). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lattice-free prediction of three-dimensional structure of programmed DNA assemblies
Pan, Keyao; Kim, Do-Nyun; Zhang, Fei; Adendorff, Matthew R.; Yan, Hao; Bathe, Mark
2014-01-01
DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science. PMID:25470497
Unlocking the sugar "steric gate" of DNA polymerases.
Brown, Jessica A; Suo, Zucai
2011-02-22
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.
Unlocking the Sugar ‘Steric Gate’ of DNA Polymerases†
Brown, Jessica A.; Suo, Zucai
2011-01-01
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2′-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the ‘steric gate’, establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review article. PMID:21226515
Lou, Wangchao; Wang, Xiaoqing; Chen, Fan; Chen, Yixiao; Jiang, Bo; Zhang, Hua
2014-01-01
Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective predictor for large-scale determination of DNA-binding proteins. PMID:24475169
Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy.
Vijayanathan, Veena; Agostinelli, Enzo; Thomas, Thresia; Thomas, T J
2014-03-01
Advances in genomic technologies, such as next generation sequencing and disease specific gene targeting through anti-sense, anti-gene, siRNA and microRNA approaches require the transport of nucleic acid drugs through the cell membrane. Membrane transport of DNA/RNA drugs is an inefficient process, and the mechanism(s) by which this process occurs is not clear. A pre-requisite for effective transport of DNA and RNA in cells is their condensation to nanoparticles of ~100 nm size. Although viral vectors are effective in gene therapy, the immune response elicited by viral proteins poses a major challenge. Multivalent cations, such as natural polyamines are excellent promoters of DNA/RNA condensation to nanoparticles. During the past 20 years, our laboratory has synthesized and tested several analogs of the natural polyamine, spermine, for their efficacy to provoke DNA condensation to nanoparticles. We determined the thermodynamics of polyamine-mediated DNA condensation, measured the structural specificity effects of polyamine analogs in facilitating the cellular uptake of oligonucleotides, and evaluated the gene silencing activity of DNA nanoparticles in breast cancer cells. Polyamine-complexed oligonucleotides showed a synergistic effect on target gene inhibition at the mRNA level compared to the use of polyamines and oligonucleotides as single agents. Ionic and structural specificity effects were evident in DNA condensation and cellular transportation effects of polyamines. In condensed DNA structures, correlation exists between the attractive and repulsive forces with structurally different polyamines and cobalt hexamine, indicating the existence of a common force in stabilizing the condensed structures. Future studies aimed at defining the mechanism(s) of DNA compaction and structural features of DNA nanoparticles might aid in the development of novel gene delivery vehicles.
Predicting DNA binding proteins using support vector machine with hybrid fractal features.
Niu, Xiao-Hui; Hu, Xue-Hai; Shi, Feng; Xia, Jing-Bo
2014-02-21
DNA-binding proteins play a vitally important role in many biological processes. Prediction of DNA-binding proteins from amino acid sequence is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) investigates the patterns hidden in protein sequences, and visually reveals previously unknown structure. Fractal dimensions (FD) are good tools to measure sizes of complex, highly irregular geometric objects. In order to extract the intrinsic correlation with DNA-binding property from protein sequences, CGR algorithm, fractal dimension and amino acid composition are applied to formulate the numerical features of protein samples in this paper. Seven groups of features are extracted, which can be computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test and Jackknife test. Comparing the results of numerical experiments, the group of amino acid composition and fractal dimension (21-dimension vector) gets the best result, the average accuracy is 81.82% and average Matthew's correlation coefficient (MCC) is 0.6017. This resulting predictor is also compared with existing method DNA-Prot and shows better performances. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.
Structural basis of gene regulation by the Grainyhead/CP2 transcription factor family
Ming, Qianqian; Roske, Yvette; Schuetz, Anja; Walentin, Katharina; Ibraimi, Ibraim; Schmidt-Ott, Kai M
2018-01-01
Abstract Grainyhead (Grh)/CP2 transcription factors are highly conserved in multicellular organisms as key regulators of epithelial differentiation, organ development and skin barrier formation. In addition, they have been implicated as being tumor suppressors in a variety of human cancers. Despite their physiological importance, little is known about their structure and DNA binding mode. Here, we report the first structural study of mammalian Grh/CP2 factors. Crystal structures of the DNA-binding domains of grainyhead-like (Grhl) 1 and Grhl2 reveal a closely similar conformation with immunoglobulin-like core. Both share a common fold with the tumor suppressor p53, but differ in important structural features. The Grhl1 DNA-binding domain binds duplex DNA containing the consensus recognition element in a dimeric arrangement, supporting parsimonious target-sequence selection through two conserved arginine residues. We elucidate the molecular basis of a cancer-related mutation in Grhl1 involving one of these arginines, which completely abrogates DNA binding in biochemical assays and transcriptional activation of a reporter gene in a human cell line. Thus, our studies establish the structural basis of DNA target-site recognition by Grh transcription factors and reveal how tumor-associated mutations inactivate Grhl proteins. They may serve as points of departure for the structure-based development of Grh/CP2 inhibitors for therapeutic applications. PMID:29309642
Sicoli, Giuseppe; Mathis, Gérald; Aci-Sèche, Samia; Saint-Pierre, Christine; Boulard, Yves; Gasparutto, Didier; Gambarelli, Serge
2009-06-01
Double electron-electron resonance (DEER) was applied to determine nanometre spin-spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes' positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids.
Ha, Sung Chul; Choi, Jongkeun; Hwang, Hye-Yeon; Rich, Alexander; Kim, Yang-Gyun; Kim, Kyeong Kyu
2009-02-01
The Z-DNA conformation preferentially occurs at alternating purine-pyrimidine repeats, and is specifically recognized by Z alpha domains identified in several Z-DNA-binding proteins. The binding of Z alpha to foreign or chromosomal DNA in various sequence contexts is known to influence various biological functions, including the DNA-mediated innate immune response and transcriptional modulation of gene expression. For these reasons, understanding its binding mode and the conformational diversity of Z alpha bound Z-DNAs is of considerable importance. However, structural studies of Z alpha bound Z-DNA have been mostly limited to standard CG-repeat DNAs. Here, we have solved the crystal structures of three representative non-CG repeat DNAs, d(CACGTG)(2), d(CGTACG)(2) and d(CGGCCG)(2) complexed to hZ alpha(ADAR1) and compared those structures with that of hZ alpha(ADAR1)/d(CGCGCG)(2) and the Z alpha-free Z-DNAs. hZ alpha(ADAR1) bound to each of the three Z-DNAs showed a well conserved binding mode with very limited structural deviation irrespective of the DNA sequence, although varying numbers of residues were in contact with Z-DNA. Z-DNAs display less structural alterations in the Z alpha-bound state than in their free form, thereby suggesting that conformational diversities of Z-DNAs are restrained by the binding pocket of Z alpha. These data suggest that Z-DNAs are recognized by Z alpha through common conformational features regardless of the sequence and structural alterations.
Dodson, M; Echols, H; Wickner, S; Alfano, C; Mensa-Wilmot, K; Gomes, B; LeBowitz, J; Roberts, J D; McMacken, R
1986-01-01
The O protein of bacteriophage lambda localizes the initiation of DNA replication to a unique site on the lambda genome, ori lambda. By means of electron microscopy, we infer that the binding of O to ori lambda initiates a series of protein addition and transfer reactions that culminate in localized unwinding of the origin DNA, generating a prepriming structure for the initiation of DNA replication. We can define three stages of this prepriming reaction, the first two of which we have characterized previously. First, dimeric O protein binds to multiple DNA binding sites and self-associates to form a nucleoprotein structure, the O-some. Second, lambda P and host DnaB proteins interact with the O-some to generate a larger complex that includes additional DNA from an A + T-rich region adjacent to the O binding sites. Third, the addition of the DnaJ, DnaK, and Ssb proteins and ATP results in an origin-specific unwinding reaction, probably catalyzed by the helicase activity of DnaB. The unwinding reaction is unidirectional, proceeding "rightward" from the origin. The minimal DNA sequence competent for unwinding consists of two O binding sites and the adjacent A + T-rich region to the right of the binding sites. We conclude that the lambda O protein localizes and initiates a six-protein sequential reaction responsible for but preceding the precise initiation of DNA replication. Specialized nucleoprotein structures similar to the O-some may be a general feature of DNA transactions requiring extraordinary precision in localization and control. Images PMID:3020552
Monte Carlo approach in assessing damage in higher order structures of DNA
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Schmidt, J. B.; Holley, W. R.
1994-01-01
We have developed a computer monitor of nuclear DNA in the form of chromatin fibre. The fibres are modeled as a ideal solenoid consisting of twenty helical turns with six nucleosomes per turn. The chromatin model, in combination with are Monte Carlo theory of radiation damage induces by charged particles, based on general features of tack structure and stopping power theory, has been used to evaluate the influence of DNA structure on initial damage. An interesting has emerged from our calculations. Our calculated results predict the existence of strong spatial correlations in damage sites associated with the symmetries in the solenoidal model. We have calculated spectra of short fragments of double stranded DNA produced by multiple double strand breaks induced by both high and low LET radiation. The spectra exhibit peaks at multiples of approximately 85 base pairs (the nucleosome periodicity), and approximately 1000 base pairs (solenoid periodicity). Preliminary experiments to investigate the fragment distributions from irradiated DNA, made by B. Rydberg at Lawrence Berkeley Laboratory, confirm the existence of short DNA fragments and are in substantial agreement with the predictions of our theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schormann, Norbert; Zhukovskaya, Natalia; Bedwell, Gregory
We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymaticmore » function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.« less
Nucleosome-free DNA regions differentially affect distant communication in chromatin
Nizovtseva, Ekaterina V.; Clauvelin, Nicolas; Todolli, Stefjord; Kulaeva, Olga I.; Wengrzynek, Scott
2017-01-01
Abstract Communication between distantly spaced genomic regions is one of the key features of gene regulation in eukaryotes. Chromatin per se can stimulate efficient enhancer-promoter communication (EPC); however, the role of chromatin structure and dynamics in this process remains poorly understood. Here we show that nucleosome spacing and the presence of nucleosome-free DNA regions can modulate chromatin structure/dynamics and, in turn, affect the rate of EPC in vitro and in silico. Increasing the length of internucleosomal linker DNA from 25 to 60 bp results in more efficient EPC. The presence of longer nucleosome-free DNA regions can positively or negatively affect the rate of EPC, depending upon the length and location of the DNA region within the chromatin fiber. Thus the presence of histone-free DNA regions can differentially affect the efficiency of EPC, suggesting that gene regulation over a distance could be modulated by changes in the length of internucleosomal DNA spacers. PMID:27940560
Cotton, Allison M.; Chen, Chih-Yu; Lam, Lucia L.; Wasserman, Wyeth W.; Kobor, Michael S.; Brown, Carolyn J.
2014-01-01
X-chromosome inactivation results in dosage equivalence between the X chromosome in males and females; however, over 15% of human X-linked genes escape silencing and these genes are enriched on the evolutionarily younger short arm of the X chromosome. The spread of inactivation onto translocated autosomal material allows the study of inactivation without the confounding evolutionary history of the X chromosome. The heterogeneity and reduced extent of silencing on autosomes are evidence for the importance of DNA elements underlying the spread of silencing. We have assessed DNA methylation in six unbalanced X-autosome translocations using the Illumina Infinium HumanMethylation450 array. Two to 42% of translocated autosomal genes showed this mark of silencing, with the highest degree of inactivation observed for trisomic autosomal regions. Generally, the extent of silencing was greatest close to the translocation breakpoint; however, silencing was detected well over 100 kb into the autosomal DNA. Alu elements were found to be enriched at autosomal genes that escaped from inactivation while L1s were enriched at subject genes. In cells without the translocation, there was enrichment of heterochromatic features such as EZH2 and H3K27me3 for those genes that become silenced when translocated, suggesting that underlying chromatin structure predisposes genes towards silencing. Additionally, the analysis of topological domains indicated physical clustering of autosomal genes of common inactivation status. Overall, our analysis indicated a complex interaction between DNA sequence, chromatin features and the three-dimensional structure of the chromosome. PMID:24158853
RiboSketch: Versatile Visualization of Multi-stranded RNA and DNA Secondary Structure.
Lu, Jacob S; Bindewald, Eckart; Kasprzak, Wojciech; Shapiro, Bruce A
2018-06-15
Creating clear, visually pleasing 2D depictions of RNA and DNA strands and their interactions is important to facilitate and communicate insights related to nucleic acid structure. Here we present RiboSketch, a secondary structure image production application that enables the visualization of multistranded structures via layout algorithms, comprehensive editing capabilities, and a multitude of simulation modes. These interactive features allow RiboSketch to create publication quality diagrams for structures with a wide range of composition, size, and complexity. The program may be run in any web browser without the need for installation, or as a standalone Java application. https://binkley2.ncifcrf.gov/users/bindewae/ribosketch_web.
Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsodikov, Oleg V.; Biswas, Tapan
An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). Thesemore » structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.« less
Direct Nanoscale Conversion of Biomolecular Signals into Electronic Information
2008-09-22
the electrode surface. In this experiment, the single free cysteine group featured in the GOx structure was exploited to demonstrate that orientation...first with GOx-ssDNA conjugates featuring a sequence complementary to the address strand, then with a non-complementary conjugate and finally with...fully-functional for an enzyme that features a free thiol group, or that can be engineered to incorporate a thiol onto its outer shell
Dellas, Nikki; Snyder, Jamie C; Dills, Michael; Nicolay, Sheena J; Kerchner, Keshia M; Brumfield, Susan K; Lawrence, C Martin; Young, Mark J
2015-12-23
Sulfolobus turreted icosahedral virus (STIV), an archaeal virus that infects the hyperthermoacidophile Sulfolobus solfataricus, is one of the most well-studied viruses of the domain Archaea. STIV shares structural, morphological, and sequence similarities with viruses from other domains of life, all of which are thought to belong to the same viral lineage. Several of these common features include a conserved coat protein fold, an internal lipid membrane, and a DNA-packaging ATPase. B204 is the ATPase encoded by STIV and is thought to drive packaging of viral DNA during the replication process. Here, we report the crystal structure of B204 along with the biochemical analysis of B204 mutants chosen based on structural information and sequence conservation patterns observed among members of the same viral lineage and the larger FtsK/HerA superfamily to which B204 belongs. Both in vitro ATPase activity assays and transfection assays with mutant forms of B204 confirmed the essentiality of conserved and nonconserved positions. We also have identified two distinct particle morphologies during an STIV infection that differ in the presence or absence of the B204 protein. The biochemical and structural data presented here are not only informative for the STIV replication process but also can be useful in deciphering DNA-packaging mechanisms for other viruses belonging to this lineage. STIV is a virus that infects a host from the domain Archaea that replicates in high-temperature, acidic environments. While STIV has many unique features, there exist several striking similarities between this virus and others that replicate in different environments and infect a broad range of hosts from Bacteria and Eukarya. Aside from structural features shared by viruses from this lineage, there exists a significant level of sequence similarity between the ATPase genes carried by these different viruses; this gene encodes an enzyme thought to provide energy that drives DNA packaging into the virion during infection. The experiments described here highlight the elements of this enzyme that are essential for proper function and also provide supporting evidence that B204 is present in the mature STIV virion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure.
Sheng, Qinglin; Liu, Ruixiao; Zhang, Sai; Zheng, Jianbin
2014-01-15
We proposed an ultrasensitive electrochemical cocaine biosensor based on the three-dimensional (3D) DNA structure conversion of nanostructure from Triangular Pyramid Frustum (TPFDNA) to Equilateral Triangle (ETDNA). The presence of cocaine triggered the aptamer-composed DNA nanostructure change from "Close" to "Open", leading to obvious faradaic impedance changes. The unique properties with excellent stability and specific rigid structure of the 3D DNA nanostructure made the biosensing functions stable, sensitive, and regenerable. The Faradaic impedance responses were linearly related to cocaine concentration between 1.0 nM and 2.0 μM with a correlation coefficient of 0.993. The limit of detection was calculated to be 0.21 nM following IUPAC recommendations (3Sb/b). It is expected that the distinctive features of DNA nanostructure would make it potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Insights from the Structure of Mycobacterium tuberculosis Topoisomerase I with a Novel Protein Fold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Kemin; Cao, Nan; Cheng, Bokun
The DNA topoisomerase I enzyme of Mycobacterium tuberculosis (MtTOP1) is essential for the viability of the organism and survival in a murine model. This topoisomerase is being pursued as a novel target for the discovery of new therapeutic agents for the treatment of drug-resistant tuberculosis. In this study, we succeeded in obtaining a structure of MtTOP1 by first predicting that the C-terminal region of MtTOP1 contains four repeated domains that do not involve the Zn-binding tetracysteine motifs seen in the C-terminal domains of Escherichia coli topoisomerase I. A construct (amino acids A2-T704), MtTOP1-704t, that includes the N-terminal domains (D1-D4) andmore » the first predicted C-terminal domain (D5) of MtTOP1 was expressed and found to retain DNA cleavage-religation activity and catalyze single-stranded DNA catenation. MtTOP1-704t was crystallized, and a structure of 2.52 angstrom resolution limit was obtained. The structure of the MtTOP1 N-terminal domains has features that have not been observed in other previously available bacterial topoisomerase I crystal structures. The first C-terminal domain D5 forms a novel protein fold of a four-stranded antiparallel beta-sheet stabilized by a crossing-over alpha-helix. Since there is only one type IA topoisomerase present in Mycobacteriaceae and related Actinobacteria, this subfamily of type IA topoisomerase may be required for multiple functions in DNA replication, transcription, recombination, and repair. The unique structural features observed for MtTOP1 may allow these topoisomerase I enzymes to carry out physiological functions associated with topoisomerase III enzyme in other bacteria.« less
The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder.
Walden, Helen; Deans, Andrew J
2014-01-01
Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.
Identification of DNA primase inhibitors via a combined fragment-based and virtual screening
NASA Astrophysics Data System (ADS)
Ilic, Stefan; Akabayov, Sabine R.; Arthanari, Haribabu; Wagner, Gerhard; Richardson, Charles C.; Akabayov, Barak
2016-11-01
The structural differences between bacterial and human primases render the former an excellent target for drug design. Here we describe a technique for selecting small molecule inhibitors of the activity of T7 DNA primase, an ideal model for bacterial primases due to their common structural and functional features. Using NMR screening, fragment molecules that bind T7 primase were identified and then exploited in virtual filtration to select larger molecules from the ZINC database. The molecules were docked to the primase active site using the available primase crystal structure and ranked based on their predicted binding energies to identify the best candidates for functional and structural investigations. Biochemical assays revealed that some of the molecules inhibit T7 primase-dependent DNA replication. The binding mechanism was delineated via NMR spectroscopy. Our approach, which combines fragment based and virtual screening, is rapid and cost effective and can be applied to other targets.
A Feature-Based Approach to Modeling Protein–DNA Interactions
Segal, Eran
2008-01-01
Transcription factor (TF) binding to its DNA target site is a fundamental regulatory interaction. The most common model used to represent TF binding specificities is a position specific scoring matrix (PSSM), which assumes independence between binding positions. However, in many cases, this simplifying assumption does not hold. Here, we present feature motif models (FMMs), a novel probabilistic method for modeling TF–DNA interactions, based on log-linear models. Our approach uses sequence features to represent TF binding specificities, where each feature may span multiple positions. We develop the mathematical formulation of our model and devise an algorithm for learning its structural features from binding site data. We also developed a discriminative motif finder, which discovers de novo FMMs that are enriched in target sets of sequences compared to background sets. We evaluate our approach on synthetic data and on the widely used TF chromatin immunoprecipitation (ChIP) dataset of Harbison et al. We then apply our algorithm to high-throughput TF ChIP data from mouse and human, reveal sequence features that are present in the binding specificities of mouse and human TFs, and show that FMMs explain TF binding significantly better than PSSMs. Our FMM learning and motif finder software are available at http://genie.weizmann.ac.il/. PMID:18725950
Zhao, Haiyan; Speir, Jeffrey A.; Matsui, Tsutomu; ...
2016-02-16
The multi-layered cell envelope structure of Gram-negative bacteria represents significant physical and chemical barriers for short-tailed phages to inject phage DNA into the host cytoplasm. Here we show that a DNA-injection protein of bacteriophage Sf6, gp12, forms a 465-kDa, decameric assembly in vitro. The electron microscopic structure of the gp12 assembly shows a ~150-Å, mushroom-like architecture consisting of a crown domain and a tube-like domain, which embraces a 25-Å-wide channel that could precisely accommodate dsDNA. The constricted channel suggests that gp12 mediates rapid, uni-directional injection of phage DNA into host cells by providing a molecular conduit for DNA translocation. Themore » assembly exhibits a 10-fold symmetry, which may be a common feature among DNA-injection proteins of P22-like phages and may suggest a symmetry mismatch with respect to the 6-fold symmetric phage tail. As a result, the gp12 monomer is highly flexible in solution, supporting a mechanism for translocation of the protein through the conduit of the phage tail toward the host cell envelope, where it assembles into a DNA-injection device.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haiyan; Speir, Jeffrey A.; Matsui, Tsutomu
The multi-layered cell envelope structure of Gram-negative bacteria represents significant physical and chemical barriers for short-tailed phages to inject phage DNA into the host cytoplasm. Here we show that a DNA-injection protein of bacteriophage Sf6, gp12, forms a 465-kDa, decameric assembly in vitro. The electron microscopic structure of the gp12 assembly shows a ~150-Å, mushroom-like architecture consisting of a crown domain and a tube-like domain, which embraces a 25-Å-wide channel that could precisely accommodate dsDNA. The constricted channel suggests that gp12 mediates rapid, uni-directional injection of phage DNA into host cells by providing a molecular conduit for DNA translocation. Themore » assembly exhibits a 10-fold symmetry, which may be a common feature among DNA-injection proteins of P22-like phages and may suggest a symmetry mismatch with respect to the 6-fold symmetric phage tail. As a result, the gp12 monomer is highly flexible in solution, supporting a mechanism for translocation of the protein through the conduit of the phage tail toward the host cell envelope, where it assembles into a DNA-injection device.« less
Systematic analysis and evolution of 5S ribosomal DNA in metazoans.
Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M
2013-11-01
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.
Systematic analysis and evolution of 5S ribosomal DNA in metazoans
Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M
2013-01-01
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12 766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades. PMID:23838690
Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications
Mo, Liuting; Lu, Chun-Hua; Fu, Ting
2016-01-01
Hydrogels are crosslinked hydrophilic polymers that can absorb a large amount of water. By their hydrophilic, biocompatible and highly tunable nature, hydrogels can be tailored for applications in bioanalysis and biomedicine. Of particular interest are DNA-based hydrogels owing to the unique features of nucleic acids. Since the discovery of DNA double helical structure, interest in DNA has expanded beyond its genetic role to applications in nanotechnology and materials science. In particular, DNA-based hydrogels present such remarkable features as stability, flexibility, precise programmability, stimuli-responsive DNA conformations, facile synthesis and modification. Moreover, functional nucleic acids (FNAs) have allowed the construction of hydrogels based on aptamers, DNAzymes, i-motif nanostructures, siRNAs and CpG oligodeoxynucleotides to provide additional molecular recognition, catalytic activities and therapeutic potential, making them key players in biological analysis and biomedical applications. To date, a variety of applications have been demonstrated with FNA-based hydrogels, including biosensing, environmental analysis, controlled drug release, cell adhesion and targeted cancer therapy. In this review, we focus on advances in the development of FNA-based hydrogels, which have fully incorporated both the unique features of FNAs and DNA-based hydrogels. We first introduce different strategies for constructing DNA-based hydrogels. Subsequently, various types of FNAs and the most recent developments of FNA-based hydrogels for bioanalytical and biomedical applications are described with some selected examples. Finally, the review provides an insight into the remaining challenges and future perspectives of FNA-based hydrogels. PMID:26758955
Bignon, Emmanuelle; Gattuso, Hugo; Morell, Christophe; Dehez, François; Georgakilas, Alexandros G.; Monari, Antonio; Dumont, Elise
2016-01-01
Clustered apurinic/apyrimidinic (AP; abasic) DNA lesions produced by ionizing radiation are by far more cytotoxic than isolated AP lesion entities. The structure and dynamics of a series of seven 23-bp oligonucleotides featuring simple bistranded clustered damage sites, comprising of two AP sites, zero, one, three or five bases 3′ or 5′ apart from each other, were investigated through 400 ns explicit solvent molecular dynamics simulations. They provide representative structures of synthetically engineered multiply damage sites-containing oligonucleotides whose repair was investigated experimentally (Nucl. Acids Res. 2004, 32:5609-5620; Nucl. Acids Res. 2002, 30: 2800–2808). The inspection of extrahelical positioning of the AP sites, bulge and non Watson–Crick hydrogen bonding corroborates the experimental measurements of repair efficiencies by bacterial or human AP endonucleases Nfo and APE1, respectively. This study provides unprecedented knowledge into the structure and dynamics of clustered abasic DNA lesions, notably rationalizing the non-symmetry with respect to 3′ to 5′ position. In addition, it provides strong mechanistic insights and basis for future studies on the effects of clustered DNA damage on the recognition and processing of these lesions by bacterial or human DNA repair enzymes specialized in the processing of such lesions. PMID:27587587
Unraveling DNA dynamics using atomic force microscopy.
Suzuki, Yuki; Yoshikawa, Yuko; Yoshimura, Shige H; Yoshikawa, Kenichi; Takeyasu, Kunio
2011-01-01
The elucidation of structure-function relationships of biological samples has become important issue in post-genomic researches. In order to unveil the molecular mechanisms controlling gene regulations, it is essential to understand the interplay between fundamental DNA properties and the dynamics of the entire molecule. The wide range of applicability of atomic force microscopy (AFM) has allowed us to extract physicochemical properties of DNA and DNA-protein complexes, as well as to determine their topographical information. Here, we review how AFM techniques have been utilized to study DNA and DNA-protein complexes and what types of analyses have accelerated the understanding of the DNA dynamics. We begin by illustrating the application of AFM to investigate the fundamental feature of DNA molecules; topological transition of DNA, length dependent properties of DNA molecules, flexibility of double-stranded DNA, and capability of the formation of non-Watson-Crick base pairing. These properties of DNA are critical for the DNA folding and enzymatic reactions. The technical advancement in the time-resolution of AFM and sample preparation methods enabled visual analysis of DNA-protein interactions at sub-second time region. DNA tension-dependent enzymatic reaction and DNA looping dynamics by restriction enzymes were examined at a nanoscale in physiological environments. Contribution of physical properties of DNA to dynamics of nucleosomes and transition of the higher-order structure of reconstituted chromatin are also reviewed. Copyright © 2011 John Wiley & Sons, Inc.
Mondal, Sayantan; Samajdar, Rudra N; Mukherjee, Saumyak; Bhattacharyya, Aninda J; Bagchi, Biman
2018-03-01
There are certain small molecules that exhibit extraordinarily diverse biological activities. Metformin is one of them. It is widely used as an antidiabetic drug for type-two diabetes. Recent lines of evidence of its role in antitumor activities and increasing the survival rates of cancer patients (namely, colorectal, breast, pancreas, and prostate cancer) are emerging. However, theoretical studies of the structure and dynamics of metformin have not yet been fully explored. In this work, we investigate the characteristic structural and dynamical features of three monoprotonated forms of metformin hydrochloride with the help of experiments, quantum chemical calculations, and atomistic molecular dynamics simulations. We validate our force field by comparing simulation results to those of the experimental findings. Energetics of proton transfer between two planar monoprotonated forms reveals a low energy barrier, which leads us to speculate a possible coexistence of them. Nevertheless, among the protonation states, we find that the nonplanar tautomeric form is the most stable. Our calculated values of the self-diffusion coefficient agree quantitatively with NMR results. Metformin forms strong hydrogen bonds with surrounding water molecules, and its solvation dynamics shows unique features. Because of an extended positive charge distribution, metformin possesses features of being a permanent cationic partner toward several targets. We study its interaction and binding ability with DNA using UV spectroscopy, circular dichroism, fluorimetry, and metadynamics simulation. We find a nonintercalative mode of interaction. Metformin feasibly forms a minor/major groove-bound state within a few tens of nanoseconds, preferably with AT-rich domains. A significant decrease in the free energy of binding is observed when it binds to a minor groove of DNA.
The centromeric nucleosome-like CENP–T–W–S–X complex induces positive supercoils into DNA
Takeuchi, Kozo; Nishino, Tatsuya; Mayanagi, Kouta; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Hori, Tetsuya; Kurumizaka, Hitoshi; Fukagawa, Tatsuo
2014-01-01
The centromere is a specific genomic region upon which the kinetochore is formed to attach to spindle microtubules for faithful chromosome segregation. To distinguish this chromosomal region from other genomic loci, the centromere contains a specific chromatin structure including specialized nucleosomes containing the histone H3 variant CENP–A. In addition to CENP–A nucleosomes, we have found that centromeres contain a nucleosome-like structure comprised of the histone-fold CENP–T–W–S–X complex. However, it is unclear how the CENP–T–W–S–X complex associates with centromere chromatin. Here, we demonstrate that the CENP–T–W–S–X complex binds preferentially to ∼100 bp of linker DNA rather than nucleosome-bound DNA. In addition, we find that the CENP–T–W–S–X complex primarily binds to DNA as a (CENP–T–W–S–X)2 structure. Interestingly, in contrast to canonical nucleosomes that negatively supercoil DNA, the CENP–T–W–S–X complex induces positive DNA supercoils. We found that the DNA-binding regions in CENP–T or CENP–W, but not CENP–S or CENP–X, are required for this positive supercoiling activity and the kinetochore targeting of the CENP–T–W–S–X complex. In summary, our work reveals the structural features and properties of the CENP–T–W–S–X complex for its localization to centromeres. PMID:24234442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluta, Radoslaw; Boer, D. Roeland; Lorenzo-Diaz, Fabian
Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOB V family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOB V relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterizedmore » histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. In conclusion, we discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOB V histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.« less
Pluta, Radoslaw; Boer, D. Roeland; Lorenzo-Diaz, Fabian; ...
2017-07-24
Relaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOB V family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOB V relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterizedmore » histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. In conclusion, we discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOB V histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.« less
Programmable DNA-Mediated Multitasking Processor.
Shu, Jian-Jun; Wang, Qi-Wen; Yong, Kian-Yan; Shao, Fangwei; Lee, Kee Jin
2015-04-30
Because of DNA appealing features as perfect material, including minuscule size, defined structural repeat and rigidity, programmable DNA-mediated processing is a promising computing paradigm, which employs DNAs as information storing and processing substrates to tackle the computational problems. The massive parallelism of DNA hybridization exhibits transcendent potential to improve multitasking capabilities and yield a tremendous speed-up over the conventional electronic processors with stepwise signal cascade. As an example of multitasking capability, we present an in vitro programmable DNA-mediated optimal route planning processor as a functional unit embedded in contemporary navigation systems. The novel programmable DNA-mediated processor has several advantages over the existing silicon-mediated methods, such as conducting massive data storage and simultaneous processing via much fewer materials than conventional silicon devices.
Lin, Chang Sheng-Huei; Chao, Shi-Yu; Hammel, Michal; Nix, Jay C; Tseng, Hsiao-Ling; Tsou, Chih-Cheng; Fei, Chun-Hsien; Chiou, Huo-Sheng; Jeng, U-Ser; Lin, Yee-Shin; Chuang, Woei-Jer; Wu, Jiunn-Jong; Wang, Shuying
2014-01-01
Group A streptococcus (GAS, Streptococcus pyogenes) is a strict human pathogen that causes severe, invasive diseases. GAS does not produce catalase, but has an ability to resist killing by reactive oxygen species (ROS) through novel mechanisms. The peroxide response regulator (PerR), a member of ferric uptake regulator (Fur) family, plays a key role for GAS to cope with oxidative stress by regulating the expression of multiple genes. Our previous studies have found that expression of an iron-binding protein, Dpr, is under the direct control of PerR. To elucidate the molecular interactions of PerR with its cognate promoter, we have carried out structural studies on PerR and PerR-DNA complex. By combining crystallography and small-angle X-ray scattering (SAXS), we confirmed that the determined PerR crystal structure reflects its conformation in solution. Through mutagenesis and biochemical analysis, we have identified DNA-binding residues suggesting that PerR binds to the dpr promoter at the per box through a winged-helix motif. Furthermore, we have performed SAXS analysis and resolved the molecular architecture of PerR-DNA complex, in which two 30 bp DNA fragments wrap around two PerR homodimers by interacting with the adjacent positively-charged winged-helix motifs. Overall, we provide structural insights into molecular recognition of DNA by PerR and define the hollow structural arrangement of PerR-30bpDNA complex, which displays a unique topology distinct from currently proposed DNA-binding models for Fur family regulators.
2011-01-01
Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc. Conclusions The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein functions from sequences. PMID:21342579
Chang, Soyoung; Kilic, Tugba; Lee, Chang Kee; Avci, Huseyin; Bae, Hojae; Oskui, Shirin Mesbah; Jung, Sung Mi; Shin, Su Ryon; Kim, Seon Jeong
2018-04-08
The unique biological features of supramolecular DNA have led to an increasing interest in biomedical applications such as biosensors. We have developed an i-motif and G-rich DNA conjugated single-walled carbon nanotube hybrid materials, which shows reversible conformational switching upon external stimuli such as pH (5 and 8) and presence of ions (Li⁺ and K⁺). We observed reversible electrochemical redox activity upon external stimuli in a quick and robust manner. Given the ease and the robustness of this method, we believe that pH- and ion-driven reversible DNA structure transformations will be utilized for future applications for developing novel biosensors.
Samantha M. Wisely; Steven W. Buskirk; Gregory A. Russell; Keith B. Aubry; William I. Zielinski
2004-01-01
Evolutionary processes can be strongly affected by landscape features. In vagile carnivores that disperse widely, however, genetic structure has been found to be minimal. Using microsatellite DNA primers developed for other mustelids, we found that populations of a vagile forest carnivore, the fisher (Martes pennanti), exhibit high genetic...
Poltev, V I; Anisimov, V M; Sanchez, C; Deriabina, A; Gonzalez, E; Garcia, D; Rivas, F; Polteva, N A
2016-01-01
It is generally accepted that the important characteristic features of the Watson-Crick duplex originate from the molecular structure of its subunits. However, it still remains to elucidate what properties of each subunit are responsible for the significant characteristic features of the DNA structure. The computations of desoxydinucleoside monophosphates complexes with Na-ions using density functional theory revealed a pivotal role of DNA conformational properties of single-chain minimal fragments in the development of unique features of the Watson-Crick duplex. We found that directionality of the sugar-phosphate backbone and the preferable ranges of its torsion angles, combined with the difference between purines and pyrimidines. in ring bases, define the dependence of three-dimensional structure of the Watson-Crick duplex on nucleotide base sequence. In this work, we extended these density functional theory computations to the minimal' fragments of DNA duplex, complementary desoxydinucleoside monophosphates complexes with Na-ions. Using several computational methods and various functionals, we performed a search for energy minima of BI-conformation for complementary desoxydinucleoside monophosphates complexes with different nucleoside sequences. Two sequences are optimized using ab initio method at the MP2/6-31++G** level of theory. The analysis of torsion angles, sugar ring puckering and mutual base positions of optimized structures demonstrates that the conformational characteristic features of complementary desoxydinucleoside monophosphates complexes with Na-ions remain within BI ranges and become closer to the corresponding characteristic features of the Watson-Crick duplex crystals. Qualitatively, the main characteristic features of each studied complementary desoxydinucleoside monophosphates complex remain invariant when different computational methods are used, although the quantitative values of some conformational parameters could vary lying within the limits typical for the corresponding family. We observe that popular functionals in density functional theory calculations lead to the overestimated distances between base pairs, while MP2 computations and the newer complex functionals produce the structures that have too close atom-atom contacts. A detailed study of some complementary desoxydinucleoside monophosphate complexes with Na-ions highlights the existence of several energy minima corresponding to BI-conformations, in other words, the complexity of the relief pattern of the potential energy surface of complementary desoxydinucleoside monophosphate complexes. This accounts for variability of conformational parameters of duplex fragments with the same base sequence. Popular molecular mechanics force fields AMBER and CHARMM reproduce most of the conformational characteristics of desoxydinucleoside monophosphates and their complementary complexes with Na-ions but fail to reproduce some details of the dependence of the Watson-Crick duplex conformation on the nucleotide sequence.
Genome packaging in EL and Lin68, two giant phiKZ-like bacteriophages of P. aeruginosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolova, O.S., E-mail: sokolova@mail.bio.msu.ru; A.V. Shoubnikov Institute of Crystallography RAS, Moscow; Shaburova, O.V.
A unique feature of the Pseudomonas aeruginosa giant phage phiKZ is its way of genome packaging onto a spool-like protein structure, the inner body. Until recently, no similar structures have been detected in other phages. We have studied DNA packaging in P. aeruginosa phages EL and Lin68 using cryo-electron microscopy and revealed the presence of inner bodies. The shape and positioning of the inner body and the density of the DNA packaging in EL are different from those found in phiKZ and Lin68. This internal organization explains how the shorter EL genome is packed into a large EL capsid, whichmore » has the same external dimensions as the capsids of phiKZ and Lin68. The similarity in the structural organization in EL and other phiKZ-like phages indicates that EL is phylogenetically related to other phiKZ-like phages, and, despite the lack of detectable DNA homology, EL, phiKZ, and Lin68 descend from a common ancestor. - Highlights: • We performed a comparative structural study of giant P. aeruginosa phages: EL, Lin68 and phiKZ. • We revealed that the inner body is a common feature in giant phages. • The phage genome size correlates with the overall dimensions of the inner body.« less
Highly Accurate Classification of Watson-Crick Basepairs on Termini of Single DNA Molecules
Winters-Hilt, Stephen; Vercoutere, Wenonah; DeGuzman, Veronica S.; Deamer, David; Akeson, Mark; Haussler, David
2003-01-01
We introduce a computational method for classification of individual DNA molecules measured by an α-hemolysin channel detector. We show classification with better than 99% accuracy for DNA hairpin molecules that differ only in their terminal Watson-Crick basepairs. Signal classification was done in silico to establish performance metrics (i.e., where train and test data were of known type, via single-species data files). It was then performed in solution to assay real mixtures of DNA hairpins. Hidden Markov Models (HMMs) were used with Expectation/Maximization for denoising and for associating a feature vector with the ionic current blockade of the DNA molecule. Support Vector Machines (SVMs) were used as discriminators, and were the focus of off-line training. A multiclass SVM architecture was designed to place less discriminatory load on weaker discriminators, and novel SVM kernels were used to boost discrimination strength. The tuning on HMMs and SVMs enabled biophysical analysis of the captured molecule states and state transitions; structure revealed in the biophysical analysis was used for better feature selection. PMID:12547778
Insights into DNA-mediated interparticle interactions from a coarse-grained model
NASA Astrophysics Data System (ADS)
Ding, Yajun; Mittal, Jeetain
2014-11-01
DNA-functionalized particles have great potential for the design of complex self-assembled materials. The major hurdle in realizing crystal structures from DNA-functionalized particles is expected to be kinetic barriers that trap the system in metastable amorphous states. Therefore, it is vital to explore the molecular details of particle assembly processes in order to understand the underlying mechanisms. Molecular simulations based on coarse-grained models can provide a convenient route to explore these details. Most of the currently available coarse-grained models of DNA-functionalized particles ignore key chemical and structural details of DNA behavior. These models therefore are limited in scope for studying experimental phenomena. In this paper, we present a new coarse-grained model of DNA-functionalized particles which incorporates some of the desired features of DNA behavior. The coarse-grained DNA model used here provides explicit DNA representation (at the nucleotide level) and complementary interactions between Watson-Crick base pairs, which lead to the formation of single-stranded hairpin and double-stranded DNA. Aggregation between multiple complementary strands is also prevented in our model. We study interactions between two DNA-functionalized particles as a function of DNA grafting density, lengths of the hybridizing and non-hybridizing parts of DNA, and temperature. The calculated free energies as a function of pair distance between particles qualitatively resemble experimental measurements of DNA-mediated pair interactions.
Genna, Vito; Gaspari, Roberto; Dal Peraro, Matteo; De Vivo, Marco
2016-04-07
Trans-lesion synthesis polymerases, like DNA Polymerase-η (Pol-η), are essential for cell survival. Pol-η bypasses ultraviolet-induced DNA damages via a two-metal-ion mechanism that assures DNA strand elongation, with formation of the leaving group pyrophosphate (PPi). Recent structural and kinetics studies have shown that Pol-η function depends on the highly flexible and conserved Arg61 and, intriguingly, on a transient third ion resolved at the catalytic site, as lately observed in other nucleic acid-processing metalloenzymes. How these conserved structural features facilitate DNA replication, however, is still poorly understood. Through extended molecular dynamics and free energy simulations, we unravel a highly cooperative and dynamic mechanism for DNA elongation and repair, which is here described by an equilibrium ensemble of structures that connect the reactants to the products in Pol-η catalysis. We reveal that specific conformations of Arg61 help facilitate the recruitment of the incoming base and favor the proper formation of a pre-reactive complex in Pol-η for efficient DNA editing. Also, we show that a third transient metal ion, which acts concertedly with Arg61, serves as an exit shuttle for the leaving PPi. Finally, we discuss how this effective and cooperative mechanism for DNA repair may be shared by other DNA-repairing polymerases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.
Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie
2015-06-17
High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This sequence structure can be harnessed to improve bioinformatics algorithms, in particular for CNV and structural variant detection. Descriptive measures for cell-free DNA features developed here could also be used in biomarker analysis to monitor the changes that occur during different pathological conditions.
The TubR-centromere complex adopts a double-ring segrosome structure in Type III partition systems.
Martín-García, Bárbara; Martín-González, Alejandro; Carrasco, Carolina; Hernández-Arriaga, Ana M; Ruíz-Quero, Rubén; Díaz-Orejas, Ramón; Aicart-Ramos, Clara; Moreno-Herrero, Fernando; Oliva, María A
2018-05-14
In prokaryotes, the centromere is a specialized segment of DNA that promotes the assembly of the segrosome upon binding of the Centromere Binding Protein (CBP). The segrosome structure exposes a specific surface for the interaction of the CBP with the motor protein that mediates DNA movement during cell division. Additionally, the CBP usually controls the transcriptional regulation of the segregation system as a cell cycle checkpoint. Correct segrosome functioning is therefore indispensable for accurate DNA segregation. Here, we combine biochemical reconstruction and structural and biophysical analysis to bring light to the architecture of the segrosome complex in Type III partition systems. We present the particular features of the centromere site, tubC, of the model system encoded in Clostridium botulinum prophage c-st. We find that the split centromere site contains two different iterons involved in the binding and spreading of the CBP, TubR. The resulting nucleoprotein complex consists of a novel double-ring structure that covers part of the predicted promoter. Single molecule data provides a mechanism for the formation of the segrosome structure based on DNA bending and unwinding upon TubR binding.
Seeman, Nadrian C.
2012-01-01
The combination of synthetic stable branched DNA and sticky ended cohesion has led to the development of structural DNA nanotechnology over the past 30 years. The basis of this enterprise is that it is possible to construct novel DNA-based materials by combining these features in a self-assembly protocol. Thus, simple branched molecules lead directly to the construction of polyhedra whose edges consist of double helical DNA, and whose vertices correspond to the branch points. Stiffer branched motifs can be used to produce self-assembled two-dimensional and three-dimensional periodic lattices of DNA (crystals). DNA has also been used to make a variety of nanomechanical devices, including molecules that change their shapes, and molecules that can walk along a DNA sidewalk. Devices have been incorporated into two-dimensional DNA arrangements; sequence-dependent devices are driven by increases in nucleotide pairing at each step in their machine cycles. PMID:20222824
Korolev, Nikolay; Yu, Hang; Lyubartsev, Alexander P; Nordenskiöld, Lars
2014-10-01
The positively charged N-terminal histone tails play a crucial role in chromatin compaction and are important modulators of DNA transcription, recombination, and repair. The detailed mechanism of the interaction of histone tails with DNA remains elusive. To model the unspecific interaction of histone tails with DNA, all-atom molecular dynamics (MD) simulations were carried out for systems of four DNA 22-mers in the presence of 20 or 16 short fragments of the H4 histone tail (variations of the 16-23 a. a. KRHRKVLR sequence, as well as the unmodified fragment a. a.13-20, GGAKRHRK). This setup with high DNA concentration, explicit presence of DNA-DNA contacts, presence of unstructured cationic peptides (histone tails) and K(+) mimics the conditions of eukaryotic chromatin. A detailed account of the DNA interactions with the histone tail fragments, K(+) and water is presented. Furthermore, DNA structure and dynamics and its interplay with the histone tail fragments binding are analysed. The charged side chains of the lysines and arginines play major roles in the tail-mediated DNA-DNA attraction by forming bridges and by coordinating to the phosphate groups and to the electronegative sites in the minor groove. Binding of all species to DNA is dynamic. The structure of the unmodified fully-charged H4 16-23 a.a. fragment KRHRKVLR is dominated by a stretched conformation. The H4 tail a. a. fragment GGAKRHRK as well as the H4 Lys16 acetylated fragment are highly flexible. The present work allows capturing typical features of the histone tail-counterion-DNA structure, interaction and dynamics. © 2014 Wiley Periodicals, Inc.
3D chromosome rendering from Hi-C data using virtual reality
NASA Astrophysics Data System (ADS)
Zhu, Yixin; Selvaraj, Siddarth; Weber, Philip; Fang, Jennifer; Schulze, Jürgen P.; Ren, Bing
2015-01-01
Most genome browsers display DNA linearly, using single-dimensional depictions that are useful to examine certain epigenetic mechanisms such as DNA methylation. However, these representations are insufficient to visualize intrachromosomal interactions and relationships between distal genome features. Relationships between DNA regions may be difficult to decipher or missed entirely if those regions are distant in one dimension but could be spatially proximal when mapped to three-dimensional space. For example, the visualization of enhancers folding over genes is only fully expressed in three-dimensional space. Thus, to accurately understand DNA behavior during gene expression, a means to model chromosomes is essential. Using coordinates generated from Hi-C interaction frequency data, we have created interactive 3D models of whole chromosome structures and its respective domains. We have also rendered information on genomic features such as genes, CTCF binding sites, and enhancers. The goal of this article is to present the procedure, findings, and conclusions of our models and renderings.
