Sample records for dna triplex formation

  1. RNA-DNA Triplex Formation by Long Noncoding RNAs.

    PubMed

    Li, Yue; Syed, Junetha; Sugiyama, Hiroshi

    2016-11-17

    Long noncoding RNAs (lncRNAs) play a pivotal role in the regulation of biological processes through various mechanisms that are not fully understood. Proposed mechanisms include regulation based on RNA-protein interactions, as well as RNA-RNA interactions and RNA-DNA interactions. Here, we focus on one possible mechanism that lncRNA might be using to impact biological function, the RNA-DNA triplex formation. We summarize currently available examples of lncRNA triplex formation and discuss the details surrounding orientation of triplex formation as one of the key properties guiding this process. We propose that symmetrical triplex-forming motifs, especially those in cis-acting lncRNAs, favor triplex formation. We also consider the effects of lncRNA structures, protein or ligand binding, and chromatin structures on the lncRNAs triplex formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.

    PubMed

    Hu, Hongyan; Huang, Xiangyi; Ren, Jicun

    2016-05-01

    Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA-based nanomaterials because of its direct recognition of natural double-stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single-strand DNA (ssDNA) fluorescent probes and fluorescent probe-double-strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (K(a)) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20-mer perfectly matched ssDNA probe and three single-base mismatched ssDNA probes with 146-mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single-base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.

  3. High-throughput microtitre plate-based assay for DNA topoisomerases.

    PubMed

    Taylor, James A; Burton, Nicolas P; Maxwell, Anthony

    2012-01-01

    We have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of DNA topoisomerases. The assay utilizes intermolecular triplex formation between an immobilized triplex-forming oligo (TFO) and a triplex-forming region inserted into the plasmid substrate (pNO1), and capitalizes on the observation that supercoiled DNA forms triplexes more readily than relaxed DNA. Thus, supercoiled DNA is preferentially retained by the TFO under triplex-forming conditions while relaxed DNA can be washed away. Due to its high speed of sample analysis and reduced sample handling over conventional gel-based techniques, this assay can be used to screen chemical libraries for novel inhibitors of topoisomerases.

  4. XPD-dependent activation of apoptosis in response to triplex-induced DNA damage

    PubMed Central

    Kaushik Tiwari, Meetu; Rogers, Faye A.

    2013-01-01

    DNA sequences capable of forming triplexes are prevalent in the human genome and have been found to be intrinsically mutagenic. Consequently, a balance between DNA repair and apoptosis is critical to counteract their effect on genomic integrity. Using triplex-forming oligonucleotides to synthetically create altered helical distortions, we have determined that pro-apoptotic pathways are activated by the formation of triplex structures. Moreover, the TFIIH factor, XPD, occupies a central role in triggering apoptosis in response to triplex-induced DNA strand breaks. Here, we show that triplexes are capable of inducing XPD-independent double strand breaks, which result in the formation of γH2AX foci. XPD was subsequently recruited to the triplex-induced double strand breaks and co-localized with γH2AX at the damage site. Furthermore, phosphorylation of H2AX tyrosine 142 was found to stimulate the signaling pathway of XPD-dependent apoptosis. We suggest that this mechanism may play an active role in minimizing genomic instability induced by naturally occurring noncanonical structures, perhaps protecting against cancer initiation. PMID:23913414

  5. Comparable stability of Hoogsteen and Watson-Crick base pairs in ionic liquid choline dihydrogen phosphate.

    PubMed

    Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki

    2014-01-08

    The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson-Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo.

  6. Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate

    PubMed Central

    Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki

    2014-01-01

    The instability of Hoogsteen base pairs relative to Watson–Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson–Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson–Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo. PMID:24399194

  7. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure.