Zhang, Jian; Gao, Bo; Chai, Haiting; Ma, Zhiqiang; Yang, Guifu
2016-08-26
DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the developing of effective computational tools for identifying DBPs is becoming highly desirable. In this study, we proposed an accurate method for the prediction of DBPs. Firstly, we focused on the challenge of improving DBP prediction accuracy with information solely from the sequence. Secondly, we used multiple informative features to encode the protein. These features included evolutionary conservation profile, secondary structure motifs, and physicochemical properties. Thirdly, we introduced a novel improved Binary Firefly Algorithm (BFA) to remove redundant or noisy features as well as select optimal parameters for the classifier. The experimental results of our predictor on two benchmark datasets outperformed many state-of-the-art predictors, which revealed the effectiveness of our method. The promising prediction performance on a new-compiled independent testing dataset from PDB and a large-scale dataset from UniProt proved the good generalization ability of our method. In addition, the BFA forged in this research would be of great potential in practical applications in optimization fields, especially in feature selection problems. A highly accurate method was proposed for the identification of DBPs. A user-friendly web-server named iDbP (identification of DNA-binding Proteins) was constructed and provided for academic use.
Poltev, V; Anisimov, V M; Dominguez, V; Gonzalez, E; Deriabina, A; Garcia, D; Rivas, F; Polteva, N A
2018-02-01
Deciphering the mechanism of functioning of DNA as the carrier of genetic information requires identifying inherent factors determining its structure and function. Following this path, our previous DFT studies attributed the origin of unique conformational characteristics of right-handed Watson-Crick duplexes (WCDs) to the conformational profile of deoxydinucleoside monophosphates (dDMPs) serving as the minimal repeating units of DNA strand. According to those findings, the directionality of the sugar-phosphate chain and the characteristic ranges of dihedral angles of energy minima combined with the geometric differences between purines and pyrimidines determine the dependence on base sequence of the three-dimensional (3D) structure of WCDs. This work extends our computational study to complementary deoxydinucleotide-monophosphates (cdDMPs) of non-standard conformation, including those of Z-family, Hoogsteen duplexes, parallel-stranded structures, and duplexes with mispaired bases. For most of these systems, except Z-conformation, computations closely reproduce experimental data within the tolerance of characteristic limits of dihedral parameters for each conformation family. Computation of cdDMPs with Z-conformation reveals that their experimental structures do not correspond to the internal energy minimum. This finding establishes the leading role of external factors in formation of the Z-conformation. Energy minima of cdDMPs of non-Watson-Crick duplexes demonstrate different sequence-dependence features than those known for WCDs. The obtained results provide evidence that the biologically important regularities of 3D structure distinguish WCDs from duplexes having non-Watson-Crick nucleotide pairing.
Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review
Huang, Weizhe; He, Ziying
2013-01-01
RNA interference (RNAi) was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA) are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc.) of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system. PMID:24288498
King, Justin J.; Amemiya, Chris T.; Hsu, Ellen
2017-01-01
ABSTRACT Activation-induced cytidine deaminase (AID) is a genome-mutating enzyme that initiates class switch recombination and somatic hypermutation of antibodies in jawed vertebrates. We previously described the biochemical properties of human AID and found that it is an unusual enzyme in that it exhibits binding affinities for its substrate DNA and catalytic rates several orders of magnitude higher and lower, respectively, than a typical enzyme. Recently, we solved the functional structure of AID and demonstrated that these properties are due to nonspecific DNA binding on its surface, along with a catalytic pocket that predominantly assumes a closed conformation. Here we investigated the biochemical properties of AID from a sea lamprey, nurse shark, tetraodon, and coelacanth: representative species chosen because their lineages diverged at the earliest critical junctures in evolution of adaptive immunity. We found that these earliest-diverged AID orthologs are active cytidine deaminases that exhibit unique substrate specificities and thermosensitivities. Significant amino acid sequence divergence among these AID orthologs is predicted to manifest as notable structural differences. However, despite major differences in sequence specificities, thermosensitivities, and structural features, all orthologs share the unusually high DNA binding affinities and low catalytic rates. This absolute conservation is evidence for biological significance of these unique biochemical properties. PMID:28716949
A one- and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution.
Feigon, J; Wang, A H; van der Marel, G A; Van Boom, J H; Rich, A
1984-01-01
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation. PMID:6694910
NASA Astrophysics Data System (ADS)
Drwal, Malgorzata N.; Agama, Keli; Pommier, Yves; Griffith, Renate
2013-12-01
Purely structure-based pharmacophores (SBPs) are an alternative method to ligand-based approaches and have the advantage of describing the entire interaction capability of a binding pocket. Here, we present the development of SBPs for topoisomerase I, an anticancer target with an unusual ligand binding pocket consisting of protein and DNA atoms. Different approaches to cluster and select pharmacophore features are investigated, including hierarchical clustering and energy calculations. In addition, the performance of SBPs is evaluated retrospectively and compared to the performance of ligand- and complex-based pharmacophores. SBPs emerge as a valid method in virtual screening and a complementary approach to ligand-focussed methods. The study further reveals that the choice of pharmacophore feature clustering and selection methods has a large impact on the virtual screening hit lists. A prospective application of the SBPs in virtual screening reveals that they can be used successfully to identify novel topoisomerase inhibitors.
Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes.
Sharma, S; Raina, S N
2005-01-01
A major component of the plant nuclear genome is constituted by different classes of repetitive DNA sequences. The structural, functional and evolutionary aspects of the satellite repetitive DNA families, and their organization in the chromosomes is reviewed. The tandem satellite DNA sequences exhibit characteristic chromosomal locations, usually at subtelomeric and centromeric regions. The repetitive DNA family(ies) may be widely distributed in a taxonomic family or a genus, or may be specific for a species, genome or even a chromosome. They may acquire large-scale variations in their sequence and copy number over an evolutionary time-scale. These features have formed the basis of extensive utilization of repetitive sequences for taxonomic and phylogenetic studies. Hybrid polyploids have especially proven to be excellent models for studying the evolution of repetitive DNA sequences. Recent studies explicitly show that some repetitive DNA families localized at the telomeres and centromeres have acquired important structural and functional significance. The repetitive elements are under different evolutionary constraints as compared to the genes. Satellite DNA families are thought to arise de novo as a consequence of molecular mechanisms such as unequal crossing over, rolling circle amplification, replication slippage and mutation that constitute "molecular drive". Copyright 2005 S. Karger AG, Basel.
Adaptive resolution simulation of oligonucleotides
NASA Astrophysics Data System (ADS)
Netz, Paulo A.; Potestio, Raffaello; Kremer, Kurt
2016-12-01
Nucleic acids are characterized by a complex hierarchical structure and a variety of interaction mechanisms with other molecules. These features suggest the need of multiscale simulation methods in order to grasp the relevant physical properties of deoxyribonucleic acid (DNA) and RNA using in silico experiments. Here we report an implementation of a dual-resolution modeling of a DNA oligonucleotide in physiological conditions; in the presented setup only the nucleotide molecule and the solvent and ions in its proximity are described at the atomistic level; in contrast, the water molecules and ions far from the DNA are represented as computationally less expensive coarse-grained particles. Through the analysis of several structural and dynamical parameters, we show that this setup reliably reproduces the physical properties of the DNA molecule as observed in reference atomistic simulations. These results represent a first step towards a realistic multiscale modeling of nucleic acids and provide a quantitatively solid ground for their simulation using dual-resolution methods.
NASA Astrophysics Data System (ADS)
Babin, Volodymr; Baucom, Jason; Darden, Thomas; Sagui, Celeste
2006-03-01
We have investigated to what extend molecular dynamics (MD) simulatons can reproduce DNA sequence-specific features, given different electrostatic descriptions and different cell environments. For this purpose, we have carried out multiple unrestrained MD simulations of the duplex d(CCAACGTTGG)2. With respect to the electrostatic descriptions, two different force fields were studied: a traditional description based on atomic point charges and a polarizable force field. With respect to the cell environment, the difference between crystal and solution environments is emphasized, as well as the structural importance of divalent ions. By imposing the correct experimental unit cell environment, an initial configuration with two ideal B-DNA duplexes in the unit cell is shown to converge to the crystallographic structure. To the best of our knowledge, this provides the first example of a multiple nanosecond MD trajectory that shows and ideal structure converging to an experimental one, with a significant decay of the RMSD.
Sperm DNA fragmentation affects epigenetic feature in human male pronucleus.
Rajabi, H; Mohseni-Kouchesfehani, H; Eslami-Arshaghi, T; Salehi, M
2018-02-01
To evaluate whether the sperm DNA fragmentation affects male pronucleus epigenetic factors, semen analysis was performed and DNA fragmentation was assessed by the method of sperm chromatin structure assay (SCSA). Human-mouse interspecies fertilisation was used to create human male pronucleus. Male pronucleus DNA methylation and H4K12 acetylation were evaluated by immunostaining. Results showed a significant positive correlation between the level of sperm DNA fragmentation and DNA methylation in male pronuclei. In other words, an increase in DNA damage caused an upsurge in DNA methylation. In the case of H4K12 acetylation, no correlation was detected between DNA damage and the level of histone acetylation in the normal group, but results for the group in which male pronuclei were derived from sperm cells with DNA fragmentation, increased DNA damage led to a decreased acetylation level. Sperm DNA fragmentation interferes with the active demethylation process and disrupts the insertion of histones into the male chromatin in the male pronucleus, following fertilisation. © 2017 Blackwell Verlag GmbH.
Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes.
Cer, Regina Z; Bruce, Kevin H; Mudunuri, Uma S; Yi, Ming; Volfovsky, Natalia; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M
2011-01-01
Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies.
Utturkar, Sagar M; Klingeman, Dawn M; Hurt, Richard A; Brown, Steven D
2017-01-01
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.
Zhitnikova, M Y; Shestopalova, A V
2017-11-01
The structural adjustments of the sugar-phosphate DNA backbone (switching of the γ angle (O5'-C5'-C4'-C3') from canonical to alternative conformations and/or C2'-endo → C3'-endo transition of deoxyribose) lead to the sequence-specific changes in accessible surface area of both polar and non-polar atoms of the grooves and the polar/hydrophobic profile of the latter ones. The distribution of the minor groove electrostatic potential is likely to be changing as a result of such conformational rearrangements in sugar-phosphate DNA backbone. Our analysis of the crystal structures of the short free DNA fragments and calculation of their electrostatic potentials allowed us to determine: (1) the number of classical and alternative γ angle conformations in the free B-DNA; (2) changes in the minor groove electrostatic potential, depending on the conformation of the sugar-phosphate DNA backbone; (3) the effect of the DNA sequence on the minor groove electrostatic potential. We have demonstrated that the structural adjustments of the DNA double helix (the conformations of the sugar-phosphate backbone and the minor groove dimensions) induce changes in the distribution of the minor groove electrostatic potential and are sequence-specific. Therefore, these features of the minor groove sizes and distribution of minor groove electrostatic potential can be used as a signal for recognition of the target DNA sequence by protein in the implementation of the indirect readout mechanism.
Pearston, Douglas H.; Gordon, Mairi; Hardman, Norman
1985-01-01
A family of long, highly-repetitive sequences, referred to previously as `HpaII-repeats', dominates the genome of the eukaryotic slime mould Physarum polycephalum. These sequences are found exclusively in scrambled clusters. They account for about one-half of the total complement of repetitive DNA in Physarum, and represent the major sequence component found in hypermethylated, 20-50 kb segments of Physarum genomic DNA that fail to be cleaved using the restriction endonuclease HpaII. The structure of this abundant repetitive element was investigated by analysing cloned segments derived from the hypermethylated genomic DNA compartment. We show that the `HpaII-repeat' forms part of a larger repetitive DNA structure, ∼8.6 kb in length, with several structural features in common with recognised eukaryotic transposable genetic elements. Scrambled clusters of the sequence probably arise as a result of transposition-like events, during which the element preferentially recombines in either orientation with target sites located in other copies of the same repeated sequence. The target sites for transposition/recombination are not related in sequence but in all cases studied they are potentially capable of promoting the formation of small `cruciforms' or `Z-DNA' structures which might be recognised during the recombination process. ImagesFig. 3.Fig. 4. PMID:16453652
NASA Astrophysics Data System (ADS)
Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan
2015-02-01
Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.
Furano, A V; Robb, S M; Robb, F T
1988-01-01
Here we report the DNA structure of the left 1.5 kb of two newly isolated full length members of the rat L1 DNA family (L1Rn, long interspersed repeated DNA). In contrast to earlier isolated rat L1 members, both of these contain promoter-like regions that are most likely full length. In addition, the promoter-like region of both members has undergone a partial tandem duplication. A second internal region of the left end of one of the reported members is also tandemly duplicated. The propensity of the left end of rat L1 elements to undergo this form of genetic rearrangement, as well as other structural features revealed by the present work, is discussed in light of the fact that during evolution the otherwise conserved mammalian L1 DNA families have each acquired completely different promoter-like regions. In an accompanying paper [Nur, I., Pascale, E., and Furano, A. V. (1988) Nucleic Acids Res. 16, submitted], we report that one of the rat promoter-like regions can function as a promoter in rat cells when fused to the Escherichia coli chloramphenicol acyltransferase gene. PMID:2845369
Novel Insights into DNA Methylation Features in Spermatozoa: Stability and Peculiarities
Sayols, Sergi; Chianese, Chiara; Giachini, Claudia; Heyn, Holger; Esteller, Manel
2012-01-01
Data about the entire sperm DNA methylome are limited to two sperm donors whereas studies dealing with a greater number of subjects focused only on a few genes or were based on low resolution arrays. This implies that information about what we can consider as a normal sperm DNA methylome and whether it is stable among different normozoospermic individuals is still missing. The definition of the DNA methylation profile of normozoospermic men, the entity of inter-individual variability and the epigenetic characterization of quality-fractioned sperm subpopulations in the same subject (intra-individual variability) are relevant for a better understanding of pathological conditions. We addressed these questions by using the high resolution Infinium 450K methylation array and compared normal sperm DNA methylomes against somatic and cancer cells. Our study, based on the largest number of subjects (n = 8) ever considered for such a large number of CpGs (n = 487,517), provided clear evidence for i) a highly conserved DNA methylation profile among normozoospermic subjects; ii) a stable sperm DNA methylation pattern in different quality-fractioned sperm populations of the same individual. The latter finding is particularly relevant if we consider that different quality fractioned sperm subpopulations show differences in their structural features, metabolic and genomic profiles. We demonstrate, for the first time, that DNA methylation in normozoospermic men remains highly uniform regardless the quality of sperm subpopulations. In addition, our analysis provided both confirmatory and novel data concerning the sperm DNA methylome, including its peculiar features in respect to somatic and cancer cells. Our description about a highly polarized sperm DNA methylation profile, the clearly distinct genomic and functional organization of hypo- versus hypermethylated loci as well as the association of histone-enriched hypomethylated loci with embryonic development, which we now extended also to hypomethylated piRNAs-linked genes, provides solid basis for future basic and clinical research. PMID:23071498
Structural properties of prokaryotic promoter regions correlate with functional features.
Meysman, Pieter; Collado-Vides, Julio; Morett, Enrique; Viola, Roberto; Engelen, Kristof; Laukens, Kris
2014-01-01
The structural properties of the DNA molecule are known to play a critical role in transcription. In this paper, the structural profiles of promoter regions were studied within the context of their diversity and their function for eleven prokaryotic species; Escherichia coli, Klebsiella pneumoniae, Salmonella Typhimurium, Pseudomonas auroginosa, Geobacter sulfurreducens Helicobacter pylori, Chlamydophila pneumoniae, Synechocystis sp., Synechoccocus elongates, Bacillus anthracis, and the archaea Sulfolobus solfataricus. The main anchor point for these promoter regions were transcription start sites identified through high-throughput experiments or collected within large curated databases. Prokaryotic promoter regions were found to be less stable and less flexible than the genomic mean across all studied species. However, direct comparison between species revealed differences in their structural profiles that can not solely be explained by the difference in genomic GC content. In addition, comparison with functional data revealed that there are patterns in the promoter structural profiles that can be linked to specific functional loci, such as sigma factor regulation or transcription factor binding. Interestingly, a novel structural element clearly visible near the transcription start site was found in genes associated with essential cellular functions and growth in several species. Our analyses reveals the great diversity in promoter structural profiles both between and within prokaryotic species. We observed relationships between structural diversity and functional features that are interesting prospects for further research to yet uncharacterized functional loci defined by DNA structural properties.
Cooper, David N.; Bacolla, Albino; Férec, Claude; Vasquez, Karen M.; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min
2011-01-01
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher-order features of the genomic architecture. The human genome is now recognized to contain ‘pervasive architectural flaws’ in that certain DNA sequences are inherently mutation-prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of non-canonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair, and may serve to increase mutation frequencies in generalized fashion (i.e. both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. PMID:21853507
Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian
2017-01-31
Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.
Claveria-Gimeno, Rafael; Lanuza, Pilar M.; Morales-Chueca, Ignacio; Jorge-Torres, Olga C.; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian
2017-01-01
Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities. PMID:28139759
Modular structural elements in the replication origin region of Tetrahymena rDNA.
Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L
1995-01-01
Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181
Weiss, Julia; Ros-Chumillas, Maria; Peña, Leandro; Egea-Cortines, Marcos
2007-01-30
Recombinant DNA technology is an important tool in the development of plant varieties with new favourable features. There is strong opposition towards this technology due to the potential risk of horizontal gene transfer between genetically modified plant material and food-associated bacteria, especially if genes for antibiotic resistance are involved. Since horizontal transfer efficiency depends on size and length of homologous sequences, we investigated the effect of conditions required for orange juice processing on the stability of DNA from three different origins: plasmid DNA, yeast genomic DNA and endogenous genomic DNA from transgenic sweet orange (C. sinensis L. Osb.). Acidic orange juice matrix had a strong degrading effect on plasmid DNA which becomes apparent in a conformation change from supercoiled structure to nicked, linear structure within 5h of storage at 4 degrees C. Genomic yeast DNA was degraded during exposure to acidic orange juice matrix within 4 days, and also the genomic DNA of C. sinensis suffered degradation within 2 days of storage as indicated by amplification results from transgene markers. Standard pasteurization procedures affected DNA integrity depending on the method and time used. Our data show that the current standard industrial procedures to pasteurize orange juice as well as its acidic nature causes a strong degradation of both yeast and endogenous genomic DNA below sizes reported to be suitable for horizontal gene transfer.
NASA Astrophysics Data System (ADS)
Chou, Y. C.
2018-04-01
The asymmetry in the two-layered ring structure of helicases and the random thermal fluctuations of the helicase and DNA molecules are considered as the bases for the generation of the force required for translocation of the ring-shaped helicase on DNA. The helicase comprises a channel at its center with two unequal ends, through which strands of DNA can pass. The random collisions between the portion of the DNA strand in the central channel and the wall of the channel generate an impulsive force toward the small end. This impulsive force is the starting point for the helicase to translocate along the DNA with the small end in front. Such a physical mechanism may serve as a complementary for the chemomechanical mechanism of the translocation of helicase on DNA. When the helicase arrives at the junction of ssDNA and dsDNA (a fork), the collision between the helicase and the closest base pair may produce a sufficient impulsive force to break the weak hydrogen bond of the base pair. Thus, the helicase may advance and repeat the process of unwinding the dsDNA strand. This mechanism was tested in a macroscopic simulation system where the helicase was simulated using a truncated-cone structure and DNA was simulated with bead chains. Many features of translocation and unwinding such as translocation on ssDNA and dsDNA, unwinding of dsDNA, rewinding, strand switching, and Holliday junction resolution were reproduced.
NASA Astrophysics Data System (ADS)
Vasquez, Karen M.; Christensen, Jesper; Li, Lei; Finch, Rick A.; Glazer, Peter M.
2002-04-01
Nucleotide excision repair (NER) plays a central role in maintaining genomic integrity by detecting and repairing a wide variety of DNA lesions. Xeroderma pigmentosum complementation group A protein (XPA) is an essential component of the repair machinery, and it is thought to be involved in the initial step as a DNA damage recognition and/or confirmation factor. Human replication protein A (RPA) and XPA have been reported to interact to form a DNA damage recognition complex with greater specificity for damaged DNA than XPA alone. The mechanism by which these two proteins recognize such a wide array of structures resulting from different types of DNA damage is not known. One possibility is that they recognize a common feature of the lesions, such as distortions of the helical backbone. We have tested this idea by determining whether human XPA and RPA proteins can recognize the helical distortions induced by a DNA triple helix, a noncanonical DNA structure that has been shown to induce DNA repair, mutagenesis, and recombination. We measured binding of XPA and RPA, together or separately, to substrates containing triplexes with three, two, or no strands covalently linked by psoralen conjugation and photoaddition. We found that RPA alone recognizes all covalent triplex structures, but also forms multivalent nonspecific DNA aggregates at higher concentrations. XPA by itself does not recognize the substrates, but it binds them in the presence of RPA. Addition of XPA decreases the nonspecific DNA aggregate formation. These results support the hypothesis that the NER machinery is targeted to helical distortions and demonstrate that RPA can recognize damaged DNA even without XPA.
Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins
Shin, David S.; Pratt, Ashley J.; Tainer, John A.
2014-01-01
As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine. PMID:24701133
Structural basis for the suppression of skin cancers by DNA polymerase [eta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverstein, Timothy D.; Johnson, Robert E.; Jain, Rinku
2010-09-13
DNA polymerase {eta} (Pol{eta}) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Pol{eta} (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Pol{eta} (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Pol{eta} to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in anmore » active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln55, Arg73 and Met74. Together, these features define the basis for Pol{eta}'s action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.« less
The effect of flash-freezing temperature on stallion sperm DNA structure.
Serafini, R; Varner, D D; Bissett, W; Blanchard, T L; Teague, S R; Love, C C
2017-06-01
The effect of flash-freezing storage temperature on stallion sperm DNA has not been evaluated. Commonly, sperm are flash-frozen at various temperatures to preserve sperm DNA prior to analysis. It is unclear whether the temperature at which sperm are frozen and stored may affect the results of DNA assays. In this study, the neutral comet assay was used to evaluate the effect of flash-freezing storage temperature (freezer [-60 °C], dry ice [-78.5 °C], liquid nitrogen [-196 °C]) compared to fresh sperm DNA structure. In addition, intra- and inter-assay and intra- and inter-stallion variabilities were determined. All comet tail measures were higher following any flash-freezing method, as compared to fresh sperm DNA (P < 0.05), with no difference among flash-frozen treatments (P > 0.05). For most comet variables, intra- and inter-assay variabilities were <10%. Intra- and inter-stallion variabilities revealed that comet head length (HL) and width (CW) were less variable as compared to comet tail values, i.e., % comet tail DNA (T-DNA), tail length (TL), tail moment (OTM), and tail migration (TM). Certain comet tail values in fresh (% T-DNA, and OTM) and flash-frozen sperm (OTM, % T-DNA, TL, and TM) were correlated to the Sperm Chromatin Structure Assay (SCSA) variable, COMP-α t . The comet tail measures were negatively correlated to % morphologically normal sperm (P < 0.05) and positively correlated to % abnormal heads and premature germ cells (P < 0.05). Variables COMP-α t and % total sperm motility were not correlated to any morphologic sperm feature in this group of stallions (P > 0.05). While significant differences in the structure of the sperm DNA were identified in the flash-frozen as compared to the fresh sperm DNA with the neutral comet assay, it cannot be assumed that these changes are fertility limiting. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Jamy C.
Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) thatmore » binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in euchromatin. Remarkably, human euchromatin and fly heterochromatin share similar features; such as repeated DNA content, intron lengths and open reading frame sizes. Human cells likely stabilize their DNA content via mechanisms and factors similar to those in Drosophila heterochromatin. Furthermore, my thesis work raises implications for H3K9me and chromatin functions in complex-DNA genome stability, repeated DNA homogenization by molecular drive, and in genome reorganization through evolution.« less
Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I; Marini, Monica; Das, Gobind; Elshenawy, Mohamed M; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed A; Stingl, Ulrich; Merzaban, Jasmeen S; Di Fabrizio, Enzo; Hamdan, Samir M
2018-01-24
The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.
Unique Dynamic Properties of DNA Duplexes Containing Interstrand Crosslinks†
Friedman, Joshua I.; Jiang, Yu Lin; Miller, Paul S.; Stivers, James T.
2010-01-01
Bifunctional DNA alkylating agents form a diverse assortment of covalent DNA interstrand crosslinked (ICL) structures that are potent cytotoxins. Since it is implausible that cells could possess distinct DNA repair systems for each individual ICL, it is believed that common structural and dynamic features of ICL damage are recognized, rather than specific structural characteristics of each cross-linking agent. Investigation of the structural and dynamic properties of ICLs that might be important for recognition has been complicated by heterogeneous incorporation of these lesions into DNA. To address this problem we have synthesized and characterized several homogenous ICL-DNAs containing site–specific staggered N4-cytosine-ethyl-N4-cytosine crosslinks. Staggered crosslinks were introduced in two ways: in a manner that preserves the overall structure of B-form duplex DNA, and in a manner that highly distorts the DNA structure, with the goal of understanding how structural and dynamic properties of diverse ICL duplexes might flag these sites for repair. Measurements of base pair opening dynamics in the B-form ICL duplex by 1H NMR linewidth or imino proton solvent exchange showed that the guanine base opposite to the crosslinked cytosine opened at least an order of magnitude more slowly than when in a control matched normal duplex. To a lesser degree, the B-form ICL also induced a decrease in base pair opening dynamics that extended from the site of the crosslink to adjacent base pairs. In contrast, the non-B-form ICL showed extensive conformational dynamics at the site of the cross link, which extended over the entire DNA sequence. Since DNA duplexes containing the B-form and non-B-form ICL crosslinks have both been shown to be incised when incubated in mammalian whole cell extracts, while a matched normal duplex is not, we conclude that intrinsic DNA dynamics is not a requirement for specific damage incision of these ICLs. Instead, we propose a general model where destabilized ICL-duplexes serve to energetically facilitate binding of DNA repair factors that must induce bubbles or other distortions in the duplex. However, the essential requirement for incision is an immobile Y-junction where the repair factors are stably bound at the site of the ICL, and the two DNA strands are unpaired. PMID:21174443
Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik
2015-12-01
We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.
TOPICAL REVIEW: The physics of chromatin
NASA Astrophysics Data System (ADS)
Schiessel, Helmut
2003-05-01
Recent progress has been made in the understanding of the physical properties of chromatin - the dense complex of DNA and histone proteins that occupies the nuclei of plant and animal cells. Here I will focus on the two lowest levels of the hierarchy of DNA folding into the chromatin complex. (i) The nucleosome, the chromatin repeating unit consisting of a globular aggregate of eight histone proteins with the DNA wrapped around it: its overcharging, the DNA unwrapping transition, the 'sliding' of the octamer along the DNA. (ii) The 30 nm chromatin fibre, the necklace-like structure of nucleosomes connected via linker DNA: its geometry, its mechanical properties under stretching and its response to changing ionic conditions. I will stress that chromatin combines two seemingly contradictory features: (1) high compaction of DNA within the nuclear envelope and, at the same time, (2) accessibility to genes, promoter regions and gene regulatory sequences.
Study of DNA-emodin interaction by FTIR and UV-vis spectroscopy.
Saito, Samuel T; Silva, Givaldo; Pungartnik, Cristina; Brendel, Martin
2012-06-04
Emodin, a plant- and fungus-derived anthraquinone, exerts genotoxic and antioxidative effects and shows promise in antitumor and antibacterial therapies. The aim of this study was to examine the molecular interactions of emodin with DNA in aqueous solution at physiological pH using spectroscopic methods. Fourier Transform Infrared (FTIR) Spectroscopy and UV absorption spectra were used to determine the structural features, the binding mode and the association constants. Our UV-spectroscopic results indicate that emodin interacts with DNA by intercalation and by external binding. FTIR results suggest that emodin interaction occurs preferably via adenine and thymine base pairs and also weakly with the phosphate backbone of the DNA double helix. The binding constant for emodin-DNA complex formation is estimated to be K=5.59×10(3)M(-1). No significant changes of DNA conformation were observed upon emodin-DNA complexation. Copyright © 2012 Elsevier B.V. All rights reserved.
Working the kinks out of nucleosomal DNA
Olson, Wilma K.; Zhurkin, Victor B.
2011-01-01
Condensation of DNA in the nucleosome takes advantage of its double-helical architecture. The DNA deforms at sites where the base pairs face the histone octamer. The largest so-called kink-and-slide deformations occur in the vicinity of arginines that penetrate the minor groove. Nucleosome structures formed from the 601 positioning sequence differ subtly from those incorporating an AT-rich human α-satellite DNA. Restraints imposed by the histone arginines on the displacement of base pairs can modulate the sequence-dependent deformability of DNA and potentially contribute to the unique features of the different nucleosomes. Steric barriers mimicking constraints found in the nucleosome induce the simulated large-scale rearrangement of canonical B-DNA to kink-and-slide states. The pathway to these states shows non-harmonic behavior consistent with bending profiles inferred from AFM measurements. PMID:21482100
van Keulen, H; Gutell, R R; Campbell, S R; Erlandsen, S L; Jarroll, E L
1992-10-01
The total nucleotide sequence of the rDNA of Giardia muris, an intestinal protozoan parasite of rodents, has been determined. The repeat unit is 7668 basepairs (bp) in size and consists of a spacer of 3314 bp, a small-subunit rRNA (SSU-rRNA) gene of 1429, and a large-subunit rRNA (LSU-rRNA) gene of 2698 bp. The spacer contains long direct repeats and is heterogeneous in size. The LSU-rRNA of G. muris was compared to that of the human intestinal parasite Giardia duodenalis, to the bird parasite Giardia ardeae, and to that of Escherichia coli. The LSU-rRNA has a size comparable to the 23S rRNA of E. coli but shows structural features typical for eukaryotes. Some variable regions are typically small and account for the overall smaller size of this rRNA. The structure of the G. muris LSU-rRNA is similar to that of the other Giardia rRNA, but each rRNA has characteristic features residing in a number of variable regions.
Characterization of biochemical properties of Bacillus subtilis RecQ helicase.
Qin, Wei; Liu, Na-Nv; Wang, Lijun; Zhou, Min; Ren, Hua; Bugnard, Elisabeth; Liu, Jie-Lin; Zhang, Lin-Hu; Vendôme, Jeremie; Hu, Jin-Shan; Xi, Xu Guang
2014-12-01
RecQ family helicases function as safeguards of the genome. Unlike Escherichia coli, the Gram-positive Bacillus subtilis bacterium possesses two RecQ-like homologues, RecQ[Bs] and RecS, which are required for the repair of DNA double-strand breaks. RecQ[Bs] also binds to the forked DNA to ensure a smooth progression of the cell cycle. Here we present the first biochemical analysis of recombinant RecQ[Bs]. RecQ[Bs] binds weakly to single-stranded DNA (ssDNA) and blunt-ended double-stranded DNA (dsDNA) but strongly to forked dsDNA. The protein exhibits a DNA-stimulated ATPase activity and ATP- and Mg(2+)-dependent DNA helicase activity with a 3' → 5' polarity. Molecular modeling shows that RecQ[Bs] shares high sequence and structure similarity with E. coli RecQ. Surprisingly, RecQ[Bs] resembles the truncated Saccharomyces cerevisiae Sgs1 and human RecQ helicases more than RecQ[Ec] with regard to its enzymatic activities. Specifically, RecQ[Bs] unwinds forked dsDNA and DNA duplexes with a 3'-overhang but is inactive on blunt-ended dsDNA and 5'-overhung duplexes. Interestingly, RecQ[Bs] unwinds blunt-ended DNA with structural features, including nicks, gaps, 5'-flaps, Kappa joints, synthetic replication forks, and Holliday junctions. We discuss these findings in the context of RecQ[Bs]'s possible functions in preserving genomic stability. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Nosek, Jozef; Tomáška, L'ubomír; Ryčovská, Adriana; Fukuhara, Hiroshi
2002-01-01
Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy. PMID:11923346
Crystal structure of a DNA/Ba2+ G-quadruplex containing a water-mediated C-tetrad.
Zhang, Diana; Huang, Terry; Lukeman, Philip S; Paukstelis, Paul J
2014-12-01
We have determined the 1.50 Å crystal structure of the DNA decamer, d(CCA(CNV)KGCGTGG) ((CNV)K, 3-cyanovinylcarbazole), which forms a G-quadruplex structure in the presence of Ba(2+). The structure contains several unique features including a bulged nucleotide and the first crystal structure observation of a C-tetrad. The structure reveals that water molecules mediate contacts between the divalent cations and the C-tetrad, allowing Ba(2+) ions to occupy adjacent steps in the central ion channel. One ordered Mg(2+) facilitates 3'-3' stacking of two quadruplexes in the asymmetric unit, while the bulged nucleotide mediates crystal contacts. Despite the high diffraction limit, the first four nucleotides including the (CNV)K nucleoside are disordered though they are still involved in crystal packing. This work suggests that the bulky hydrophobic groups may locally influence the formation of non-Watson-Crick structures from otherwise complementary sequences. These observations lead to the intriguing possibility that certain types of DNA damage may act as modulators of G-quadruplex formation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sato, Yoshiteru; Mitomi, Kenta; Sunami, Tomoko; Kondo, Jiro; Takénaka, Akio
2006-12-01
The crystal structure of the tetragonal form of d(gcGAAAgc) has been revised and reasonably refined including the disordered residues. The two DNA strands form a base-intercalated duplex, and the four duplexes are assembled according to the crystallographic 222 symmetry to form an octaplex. In the central region, the eight strands are associated by I-motif of double A-quartets. Furthermore, eight hydrated-magnesium cations link the four duplexes to support the octaplex formation. Based on these structural features, a proposal that folding of d(GAAA)n, found in the non-coding region of genomes, into an octaplex can induce slippage during replication to facilitate length polymorphism is presented.
Kosushkin, S A; Borodulina, O R; Solov'eva, E N; Grechko, V V
2008-01-01
We have isolated and characterised sequences of a SINE family specific for squamate reptiles from a genome of lacertid lizard that we called Squam1. Copies are 360-390 bp in length and share a significant similarity with tRNA gene sequence on its 5'-end. This family was also detected by us in DNA of representatives of varanids, iguanids (anolis), gekkonids, and snakes. No signs of it were found in DNA of mammals, birds, amphibians, and crocodiles. Detailed analysis of primary structure of the retroposons obtained by us from genomic libraries or GenBank sequences was carried out. Most taxa possess 2-3 subfamilies of the SINE in their genomes with specific diagnostic features in their primary structure. Individual variability of copies in different families is about 85% and is just slightly lower on the genera level. Comparison of consensus sequences on family level reveals a high degree of structural similarity with a number of specific apomorphic features which makes it a useful marker of phylogeny for this group of reptiles. Snakes do not show specific affinity to varanids when compared to other lizards, as it was suggested earlier.
Smurf2 Regulates DNA Repair and Packaging to Prevent Tumors | Center for Cancer Research
The blueprint for all of a cell’s functions is written in the genetic code of DNA sequences as well as in the landscape of DNA and histone modifications. DNA is wrapped around histones to package it into chromatin, which is stored in the nucleus. It is important to maintain the integrity of the chromatin structure to ensure that the cell continues to behave appropriately. Recently, Ying Zhang, Ph.D., Senior Investigator in CCR’s Laboratory of Cellular and Molecular Biology, and her colleagues showed that alterations in the organization of the DNA can lead to tumor growth in a variety of tissues. This study appeared in the February 2012 issue of Nature Medicine and was featured as a cover story of that issue.
NASA Astrophysics Data System (ADS)
Franch, Oskar; Iacovelli, Federico; Falconi, Mattia; Juul, Sissel; Ottaviani, Alessio; Benvenuti, Claudia; Biocca, Silvia; Ho, Yi-Ping; Knudsen, Birgitta R.; Desideri, Alessandro
2016-07-01
In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands.In the present study we investigate the mechanism behind temperature controlled cargo uptake using a truncated octahedral DNA cage scaffold functionalized with one, two, three or four hairpin forming DNA strands inserted in one corner of the structure. This investigation was inspired by our previous demonstration of temperature controlled reversible encapsulation of the cargo enzyme, horseradish peroxidase, in the cage with four hairpin forming strands. However, in this previous study the mechanism of cargo uptake was not directly addressed (Juul, et al., Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage, ACS Nano, 2013, 7, 9724-9734). In the present study we use a combination of molecular dynamics simulations and in vitro analyses to unravel the mechanism of cargo uptake in hairpin containing DNA cages. We find that two hairpin forming strands are necessary and sufficient to facilitate efficient cargo uptake, which argues against a full opening-closing of one corner of the structure being responsible for encapsulation. Molecular dynamics simulations were carried out to evaluate the atomistic motions responsible for encapsulation and showed that the two hairpin forming strands facilitated extension of at least one of the face surfaces of the cage scaffold, allowing entrance of the cargo protein into the cavity of the structure. Hence, the presented data demonstrate that cargo uptake does not involve a full opening of the structure. Rather, the uptake mechanism represents a feature of increased flexibility integrated in this nanocage structure upon the addition of at least two hairpin-forming strands. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01806h
Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.
Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan
2013-02-26
Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology.
Energetics of drug-DNA interactions.
Chaires, J B
1997-01-01
Understanding the thermodynamics of drug binding to DNA is of both practical and fundamental interest. The practical interest lies in the contribution that thermodynamics can make to the rational design process for the development of new DNA targeted drugs. Thermodynamics offer key insights into the molecular forces that drive complex formation that cannot be obtained by structural or computational studies alone. The fundamental interest in these interactions lies in what they can reveal about the general problems of parsing and predicting ligand binding free energies. For these problems, drug-DNA interactions offer several distinct advantages, among them being that the structures of many drug-DNA complexes are known at high resolution and that such structures reveal that in many cases the drug acts as a rigid body, with little conformational change upon binding. Complete thermodynamic profiles (delta G, delta H, delta S, delta Cp) for numerous drug-DNA interactions have been obtained, with the help of high-sensitivity microcalorimetry. The purpose of this article is to offer a perspective on the interpretation of these thermodynamics parameters, and in particular how they might be correlated with known structural features. Obligatory conformational changes in the DNA to accommodate intercalators and the loss of translational and rotational freedom upon complex formation both present unfavorable free energy barriers for binding. Such barriers must be overcome by favorable free energy contributions from the hydrophobic transfer of ligand from solution into the binding site, polyelectrolyte contributions from coupled ion release, and molecular interactions (hydrogen and ionic bonds, van der Waals interactions) that form within the binding site. Theoretical and semiempirical tools that allow estimates of these contributions to be made will be discussed, and their use in dissecting experimental data illustrated. This process, even at the current level of approximation, can shed considerable light on the drug-DNA binding process.
Three-Dimensional Structures Self-Assembled from DNA Bricks
Ke, Yonggang; Ong, Luvena L.; Shih, William M.; Yin, Peng
2013-01-01
We describe a simple and robust method to construct complex three-dimensional (3D) structures using short synthetic DNA strands that we call “DNA bricks”. In one-step annealing reactions, bricks with hundreds of distinct sequences self-assemble into prescribed 3D shapes. Each 32-nucleotide brick is a modular component; it binds to four local neighbors and can be removed or added independently. Each 8-base-pair interaction between bricks defines a voxel with dimensions 2.5 nanometers by 2.5 nanometers by 2.7 nanometers, and a master brick collection defines a “molecular canvas” with dimensions of 10 by 10 by 10 voxels. By selecting subsets of bricks from this canvas, we constructed a panel of 102 distinct shapes exhibiting sophisticated surface features as well as intricate interior cavities and tunnels. PMID:23197527
Suwa, Yoshiaki; Gu, Jianyou; Baranovskiy, Andrey G.; Babayeva, Nigar D.; Pavlov, Youri I.; Tahirov, Tahir H.
2015-01-01
In eukaryotic DNA replication, short RNA-DNA hybrid primers synthesized by primase-DNA polymerase α (Prim-Pol α) are needed to start DNA replication by the replicative DNA polymerases, Pol δ and Pol ϵ. The C terminus of the Pol α catalytic subunit (p180C) in complex with the B subunit (p70) regulates the RNA priming and DNA polymerizing activities of Prim-Pol α. It tethers Pol α and primase, facilitating RNA primer handover from primase to Pol α. To understand these regulatory mechanisms and to reveal the details of human Pol α organization, we determined the crystal structure of p70 in complex with p180C. The structured portion of p70 includes a phosphodiesterase (PDE) domain and an oligonucleotide/oligosaccharide binding (OB) domain. The N-terminal domain and the linker connecting it to the PDE domain are disordered in the reported crystal structure. The p180C adopts an elongated asymmetric saddle shape, with a three-helix bundle in the middle and zinc-binding modules (Zn1 and Zn2) on each side. The extensive p180C-p70 interactions involve 20 hydrogen bonds and a number of hydrophobic interactions resulting in an extended buried surface of 4080 Å2. Importantly, in the structure of the p180C-p70 complex with full-length p70, the residues from the N-terminal to the OB domain contribute to interactions with p180C. The comparative structural analysis revealed both the conserved features and the differences between the human and yeast Pol α complexes. PMID:25847248
Designing a Bio-responsive Robot from DNA Origami
Ben-Ishay, Eldad; Abu-Horowitz, Almogit; Bachelet, Ido
2013-01-01
Nucleic acids are astonishingly versatile. In addition to their natural role as storage medium for biological information1, they can be utilized in parallel computing2,3 , recognize and bind molecular or cellular targets4,5 , catalyze chemical reactions6,7 , and generate calculated responses in a biological system8,9. Importantly, nucleic acids can be programmed to self-assemble into 2D and 3D structures10-12, enabling the integration of all these remarkable features in a single robot linking the sensing of biological cues to a preset response in order to exert a desired effect. Creating shapes from nucleic acids was first proposed by Seeman13, and several variations on this theme have since been realized using various techniques11,12,14,15 . However, the most significant is perhaps the one proposed by Rothemund, termed scaffolded DNA origami16. In this technique, the folding of a long (>7,000 bases) single-stranded DNA 'scaffold' is directed to a desired shape by hundreds of short complementary strands termed 'staples'. Folding is carried out by temperature annealing ramp. This technique was successfully demonstrated in the creation of a diverse array of 2D shapes with remarkable precision and robustness. DNA origami was later extended to 3D as well17,18 . The current paper will focus on the caDNAno 2.0 software19 developed by Douglas and colleagues. caDNAno is a robust, user-friendly CAD tool enabling the design of 2D and 3D DNA origami shapes with versatile features. The design process relies on a systematic and accurate abstraction scheme for DNA structures, making it relatively straightforward and efficient. In this paper we demonstrate the design of a DNA origami nanorobot that has been recently described20. This robot is 'robotic' in the sense that it links sensing to actuation, in order to perform a task. We explain how various sensing schemes can be integrated into the structure, and how this can be relayed to a desired effect. Finally we use Cando21 to simulate the mechanical properties of the designed shape. The concept we discuss can be adapted to multiple tasks and settings. PMID:23893007
Xiao, Yibei; Luo, Min; Hayes, Robert P; Kim, Jonathan; Ng, Sherwin; Ding, Fang; Liao, Maofu; Ke, Ailong
2017-06-29
Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Multiple structure-intrinsic disorder interactions regulate and coordinate Hox protein function
NASA Astrophysics Data System (ADS)
Bondos, Sarah
During animal development, Hox transcription factors determine fate of developing tissues to generate diverse organs and appendages. Hox proteins are famous for their bizarre mutant phenotypes, such as replacing antennae with legs. Clearly, the functions of individual Hox proteins must be distinct and reliable in vivo, or the organism risks malformation or death. However, within the Hox protein family, the DNA-binding homeodomains are highly conserved and the amino acids that contact DNA are nearly invariant. These observations raise the question: How do different Hox proteins correctly identify their distinct target genes using a common DNA binding domain? One possible means to modulate DNA binding is through the influence of the non-homeodomain protein regions, which differ significantly among Hox proteins. However genetic approaches never detected intra-protein interactions, and early biochemical attempts were hindered because the special features of ``intrinsically disordered'' sequences were not appreciated. We propose the first-ever structural model of a Hox protein to explain how specific contacts between distant, intrinsically disordered regions of the protein and the homeodomain regulate DNA binding and coordinate this activity with other Hox molecular functions.
Roux-Rouquie, M; Marilley, M
2000-09-15
We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X. laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed.
Conformational elasticity can facilitate TALE-DNA recognition
Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P.; Segal, David J.; Duan, Yong
2015-01-01
Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo- and bound- conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann/surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. PMID:24629191
Conformational elasticity can facilitate TALE-DNA recognition.
Lei, Hongxing; Sun, Jiya; Baldwin, Enoch P; Segal, David J; Duan, Yong
2014-01-01
Sequence-programmable transcription activator-like effector (TALE) proteins have emerged as a highly efficient tool for genome engineering. Recent crystal structures depict a transition between an open unbound solenoid and more compact DNA-bound solenoid formed by the 34 amino acid repeats. How TALEs switch conformation between these two forms without substantial energetic compensation, and how the repeat-variable di-residues (RVDs) discriminate between the cognate base and other bases still remain unclear. Computational analysis on these two aspects of TALE-DNA interaction mechanism has been conducted in order to achieve a better understanding of the energetics. High elasticity was observed in the molecular dynamics simulations of DNA-free TALE structure that started from the bound conformation where it sampled a wide range of conformations including the experimentally determined apo and bound conformations. This elastic feature was also observed in the simulations starting from the apo form which suggests low free energy barrier between the two conformations and small compensation required upon binding. To analyze binding specificity, we performed free energy calculations of various combinations of RVDs and bases using Poisson-Boltzmann surface area (PBSA) and other approaches. The PBSA calculations indicated that the native RVD-base structures had lower binding free energy than mismatched structures for most of the RVDs examined. Our theoretical analyses provided new insight on the dynamics and energetics of TALE-DNA binding mechanism. © 2014 Elsevier Inc. All rights reserved.
Structure of human Cdc45 and implications for CMG helicase function
Simon, Aline C.; Sannino, Vincenzo; Costanzo, Vincenzo; Pellegrini, Luca
2016-01-01
Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication. PMID:27189187
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.; ...