    PubMed Central

    Svinarchuk, F; Monnot, M; Merle, A; Malvy, C; Fermandjian, S

    1995-01-01

    In our previous works we have shown that the oligonucleotides 5'-GGGGAGGGGGAGG-3' and 5'-GGAGGGGGAGGGG-3' give very stable and specific triplexes with their target double stranded DNAs [Svinarchuk, F., Bertrand, J.-R. and Malvy, C. (1994) Nucleic Acids Res., 22, 3742-3747; Svinarchuk, F., Paoletti, J. and Malvy, C. (1995) J. Biol. Chem., 270, 14 068-14,071]. The target for the invariable part of these oligonucleotides, 5'-GGAGGGGGAGG-3', is found in a highly conserved 20 bp long purine/pyrimidine tract of the vpx gene of the SIV and HIV-2 viruses and could be a target for oligonucleotide directed antivirus therapy. Here were report on the ability of four purine oligonucleotides with different lengths (11-, 14-, 17- and 20-mer) to form triplexes with the purine/pyrimidine stretch of the vpx gene. Triplex formation was tested by joint dimethyl sulfate (DMS) footprint, gel-retardation assay, circular dichroism (CD) and UV-melting studies. Dimethyl sulfate footprint studies revealed the antiparallel orientation of the third strand to the purine strand of the Watson-Crick duplex. However, the protection of the guanines at the ends of the target sequence decreased as the length of the third strand oligonucleotide increased. Melting temperature studies provided profiles with only one transition for all of the triplexes. The melting temperatures of the triplexes were found to be the same as for the targeted duplex in the case of the 11- and 14-mer third strands while for the 17- and 20-mer third strands the melting temperature of the triplexes were correspondingly 4 and 8 degrees C higher than for the duplex. Heating and cooling melting curves were reversible for all of the tested triplexes except one with the 20-mer third strand oligonucleotide. Circular dichroism spectra showed the ability of the target DNA to adopt an A-like DNA conformation. Upon triplex formation the A-DNA form becomes even more pronounced. This effect depends on the length of the third strand oligonucleotide: the CD spectrum shows a 'classical' A-DNA shape with the 20-mer. This is not observed with the purine/pyrimidine stretch of the HIV-1 DNA which keeps a B-like spectrum even after triplex formation. We suggest, that an A-like duplex DNA is required for the formation of a stable DNA purine(purine-pyrimidine) triplex. Images PMID:7479024

  8. A high-throughput assay for DNA topoisomerases and other enzymes, based on DNA triplex formation.

    PubMed

    Burrell, Matthew R; Burton, Nicolas P; Maxwell, Anthony

    2010-01-01

    We have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of topoisomerase enzymes that is also capable of monitoring the activity of other enzymes that alter the topology of DNA. The assay utilises intermolecular triplex formation to resolve supercoiled and relaxed forms of DNA, the principle being the greater efficiency of a negatively supercoiled plasmid to form an intermolecular triplex with an immobilised oligonucleotide than the relaxed form. The assay provides a number of advantages over the standard gel-based methods, including greater speed of analysis, reduced sample handling, better quantitation and improved reliability and accuracy of output data. The assay is performed in microtitre plates and can be adapted to high-throughput screening of libraries of potential inhibitors of topoisomerases including bacterial DNA gyrase.

  9. Potential in vivo roles of nucleic acid triple-helices

    PubMed Central

    Buske, Fabian A

    2011-01-01

    The ability of double-stranded DNA to form a triple-helical structure by hydrogen bonding with a third strand is well established, but the biological functions of these structures remain largely unknown. There is considerable albeit circumstantial evidence for the existence of nucleic triplexes in vivo and their potential participation in a variety of biological processes including chromatin organization, DNA repair, transcriptional regulation and RNA processing has been investigated in a number of studies to date. There is also a range of possible mechanisms to regulate triplex formation through differential expression of triplex-forming RNAs, alteration of chromatin accessibility, sequence unwinding and nucleotide modifications. With the advent of next generation sequencing technology combined with targeted approaches to isolate triplexes, it is now possible to survey triplex formation with respect to their genomic context, abundance and dynamical changes during differentiation and development, which may open up new vistas in understanding genome biology and gene regulation. PMID:21525785

  10. Effect of the 3-halo substitution of the 2'-deoxy aminopyridinyl-pseudocytidine derivatives on the selectivity and stability of antiparallel triplex DNA with a CG inversion site.