2017-07-18
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Richard A.; Brown, Steven D.
2017-01-01
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences. PMID:28769883
Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c.
González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A
2015-08-11
Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ's histone chaperone activity.
Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen
2015-04-15
In order to develop powerful computational predictors for identifying the biological features or attributes of DNAs, one of the most challenging problems is to find a suitable approach to effectively represent the DNA sequences. To facilitate the studies of DNAs and nucleotides, we developed a Python package called representations of DNAs (repDNA) for generating the widely used features reflecting the physicochemical properties and sequence-order effects of DNAs and nucleotides. There are three feature groups composed of 15 features. The first group calculates three nucleic acid composition features describing the local sequence information by means of kmers; the second group calculates six autocorrelation features describing the level of correlation between two oligonucleotides along a DNA sequence in terms of their specific physicochemical properties; the third group calculates six pseudo nucleotide composition features, which can be used to represent a DNA sequence with a discrete model or vector yet still keep considerable sequence-order information via the physicochemical properties of its constituent oligonucleotides. In addition, these features can be easily calculated based on both the built-in and user-defined properties via using repDNA. The repDNA Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repDNA/. bliu@insun.hit.edu.cn or kcchou@gordonlifescience.org Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Spink, N; Brown, D G; Skelly, J V; Neidle, S
1994-01-01
The bis-benzimidazole drug Hoechst 33258 has been co-crystallized with the dodecanucleotide sequence d(CGCAAATTTGCG)2. The structure has been solved by molecular replacement and refined to an R factor of 18.5% for 2125 reflections collected on a Xentronics area detector. The drug is bound in the minor groove, at the five base-pair site 5'-ATTTG and is in a unique orientation. This is displaced by one base pair in the 5' direction compared to previously-determined structures of this drug with the sequence d(CGCGAATTCGCG)2. Reasons for this difference in behaviour are discussed in terms of several sequence-dependent structural features of the DNA, with particular reference to differences in propeller twist and minor-groove width. Images PMID:7515488
Paranemic Crossover DNA: There and Back Again.
Wang, Xing; Chandrasekaran, Arun Richard; Shen, Zhiyong; Ohayon, Yoel P; Wang, Tong; Kizer, Megan E; Sha, Ruojie; Mao, Chengde; Yan, Hao; Zhang, Xiaoping; Liao, Shiping; Ding, Baoquan; Chakraborty, Banani; Jonoska, Natasha; Niu, Dong; Gu, Hongzhou; Chao, Jie; Gao, Xiang; Li, Yuhang; Ciengshin, Tanashaya; Seeman, Nadrian C
2018-06-18
Over the past 35 years, DNA has been used to produce various nanometer-scale constructs, nanomechanical devices, and walkers. Construction of complex DNA nanostructures relies on the creation of rigid DNA motifs. Paranemic crossover (PX) DNA is one such motif that has played many roles in DNA nanotechnology. Specifically, PX cohesion has been used to connect topologically closed molecules, to assemble a three-dimensional object, and to create two-dimensional DNA crystals. Additionally, a sequence-dependent nanodevice based on conformational change between PX and its topoisomer, JX 2 , has been used in robust nanoscale assembly lines, as a key component in a DNA transducer, and to dictate polymer assembly. Furthermore, the PX motif has recently found a new role directly in basic biology, by possibly serving as the molecular structure for double-stranded DNA homology recognition, a prominent feature of molecular biology and essential for many crucial biological processes. This review discusses the many attributes and usages of PX-DNA-its design, characteristics, applications, and potential biological relevance-and aims to accelerate the understanding of PX-DNA motif in its many roles and manifestations.
Hamilton, Eileen P; Kapusta, Aurélie; Huvos, Piroska E; Bidwell, Shelby L; Zafar, Nikhat; Tang, Haibao; Hadjithomas, Michalis; Krishnakumar, Vivek; Badger, Jonathan H; Caler, Elisabet V; Russ, Carsten; Zeng, Qiandong; Fan, Lin; Levin, Joshua Z; Shea, Terrance; Young, Sarah K; Hegarty, Ryan; Daza, Riza; Gujja, Sharvari; Wortman, Jennifer R; Birren, Bruce W; Nusbaum, Chad; Thomas, Jainy; Carey, Clayton M; Pritham, Ellen J; Feschotte, Cédric; Noto, Tomoko; Mochizuki, Kazufumi; Papazyan, Romeo; Taverna, Sean D; Dear, Paul H; Cassidy-Hanley, Donna M; Xiong, Jie; Miao, Wei; Orias, Eduardo; Coyne, Robert S
2016-01-01
The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena’s germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum. DOI: http://dx.doi.org/10.7554/eLife.19090.001 PMID:27892853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi
2014-10-15
Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domainmore » playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.« less
Structure and Engineering of Francisella novicida Cas9
Hirano, Hisato; Gootenberg, Jonathan S.; Horii, Takuro; Abudayyeh, Omar O.; Kimura, Mika; Hsu, Patrick D.; Nakane, Takanori; Ishitani, Ryuichiro; Hatada, Izuho; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu
2016-01-01
Summary The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA, and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5′-NGG-3′ PAM, and used the structural information to create a variant that can recognize the more relaxed 5′-YG-3′ PAM. Furthermore, we demonstrated that pre-assembled FnCas9 ribonucleoprotein complexes can be microinjected into mouse zygotes to edit endogenous sites with the 5′-YG-3′ PAMs, thus expanding the target space of the CRISPR-Cas9 toolbox. PMID:26875867
Jain, Deepti
2015-07-01
The GntR family of transcription regulators constitutes one of the most abundant family of transcription factors. These modulators are involved in a variety of mechanisms controlling various metabolic processes. GntR family members are typically two domain proteins with a smaller N-terminus domain (NTD) with conserved architecture of winged-helix-turn-helix (wHTH) for DNA binding and a larger C-terminus domain (CTD) or the effector binding domain which is also involved in oligomerization. Interestingly, the CTD shows structural heterogeneity depending upon the type of effector molecule that it binds and displays structural homology to various classes of proteins. Binding of the effector molecule to the CTD brings about a conformational change in the transcription factor such that its affinity for its cognate DNA sequence is altered. This review summarizes the structural information available on the members of GntR family and discusses the common features of the DNA binding and operator recognition within the family. The variation in the allosteric mechanism employed by the members of this family is also discussed. © 2015 International Union of Biochemistry and Molecular Biology.
Self-assembly of multi-stranded RNA motifs into lattices and tubular structures
Stewart, Jaimie Marie; Subramanian, Hari K. K.; Franco, Elisa
2017-02-16
Rational design of nucleic acidmolecules yields selfassembling scaffolds with increasing complexity, size and functionality. It is an open question whether design methods tailored to build DNA nanostructures can be adapted to build RNA nanostructures with comparable features. We demonstrate the formation of RNA lattices and tubular assemblies from double crossover (DX) tiles, a canonical motif in DNA nanotechnology. Tubular structures can exceed 1 m in length, suggesting that this DX motif can produce very robust lattices. Some of these tubes spontaneously form with left-handed chirality. We obtain assemblies by using two methods: a protocol where gel-extracted RNA strands are slowlymore » annealed, and a one-pot transcription and anneal procedure. We then identify the tile nick position as a structural requirement for lattice formation. These results demonstrate that stable RNA structures can be obtained with design tools imported from DNA nanotechnology. These large assemblies could be potentially integrated with a variety of functional RNA motifs for drug or nanoparticle delivery, or for colocalization of cellular components.« less
Self-assembly of multi-stranded RNA motifs into lattices and tubular structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Jaimie Marie; Subramanian, Hari K. K.; Franco, Elisa
Rational design of nucleic acidmolecules yields selfassembling scaffolds with increasing complexity, size and functionality. It is an open question whether design methods tailored to build DNA nanostructures can be adapted to build RNA nanostructures with comparable features. We demonstrate the formation of RNA lattices and tubular assemblies from double crossover (DX) tiles, a canonical motif in DNA nanotechnology. Tubular structures can exceed 1 m in length, suggesting that this DX motif can produce very robust lattices. Some of these tubes spontaneously form with left-handed chirality. We obtain assemblies by using two methods: a protocol where gel-extracted RNA strands are slowlymore » annealed, and a one-pot transcription and anneal procedure. We then identify the tile nick position as a structural requirement for lattice formation. These results demonstrate that stable RNA structures can be obtained with design tools imported from DNA nanotechnology. These large assemblies could be potentially integrated with a variety of functional RNA motifs for drug or nanoparticle delivery, or for colocalization of cellular components.« less
Structure and Engineering of Francisella novicida Cas9.
Hirano, Hisato; Gootenberg, Jonathan S; Horii, Takuro; Abudayyeh, Omar O; Kimura, Mika; Hsu, Patrick D; Nakane, Takanori; Ishitani, Ryuichiro; Hatada, Izuho; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu
2016-02-25
The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5'-NGG-3' PAM, and used the structural information to create a variant that can recognize the more relaxed 5'-YG-3' PAM. Furthermore, we demonstrated that the FnCas9-ribonucleoprotein complex can be microinjected into mouse zygotes to edit endogenous sites with the 5'-YG-3' PAM, thus expanding the target space of the CRISPR-Cas9 toolbox. Copyright © 2016 Elsevier Inc. All rights reserved.
Self-assembly of multi-stranded RNA motifs into lattices and tubular structures
Stewart, Jaimie Marie; Subramanian, Hari K. K.
2017-01-01
Abstract Rational design of nucleic acid molecules yields self-assembling scaffolds with increasing complexity, size and functionality. It is an open question whether design methods tailored to build DNA nanostructures can be adapted to build RNA nanostructures with comparable features. Here we demonstrate the formation of RNA lattices and tubular assemblies from double crossover (DX) tiles, a canonical motif in DNA nanotechnology. Tubular structures can exceed 1 μm in length, suggesting that this DX motif can produce very robust lattices. Some of these tubes spontaneously form with left-handed chirality. We obtain assemblies by using two methods: a protocol where gel-extracted RNA strands are slowly annealed, and a one-pot transcription and anneal procedure. We identify the tile nick position as a structural requirement for lattice formation. Our results demonstrate that stable RNA structures can be obtained with design tools imported from DNA nanotechnology. These large assemblies could be potentially integrated with a variety of functional RNA motifs for drug or nanoparticle delivery, or for colocalization of cellular components. PMID:28204562
Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids
Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert
2013-01-01
The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors. PMID:23449783
Interaction of zanamivir with DNA and RNA: Models for drug DNA and drug RNA bindings
NASA Astrophysics Data System (ADS)
Nafisi, Shohreh; Kahangi, Fatemeh Ghoreyshi; Azizi, Ebrahim; Zebarjad, Nader; Tajmir-Riahi, Heidar-Ali
2007-03-01
Zanamivir (ZAN) is the first of a new generation of influenza virus-specific drugs known as neuraminidase inhibitors, which acts by interfering with life cycles of influenza viruses A and B. It prevents the virus spreading infection to other cells by blocking the neuraminidase enzyme present on the surface of the virus. The aim of this study was to examine the stability and structural features of calf thymus DNA and yeast RNA complexes with zanamivir in aqueous solution, using constant DNA or RNA concentration (12.5 mM) and various zanamivir/polynucleotide ( P) ratios of 1/20, 1/10, 1/4, and 1/2. FTIR and UV-visible spectroscopy are used to determine the drug external binding modes, the binding constant and the stability of zanamivir-DNA and RNA complexes in aqueous solution. Structural analysis showed major interaction of zanamivir with G-C (major groove) and A-T (minor groove) base pairs and minor perturbations of the backbone PO 2 group with overall binding constants of Kzanamivir-DNA = 1.30 × 10 4 M -1 and Kzanamivir-RNA = 1.38 × 10 4 M -1. The drug interaction induces a partial B to A-DNA transition, while RNA remains in A-conformation.
Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study
NASA Astrophysics Data System (ADS)
Szymborska-Małek, Katarzyna; Komorowska, Małgorzata; Gąsior-Głogowska, Marlena
2018-01-01
We presume that the primary effect of Near Infrared (NIR) radiation on aqueous solutions of biological molecules concerns modification of hydrogen bonded structures mainly the global and the hydration shell water molecules. Since water has a significant influence on the DNA structure, we expect that the thermal stability of DNA could be modified by NIR radiation. The herring sperm DNA was exposed to NIR radiation (700-1100 nm) for 5, 10, and 20 min periods. The temperature dependent infrared measurements were done for the thin films formed on the diamond ATR crystal from evaporated DNA solutions exposed and unexposed to NIR radiation. For the NIR-treated samples (at room temperature) the B form was better conserved than in the control sample independently of the irradiation period. Above 50 °C a considerable increase in the A form was only observed for 10 min NIR exposed samples. The hydrodynamic radius, (Rh), studied by the dynamic light scattering, showed drastic decrease with the increasing irradiation time. Principal components analysis (PCA) allowed to detect the spectral features correlated with the NIR effect and thermal stability of the DNA films. Obtained results strongly support the idea that the photoionization of water by NIR radiation in presence of DNA molecules is the main factor influencing on its physicochemical properties.
Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan
2013-11-15
The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.
Xu, Jianguo; Wu, Zai-Sheng; Wang, Zhenmeng; Le, Jingqing; Zheng, Tingting; Jia, Lee
2017-03-01
Facile assembly of intelligent DNA nanoobjects with the ability to exert in situ visualization of intracellular microRNAs (miRNAs) has long been concerned in the fields of DNA nanotechnology and basic medical study. Here, we present a driving primer (DP)-triggered polymerization-mediated metastable assembly (PMA) strategy to prepare a well-ordered metastable DNA nanoarchitecture composed of only two hairpin probes (HAPs), which has never been explored by assembly methods. Its structural features and functions are characterized by atomic force microscope (AFM) and gel electrophoresis. Even if with a metastable molecular structure, this nanoarchitecture is relatively stable at physiological temperature. The assembly strategy can be expanded to execute microRNA-21 (miRNA-21) in situ imaging inside cancer cells by labelling one of the HAPs with fluorophore and quencher. Compared with the conventional fluorescence probe-based in situ hybridization (FISH) technique, confocal images revealed that the proposed DNA nanoassembly can not only achieve greatly enhanced imaging effect within cancer cells, but also reflect the miRNA-21 expression level sensitively. We believe that the easily constructed DNA nanoarchitecture and in situ profiling strategy are significant progresses in DNA assembly and molecule imaging in cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chemical and Biological Sensing Using Hybridization Chain Reaction.
Augspurger, Erik E; Rana, Muhit; Yigit, Mehmet V
2018-05-25
Since the advent of its theoretical discovery more than 30 years ago, DNA nanotechnology has been used in a plethora of diverse applications in both the fundamental and applied sciences. The recent prominence of DNA-based technologies in the scientific community is largely due to the programmable features stored in its nucleobase composition and sequence, which allow it to assemble into highly advanced structures. DNA nanoassemblies are also highly controllable due to the precision of natural and artificial base-pairing, which can be manipulated by pH, temperature, metal ions, and solvent types. This programmability and molecular-level control have allowed scientists to create and utilize DNA nanostructures in one, two, and three dimensions (1D, 2D, and 3D). Initially, these 2D and 3D DNA lattices and shapes attracted a broad scientific audience because they are fundamentally captivating and structurally elegant; however, transforming these conceptual architectural blueprints into functional materials is essential for further advancements in the DNA nanotechnology field. Herein, the chemical and biological sensing applications of a 1D DNA self-assembly process known as hybridization chain reaction (HCR) are reviewed. HCR is a one-dimensional (1D) double stranded (ds) DNA assembly process initiated only in the presence of a specific short ssDNA (initiator) and two kinetically trapped DNA hairpin structures. HCR is considered an enzyme-free isothermal amplification process, which shows substantial promise and offers a wide range of applications for in situ chemical and biological sensing. Due to its modular nature, HCR can be programmed to activate only in the presence of highly specific biological and/or chemical stimuli. HCR can also be combined with different types of molecular reporters and detection approaches for various analytical readouts. While the long dsDNA HCR product may not be as structurally attractive as the 2D and 3D DNA networks, HCR is highly instrumental for applied biological, chemical, and environmental sciences, and has therefore been studied to foster a variety of objectives. In this review, we have focused on nucleic acid, protein, metabolite, and heavy metal ion detection using this 1D DNA nanotechnology via fluorescence, electrochemical, and nanoparticle-based methodologies.
Ghorbani, Maryam; Mohammad-Rafiee, Farshid
2011-01-01
We develop a simple elastic model to study the conformation of DNA in the nucleosome core particle. In this model, the changes in the energy of the covalent bonds that connect the base pairs of each strand of the DNA double helix, as well as the lateral displacements and the rotation of adjacent base pairs are considered. We show that because of the rigidity of the covalent bonds in the sugar-phosphate backbones, the base pair parameters are highly correlated, especially, strong twist-roll-slide correlation in the conformation of the nucleosomal DNA is vividly observed in the calculated results. This simple model succeeds to account for the detailed features of the structure of the nucleosomal DNA, particularly, its more important base pair parameters, roll and slide, in good agreement with the experimental results. PMID:20972223
Zheng, Wenjun
2017-02-01
In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ullah, Mohd Fahad; Shamim, Uzma; Hanif, Sarmad; Azmi, Asfar S; Hadi, Sheikh M
2009-11-01
Epidemiological studies have indicated that populations with high isoflavone intake through soy consumption have lower rates of breast, prostate, and colon cancer. The isoflavone polyphenol genistein in soybean is considered to be a potent chemopreventive agent against cancer. In order to explore the chemical basis of chemopreventive activity of genistein, in this paper we have examined the structure-activity relationship between genistein and its structural analogue biochanin A. We show that both genistein and its methylated derivative biochanin A are able to mobilize nuclear copper in human lymphocyte, leading to degradation of cellular DNA. However, the relative rate of DNA breakage was greater in the case of genistein. Further, the cellular DNA degradation was inhibited by copper chelator (neocuproine/bathocuproine) but not by compounds that specifically bind iron and zinc (desferrioxamine mesylate and histidine, respectively). We also compared the antioxidant activity of the two isoflavones against tert-butylhydroperoxide-induced oxidative breakage in lymphocytes. Again genistein was found to be more effective than biochanin A in providing protection against oxidative stress induced by tert-butylhydroperoxide. It would therefore appear that the structural features of isoflavones that are important for antioxidant properties are also the ones that contribute to their pro-oxidant action through a mechanism that involves redox cycling of chromatin-bound nuclear copper.
Pombert, Jean-François; Lemieux, Claude; Turmel, Monique
2006-01-01
Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA) sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae), in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR) featuring an inverted rRNA operon and a small single-copy (SSC) region containing 14 genes normally found in the large single-copy (LSC) region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of Oltmannsiellopsis cpDNA more closely resembles that of Chlorella (Trebouxiophyceae) cpDNA. Conclusion The chloroplast genome of the last common ancestor of Oltmannsiellopsis and Pseudendoclonium contained a minimum of 108 genes, carried only a few group I introns, and featured a distinctive quadripartite architecture. Numerous changes were experienced by the chloroplast genome in the lineages leading to Oltmannsiellopsis and Pseudendoclonium. Our comparative analyses of chlorophyte cpDNAs support the notion that the Ulvophyceae is sister to the Chlorophyceae. PMID:16472375
[Epigenetic inheritance and its possible role in the evolution of plant species].
Lavrov, S A; Mavrodiev, E V
2003-01-01
As it is clear now, the level of gene expression in eukariotes is determined mainly by chromatin composition. Chromatin structure of a particular gene (it is a complex item, which includes nucleosome positioning, histone modifications and non-histone chromatin proteins) can be modified externally and is able to be inherited mitotically and meiotically. Changes in chromatine structure are the basis of so called epigenetic inheritance that occurs without modification of DNA sequence. One of the most striking examples of epigenetic inheritance in plants is epimutations--stable for many generation's alleles of some genes that do not differ in primary DNA structure. Molecular basis of epimutations seems to be DNA metylation. Epimutations may be widely distributed in nature and affect some basis morphological features that have a systematic significance. Possibility of inheritance of acquired epigenetic modifications lead us to reconsider an idea of multipLe independent origins of some plant forms (or ecotypes) under action of similar external conditions. Different populations of the same species may in this case be unrelated and has no common ancestor. Species should be considered as invariant of multiple ways of origin. Wide distribution of polyploids amongst higher plants suggests effective mechanism of repression of multicopy genes. Each allopolyploidisation event is followed by repression of random set of parent genes via changes in its chromatin structure. As a result, in the limits of the same hybrid formula may arise different stable combinations of epigenetically controlled features of parent species. These combinations may be classified as different species of other taxa.
Crystal Structure of the Dimeric Oct6 (Pou3fl) POU Domain Bound to Palindromic MORE DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
R Jauch; S Choo; C Ng
POU domains (named after their identification in Pit1, Oct1 unc86) are found in around 15 transcription factors encoded in mammalian genomes many of which feature prominently as key regulators at development bifurcations. For example, the POU III class Octamer binding protein 6 (Oct6) is expressed in embryonic stem cells and during neural development and drives the differentia5tion of myelinated cells in the central and peripheral nervous system. Defects in oct6 expression levels are linked to neurological disorders such as schizophrenia. POU proteins contain a bi-partite DNA binding domain that assembles on various DNA motifs with differentially configured subdomains. Intriguingly, alternativemore » configurations of POU domains on different DNA sites were shown to affect the subsequent recruitment of transcriptional coactivators. Namely, binding of Oct1 to a Palindromic Oct-factor Recognition Element (PORE) was shown to facilitate the recruitment of the OBF1 coactivator whereas More of PORE (MORE) bound Oct1 does not. Moreover, Pit1 was shown to recruit the corepressor N-CoR only when bound to a variant MORE motif with a 2 bp half-site spacing. Therefore, POU proteins are seen as a paradigm for DNA induced allosteric effects on transcription factors modulating their regulatory potential. However, a big unresolved conundrum for the POU class and for most if not all other transcription factor classes is how highly similar proteins regulate different sets of genes causing fundamentally different biological responses. Ultimately, there must be subtle features enabling those factors to engage in contrasting molecular interactions in the cell. Thus, the dissection of the molecular details of the transcription-DNA recognition in general, and the formation of multimeric regulatory complexes, in particular, is highly desirable. To contribute to these efforts they solved the 2.05 {angstrom} crystal structure of Oct6 bound as a symmetrical homodimer to palindromic MORE DNA.« less
Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.; ...
2017-07-13
The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the a CTD may play a role in Mtb transcription regulation. Here, our results reveal the structure of an Actinobacteria-unique insert ofmore » the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σ A, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.
The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the αCTD may play a role in Mtb transcription regulation. Our results reveal the structure of an Actinobacteria-unique insert of the RNAPmore » β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σA, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubin, Elizabeth A.; Lilic, Mirjana; Darst, Seth A.
The mycobacteria RNA polymerase (RNAP) is a target for antimicrobials against tuberculosis, motivating structure/function studies. Here we report a 3.2 Å-resolution crystal structure of a Mycobacterium smegmatis (Msm) open promoter complex (RPo), along with structural analysis of the Msm RPo and a previously reported 2.76 Å-resolution crystal structure of an Msm transcription initiation complex with a promoter DNA fragment. We observe the interaction of the Msm RNAP α-subunit C-terminal domain (αCTD) with DNA, and we provide evidence that the a CTD may play a role in Mtb transcription regulation. Here, our results reveal the structure of an Actinobacteria-unique insert ofmore » the RNAP β' subunit. Finally, our analysis reveals the disposition of the N-terminal segment of Msm σ A, which may comprise an intrinsically disordered protein domain unique to mycobacteria. The clade-specific features of the mycobacteria RNAP provide clues to the profound instability of mycobacteria RPo compared with E. coli.« less
NASA Astrophysics Data System (ADS)
Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong
2014-07-01
DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology. Electronic supplementary information (ESI) available: Additional figures (Table S1, Fig. S1-S5). See DOI: 10.1039/c4nr01676a
Rescue from replication stress during mitosis.
Fragkos, Michalis; Naim, Valeria
2017-04-03
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Rescue from replication stress during mitosis
Naim, Valeria
2017-01-01
ABSTRACT Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease. PMID:28166452
Holliday, Richard; Preshaw, Philip M; Bowen, Leon; Jakubovics, Nicholas S
2015-01-01
To explore the ultrastructure of subgingival dental plaque using high-resolution field emission scanning electron microscopy (FE-SEM) and to investigate whether extracellular DNA (eDNA) could be visualised in ex vivo samples. Ten patients were recruited who fulfilled the inclusion criteria (teeth requiring extraction with radiographic horizontal bone loss of over 50% and grade II/III mobility). In total, 12 teeth were extracted using a minimally traumatic technique. Roots were sectioned using a dental air turbine handpiece, under water cooling to produce 21 samples. Standard fixation and dehydration protocols were followed. For some samples, gold-labelled anti-DNA antibodies were applied before visualising biofilms by FE-SEM. High-resolution FE-SEMs of subgingival biofilm were obtained in 90% of the samples. The sectioning technique left dental plaque biofilms undisturbed. Copious amounts of extracellular material were observed in the plaque, which may have been eDNA as they had a similar appearance to labelled eDNA from in vitro studies. There was also evidence of membrane vesicles and open-ended tubular structures. Efforts to label eDNA with immune-gold antibodies were unsuccessful and eDNA was not clearly labelled. High-resolution FE-SEM images were obtained of undisturbed subgingival ex vivo dental plaque biofilms. Important structural features were observed including extracellular polymeric material, vesicles and unusual open tubule structures that may be remnants of lysed cells. The application of an eDNA immune-gold-labelling technique, previously used successfully in in vitro samples, did not clearly identify eDNA in ex vivo samples. Further studies are needed to characterise the molecular composition of the observed extracellular matrix material.
Holliday, Richard; Preshaw, Philip M; Bowen, Leon; Jakubovics, Nicholas S
2015-01-01
Objectives/Aims: To explore the ultrastructure of subgingival dental plaque using high-resolution field emission scanning electron microscopy (FE-SEM) and to investigate whether extracellular DNA (eDNA) could be visualised in ex vivo samples. Materials and Methods: Ten patients were recruited who fulfilled the inclusion criteria (teeth requiring extraction with radiographic horizontal bone loss of over 50% and grade II/III mobility). In total, 12 teeth were extracted using a minimally traumatic technique. Roots were sectioned using a dental air turbine handpiece, under water cooling to produce 21 samples. Standard fixation and dehydration protocols were followed. For some samples, gold-labelled anti-DNA antibodies were applied before visualising biofilms by FE-SEM. Results: High-resolution FE-SEMs of subgingival biofilm were obtained in 90% of the samples. The sectioning technique left dental plaque biofilms undisturbed. Copious amounts of extracellular material were observed in the plaque, which may have been eDNA as they had a similar appearance to labelled eDNA from in vitro studies. There was also evidence of membrane vesicles and open-ended tubular structures. Efforts to label eDNA with immune-gold antibodies were unsuccessful and eDNA was not clearly labelled. Conclusions: High-resolution FE-SEM images were obtained of undisturbed subgingival ex vivo dental plaque biofilms. Important structural features were observed including extracellular polymeric material, vesicles and unusual open tubule structures that may be remnants of lysed cells. The application of an eDNA immune-gold-labelling technique, previously used successfully in in vitro samples, did not clearly identify eDNA in ex vivo samples. Further studies are needed to characterise the molecular composition of the observed extracellular matrix material. PMID:29607057
Dendrimeric coating of glass slides for sensitive DNA microarrays analysis
Le Berre, Véronique; Trévisiol, Emmanuelle; Dagkessamanskaia, Adilia; Sokol, Serguei; Caminade, Anne-Marie; Majoral, Jean Pierre; Meunier, Bernard; François, Jean
2003-01-01
Successful use and reliability of microarray technology is highly dependent on several factors, including surface chemistry parameters and accessibility of cDNA targets to the DNA probes fixed onto the surface. Here, we show that functionalisation of glass slides with homemade dendrimers allow production of more sensitive and reliable DNA microarrays. The dendrimers are nanometric structures of size-controlled diameter with aldehyde function at their periphery. Covalent attachment of these spherical reactive chemical structures on amino-silanised glass slides generates a reactive ∼100 Å layer onto which amino-modified DNA probes are covalently bound. This new grafting chemistry leads to the formation of uniform and homogenous spots. More over, probe concentration before spotting could be reduced from 0.2 to 0.02 mg/ml with PCR products and from 20 to 5 µM with 70mer oligonucleotides without affecting signal intensities after hybridisation with Cy3- and Cy5-labelled targets. More interestingly, while the binding capacity of captured probes on dendrimer-activated glass surface (named dendrislides) is roughly similar to other functionalised glass slides from commercial sources, detection sensitivity was 2-fold higher than with other available DNA microarrays. This detection limit was estimated to 0.1 pM of cDNA targets. Altogether, these features make dendrimer-activated slides ideal for manufacturing cost-effective DNA arrays applicable for gene expression and detection of mutations. PMID:12907740
Ma, Xin; Guo, Jing; Sun, Xiao
2016-01-01
DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.
A non-heme iron-mediated chemical demethylation in DNA and RNA.
Yi, Chengqi; Yang, Cai-Guang; He, Chuan
2009-04-21
DNA methylation is arguably one of the most important chemical signals in biology. However, aberrant DNA methylation can lead to cytotoxic or mutagenic consequences. A DNA repair protein in Escherichia coli, AlkB, corrects some of the unwanted methylations of DNA bases by a unique oxidative demethylation in which the methyl carbon is liberated as formaldehyde. The enzyme also repairs exocyclic DNA lesions--that is, derivatives in which the base is augmented with an additional heterocyclic subunit--by a similar mechanism. Two proteins in humans that are homologous to AlkB, ABH2 and ABH3, repair the same spectrum of lesions; another human homologue of AlkB, FTO, is linked to obesity. In this Account, we describe our studies of AlkB, ABH2, and ABH3, including our development of a general strategy to trap homogeneous protein-DNA complexes through active-site disulfide cross-linking. AlkB uses a non-heme mononuclear iron(II) and the cofactors 2-ketoglutarate (2KG) and dioxygen to effect oxidative demethylation of the DNA base lesions 1-methyladenine (1-meA), 3-methylcytosine (3-meC), 1-methylguanine (1-meG), and 3-methylthymine (3-meT). ABH3, like AlkB, works better on single-stranded DNA (ssDNA) and is capable of repairing damaged bases in RNA. Conversely, ABH2 primarily repairs lesions in double-stranded DNA (dsDNA); it is the main housekeeping enzyme that protects the mammalian genome from 1-meA base damage. The AlkB-family proteins have moderate affinities for their substrates and bind DNA in a non-sequence-specific manner. Knowing that these proteins flip the damaged base out from the duplex DNA and insert it into the active site for further processing, we first engineered a disulfide cross-link in the active site to stabilize the Michaelis complex. Based on the detailed structural information afforded by the active-site cross-linked structures, we can readily install a cross-link away from the active site to obtain the native-like structures of these complexes. The crystal structures show a distinct base-flipping feature in AlkB and establish ABH2 as a dsDNA repair protein. They also provide a molecular framework for understanding the demethylation reaction catalyzed by these proteins and help to explain their substrate preferences. The chemical cross-linking method demonstrated here can be applied to trap other labile protein-DNA interactions and can serve as a general strategy for exploring the structural and functional aspects of base-flipping proteins.
Plant rDNA database: update and new features.
Garcia, Sònia; Gálvez, Francisco; Gras, Airy; Kovařík, Aleš; Garnatje, Teresa
2014-01-01
The Plant rDNA database (www.plantrdnadatabase.com) is an open access online resource providing detailed information on numbers, structures and positions of 5S and 18S-5.8S-26S (35S) ribosomal DNA loci. The data have been obtained from >600 publications on plant molecular cytogenetics, mostly based on fluorescent in situ hybridization (FISH). This edition of the database contains information on 1609 species derived from 2839 records, which means an expansion of 55.76 and 94.45%, respectively. It holds the data for angiosperms, gymnosperms, bryophytes and pteridophytes available as of June 2013. Information from publications reporting data for a single rDNA (either 5S or 35S alone) and annotation regarding transcriptional activity of 35S loci now appears in the database. Preliminary analyses suggest greater variability in the number of rDNA loci in gymnosperms than in angiosperms. New applications provide ideograms of the species showing the positions of rDNA loci as well as a visual representation of their genome sizes. We have also introduced other features to boost the usability of the Web interface, such as an application for convenient data export and a new section with rDNA-FISH-related information (mostly detailing protocols and reagents). In addition, we upgraded and/or proofread tabs and links and modified the website for a more dynamic appearance. This manuscript provides a synopsis of these changes and developments. http://www.plantrdnadatabase.com. © The Author(s) 2014. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poeschla, Eric, E-mail: poeschla.eric@mayo.edu
Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins,more » and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import.« less
2017-01-01
The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening. PMID:28910418
Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair
Andres, Sara N.; Appel, C. Denise; Westmoreland, James W.; ...
2015-01-12
Ctp1 (also known as CtIP or Sae2) collaborates with Mre11-Rad50-Nbs1 to initiate repair of DNA double-strand breaks (DSBs), but its functions remain enigmatic. In this paper, we report that tetrameric Schizosaccharomyces pombe Ctp1 contains multivalent DNA-binding and DNA-bridging activities. Through structural and biophysical analyses of the Ctp1 tetramer, we define the salient features of Ctp1 architecture: an N-terminal interlocking tetrameric helical dimer-of-dimers (THDD) domain and a central intrinsically disordered region (IDR) linked to C-terminal 'RHR' DNA-interaction motifs. The THDD, IDR and RHR are required for Ctp1 DNA-bridging activity in vitro, and both the THDD and RHR are required for efficientmore » DSB repair in S. pombe. Finally, our results establish non-nucleolytic roles of Ctp1 in binding and coordination of DSB-repair intermediates and suggest that ablation of human CtIP DNA binding by truncating mutations underlie the CtIP-linked Seckel and Jawad syndromes.« less
2011-01-01
Y-family DNA polymerases are characterized by low-fidelity synthesis on undamaged DNA and ability to catalyze translesion synthesis over the damaged DNA. Their translocation along the DNA template is an important event during processive DNA synthesis. In this work we present a Brownian ratchet model for this translocation, where the directed translocation is rectified by the nucleotide binding to the polymerase. Using the model, different features of the available structures for Dpo4, Dbh and polymerase ι in binary and ternary forms can be easily explained. Other dynamic properties of the Y-family polymerases such as the fast translocation event upon dNTP binding for Dpo4 and the considerable variations of the processivity among the polymerases can also be well explained by using the model. In addition, some predicted results of the DNA synthesis rate versus the external force acting on Dpo4 and Dbh polymerases are presented. Moreover, we compare the effect of the external force on the DNA synthesis rate of the Y-family polymerase with that of the replicative DNA polymerase. PMID:21699732
Biotechnological mass production of DNA origami
NASA Astrophysics Data System (ADS)
Praetorius, Florian; Kick, Benjamin; Behler, Karl L.; Honemann, Maximilian N.; Weuster-Botz, Dirk; Dietz, Hendrik
2017-12-01
DNA nanotechnology, in particular DNA origami, enables the bottom-up self-assembly of micrometre-scale, three-dimensional structures with nanometre-precise features. These structures are customizable in that they can be site-specifically functionalized or constructed to exhibit machine-like or logic-gating behaviour. Their use has been limited to applications that require only small amounts of material (of the order of micrograms), owing to the limitations of current production methods. But many proposed applications, for example as therapeutic agents or in complex materials, could be realized if more material could be used. In DNA origami, a nanostructure is assembled from a very long single-stranded scaffold molecule held in place by many short single-stranded staple oligonucleotides. Only the bacteriophage-derived scaffold molecules are amenable to scalable and efficient mass production; the shorter staple strands are obtained through costly solid-phase synthesis or enzymatic processes. Here we show that single strands of DNA of virtually arbitrary length and with virtually arbitrary sequences can be produced in a scalable and cost-efficient manner by using bacteriophages to generate single-stranded precursor DNA that contains target strand sequences interleaved with self-excising ‘cassettes’, with each cassette comprising two Zn2+-dependent DNA-cleaving DNA enzymes. We produce all of the necessary single strands of DNA for several DNA origami using shaker-flask cultures, and demonstrate end-to-end production of macroscopic amounts of a DNA origami nanorod in a litre-scale stirred-tank bioreactor. Our method is compatible with existing DNA origami design frameworks and retains the modularity and addressability of DNA origami objects that are necessary for implementing custom modifications using functional groups. With all of the production and purification steps amenable to scaling, we expect that our method will expand the scope of DNA nanotechnology in many areas of science and technology.
Biotechnological mass production of DNA origami.
Praetorius, Florian; Kick, Benjamin; Behler, Karl L; Honemann, Maximilian N; Weuster-Botz, Dirk; Dietz, Hendrik
2017-12-06
DNA nanotechnology, in particular DNA origami, enables the bottom-up self-assembly of micrometre-scale, three-dimensional structures with nanometre-precise features. These structures are customizable in that they can be site-specifically functionalized or constructed to exhibit machine-like or logic-gating behaviour. Their use has been limited to applications that require only small amounts of material (of the order of micrograms), owing to the limitations of current production methods. But many proposed applications, for example as therapeutic agents or in complex materials, could be realized if more material could be used. In DNA origami, a nanostructure is assembled from a very long single-stranded scaffold molecule held in place by many short single-stranded staple oligonucleotides. Only the bacteriophage-derived scaffold molecules are amenable to scalable and efficient mass production; the shorter staple strands are obtained through costly solid-phase synthesis or enzymatic processes. Here we show that single strands of DNA of virtually arbitrary length and with virtually arbitrary sequences can be produced in a scalable and cost-efficient manner by using bacteriophages to generate single-stranded precursor DNA that contains target strand sequences interleaved with self-excising 'cassettes', with each cassette comprising two Zn 2+ -dependent DNA-cleaving DNA enzymes. We produce all of the necessary single strands of DNA for several DNA origami using shaker-flask cultures, and demonstrate end-to-end production of macroscopic amounts of a DNA origami nanorod in a litre-scale stirred-tank bioreactor. Our method is compatible with existing DNA origami design frameworks and retains the modularity and addressability of DNA origami objects that are necessary for implementing custom modifications using functional groups. With all of the production and purification steps amenable to scaling, we expect that our method will expand the scope of DNA nanotechnology in many areas of science and technology.
Roux-Rouquie, Magali; Marilley, Monique
2000-01-01
We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X.laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed. PMID:10982860
Yu, Xiang; Yu, Zhigang; Li, Fengqin; Xu, Yanmei; He, Xunjun; Xu, Lan; Shi, Wenbing; Zhang, Guiling; Yan, Hong
2017-05-15
A type of "signal on" displacement-based sensors named target induced signaling probe shifting DNA-based (TISPS-DNA) sensor were developed for a designated DNA detection. The signaling mechanism of the signaling probe (SP) shifting different from the classical conformation/flexibility change mode endows the sensor with high sensitivity. Through using thiolated or no thiolated capturing probe (CP), two 3-probe sensing structures, sensor-1 and sensor-2, were designed and constructed. The systematical comparing research results show that both sensors exhibit some similarities or big differences in sensing performance. On the one hand, the similarity in structures determines the similarity in some aspects of signaling mechanism, background signal, signal changing form, anti-fouling ability and versatility; on the other hand, the slight difference in structures also results in two opposite hybridization modes of gradual increasing resistance and gradual decreasing resistance which can affect the hybridization efficiency between the assistant probe (AP) and the SP, further producing some big differences in sensing performance, for example, apparently different signal enhancement (SE) change, point mutation discrimination ability and response speed. Under the optimized fabrication and detection conditions, both sensors feature high sensitivity for target DNAs with the detection limits of ∼10 fM for sensor-1 and ∼7 fM for sensor-2, respectively. Among many acquired sensing virtues, the sensor-1 shows a peculiar specificity adjustability which is also a highlight in this work. Copyright © 2017 Elsevier B.V. All rights reserved.
Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
Wei, Xixi; Nangreave, Jeanette; Liu, Yan
2014-06-17
CONSPECTUS: DNA nanotechnology is one of the most flourishing interdisciplinary research fields. DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales. They can be used as scaffolds for organizing other nanoparticles, proteins, and chemical groups, leveraging their functions for creating complex bioinspired materials that may serve as smart drug delivery systems, in vitro or in vivo biomolecular computing platforms, and diagnostic devices. Achieving optimal structural features, efficient assembly protocols, and precise functional group positioning and modification requires a thorough understanding of the thermodynamics and kinetics of the DNA nanostructure self-assembly process. The most common real-time measurement strategies include monitoring changes in UV absorbance based on the hyperchromic effect of DNA, and the emission signal changes of DNA intercalating dyes or covalently conjugated fluorescent dyes/pairs that accompany temperature dependent structural changes. Thermodynamic studies of a variety of DNA nanostructures have been performed, from simple double stranded DNA formation to more complex origami assembly. The key parameters that have been evaluated in terms of stability and cooperativity include the overall dimensions, the folding path of the scaffold, crossover and nick point arrangement, length and sequence of single strands, and salt and ion concentrations. DNA tile-tile interactions through sticky end hybridization have also been analyzed, and the steric inhibition and rigidity of tiles turn out to be important factors. Many kinetic studies have also been reported, and most are based on double stranded DNA formation. A two-state assumption and the hypothesis of several intermediate states have been applied to determine the rate constant and activation energy of the DNA hybridization process. A few simulated models were proposed to represent the structural, mechanical, and kinetic properties of DNA hybridization. The kinetics of strand displacement reactions has also been studied as a special case of DNA hybridization. The thermodynamic and kinetic characteristics of DNA nanostructures have been exploited to develop rapid and isothermal annealing protocols. It is conceivable that a more thorough understanding of the DNA assembly process could be used to guide the structural design process and optimize the conditions for assembly, manipulation, and functionalization, thus benefiting both upstream design and downstream applications.
Interactions of Ku70/80 with Double-Strand DNA: Energetic, Dynamics, and Functional Implications
NASA Technical Reports Server (NTRS)
Hu, Shaowen; Cucinotta, Francis A.
2010-01-01
Space radiation is a proficient inducer of DNA damage leading to mutation, aberrant cell signaling, and cancer formation. Ku is among the first responding proteins in nucleus to recognize and bind the DNA double strand breaks (DSBs) whenever they are introduced. Once loaded Ku works as a scaffold to recruit other repair factors of non-homologous end joining and facilitates the following repair processes. The crystallographic study of the Ku70/80 heterodimer indicate the core structure of this protein shows virtually no conformational change after binding with DNA. To investigate the dynamical features as well as the energetic characteristics of Ku-DNA binding, we conduct multi-nanosecond molecular dynamics simulations of a modeled Ku70/80 structure and several complexes with two 24-bp DNA duplexes. Free energy calculations show significant energy differences between the complexes with Ku bound at DSBs and those with Ku associated at an internal site of a chromosome. The results also reveal detailed interactions between different nucleotides and the amino acids along the DNA-binding cradle of Ku, indicating subtle binding preference of Ku at specific DNA sequences. The covariance matrix analyses along the trajectories demonstrate the protein is stimulated to undergo correlated motions of different domains once bound to DNA ends. Additionally, principle component analyses identify these low frequency collective motions suitable for binding with and translocation along duplex DNA. It is proposed that the modification of dynamical properties of Ku upon binding with DSBs may provide a signal for the further recruitment of other repair factors such as DNA-PKcs, XLF, and XRCC4.
Walker, J; Tait, A
1997-11-01
A reverse-transcriptase polymerase chain reaction (PCR) procedure was used to isolate an Ostertagia circumcincta partial cDNA encoding a protein with general primary sequence features characteristic of members of the mitochondrial processing peptidase (MPP) subfamily of M16 metallopeptidases. The structural relationships of the predicted protein (Oc MPPX) with MPP subfamily proteins from other species (including the model free-living nematode Caenorhabditis elegans) were examined, and Northern analysis confirmed the expression of the Oc mppx gene in adult nematodes.
Kaushik, Mahima; Kukreti, Shrikant
2006-01-01
Structural polymorphism of DNA is a widely accepted property. A simple addition to this perception has been our recent finding, where a single nucleotide polymorphism (SNP) site present in a quasipalindromic sequence of beta-globin LCR exhibited a hairpin-duplex equilibrium. Our current studies explore that secondary structures adopted by individual complementary strands compete with formation of a perfect duplex. Using gel-electrophoresis, ultraviolet (UV)-thermal denaturation, circular dichroism (CD) techniques, we have demonstrated the structural transitions within a perfect duplex containing 11 bp quasipalindromic stretch (TGGGG(G/C)CCCCA), to hairpins and bulge duplex forms. The extended version of the 11 bp duplex, flanked by 5 bp on both sides also demonstrated conformational equilibrium between duplex and hairpin species. Gel-electrophoresis confirms that the duplex coexists with hairpin and bulge duplex/cruciform species. Further, in CD spectra of duplexes, presence of two overlapping positive peaks at 265 and 285 nm suggest the features of A- as well as B-type DNA conformation and show oligomer concentration dependence, manifested in A --> B transition. This indicates the possibility of an architectural switching at quasipalindromic region between linear duplex to a cruciform structure. Such DNA structural variations are likely to be found in the mechanics of molecular recognition and manipulation by proteins.
Recent Insight into the Kinetic Mechanisms and Conformational Dynamics of Y-Family DNA Polymerases
2015-01-01
The kinetic mechanisms by which DNA polymerases catalyze DNA replication and repair have long been areas of active research. Recently discovered Y-family DNA polymerases catalyze the bypass of damaged DNA bases that would otherwise block replicative DNA polymerases and stall replication forks. Unlike DNA polymerases from the five other families, the Y-family DNA polymerases have flexible, solvent-accessible active sites that are able to tolerate various types of damaged template bases and allow for efficient lesion bypass. Their promiscuous active sites, however, also lead to fidelities that are much lower than those observed for other DNA polymerases and give rise to interesting mechanistic properties. Additionally, the Y-family DNA polymerases have several other unique structural features and undergo a set of conformational changes during substrate binding and catalysis different from those observed for replicative DNA polymerases. In recent years, pre-steady-state kinetic methods have been extensively employed to reveal a wealth of information about the catalytic properties of these fascinating noncanonical DNA polymerases. Here, we review many of the recent findings on the kinetic mechanisms of DNA polymerization with undamaged and damaged DNA substrates by the Y-family DNA polymerases, and the conformational dynamics employed by these error-prone enzymes during catalysis. PMID:24716482
A Transient Kinetic Approach to Investigate Nucleoside Inhibitors of Mitochondrial DNA polymerase γ
Anderson, Karen S.
2010-01-01
Nucleoside analogs play an essential role in treating human immunodeficiency virus (HIV) infection since the beginning of the AIDS epidemic and work by inhibition of HIV-1 reverse transcriptase (RT), a viral polymerase essential for DNA replication. Today, over 90% of all regimens for HIV treatment contain at least one nucleoside. Long-term use of nucleoside analogs has been associated with adverse effects including mitochondrial toxicity due to inhibition of the mitochondrial polymerase, DNA polymerase gamma (mtDNA pol ©). In this review, we describe our efforts to delineate the molecular mechanism of nucleoside inhibition of HIV-1 RT and mtDNA pol © based upon a transient kinetic approach using rapid chemical quench methodology. Using transient kinetic methods, the maximum rate of polymerization (kpol), the dissociation constant for the ground state binding (Kd), and the incorporation efficiency (kpol/Kd) can be determined for the nucleoside analogs and their natural substrates. This analysis allowed us to develop an understanding of the structure activity relationships that allow correlation between the structural and stereochemical features of the nucleoside analog drugs with their mechanistic behavior toward the viral polymerase, RT, and the host cell polymerase, mtDNA pol γ. An in-depth understanding of the mechanisms of inhibition of these enzymes is imperative in overcoming problems associated with toxicity. PMID:20573564
Structural basis for inhibition of the histone chaperone activity of SET/TAF-Iβ by cytochrome c
González-Arzola, Katiuska; Díaz-Moreno, Irene; Cano-González, Ana; Díaz-Quintana, Antonio; Velázquez-Campoy, Adrián; Moreno-Beltrán, Blas; López-Rivas, Abelardo; De la Rosa, Miguel A.
2015-01-01
Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin’s transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iβ interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iβ to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iβ. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iβ, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iβ’s histone chaperone activity. PMID:26216969
Communication: Origin of the contributions to DNA structure in phages
Myers, Christopher G.; Pettitt, B. Montgomery
2013-01-01
Cryo electron microscopy (cryo-EM) data of the interior of phages show ordering of the interior DNA that has been interpreted as a nearly perfectly ordered polymer. We show surface-induced correlations, excluded volume, and electrostatic forces are sufficient to predict most of the major features of the current structural data for DNA packaged within viral capsids without additional ordering due to elastic bending forces for the polymer. Current models assume highly-ordered, even spooled, hexagonally packed conformations based on interpretation of cryo-EM density maps. We show herein that the surface induced packing of short (6mer), unconnected DNA polymer segments is the only necessary ingredient in creating ringed densities consistent with experimental density maps. This implies the ensemble of possible conformations of polymeric DNA within the capsid that are consistent with cryo-EM data may be much larger than implied by traditional interpretations where such rings can only result from highly-ordered spool-like conformations. This opens the possibility of a more disordered, entropically-driven view of phage packaging thermodynamics. We also show the electrostatics of the DNA contributes a large portion of the internal hydrostatic and osmotic pressures of a phage virion, suggesting that nonlinear elastic anomalies might reduce the overall elastic bending enthalpy of more disordered conformations to have allowable free energies. PMID:23444988
Communication: Origin of the contributions to DNA structure in phages.
Myers, Christopher G; Pettitt, B Montgomery
2013-02-21
Cryo electron microscopy (cryo-EM) data of the interior of phages show ordering of the interior DNA that has been interpreted as a nearly perfectly ordered polymer. We show surface-induced correlations, excluded volume, and electrostatic forces are sufficient to predict most of the major features of the current structural data for DNA packaged within viral capsids without additional ordering due to elastic bending forces for the polymer. Current models assume highly-ordered, even spooled, hexagonally packed conformations based on interpretation of cryo-EM density maps. We show herein that the surface induced packing of short (6mer), unconnected DNA polymer segments is the only necessary ingredient in creating ringed densities consistent with experimental density maps. This implies the ensemble of possible conformations of polymeric DNA within the capsid that are consistent with cryo-EM data may be much larger than implied by traditional interpretations where such rings can only result from highly-ordered spool-like conformations. This opens the possibility of a more disordered, entropically-driven view of phage packaging thermodynamics. We also show the electrostatics of the DNA contributes a large portion of the internal hydrostatic and osmotic pressures of a phage virion, suggesting that nonlinear elastic anomalies might reduce the overall elastic bending enthalpy of more disordered conformations to have allowable free energies.
Divergent genome evolution caused by regional variation in DNA gain and loss between human and mouse
Kortschak, R. Daniel
2018-01-01
The forces driving the accumulation and removal of non-coding DNA and ultimately the evolution of genome size in complex organisms are intimately linked to genome structure and organisation. Our analysis provides a novel method for capturing the regional variation of lineage-specific DNA gain and loss events in their respective genomic contexts. To further understand this connection we used comparative genomics to identify genome-wide individual DNA gain and loss events in the human and mouse genomes. Focusing on the distribution of DNA gains and losses, relationships to important structural features and potential impact on biological processes, we found that in autosomes, DNA gains and losses both followed separate lineage-specific accumulation patterns. However, in both species chromosome X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon content required for X inactivation. We found that DNA loss was associated with gene-rich open chromatin regions and DNA gain events with gene-poor closed chromatin regions. Additionally, we found that DNA loss events tended to be smaller than DNA gain events suggesting that they were able to accumulate in gene-rich open chromatin regions due to their reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed that mouse loss hotspots were strongly enriched for terms related to developmental processes. However, these genes were also located in regions with a high density of conserved elements, suggesting that despite high levels of DNA loss, gene regulatory architecture remained conserved. This is consistent with a model in which DNA gain and loss results in turnover or “churning” in regulatory element dense regions of open chromatin, where interruption of regulatory elements is selected against. PMID:29677183
Yu, Zhiqiang; Paul, Rakesh; Bhattacharya, Chandrabali; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M
2015-05-19
We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide-cytotoxin conjugates.
2016-01-01
We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide–cytotoxin conjugates. PMID:25905565
NASA Astrophysics Data System (ADS)
Wu, Xiangyang
1999-07-01
The heterocyclic amine 2-amino-3-methylimidazo (4, 5-f) quinoline (IQ) is one of a number of carcinogens found in barbecued meat and fish. It induces tumors in mammals and is probably involved in human carcinogenesis, because of great exposure to such food carcinogens. IQ is biochemically activated to a derivative which reacts with DNA to form a covalent adduct. This adduct may deform the DNA and consequently cause a mutation. which may initiate carcinogenesis. To understand this cancer initiating event, it is necessary to obtain atomic resolution structures of the damaged DNA. No such structures are available experimentally due to synthesis difficulties. Therefore, we employ extensive molecular mechanics and dynamics calculations for this purpose. The major IQ-DNA adduct in the specific DNA sequence d(5'G1G2C G3CCA3') - d(5'TGGCGCC3') with IQ modified at G3 is studied. The d(5'G1G2C G3CC3') sequence has recently been shown to be a hot-spot for mutations when IQ modification is at G3. Although this sequence is prone to -2 deletions via a ``slippage mechanism'' even when unmodified, a key question is why IQ increases the mutation frequency of the unmodified DNA by about 104 fold. Is there a structural feature imposed by IQ that is responsible? The molecular mechanics and dynamics program AMBER for nucleic acids with the latest force field was chosen for this work. This force field has been demonstrated to reproduce well the B-DNA structure. However, some parameters, the partial charges, bond lengths and angles, dihedral parameters of the modified residue, are not available in the AMBER database. We parameterized the force field using high level ab initio quantum calculations. We created 800 starting conformations which uniformly sampled in combination at 18° intervals three torsion angles that govern the IQ-DNA orientations, and energy minimized them. The most important structures are abnormal; the IQ damaged guanine is rotated out of its standard B-DNA orientations, compromising its ability to act as a faithful template during DNA replication.
Discrimination against RNA Backbones by a ssDNA Binding Protein.
Lloyd, Neil R; Wuttke, Deborah S
2018-05-01
Pot1 is the shelterin component responsible for the protection of the single-stranded DNA (ssDNA) overhang at telomeres in nearly all eukaryotic organisms. The C-terminal domain of the DNA-binding domain, Pot1pC, exhibits non-specific ssDNA recognition, achieved through thermodynamically equivalent alternative binding conformations. Given this flexibility, it is unclear how specificity for ssDNA over RNA, an activity required for biological function, is achieved. Examination of the ribose-position specificity of Pot1pC shows that ssDNA specificity is additive but not uniformly distributed across the ligand. High-resolution structures of several Pot1pC complexes with RNA-DNA chimeric ligands reveal Pot1pC discriminates against RNA by utilizing non-compensatory binding modes that feature significant rearrangement of the binding interface. These alternative conformations, accessed through both ligand and protein flexibility, recover much, but not all, of the binding energy, leading to the observed reduction in affinities. These findings suggest that intermolecular interfaces are remarkably sophisticated in their tuning of specificity toward flexible ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.
The fractal based analysis of human face and DNA variations during aging.
Namazi, Hamidreza; Akrami, Amin; Hussaini, Jamal; Silva, Osmar N; Wong, Albert; Kulish, Vladimir V
2017-01-16
Human DNA is the main unit that shapes human characteristics and features such as behavior. Thus, it is expected that changes in DNA (DNA mutation) influence human characteristics and features. Face is one of the human features which is unique and also dependent on his gen. In this paper, for the first time we analyze the variations of human DNA and face simultaneously. We do this job by analyzing the fractal dimension of DNA walk and face during human aging. The results of this study show the human DNA and face get more complex by aging. These complexities are mapped on fractal exponents of DNA walk and human face. The method discussed in this paper can be further developed in order to investigate the direct influence of DNA mutation on the face variations during aging, and accordingly making a model between human face fractality and the complexity of DNA walk.
Marck, Christian; Grosjean, Henri
2002-01-01
From 50 genomes of the three domains of life (7 eukarya, 13 archaea, and 30 bacteria), we extracted, analyzed, and compared over 4,000 sequences corresponding to cytoplasmic, nonorganellar tRNAs. For each genome, the complete set of tRNAs required to read the 61 sense codons was identified, which permitted revelation of three major anticodon-sparing strategies. Other features and sequence peculiarities analyzed are the following: (1) fit to the standard cloverleaf structure, (2) characteristic consensus sequences for elongator and initiator tDNAs, (3) frequencies of bases at each sequence position, (4) type and frequencies of conserved 2D and 3D base pairs, (5) anticodon/tDNA usages and anticodon-sparing strategies, (6) identification of the tRNA-Ile with anticodon CAU reading AUA, (7) size of variable arm, (8) occurrence and location of introns, (9) occurrence of 3'-CCA and 5'-extra G encoded at the tDNA level, and (10) distribution of the tRNA genes in genomes and their mode of transcription. Among all tRNA isoacceptors, we found that initiator tDNA-iMet is the most conserved across the three domains, yet domain-specific signatures exist. Also, according to which tRNA feature is considered (5'-extra G encoded in tDNAs-His, AUA codon read by tRNA-Ile with anticodon CAU, presence of intron, absence of "two-out-of-three" reading mode and short V-arm in tDNA-Tyr) Archaea sequester either with Bacteria or Eukarya. No common features between Eukarya and Bacteria not shared with Archaea could be unveiled. Thus, from the tRNomic point of view, Archaea appears as an "intermediate domain" between Eukarya and Bacteria. PMID:12403461
Genome packaging in EL and Lin68, two giant phiKZ-like bacteriophages of P. aeruginosa.
Sokolova, O S; Shaburova, O V; Pechnikova, E V; Shaytan, A K; Krylov, S V; Kiselev, N A; Krylov, V N
2014-11-01
A unique feature of the Pseudomonas aeruginosa giant phage phiKZ is its way of genome packaging onto a spool-like protein structure, the inner body. Until recently, no similar structures have been detected in other phages. We have studied DNA packaging in P. aeruginosa phages EL and Lin68 using cryo-electron microscopy and revealed the presence of inner bodies. The shape and positioning of the inner body and the density of the DNA packaging in EL are different from those found in phiKZ and Lin68. This internal organization explains how the shorter EL genome is packed into a large EL capsid, which has the same external dimensions as the capsids of phiKZ and Lin68. The similarity in the structural organization in EL and other phiKZ-like phages indicates that EL is phylogenetically related to other phiKZ-like phages, and, despite the lack of detectable DNA homology, EL, phiKZ, and Lin68 descend from a common ancestor. Copyright © 2014 Elsevier Inc. All rights reserved.
Interlocked DNA nanostructures controlled by a reversible logic circuit.
Li, Tao; Lohmann, Finn; Famulok, Michael
2014-09-17
DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems.
Interlocked DNA nanostructures controlled by a reversible logic circuit
Li, Tao; Lohmann, Finn; Famulok, Michael
2014-01-01
DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems. PMID:25229207
Structure and expression of dna methyltransferase genes from apomictic and sexual Boechera species.
Taşkin, Kemal Melik; Özbilen, Aslıhan; Sezer, Fatih; Hürkan, Kaan; Güneş, Şebnem
2017-04-01
In this study, we determined the structure of DNA methyltransferase (DNMT) genes in apomict and sexual Boechera species and investigated the expression levels during seed development. Protein and DNA sequences of diploid sexual Boechera stricta DNMT genes obtained from Phytozome 10.3 were used to identify the homologues in apomicts, Boechera holboellii and Boechera divaricarpa. Geneious R8 software was used to map the short-paired reads library of B. holboellii whole genome or B. divaricarpa transcriptome reads to the reference gene sequences. We determined three DNMT genes; for Boechera spp. METHYLTRANSFERASE1 (MET1), CHROMOMETHYLASE 3 (CMT3) and DOMAINS REARRANGED METHYLTRANSFERASE 1/2 (DRM2). We examined the structure of these genes with bioinformatic tools and compared with other DNMT genes in plants. We also examined the levels of expression in silique tissues after fertilization by semi-quantitative PCR. The structure of DNMT proteins in apomict and sexual Boechera species share common features. However, the expression levels of DNMT genes were different in apomict and sexual Boechera species. We found that DRM2 was upregulated in apomictic Boechera species after fertilization. Phylogenetic trees showed that three genes are conserved among green algae, monocotyledons and dicotyledons. Our results indicated a deregulation of DNA methylation machinery during seed development in apomicts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Eunsoo; Lane, Christopher E; Curtis, Bruce A; Kozera, Catherine; Bowman, Sharen; Archibald, John M
2008-05-12
Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote) endosymbiosis. Cryptophytes are unusual in that they possess four genomes-a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a approximately 20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22-336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu) gene and possesses a trnS-derived 'trnK(uuu)', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher-order eukaryotic lineages. Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol.
Kim, Eunsoo; Lane, Christopher E; Curtis, Bruce A; Kozera, Catherine; Bowman, Sharen; Archibald, John M
2008-01-01
Background Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote) endosymbiosis. Cryptophytes are unusual in that they possess four genomes–a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. Results The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a ~20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22–336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu) gene and possesses a trnS-derived 'trnK(uuu)', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher-order eukaryotic lineages. Conclusion Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol. PMID:18474103
Computational and Experimental Characterization of Ribosomal DNA and RNA G-Quadruplexes
NASA Astrophysics Data System (ADS)
Cho, Samuel
DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. Recent studies strongly suggest that guanine (G)-rich genes encoding pre-ribosomal RNA (pre-rRNA) are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis. However, the structures of ribosomal G-quadruplexes at atomic resolution are unknown, and very little biophysical characterization has been performed on them to date. Here, we have modeled two putative rDNA G-quadruplex structures, NUC 19P and NUC 23P, which we observe via circular dichroism (CD) spectroscopy to adopt a predominantly parallel topology, and their counterpart rRNA. To validate and refine the putative ribosomal G-quadruplex structures, we performed all-atom molecular dynamics (MD) simulations using the CHARMM36 force field in the presence and absence of stabilizing K + or Na + ions. We optimized the CHARMM36 force field K + parameters to be more consistent with quantum mechanical calculations (and the polarizable Drude model force field) so that the K + ion is predominantly in the G-quadruplex channel. Our MD simulations show that the rDNA G-quadruplex have more well-defined, predominantly parallel-topology structures than rRNA and NUC 19P is more structured than NUC 23P, which features extended loops. Our study demonstrates that they are both potential targets for the design of novel chemotherapeutics.
Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A; Chong, Jenny; Hare, Alissa A; Dervan, Peter B; DiMaio, Frank; Leschziner, Andres E; Wang, Dong
2017-11-30
Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.
NASA Astrophysics Data System (ADS)
Morard, Raphaël; Lejzerowicz, Franck; Darling, Kate F.; Lecroq-Bennet, Béatrice; Winther Pedersen, Mikkel; Orlando, Ludovic; Pawlowski, Jan; Mulitza, Stefan; de Vargas, Colomban; Kucera, Michal
2017-06-01
Deep-sea sediments constitute a unique archive of ocean change, fueled by a permanent rain of mineral and organic remains from the surface ocean. Until now, paleo-ecological analyses of this archive have been mostly based on information from taxa leaving fossils. In theory, environmental DNA (eDNA) in the sediment has the potential to provide information on non-fossilized taxa, allowing more comprehensive interpretations of the fossil record. Yet, the process controlling the transport and deposition of eDNA onto the sediment and the extent to which it preserves the features of past oceanic biota remains unknown. Planktonic foraminifera are the ideal taxa to allow an assessment of the eDNA signal modification during deposition because their fossils are well preserved in the sediment and their morphological taxonomy is documented by DNA barcodes. Specifically, we re-analyze foraminiferal-specific metabarcodes from 31 deep-sea sediment samples, which were shown to contain a small fraction of sequences from planktonic foraminifera. We confirm that the largest portion of the metabarcode originates from benthic bottom-dwelling foraminifera, representing the in situ community, but a small portion (< 10 %) of the metabarcodes can be unambiguously assigned to planktonic taxa. These organisms live exclusively in the surface ocean and the recovered barcodes thus represent an allochthonous component deposited with the rain of organic remains from the surface ocean. We take advantage of the planktonic foraminifera portion of the metabarcodes to establish to what extent the structure of the surface ocean biota is preserved in sedimentary eDNA. We show that planktonic foraminifera DNA is preserved in a range of marine sediment types, the composition of the recovered eDNA metabarcode is replicable and that both the similarity structure and the diversity pattern are preserved. Our results suggest that sedimentary eDNA could preserve the ecological structure of the entire pelagic community, including non-fossilized taxa, thus opening new avenues for paleoceanographic and paleoecological studies.
Structural mechanics of DNA wrapping in the nucleosome.
Battistini, Federica; Hunter, Christopher A; Gardiner, Eleanor J; Packer, Martin J
2010-02-19
Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597 degrees) in one plane and very little curvature (10 degrees) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30 degrees per helical turn throughout most of the structure but that there are two sharper kinks of 50 degrees at +/-2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500 degrees of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure were obtained by applying a constant bending moment. When a single bending moment was applied to the entire sequence, the local details of the calculated structure did not match the experiment. However, when local 10-step bending moments were applied separately, the calculated structure showed excellent agreement with experiment. This implies that the protein applies variable bending forces along the DNA to maintain the superhelical path required for nucleosome wrapping. In particular, the 50 degrees kinks are constraints imposed by the protein rather than a feature of the 1kx5 DNA sequence. The kinks coincide with a relatively flexible region of the sequence, and this is probably a prerequisite for high-affinity nucleosome binding, but the bending strain energy is significantly higher at these points than for the rest of the sequence. In the most rigid regions of the sequence, a higher strain energy is also required to achieve the standard 30 degrees curvature per helical turn. We conclude that matching of the DNA sequence to the local roll periodicity required to achieve bending, together with the increased flexibility required at the kinks, determines the sequence selectivity of DNA wrapping in the nucleosome. 2009 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Reddy, A. S.; Reddy, V. S.; Golovkin, M.
2000-01-01
Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.
Nullomers and High Order Nullomers in Genomic Sequences
Vergni, Davide; Santoni, Daniele
2016-01-01
A nullomer is an oligomer that does not occur as a subsequence in a given DNA sequence, i.e. it is an absent word of that sequence. The importance of nullomers in several applications, from drug discovery to forensic practice, is now debated in the literature. Here, we investigated the nature of nullomers, whether their absence in genomes has just a statistical explanation or it is a peculiar feature of genomic sequences. We introduced an extension of the notion of nullomer, namely high order nullomers, which are nullomers whose mutated sequences are still nullomers. We studied different aspects of them: comparison with nullomers of random sequences, CpG distribution and mean helical rise. In agreement with previous results we found that the number of nullomers in the human genome is much larger than expected by chance. Nevertheless antithetical results were found when considering a random DNA sequence preserving dinucleotide frequencies. The analysis of CpG frequencies in nullomers and high order nullomers revealed, as expected, a high CpG content but it also highlighted a strong dependence of CpG frequencies on the dinucleotide position, suggesting that nullomers have their own peculiar structure and are not simply sequences whose CpG frequency is biased. Furthermore, phylogenetic trees were built on eleven species based on both the similarities between the dinucleotide frequencies and the number of nullomers two species share, showing that nullomers are fairly conserved among close species. Finally the study of mean helical rise of nullomers sequences revealed significantly high mean rise values, reinforcing the hypothesis that those sequences have some peculiar structural features. The obtained results show that nullomers are the consequence of the peculiar structure of DNA (also including biased CpG frequency and CpGs islands), so that the hypermutability model, also taking into account CpG islands, seems to be not sufficient to explain nullomer phenomenon. Finally, high order nullomers could emphasize those features that already make simple nullomers useful in several applications. PMID:27906971
Andrabi, Munazah; Hutchins, Andrew Paul; Miranda-Saavedra, Diego; Kono, Hidetoshi; Nussinov, Ruth; Mizuguchi, Kenji; Ahmad, Shandar
2017-06-22
DNA shape is emerging as an important determinant of transcription factor binding beyond just the DNA sequence. The only tool for large scale DNA shape estimates, DNAshape was derived from Monte-Carlo simulations and predicts four broad and static DNA shape features, Propeller twist, Helical twist, Minor groove width and Roll. The contributions of other shape features e.g. Shift, Slide and Opening cannot be evaluated using DNAshape. Here, we report a novel method DynaSeq, which predicts molecular dynamics-derived ensembles of a more exhaustive set of DNA shape features. We compared the DNAshape and DynaSeq predictions for the common features and applied both to predict the genome-wide binding sites of 1312 TFs available from protein interaction quantification (PIQ) data. The results indicate a good agreement between the two methods for the common shape features and point to advantages in using DynaSeq. Predictive models employing ensembles from individual conformational parameters revealed that base-pair opening - known to be important in strand separation - was the best predictor of transcription factor-binding sites (TFBS) followed by features employed by DNAshape. Of note, TFBS could be predicted not only from the features at the target motif sites, but also from those as far as 200 nucleotides away from the motif.
A Three-Dimensional Model of the Yeast Genome
NASA Astrophysics Data System (ADS)
Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony
Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.
An evolution-based DNA-binding residue predictor using a dynamic query-driven learning scheme.
Chai, H; Zhang, J; Yang, G; Ma, Z
2016-11-15
DNA-binding proteins play a pivotal role in various biological activities. Identification of DNA-binding residues (DBRs) is of great importance for understanding the mechanism of gene regulations and chromatin remodeling. Most traditional computational methods usually construct their predictors on static non-redundant datasets. They excluded many homologous DNA-binding proteins so as to guarantee the generalization capability of their models. However, those ignored samples may potentially provide useful clues when studying protein-DNA interactions, which have not obtained enough attention. In view of this, we propose a novel method, namely DQPred-DBR, to fill the gap of DBR predictions. First, a large-scale extensible sample pool was compiled. Second, evolution-based features in the form of a relative position specific score matrix and covariant evolutionary conservation descriptors were used to encode the feature space. Third, a dynamic query-driven learning scheme was designed to make more use of proteins with known structure and functions. In comparison with a traditional static model, the introduction of dynamic models could obviously improve the prediction performance. Experimental results from the benchmark and independent datasets proved that our DQPred-DBR had promising generalization capability. It was capable of producing decent predictions and outperforms many state-of-the-art methods. For the convenience of academic use, our proposed method was also implemented as a web server at .
Mitra, A; Saikh, F; Das, J; Ghosh, S; Ghosh, R
2018-05-22
Interaction of a ligand with DNA is often the basis of drug action of many molecules. Flavones are important in this regard as their structural features confer them the ability to bind to DNA. 2-(4-Nitrophenyl)-4H-chromen-4-one (4NCO) is an important biologically active synthetic flavone derivative. We are therefore interested in studying its interaction with DNA. Absorption spectroscopy studies included standard and reverse titration, effect of ionic strength on titration, determination of stoichiometry of binding and thermal denaturation. Spectrofluorimetry techniques included fluorimetric titration, quenching studies and fluorescence displacement assay. Assessment of relative viscosity and estimation of thermodynamic parameters from CD spectral studies were also undertaken. Furthermore, molecular docking analyses were also done with different short DNA sequences. The fluorescent flavone 4NCO reversibly interacted with DNA through partial intercalation as well as minor-groove binding. The binding constant and the number of binding sites were of the order 10 4 M -1 and 1 respectively. The binding stoichiometry with DNA was found to be 1:1. The nature of the interaction of 4NCO with DNA was hydrophobic in nature and the process of binding was spontaneous, endothermic and entropy-driven. The flavone also showed a preference for binding to GC rich sequences. The study presents a profile for structural and thermodynamic parameters, for the binding of 4NCO with DNA. DNA is an important target for ligands that are effective against cell proliferative disorders. In this regard, the molecule 4NCO is important since it can exert its biological activity through its DNA binding ability and can be a potential drug candidate. Copyright © 2018 Elsevier B.V. All rights reserved.
de Abreu da Silva, Isabel Caetano; Vicentino, Amanda Roberta Revoredo; Dos Santos, Renata Coutinho; da Fonseca, Rodrigo Nunes; de Mendonça Amarante, Anderson; Carneiro, Vitor Coutinho; de Amorim Pinto, Marcia; Aguilera, Estefania Anahi; Mohana-Borges, Ronaldo; Bisch, Paulo Mascarello; da Silva-Neto, Mario Alberto Cardoso; Fantappié, Marcelo Rosado
2018-05-30
High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis. Copyright © 2017. Published by Elsevier B.V.
Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R
2010-12-01
Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Rajina, S. R.; Sudhi, Geethu; Austin, P.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Binoy, J.
2018-05-01
The interaction of a drug with DNA and BSA play a great role in studying anti cancer activity and drug transport properties, which can be effectively, investigated using vibrational spectroscopy, UV visible spectroscopy and Fluorescence spectroscopy. The present work reports the structural features of N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid Methyl ester (FNGABME) based on FTIR and FTRaman spectroscopy. The absorption and fluorescence spectroscopic methods were used to study the efficiency of the interaction of the compound FNGABME with BSA and DNA and also molecular docking were performed computationally to validate the results which shows that the title compound may exhibit inhibitory activity against the cancer cells.
DNA methylation analysis of phenotype specific stratified Indian population.
Rotti, Harish; Mallya, Sandeep; Kabekkodu, Shama Prasada; Chakrabarty, Sanjiban; Bhale, Sameer; Bharadwaj, Ramachandra; Bhat, Balakrishna K; Dedge, Amrish P; Dhumal, Vikram Ram; Gangadharan, G G; Gopinath, Puthiya M; Govindaraj, Periyasamy; Joshi, Kalpana S; Kondaiah, Paturu; Nair, Sreekumaran; Nair, S N Venugopalan; Nayak, Jayakrishna; Prasanna, B V; Shintre, Pooja; Sule, Mayura; Thangaraj, Kumarasamy; Patwardhan, Bhushan; Valiathan, Marthanda Varma Sankaran; Satyamoorthy, Kapaettu
2015-05-08
DNA methylation and its perturbations are an established attribute to a wide spectrum of phenotypic variations and disease conditions. Indian traditional system practices personalized medicine through indigenous concept of distinctly descriptive physiological, psychological and anatomical features known as prakriti. Here we attempted to establish DNA methylation differences in these three prakriti phenotypes. Following structured and objective measurement of 3416 subjects, whole blood DNA of 147 healthy male individuals belonging to defined prakriti (Vata, Pitta and Kapha) between the age group of 20-30years were subjected to methylated DNA immunoprecipitation (MeDIP) and microarray analysis. After data analysis, prakriti specific signatures were validated through bisulfite DNA sequencing. Differentially methylated regions in CpG islands and shores were significantly enriched in promoters/UTRs and gene body regions. Phenotypes characterized by higher metabolism (Pitta prakriti) in individuals showed distinct promoter (34) and gene body methylation (204), followed by Vata prakriti which correlates to motion showed DNA methylation in 52 promoters and 139 CpG islands and finally individuals with structural attributes (Kapha prakriti) with 23 and 19 promoters and CpG islands respectively. Bisulfite DNA sequencing of prakriti specific multiple CpG sites in promoters and 5'-UTR such as; LHX1 (Vata prakriti), SOX11 (Pitta prakriti) and CDH22 (Kapha prakriti) were validated. Kapha prakriti specific CDH22 5'-UTR CpG methylation was also found to be associated with higher body mass index (BMI). Differential DNA methylation signatures in three distinct prakriti phenotypes demonstrate the epigenetic basis of Indian traditional human classification which may have relevance to personalized medicine.
AgI -Induced Switching of DNA Binding Modes via Formation of a Supramolecular Metallacycle.
Basak, Shibaji; Léon, J Christian; Ferranco, Annaleizle; Sharma, Renu; Hebenbrock, Marian; Lough, Alan; Müller, Jens; Kraatz, Heinz-Bernhard
2018-03-12
The histidine derivative L1 of the DNA intercalator naphthalenediimide (NDI) forms a triangular Ag I complex (C2). The interactions of L1 and of C2 with DNA were studied by circular dichroism (CD) and UV/Vis spectroscopy and by viscosity studies. Different binding modes were observed for L1 and for C2, as the Ag I complex C2 is too large in size to act as an intercalator. If Ag I is added to the NDI molecule that is already intercalated into a duplex, higher order complexes are formed within the DNA duplex and cause disruptions in the helical duplex structure, which leads to a significant decrease in the characteristic CD features of B-DNA. Thus, via addition of a metal we show how a classic and well-known organic intercalator unit can be turned into a partial metallo insertor. We also show how electrochemical impedance spectroscopy (EIS) can be used to probe DNA binding modes on DNA films that are immobilized on gold surfaces. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tretyachenko-Ladokhina, Vira; Cocco, Melanie J; Senear, Donald F
2006-09-15
Interactions between DNA-bound transcription factors CytR and CRP regulate the promoters of the Escherichia coli CytR regulon. A distinctive feature of the palindromic CytR operators is highly variable length central spacers (0-9 bp). Previously we demonstrated distinct modes of CytR binding to operators that differ in spacer length. These different modes are characterized by opposite enthalpic and entropic contributions at 25 degrees C. Of particular note were radically different negative DeltaCp values suggesting variable contribution from coupled protein folding and/or DNA structural transitions. We proposed that the CytR DNA binding-domain adopts either a more rigid or flexible DNA-bound conformation in response to the different spacer lengths. More recently, similar effects were shown to contribute to discrimination between operator and non-specific DNA binding by LacR, a CytR homolog. Here we have extended the thermodynamic analysis to the remaining natural CytR operators plus a set of synthetic operators designed to isolate spacing as the single variable. The thermodynamic results show a broad and monotonic range of effects that are primarily dependent on spacer length. The magnitude of effects suggests participation by more than the DNA-binding domain. 15N HSQC NMR and CD spectral analyses were employed to characterize the structural basis for these effects. The results indicate that while CytR forms a well-ordered structure in solution, it is highly dynamic. We propose a model in which a large ensemble of native state conformations narrows upon binding, to an extent governed by operator spacing. This in turn is expected to constrain intermolecular interactions in the CytR-CRP-DNA complex, thus generating operator-specific effects on repression and induction of transcription.
Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B
2008-02-15
Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression. Copyright 2007 Wiley-Liss, Inc.
Informational structure of genetic sequences and nature of gene splicing
NASA Astrophysics Data System (ADS)
Trifonov, E. N.
1991-10-01
Only about 1/20 of DNA of higher organisms codes for proteins, by means of classical triplet code. The rest of DNA sequences is largely silent, with unclear functions, if any. The triplet code is not the only code (message) carried by the sequences. There are three levels of molecular communication, where the same sequence ``talks'' to various bimolecules, while having, respectively, three different appearances: DNA, RNA and protein. Since the molecular structures and, hence, sequence specific preferences of these are substantially different, the original DNA sequence has to carry simultaneously three types of sequence patterns (codes, messages), thus, being a composite structure in which one had the same letter (nucleotide) is frequently involved in several overlapping codes of different nature. This multiplicity and overlapping of the codes is a unique feature of the Gnomic, language of genetic sequences. The coexisting codes have to be degenerate in various degrees to allow an optimal and concerted performance of all the encoded functions. There is an obvious conflict between the best possible performance of a given function and necessity to compromise the quality of a given sequence pattern in favor of other patterns. It appears that the major role of various changes in the sequences on their ``ontogenetic'' way from DNA to RNA to protein, like RNA editing and splicing, or protein post-translational modifications is to resolve such conflicts. New data are presented strongly indicating that the gene splicing is such a device to resolve the conflict between the code of DNA folding in chromatin and the triplet code for protein synthesis.
Revealing Long-Range Interconnected Hubs in Human Chromatin Interaction Data Using Graph Theory
NASA Astrophysics Data System (ADS)
Boulos, R. E.; Arneodo, A.; Jensen, P.; Audit, B.
2013-09-01
We use graph theory to analyze chromatin interaction (Hi-C) data in the human genome. We show that a key functional feature of the genome—“master” replication origins—corresponds to DNA loci of maximal network centrality. These loci form a set of interconnected hubs both within chromosomes and between different chromosomes. Our results open the way to a fruitful use of graph theory concepts to decipher DNA structural organization in relation to genome functions such as replication and transcription. This quantitative information should prove useful to discriminate between possible polymer models of nuclear organization.
Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong
2014-08-07
DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a "lab-on-a-nanoparticle", the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.
Transcriptional control by G-quadruplexes: In vivo roles and perspectives for specific intervention.
Armas, Pablo; David, Aldana; Calcaterra, Nora B
2017-01-01
G-quadruplexes are non-canonical DNA secondary structures involved in several genomic and molecular processes. Here, we summarize the main G-quadruplex features and evidences proving the in vivo role on the transcriptional regulation of genes required for zebrafish embryonic development. We also discuss alternative strategies for specifically interfering G-quadruplex in vivo.
The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features
Luis F. Larrondo; Angel Gonzalez; Tomas Perez-Acle; Dan Cullen; Rafael Vicuna
2005-01-01
Inspection of the genome of the ligninolytic basidiomycete Phanerochaete chrysosporium revealed an unusual peroxidase-like sequence. The corresponding full length cDNA was sequenced and an archetypal secretion signal predicted. The deduced mature protein (NoP, novel peroxidase) contains 295 aa residues and is therefore considerably shorter than other Class II (fungal)...
Sarre, Aili; Ökvist, Mats; Klar, Tobias; Hall, David R; Smalås, Arne O; McSweeney, Sean; Timmins, Joanna; Moe, Elin
2015-08-01
While most bacteria possess a single gene encoding the bifunctional DNA glycosylase Endonuclease III (EndoIII) in their genomes, Deinococcus radiodurans possesses three: DR2438 (DrEndoIII1), DR0289 (DrEndoIII2) and DR0982 (DrEndoIII3). Here we have determined the crystal structures of DrEndoIII1 and an N-terminally truncated form of DrEndoIII3 (DrEndoIII3Δ76). We have also generated a homology model of DrEndoIII2 and measured activity of the three enzymes. All three structures consist of two all α-helical domains, one of which exhibits a [4Fe-4S] cluster and the other a HhH-motif, separated by a DNA binding cleft, similar to previously determined structures of endonuclease III from Escherichia coli and Geobacillus stearothermophilus. However, both DrEndoIII1 and DrEndoIII3 possess an extended HhH motif with extra helical features and an altered electrostatic surface potential. In addition, the DNA binding cleft of DrEndoIII3 seems to be less accessible for DNA interactions, while in DrEndoIII1 it seems to be more open. Analysis of the enzyme activities shows that DrEndoIII2 is most similar to the previously studied enzymes, while DrEndoIII1 seems to be more distant with a weaker activity towards substrate DNA containing either thymine glycol or an abasic site. DrEndoIII3 is the most distantly related enzyme and displays no detectable activity towards these substrates even though the suggested catalytic residues are conserved. Based on a comparative structural analysis, we suggest that the altered surface potential, shape of the substrate-binding pockets and specific amino acid substitutions close to the active site and in the DNA interacting loops may underlie the unexpected differences in activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Alniss, Hasan; Zamiri, Bita; Khalaj, Melisa; Pearson, Christopher E; Macgregor, Robert B
2018-01-22
An expansion of the hexanucleotide repeat (GGGGCC)n·(GGCCCC)n in the C9orf72 promoter has been shown to be the cause of Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). The C9orf72 repeat can form four-stranded structures; the cationic porphyrin (TMPyP4) binds and distorts these structures. Isothermal titration calorimetry (ITC), and circular dichroism (CD) were used to study the binding of TMPyP4 to the C-rich and G-rich DNA and RNA oligos containing the hexanucleotide repeat at pH 7.5 and 0.1 M K + . The CD spectra of G-rich DNA and RNA TMPyP4 complexes showed features of antiparallel and parallel G-quadruplexes, respectively. The shoulder at 260 nm in the CD spectrum becomes more intense upon formation of complexes between TMPyP4 and the C-rich DNA. The peak at 290 nm becomes more intense in the c-rich RNA molecules, suggesting induction of an i-motif structure. The ITC data showed that TMPyP4 binds at two independent sites for all DNA and RNA molecules. For DNA, the data are consistent with TMPyP4 stacking on the terminal tetrads and intercalation. For RNA, the thermodynamics of the two binding modes are consistent with groove binding and intercalation. In both cases, intercalation is the weaker binding mode. These findings are considered with respect to the structural differences of the folded DNA and RNA molecules and the energetics of the processes that drive site-specific recognition by TMPyP4; these data will be helpful in efforts to optimize the specificity and affinity of the binding of porphyrin-like molecules. Copyright © 2018 Elsevier Inc. All rights reserved.
Examining multi-component DNA-templated nanostructures as imaging agents
NASA Astrophysics Data System (ADS)
Jaganathan, Hamsa
2011-12-01
Magnetic resonance imaging (MRI) is the leading non-invasive tool for disease imaging and diagnosis. Although MRI exhibits high spatial resolution for anatomical features, the contrast resolution is low. Imaging agents serve as an aid to distinguish different types of tissues within images. Gadolinium chelates, which are considered first generation designs, can be toxic to health, while ultra-small, superparamagnetic nanoparticles (NPs) have low tissue-targeting efficiency and rapid bio-distribution, resulting to an inadequate detection of the MRI signal and enhancement of image contrast. In order to improve the utility of MRI agents, the challenge in composition and structure needs to be addressed. One-dimensional (1D), superparamagnetic nanostructures have been reported to enhance magnetic and in vivo properties and therefore has a potential to improve contrast enhancement in MRI images. In this dissertation, the structure of 1D, multi-component NP chains, scaffolded on DNA, were pre-clinically examined as potential MRI agents. First, research was focused on characterizing and understanding the mechanism of proton relaxation for DNA-templated NP chains using nuclear magnetic resonance (NMR) spectrometry. Proton relaxation and transverse relaxivity were higher in multi-component NP chains compared to disperse NPs, indicating the arrangement of NPs on a 1D structure improved proton relaxation sensitivity. Second, in vitro evaluation for potential issues in toxicity and contrast efficiency in tissue environments using a 3 Tesla clinical MRI scanner was performed. Cell uptake of DNA-templated NP chains was enhanced after encapsulating the nanostructure with layers of polyelectrolytes and targeting ligands. Compared to dispersed NPs, DNA-templated NP chains improved MRI contrast in both the epithelial basement membrane and colon cancer tumors scaffolds. The last part of the project was focused on developing a novel MRI agent that detects changes in DNA methylation levels. The findings from this dissertation suggest that the structural arrangement of NPs on DNA significantly influenced their function and utility as MRI agents.
Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study.
Vuletić, T; Dolanski Babić, S; Ivek, T; Grgicin, D; Tomić, S; Podgornik, R
2010-07-01
Dielectric spectroscopy is used to investigate fundamental length scales describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute aqueous solutions. In salt-free regime, the length scale of the relaxation mode detected in MHz range scales with HA concentration as c(HA)(-0.5) and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution. The same scaling was observed for the case of long, genomic DNA. Conversely, the length scale of the mode detected in kilohertz range also varies with HA concentration as c(HA)(-0.5) which differs from the case of DNA (c(DNA)(-0.25)). The observed behavior suggests that the relaxation in the kilohertz range reveals the de Gennes-Dobrynin renormalized Debye screening length, and not the average size of the chain, as the pertinent length scale. Similarly, with increasing added salt the electrostatic contribution to the HA persistence length is observed to scale as the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman electrostatic persistence length observed in the case of DNA. We argue that the observed features of the kilohertz range relaxation are due to much weaker electrostatic interactions that lead to the absence of Manning condensation as well as a rather high flexibility of HA as compared to DNA.
Structural basis of the 3′-end recognition of a leading strand in stalled replication forks by PriA
Sasaki, Kaori; Ose, Toyoyuki; Okamoto, Naoaki; Maenaka, Katsumi; Tanaka, Taku; Masai, Hisao; Saito, Mihoko; Shirai, Tsuyoshi; Kohda, Daisuke
2007-01-01
In eubacteria, PriA helicase detects the stalled DNA replication forks. This critical role of PriA is ascribed to its ability to bind to the 3′ end of a nascent leading DNA strand in the stalled replication forks. The crystal structures in complexes with oligonucleotides and the combination of fluorescence correlation spectroscopy and mutagenesis reveal that the N-terminal domain of PriA possesses a binding pocket for the 3′-terminal nucleotide residue of DNA. The interaction with the deoxyribose 3′-OH is essential for the 3′-terminal recognition. In contrast, the direct interaction with 3′-end nucleobase is unexpected, considering the same affinity for oligonucleotides carrying the four bases at the 3′ end. Thus, the N-terminal domain of PriA recognizes the 3′-end base in a base-non-selective manner, in addition to the deoxyribose and 5′-side phosphodiester group, of the 3′-terminal nucleotide to acquire both sufficient affinity and non-selectivity to find all of the stalled replication forks generated during DNA duplication. This unique feature is prerequisite for the proper positioning of the helicase domain of PriA on the unreplicated double-stranded DNA. PMID:17464287
Modeling Non-homologous End Joining
NASA Technical Reports Server (NTRS)
Li, Yongfeng
2013-01-01
Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several NHEJ proteins such as Ku, DNA-PKcs, XRCC4, Ligase IV and so on. Once DSBs are generated, Ku is first recruited to the DNA end, followed by other NHEJ proteins for DNA end processing and ligation. Because of the direct ligation of break ends without the need for a homologous template, NHEJ turns out to be an error-prone but efficient repair pathway. Some mechanisms have been proposed of how the efficiency of NHEJ repair is affected. The type of DNA damage is an important factor of NHEJ repair. For instance, the length of DNA fragment may determine the recruitment efficiency of NHEJ protein such as Ku [1], or the complexity of the DNA breaks [2] is accounted for the choice of NHEJ proteins and subpathway of NHEJ repair. On the other hand, the chromatin structure also plays a role of the accessibility of NHEJ protein to the DNA damage site. In this talk, some mathematical models of NHEJ, that consist of series of biochemical reactions complying with the laws of chemical reaction (e.g. mass action, etc.), will be introduced. By mathematical and numerical analysis and parameter estimation, the models are able to capture the qualitative biological features and show good agreement with experimental data. As conclusions, from the viewpoint of modeling, how the NHEJ proteins are recruited will be first discussed for connection between the classical sequential model [4] and recently proposed two-phase model [5]. Then how the NHEJ repair pathway is affected, by the length of DNA fragment [6], the complexity of DNA damage [7] and the chromatin structure [8], will be addressed
Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions
NASA Astrophysics Data System (ADS)
Kocman, Vojč; Plavec, Janez
2017-05-01
Here we describe AGCGA-quadruplexes, an unexpected addition to the well-known tetrahelical families, G-quadruplexes and i-motifs, that have been a focus of intense research due to their potential biological impact in G- and C-rich DNA regions, respectively. High-resolution structures determined by solution-state nuclear magnetic resonance (NMR) spectroscopy demonstrate that AGCGA-quadruplexes comprise four 5'-AGCGA-3' tracts and are stabilized by G-A and G-C base pairs forming GAGA- and GCGC-quartets, respectively. Residues in the core of the structure are connected with edge-type loops. Sequences of alternating 5'-AGCGA-3' and 5'-GGG-3' repeats could be expected to form G-quadruplexes, but are shown herein to form AGCGA-quadruplexes instead. Unique structural features of AGCGA-quadruplexes together with lower sensitivity to cation and pH variation imply their potential biological relevance in regulatory regions of genes responsible for basic cellular processes that are related to neurological disorders, cancer and abnormalities in bone and cartilage development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaoming; Gelinas, Amy D.; von Carlowitz, Ira
IL-1α is an essential cytokine that contributes to inflammatory responses and is implicated in various forms of pathogenesis and cancer. Here we report a naphthyl modified DNA aptamer that specifically binds IL-1α and inhibits its signaling pathway. By solving the crystal structure of the IL-1α/aptamer, we provide a high-resolution structure of this critical cytokine and we reveal its functional interaction interface with high-affinity ligands. The non-helical aptamer, which represents a highly compact nucleic acid structure, contains a wealth of new conformational features, including an unknown form of G-quadruplex. The IL-1α/aptamer interface is composed of unusual polar and hydrophobic elements, alongmore » with an elaborate hydrogen bonding network that is mediated by sodium ion. IL-1α uses the same interface to interact with both the aptamer and its cognate receptor IL-1RI, thereby suggesting a novel route to immunomodulatory therapeutics.« less
Analysis of the crystal structure of an active MCM hexamer.