    PubMed

    Wang, Lei; Taniguchi, Yosuke; Okamura, Hidenori; Sasaki, Shigeki

    2017-07-15

    Triplex formation against a target duplex DNA has the potential to become a tool for the genome research. However, there is an intrinsic restriction on the duplex DNA sequences capable of forming the triplex DNA. Recently, we demonstrated the selective formation of the stable antiparallel triplexes containing the CG inversion sites using the 2'-deoxy-1-methylpseudocytidine derivative (ΨdC), whose amino group was conjugated with the 2-aminopyridine at its 5-position as an additional hydrogen bonding unit (AP-ΨdC). The 1-N of 2-aminopyridine was supposed to be protonated to form the hydrogen bond with the guanine of the CG inversion site. In this study, to test the effect of the 3-substitution of the 2-aminopyridine unit of AP-ΨdC on the triplex stability, we synthesized the 3-halogenated 2-aminopyridine derivatives of AP-ΨdC. The pKa values 1-N of the 2-aminopyridine unit of AP-ΨdC as the monomer nucleoside were determined to be 6.3 for 3-CH 3 ( Me AP-ΨdC), 6.1 for 3-H (AP-ΨdC), 4.3 for 3-Cl ( Cl AP-ΨdC), 4.4 for 3-Br ( Br AP-ΨdC), and 4.7 for 3-I ( I AP-ΨdC), suggesting that all the halogenated AP-ΨdCs are not protonated under neutral conditions. Interestingly, although the recognition selectivity depends on the sequence context, the TFO having the sequence of the 3'-G-( I AP-ΨdC)-A-5' context showed the selective triplex formation with the CG inversion site. These results suggest that the protonation at the 1-N position plays an important role in the stable and selective triplex formation of AP-ΨdC derivatives in any sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analysis of GAA/TTC DNA triplexes using nuclear magnetic resonance and electrospray ionization mass spectrometry.

    PubMed

    Mariappan, S V Santhana; Cheng, Xun; van Breemen, Richard B; Silks, Louis A; Gupta, Goutam

    2004-11-15

    The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.

  12. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE PAGES

    Paugh, Steven W.; Coss, David R.; Bao, Ju; ...

    2016-02-04

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  13. MicroRNAs form triplexes with double stranded DNA at sequence-specific binding sites; a eukaryotic mechanism via which microRNAs could directly alter gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paugh, Steven W.; Coss, David R.; Bao, Ju

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA). Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence that microRNAs form triple-helical structures with duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show thatmore » several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 x 10 -16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. As a result, this work has thus revealed a new mechanism by which microRNAs can interact with gene promoter regions to modify gene transcription.« less

  14. Disruption of Higher Order DNA Structures in Friedreich’s Ataxia (GAA)n Repeats by PNA or LNA Targeting

    PubMed Central

    Bergquist, Helen; Rocha, Cristina S. J.; Álvarez-Asencio, Rubén; Nguyen, Chi-Hung; Rutland, Mark. W.; Smith, C. I. Edvard; Good, Liam; Nielsen, Peter E.; Zain, Rula

    2016-01-01

    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression. PMID:27846236

  15. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression

    PubMed Central

    Grace, Christy R.; Ferreira, Antonio M.; Waddell, M. Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F.; Panetta, John C.; Wilkinson, Mark R.; Pui, Ching-Hon; Naeve, Clayton W.; Uberbacher, Edward C.; Bonten, Erik J.; Evans, William E.