Miller, Justin M; Arachea, Buenafe T; Epling, Leslie B; Enemark, Eric J
2014-09-29
In a previous Research article (Froelich et al., 2014), we suggested an MCM helicase activation mechanism, but were limited in discussing the ATPase domain because it was absent from the crystal structure. Here we present the crystal structure of a nearly full-length MCM hexamer that is helicase-active and thus has all features essential for unwinding DNA. The structure is a chimera of Sulfolobus solfataricus N-terminal domain and Pyrococcus furiosus ATPase domain. We discuss three major findings: 1) a novel conformation for the A-subdomain that could play a role in MCM regulation; 2) interaction of a universally conserved glutamine in the N-terminal Allosteric Communication Loop with the AAA+ domain helix-2-insert (h2i); and 3) a recessed binding pocket for the MCM ssDNA-binding motif influenced by the h2i. We suggest that during helicase activation, the h2i clamps down on the leading strand to facilitate strand retention and regulate ATP hydrolysis.
Fortin, Connor H; Schulze, Katharina V; Babbitt, Gregory A
2015-01-01
It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software for molecular evolutionary genetics analysis to visually compare the human Forkhead box/FOX protein evolution to its binding site evolution. We also compared the DNA binding signatures of human TP53 tumor suppressor determined by two different laboratory methods (SELEX and ChIP-seq). Further analysis of the entire yeast genome, center aligned at the start codon, also revealed a distinct sequence-independent 3 bp periodic pattern in information content, present only in coding region, and perhaps indicative of the non-random organization of the genetic code. TRX-LOGOS is useful in any situation in which important information content in DNA can be better visualized at the positions of phosphate linkages (i.e. dinucleotides) where the dynamic properties of the DNA backbone functions to facilitate DNA-protein interaction.
An overview on genome organization of marine organisms.
Costantini, Maria
2015-12-01
In this review we will concentrate on some general genome features of marine organisms and their evolution, ranging from vertebrate to invertebrates until unicellular organisms. Before genome sequencing, the ultracentrifugation in CsCl led to high resolution of mammalian DNA (without seeing at the sequence). The analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong in a small number of families characterized by different GC levels. The recent availability of a number of fully sequenced genomes allowed mapping very precisely the isochores, based on DNA sequences. Since isochores are tightly linked to biological properties such as gene density, replication timing and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function and evolution. This led the current level of knowledge and to further insights. Copyright © 2015. Published by Elsevier B.V.
Placing and shaping liposomes with reconfigurable DNA nanocages
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Yang, Yang; Pincet, Frederic; C. Llaguno, Marc; Lin, Chenxiang
2017-07-01
The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.
Placing and shaping liposomes with reconfigurable DNA nanocages.
Zhang, Zhao; Yang, Yang; Pincet, Frederic; Llaguno, Marc C; Lin, Chenxiang
2017-06-23
The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.
Bright luminescence from pure DNA-curcumin-based phosphors for bio hybrid light-emitting diodes
NASA Astrophysics Data System (ADS)
Reddy, M. Siva Pratap; Park, Chinho
2016-08-01
Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s-1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign.
Molecular dynamics simulations of polarizable DNA in crystal environment
NASA Astrophysics Data System (ADS)
Babin, Volodymyr; Baucom, Jason; Darden, Thomas A.; Sagui, Celeste
We have investigated the role of the electrostatic description and cell environment in molecular dynamics (MD) simulations of DNA. Multiple unrestrained MD simulations of the DNA duplex d(CCAACGTTGG)2 have been carried out using two different force fields: a traditional description based on atomic point charges and a polarizable force field. For the time scales probed, and given the ?right? distribution of divalent ions, the latter performs better than the nonpolarizable force field. In particular, by imposing the experimental unit cell environment, an initial configuration with ideal B-DNA duplexes in the unit cell acquires sequence-dependent features that very closely resemble the crystallographic ones. Simultaneously, the all-atom root-mean-square coordinates deviation (RMSD) with respect to the crystallographic structure is seen to decay. At later times, the polarizable force field is able to maintain this lower RMSD, while the nonpolarizable force field starts to drift away.
Plasmid DNA Delivery: Nanotopography Matters.
Song, Hao; Yu, Meihua; Lu, Yao; Gu, Zhengying; Yang, Yannan; Zhang, Min; Fu, Jianye; Yu, Chengzhong
2017-12-20
Plasmid DNA molecules with unique loop structures have widespread bioapplications, in many cases relying heavily on delivery vehicles to introduce them into cells and achieve their functions. Herein, we demonstrate that control over delicate nanotopography of silica nanoparticles as plasmid DNA vectors has significant impact on the transfection efficacy. For silica nanoparticles with rambutan-, raspberry-, and flower-like morphologies composed of spike-, hemisphere-, and bowl-type subunit nanotopographies, respectively, the rambutan-like nanoparticles with spiky surfaces demonstrate the highest plasmid DNA binding capability and transfection efficacy of 88%, higher than those reported for silica-based nanovectors. Moreover, it is shown that the surface spikes of rambutan nanoparticles provide a continuous open space to bind DNA chains via multivalent interactions and protect the gene molecules sheltered in the spiky layer against nuclease degradation, exhibiting no significant transfection decay. This unique protection feature is in great contrast to a commercial transfection agent with similar transfection performance but poor protection capability against enzymatic cleavage. Our study provides new understandings in the rational design of nonviral vectors for efficient gene delivery.
An effective model of DNA like helicoidal structure: with length fluctuation nonlinearity
NASA Astrophysics Data System (ADS)
Tseytlin, Y. M.
2011-03-01
One of the natural helicoidal nanostructure, which thermomechanical features are studied carefully with the help of different mechanical models, is a DNA cell / molecule. Our study proves that the experimentally determined nonlinear fluctuations of the molecular length of DNA can be better understood by modeling the molecule as a helicoidal pretwisted nanostrip sensor with nonlinear function. The calculations presented here are in good agreement with the experimental data within 10%. Other used by many researchers mechanical models such as an elastic rod, wormlike chain (WLC), accordion bellows, or an elastic core wrapped with rigid wires do not show the possible variance nonlinearity of thermomechanical DNA molecular length fluctuations. We have found that the nonlinear variance of the length fluctuations is an intrinsic property of the micro-nano-sensors with helicoidal shape. This model allows us to estimate the persistence length and twist-stretch coupling of a DNA molecule as well. It also shows the molecule's overwinding possibility at initial stretching with correct numerical representation.
DNA Breaks and End Resection Measured Genome-wide by End Sequencing.
Canela, Andres; Sridharan, Sriram; Sciascia, Nicholas; Tubbs, Anthony; Meltzer, Paul; Sleckman, Barry P; Nussenzweig, André
2016-09-01
DNA double-strand breaks (DSBs) arise during physiological transcription, DNA replication, and antigen receptor diversification. Mistargeting or misprocessing of DSBs can result in pathological structural variation and mutation. Here we describe a sensitive method (END-seq) to monitor DNA end resection and DSBs genome-wide at base-pair resolution in vivo. We utilized END-seq to determine the frequency and spectrum of restriction-enzyme-, zinc-finger-nuclease-, and RAG-induced DSBs. Beyond sequence preference, chromatin features dictate the repertoire of these genome-modifying enzymes. END-seq can detect at least one DSB per cell among 10,000 cells not harboring DSBs, and we estimate that up to one out of 60 cells contains off-target RAG cleavage. In addition to site-specific cleavage, we detect DSBs distributed over extended regions during immunoglobulin class-switch recombination. Thus, END-seq provides a snapshot of DNA ends genome-wide, which can be utilized for understanding genome-editing specificities and the influence of chromatin on DSB pathway choice. Published by Elsevier Inc.
DNA melting profiles from a matrix method.
Poland, Douglas
2004-02-05
In this article we give a new method for the calculation of DNA melting profiles. Based on the matrix formulation of the DNA partition function, the method relies for its efficiency on the fact that the required matrices are very sparse, essentially reducing matrix multiplication to vector multiplication and thus making the computer time required to treat a DNA molecule containing N base pairs proportional to N(2). A key ingredient in the method is the result that multiplication by the inverse matrix can also be reduced to vector multiplication. The task of calculating the melting profile for the entire genome is further reduced by treating regions of the molecule between helix-plateaus, thus breaking the molecule up into independent parts that can each be treated individually. The method is easily modified to incorporate changes in the assignment of statistical weights to the different structural features of DNA. We illustrate the method using the genome of Haemophilus influenzae. Copyright 2003 Wiley Periodicals, Inc.
Zheng, Ke-wei; Xiao, Shan; Liu, Jia-quan; Zhang, Jia-yu; Hao, Yu-hua; Tan, Zheng
2013-05-01
G-quadruplex formation in genomic DNA is considered to regulate transcription. Previous investigations almost exclusively focused on intramolecular G-quadruplexes formed by DNA carrying four or more G-tracts, and structure formation has rarely been studied in physiologically relevant processes. Here, we report an almost entirely neglected, but actually much more prevalent form of G-quadruplexes, DNA:RNA hybrid G-quadruplexes (HQ) that forms in transcription. HQ formation requires as few as two G-tracts instead of four on a non-template DNA strand. Potential HQ sequences (PHQS) are present in >97% of human genes, with an average of 73 PHQSs per gene. HQ modulates transcription under both in vitro and in vivo conditions. Transcriptomal analysis of human tissues implies that maximal gene expression may be limited by the number of PHQS in genes. These features suggest that HQs may play fundamental roles in transcription regulation and other transcription-mediated processes.
Arabidopsis thaliana telomeres exhibit euchromatic features
Vaquero-Sedas, María I.; Gámez-Arjona, Francisco M.; Vega-Palas, Miguel A.
2011-01-01
Telomere function is influenced by chromatin structure and organization, which usually involves epigenetic modifications. We describe here the chromatin structure of Arabidopsis thaliana telomeres. Based on the study of six different epigenetic marks we show that Arabidopsis telomeres exhibit euchromatic features. In contrast, subtelomeric regions and telomeric sequences present at interstitial chromosomal loci are heterochromatic. Histone methyltransferases and the chromatin remodeling protein DDM1 control subtelomeric heterochromatin formation. Whereas histone methyltransferases are required for histone H3K92Me and non-CpG DNA methylation, DDM1 directs CpG methylation but not H3K92Me or non-CpG methylation. These results argue that both kinds of proteins participate in different pathways to reinforce subtelomeric heterochromatin formation. PMID:21071395
Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes
Timinskas, Kęstutis; Balvočiūtė, Monika; Timinskas, Albertas; Venclovas, Česlovas
2014-01-01
The analysis of ∼2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an ‘impaired’ version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set. PMID:24106089
Target Site Recognition by a Diversity-Generating Retroelement
Guo, Huatao; Tse, Longping V.; Nieh, Angela W.; Czornyj, Elizabeth; Williams, Steven; Oukil, Sabrina; Liu, Vincent B.; Miller, Jeff F.
2011-01-01
Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification. PMID:22194701
RPA homologs and ssDNA processing during meiotic recombination.
Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle
2016-06-01
Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.
Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V
2006-10-15
The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.
Structural Basis for Eukaryotic Transcription-Coupled DNA Repair Initiation
Xu, Jun; Lahiri, Indrajit; Wang, Wei; Wier, Adam; Cianfrocco, Michael A.; Chong, Jenny; Hare, Alissa A.; Dervan, Peter B.; DiMaio, Frank; Leschziner, Andres E.; Wang, Dong
2017-01-01
Eukaryotic transcription-coupled repair (TCR), or transcription-coupled nucleotide excision repair (TC-NER), is an important and well-conserved sub-pathway of nucleotide excision repair (NER) that preferentially removes DNA lesions from the template strand blocking RNA polymerase II (Pol II) translocation1,2. Cockayne syndrome group B protein in humans (CSB, or ERCC6), or its yeast orthologs (Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe), is among the first proteins to be recruited to the lesion-arrested Pol II during initiation of eukaryotic TCR1,3–10. Mutations in CSB are associated with Cockayne syndrome, an autosomal-recessive neurologic disorder characterized by progeriod features, growth failure, and photosensitivity1. The molecular mechanism of eukaryotic TCR initiation remains elusive, with several long-standing questions unanswered: How do cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II? How does CSB interact with the arrested Pol II complex? What is the role of CSB in TCR initiation? The lack of structures of CSB or the Pol II-CSB complex have hindered our ability to answer those questions. Here we report the first structure of S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy (cryo-EM). The structure reveals that Rad26 binds to the DNA upstream of Pol II where it dramatically alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes forward movement of Pol II and elucidate key roles for Rad26/CSB in both TCR and transcription elongation. PMID:29168508
Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.
Wagner, K; Keyes, E; Kephart, T W; Edwards, G
1997-07-01
We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation.
Genome structure of bdelloid rotifers: shaped by asexuality or desiccation?
Gladyshev, Eugene A; Arkhipova, Irina R
2010-01-01
Bdelloid rotifers are microscopic invertebrate animals best known for their ancient asexuality and the ability to survive desiccation at any life stage. Both factors are expected to have a profound influence on their genome structure. Recent molecular studies demonstrated that, although the gene-rich regions of bdelloid genomes are organized as colinear pairs of closely related sequences and depleted in repetitive DNA, subtelomeric regions harbor diverse transposable elements and horizontally acquired genes of foreign origin. Although asexuality is expected to result in depletion of deleterious transposons, only desiccation appears to have the power to produce all the uncovered genomic peculiarities. Repair of desiccation-induced DNA damage would require the presence of a homologous template, maintaining colinear pairs in gene-rich regions and selecting against insertion of repetitive DNA that might cause chromosomal rearrangements. Desiccation may also induce a transient state of competence in recovering animals, allowing them to acquire environmental DNA. Even if bdelloids engage in rare or obscure forms of sexual reproduction, all these features could still be present. The relative contribution of asexuality and desiccation to genome organization may be clarified by analyzing whole-genome sequences and comparing foreign gene and transposon content in species which lost the ability to survive desiccation.
Smith, Owen K.; Aladjem, Mirit I.
2014-01-01
The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome’s three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication. PMID:24905010
Wavelet analysis of frequency chaos game signal: a time-frequency signature of the C. elegans DNA.
Messaoudi, Imen; Oueslati, Afef Elloumi; Lachiri, Zied
2014-12-01
Challenging tasks are encountered in the field of bioinformatics. The choice of the genomic sequence's mapping technique is one the most fastidious tasks. It shows that a judicious choice would serve in examining periodic patterns distribution that concord with the underlying structure of genomes. Despite that, searching for a coding technique that can highlight all the information contained in the DNA has not yet attracted the attention it deserves. In this paper, we propose a new mapping technique based on the chaos game theory that we call the frequency chaos game signal (FCGS). The particularity of the FCGS coding resides in exploiting the statistical properties of the genomic sequence itself. This may reflect important structural and organizational features of DNA. To prove the usefulness of the FCGS approach in the detection of different local periodic patterns, we use the wavelet analysis because it provides access to information that can be obscured by other time-frequency methods such as the Fourier analysis. Thus, we apply the continuous wavelet transform (CWT) with the complex Morlet wavelet as a mother wavelet function. Scalograms that relate to the organism Caenorhabditis elegans (C. elegans) exhibit a multitude of periodic organization of specific DNA sequences.
Milhausen, M; Gill, P R; Parker, G; Agabian, N
1982-01-01
Immunoprecipitation of Caulobacter crescentus polyribosomes with antiflagellin antibody provided RNA for the synthesis of cDNA probes that were used to identify three specific EcoRI restriction fragments (6.8, 10, and 22 kilobases) in genomic digests of Caulobacter DNA. The RNA was present only in polyribosomes isolated from a time interval in the Caulobacter cell cycle that was coincident with flagellin polypeptide synthesis. The structural gene for Mr 27,500 flagellin polypeptide was assigned to a region of the 10-kilobase EcoRI restriction fragment by DNA sequence analysis. Analysis of mutants defective in motility further established a correlation between the Mr 27,500 flagellin gene and the flaE gene locus [Johnson, R. C. & Ely, B. (1979) J. Bacteriol. 137, 627-634]. The other EcoRI fragments that hybridize with the immunoprecipitated polyribosome-derived cDNA probe are also temporally regulated and have features that suggest they encode other polypeptides associated with the flagellum. Modifications were required to adapt the procedure of immunoprecipitation of polyribosomes for use with Caulobacter and should be applicable to the production of specific structural gene probes from other prokaryotic systems. Images PMID:6294658
iDBPs: a web server for the identification of DNA binding proteins.
Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2010-03-01
The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. http://idbps.tau.ac.il/
Lopes, C M; Ximenes, S S F; Gava, A; de Freitas, T R O
2013-01-01
Identifying factors and the extent of their roles in the differentiation of populations is of great importance for understanding the evolutionary process in which a species is involved. Ctenomys minutus is a highly karyotype–polymorphic subterranean rodent, with diploid numbers ranging from 42 to 50 and autosomal arm numbers (ANs) ranging from 68 to 80, comprising a total of 45 karyotypes described so far. This species inhabits the southern Brazilian coastal plain, which has a complex geological history, with several potential geographical barriers acting on different time scales. We assessed the geographical genetic structure of C. minutus, examining 340 individuals over the entire distributional range and using information from chromosomal rearrangements, mitochondrial DNA (mtDNA) sequences and 14 microsatellite loci. The mtDNA results revealed seven main haplogroups, with the most recent common ancestors dating from the Pleistocene, whereas clustering methods defined 12 populations. Some boundaries of mtDNA haplogroups and population clusters can be associated with potential geographical barriers to gene flow. The isolation-by-distance pattern also has an important role in fine-scale genetic differentiation, which is strengthened by the narrowness of the coastal plain and by common features of subterranean rodents (that is, small fragmented populations and low dispersal rates), which limit gene flow among populations. A step-by-step mechanism of chromosomal evolution can be suggested for this species, mainly associated with the metapopulation structure, genetic drift and the geographical features of the southern Brazilian coastal plain. However, chromosomal variations have no or very little role in the diversification of C. minutus populations. PMID:23759727
Neutrophil extracellular trap formation and extracellular DNA in sputum of stable COPD patients.
Pedersen, Frauke; Marwitz, Sebastian; Holz, Olaf; Kirsten, Anne; Bahmer, Thomas; Waschki, Benjamin; Magnussen, Helgo; Rabe, Klaus F; Goldmann, Torsten; Uddin, Mohib; Watz, Henrik
2015-10-01
Chronic obstructive pulmonary disease (COPD) is characterized by neutrophilic airway inflammation. Neutrophil extracellular trap (NET) formation - a meshwork of neutrophil DNA components and neutrophil enzymes are involved in innate immunity and inflammation. Little is known about the presence of these structures in induced sputum from stable COPD patients. Induced sputum samples of 23 COPD patients and 10 healthy controls were collected. Sputum cells were harvested, cultivated and stained for NET components. Extracellular DNA was quantified using a NanoDrop 2000 spectrophotometer. NET formation was markedly upregulated in COPD sputum compared with healthy controls, irrespective of sputum purulence or smoking status. NET formation was associated with significantly higher concentration of extracellular DNA in sputum supernatant (484 ng/μl in COPD versus 268 ng/μl in controls, p = 0.013). Log-transformed extracellular DNA correlated with log-transformed absolute neutrophil numbers in sputum (r = 0.60; p < 0.001) and airway obstruction (r = -0.43; p = 0.013). NET formation associated with higher concentrations of extracellular DNA may be a pathobiological feature of COPD-derived sputum neutrophils. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cryo-EM of dynamic protein complexes in eukaryotic DNA replication.
Sun, Jingchuan; Yuan, Zuanning; Bai, Lin; Li, Huilin
2017-01-01
DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems. © 2016 The Protein Society.
Length Variation in Mitochondrial DNA of the Minnow Cyprinella Spiloptera
Broughton, R. E.; Dowling, T. E.
1994-01-01
Length differences in animal mitochondrial DNA (mtDNA) are common, frequently due to variation in copy number of direct tandem duplications. While such duplications appear to form without great difficulty in some taxonomic groups, they appear to be relatively short-lived, as typical duplication products are geographically restricted within species and infrequently shared among species. To better understand such length variation, we have studied a tandem and direct duplication of approximately 260 bp in the control region of the cyprinid fish, Cyprinella spiloptera. Restriction site analysis of 38 individuals was used to characterize population structure and the distribution of variation in repeat copy number. This revealed two length variants, including individuals with two or three copies of the repeat, and little geographic structure among populations. No standard length (single copy) genomes were found and heteroplasmy, a common feature of length variation in other taxa, was absent. Nucleotide sequence of tandem duplications and flanking regions localized duplication junctions in the phenylalanine tRNA and near the origin of replication. The locations of these junctions and the stability of folded repeat copies support the hypothesized importance of secondary structures in models of duplication formation. PMID:8001785
HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.
Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar
2017-01-01
DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.
Scanning the human genome at kilobase resolution.
Chen, Jun; Kim, Yeong C; Jung, Yong-Chul; Xuan, Zhenyu; Dworkin, Geoff; Zhang, Yanming; Zhang, Michael Q; Wang, San Ming
2008-05-01
Normal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure. The basic features of DGS include (1) use of high-frequent restriction enzymes to fractionate the genome into small fragments; (2) collection of two tags from two ends of a given DNA fragment to form a ditag to represent the fragment; (3) application of the 454 sequencing system to reach a comprehensive ditag sequence collection; (4) determination of the genome origin of ditags by mapping to reference ditags from known genome sequences; (5) use of ditag sequences directly as the sense and antisense PCR primers to amplify the original DNA fragment. To study the relationship between ditags and genome structure, we performed a computational study by using the human genome reference sequences as a model, and analyzed the ditags experimentally collected from the well-characterized normal human DNA GM15510 and the leukemic human DNA of Kasumi-1 cells. Our studies show that DGS provides a kilobase resolution for studying genome structure with high specificity and high genome coverage. DGS can be applied to validate genome assembly, to compare genome similarity and variation in normal populations, and to identify genomic abnormality including insertion, inversion, deletion, translocation, and amplification in pathological genomes such as cancer genomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezghani, Najla; Mnif, Mouna; Kacem, Maha
2011-04-22
Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisianmore » girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.« less
Nina, Mafalda; Fonné-Pfister, Raymonde; Beaudegnies, Renaud; Chekatt, Habiba; Jung, Pierre M J; Murphy-Kessabi, Fiona; De Mesmaeker, Alain; Wendeborn, Sebastian
2005-04-27
Thermodynamic and structural properties of a chemically modified DNA-RNA hybrid in which a phosphodiester linkage is replaced by a neutral amide-3 linkage (3'-CH(2)-CONH-5') were investigated using UV melting experiments, molecular dynamics simulations in explicit water, and continuum solvent models. van't Hoff analysis of the experimental UV melting curves suggests that the significant increase of the thermodynamic stability of a 15-mer DNA-RNA with seven alternated amide-3 modifications (+11 degrees C) is mainly due to an increased binding enthalpy. To further evaluate the origin in the observed affinities differences, the electrostatic contribution to the binding free energy was calculated by solving the Poisson-Boltzmann equation numerically. The nonelectrostatic contribution was estimated as the product of a hydrophobic surface tension coefficient and the surface area that is buried upon double strand formation. Structures were taken from 10 ns molecular dynamics simulations computed in a consistent fashion using explicit solvent, counterions, and the particle-mesh Ewald procedure. The present preliminary thermodynamic study suggests that the favorable binding free energy of the amide-3 DNA single strand to the complementary RNA is equally driven by electrostatic and nonpolar contributions to the binding compared to their natural analogues. In addition, molecular dynamics simulations in explicit water were performed on an amide-3 DNA single strand and the corresponding natural DNA. Results from the conformations cluster analysis of the simulated amide-3 DNA single strand ensembles suggest that the 25% of the population sampled within 10 ns has a pre-organized conformation where the sugar C3' endo pucker is favored at the 3'-flanking nucleotides. These structural and thermodynamic features contribute to the understanding of the observed increased affinities of the amide-3 DNA-RNA hybrids at the microscopic level.
Transcriptional control by G-quadruplexes: In vivo roles and perspectives for specific intervention
Armas, Pablo; David, Aldana; Calcaterra, Nora B.
2017-01-01
ABSTRACT G-quadruplexes are non-canonical DNA secondary structures involved in several genomic and molecular processes. Here, we summarize the main G-quadruplex features and evidences proving the in vivo role on the transcriptional regulation of genes required for zebrafish embryonic development. We also discuss alternative strategies for specifically interfering G-quadruplex in vivo. PMID:27696937
USDA-ARS?s Scientific Manuscript database
Transposable elements (TEs) are mobile DNA regions that alter host genome structure and gene expression. A novel 588 bp non-autonomous high copy number TE in the Ostrinia nubilalis genome has features in common with miniature inverted-repeat transposable elements (MITEs): high A+T content (62.3%),...
The structure of (CENP-A-H4) 2 reveals physical features that mark centromeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekulic, Nikolina; Bassett, Emily A; Rogers, Danielle J
2010-09-20
Centromeres are specified epigenetically, and the histone H3 variant CENP-A is assembled into the chromatin of all active centromeres. Divergence from H3 raises the possibility that CENP-A generates unique chromatin features to mark physically centromere location. Here we report the crystal structure of a subnucleosomal heterotetramer, human (CENP-A-H4) 2, that reveals three distinguishing properties encoded by the residues that comprise the CENP-A targeting domain (CATD; ref. 2): (1) a CENP-A-CENP-A interface that is substantially rotated relative to the H3-H3 interface; (2) a protruding loop L1 of the opposite charge as that on H3; and (3) strong hydrophobic contacts that rigidifymore » the CENP-A-H4 interface. Residues involved in the CENP-A-CENP-A rotation are required for efficient incorporation into centromeric chromatin, indicating specificity for an unconventional nucleosome shape. DNA topological analysis indicates that CENP-A-containing nucleosomes are octameric with conventional left-handed DNA wrapping, in contrast to other recent proposals. Our results indicate that CENP-A marks centromere location by restructuring the nucleosome from within its folded histone core.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.
2015-02-01
The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class ofmore » controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.« less
Fu, Shizhe; Zhang, Xueqing; Xie, Yuzhe; Wu, Jie; Ju, Huangxian
2017-07-06
An efficient enzyme-powered micromotor device was fabricated by assembling multiple layers of catalase on the inner surface of a poly(3,4-ethylenedioxythiophene and sodium 4-styrenesulfonate)/Au microtube (PEDOT-PSS/Au). The catalase assembly was achieved by programmed DNA hybridization, which was performed by immobilizing a designed sandwich DNA structure as the sensing unit on the PEDOT-PSS/Au, and then alternately hybridizing with two assisting DNA to bind the enzyme for efficient motor motion. The micromotor device showed unique features of good reproducibility, stability and motion performance. Under optimal conditions, it showed a speed of 420 μm s -1 in 2% H 2 O 2 and even 51 μm s -1 in 0.25% H 2 O 2 . In the presence of target DNA, the sensing unit hybridized with target DNA to release the multi-layer DNA as well as the multi-catalase, resulting in a decrease of the motion speed. By using the speed as a signal, the micromotor device could detect DNA from 10 nM to 1 μM. The proposed micromotor device along with the cyclic alternate DNA hybridization assembly technique provided a new path to fabricate efficient and versatile micromotors, which would be an exceptional tool for rapid and simple detection of biomolecules.
Nakamura, Kenta; Katayama, Tsutomu
2010-04-01
Escherichia coli ATP-DnaA initiates chromosomal replication. For preventing extra-initiations, a complex of ADP-Hda and the DNA-loaded replicase clamp promotes DnaA-ATP hydrolysis, yielding inactive ADP-DnaA. However, the Hda-DnaA interaction mode remains unclear except that the Hda Box VII Arg finger (Arg-153) and DnaA sensor II Arg-334 within each AAA(+) domain are crucial for the DnaA-ATP hydrolysis. Here, we demonstrate that direct and functional interaction of ADP-Hda with DnaA requires the Hda residues Ser-152, Phe-118 and Asn-122 as well as Hda Arg-153 and DnaA Arg-334. Structural analyses suggest intermolecular interactions between Hda Ser-152 and DnaA Arg-334 and between Hda Phe-118 and the DnaA Walker B motif region, in addition to an intramolecular interaction between Hda Asn-122 and Arg-153. These interactions likely sustain a specific association of ADP-Hda and DnaA, promoting DnaA-ATP hydrolysis. Consistently, ATP-DnaA and ADP-DnaA interact with the ADP-Hda-DNA-clamp complex with similar affinities. Hda Phe-118 and Asn-122 are contained in the Box VI region, and their hydrophobic and electrostatic features are basically conserved in the corresponding residues of other AAA(+) proteins, suggesting a conserved role for Box VI. These findings indicate novel interaction mechanisms for Hda-DnaA as well as a potentially fundamental mechanism in AAA(+) protein interactions.
Molecular threading and tunable molecular recognition on DNA origami nanostructures.
Wu, Na; Czajkowsky, Daniel M; Zhang, Jinjin; Qu, Jianxun; Ye, Ming; Zeng, Dongdong; Zhou, Xingfei; Hu, Jun; Shao, Zhifeng; Li, Bin; Fan, Chunhai
2013-08-21
The DNA origami technology holds great promise for the assembly of nanoscopic technological devices and studies of biochemical reactions at the single-molecule level. For these, it is essential to establish well controlled attachment of functional materials to predefined sites on the DNA origami nanostructures for reliable measurements and versatile applications. However, the two-sided nature of the origami scaffold has shown limitations in this regard. We hypothesized that holes of the commonly used two-dimensional DNA origami designs are large enough for the passage of single-stranded (ss)-DNA. Sufficiently long ssDNA initially located on one side of the origami should thus be able to "thread" to the other side through the holes in the origami sheet. By using an origami sheet attached with patterned biotinylated ssDNA spacers and monitoring streptavidin binding with atomic force microscopic (AFM) imaging, we provide unambiguous evidence that the biotin ligands positioned on one side have indeed threaded through to the other side. Our finding reveals a previously overlooked critical design feature that should provide new interpretations to previous experiments and new opportunities for the construction of origami structures with new functional capabilities.
Hysteresis in DNA compaction by Dps is described by an Ising model
Vtyurina, Natalia N.; Dulin, David; Docter, Margreet W.; Meyer, Anne S.; Dekker, Nynke H.; Abbondanzieri, Elio A.
2016-01-01
In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps–DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps–DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states. PMID:27091987
Kouprina, Natalay; Samoshkin, Alexander; Erliandri, Indri; Nakano, Megumi; Lee, Hee-Sheung; Fu, Haiging; Iida, Yuichi; Aladjem, Mirit; Oshimura, Mitsuo; Masumoto, Hiroshi; Earnshaw, William C.; Larionov, Vladimir
2012-01-01
Human artificial chromosomes (HACs) represent a novel promising episomal system for functional genomics, gene therapy and synthetic biology. HACs are engineered from natural and synthetic alphoid DNA arrays upon transfection into human cells. The use of HACs for gene expression studies requires the knowledge of their structural organization. However, none of de novo HACs constructed so far has been physically mapped in detail. Recently we constructed a synthetic alphoidtetO-HAC that was successfully used for expression of full-length genes to correct genetic deficiencies in human cells. The HAC can be easily eliminated from cell populations by inactivation of its conditional kinetochore. This unique feature provides a control for phenotypic changes attributed to expression of HAC-encoded genes. This work describes organization of a megabase-size synthetic alphoid DNA array in the alphoidtetO-HAC that has been formed from a ~50 kb synthetic alphoidtetO-construct. Our analysis showed that this array represents a 1.1 Mb continuous sequence assembled from multiple copies of input DNA, a significant part of which was rearranged before assembling. The tandem and inverted alphoid DNA repeats in the HAC range in size from 25 to 150 kb. In addition, we demonstrated that the structure and functional domains of the HAC remains unchanged after several rounds of its transfer into different host cells. The knowledge of the alphoidtetO-HAC structure provides a tool to control HAC integrity during different manipulations. Our results also shed light on a mechanism for de novo HAC formation in human cells. PMID:23411994
Tuma Sabah, Jinan; Zulkifli, Razauden Mohamed; Shahir, Shafinaz; Ahmed, Farediah; Abdul Kadir, Mohammed Rafiq; Zakaria, Zarita
2018-05-15
Distinctive bioactivities possessed by luteolin (3', 4', 5, 7-tetrahydroxy-flavone) are advantageous for sundry practical applications. This paper reports the in vitro selection and characterization of single stranded-DNA (ssDNA) aptamers, specific for luteolin (LUT). 76-mer library containing 1015 randomized ssDNA were screened via systematic evolution of ligands by exponential enrichment (SELEX). The recovered ssDNA pool from the 8th round was amplified with unlabeled primers and cloned into PSTBlue-1 vector prior to sequencing. 22 of LUT-binding aptamer variants were further classified into one of the seven groups based on their N40 random sequence regions, wherein one representative from each group was characterized. The dissociation constant of aptamers designated as LUT#28, LUT#20 and LUT#3 was discerned to be 107, 214 and 109 nM, respectively with high binding affinity towards LUT. Prediction analysis of the secondary structure suggested discrete features with typical loop and stem motifs. Furthermore, LUT#3 displayed higher specificity with insignificant binding toward kaempferol and quercetin despite its structural and functional similarity compared to LUT#28 and LUT#20. Further LUT#3 can detect free luteolin within 0.2-1 mM in solution. It was suggested that LUT#3 aptamer were the most suitable for LUT recognition tool at laboratory scale based on the condition tested. Copyright © 2018 Elsevier Inc. All rights reserved.
Pavlov, Nikolai A.; Cherny, Dmitry I.; Nazimov, Igor V.; Slesarev, Alexei I.; Subramaniam, Vinod
2002-01-01
Three novel DNA-binding proteins with apparent molecular masses of 7, 10 and 30 kDa have been isolated from the hyperthermophilic methanogen Methanopyrus kandleri. The proteins were identified using a blot overlay assay that was modified to emulate the high ionic strength intracellular environment of M.kandleri proteins. A 7 kDa protein, named 7kMk, was cloned and expressed in Escherichia coli. As indicated by CD spectroscopy and computer-assisted structure prediction methods, 7kMk is a substantially α-helical protein possibly containing a short N-terminal β-strand. According to analytical gel filtration chromatography and chemical crosslinking, 7kMk exists as a stable dimer, susceptible to further oligomerization. Electron microscopy showed that 7kMk bends DNA and also leads to the formation of loop-like structures of ∼43.5 ± 3.5 nm (136 ± 11 bp for B-form DNA) circumference. A topoisomerase relaxation assay demonstrated that looped DNA is negatively supercoiled under physiologically relevant conditions (high salt and temperature). A BLAST search did not yield 7kMk homologs at the amino acid sequence level, but based on a multiple alignment with ribbon–helix–helix (RHH) transcriptional regulators, fold features and self-association properties of 7kMk we hypothesize that it could be related to RHH proteins. PMID:11809880
Hu, Pan; Yang, Bin
2016-01-15
Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays. Copyright © 2015 Elsevier B.V. All rights reserved.
DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.
MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M
2015-09-14
The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length <100 bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (<1 ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward, and may prompt the chemistry community to revisit the synthesis of more complex and diverse libraries.
[Genetic Structure of Urban Population of the Common Hamster (Cricetus cricetus)].
Feoktistova, N Yu; Meschersky, I G; Surov, A V; Bogomolov, P L; Tovpinetz, N N; Poplavskaya, N S
2016-02-01
Over the past half-century, the common hamster (Cricetus cricetus), along with range-wide decline of natural populations, has actively populated the cities. The study of the genetic structure of urban populations of common hamster may shed light on features of the habitation of this species in urban landscapes. This article is focused on the genetic structure of common hamster populations in Simferopol (Crimea), one of the largest known urban populations of this species. On the basis of the analysis of nucleotide sequences of the cytochrome b gene and mtDNA control region, and the allelic composition of ten microsatellite loci of nDNA, we revealed that, despite the fact that some individuals can move throughout the city at considerable distances, the entire population of the city is represented by separate demes confined to different areas. These demes are characterized by a high degree of the genetic isolation and reduced genetic diversity compared to that found for the city as a whole.
DNA Polymorphism: A Comparison of Force Fields for Nucleic Acids
Reddy, Swarnalatha Y.; Leclerc, Fabrice; Karplus, Martin
2003-01-01
The improvements of the force fields and the more accurate treatment of long-range interactions are providing more reliable molecular dynamics simulations of nucleic acids. The abilities of certain nucleic acid force fields to represent the structural and conformational properties of nucleic acids in solution are compared. The force fields are AMBER 4.1, BMS, CHARMM22, and CHARMM27; the comparison of the latter two is the primary focus of this paper. The performance of each force field is evaluated first on its ability to reproduce the B-DNA decamer d(CGATTAATCG)2 in solution with simulations in which the long-range electrostatics were treated by the particle mesh Ewald method; the crystal structure determined by Quintana et al. (1992) is used as the starting point for all simulations. A detailed analysis of the structural and solvation properties shows how well the different force fields can reproduce sequence-specific features. The results are compared with data from experimental and previous theoretical studies. PMID:12609851
Neuhaus, H; Link, G
1987-01-01
The trnK gene endocing the tRNALys(UUU) has been located on mustard (Sinapis alba) chloroplast DNA, 263 bp upstream of the psbA gene on the same strand. The nucleotide sequence of the trnK gene and its flanking regions as well as the putative transcription start and termination sites are shown. The 5' end of the transcript lies 121 bp upstream of the 5' tRNA coding region and is preceded by procaryotic-type "-10" and "-35" sequence elements, while the 3' end maps 2.77 kb downstream to a DNA region with possible stemloop secondary structure. The anticodon loop of the tRNALys is interrupted by a 2,574 bp intron containing a long open reading frame, which codes for 524 amino acids. Based on conserved stem and loop structures, this intron has characteristic features of a class II intron. A region near the carboxyl terminus of the derived polypeptide appears structurally related to maturases.
Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures
Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao
2013-01-01
Conspectus Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades by organizing the position of the components using DNA nanoscaffolds in vitro, or by utilizing RNA matrices in vivo. These structures display enhanced efficiency compared to the corresponding unstructured enzyme mixtures. Such systems are designed to mimic cellular function, where substrate diffusion between enzymes is facilitated and reactions are catalyzed with high efficiency and specificity. In addition, researchers have assembled multiple choromophores into arrays using a DNA nanoscaffold that optimizes the relative distance between the dyes and their spatial organization. The resulting artificial light harvesting system exhibits efficient cascading energy transfers. Finally, DNA nanostructures have been used as assembly templates to construct nanodevices that execute rationally-designed behaviors, including cargo loading, transportation and route control. PMID:22642503
Sequence-dependent DNA deformability studied using molecular dynamics simulations.
Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori
2007-01-01
Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.
Molecular architecture of classical cytological landmarks: Centromeres and telomeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyne, J.
1994-11-01
Both the human telomere repeat and the pericentromeric repeat sequence (GGAAT)n were isolated based on evolutionary conservation. Their isolation was based on the premise that chromosomal features as structurally and functionally important as telomeres and centromeres should be highly conserved. Both sequences were isolated by high stringency screening of a human repetitive DNA library with rodent repetitive DNA. The pHuR library (plasmid Human Repeat) used for this project was enriched for repetitive DNA by using a modification of the standard DNA library preparation method. Usually DNA for a library is cut with restriction enzymes, packaged, infected, and the library ismore » screened. A problem with this approach is that many tandem repeats don`t have any (or many) common restriction sites. Therefore, many of the repeat sequences will not be represented in the library because they are not restricted to a viable length for the vector used. To prepare the pHuR library, human DNA was mechanically sheared to a small size. These relatively short DNA fragments were denatured and then renatured to C{sub o}t 50. Theoretically only repetitive DNA sequences should renature under C{sub o}t 50 conditions. The single-stranded regions were digested using S1 nuclease, leaving the double-stranded, renatured repeat sequences.« less
Structural features of antiviral DNA cytidine deaminases.
Vasudevan, Ananda Ayyappan Jaguva; Smits, Sander H J; Höppner, Astrid; Häussinger, Dieter; Koenig, Bernd W; Münk, Carsten
2013-11-01
The APOBEC3 (A3) family of cytidine deaminases plays a vital role for innate defense against retroviruses. Lentiviruses such as HIV-1 evolved the Vif protein that triggers A3 protein degradation. There are seven A3 proteins, A3A-A3H, found in humans. All A3 proteins can deaminate cytidines to uridines in single-stranded DNA (ssDNA), generated during viral reverse transcription. A3 proteins have either one or two cytidine deaminase domains (CD). The CDs coordinate a zinc ion, and their amino acid specificity classifies the A3s into A3Z1, A3Z2, and A3Z3. A3 proteins occur as monomers, dimers, and large oligomeric complexes. Studies on the nature of A3 oligomerization, as well as the mode of interaction of A3s with RNA and ssDNA are partially controversial. High-resolution structures of the catalytic CD2 of A3G and A3F as well as of the single CD proteins A3A and A3C have been published recently. The NMR and X-ray crystal structures show globular proteins with six α-helices and five β sheets arranged in a characteristic motif (α1-β1-β2/2'-α2-β3-α3-β4-α4-β5-α5-α6). However, the detailed arrangement and extension of individual structure elements and their relevance for A3 complex formation and activity remains a matter of debate and will be highlighted in this review.
Botero, Adriana; Kapeller, Irit; Cooper, Crystal; Clode, Peta L; Shlomai, Joseph; Thompson, R C Andrew
2018-05-17
Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10 bp sequence) and CSB-2 (8 bp sequence) present lower interspecies homology, while CSB-3 (12 bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257 bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cortés-Eslava, Josefina; Gómez-Arroyo, Sandra; Risueño, Maria C; Testillano, Pilar S
2018-05-02
The ubiquity of pollutants, such as agrochemicals and heavy metals, constitute a serious risk to human health. To evaluate the induction of DNA damage and programmed cell death (PCD), root cells of Allium cepa and Vicia faba were treated with two organophosphate insecticides (OI), fenthion and malathion, and with two heavy metal (HM) salts, nickel nitrate and potassium dichromate. An alkaline variant of the comet assay was performed to identify DNA breaks; the results showed comets in a dose-dependent manner, while higher concentrations induced clouds following exposure to OIs and HMs. Similarly, treatments with higher concentrations of OIs and HMs were analyzed by immunocytochemistry, and several structural characteristics of PCD were observed, including chromatin condensation, cytoplasmic vacuolization, nuclear shrinkage, condensation of the protoplast away from the cell wall, and nuclei fragmentation with apoptotic-like corpse formation. Abiotic stress also caused other features associated with PCD, such as an increase of active caspase-3-like protein, changes in the location of cytochrome C (Cyt C) toward the cytoplasm, and decreases in extracellular signal-regulated protein kinase (ERK) expression. Genotoxicity results setting out an oxidative via of DNA damage and evidence the role of the high affinity of HM and OI by DNA molecule as underlying cause of genotoxic effect. The PCD features observed in root cells of A. cepa and V. faba suggest that PCD takes place through a process that involves ERK inactivation, culminating in Cyt C release and caspase-3-like activation. The sensitivity of both plant models to abiotic stress was clearly demonstrated, validating their role as good biosensors of DNA breakage and PCD induced by environmental stressors. Copyright © 2018 Elsevier Ltd. All rights reserved.
What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?
Alexander, Alana; Steel, Debbie; Hoekzema, Kendra; Mesnick, Sarah L; Engelhaupt, Daniel; Kerr, Iain; Payne, Roger; Baker, C Scott
2016-06-01
The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long-lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394-bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event <80 000 years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to male-mediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization. © 2016 John Wiley & Sons Ltd.
de Cambiaire, Jean-Charles; Otis, Christian; Lemieux, Claude; Turmel, Monique
2006-01-01
Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC) remains uncertain. The five complete chloroplast DNA (cpDNA) sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR), have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. Results The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12) relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single-copy regions differ considerably in gene content. Conclusion Our results underscore the remarkable plasticity of the chlorophycean chloroplast genome. Owing to this plasticity, only a sketchy portrait could be drawn for the chloroplast genome of the last common ancestor of Scenedesmus and Chlamydomonas. PMID:16638149
Recognition of AT-Rich DNA Binding Sites by the MogR Repressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Aimee; Higgins, Darren E.; Panne, Daniel
2009-07-22
The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity.more » The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.« less
Centromeric Barrier Disruption Leads to Mitotic Defects in Schizosaccharomyces pombe
Gaither, Terilyn L.; Merrett, Stephanie L.; Pun, Matthew J.; Scott, Kristin C.
2014-01-01
Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and pericentromeric heterochromatin. The genomic and epigenetic features that specify and preserve the adjacent chromatin subdomains critical to centromere identity are currently unknown. Here we demonstrate that chromatin barriers regulate this process in Schizosaccharomyces pombe. Reduced fitness and mitotic chromosome segregation defects occur in strains that carry exogenous DNA inserted at centromere 1 chromatin barriers. Abnormal phenotypes are accompanied by changes in the structural integrity of both the centromeric core chromatin domain, containing the conserved CENP-ACnp1 protein, and the flanking pericentric heterochromatin domain. Barrier mutant cells can revert to wild-type growth and centromere structure at a high frequency after the spontaneous excision of integrated exogenous DNA. Our results reveal a previously undemonstrated role for chromatin barriers in chromosome segregation and in the prevention of genome instability. PMID:24531725
Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros
2014-09-16
The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based materials are biocompatible. On the basis of these results, the fibrous and porous KCC-1-based nanomaterials can be said to be more suitable to carry, transport, and deliver DNAs and genes than cylindrical porous nanomaterials such as MCM-41.
Simocyclinone D8, an inhibitor of DNA gyrase with a novel mode of action.
Flatman, Ruth H; Howells, Alison J; Heide, Lutz; Fiedler, Hans-Peter; Maxwell, Anthony
2005-03-01
We have characterized the interaction of a new class of antibiotics, simocyclinones, with bacterial DNA gyrase. Even though their structures include an aminocoumarin moiety, a key feature of novobiocin, coumermycin A(1), and clorobiocin, which also target gyrase, simocyclinones behave strikingly differently from these compounds. Simocyclinone D8 is a potent inhibitor of gyrase supercoiling, with a 50% inhibitory concentration lower than that of novobiocin. However, it does not competitively inhibit the DNA-independent ATPase reaction of GyrB, which is characteristic of other aminocoumarins. Simocyclinone D8 also inhibits DNA relaxation by gyrase but does not stimulate cleavage complex formation, unlike quinolones, the other major class of gyrase inhibitors; instead, it abrogates both Ca(2+)- and quinolone-induced cleavage complex formation. Binding studies suggest that simocyclinone D8 interacts with the N-terminal domain of GyrA. Taken together, our results demonstrate that simocyclinones inhibit an early step of the gyrase catalytic cycle by preventing binding of the enzyme to DNA. This is a novel mechanism for a gyrase inhibitor and presents new possibilities for antibacterial drug development.