    2016-01-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10−16) for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  16. Divalent cations and molecular crowding buffers stabilize G-triplex at physiologically relevant temperatures

    PubMed Central

    Jiang, Hong-Xin; Cui, Yunxi; Zhao, Ting; Fu, Hai-Wei; Koirala, Deepak; Punnoose, Jibin Abraham; Kong, De-Ming; Mao, Hanbin

    2015-01-01

    G-triplexes are non-canonical DNA structures formed by G-rich sequences with three G-tracts. Putative G-triplex-forming sequences are expected to be more prevalent than putative G-quadruplex-forming sequences. However, the research on G-triplexes is rare. In this work, the effects of molecular crowding and several physiologically important metal ions on the formation and stability of G-triplexes were examined using a combination of circular dichroism, thermodynamics, optical tweezers and calorimetry techniques. We determined that molecular crowding conditions and cations, such as Na+, K+, Mg2+ and Ca2+, promote the formation of G-triplexes and stabilize these structures. Of these four metal cations, Ca2+ has the strongest stabilizing effect, followed by K+, Mg2+, and Na+ in a decreasing order. The binding of K+ to G-triplexes is accompanied by exothermic heats, and the binding of Ca2+ with G-triplexes is characterized by endothermic heats. G-triplexes formed from two G-triad layers are not stable at physiological temperatures; however, G-triplexes formed from three G-triads exhibit melting temperatures higher than 37°C, especially under the molecular crowding conditions and in the presence of K+ or Ca2+. These observations imply that stable G-triplexes may be formed under physiological conditions. PMID:25787838

  17. Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases

    PubMed Central

    Rogers, Faye A; Lloyd, Janice A; Tiwari, Meetu Kaushik

    2014-01-01

    Triplex structures generated by sequence-specific triplex-forming oligonucleotides (TFOs) have proven to be promising tools for gene targeting strategies. In addition, triplex technology has been highly utilized to study the molecular mechanisms of DNA repair, recombination and mutagenesis. However, triplex formation utilizing guanine-rich oligonucleotides as third strands can be inhibited by potassium-induced self-association resulting in G-quadruplex formation. We report here that guanine-rich TFOs partially substituted with 8-aza-7-deaza-guanine (PPG) have improved target site binding in potassium compared with TFOs containing the natural guanine base. We designed PPG-substituted TFOs to bind to a polypurine sequence in the supFG1 reporter gene. The binding efficiency of PPG-substituted TFOs to the target sequence was analyzed using electrophoresis mobility gel shift assays. We have determined that in the presence of potassium, the non-substituted TFO, AG30 did not bind to its target sequence, however binding was observed with the PPG-substituted AG30 under conditions with up to 140 mM KCl. The PPG-TFOs were able to maintain their ability to induce genomic modifications as measured by an assay for gene-targeted mutagenesis. In addition, these compounds were capable of triplex-induced DNA double strand breaks, which resulted in activation of apoptosis. PMID:25483840

  18. Effect of 5-methylcytosine on the stability of triple-stranded DNA--a thermodynamic study.

    PubMed Central

    Xodo, L E; Manzini, G; Quadrifoglio, F; van der Marel, G A; van Boom, J H

    1991-01-01

    We have previously shown that the pyrimidine oligonucleotide 5'CTTCCTCCTCT (Y11) recognizes the double-helical stem of hairpin 5'GAAGGAGGAGA-T4-TCTCCTCCTTC (h26) by triple-helix formation (1). In this paper, we report the effect on triplex formation of substituting the cytosine residues of Y11 with 5-methylcytosines (5meY11). In addition, we have studied the thermodynamics of the interaction between h26 and 5meY11. The results can be summarised as follows: (i) gel electrophoresis shows that at T = 5 degrees C and pH 5, both Y11 and 5meY11 form DNA triple helices with h26, whereas at pH 6.8 only the methylated strand binds to h26; (ii) pH-stability curves of the DNA triplexes formed from h26 + Y11 and h26 + 5meY11 show that Y11 and 5meY11 are semi-protonated at pH 5.7 and 6.7, respectively. Thus, it is concluded that cytosine methylation expands the pH range compatible with triplex formation by one pH unit; (iii) as the unmethylated triplex (h26:Y11), the methylated one (h26:5meY11) denatures in a biphasic manner, in which the low temperature transition results from the dissociation of 5meY11 from h26. The Tm of the triplex to h26 plus 5meY11 transition is strongly enhanced (about 10 degrees C) by cytosine methylation. A van 't Hoff analysis of denaturation curves is presented; (iv) DSC experiments show that triplex formation between 5meY11 and h26 is characterized by delta H = -237 +/- 25 kJ/mol and delta S = -758 +/- 75 J/Kmol, corresponding to an average delta H of -21 kJ/mol and delta S of -69 J/Kmol per Hoogsteen base pair; (v) the thermodynamic analysis indicates that the extra stability imparted to the triplex by methylcytosine is entropic in origin. Images PMID:1945840