Harpke, Doerte; Peterson, Angela
2008-05-01
The internal transcribed spacer (ITS) region (ITS1, 5.8S rDNA, ITS2) represents the most widely applied nuclear marker in eukaryotic phylogenetics. Although this region has been assumed to evolve in concert, the number of investigations revealing high degrees of intra-individual polymorphism connected with the presence of pseudogenes has risen. The 5.8S rDNA is the most important diagnostic marker for functionality of the ITS region. In Mammillaria, intra-individual 5.8S rDNA polymorphisms of up to 36% and up to nine different types have been found. Twenty-eight of 30 cloned genomic Mammillaria sequences were identified as putative pseudogenes. For the identification of pseudogenic ITS regions, in addition to formal tests based on substitution rates, we attempted to focus on functional features of the 5.8S rDNA (5.8S motif, secondary structure). The importance of functional data for the identification of pseudogenes is outlined and discussed. The identification of pseudogenes is essential, because they may cause erroneous phylogenies and taxonomic problems.
Salanitro, Lucila Belén; Massaccesi, Anabella Cecilia; Urbisaglia, Santiago; Bressa, María José; Chirino, Mónica Gabriela
2017-01-01
A cytogenetic characterization, including heterochromatin content, and the analysis of the location of rDNA genes, was performed in Largus fasciatus Blanchard, 1843 and L. rufipennis Laporte, 1832. Mitotic and meiotic analyses revealed the same diploid chromosome number 2n = 12 + X0/XX (male/female). Heterochromatin content, very scarce in both species, revealed C-blocks at both ends of autosomes and X chromosome. The most remarkable cytological feature observed between both species was the different chromosome position of the NORs. This analysis allowed us to use the NORs as a cytological marker because two clusters of rDNA genes are located at one end of one pair of autosomes in L. fasciatus , whereas a single rDNA cluster is located at one terminal region of the X chromosome in L. rufipennis . Taking into account our results and previous data obtained in other heteropteran species, the conventional staining, chromosome bandings, and rDNA-FISH provide important chromosome markers for cytotaxonomy, karyotype evolution, and chromosome structure and organization studies.
Evolutionary and biophysical relationships among the papillomavirus E2 proteins.
Blakaj, Dukagjin M; Fernandez-Fuentes, Narcis; Chen, Zigui; Hegde, Rashmi; Fiser, Andras; Burk, Robert D; Brenowitz, Michael
2009-01-01
Infection by human papillomavirus (HPV) may result in clinical conditions ranging from benign warts to invasive cancer. The HPV E2 protein represses oncoprotein transcription and is required for viral replication. HPV E2 binds to palindromic DNA sequences of highly conserved four base pair sequences flanking an identical length variable 'spacer'. E2 proteins directly contact the conserved but not the spacer DNA. Variation in naturally occurring spacer sequences results in differential protein affinity that is dependent on their sensitivity to the spacer DNA's unique conformational and/or dynamic properties. This article explores the biophysical character of this core viral protein with the goal of identifying characteristics that associated with risk of virally caused malignancy. The amino acid sequence, 3d structure and electrostatic features of the E2 protein DNA binding domain are highly conserved; specific interactions with DNA binding sites have also been conserved. In contrast, the E2 protein's transactivation domain does not have extensive surfaces of highly conserved residues. Rather, regions of high conservation are localized to small surface patches. Implications to cancer biology are discussed.
Rose, Ray; Possingham, John
1976-01-01
Spinach seeds (Spinacia oleracea L.) given massive doses of γ-irradiation (500 krad) germinate and form a seedling with two green cotyledons and a radicle, but develop no further. Irradiated cotyledons show no increase in cell number or total DNA over a 7-day period in the light, while in control cotyledons there is a small increase in cell number and large increases in total DNA and chloroplast number. The chloroplasts of irradiated cotyledons are delayed in their division, become greatly enlarged and contain large amounts of starch. The whole population of chloroplasts subsequently undergoes a wave of division. The daughter chloroplasts show normal thylakoid development, but have some abnormal structural features caused by the radiation stress. Information on the effect of X-irradiation, ultraviolet irradiation, and 5-fluorodeoxyuridine on chloroplast replication and on chloroplast and nuclear DNA synthesis was obtained from cultured spinach leaf discs. It appears that chloroplast replication is more resistant to ionizing radiation than cell division and can proceed in the absence of nuclear DNA synthesis and greatly reduced chloroplast DNA synthesis. Images PMID:16659421
Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.
Wagner, K; Keyes, E; Kephart, T W; Edwards, G
1997-01-01
We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:9199767
Sun, Xiang-Yu; Zhao, Ping; Jin, Shu-Fang; Liu, Min-Chao; Wang, Xia-Hong; Huang, Yu-Min; Cheng, Zhen-Feng; Yan, Si-Qi; Li, Yan-Yu; Chen, Ya-Qing; Zhong, Yan-Mei
2017-08-01
DNA polymorphism exerts a fascination on a large scientific community. Without crystallographic structural data, clarification of the binding modes between G-quadruplex (G4) and ligand (complex) is a challenging job. In the present work, three porphyrin compounds with different flexible carbon chains (arms) were designed, synthesized and characterized. Their binding, folding and stabilizing abilities to human telomeric G4 DNA structures were comparatively researched. Positive charges at the end of the flexible carbon chains seem to be favorable for the DNA-porphyrin interactions, which were evidenced by the spectral results and further confirmed by the molecular docking calculations. Biological function analysis demonstrated that these porphyrins show no substantial inhibition to Hela, A549 and BEL 7402 cancer cell lines under dark while exhibit broad inhibition under visible light. This significantly enhanced photocytotoxicity relative to the dark control is an essential property of photochemotherapeutic agents. The feature of the flexible arms emerges as critical influencing factors in the cell photocytotoxicity. Moreover, an ROS-mediated mitochondrial dysfunction pathway was suggested for the cell apoptosis induced by these flexible-armed porphyrins. It is found that the porphyrins with positive charges located at the end of the flexible arms represent an exciting opportunity for photochemotherapeutic anti-cancer drug design. Copyright © 2017. Published by Elsevier B.V.
iDBPs: a web server for the identification of DNA binding proteins
Nimrod, Guy; Schushan, Maya; Szilágyi, András; Leslie, Christina; Ben-Tal, Nir
2010-01-01
Summary: The iDBPs server uses the three-dimensional (3D) structure of a query protein to predict whether it binds DNA. First, the algorithm predicts the functional region of the protein based on its evolutionary profile; the assumption is that large clusters of conserved residues are good markers of functional regions. Next, various characteristics of the predicted functional region as well as global features of the protein are calculated, such as the average surface electrostatic potential, the dipole moment and cluster-based amino acid conservation patterns. Finally, a random forests classifier is used to predict whether the query protein is likely to bind DNA and to estimate the prediction confidence. We have trained and tested the classifier on various datasets and shown that it outperformed related methods. On a dataset that reflects the fraction of DNA binding proteins (DBPs) in a proteome, the area under the ROC curve was 0.90. The application of the server to an updated version of the N-Func database, which contains proteins of unknown function with solved 3D-structure, suggested new putative DBPs for experimental studies. Availability: http://idbps.tau.ac.il/ Contact: NirB@tauex.tau.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20089514
Laguerre, Aurélien; Stefan, Loic; Larrouy, Manuel; Genest, David; Novotna, Jana; Pirrotta, Marc; Monchaud, David
2014-09-03
Recent and unambiguous evidences of the formation of DNA and RNA G-quadruplexes in cells has provided solid support for these structures to be considered as valuable targets in oncology. Beyond this, they have lent further credence to the anticancer strategies relying on small molecules that selectively target these higher-order DNA/RNA architectures, referred to as G-quadruplex ligands. They have also shed bright light on the necessity of designing multitasking ligands, displaying not only enticing quadruplex interacting properties (affinity, structural selectivity) but also additional features that make them usable for detecting quadruplexes in living cells, notably for determining whether, when, and where these structures fold and unfold during the cell cycle and also for better assessing the consequences of their stabilization by external agents. Herein, we report a brand new design of such multitasking ligands, whose structure experiences a quadruplex-promoted conformational switch that triggers not only its quadruplex affinity (i.e., smart ligands, which display high affinity and selectivity for DNA/RNA quadruplexes) but also its fluorescence (i.e., smart probes, which behave as selective light-up fluorescent reporters on the basis of a fluorogenic electron redistribution). The first prototype of such multifunctional ligands, termed PyroTASQ, represents a brand new generation of quadruplex ligands that can be referred to as "twice-as-smart" quadruplex ligands.
NASA Astrophysics Data System (ADS)
Sudhi, Geethu; Rajina, S. R.; Praveen, S. G.; Xavier, T. S.; Kenny, Peter T. M.; Jaiswal-Nagar, D.; Binoy, J.
2017-10-01
The bioactivity of compounds is mainly dependent on molecular structure and the present work aims to explore the bonding features responsible for biological activity of novel anticancer drug N-(6-ferrocenyl-2-naphthoyl)-gamma-amino butyric acid ethyl ester (FNGABEE). In the present study, we investigate the molecular structural properties of newly synthesized title compound through experimental and quantum chemical studies. The detailed vibrational analysis has been performed using FT IR and FT Raman spectrum, aided by DFT computed geometry, vibrational spectrum, Eigen vector distribution and PED, at B3LYP/6-311 ++G(d,p) level. The resonance structure of naphthalene, different from that of benzene, revealed by molecular structure has been investigated using Csbnd C and Cdbnd C stretching modes. The proton transfer in amide has been analyzed to obtain spectral distinction between different carbonyl and Csbnd N groups which point to the reactive sites responsible for binding with DNA and bovine serum albumin (BSA). The spectral distinction between eclipsed and staggered form of ferrocene has been analyzed. The molecular docking of FNGABEE with BSA and DNA has been performed to find the strength of binding and the moieties responsible for the interactions. The experimental binding studies of FNGABEE with BSA and DNA has been performed using UV absorption spectroscopy and fluorometric assay, to find the nature and strength of binding.
Bright luminescence from pure DNA-curcumin–based phosphors for bio hybrid light-emitting diodes
Reddy, M. Siva Pratap; Park, Chinho
2016-01-01
Recently, significant advances have occurred in the development of phosphors for bio hybrid light-emitting diodes (Bio-HLEDs), which have created brighter, metal-free, rare-earth phosphor-free, eco-friendly, and cost-competitive features for visible light emission. Here, we demonstrate an original approach using bioinspired phosphors in Bio-HLEDs based on natural deoxyribonucleic acid (DNA)-curcumin complexes with cetyltrimethylammonium (CTMA) in bio-crystalline form. The curcumin chromophore was bound to the DNA double helix structure as observed using field emission tunnelling electron microscopy (FE-TEM). Efficient luminescence occurred due to tightly bound curcumin chromophore to DNA duplex. Bio-HLED shows low luminous drop rate of 0.0551 s−1. Moreover, the solid bio-crystals confined the activating bright luminescence with a quantum yield of 62%, thereby overcoming aggregation-induced quenching effect. The results of this study herald the development of commercially viable large-scale hybrid light applications that are environmentally benign. PMID:27572113
Czar, Michael J; Cai, Yizhi; Peccoud, Jean
2009-07-01
Chemical synthesis of custom DNA made to order calls for software streamlining the design of synthetic DNA sequences. GenoCAD (www.genocad.org) is a free web-based application to design protein expression vectors, artificial gene networks and other genetic constructs composed of multiple functional blocks called genetic parts. By capturing design strategies in grammatical models of DNA sequences, GenoCAD guides the user through the design process. By successively clicking on icons representing structural features or actual genetic parts, complex constructs composed of dozens of functional blocks can be designed in a matter of minutes. GenoCAD automatically derives the construct sequence from its comprehensive libraries of genetic parts. Upon completion of the design process, users can download the sequence for synthesis or further analysis. Users who elect to create a personal account on the system can customize their workspace by creating their own parts libraries, adding new parts to the libraries, or reusing designs to quickly generate sets of related constructs.
Diatom centromeres suggest a mechanism for nuclear DNA acquisition
Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.; ...
2017-07-18
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less
Diatom centromeres suggest a mechanism for nuclear DNA acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diner, Rachel E.; Noddings, Chari M.; Lian, Nathan C.
Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum. We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequencemore » features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.« less
Kuhn, G C S; Teo, C H; Schwarzacher, T; Heslop-Harrison, J S
2009-05-01
Satellite DNA (satDNA) is a major component of genomes but relatively little is known about the fine-scale organization of unrelated satDNAs residing at the same chromosome location, and the sequence structure and dynamics of satDNA junctions. We studied the organization and sequence junctions of two nonhomologous satDNAs, pBuM and DBC-150, in three species from the neotropical Drosophila buzzatii cluster (repleta group). In situ hybridization to microchromosomes, interphase nuclei and extended DNA fibers showed frequent interspersion of the two satellites in D. gouveai, D. antonietae and, to a lesser extent, D. seriema. We isolated by PCR six pBuM x DBC-150 junctions: four are exclusive to D. gouveai and two are exclusive to D. antonietae. The six junction breakpoints occur at different positions within monomers, suggesting independent origin. Four junctions showed abrupt transitions between the two satellites, whereas two junctions showed a distinct 10 bp tandem duplication before the junction. Unlike pBuM, DBC-150 junction repeats are more variable than randomly cloned monomers and showed diagnostic features in common to a 3-monomer higher-order repeat seen in the sister species D. serido. The high levels of interspersion between pBuM and DBC-150 repeats suggest extensive rearrangements between the two satellites, maybe favored by specific features of the microchromosomes. Our interpretation is that the junctions evolved by multiples events of illegitimate recombination between nonhomologous satDNA repeats, with subsequent rounds of unequal crossing-over expanding the copy number of some of the junctions.
Intrinsic DNA curvature in trypanosomes.
Smircich, Pablo; El-Sayed, Najib M; Garat, Beatriz
2017-11-09
Trypanosoma cruzi and Trypanosoma brucei are protozoan parasites causing Chagas disease and African sleeping sickness, displaying unique features of cellular and molecular biology. Remarkably, no canonical signals for RNA polymerase II promoters, which drive protein coding genes transcription, have been identified so far. The secondary structure of DNA has long been recognized as a signal in biological processes and more recently, its involvement in transcription initiation in Leishmania was proposed. In order to study whether this feature is conserved in trypanosomatids, we undertook a genome wide search for intrinsic DNA curvature in T. cruzi and T. brucei. Using a region integrated intrinsic curvature (RIIC) scoring that we previously developed, a non-random distribution of sequence-dependent curvature was observed. High RIIC scores were found to be significantly correlated with transcription start sites in T. cruzi, which have been mapped in divergent switch regions, whereas in T. brucei, the high RIIC scores correlated with sites that have been involved not only in RNA polymerase II initiation but also in termination. In addition, we observed regions with high RIIC score presenting in-phase tracts of Adenines, in the subtelomeric regions of the T. brucei chromosomes that harbor the variable surface glycoproteins genes. In both T. cruzi and T. brucei genomes, a link between DNA conformational signals and gene expression was found. High sequence dependent curvature is associated with transcriptional regulation regions. High intrinsic curvature also occurs at the T. brucei chromosome subtelomeric regions where the recombination processes involved in the evasion of the immune host system take place. These findings underscore the relevance of indirect DNA readout in these ancient eukaryotes.
[Advances in research of the structure and function of plant centromeres].
She, Chao-Wen; Song, Yun-Chun
2006-12-01
Centromeres are the chromosomal domains necessary for faithful chromosome segregation and transmission during mitosis and meiosis in eukaryotes. In the last decade, centromeres in some plant species including Arabidopsis, rice and maize have been deeply studied at molecular level. Centromeric DNAs evolve rapidly and are little conserved among various plants, but the types of centromeric DNA sequences and their organization patterns within centromeres are basically similar in plants. Plant centromeres are usually composed of clusters of tandemly arrayed satellite repeats that are interspersed with centromere-specific retrotransposons. In contrast to centromeric DNA, structural and transient centromeric/kinetochoric proteins are conserved among eukaryotes including plants. As the cases in other eukaryotes, the presence of CENH3 (centromeric histone H3)-containing nucleosomes is the fundamental feature of plant functional centromeres, and CENH3 plays critical roles in the identity and maintenance of plant centromeric chromatin.
Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo
2010-11-01
Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we report a study on how our students learned more from using our ordered DNA and protein models assembled from colored computer-printouts on transparency film sheets that have useful structural details. Our models (reported in BAMBED 2009), having certain distinguished features, helped our students to grasp various aspects of these biopolymers that they usually find difficult. Quantitative and qualitative learning data from this study are reported. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.
Metalloregulatory Proteins: Metal Selectivity and Allosteric Switching
Caballero, Hermes Reyes; Campanello, Gregory C.; Giedroc, David P.
2011-01-01
Prokaryotic organisms have evolved an impressive capacity to quickly adapt to a changing and challenging microenvironment in which the availability of both biologically required and non-essential transition metal ions can vary dramatically. In all bacteria, a panel of metalloregulatory proteins control the expression of genes encoding membrane transporters and metal trafficking proteins, that collectively manage metal homeostasis and resistance. These “metal sensors” are specialized allosteric proteins, in which the direct binding of a specific or small number of “cognate” metal ion(s) drives a conformational change in the regulator that allosterically activates or inhibits operator DNA binding, or alternatively, distorts the promoter structure thereby converting a poor promoter to a strong one. In this review, we discuss our current understanding of the features that control metal specificity of the allosteric response in these systems, and the role that structure, thermodynamics and conformational dynamics play in mediating allosteric activation or inhibition of DNA binding. PMID:21511390
NASA Technical Reports Server (NTRS)
Plante, I; Wu, H
2014-01-01
The code RITRACKS (Relativistic Ion Tracks) has been developed over the last few years at the NASA Johnson Space Center to simulate the effects of ionizing radiations at the microscopic scale, to understand the effects of space radiation at the biological level. The fundamental part of this code is the stochastic simulation of radiation track structure of heavy ions, an important component of space radiations. The code can calculate many relevant quantities such as the radial dose, voxel dose, and may also be used to calculate the dose in spherical and cylindrical targets of various sizes. Recently, we have incorporated DNA structure and damage simulations at the molecular scale in RITRACKS. The direct effect of radiations is simulated by introducing a slight modification of the existing particle transport algorithms, using the Binary-Encounter-Bethe model of ionization cross sections for each molecular orbitals of DNA. The simulation of radiation chemistry is done by a step-by-step diffusion-reaction program based on the Green's functions of the diffusion equation]. This approach is also used to simulate the indirect effect of ionizing radiation on DNA. The software can be installed independently on PC and tablets using the Windows operating system and does not require any coding from the user. It includes a Graphic User Interface (GUI) and a 3D OpenGL visualization interface. The calculations are executed simultaneously (in parallel) on multiple CPUs. The main features of the software will be presented.
Kuan, Pei Fen; Chiang, Derek Y
2012-09-01
DNA methylation has emerged as an important hallmark of epigenetics. Numerous platforms including tiling arrays and next generation sequencing, and experimental protocols are available for profiling DNA methylation. Similar to other tiling array data, DNA methylation data shares the characteristics of inherent correlation structure among nearby probes. However, unlike gene expression or protein DNA binding data, the varying CpG density which gives rise to CpG island, shore and shelf definition provides exogenous information in detecting differential methylation. This article aims to introduce a robust testing and probe ranking procedure based on a nonhomogeneous hidden Markov model that incorporates the above-mentioned features for detecting differential methylation. We revisit the seminal work of Sun and Cai (2009, Journal of the Royal Statistical Society: Series B (Statistical Methodology)71, 393-424) and propose modeling the nonnull using a nonparametric symmetric distribution in two-sided hypothesis testing. We show that this model improves probe ranking and is robust to model misspecification based on extensive simulation studies. We further illustrate that our proposed framework achieves good operating characteristics as compared to commonly used methods in real DNA methylation data that aims to detect differential methylation sites. © 2012, The International Biometric Society.
Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P
1997-02-01
The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).
Jamroze, Anmbreen; Perugino, Giuseppe; Valenti, Anna; Rashid, Naeem; Rossi, Mosè; Akhtar, Muhammad; Ciaramella, Maria
2014-01-01
Reverse gyrase is a DNA topoisomerase specific for hyperthermophilic bacteria and archaea. It catalyzes the peculiar ATP-dependent DNA-positive supercoiling reaction and might be involved in the physiological adaptation to high growth temperature. Reverse gyrase comprises an N-terminal ATPase and a C-terminal topoisomerase domain, which cooperate in enzyme activity, but details of its mechanism of action are still not clear. We present here a functional characterization of PcalRG, a novel reverse gyrase from the archaeon Pyrobaculum calidifontis. PcalRG is the most robust and processive reverse gyrase known to date; it is active over a wide range of conditions, including temperature, ionic strength, and ATP concentration. Moreover, it holds a strong ATP-inhibited DNA cleavage activity. Most important, PcalRG is able to induce ATP-dependent unwinding of synthetic Holliday junctions and ATP-stimulated annealing of unconstrained single-stranded oligonucleotides. Combined DNA unwinding and annealing activities are typical of certain helicases, but until now were shown for no other reverse gyrase. Our results suggest for the first time that a reverse gyrase shares not only structural but also functional features with evolutionary conserved helicase-topoisomerase complexes involved in genome stability. PMID:24347172
Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively.
Burnham, Daniel R; Nijholt, Bas; De Vlaminck, Iwijn; Quan, Jinhua; Yusufzai, Timur; Dekker, Cees
2017-05-05
We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis-Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Annealing helicase HARP closes RPA-stabilized DNA bubbles non-processively
Burnham, Daniel R.; Nijholt, Bas; De Vlaminck, Iwijn; Quan, Jinhua; Yusufzai, Timur
2017-01-01
Abstract We investigate the mechanistic nature of the Snf2 family protein HARP, mutations of which are responsible for Schimke immuno-osseous dysplasia. Using a single-molecule magnetic tweezers assay, we construct RPA-stabilized DNA bubbles within torsionally constrained DNA to investigate the annealing action of HARP on a physiologically relevant substrate. We find that HARP closes RPA-stabilized bubbles in a slow reaction, taking on the order of tens of minutes for ∼600 bp of DNA to be re-annealed. The data indicate that DNA re-anneals through the removal of RPA, which is observed as clear steps in the bubble-closing traces. The dependence of the closing rate on both ionic strength and HARP concentration indicates that removal of RPA occurs via an association-dissociation mechanism where HARP does not remain associated with the DNA. The enzyme exhibits classical Michaelis–Menten kinetics and acts cooperatively with a Hill coefficient of 3 ± 1. Our work also allows the determination of some important features of RPA-bubble structures at low supercoiling, including the existence of multiple bubbles and that RPA molecules are mis-registered on the two strands. PMID:28334870
LaPolla, R J; Mayne, K M; Davidson, N
1984-01-01
A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870
Olkhov-Mitsel, Ekaterina; Siadat, Farshid; Kron, Ken; Liu, Liyang; Savio, Andrea J; Trachtenberg, John; Fleshner, Neil; van der Kwast, Theodorus; Bapat, Bharati
2017-07-01
The aim of the present study was to explore DNA methylation aberrations in association with cribriform architecture and intraductal carcinoma (IDC) of the prostate, as there is robust evidence that these morphological features are associated with aggressive disease and have significant clinical implications. Herein, the associations of a panel of seven known prognostic DNA methylation biomarkers with cribriform and IDC features were examined in a series of 91 Gleason pattern (GP) 4 tumors derived from Gleason score 7 radical prostatectomies. Gene specific DNA methylation was compared between cribriform and/or IDC positive vs. negative cases, and in association with clinicopathological features, using Chi square and Mann-Whitney U tests. DNA methylation of the adenomatous polyposis coli, Ras association domain family member 1 and T-box 15 genes was significantly elevated in GP4 tumors with cribriform and/or IDC features compared with negative cases (P=0.045, P=0.007 and P=0.013, respectively). To the best of our knowledge, this provides the first evidence for an association between cribriform and/or IDC and methylation biomarkers, and warrants further investigation of additional DNA methylation events in association with various architectural patterns in prostate cancer.
Gao, Yong-Gui; Suzuki, Hiroaki; Itou, Hiroshi; Zhou, Yong; Tanaka, Yoshikazu; Wachi, Masaaki; Watanabe, Nobuhisa; Tanaka, Isao; Yao, Min
2008-01-01
LldR (CGL2915) from Corynebacterium glutamicum is a transcription factor belonging to the GntR family, which is typically involved in the regulation of oxidized substrates associated with amino acid metabolism. In the present study, the crystal structure of LldR was determined at 2.05-Å resolution. The structure consists of N- and C-domains similar to those of FadR, but with distinct domain orientations. LldR and FadR dimers achieve similar structures by domain swapping, which was first observed in dimeric assembly of transcription factors. A structural feature of Zn2+ binding in the regulatory domain was also observed, as a difference from the FadR subfamily. DNA microarray and DNase I footprint analyses suggested that LldR acts as a repressor regulating cgl2917-lldD and cgl1934-fruK-ptsF operons, which are indispensable for l-lactate and fructose/sucrose utilization, respectively. Furthermore, the stoichiometries and affinities of LldR and DNAs were determined by isothermal titration calorimetry measurements. The transcriptional start site and repression of LldR on the cgl2917-lldD operon were analysed by primer extension assay. Mutation experiments showed that residues Lys4, Arg32, Arg42 and Gly63 are crucial for DNA binding. The location of the putative ligand binding cavity and the regulatory mechanism of LldR on its affinity for DNA were proposed. PMID:18988622
Zhang, Min; Wei, Zhiyi; Chang, Shaojie; Teng, Maikun; Gong, Weimin
2006-04-21
A 31kDa cysteine protease, SPE31, was isolated from the seeds of a legume plant, Pachyrizhus erosus. The protein was purified, crystallized and the 3D structure solved using molecular replacement. The cDNA was obtained by RT PCR followed by amplification using mRNA isolated from the seeds of the legume plant as a template. Analysis of the cDNA sequence and the 3D structure indicated the protein to belong to the papain family. Detailed analysis of the structure revealed an unusual replacement of the conserved catalytic Cys with Gly. Replacement of another conserved residue Ala/Gly by a Phe sterically blocks the access of the substrate to the active site. A polyethyleneglycol molecule and a natural peptide fragment were bound to the surface of the active site. Asn159 was found to be glycosylated. The SPE31 cDNA sequence shares several features with P34, a protein found in soybeans, that is implicated in plant defense mechanisms as an elicitor receptor binding to syringolide. P34 has also been shown to interact with vegetative storage proteins and NADH-dependent hydroxypyruvate reductase. These roles suggest that SPE31 and P34 form a unique subfamily within the papain family. The crystal structure of SPE31 complexed with a natural peptide ligand reveals a unique active site architecture. In addition, the clear evidence of glycosylated Asn159 provides useful information towards understanding the functional mechanism of SPE31/P34.
NASA Technical Reports Server (NTRS)
Boesen, Michael Reibel; Madsen, Jan; Keymeulen, Didier
2011-01-01
This paper presents the current state of the autonomous dynamically self-organizing and self-healing electronic DNA (eDNA) hardware architecture (patent pending). In its current prototype state, the eDNA architecture is capable of responding to multiple injected faults by autonomously reconfiguring itself to accommodate the fault and keep the application running. This paper will also disclose advanced features currently available in the simulation model only. These features are future work and will soon be implemented in hardware. Finally we will describe step-by-step how an application is implemented on the eDNA architecture.
Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.
Manrubia, Susanna; Cuesta, José A
2017-04-01
An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).
Prospective investigation of FOXP1 syndrome.
Siper, Paige M; De Rubeis, Silvia; Trelles, Maria Del Pilar; Durkin, Allison; Di Marino, Daniele; Muratet, François; Frank, Yitzchak; Lozano, Reymundo; Eichler, Evan E; Kelly, Morgan; Beighley, Jennifer; Gerdts, Jennifer; Wallace, Arianne S; Mefford, Heather C; Bernier, Raphael A; Kolevzon, Alexander; Buxbaum, Joseph D
2017-01-01
Haploinsufficiency of the forkhead-box protein P1 ( FOXP1 ) gene leads to a neurodevelopmental disorder termed FOXP1 syndrome. Previous studies in individuals carrying FOXP1 mutations and deletions have described the presence of autism spectrum disorder (ASD) traits, intellectual disability, language impairment, and psychiatric features. The goal of the present study was to comprehensively characterize the genetic and clinical spectrum of FOXP1 syndrome. This is the first study to prospectively examine the genotype-phenotype relationship in multiple individuals with FOXP1 syndrome, using a battery of standardized clinical assessments. Genetic and clinical data was obtained and analyzed from nine children and adolescents between the ages of 5-17 with mutations in FOXP1 . Phenotypic characterization included gold standard ASD testing and norm-referenced measures of cognition, adaptive behavior, language, motor, and visual-motor integration skills. In addition, psychiatric, medical, neurological, and dysmorphology examinations were completed by a multidisciplinary team of clinicians. A comprehensive review of reported cases was also performed. All missense and in-frame mutations were mapped onto the three-dimensional structure of DNA-bound FOXP1. We have identified nine de novo mutations, including three frameshift, one nonsense, one mutation in an essential splice site resulting in frameshift and insertion of a premature stop codon, three missense, and one in-frame deletion. Reviewing prior literature, we found seven instances of recurrent mutations and another 34 private mutations. The majority of pathogenic missense and in-frame mutations, including all four missense mutations in our cohort, lie in the DNA-binding domain. Through structural analyses, we show that the mutations perturb amino acids necessary for binding to the DNA or interfere with the domain swapping that mediates FOXP1 dimerization. Individuals with FOXP1 syndrome presented with delays in early motor and language milestones, language impairment (expressive language > receptive language), ASD symptoms, visual-motor integration deficits, and complex psychiatric presentations characterized by anxiety, obsessive-compulsive traits, attention deficits, and externalizing symptoms. Medical features included non-specific structural brain abnormalities and dysmorphic features, endocrine and gastrointestinal problems, sleep disturbances, and sinopulmonary infections. This study identifies novel FOXP1 mutations associated with FOXP1 syndrome, identifies recurrent mutations, and demonstrates significant clustering of missense mutations in the DNA-binding domain. Clinical findings confirm the role FOXP1 plays in development across multiple domains of functioning. The genetic findings can be incorporated into clinical genetics practice to improve accurate genetic diagnosis of FOXP1 syndrome and the clinical findings can inform monitoring and treatment of individuals with FOXP1 syndrome.
Palermo, Giulia; Miao, Yinglong; Walker, Ross C; Jinek, Martin; McCammon, J Andrew
2016-10-26
The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the "closure" of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and-more importantly-call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications.
NASA Astrophysics Data System (ADS)
Gusev, Oleg; Novikova, Nataliya; Sychev, Vladimir; Okuda, Takashi; Kikawada, Takahiro; Sakashita, Tetsuya; Mukae, Kyosuke
2012-07-01
Life in extreme or drastically changing environments in many cases leads to evolutionary evolvement of mechanisms of cross-resistance to different abiotic stresses, often never actually faced by the organism in its natural habitat. Larvae of the sleeping chironomidPolypedilum vanderplanki (Diptera) are able to resist complete desiccation and in the dry form survive under excess of various abiotic stresses, including exposure to space environment. One of the most intriguing features of the anhydrobiotic larvae is resistance to extremely high doses of different types of ionizing radiation. To understand the cross-tolerance mechanism, we have analyzed the structural changes in the nuclear DNA using transmission electron microscopy and DNA comet assays in relation to anhydrobiosis and radiation. We find that dehydration causes alterations in chromatin structure and a severe fragmentation of nuclear DNA in the cells of the larvae despite successful anhydrobiosis. The DNA fragmentation level and the recovery of DNA integrity in the rehydrated after anhydrobiosis larvae were similar to those of hydrated larvae irradiated with 70 Gy of high-linear energy transfer (LET) ions (4He+). In comparison, low-LET radiation (gamma rays) of the same dose causes less initial damage to the larvae, and recovery of DNA repair is complete within 24 h. Genome-wide analysis of mRNA expression in the larvae revealed that a large group of genes (including antioxidants, anhydrobiosis-specific biomolecules and protein-reparation enzymes) showed a similar patterns of activity in response to both desiccation and ionizing radiation. We conclude that t one of the factors explaining the relationship between the resistance to ionizing radiation and the ability to undergo anhydrobiosis in the sleeping chironomid would be an adaptation to desiccation-inflicted proteins and nuclear DNA damage.
Universal and idiosyncratic characteristic lengths in bacterial genomes
NASA Astrophysics Data System (ADS)
Junier, Ivan; Frémont, Paul; Rivoire, Olivier
2018-05-01
In condensed matter physics, simplified descriptions are obtained by coarse-graining the features of a system at a certain characteristic length, defined as the typical length beyond which some properties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical conditions and since their genomes lack translational invariance, whether larger, universal characteristic lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number of fully sequenced genomes available in public databases. By analyzing GC content correlations and the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we conclude that a fundamental characteristic length around 10–20 kb can be defined. This characteristic length reflects elementary structures involved in the coordination of gene expression, which are present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us to implement methods that are insensitive to the presence of large idiosyncratic genomic features, which may co-exist along these fundamental universal structures.
Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha
2014-10-01
Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors.
Relevance of extracellular DNA in rhizosphere
NASA Astrophysics Data System (ADS)
Pietramellara, Giacomo; Ascher, Judith; Baraniya, Divyashri; Arfaioli, Paola; Ceccherini, Maria Teresa; Hawes, Martha
2013-04-01
One of the most promising areas for future development is the manipulation of the rhizosphere to produce sustainable and efficient agriculture production systems. Using Omics approaches, to define the distinctive features of eDNA systems and structures, will facilitate progress in rhizo-enforcement and biocontrol studies. The relevance of these studies results clear when we consider the plethora of ecological functions in which eDNA is involved. This fraction can be actively extruded by living cells or discharged during cellular lysis and may exert a key role in the stability and variability of the soil bacterial genome, resulting also a source of nitrogen and phosphorus for plants due to the root's capacity to directly uptake short DNA fragments. The adhesive properties of the DNA molecule confer to eDNA the capacity to inhibit or kill pathogenic bacteria by cation limitation induction, and to facilitate formation of biofilm and extracellular traps (ETs), that may protect microorganisms inhabiting biofilm and plant roots against pathogens and allelopathic substances. The ETs are actively extruded by root border cells when they are dispersed in the rhizosphere, conferring to plants the capacity to extend an endogenous pathogen defence system outside the organism. Moreover, eDNA could be involved in rhizoremediation in heavy metal polluted soil acting as a bioflotation reagent.
2015-01-01
The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID:24617538
Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication
Lapenta, Fabio; Montón Silva, Alejandro; Brandimarti, Renato; Lanzi, Massimiliano; Gratani, Fabio Lino; Vellosillo Gonzalez, Perceval; Perticarari, Sofia; Hochkoeppler, Alejandro
2016-01-01
DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP) domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics. PMID:27050298
Scalable lithography from Natural DNA Patterns via polyacrylamide gel
NASA Astrophysics Data System (ADS)
Qu, Jiehao; Hou, Xianliang; Fan, Wanchao; Xi, Guanghui; Diao, Hongyan; Liu, Xiangdon
2015-12-01
A facile strategy for fabricating scalable stamps has been developed using cross-linked polyacrylamide gel (PAMG) that controllably and precisely shrinks and swells with water content. Aligned patterns of natural DNA molecules were prepared by evaporative self-assembly on a PMMA substrate, and were transferred to unsaturated polyester resin (UPR) to form a negative replica. The negative was used to pattern the linear structures onto the surface of water-swollen PAMG, and the pattern sizes on the PAMG stamp were customized by adjusting the water content of the PAMG. As a result, consistent reproduction of DNA patterns could be achieved with feature sizes that can be controlled over the range of 40%-200% of the original pattern dimensions. This methodology is novel and may pave a new avenue for manufacturing stamp-based functional nanostructures in a simple and cost-effective manner on a large scale.
SPOP mutation leads to genomic instability in prostate cancer
Boysen, Gunther; Barbieri, Christopher E; Prandi, Davide; Blattner, Mirjam; Chae, Sung-Suk; Dahija, Arun; Nataraj, Srilakshmi; Huang, Dennis; Marotz, Clarisse; Xu, Limei; Huang, Julie; Lecca, Paola; Chhangawala, Sagar; Liu, Deli; Zhou, Pengbo; Sboner, Andrea; de Bono, Johann S
2015-01-01
Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined. Here, we show that SPOP, the most commonly mutated gene in primary prostate cancer modulates DNA double strand break (DSB) repair, and that SPOP mutation is associated with genomic instability. In vivo, SPOP mutation results in a transcriptional response consistent with BRCA1 inactivation resulting in impaired homology-directed repair (HDR) of DSB. Furthermore, we found that SPOP mutation sensitizes to DNA damaging therapeutic agents such as PARP inhibitors. These results implicate SPOP as a novel participant in DSB repair, suggest that SPOP mutation drives prostate tumorigenesis in part through genomic instability, and indicate that mutant SPOP may increase response to DNA-damaging therapeutics. DOI: http://dx.doi.org/10.7554/eLife.09207.001 PMID:26374986
Wu, Yi; Zhu, Rui-Ying; Mitchell, Leslie A; Ma, Lu; Liu, Rui; Zhao, Meng; Jia, Bin; Xu, Hui; Li, Yun-Xiang; Yang, Zu-Ming; Ma, Yuan; Li, Xia; Liu, Hong; Liu, Duo; Xiao, Wen-Hai; Zhou, Xiao; Li, Bing-Zhi; Yuan, Ying-Jin; Boeke, Jef D
2018-05-22
The power of synthetic biology has enabled the expression of heterologous pathways in cells, as well as genome-scale synthesis projects. The complexity of biological networks makes rational de novo design a grand challenge. Introducing features that confer genetic flexibility is a powerful strategy for downstream engineering. Here we develop an in vitro method of DNA library construction based on structural variation to accomplish this goal. The "in vitro SCRaMbLE system" uses Cre recombinase mixed in a test tube with purified DNA encoding multiple loxPsym sites. Using a β-carotene pathway designed for expression in yeast as an example, we demonstrate top-down and bottom-up in vitro SCRaMbLE, enabling optimization of biosynthetic pathway flux via the rearrangement of relevant transcription units. We show that our system provides a straightforward way to correlate phenotype and genotype and is potentially amenable to biochemical optimization in ways that the in vivo system cannot achieve.
Fang, Lingling; Wang, Yueliang; Liu, Miao; Gong, Ming; Xu, An; Deng, Zhaoxiang
2016-11-07
Achieving highly tunable and localized surface plasmon resonance up to near infrared (NIR) regions is a key target in nanoplasmonics. In particular, a self-assembly process capable of producing highly uniform and solution-processable nanomaterials with tailor-made plasmonic properties is lacking. We herein address this problem through a conjunctive use of wet Ag + soldering and dry thermal sintering to produce nanodimer-derived structures with precisely engineered charge-transfer plasmon (CTP). The sintered dimers are water soluble, featuring gradually shifted CTP spanning an 800 nm wavelength range (up to NIR II). Upon silica removal, the products are grafted by DNA to offer surface functionality. This process is also adaptable to DNA-linked AuNP dimers toward plasmonic meta-materials via DNA-guided soldering and sintering. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Wippo, Harald; Reck, Folkert; Kudick, Rene; Ramaseshan, Mahesh; Ceulemans, Griet; Bolli, Martin; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert
2001-01-01
The (L)-a-lyxopyranosyl-(4'yields 3')-oligonucleotide system-a member of a pentopyranosyl oligonucleotide family containing a shortened backbone-is capable of cooperative base-pairing and of cross-pairing with DNA and RNA. In contrast, corresponding (D)-beta-ribopyransoyl-(4' yields 3')-oligonucleotides do not show base-pairing under similar conditions. We conclude that oligonucleotide systems can violate the six-bonds-per-backbone-unit rule by having five bonds instead, if their vicinally bound phosphodiester bridges can assume an antiperiplanar conformation. An additional structural feature that seems relevant to the cross-pairing capability of the (L)-a-lyxopyranosyl-(4' yields 3')-oligonucleotide system is its (small) backbone/basepair axes inclination. An inclination which is similar to that in B-DNA seems to be a prerequisite for an oligonucleotide system s capability to cross-pair with DNA.
DeWitt, D L; Smith, W L
1988-01-01
Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548
Why double-stranded RNA resists condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Pabit, Suzette; Katz, Andrea M.
2014-09-15
The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to attraction between the negatively charged helices and eventually to condensation. Surprisingly, this effect is suppressed in double-stranded RNA, which carries the same charge as the DNA, but assumes a different double helical form. However, additional characterization of short (25 base-pairs) nucleic acid (NA) duplex structures by circular dichroism shows that measured differences in condensation are not solely determined by duplex helical geometry. Here we combine experiment, theory, and atomistic simulations to propose a mechanism that connects the observed variations in condensation of short NA duplexesmore » with the spatial variation of cobalt hexammine (CoHex) binding at the NA duplex surface. The atomistic picture that emerged showed that CoHex distributions around the NA reveals two major NA-CoHex binding modes -- internal and external -- distinguished by the proximity of bound CoHex to the helical axis. Decreasing trends in experimentally observed condensation propensity of the four studied NA duplexes (from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA) are explained by the progressive decrease of a single quantity: the fraction of CoHex ions in the external binding mode. Thus, while NA condensation depends on a complex interplay between various structural and sequence features, our coupled experimental and theoretical results suggest a new model in which a single parameter connects the NA condensation propensity with geometry and sequence dependence of CoHex binding.« less
Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants.
Wicke, Susann; Costa, Andrea; Muñoz, Jesùs; Quandt, Dietmar
2011-11-01
Among eukaryotes two types of nuclear ribosomal DNA (nrDNA) organization have been observed. Either all components, i.e. the small ribosomal subunit, 5.8S, large ribosomal subunit, and 5S occur tandemly arranged or the 5S rDNA forms a separate cluster of its own. Generalizations based on data derived from just a few model organisms have led to a superimposition of structural and evolutionary traits to the entire plant kingdom asserting that plants generally possess separate arrays. This study reveals that plant nrDNA organization into separate arrays is not a distinctive feature, but rather assignable almost solely to seed plants. We show that early diverging land plants and presumably streptophyte algae share a co-localization of all rRNA genes within one repeat unit. This raises the possibility that the state of rDNA gene co-localization had occurred in their common ancestor. Separate rDNA arrays were identified for all basal seed plants and water ferns, implying at least two independent 5S rDNA transposition events during land plant evolution. Screening for 5S derived Cassandra transposable elements which might have played a role during the transposition events, indicated that this retrotransposon is absent in early diverging vascular plants including early fern lineages. Thus, Cassandra can be rejected as a primary mechanism for 5S rDNA transposition in water ferns. However, the evolution of Cassandra and other eukaryotic 5S derived elements might have been a side effect of the 5S rDNA cluster formation. Structural analysis of the intergenic spacers of the ribosomal clusters revealed that transposition events partially affect spacer regions and suggests a slightly different transcription regulation of 5S rDNA in early land plants. 5S rDNA upstream regulatory elements are highly divergent or absent from the LSU-5S spacers of most early divergent land plant lineages. Several putative scenarios and mechanisms involved in the concerted relocation of hundreds of 5S rRNA gene copies are discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
Livingstone, Mark; Folkman, Lukas; Yang, Yuedong; Zhang, Ping; Mort, Matthew; Cooper, David N; Liu, Yunlong; Stantic, Bela; Zhou, Yaoqi
2017-10-01
Synonymous single-nucleotide variants (SNVs), although they do not alter the encoded protein sequences, have been implicated in many genetic diseases. Experimental studies indicate that synonymous SNVs can lead to changes in the secondary and tertiary structures of DNA and RNA, thereby affecting translational efficiency, cotranslational protein folding as well as the binding of DNA-/RNA-binding proteins. However, the importance of these various features in disease phenotypes is not clearly understood. Here, we have built a support vector machine (SVM) model (termed DDIG-SN) as a means to discriminate disease-causing synonymous variants. The model was trained and evaluated on nearly 900 disease-causing variants. The method achieves robust performance with the area under the receiver operating characteristic curve of 0.84 and 0.85 for protein-stratified 10-fold cross-validation and independent testing, respectively. We were able to show that the disease-causing effects in the immediate proximity to exon-intron junctions (1-3 bp) are driven by the loss of splicing motif strength, whereas the gain of splicing motif strength is the primary cause in regions further away from the splice site (4-69 bp). The method is available as a part of the DDIG server at http://sparks-lab.org/ddig. © 2017 Wiley Periodicals, Inc.
A three-dimensional structural dissection of Drosophila polytene chromosomes.
Urata, Y; Parmelee, S J; Agard, D A; Sedat, J W
1995-10-01
We have analyzed the three-dimensional structural details of Drosophila melanogaster polytene chromosome bands and interbands using three-dimensional light microscopy and a novel method of sample preparation that does not involve flattening or stretching the chromosomes. Bands have been visualized in unfixed chromosomes stained with the DNA specific dye 4,6-Diamidino-2-phenylindole (DAPI). Interbands have been visualized using fixed chromosomes that have been immunostained with an antibody to RNA polymerase II. Additionally, these structures have been analyzed using in situ hybridization with probes from specific genetic loci (Notch and white). Bands are seen to be composed of approximately 36 substructural features that measure 0.2-0.4 micron in diameter. We suggest that these substructural features are in fact longitudinal fibers made up of bundles of chromatids. Band shape can be a reproducible characteristic of a particular band and is dependent on the spatial relationship of these bundles, varying from bands with a uniform distribution of bundles to bands with a peripheral concentration of chromatin. Interbands are composed of bundles of chromatids of a similar size and number as those seen in the bands. The distribution of bundles is similar between a band and the neighboring interband, implying that there is a long range organization to the DNA that includes both the coding and the noncoding portions of genes. Finally, we note that the polytene chromosome has a circular shape when viewed in cross section, whether there are one or two homologs present.
Lee, Joon-Hwa; Hwang, Geum-Sook; Choi, Byong-Seok
1999-01-01
The pyrimidine(6–4)pyrimidone photoproduct [(6–4) adduct] is one of the major photoproducts induced by UV irradiation of DNA and occurs at TpT sites. The (6–4) adduct is highly mutagenic and leads most often to a 3′ T → C transition with 85% replicating error frequency [LeClerc, J. E., Borden, A. & Lawrence, C. W. (1991) Proc. Natl. Acad. Sci. USA 88, 9685–9689]. To determine the origin of the specific 3′ T → C transition of the (6–4) adduct, we have used experimental NMR restraints and molecular dynamics to determine the solution structure of a (6–4)-lesion DNA decamer duplex that contains a mismatched base pair between the 3′ T residue and an opposed G residue. Normal Watson–Crick-type hydrogen bonding is retained at the 5′ T of the lesion site. The O2 carbonyl of the 3′ T residue forms hydrogen bonds with the imino and amino protons of the opposed G residue. This potential hydrogen bonding stabilizes the overall helix and restores the highly distorted conformation of the (6–4) adduct to the typical B-form-like DNA structure. This structural feature can explain the marked preference for the insertion of an A residue opposite the 5′ T and a G residue opposite the 3′ T of the (6–4) lesion during trans-lesion synthesis. Thus these insertions yield the predominant 3′ T → C transition. PMID:10359763
Radiation biology of HZE particles
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.
1990-01-01
The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets which may be related to charge, velocity, or rate of energy loss. There are many consequences of this feature to biological endpoints when compared to effects of ionizing photons. Dose vs response and dose rate kinetics are modified, DNA and cellular repair systems are altered in their abilities to cope with damage and, the qualitative features of damage are unique for different ions. These features must be incorporated into any risk assessment system for radiation health management. HZE induced mutation, cell inactivation and altered organogenesis will be discussed emphasizing studies with the nematode Caenorhabditis elegans and cultured cells. Observations from radiobiology experiments in space will also be reviewed along with plans for future space-based studies.
Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe.
Lu, Ying; Li, Xianchan; Zhang, Limin; Yu, Ping; Su, Lei; Mao, Lanqun
2008-03-15
This study describes a facile and general strategy for the development of aptamer-based electrochemical sensors with a high specificity toward the targets and a ready regeneration feature. Very different from the existing strategies for the development of electrochemical aptasensors with the aptamers as the probes, the strategy proposed here is essentially based on the utilization of the aptamer-complementary DNA (cDNA) oligonucleotides as the probes for electrochemical sensing. In this context, the sequences at both ends of the cDNA are tailor-made to be complementary and both the redox moiety (i.e., ferrocene in this study) and thiol group are labeled onto the cDNA. The labeled cDNA are hybridized with their respective aptamers (i.e., ATP- and thrombin-binding aptamers in this study) to form double-stranded DNA (ds-DNA) and the electrochemical aptasensors are prepared by self-assembling the labeled ds-DNA onto Au electrodes. Upon target binding, the aptamers confined onto electrode surface dissociate from their respective cDNA oligonucleotides into the solution and the single-stranded cDNA could thus tend to form a hairpin structure through the hybridization of the complementary sequences at both its ends. Such a conformational change of the cDNA resulting from the target binding-induced dissociation of the aptamers essentially leads to the change in the voltammetric signal of the redox moiety labeled onto the cDNA and thus constitutes the mechanism for the electrochemical aptasensors for specific target sensing. The aptasensors demonstrated here with the cDNA as the probe are readily regenerated and show good responses toward the targets. This study may offer a new and relatively general approach to electrochemical aptasensors with good analytical properties and potential applications.
Conserved Sequences at the Origin of Adenovirus DNA Replication
Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.
1982-01-01
The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575
FT IR spectral investigations of toxic material dibrom using DFT
NASA Astrophysics Data System (ADS)
Parvathy, M.; Gopika, M. S.; Mary, B. L. Bincy; Nimmi, D. E.; Praveen, S. G.; Binoy, J.
2018-05-01
Since, dibrom is widely used organophosphate pesticide, the exploration of its structural features is of immense research interest, and can be effectively carried out using infrared spectroscopy aided by DFT simulation. The present work aims to investigate the interrelation between carbon-halogen bond strength and electronegativity halogen. The resonance of phosphate in dibrom and the deviation from resonant structure due to bridging of oxygen by electron donating methyl group has been investigated in detail. The molecular docking study has been performed to explore the bioactivity of dibrom and to assess the strength of interaction of dibrom towards DNA and BSA.
Germline-specific H1 variants: the "sexy" linker histones.
Pérez-Montero, Salvador; Carbonell, Albert; Azorín, Fernando
2016-03-01
The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.
Presence of Bacteria in Spontaneous Achilles Tendon Ruptures.
Rolf, Christer G; Fu, Sai-Chuen; Hopkins, Chelsea; Luan, Ju; Ip, Margaret; Yung, Shu-Hang; Friman, Göran; Qin, Ling; Chan, Kai-Ming
2017-07-01
The structural pathology of Achilles tendon (AT) ruptures resembles tendinopathy, but the causes remain unknown. Recently, a number of diseases were found to be attributed to bacterial infections, resulting in low-grade inflammation and progressive matrix disturbance. The authors speculate that spontaneous AT ruptures may also be influenced by the presence of bacteria. Bacteria are present in ruptured ATs but not in healthy tendons. Cross-sectional study; Level of evidence, 3. Patients with spontaneous AT ruptures and patients undergoing anterior cruciate ligament (ACL) reconstruction were recruited for this study. During AT surgical repair, excised tendinopathic tissue was collected, and healthy tendon samples were obtained as controls from hamstring tendon grafts used in ACL reconstruction. Half of every sample was reserved for DNA extraction and the other half for histology. Polymerase chain reaction (PCR) was conducted using 16S rRNA gene universal primers, and the PCR products were sequenced for the identification of bacterial species. A histological examination was performed to compare tendinopathic changes in the case and control samples. Five of 20 AT rupture samples were positive for the presence of bacterial DNA, while none of the 23 hamstring tendon samples were positive. Sterile operating and experimental conditions and tests on samples, controlling for harvesting and processing procedures, ruled out the chance of postoperative bacterial contamination. The species identified predominantly belonged to the Staphylococcus genus. AT rupture samples exhibited histopathological features characteristic of tendinopathy, and most healthy hamstring tendon samples displayed normal tendon features. There were no apparent differences in histopathology between the bacterial DNA-positive and bacterial DNA-negative AT rupture samples. The authors have demonstrated the presence of bacterial DNA in ruptured AT samples. It may suggest the potential involvement of bacteria in spontaneous AT ruptures.
Ali, Bazla; Desmond, Maxim I.; Mallory, Sara A.; Benítez, Andrea D.; Buckley, Larry J.; Weintraub, Susan T.; Osier, Michael V.; Black, Lindsay W.; Thomas, Julie A.
2017-01-01
Giant Salmonella phage SPN3US has a 240-kb dsDNA genome and a large complex virion composed of many proteins for which the functions of most are undefined. We recently determined that SPN3US shares a core set of genes with related giant phages and sequenced and characterized 18 amber mutants to facilitate its use as a genetic model system. Notably, SPN3US and related giant phages contain a bolus of ejection proteins within their heads, including a multi-subunit virion RNA polymerase (vRNAP), that enter the host cell with the DNA during infection. In this study, we characterized the SPN3US virion using mass spectrometry to gain insight into its head composition and the features that its head shares with those of related giant phages and with T4 phage. SPN3US has only homologs to the T4 proteins critical for prohead shell formation, the portal and major capsid proteins, as well as to the major enzymes essential for head maturation, the prohead protease and large terminase subunit. Eight of ~50 SPN3US head proteins were found to undergo proteolytic processing at a cleavage motif by the prohead protease gp245. Gp245 undergoes auto-cleavage of its C-terminus, suggesting this is a conserved activation and/or maturation feature of related phage proteases. Analyses of essential head gene mutants showed that the five subunits of the vRNAP must be assembled for any subunit to be incorporated into the prohead, although the assembled vRNAP must then undergo subsequent major conformational rearrangements in the DNA packed capsid to allow ejection through the ~30 Å diameter tail tube for transcription from the injected DNA. In addition, ejection protein candidate gp243 was found to play a critical role in head assembly. Our analyses of the vRNAP and gp243 mutants highlighted an unexpected dichotomy in giant phage head maturation: while all analyzed giant phages have a homologous protease that processes major capsid and portal proteins, processing of ejection proteins is not always a stable/defining feature. Our identification in SPN3US, and related phages, of a diverged paralog to the prohead protease further hints toward a complicated evolutionary pathway for giant phage head structure and assembly. PMID:29187846
Chakraborty, Sagnik; Steinbach, Peter J; Paul, Debamita; Mu, Hong; Broyde, Suse
2018-01-01
Abstract Rad4/XPC recognizes diverse DNA lesions including ultraviolet-photolesions and carcinogen-DNA adducts, initiating nucleotide excision repair. Studies have suggested that Rad4/XPC senses lesion-induced helix-destabilization to flip out nucleotides from damaged DNA sites. However, characterizing how DNA deformability and/or distortions impact recognition has been challenging. Here, using fluorescence lifetime measurements empowered by a maximum entropy algorithm, we mapped the conformational heterogeneities of artificially destabilized mismatched DNA substrates of varying Rad4-binding specificities. The conformational distributions, as probed by FRET between a cytosine-analog pair exquisitely sensitive to DNA twisting/bending, reveal a direct connection between intrinsic DNA deformability and Rad4 recognition. High-specificity CCC/CCC mismatch, free in solution, sampled a strikingly broad range of conformations from B-DNA-like to highly distorted conformations that resembled those observed with Rad4 bound; the extent of these distortions increased with bound Rad4 and with temperature. Conversely, the non-specific TAT/TAT mismatch had a homogeneous, B-DNA-like conformation. Molecular dynamics simulations also revealed a wide distribution of conformations for CCC/CCC, complementing experimental findings. We propose that intrinsic deformability promotes Rad4 damage recognition, perhaps by stalling a diffusing protein and/or facilitating ‘conformational capture’ of pre-distorted damaged sites. Surprisingly, even mismatched DNA specifically bound to Rad4 remains highly dynamic, a feature that may reflect the versatility of Rad4/XPC to recognize many structurally dissimilar lesions. PMID:29267981
Johnson, Matthew C; Sena-Velez, Marta; Washburn, Brian K; Platt, Georgia N; Lu, Stephen; Brewer, Tess E; Lynn, Jason S; Stroupe, M Elizabeth; Jones, Kathryn M
2017-12-01
Bacteriophages of nitrogen-fixing rhizobial bacteria are revealing a wealth of novel structures, diverse enzyme combinations and genomic features. Here we report the cryo-EM structure of the phage capsid at 4.9-5.7Å-resolution, the phage particle proteome, and the genome of the Sinorhizobium meliloti-infecting Podovirus ΦM5. This is the first structure of a phage with a capsid and capsid-associated structural proteins related to those of the LUZ24-like viruses that infect Pseudomonas aeruginosa. Like many other Podoviruses, ΦM5 is a T=7 icosahedron with a smooth capsid and short, relatively featureless tail. Nonetheless, this group is phylogenetically quite distinct from Podoviruses of the well-characterized T7, P22, and epsilon 15 supergroups. Structurally, a distinct bridge of density that appears unique to ΦM5 reaches down the body of the coat protein to the extended loop that interacts with the next monomer in a hexamer, perhaps stabilizing the mature capsid. Further, the predicted tail fibers of ΦM5 are quite different from those of enteric bacteria phages, but have domains in common with other rhizophages. Genomically, ΦM5 is highly mosaic. The ΦM5 genome is 44,005bp with 357bp direct terminal repeats (DTRs) and 58 unique ORFs. Surprisingly, the capsid structural module, the tail module, the DNA-packaging terminase, the DNA replication module and the integrase each appear to be from a different lineage. One of the most unusual features of ΦM5 is its terminase whose large subunit is quite different from previously-described short-DTR-generating packaging machines and does not fit into any of the established phylogenetic groups. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wadams, Robert Christopher
DNA nanotechnology is one of the most flourishing interdisciplinary research fields. Through the features of programmability and predictability, DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales, and more importantly, they can be used as scaffolds for organizing other nanoparticles, proteins and chemical groups. By leveraging these molecules, DNA nanostructures can be used to direct the organization of complex bio-inspired materials that may serve as smart drug delivery systems and in vitro or in vivo bio-molecular computing and diagnostic devices. In this dissertation I describe a systematic study of the thermodynamic properties of complex DNA nanostructures, including 2D and 3D DNA origami, in order to understand their assembly, stability and functionality and inform future design endeavors. It is conceivable that a more thorough understanding of DNA self-assembly can be used to guide the structural design process and optimize the conditions for assembly, manipulation, and functionalization, thus benefiting both upstream design and downstream applications. As a biocompatible nanoscale motif, the successful integration, stabilization and separation of DNA nanostructures from cells/cell lysate suggests its potential to serve as a diagnostic platform at the cellular level. Here, DNA origami was used to capture and identify multiple T cell receptor mRNA species from single cells within a mixed cell population. This demonstrates the potential of DNA nanostructure as an ideal nano scale tool for biological applications.
Masuda, Tokiha; Ling, Feng; Shibata, Takehiko; Mikawa, Tsutomu
2010-03-01
The Mhr1 protein is necessary for mtDNA homologous recombination in Saccharomyces cerevisiae. Homologous pairing (HP) is an essential reaction during homologous recombination, and is generally catalyzed by the RecA/Rad51 family of proteins in an ATP-dependent manner. Mhr1 catalyzes HP through a mechanism similar, at the DNA level, to that of the RecA/Rad51 proteins, but without utilizing ATP. However, it has no sequence homology with the RecA/Rad51 family proteins or with other ATP-independent HP proteins, and exhibits different requirements for DNA topology. We are interested in the structural features of the functional domains of Mhr1. In this study, we employed the native fluorescence of Mhr1's Trp residues to examine the energy transfer from the Trp residues to etheno-modified ssDNA bound to Mhr1. Our results showed that two of the seven Trp residues (Trp71 and Trp165) are spatially close to the bound DNA. A systematic analysis of mutant Mhr1 proteins revealed that Asp69 is involved in Mg(2+)-dependent DNA binding, and that multiple Lys and Arg residues located around Trp71 and Trp165 are involved in the DNA-binding activity of Mhr1. In addition, in vivo complementation analyses showed that a region around Trp165 is important for the maintenance of mtDNA. On the basis of these results, we discuss the function of the region surrounding Trp165.
Elucidating the role of transcription in shaping the 3D structure of the bacterial genome
NASA Astrophysics Data System (ADS)
Brandao, Hugo B.; Wang, Xindan; Rudner, David Z.; Mirny, Leonid
Active transcription has been linked to several genome conformation changes in bacteria, including the recruitment of chromosomal DNA to the cell membrane and formation of nucleoid clusters. Using genomic and imaging data as input into mathematical models and polymer simulations, we sought to explore the extent to which bacterial 3D genome structure could be explained by 1D transcription tracks. Using B. subtilis as a model organism, we investigated via polymer simulations the role of loop extrusion and DNA super-coiling on the formation of interaction domains and other fine-scale features that are visible in chromosome conformation capture (Hi-C) data. We then explored the role of the condensin structural maintenance of chromosome complex on the alignment of chromosomal arms. A parameter-free transcription traffic model demonstrated that mean chromosomal arm alignment can be quantitatively explained, and the effects on arm alignment in genomically rearranged strains of B. subtilis were accurately predicted. H.B. acknowledges support from the Natural Sciences and Engineering Research Council of Canada for a PGS-D fellowship.
Hsiao, Yu-Yuan; Fang, Woei-Horng; Lee, Chia-Chia; Chen, Yi-Ping; Yuan, Hanna S.
2014-01-01
DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3′ end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3′ end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3′ overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V–dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3′-end processing. PMID:24594808
High salt solution structure of a left-handed RNA double helix
Popenda, Mariusz; Milecki, Jan; Adamiak, Ryszard W.
2004-01-01
Right-handed RNA duplexes of (CG)n sequence undergo salt-induced helicity reversal, forming left-handed RNA double helices (Z-RNA). In contrast to the thoroughly studied Z-DNA, no Z-RNA structure of natural origin is known. Here we report the NMR structure of a half-turn, left-handed RNA helix (CGCGCG)2 determined in 6 M NaClO4. This is the first nucleic acid motif determined at such high salt. Sequential assignments of non-exchangeable proton resonances of the Z-form were based on the hitherto unreported NOE connectivity path [H6(n)-H5′/H5″(n)-H8(n+1)-H1′(n+1)-H6(n+2)] found for left-handed helices. Z-RNA structure shows several conformational features significantly different from Z-DNA. Intra-strand but no inter-strand base stacking was observed for both CpG and GpC steps. Helical twist angles for CpG steps have small positive values (4–7°), whereas GpC steps have large negative values (−61°). In the full-turn model of Z-RNA (12.4 bp per turn), base pairs are much closer to the helix axis than in Z-DNA, thus both the very deep, narrow minor groove with buried cytidine 2′-OH groups, and the major groove are well defined. The 2′-OH group of cytidines plays a crucial role in the Z-RNA structure and its formation; 2′-O-methylation of cytidine, but not of guanosine residues prohibits A to Z helicity reversal. PMID:15292450
Tabassum, Rabia
2017-10-18
Cytochrome P450s (CYPs) play critical role in oxidative metabolism of numerous xenobiotics and endogenous compounds. The first CYP3A subfamily member in saltwater crocodile has been cloned and modelled for three-dimensional (3D) structure. The full-length cDNA was obtained employing reverse transcription polymerase chain reaction (RT-PCR) strategy and rapid amplification of cDNA ends (RACE). The cDNA sequence of 1659 nucleotides includes 132 nucleotides from 5' untranslated region (UTR), an open reading frame of 1527 nucleotides encoding 509 amino acids designated as CYP3A163. The alignment of CYP3A163 sequence with CYP3A subfamily across the lineages exhibit the loss of 1 residue in birds and 7 residues in mammals in comparison to reptiles suggesting the adaptation processes during evolution. The amino acid identity of CYP3A163 with Alligator mississippiensis CYP3A77 and Homo sapiens CYP3A4 is 91% and 62% respectively. The 3D structure of CYP3A163 modelled using human CYP3A4 structure as a template with Phyre 2 software, represents high similarity with its functionally important motifs and catalytic domain. Both sequence and structure of CYP3A163 display the common and conserved features of CYP3A subfamily. Overall, this study provides primary molecular and structural data of CYP3A163 required to investigate the xenobiotic metabolism in saltwater crocodiles. Copyright © 2017 Elsevier Inc. All rights reserved.
Recognition of Local DNA Structures by p53 Protein
Brázda, Václav; Coufal, Jan
2017-01-01
p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells. PMID:28208646
CHRONICITY OF DEPRESSION AND MOLECULAR MARKERS IN A LARGE SAMPLE OF HAN CHINESE WOMEN.
Edwards, Alexis C; Aggen, Steven H; Cai, Na; Bigdeli, Tim B; Peterson, Roseann E; Docherty, Anna R; Webb, Bradley T; Bacanu, Silviu-Alin; Flint, Jonathan; Kendler, Kenneth S
2016-04-25
Major depressive disorder (MDD) has been associated with changes in mean telomere length and mitochondrial DNA (mtDNA) copy number. This study investigates if clinical features of MDD differentially impact these molecular markers. Data from a large, clinically ascertained sample of Han Chinese women with recurrent MDD were used to examine whether symptom presentation, severity, and comorbidity were related to salivary telomere length and/or mtDNA copy number (maximum N = 5,284 for both molecular and phenotypic data). Structural equation modeling revealed that duration of longest episode was positively associated with mtDNA copy number, while earlier age of onset of most severe episode and a history of dysthymia were associated with shorter telomeres. Other factors, such as symptom presentation, family history of depression, and other comorbid internalizing disorders, were not associated with these molecular markers. Chronicity of depressive symptoms is related to more pronounced telomere shortening and increased mtDNA copy number among individuals with a history of recurrent MDD. As these molecular markers have previously been implicated in physiological aging and morbidity, individuals who experience prolonged depressive symptoms are potentially at greater risk of adverse medical outcomes. © 2016 Wiley Periodicals, Inc.
Saccharomyces cerevisiae Hrq1 requires a long 3'-tailed DNA substrate for helicase activity.
Kwon, Sung-Hun; Choi, Do-Hee; Lee, Rina; Bae, Sung-Ho
2012-10-26
RecQ helicases are well conserved proteins from bacteria to human and function in various DNA metabolism for maintenance of genome stability. Five RecQ helicases are found in humans, whereas only one RecQ helicase has been described in lower eukaryotes. However, recent studies predicted the presence of a second RecQ helicase, Hrq1, in fungal genomes and verified it as a functional gene in fission yeast. Here we show that 3'-5' helicase activity is intrinsically associated with Hrq1 of Saccharomyces cerevisiae. We also determined several biochemical properties of Hrq1 helicase distinguishable from those of other RecQ helicase members. Hrq1 is able to unwind relatively long duplex DNA up to 120-bp and is significantly stimulated by a preexisting fork structure. Further, the most striking feature of Hrq1 is its absolute requirement for a long 3'-tail (⩾70-nt) for efficient unwinding of duplex DNA. We also found that Hrq1 has potent DNA strand annealing activity. Our results indicate that Hrq1 has vigorous helicase activity that deserves further characterization to expand our understanding of RecQ helicases. Copyright © 2012 Elsevier Inc. All rights reserved.
2014-01-01
Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left-handed twist of dsDNA that is aligned with the channel could occur due to the conformational change of the phage motor channels from a left-handed configuration for DNA entry to a right-handed configuration for DNA ejection for host cell infection. Conclusions The revolution motor is widespread among biological systems, and can be distinguished from rotation motors by channel size and chirality. The revolution mechanism renders dsDNA void of coiling and torque during translocation of the lengthy helical chromosome, thus resulting in more efficient motor energy conversion. PMID:24940480
A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data.
Baur, Brittany; Bozdag, Serdar
2016-01-01
DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes.
Deakyne, Julianna S; Malecka, Kimberly A; Messick, Troy E; Lieberman, Paul M
2017-10-01
Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro , minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1. IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance. Copyright © 2017 American Society for Microbiology.
Wolff, G; Kück, U
1990-04-01
The gene for the mitochondrial small subunit rRNA (SSUrRNA) from the heterotrophic alga Prototheca wickerhamii has been isolated from a gene library of extranuclear DNA. Sequence and structural analyses allow the determination of a secondary structure model for this rRNA. In addition, several sequence motifs are present which are typically found in SSUrRNAs of various mitochondrial origins. Unexpectedly, the Prototheca RNA sequence has more features in common with mitochondrial SSUrRNAs from plants than with that from the green alga Chlamydomonas reinhardtii. The phylogenetic relationship between mitochondria from plants and algae is discussed.
Bourras, Salim; Meyer, Michel; Grandaubert, Jonathan; Lapalu, Nicolas; Fudal, Isabelle; Linglin, Juliette; Ollivier, Benedicte; Blaise, Françoise; Balesdent, Marie-Hélène; Rouxel, Thierry
2012-08-01
The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens-mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway.
Micromechanical study of protein-DNA interactions and chromosomes
NASA Astrophysics Data System (ADS)
Marko, John
I will discuss micromechanics experiments that our group has used to analyze protein-DNA interactions and chromosome organization. In single-DNA experiments we have found that a feature of protein-DNA complexes is that their dissociation rates can depend strikingly on bulk solution concentrations of other proteins and DNA segments; I will describe experiments which demonstrate this effect, which can involve tens-fold changes in off-rates with submicromolar changes in solution concentrations. Second, I will discuss experiments aimed at analyzing large-scale human chromosome structure; we isolate metaphase chromosomes, which in their native form behave as remarkably elastic networks of chromatin. Exposure to DNA-cutting restriction enzymes completely eliminates this elasticity, indicating that there is not a mechanically contiguous protein ''scaffold'' from which the chromosome gains its stability. I will show results of siRNA experiments indicating that depletion of condensin proteins leads to destabilization of chromosome mechanics, indicating condensin's role as the major chromatin ''cross-linker'' in metaphase chromosomes. Finally I will discuss similar experiments on human G1 nuclei, where we use genetic and chemical modifications to separate the contributions of the nuclear lamina and chromatin to the mechanical stiffness of the nucleus as a whole. Supported by the NSF (DMR-1206868, MCB-1022117) and the NIH (GM105847, CA193419).
DNA Brick Crystals with Prescribed Depth
Ke, Yonggang; Ong, Luvena L.; Sun, Wei; Song, Jie; Dong, Mingdong; Shih, William M.; Yin, Peng
2014-01-01
We describe a general framework for constructing two-dimensional crystals with prescribed depth and sophisticated three-dimensional features. These crystals may serve as scaffolds for the precise spatial arrangements of functional materials for diverse applications. The crystals are self-assembled from single-stranded DNA components called DNA bricks. We demonstrate the experimental construction of DNA brick crystals that can grow to micron-size in the lateral dimensions with precisely controlled depth up to 80 nanometers. They can be designed to display user-specified sophisticated three-dimensional nanoscale features, such as continuous or discontinuous cavities and channels, and to pack DNA helices at parallel and perpendicular angles relative to the plane of the crystals. PMID:25343605
Wang, Meng; Cai, Elizabeth; Fujiwara, Nana; Fones, Lilah; Brown, Elizabeth; Yanagawa, Yuchio; Cave, John W
2017-05-03
Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. For a subset of olfactory bulb interneurons, activity-dependent changes in GABA are reflected by corresponding changes in Glutamate decarboxylase 1 ( Gad1 ) expression levels. Mechanisms regulating Gad1 promoter activity are poorly understood, but here we show that a conserved G:C-rich region in the mouse Gad1 proximal promoter region both recruits heterogeneous nuclear ribonucleoproteins (hnRNPs) that facilitate transcription and forms single-stranded DNA secondary structures associated with transcriptional repression. This promoter architecture and function is shared with Tyrosine hydroxylase ( Th ), which is also modulated by odorant-dependent activity in the olfactory bulb. This study shows that the balance between DNA secondary structure formation and hnRNP binding on the mouse Th and Gad1 promoters in the olfactory bulb is responsive to changes in odorant-dependent sensory input. These findings reveal that Th and Gad1 share a novel transcription regulatory mechanism that facilitates sensory input-dependent regulation of dopamine and GABA expression. SIGNIFICANCE STATEMENT Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. This study shows that transcription of genes encoding rate-limiting enzymes for GABA and dopamine biosynthesis ( Gad1 and Th , respectively) in the mammalian olfactory bulb is regulated by G:C-rich regions that both recruit heterogeneous nuclear ribonucleoproteins (hnRNPs) to facilitate transcription and form single-stranded DNA secondary structures associated with repression. hnRNP binding and formation of DNA secondary structure on the Th and Gad1 promoters are mutually exclusive, and odorant sensory input levels regulate the balance between these regulatory features. These findings reveal that Th and Gad1 share a transcription regulatory mechanism that facilitates odorant-dependent regulation of dopamine and GABA expression levels. Copyright © 2017 the authors 0270-6474/17/374778-12$15.00/0.
Pandey, Preeti; Verma, Vijay; Dhar, Suman Kumar; Gourinath, Samudrala
2018-01-11
The characteristic of interaction with various enzymes and processivity-promoting nature during DNA replication makes β-clamp an important drug target. Helicobacter pylori ( H. pylori ) have several unique features in DNA replication machinery that makes it different from other microorganisms. To find out whether difference in DNA replication proteins behavior accounts for any difference in drug response when compared to E. coli , in the present study, we have tested E. coli β-clamp inhibitor molecules against H. pylori β-clamp. Various approaches were used to test the binding of inhibitors to H. pylori β-clamp including docking, surface competition assay, complex structure determination, as well as antimicrobial assay. Out of five shortlisted inhibitor molecules on the basis of docking score, three molecules, 5-chloroisatin, carprofen, and 3,4-difluorobenzamide were co-crystallized with H. pylori β-clamp and the structures show that they bind at the protein-protein interaction site as expected. In vivo studies showed only two molecules, 5-chloroisatin, and 3,4-difluorobenzamide inhibited the growth of the pylori with MIC values in micro molar range, which is better than the inhibitory effect of the same drugs on E. coli . Therefore, the evaluation of such drugs against H. pylori may explore the possibility to use to generate species-specific pharmacophore for development of new drugs against H. pylori .
Accurate representation of B-DNA double helical structure with implicit solvent and counterions.
Wang, Lihua; Hingerty, Brian E; Srinivasan, A R; Olson, Wilma K; Broyde, Suse
2002-01-01
High-resolution nuclear magnetic resonance (NMR) and crystallographic data have been taken to refine the force field used in the torsion angle space nucleic acids molecular mechanics program DUPLEX. The population balance deduced from NMR studies of two carcinogen-modified DNA conformers in equilibrium was used to fine tune a sigmoidal, distance-dependent dielectric function so that reasonable relative energies could be obtained. In addition, the base-pair and backbone geometry from high-resolution crystal structures of the Dickerson-Drew dodecamer was used to re-evaluate the deoxyribose pseudorotation profile and the Lennard-Jones nonbonded energy terms. With a modified dielectric function that assumes a very steep distance-dependent form, a deoxyribose pseudorotation profile with reduced energy barriers between C2'- and C3'-endo minima, and a shift of the Lennard-Jones potential energy minimum to a distance approximately 0.4 A greater than the sum of the van der Waals' radii, the sequence-dependent conformational features of the Dickerson-Drew dodecamer in both the solid state and the aqueous liquid crystalline phase are well reproduced. The robust performance of the revised force field, in conjunction with its efficiency through implicit treatment of solvent and counterions, provides a valuable tool for elucidating conformations and structure-function relationships of DNA, including those of molecules modified by carcinogens and other ligands. PMID:12080128
Long, Hannah K; Sims, David; Heger, Andreas; Blackledge, Neil P; Kutter, Claudia; Wright, Megan L; Grützner, Frank; Odom, Duncan T; Patient, Roger; Ponting, Chris P; Klose, Robert J
2013-01-01
Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI: http://dx.doi.org/10.7554/eLife.00348.001 PMID:23467541
Self-assembling of calcium salt of the new DNA base 5-carboxylcytosine
NASA Astrophysics Data System (ADS)
Irrera, Simona; Ruiz-Hernandez, Sergio E.; Reggente, Melania; Passeri, Daniele; Natali, Marco; Gala, Fabrizio; Zollo, Giuseppe; Rossi, Marco; Portalone, Gustavo
2017-06-01
Supramolecular architectures involving DNA bases can have a strong impact in several fields such as nanomedicine and nanodevice manufacturing. To date, in addition to the four canonical nucleobases (adenine, thymine, guanine and cytosine), four other forms of cytosine modified at the 5 position have been identified in DNA. Among these four new cytosine derivatives, 5-carboxylcytosine has been recently discovered in mammalian stem cell DNA, and proposed as the final product of the oxidative epigenetic demethylation pathway on the 5 position of cytosine. In this work, a calcium salt of 5-carboxylcytosine has been synthesized and deposited on graphite surface, where it forms self-assembled features as long range monolayers and up to one micron long filaments. These structures have been analyzed in details combining different theoretical and experimental approaches: X-ray single-crystal diffraction data were used to simulate the molecule-graphite interaction, first using molecular dynamics and then refining the results using density functional theory (DFT); finally, data obtained with DFT were used to rationalize atomic force microscopy (AFM) results.
Boer, D. Roeland; Ruiz-Masó, José Angel; Rueda, Manuel; Petoukhov, Maxim V.; Machón, Cristina; Svergun, Dmitri I.; Orozco, Modesto; del Solar, Gloria; Coll, Miquel
2016-01-01
DNA replication initiation is a vital and tightly regulated step in all replicons and requires an initiator factor that specifically recognizes the DNA replication origin and starts replication. RepB from the promiscuous streptococcal plasmid pMV158 is a hexameric ring protein evolutionary related to viral initiators. Here we explore the conformational plasticity of the RepB hexamer by i) SAXS, ii) sedimentation experiments, iii) molecular simulations and iv) X-ray crystallography. Combining these techniques, we derive an estimate of the conformational ensemble in solution showing that the C-terminal oligomerisation domains of the protein form a rigid cylindrical scaffold to which the N-terminal DNA-binding/catalytic domains are attached as highly flexible appendages, featuring multiple orientations. In addition, we show that the hinge region connecting both domains plays a pivotal role in the observed plasticity. Sequence comparisons and a literature survey show that this hinge region could exists in other initiators, suggesting that it is a common, crucial structural element for DNA binding and manipulation. PMID:26875695
The control of lambda DNA terminase synthesis.
Murialdo, H; Davidson, A; Chow, S; Gold, M
1987-01-01
Nu1 and A, the genes coding for bacteriophage lambda DNA terminase, rank among the most poorly translated genes expressed in E. coli. To understand the reason for this low level of translation the genes were cloned into plasmids and their expression measured. In addition, the wild type DNA sequences immediately preceding the genes were reduced and modified. It was found that the elements that control translation are contained in the 100 base pairs upstream from the initiation codon. Interchanging these upstream sequences with those of an efficiently translated gene dramatically increased the translation of terminase subunits. It seems unlikely that the rare codons present in the genes, and any feature of their mRNA secondary structure play a role in the control of their translation. The elimination of cos from plasmids containing Nu1 and A also resulted in an increase in terminase production. This result suggests a role for cos in the control of late gene expression. The terminase subunit overproducer strains are potentially very useful for the design of improved DNA packaging and cosmid mapping techniques. Images PMID:3029667
Recombinogenic Telomeres in Diploid Sorex granarius (Soricidae, Eulipotyphla) Fibroblast Cells
Draskovic, I.; Minina, J. M.; Karamysheva, T. V.; Novo, C. L.; Liu, W.-Y.; Porreca, R. M.; Gibaud, A.; Zvereva, M. E.; Skvortsov, D. A.; Rubtsov, N. B.
2014-01-01
The telomere structure in the Iberian shrew Sorex granarius is characterized by unique, striking features, with short arms of acrocentric chromosomes carrying extremely long telomeres (up to 300 kb) with interspersed ribosomal DNA (rDNA) repeat blocks. In this work, we investigated the telomere physiology of S. granarius fibroblast cells and found that telomere repeats are transcribed on both strands and that there is no telomere-dependent senescence mechanism. Although telomerase activity is detectable throughout cell culture and appears to act on both short and long telomeres, we also discovered that signatures of a recombinogenic activity are omnipresent, including telomere-sister chromatid exchanges, formation of alternative lengthening of telomeres (ALT)-associated PML-like bodies, production of telomere circles, and a high frequency of telomeres carrying marks of a DNA damage response. Our results suggest that recombination participates in the maintenance of the very long telomeres in normal S. granarius fibroblasts. We discuss the possible interplay between the interspersed telomere and rDNA repeats in the stabilization of the very long telomeres in this organism. PMID:24842907
Tumor transfection after systemic injection of DNA lipid nanocapsules.
Morille, Marie; Passirani, Catherine; Dufort, Sandrine; Bastiat, Guillaume; Pitard, Bruno; Coll, Jean-Luc; Benoit, Jean-Pierre
2011-03-01
With the goal of generating an efficient vector for systemic gene delivery, a new kind of nanocarrier consisting of lipid nanocapsules encapsulating DOTAP/DOPE lipoplexes (DNA LNCs) was pegylated by the post-insertion of amphiphilic and flexible polymers. The aim of this surface modification was to create a long-circulating vector, able to circulate in the blood stream and efficient in transfecting tumoral cells after passive targeting by enhanced permeability and retention effect (EPR effect). PEG conformation, electrostatic features, and hydrophylicity are known to be important factors able to influence the pharmacokinetic behaviour of vectors. In this context, the surface structure characteristics of the newly pegylated DNA LNCs were studied by measuring electrophoretic mobility as a function of ionic strength in order to establish a correlation between surface properties and in vivo performance of the vector. Finally, thanks to this PEGylation, gene expression was measured up to 84-fold higher in tumor compared to other tested organs after intravenous injection. The present results indicate that PEGylated DNA LNCs are promising carriers for an efficient cancer gene therapy. Copyright © 2010 Elsevier Ltd. All rights reserved.
The Red Queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease
Chou, Jui-Yu; Leu, Jun-Yi
2015-01-01
Cyto-nuclear incompatibility, a specific form of Dobzhansky-Muller incompatibility caused by incompatible alleles between mitochondrial and nuclear genomes, has been suggested to play a critical role during speciation. Several features of the mitochondrial genome (mtDNA), including high mutation rate, dynamic genomic structure, and uniparental inheritance, make mtDNA more likely to accumulate mutations in the population. Once mtDNA has changed, the nuclear genome needs to play catch-up due to the intimate interactions between these two genomes. In two populations, if cyto-nuclear co-evolution is driven in different directions, it may eventually lead to hybrid incompatibility. Although cyto-nuclear incompatibility has been observed in a wide range of organisms, it remains unclear what type of mutations drives the co-evolution. Currently, evidence supporting adaptive mutations in mtDNA remains limited. On the other hand, it has been known that some mutations allow mtDNA to propagate more efficiently but compromise the host fitness (described as selfish mtDNA). Arms races between such selfish mtDNA and host nuclear genomes can accelerate cyto-nuclear co-evolution and lead to a phenomenon called the Red Queen Effect. Here, we discuss how the Red Queen Effect may contribute to the frequent observation of cyto-nuclear incompatibility and be the underlying driving force of some human mitochondrial diseases. PMID:26042149
Willwand, K; Baldauf, A Q; Deleu, L; Mumtsidu, E; Costello, E; Beard, P; Rommelaere, J
1997-10-01
The right-end telomere of replicative form (RF) DNA of the autonomous parvovirus minute virus of mice (MVM) consists of a sequence that is self-complementary except for a three nucleotide loop around the axis of symmetry and an interior bulge of three unpaired nucleotides on one strand (designated the right-end 'bubble'). This right-end inverted repeat can exist in the form of a folded-back strand (hairpin conformation) or in an extended form, base-paired to a copy strand (duplex conformation). We recently reported that the right-end telomere is processed in an A9 cell extract supplemented with the MVM nonstructural protein NS1. This processing is shown here to result from the NS1-dependent nicking of the complementary strand at a unique position 21 nt inboard of the folded-back genomic 5' end. DNA species terminating in duplex or hairpin configurations, or in a mutated structure that has lost the right-end bulge, are all cleaved in the presence of NS1, indicating that features distinguishing these structures are not prerequisites for nicking under the in vitro conditions tested. Cleavage of the hairpin structure is followed by strand-displacement synthesis, generating the right-end duplex conformation, while processing of the duplex structure leads to the release of free right-end telomeres. In the majority of molecules, displacement synthesis at the right terminus stops a few nucleotides before reaching the end of the template strand, possibly due to NS1 which is covalently bound to this end. A fraction of the right-end duplex product undergoes melting and re-folding into hairpin structures (formation of a 'rabbit-ear' structure).
Making the Bend: DNA Tertiary Structure and Protein-DNA Interactions
Harteis, Sabrina; Schneider, Sabine
2014-01-01
DNA structure functions as an overlapping code to the DNA sequence. Rapid progress in understanding the role of DNA structure in gene regulation, DNA damage recognition and genome stability has been made. The three dimensional structure of both proteins and DNA plays a crucial role for their specific interaction, and proteins can recognise the chemical signature of DNA sequence (“base readout”) as well as the intrinsic DNA structure (“shape recognition”). These recognition mechanisms do not exist in isolation but, depending on the individual interaction partners, are combined to various extents. Driving force for the interaction between protein and DNA remain the unique thermodynamics of each individual DNA-protein pair. In this review we focus on the structures and conformations adopted by DNA, both influenced by and influencing the specific interaction with the corresponding protein binding partner, as well as their underlying thermodynamics. PMID:25026169
2009 Epigenetics Gordon Research Conference (August 9 - 14, 2009)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeanie Lee
Epigenetics refers to the study of heritable changes in genome function that occur without a change in primary DNA sequence. The 2009 Gordon Conference in Epigenetics will feature discussion of various epigenetic phenomena, emerging understanding of their underlying mechanisms, and the growing appreciation that human, animal, and plant health all depend on proper epigenetic control. Special emphasis will be placed on genome-environment interactions particularly as they relate to human disease. Towards improving knowledge of molecular mechanisms, the conference will feature international leaders studying the roles of higher order chromatin structure, noncoding RNA, repeat elements, nuclear organization, and morphogenic evolution. Traditionalmore » and new model organisms are selected from plants, fungi, and metazoans.« less
Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
Agarwal, Nayan P; Matthies, Michael; Joffroy, Bastian; Schmidt, Thorsten L
2018-03-27
The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.
Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.
2015-01-01
The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms. PMID:26340000
West, Claire; James, Stephen A; Davey, Robert P; Dicks, Jo; Roberts, Ian N
2014-07-01
The ribosomal RNA encapsulates a wealth of evolutionary information, including genetic variation that can be used to discriminate between organisms at a wide range of taxonomic levels. For example, the prokaryotic 16S rDNA sequence is very widely used both in phylogenetic studies and as a marker in metagenomic surveys and the internal transcribed spacer region, frequently used in plant phylogenetics, is now recognized as a fungal DNA barcode. However, this widespread use does not escape criticism, principally due to issues such as difficulties in classification of paralogous versus orthologous rDNA units and intragenomic variation, both of which may be significant barriers to accurate phylogenetic inference. We recently analyzed data sets from the Saccharomyces Genome Resequencing Project, characterizing rDNA sequence variation within multiple strains of the baker's yeast Saccharomyces cerevisiae and its nearest wild relative Saccharomyces paradoxus in unprecedented detail. Notably, both species possess single locus rDNA systems. Here, we use these new variation datasets to assess whether a more detailed characterization of the rDNA locus can alleviate the second of these phylogenetic issues, sequence heterogeneity, while controlling for the first. We demonstrate that a strong phylogenetic signal exists within both datasets and illustrate how they can be used, with existing methodology, to estimate intraspecies phylogenies of yeast strains consistent with those derived from whole-genome approaches. We also describe the use of partial Single Nucleotide Polymorphisms, a type of sequence variation found only in repetitive genomic regions, in identifying key evolutionary features such as genome hybridization events and show their consistency with whole-genome Structure analyses. We conclude that our approach can transform rDNA sequence heterogeneity from a problem to a useful source of evolutionary information, enabling the estimation of highly accurate phylogenies of closely related organisms, and discuss how it could be extended to future studies of multilocus rDNA systems. [concerted evolution; genome hydridisation; phylogenetic analysis; ribosomal DNA; whole genome sequencing; yeast]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Use of mutation spectra analysis software.
Rogozin, I; Kondrashov, F; Glazko, G
2001-02-01
The study and comparison of mutation(al) spectra is an important problem in molecular biology, because these spectra often reflect on important features of mutations and their fixation. Such features include the interaction of DNA with various mutagens, the function of repair/replication enzymes, and properties of target proteins. It is known that mutability varies significantly along nucleotide sequences, such that mutations often concentrate at certain positions, called "hotspots," in a sequence. In this paper, we discuss in detail two approaches for mutation spectra analysis: the comparison of mutation spectra with a HG-PUBL program, (FTP: sunsite.unc.edu/pub/academic/biology/dna-mutations/hyperg) and hotspot prediction with the CLUSTERM program (www.itba.mi.cnr.it/webmutation; ftp.bionet.nsc.ru/pub/biology/dbms/clusterm.zip). Several other approaches for mutational spectra analysis, such as the analysis of a target protein structure, hotspot context revealing, multiple spectra comparisons, as well as a number of mutation databases are briefly described. Mutation spectra in the lacI gene of E. coli and the human p53 gene are used for illustration of various difficulties of such analysis. Copyright 2001 Wiley-Liss, Inc.
SNOM Imaging of a Crypt-Like Feature in Adenocarcinoma Associated with Barrett's Oesophagus
Craig, Timothy; Smith, Andrew D.; Holder, Gareth M.; ...
2018-01-05
The development of more accurate and sensitive diagnostic techniques is a key factor in efforts to improve cancer survival rates. The technique of infrared aperture fibre scanning near-field optical microscopy (IR-SNOM),together with radiation from the infrared free-electron laser (IR-FEL) on ALICEat Daresbury Laboratory (UK), has been used to obtain IR images of a crypt-like feature and the surrounding tissue; the tissue was taken from a patient with oesophageal adenocarcinoma and with a history of Barrett’s oesophagus. We have shown that the DNA signal is enhanced relative to other contributions in the region of the crypt, and the glycoprotein signal showsmore » a less pronounced increase in the region of the crypt. The Amide II signal is found to be anti-correlated with the DNA and glycoprotein profiles. The absorbance of the Amide II signal is found to differ for three different types of cancer tissue. In conclusion, high-resolution IR images of the crypt reveal additional structure that would not be resolved in diffraction-limited techniques.« less
NASA Astrophysics Data System (ADS)
van den Akker, Mary Evelyn
Radon is considered the second-leading cause of lung cancer after smoking. Epidemiological studies have been conducted in miner cohorts as well as general populations to estimate the risks associated with high and low dose exposures. There are problems with extrapolating risk estimates to low dose exposures, mainly that the dose-response curve at low doses is not well understood. Calculated dosimetric quantities give average energy depositions in an organ or a whole body, but morphological features of an individual can affect these values. As opposed to human phantom models, Computed Tomography (CT) scans provide unique, patient-specific geometries that are valuable in modeling the radiological effects of the short-lived radon progeny sources. Monte Carlo particle transport code Geant4 was used with the CT scan data to model radon inhalation in the main bronchial bifurcation. The equivalent dose rates are near the lower bounds of estimates found in the literature, depending on source volume. To complement the macroscopic study, simulations were run in a small tissue volume in Geant4-DNA toolkit. As an expansion of Geant4 meant to simulate direct physical interactions at the cellular level, the particle track structure of the radon progeny alphas can be analyzed to estimate the damage that can occur in sensitive cellular structures like the DNA molecule. These estimates of DNA double strand breaks are lower than those found in Geant4-DNA studies. Further refinements of the microscopic model are at the cutting edge of nanodosimetry research.
Matthews, R J; Cahir, E D; Thomas, M L
1990-01-01
Protein-tyrosine-phosphatases (protein-tyrosine-phosphate phosphohydrolase, EC 3.13.48) have been implicated in the regulation of cell growth; however, to date few tyrosine phosphatases have been characterized. To identify additional family members, the cDNA for the human tyrosine phosphatase leukocyte common antigen (LCA; CD45) was used to screen, under low stringency, a mouse pre-B-cell cDNA library. Two cDNA clones were isolated and sequence analysis predicts a protein sequence of 793 amino acids. We have named the molecule LRP (LCA-related phosphatase). RNA transfer analysis indicates that the cDNAs were derived from a 3.2-kilobase mRNA. The LRP mRNA is transcribed in a wide variety of tissues. The predicted protein structure can be divided into the following structural features: a short 19-amino acid leader sequence, an exterior domain of 123 amino acids that is predicted to be highly glycosylated, a 24-amino acid membrane-spanning region, and a 627-amino acid cytoplasmic region. The cytoplasmic region contains two approximately 260-amino acid domains, each with homology to the tyrosine phosphatase family. One of the cDNA clones differed in that it had a 108-base-pair insertion that, while preserving the reading frame, would disrupt the first protein-tyrosine-phosphatase domain. Analysis of genomic DNA indicates that the insertion is due to an alternatively spliced exon. LRP appears to be evolutionarily conserved as a putative homologue has been identified in the invertebrate Styela plicata. Images PMID:2162042
A molecular model for proflavine-DNA intercalation.
Neidle, S; Pearl, L H; Herzyk, P; Berman, H M
1988-01-01
A molecular model has been derived for the intercalation of proflavine into the CpG site of the decamer duplex of d(GATACGATAC). The starting geometry of the intercalation site was taken from previous crystallographic studies on the d(CpG)-proflavine complex, and molecular mechanics used to obtain a stereochemically acceptable structure. This has widened grooves compared to standard A- or B- double helices, as well as distinct conformational, roll, twist and tilt features. PMID:3174439
Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection
2015-01-01
Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. A detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges are presented. Application of the plasma-processed paper sensors in DNA detection is also demonstrated. PMID:25423585
Wang, Y L; Beach, M J; Rodwell, V W
1989-01-01
We have cloned and sequenced a 505-base-pair (bp) segment of DNA situated upstream of mvaA, the structural gene for (S)-3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.88) of Pseudomonas mevalonii. The DNA segment that we characterized includes the promoter region for the mva operon. Nuclease S1 mapping and primer extension analysis showed that mvaA is the promoter-proximal gene of the mva operon. Transcription initiates at -56 bp relative to the first A (+1) of the translation start site. Transcription in vivo was induced by mevalonate. Structural features of the mva promoter region include an 80-bp A + T-rich region, and -12, -24 consensus sequences that resemble sequences of sigma 54 promoters in enteric organisms. The relative amplitudes of catalytic activity, enzyme protein, and mvaA mRNA are consistent with a model of regulation of this operon at the transcriptional level. Images PMID:2477360
Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection
Gandhiraman, Ram P.; Nordlund, Dennis; Jayan, Vivek; ...
2014-11-25
Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. We presentmore » a detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges. Lastly, application of the plasma-processed paper sensors in DNA detection is also demonstrated.« less
Makarov, M S; Chentsov, Iu S
2010-01-01
Giant nuclei from salivary glands of Chironomus plumosus were treated in situ with detergent, 2 M NaCl and nucleases in order to reveal residual nuclear matrix proteins (NMP). It was shown, that preceding stabilization of non-histone proteins with 2 mM CuCl2 allowed to visualize the structure of polythene chromosomes at every stage of the extraction of histones and DNA. Stabilized NPM of polythene chromosomes maintains their morphology and banding patterns, which is observed by light and electron microscopy, whereas internal fibril net or residual nucleoli are not found. In stabilized NPM of polythene chromosomes, topoisomerase IIalpha and SMC1 retain their localization that is typical of untreated chromosomes. NPM of polythene chromosomes also includes sites of DNA replication, visualized with BrDU incubation, and some RNA-components. So, we can conclude that structure of NPM from giant nuclei is equal to NPM from normal interphase nuclei, and that morphological features of polythene chromosomes depend on the presence of NMP.
Langheinrich, Jessica; Bogner, Franz X
2015-01-01
As non-scientific conceptions interfere with learning processes, teachers need both, to know about them and to address them in their classrooms. For our study, based on 182 eleventh graders, we analyzed the level of conceptual understanding by implementing the "draw and write" technique during a computer-supported gene technology module. To give participants the hierarchical organizational level which they have to draw, was a specific feature of our study. We introduced two objective category systems for analyzing drawings and inscriptions. Our results indicated a long- as well as a short-term increase in the level of conceptual understanding and in the number of drawn elements and their grades concerning the DNA structure. Consequently, we regard the "draw and write" technique as a tool for a teacher to get to know students' alternative conceptions. Furthermore, our study points the modification potential of hands-on and computer-supported learning modules. © 2015 The International Union of Biochemistry and Molecular Biology.
Yang, Xiaoxia; Wang, Jia; Sun, Jun; Liu, Rong
2015-01-01
Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.
Hacker, William C; Li, Shuxiang; Elcock, Adrian H
2017-07-27
We describe structural models of the Escherichia coli chromosome in which the positions of all 4.6 million nucleotides of each DNA strand are resolved. Models consistent with two basic chromosomal orientations, differing in their positioning of the origin of replication, have been constructed. In both types of model, the chromosome is partitioned into plectoneme-abundant and plectoneme-free regions, with plectoneme lengths and branching patterns matching experimental distributions, and with spatial distributions of highly-transcribed chromosomal regions matching recent experimental measurements of the distribution of RNA polymerases. Physical analysis of the models indicates that the effective persistence length of the DNA and relative contributions of twist and writhe to the chromosome's negative supercoiling are in good correspondence with experimental estimates. The models exhibit characteristics similar to those of 'fractal globules,' and even the most genomically-distant parts of the chromosome can be physically connected, through paths combining linear diffusion and inter-segmental transfer, by an average of only ∼10 000 bp. Finally, macrodomain structures and the spatial distributions of co-expressed genes are analyzed: the latter are shown to depend strongly on the overall orientation of the chromosome. We anticipate that the models will prove useful in exploring other static and dynamic features of the bacterial chromosome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Effect of C(60) fullerene on the duplex formation of i-motif DNA with complementary DNA in solution.
Jin, Kyeong Sik; Shin, Su Ryon; Ahn, Byungcheol; Jin, Sangwoo; Rho, Yecheol; Kim, Heesoo; Kim, Seon Jeong; Ree, Moonhor
2010-04-15
The structural effects of fullerene on i-motif DNA were investigated by characterizing the structures of fullerene-free and fullerene-bound i-motif DNA, in the presence of cDNA and in solutions of varying pH, using circular dichroism and synchrotron small-angle X-ray scattering. To facilitate a direct structural comparison between the i-motif and duplex structures in response to pH stimulus, we developed atomic scale structural models for the duplex and i-motif DNA structures, and for the C(60)/i-motif DNA hybrid associated with the cDNA strand, assuming that the DNA strands are present in an ideal right-handed helical conformation. We found that fullerene shifted the pH-induced conformational transition between the i-motif and the duplex structure, possibly due to the hydrophobic interactions between the terminal fullerenes and between the terminal fullerenes and an internal TAA loop in the DNA strand. The hybrid structure showed a dramatic reduction in cyclic hysteresis.
Alternative DNA structure formation in the mutagenic human c-MYC promoter
del Mundo, Imee Marie A.; Zewail-Foote, Maha; Kerwin, Sean M.
2017-01-01
Abstract Mutation ‘hotspot’ regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. PMID:28334873
Global structure of forked DNA in solution revealed by high-resolution single-molecule FRET.
Sabir, Tara; Schröder, Gunnar F; Toulmin, Anita; McGlynn, Peter; Magennis, Steven W
2011-02-09
Branched DNA structures play critical roles in DNA replication, repair, and recombination in addition to being key building blocks for DNA nanotechnology. Here we combine single-molecule multiparameter fluorescence detection and molecular dynamics simulations to give a general approach to global structure determination of branched DNA in solution. We reveal an open, planar structure of a forked DNA molecule with three duplex arms and demonstrate an ion-induced conformational change. This structure will serve as a benchmark for DNA-protein interaction studies.
A Method for WD40 Repeat Detection and Secondary Structure Prediction
Wang, Yang; Jiang, Fan; Zhuo, Zhu; Wu, Xian-Hui; Wu, Yun-Dong
2013-01-01
WD40-repeat proteins (WD40s), as one of the largest protein families in eukaryotes, play vital roles in assembling protein-protein/DNA/RNA complexes. WD40s fold into similar β-propeller structures despite diversified sequences. A program WDSP (WD40 repeat protein Structure Predictor) has been developed to accurately identify WD40 repeats and predict their secondary structures. The method is designed specifically for WD40 proteins by incorporating both local residue information and non-local family-specific structural features. It overcomes the problem of highly diversified protein sequences and variable loops. In addition, WDSP achieves a better prediction in identifying multiple WD40-domain proteins by taking the global combination of repeats into consideration. In secondary structure prediction, the average Q3 accuracy of WDSP in jack-knife test reaches 93.7%. A disease related protein LRRK2 was used as a representive example to demonstrate the structure prediction. PMID:23776530
Within-genome evolution of REPINs: a new family of miniature mobile DNA in bacteria.
Bertels, Frederic; Rainey, Paul B
2011-06-01
Repetitive sequences are a conserved feature of many bacterial genomes. While first reported almost thirty years ago, and frequently exploited for genotyping purposes, little is known about their origin, maintenance, or processes affecting the dynamics of within-genome evolution. Here, beginning with analysis of the diversity and abundance of short oligonucleotide sequences in the genome of Pseudomonas fluorescens SBW25, we show that over-represented short sequences define three distinct groups (GI, GII, and GIII) of repetitive extragenic palindromic (REP) sequences. Patterns of REP distribution suggest that closely linked REP sequences form a functional replicative unit: REP doublets are over-represented, randomly distributed in extragenic space, and more highly conserved than singlets. In addition, doublets are organized as inverted repeats, which together with intervening spacer sequences are predicted to form hairpin structures in ssDNA or mRNA. We refer to these newly defined entities as REPINs (REP doublets forming hairpins) and identify short reads from population sequencing that reveal putative transposition intermediates. The proximal relationship between GI, GII, and GIII REPINs and specific REP-associated tyrosine transposases (RAYTs), combined with features of the putative transposition intermediate, suggests a mechanism for within-genome dissemination. Analysis of the distribution of REPs in a range of RAYT-containing bacterial genomes, including Escherichia coli K-12 and Nostoc punctiforme, show that REPINs are a widely distributed, but hitherto unrecognized, family of miniature non-autonomous mobile DNA.
Crystal Structure of Cocosin, A Potential Food Allergen from Coconut (Cocos nucifera).
Jin, Tengchuan; Wang, Cheng; Zhang, Caiying; Wang, Yang; Chen, Yu-Wei; Guo, Feng; Howard, Andrew; Cao, Min-Jie; Fu, Tong-Jen; McHugh, Tara H; Zhang, Yuzhu
2017-08-30
Coconut (Cocos nucifera) is an important palm tree. Coconut fruit is widely consumed. The most abundant storage protein in coconut fruit is cocosin (a likely food allergen), which belongs to the 11S globulin family. Cocosin was crystallized near a century ago, but its structure remains unknown. By optimizing crystallization conditions and cryoprotectant solutions, we were able to obtain cocosin crystals that diffracted to 1.85 Å. The cocosin gene was cloned from genomic DNA isolated from dry coconut tissue. The protein sequence deduced from the predicted cocosin coding sequence was used to guide model building and structure refinement. The structure of cocosin was determined for the first time, and it revealed a typical 11S globulin feature of a double layer doughnut-shaped hexamer.
Recent Methods for Purification and Structure Determination of Oligonucleotides.
Zhang, Qiulong; Lv, Huanhuan; Wang, Lili; Chen, Man; Li, Fangfei; Liang, Chao; Yu, Yuanyuan; Jiang, Feng; Lu, Aiping; Zhang, Ge
2016-12-18
Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures. The excellent features, such as high specificity and affinity for target proteins, small size, chemical stability, low immunogenicity, facile chemical synthesis, versatility in structural design and engineering, and accessible for site-specific modifications with functional moieties, make aptamers attractive molecules in the fields of clinical diagnostics and biopharmaceutical therapeutics. However, difficulties in purification and structural identification of aptamers remain a major impediment to their broad clinical application. In this mini-review, we present the recently attractive developments regarding the purification and identification of aptamers. We also discuss the advantages, limitations, and prospects for the major methods applied in purifying and identifying aptamers, which could facilitate the application of aptamers.
Alternative DNA structure formation in the mutagenic human c-MYC promoter.
Del Mundo, Imee Marie A; Zewail-Foote, Maha; Kerwin, Sean M; Vasquez, Karen M
2017-05-05
Mutation 'hotspot' regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Conti, Fabrizio; Ceccarelli, Fulvia; Perricone, Carlo; Massaro, Laura; Marocchi, Elisa; Miranda, Francesca; Spinelli, Francesca Romana; Truglia, Simona; Alessandri, Cristiano; Valesini, Guido
2015-01-01
The anti-dsDNA antibodies are a marker for Systemic Lupus Erythematosus (SLE) and 70-98% of patients test positive. We evaluated the demographic, clinical, laboratory, and therapeutical features of a monocentric SLE cohort according to the anti-dsDNA status. We identified three groups: anti-dsDNA + (persistent positivity); anti-dsDNA ± (initial positivity and subsequent negativity during disease course); anti-dsDNA - (persistent negativity). Disease activity was assessed by the European Consensus Lupus Activity Measurement (ECLAM). We evaluated 393 patients (anti-dsDNA +: 62.3%; anti-dsDNA ±: 13.3%; anti-dsDNA -: 24.4%). The renal involvement was significantly more frequent in anti-dsDNA + (30.2%), compared with anti-dsDNA ± and anti-dsDNA - (21.1% and 18.7%, resp.; P = 0.001). Serositis resulted significantly more frequent in anti-dsDNA - (82.3%) compared to anti-dsDNA + and anti-dsDNA ± (20.8% and 13.4%, resp.; P < 0.0001). The reduction of C4 serum levels was identified significantly more frequently in anti-dsDNA + and anti-dsDNA ± (40.0% and 44.2%, resp.) compared with anti-dsDNA - (21.8%, P = 0.005). We did not identify significant differences in the mean ECLAM values before and after modification of anti-dsDNA status (P = 0.7). Anti-dsDNA status influences the clinical and immunological features of SLE patients. Nonetheless, it does not appear to affect disease activity.
Implementation of Novel Design Features for qPCR-Based eDNA Assessment
Veldhoen, Nik; Hobbs, Jared; Ikonomou, Georgios; Hii, Michael; Lesperance, Mary; Helbing, Caren C.
2016-01-01
Environmental stewardship requires timely, accurate information related to the status of a given ecosystem and the species that occupy it. Recent advances in the application of the highly sensitive real-time quantitative polymerase chain reaction (qPCR) towards identification of constituents within environmental DNA (eDNA) now allow targeted detection of the presence of species-specific biological material within a localized geographic region. However, as with all molecular techniques predicated on the specificity and sensitivity of the PCR assay, careful validation of each eDNA qPCR assay in development must be performed both under controlled laboratory conditions and when challenged with field-derived eDNA samples. Such a step-wise approach forms the basis for incorporation of innovative qPCR design features that strengthen the implementation and interpretation of the eDNA assay. This includes empirical determination that the qPCR assay is refractory to the presence of human DNA and the use of a tripartite assay approach comprised of 1) a primer set targeting plant chloroplast that evaluates the presence of amplifiable DNA from field samples to increase confidence in a negative result, 2) an animal group primer set to increase confidence in the assay result, and 3) a species-specific primer set to assess presence of DNA from the target species. To demonstrate this methodology, we generated eDNA assays specific for the North American bullfrog (Lithobates (Rana) catesbeiana) and the Rocky Mountain tailed frog (Ascaphus montanus) and characterized each with respect to detection sensitivity and specificity with demonstrated performance in a field survey scenario. The qPCR design features presented herein address specific challenges of eDNA assays thereby increasing their interpretative power. PMID:27802293
Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules.
Schweitzer, Mary Higby; Zheng, Wenxia; Cleland, Timothy P; Bern, Marshall
2013-01-01
The discovery of soft, transparent microstructures in dinosaur bone consistent in morphology with osteocytes was controversial. We hypothesize that, if original, these microstructures will have molecular features in common with extant osteocytes. We present immunological and mass spectrometry evidence for preservation of proteins comprising extant osteocytes (Actin, Tubulin, PHEX, Histone H4) in osteocytes recovered from two non-avian dinosaurs. Furthermore, antibodies to DNA show localized binding to these microstructures, which also react positively with DNA intercalating stains propidium iodide (PI) and 4',6'-diamidino-2-phenylindole dihydrochloride (DAPI). Each antibody binds dinosaur cells in patterns similar to extant cells. These data are the first to support preservation of multiple proteins and to present multiple lines of evidence for material consistent with DNA in dinosaurs, supporting the hypothesis that these structures were part of the once living animals. We propose mechanisms for preservation of cells and component molecules, and discuss implications for dinosaurian cellular biology. Copyright © 2012 Elsevier Inc. All rights reserved.
Duplex Interrogation by a Direct DNA Repair Protein in Search of Base Damage
Yi, Chengqi; Chen, Baoen; Qi, Bo; Zhang, Wen; Jia, Guifang; Zhang, Liang; Li, Charles J.; Dinner, Aaron R.; Yang, Cai-Guang; He, Chuan
2012-01-01
ALKBH2 is a direct DNA repair dioxygenase guarding mammalian genome against N1-methyladenine, N3-methylcytosine, and 1,N6-ethenoadenine damage. A prerequisite for repair is to identify these lesions in the genome. Here we present crystal structures of ALKBH2 bound to different duplex DNAs. Together with computational and biochemical analyses, our results suggest that DNA interrogation by ALKBH2 displays two novel features: i) ALKBH2 probes base-pair stability and detects base pairs with reduced stability; ii) ALKBH2 does not have nor need a “damage-checking site”, which is critical for preventing spurious base-cleavage for several glycosylases. The demethylation mechanism of ALKBH2 insures that only cognate lesions are oxidized and reversed to normal bases, and that a flipped, non-substrate base remains intact in the active site. Overall, the combination of duplex interrogation and oxidation chemistry allows ALKBH2 to detect and process diverse lesions efficiently and correctly. PMID:22659876
Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH.
Luo, Jie; Cimermancic, Peter; Viswanath, Shruthi; Ebmeier, Christopher C; Kim, Bong; Dehecq, Marine; Raman, Vishnu; Greenberg, Charles H; Pellarin, Riccardo; Sali, Andrej; Taatjes, Dylan J; Hahn, Steven; Ranish, Jeff
2015-09-03
TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved "topological regions" that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with xeroderma pigmentosum and trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit. Copyright © 2015 Elsevier Inc. All rights reserved.
Daems, Devin; Pfeifer, Wolfgang; Rutten, Iene; Sacca, Barbara; Spasic, Dragana; Lammertyn, Jeroen
2018-06-27
Many challenges in biosensing originate from the fact that the all-important nano-architecture of the biosensor's surface, including precise density and orientation of bioreceptors, is not entirely comprehended. Here we introduced a 3D DNA origami as bioreceptor carrier to functionalize the fiber optic surface plasmon resonance (FO-SPR) sensor with nanoscale precision. Starting from a 24-helix bundle, two distinct DNA origami structures were designed to position thrombin-specific aptamers with different density and distance (27 and 113 nm) from the FO-SPR surface. The origami-based biosensors proved to be not only capable of reproducible, label-free thrombin detection, but revealed also valuable innovative features: (1) a significantly better performance in the absence of backfilling, known as essential in biosensing field, suggesting improved bioreceptor orientation and accessibility and (2) a wider linear range compared to previously reported thrombin biosensors. We envisage that our method will be beneficial both for scientists and clinicians looking for new surface (bio)chemistry and improved diagnostics.
A Potato cDNA Encoding a Homologue of Mammalian Multidrug Resistant P-Glycoprotein
NASA Technical Reports Server (NTRS)
Wang, W.; Takezawa, D.; Poovaiah, B. W.
1996-01-01
A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with S-15-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170-180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.
Animal breeding strategies can improve meat quality attributes within entire populations.
Berry, D P; Conroy, S; Pabiou, T; Cromie, A R
2017-10-01
The contribution of animal breeding to changes in animal performance is well documented across a range of species. Once genetic variation in a trait exists, then breeding to improve the characteristics of that trait is possible, if so desired. Considerable genetic variation exists in a range of meat quality attributes across a range of species. The genetic variation that exists for meat quality is as large as observed for most performance traits; thus, within a well-structured breeding program, rapid genetic gain for meat quality could be possible. The rate of genetic gain can be augmented through the integration of DNA-based technologies into the breeding program; such DNA-based technologies should, however, be based on thousands of DNA markers dispersed across the entire genome. Genetic and genomic technologies can also have beneficial impact outside the farm gate as a tool to segregate carcasses or meat cuts based on expected meat quality features. Copyright © 2017 Elsevier Ltd. All rights reserved.
Architecture of the human and yeast general transcription and DNA repair factor TFIIH
Luo, Jie; Cimermancic, Peter; Viswanath, Shruthi; Ebmeier, Christopher C.; Kim, Bong; Dehecq, Marine; Raman, Vishnu; Greenberg, Charles H.; Pellarin, Riccardo; Sali, Andrej; Taatjes, Dylan J.; Hahn, Steven; Ranish, Jeff
2015-01-01
Summary TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved “topological regions” that function as hubs for TFIIH assembly and more than 35 conserved topological features within TFIIH, illuminating a network of interactions involved in TFIIH assembly and regulation of its activities. We show that one of these conserved regions, the p62/Tfb1 Anchor region, directly interacts with the DNA helicase subunit XPD/Rad3 in native TFIIH and is required for the integrity and function of TFIIH. We also reveal the structural basis for defects in patients with Xeroderma pigmentosum and Trichothiodystrophy, with mutations found at the interface between the p62 Anchor region and the XPD subunit. PMID:26340423
Structure and stability of the consecutive stereoregulated chiral phosphorothioate DNA duplex.
Kanaori, K; Tamura, Y; Wada, T; Nishi, M; Kanehara, H; Morii, T; Tajima, K; Makino, K
1999-12-07
The duplex structures of the stereoregulated phosphorothioate DNAs, [R(p),R(p)]- and [S(p),S(p)]-[d(GC(ps)T(ps)ACG)] (ps, phosphorothioate; PS-DNA), with their complementary RNA have been investigated by combined use of (1)H NMR and restrained molecular dynamics calculation. Compared to those obtained for the unmodified duplex structures (PO-DNA.RNA), the NOE cross-peak intensities are virtually identical for the PS-DNA.RNA hybrid duplexes. The structural analysis on the basis of the NOE restraints reveals that all of the three DNA.RNA duplexes take a A-form conformation and that there is no significant difference in the base stacking for the DNA.RNA hybrid duplexes. On the other hand, the NOE cross-peak intensities of the protons around the central T(ps)A step of the PS-DNA.DNA duplexes are apparently different from those of PO-DNA. DNA. The chemical shifts of H8/6 and H1' at the T(ps)A step are also largely different among PS-DNA.DNAs and PO-DNA.DNA, suggesting that the DNA.DNA structure is readily changed by the introduction of the phosphorothioate groups to the central T(p)A step. The structure calculations indicate that all of these DNA.DNA duplexes are B-form although there exist some small differences in helical parameters between the [R(p),R(p)]- and [S(p),S(p)]PS-DNA.DNA duplexes. The melting temperatures (T(m)) were determined for all of the duplexes by plotting the chemical shift change of isolated peaks as a function of temperature. For the PS-DNA.RNA hybrid duplexes, the [S(p),S(p)] isomer is less stable than the [R(p),R(p)] isomer while this trend is reversed for the PS-DNA.DNA duplexes. Consequently, although the PS-DNA.RNA duplexes take the similar A-form structure, the duplex stability is different between PS-DNA.RNA duplexes. The stability of the DNA.RNA duplexes may not be governed by the A-form structure itself but by some other factors such as the hydration around the phosphorothioate backbone, although the T(m) difference of the DNA.DNA duplexes could be explained by the structural factor.
Perrier, Jean-Philippe; Sellem, Eli; Prézelin, Audrey; Gasselin, Maxime; Jouneau, Luc; Piumi, François; Al Adhami, Hala; Weber, Michaël; Fritz, Sébastien; Boichard, Didier; Le Danvic, Chrystelle; Schibler, Laurent; Jammes, Hélène; Kiefer, Hélène
2018-05-29
Spermatozoa have a remarkable epigenome in line with their degree of specialization, their unique nature and different requirements for successful fertilization. Accordingly, perturbations in the establishment of DNA methylation patterns during male germ cell differentiation have been associated with infertility in several species. While bull semen is widely used in artificial insemination, the literature describing DNA methylation in bull spermatozoa is still scarce. The purpose of this study was therefore to characterize the bull sperm methylome relative to both bovine somatic cells and the sperm of other mammals through a multiscale analysis. The quantification of DNA methylation at CCGG sites using luminometric methylation assay (LUMA) highlighted the undermethylation of bull sperm compared to the sperm of rams, stallions, mice, goats and men. Total blood cells displayed a similarly high level of methylation in bulls and rams, suggesting that undermethylation of the bovine genome was specific to sperm. Annotation of CCGG sites in different species revealed no striking bias in the distribution of genome features targeted by LUMA that could explain undermethylation of bull sperm. To map DNA methylation at a genome-wide scale, bull sperm was compared with bovine liver, fibroblasts and monocytes using reduced representation bisulfite sequencing (RRBS) and immunoprecipitation of methylated DNA followed by microarray hybridization (MeDIP-chip). These two methods exhibited differences in terms of genome coverage, and consistently, two independent sets of sequences differentially methylated in sperm and somatic cells were identified for RRBS and MeDIP-chip. Remarkably, in the two sets most of the differentially methylated sequences were hypomethylated in sperm. In agreement with previous studies in other species, the sequences that were specifically hypomethylated in bull sperm targeted processes relevant to the germline differentiation program (piRNA metabolism, meiosis, spermatogenesis) and sperm functions (cell adhesion, fertilization), as well as satellites and rDNA repeats. These results highlight the undermethylation of bull spermatozoa when compared with both bovine somatic cells and the sperm of other mammals, and raise questions regarding the dynamics of DNA methylation in bovine male germline. Whether sperm undermethylation has potential interactions with structural variation in the cattle genome may deserve further attention.
Brulé, Fabienne; Marquet, Roland; Rong, Liwei; Wainberg, Mark A; Roques, Bernard P; Le Grice, Stuart F J; Ehresmann, Bernard; Ehresmann, Chantal
2002-01-01
The conversion of the single-stranded RNA genome into double-stranded DNA by virus-coded reverse transcriptase (RT) is an essential step of the retrovirus life cycle. In human immunodeficiency virus type 1 (HIV-1), RT uses the cellular tRNA(Lys)3 to initiate the (-) strand DNA synthesis. Placement of the primer tRNA(Lys)3 involves binding of its 3'-terminal 18 nt to a complementary region of genomic RNA termed PBS. However, the PBS sequence is not the unique determinant of primer usage and additional contacts are important. This placement is believed to be achieved in vivo by the nucleocapsid domain of Gag or by the mature protein NCp. Up to now, structural information essentially arose from heat-annealed primer-template complexes (Isel et al., J Mol Biol, 1995, 247:236-250; Isel et al., EMBO J, 1999, 18:1038-1048). Here, we investigated the formation of the primer-template complex mediated by NCp and compared structural and functional properties of heat- and NCp-annealed complexes. We showed that both heat- and NCp-mediated procedures allow comparable high yields of annealing. Then, we investigated structural features of both kinds of complexes by enzymatic probing, and we compared their relative efficiency in (-) strong stop DNA synthesis. We did not find any significant differences between these complexes, suggesting that information derived from the heat-annealed complex can be transposed to the NCp-mediated complex and most likely to complexes formed in vivo. PMID:11873759
Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly
NASA Astrophysics Data System (ADS)
Lin, Qing-Yuan; Mason, Jarad A.; Li, Zhongyang; Zhou, Wenjie; O’Brien, Matthew N.; Brown, Keith A.; Jones, Matthew R.; Butun, Serkan; Lee, Byeongdu; Dravid, Vinayak P.; Aydin, Koray; Mirkin, Chad A.
2018-02-01
DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, the assembly of individual colloidal plasmonic nanoparticles with different shapes and sizes is controlled by oligonucleotides containing “locked” nucleic acids and confined environments provided by polymer pores to yield oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer- and micrometer-length scales. These structures, which would be difficult to construct by other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach are explored by identifying a broadband absorber with a solvent polarity response that allows dynamic tuning of visible light absorption.
Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qing-Yuan; Mason, Jarad A.; Li, Zhongyang
DNA programmable assembly has been combined with top-down lithography to construct superlattices of discrete, reconfigurable nanoparticle architectures on a gold surface over large areas. Specifically, individual colloidal plasmonic nanoparticles with different shapes and sizes are assembled with ‘locked” nucleic acids in polymer pores into oriented architectures that feature tunable arrangements and independently controllable distances at both nanometer and micrometer length scales. These structures, which would be difficult to construct via other common assembly methods, provide a platform to systematically study and control light-matter interactions in nanoparticle-based optical materials. The generality and potential of this approach is explored by identifying amore » broadband absorber with a solvent polarity response that allows dynamic tuning of the wavelength response and amplitude of visible light absorption.« less
Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.
Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I
2001-08-01
DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.
Organisation of the plant genome in chromosomes.
Heslop-Harrison, J S Pat; Schwarzacher, Trude
2011-04-01
The plant genome is organized into chromosomes that provide the structure for the genetic linkage groups and allow faithful replication, transcription and transmission of the hereditary information. Genome sizes in plants are remarkably diverse, with a 2350-fold range from 63 to 149,000 Mb, divided into n=2 to n= approximately 600 chromosomes. Despite this huge range, structural features of chromosomes like centromeres, telomeres and chromatin packaging are well-conserved. The smallest genomes consist of mostly coding and regulatory DNA sequences present in low copy, along with highly repeated rDNA (rRNA genes and intergenic spacers), centromeric and telomeric repetitive DNA and some transposable elements. The larger genomes have similar numbers of genes, with abundant tandemly repeated sequence motifs, and transposable elements alone represent more than half the DNA present. Chromosomes evolve by fission, fusion, duplication and insertion events, allowing evolution of chromosome size and chromosome number. A combination of sequence analysis, genetic mapping and molecular cytogenetic methods with comparative analysis, all only becoming widely available in the 21st century, is elucidating the exact nature of the chromosome evolution events at all timescales, from the base of the plant kingdom, to intraspecific or hybridization events associated with recent plant breeding. As well as being of fundamental interest, understanding and exploiting evolutionary mechanisms in plant genomes is likely to be a key to crop development for food production. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA
NASA Astrophysics Data System (ADS)
Athale, Chaitanya A.; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric
2014-02-01
Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guliaev, Anton B.; Singer, B.; Hang, Bo
2004-05-05
Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA thanmore » that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.« less
Unique structural modulation of a non-native substrate by cochaperone DnaJ.
Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik; Mapa, Koyeli
2013-02-12
The role of bacterial DnaJ protein as a cochaperone of DnaK is strongly appreciated. Although DnaJ unaccompanied by DnaK can bind unfolded as well as native substrate proteins, its role as an individual chaperone remains elusive. In this study, we demonstrate that DnaJ binds a model non-native substrate with a low nanomolar dissociation constant and, more importantly, modulates the structure of its non-native state. The structural modulation achieved by DnaJ is different compared to that achieved by the DnaK-DnaJ complex. The nature of structural modulation exerted by DnaJ is suggestive of a unique unfolding activity on the non-native substrate by the chaperone. Furthermore, we demonstrate that the zinc binding motif along with the C-terminal substrate binding domain of DnaJ is necessary and sufficient for binding and the subsequent binding-induced structural alterations of the non-native substrate. We hypothesize that this hitherto unknown structural alteration of non-native states by DnaJ might be important for its chaperoning activity by removing kinetic traps of the folding intermediates.
Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura
Boore, Jeffrey L
2004-01-01
Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. Results This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Conclusions Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases. PMID:15369601
Crystal Structure of the Eukaryotic Origin Recognition Complex
Bleichert, Franziska; Botchan, Michael R.; Berger, James M.
2015-01-01
Initiation of cellular DNA replication is tightly controlled to sustain genomic integrity. In eukaryotes, the heterohexameric origin recognition complex (ORC) is essential for coordinating replication onset. The 3.5 Å resolution crystal structure of Drosophila ORC reveals that the 270 kDa initiator core complex comprises a two-layered notched ring in which a collar of winged-helix domains from the Orc1-5 subunits sits atop a layer of AAA+ ATPase folds. Although canonical inter-AAA+ domain interactions exist between four of the six ORC subunits, unanticipated features are also evident, including highly interdigitated domain-swapping interactions between the winged-helix folds and AAA+ modules of neighboring protomers, and a quasi-spiral arrangement of DNA binding elements that circumnavigate a ~20 Å wide channel in the center of the complex. Comparative analyses indicate that ORC encircles DNA, using its winged-helix domain face to engage the MCM2-7 complex during replicative helicase loading; however, an observed >90° out-of-plane rotation for the Orc1 AAA+ domain disrupts interactions with catalytic amino acids in Orc4, narrowing and sealing off entry into the central channel. Prima facie, our data indicate that Drosophila ORC can switch between active and autoinhibited conformations, suggesting a novel means for cell cycle and/or developmental control of ORC functions. PMID:25762138
A conserved loop-wedge motif moderates reaction site search and recognition by FEN1.
Thompson, Mark J; Gotham, Victoria J B; Ciani, Barbara; Grasby, Jane A
2018-06-07
DNA replication and repair frequently involve intermediate two-way junction structures with overhangs, or flaps, that must be promptly removed; a task performed by the essential enzyme flap endonuclease 1 (FEN1). We demonstrate a functional relationship between two intrinsically disordered regions of the FEN1 protein, which recognize opposing sides of the junction and order in response to the requisite substrate. Our results inform a model in which short-range translocation of FEN1 on DNA facilitates search for the annealed 3'-terminus of a primer strand, which is recognized by breaking the terminal base pair to generate a substrate with a single nucleotide 3'-flap. This recognition event allosterically signals hydrolytic removal of the 5'-flap through reaction in the opposing junction duplex, by controlling access of the scissile phosphate diester to the active site. The recognition process relies on a highly-conserved 'wedge' residue located on a mobile loop that orders to bind the newly-unpaired base. The unanticipated 'loop-wedge' mechanism exerts control over substrate selection, rate of reaction and reaction site precision, and shares features with other enzymes that recognize irregular DNA structures. These new findings reveal how FEN1 precisely couples 3'-flap verification to function.
Diverse circovirus-like genome architectures revealed by environmental metagenomics.
Rosario, Karyna; Duffy, Siobain; Breitbart, Mya
2009-10-01
Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.
Role of DNA secondary structures in fragile site breakage along human chromosome 10
Dillon, Laura W.; Pierce, Levi C. T.; Ng, Maggie C. Y.; Wang, Yuh-Hwa
2013-01-01
The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease. PMID:23297364
Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert
Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less
Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase
Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; ...
2015-06-02
Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less
The role of ADP-ribosylation in regulating DNA interstrand crosslink repair
Gunn, Alasdair R.; Banos-Pinero, Benito; Paschke, Peggy; Sanchez-Pulido, Luis; Ariza, Antonio; Day, Joseph; Emrich, Mehera; Leys, David; Ponting, Chris P.
2016-01-01
ABSTRACT ADP-ribosylation by ADP-ribosyltransferases (ARTs) has a well-established role in DNA strand break repair by promoting enrichment of repair factors at damage sites through ADP-ribose interaction domains. Here, we exploit the simple eukaryote Dictyostelium to uncover a role for ADP-ribosylation in regulating DNA interstrand crosslink repair and redundancy of this pathway with non-homologous end-joining (NHEJ). In silico searches were used to identify a protein that contains a permutated macrodomain (which we call aprataxin/APLF-and-PNKP-like protein; APL). Structural analysis reveals that this permutated macrodomain retains features associated with ADP-ribose interactions and that APL is capable of binding poly(ADP-ribose) through this macrodomain. APL is enriched in chromatin in response to cisplatin treatment, an agent that induces DNA interstrand crosslinks (ICLs). This is dependent on the macrodomain of APL and the ART Adprt2, indicating a role for ADP-ribosylation in the cellular response to cisplatin. Although adprt2− cells are sensitive to cisplatin, ADP-ribosylation is evident in these cells owing to redundant signalling by the double-strand break (DSB)-responsive ART Adprt1a, promoting NHEJ-mediated repair. These data implicate ADP-ribosylation in DNA ICL repair and identify that NHEJ can function to resolve this form of DNA damage in the absence of Adprt2. PMID:27587838
DNA mimic proteins: functions, structures, and bioinformatic analysis.
Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J
2014-05-13
DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.
Synthesis and characterization of poly[d(G-z5C)]. B-Z transition and inhibition of DNA methylase.
McIntosh, L P; Zielinski, W S; Kalisch, B W; Pfeifer, G P; Sprinzl, M; Drahovsky, D; van de Sande, J H; Jovin, T M
1985-08-27
Deoxy-5-azacytidine 5'-triphosphate was synthesized and used as a substrate for the enzymatic synthesis of the polynucleotide poly[d(G-z5C)]. Whereas the triphosphate decomposes in solution, the azacytosine analogue incorporated into DNA is stable under conditions preserving the double-helical structure. Poly[d(G-z5C)] undergoes the transition to the left-handed Z conformation at salt (NaCl and MgCl2) concentrations approximately 30% higher than those required for unsubstituted poly[d(G-C)]. However, the incorporation of azacytidine potentiates the formation at room temperature of the Z helix stabilized by the transition metal Mn2+; in the case of poly[d(G-C)], a heating step is required. The spectral properties of the two polymers in the B and Z forms are similar. Both left-handed forms are recognized by anti-Z DNA immunoglobulins, indicating that the DNAs bear common antigenic features. Poly[d(G-z5C)] is not a substrate for the DNA cytosine 5-methyltransferase from human placenta. It is a potent inhibitor of the enzyme when tested in a competitive binding assay. These results are compatible with a very strong, possibly covalent, mode of interaction between methyltransferases and DNA containing 5-azacytosine.
Vermaak, Danielle; Bayes, Joshua J.
2009-01-01
Comparative genomics provides a facile way to address issues of evolutionary constraint acting on different elements of the genome. However, several important DNA elements have not reaped the benefits of this new approach. Some have proved intractable to current day sequencing technology. These include centromeric and heterochromatic DNA, which are essential for chromosome segregation as well as gene regulation, but the highly repetitive nature of the DNA sequences in these regions make them difficult to assemble into longer contigs. Other sequences, like dosage compensation X chromosomal sites, origins of DNA replication, or heterochromatic sequences that encode piwi-associated RNAs, have proved difficult to study because they do not have recognizable DNA features that allow them to be described functionally or computationally. We have employed an alternate approach to the direct study of these DNA elements. By using proteins that specifically bind these noncoding DNAs as surrogates, we can indirectly assay the evolutionary constraints acting on these important DNA elements. We review the impact that such “surrogate strategies” have had on our understanding of the evolutionary constraints shaping centromeres, origins of DNA replication, and dosage compensation X chromosomal sites. These have begun to reveal that in contrast to the view that such structural DNA elements are either highly constrained (under purifying selection) or free to drift (under neutral evolution), some of them may instead be shaped by adaptive evolution and genetic conflicts (these are not mutually exclusive). These insights also help to explain why the same elements (e.g., centromeres and replication origins), which are so complex in some eukaryotic genomes, can be simple and well defined in other where similar conflicts do not exist. PMID:19635763
Churchill, Mair E.A.; Klass, Janet; Zoetewey, David L.
2010-01-01
The ubiquitous eukaryotic High-Mobility-Group-Box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and fifty base pairs of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1-boxA-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending. PMID:20800069
Mahut, Marek; Lindner, Wolfgang; Lämmerhofer, Michael
2012-01-18
We recently discovered the molecular recognition capability of a quinine carbamate ligand attached to silica as a powerful chemoaffinity material for the chromatographic separation of circular plasmid topoisomers of different linking numbers. In this paper we develop structure-selectivity relationship studies to figure out the essential structural features for topoisomer recognition. By varying different moieties of the original cinchonan-derived selector, it was shown that intercalation by the quinoline moiety of the ligand as assumed initially as the working hypothesis is not an essential feature for topoisomer recognition during chromatography. We found that the key elements for topoisomer selectivity are the presence of a rigid weak anion-exchange site and a H-donor site separated from each other in a defined distance by a 4-atom spacer. Additionally, incorporation of the weak anion-exchange site into a cyclic ring structure provides greater rigidity of the ligand molecule and turned out to be advantageous, if not mandatory, for (close to) baseline separation. © 2011 American Chemical Society
DENA: A Configurable Microarchitecture and Design Flow for Biomedical DNA-Based Logic Design.
Beiki, Zohre; Jahanian, Ali
2017-10-01
DNA is known as the building block for storing the life codes and transferring the genetic features through the generations. However, it is found that DNA strands can be used for a new type of computation that opens fascinating horizons in computational medicine. Significant contributions are addressed on design of DNA-based logic gates for medical and computational applications but there are serious challenges for designing the medium and large-scale DNA circuits. In this paper, a new microarchitecture and corresponding design flow is proposed to facilitate the design of multistage large-scale DNA logic systems. Feasibility and efficiency of the proposed microarchitecture are evaluated by implementing a full adder and, then, its cascadability is determined by implementing a multistage 8-bit adder. Simulation results show the highlight features of the proposed design style and microarchitecture in terms of the scalability, implementation cost, and signal integrity of the DNA-based logic system compared to the traditional approaches.
MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features
Li, Xiaoran; Zhong, Yali; Lu, Jie; Axcrona, Karol; Eide, Lars; Syljuåsen, Randi G.; Peng, Qian; Wang, Junbai; Zhang, Hongquan; Goscinski, Mariusz Adam; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe
2016-01-01
Reducing mtDNA content was considered as a critical step in the metabolism restructuring for cell stemness restoration and further neoplastic development. However, the connections between mtDNA depletion and metabolism reprograming-based cancer cell stemness in prostate cancers are still lack of studies. Here, we demonstrated that human CRPC cell line PC3 tolerated high concentration of the mtDNA replication inhibitor ethidium bromide (EtBr) and the mtDNA depletion triggered a universal metabolic remodeling process. Failure in completing that process caused lethal consequences. The mtDNA depleted (MtDP) PC3 cells could be steadily maintained in the special medium in slow cycling status. The MtDP PC3 cells contained immature mitochondria and exhibited Warburg effect. Furthermore, the MtDP PC3 cells were resistant to therapeutic treatments and contained greater cancer stem cell-like subpopulations: CD44+, ABCG2+, side-population and ALDHbright. In conclusion, these results highlight the association of mtDNA content, mitochondrial function and cancer cell stemness features. PMID:27248169
Lakhin, A V; Efremova, A S; Makarova, I V; Grishina, E E; Shram, S I; Tarantul, V Z; Gening, L V
2013-01-01
The DNA polymerase iota (Pol iota), which has some peculiar features and is characterized by an extremely error-prone DNA synthesis, belongs to the group of enzymes preferentially activated by Mn2+ instead of Mg2+. In this work, the effect of Mn2+ on DNA synthesis in cell extracts from a) normal human and murine tissues, b) human tumor (uveal melanoma), and c) cultured human tumor cell lines SKOV-3 and HL-60 was tested. Each group displayed characteristic features of Mn-dependent DNA synthesis. The changes in the Mn-dependent DNA synthesis caused by malignant transformation of normal tissues are described. It was also shown that the error-prone DNA synthesis catalyzed by Pol iota in extracts of all cell types was efficiently suppressed by an RNA aptamer (IKL5) against Pol iota obtained in our work earlier. The obtained results suggest that IKL5 might be used to suppress the enhanced activity of Pol iota in tumor cells.
Toren, Dmitri; Barzilay, Thomer; Tacutu, Robi; Lehmann, Gilad; Muradian, Khachik K; Fraifeld, Vadim E
2016-01-04
Mitochondria are the only organelles in the animal cells that have their own genome. Due to a key role in energy production, generation of damaging factors (ROS, heat), and apoptosis, mitochondria and mtDNA in particular have long been considered one of the major players in the mechanisms of aging, longevity and age-related diseases. The rapidly increasing number of species with fully sequenced mtDNA, together with accumulated data on longevity records, provides a new fascinating basis for comparative analysis of the links between mtDNA features and animal longevity. To facilitate such analyses and to support the scientific community in carrying these out, we developed the MitoAge database containing calculated mtDNA compositional features of the entire mitochondrial genome, mtDNA coding (tRNA, rRNA, protein-coding genes) and non-coding (D-loop) regions, and codon usage/amino acids frequency for each protein-coding gene. MitoAge includes 922 species with fully sequenced mtDNA and maximum lifespan records. The database is available through the MitoAge website (www.mitoage.org or www.mitoage.info), which provides the necessary tools for searching, browsing, comparing and downloading the data sets of interest for selected taxonomic groups across the Kingdom Animalia. The MitoAge website assists in statistical analysis of different features of the mtDNA and their correlative links to longevity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Technical Reports Server (NTRS)
Nelson, G. A.; Schubert, W. W.; Marshall, T. M.
1992-01-01
The biological effects of heavy charged particle (HZE) radiation are of particular interest to travellers and planners for long-duration space flights where exposure levels represent a potential health hazard. The unique feature of HZE radiation is the structured pattern of its energy deposition in targets. There are many consequences of this feature to biological endpoints when compared with effects of ionizing photons. Dose vs response and dose-rate kinetics may be modified, DNA and cellular repair systems may be altered in their abilities to cope with damage, and the qualitative features of damage may be unique for different ions. The nematode Caenorhabditis elegans is being used to address these and related questions associated with exposure to radiation. HZE-induced mutation, chromosome aberration, cell inactivation and altered organogenesis are discussed along with plans for radiobiological experiments in space.