  19. High-throughput assays for DNA gyrase and other topoisomerases

    PubMed Central

    Maxwell, Anthony; Burton, Nicolas P.; O'Hagan, Natasha

    2006-01-01

    We have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye. The other uses capture of a plasmid containing two triplex-forming sequences by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by a second oligonucleotide that is radiolabelled. The assays are shown to be appropriate for assaying DNA supercoiling by Escherichia coli DNA gyrase and DNA relaxation by eukaryotic topoisomerases I and II, and E.coli topoisomerase IV. The assays are readily adaptable to other enzymes that change DNA supercoiling (e.g. restriction enzymes) and are suitable for use in a high-throughput format. PMID:16936317

  20. High-throughput assays for DNA gyrase and other topoisomerases.

    PubMed

    Maxwell, Anthony; Burton, Nicolas P; O'Hagan, Natasha

    2006-01-01

    We have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye. The other uses capture of a plasmid containing two triplex-forming sequences by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by a second oligonucleotide that is radiolabelled. The assays are shown to be appropriate for assaying DNA supercoiling by Escherichia coli DNA gyrase and DNA relaxation by eukaryotic topoisomerases I and II, and E.coli topoisomerase IV. The assays are readily adaptable to other enzymes that change DNA supercoiling (e.g. restriction enzymes) and are suitable for use in a high-throughput format.

  1. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer

    PubMed Central

    2012-01-01

    Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G)-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA) for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024). EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated with ErbB1, mTOR, PTEN, and Stat5. Western blots confirmed that full-length and truncated beta-catenin expression correlated with U2AF65 expression in tumor extracts. Conclusions Increased triplex DNA-binding activity in vitro correlates with lymph node disease, metastasis, and reduced overall survival in colorectal cancer, and increased U2AF65 expression is associated with total and truncated beta-catenin expression in high-stage colorectal tumors. PMID:22682314

  2. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology

    PubMed Central

    2018-01-01

    Abstract DNA self-assembly has proved to be a useful bottom-up strategy for the construction of user-defined nanoscale objects, lattices and devices. The design of these structures has largely relied on exploiting simple base pairing rules and the formation of double-helical domains as secondary structural elements. However, other helical forms involving specific non-canonical base-base interactions have introduced a novel paradigm into the process of engineering with DNA. The most notable of these is a three-stranded complex generated by the binding of a third strand within the duplex major groove, generating a triple-helical (‘triplex’) structure. The sequence, structural and assembly requirements that differentiate triplexes from their duplex counterparts has allowed the design of nanostructures for both dynamic and/or structural purposes, as well as a means to target non-nucleic acid components to precise locations within a nanostructure scaffold. Here, we review the properties of triplexes that have proved useful in the engineering of DNA nanostructures, with an emphasis on applications that hitherto have not been possible by duplex formation alone. PMID:29228337

  3. Screening and investigation of triplex DNA binders from Stephania tetrandra S. Moore by a combination of peak area-fading UHPLC with orbitrap MS and optical spectroscopies.

    PubMed

    Yang, Hongmei; Wang, Yihan; Yu, Wenjing; Shi, Lei; Wang, Hongfeng; Su, Rui; Chen, Changbao; Liu, Shuying

    2018-05-15

    The identification and screening of triplex DNA binders are important because these compounds, in many cases, are potential anticancer agents as well as promising drug candidates. Therefore, the ability to screen for these compounds in a high-throughput mode could dramatically improve the drug screening process. A method involving a combination of 96-well plate format and peak area-fading ultra high performance liquid chromatography coupled with Orbitrap mass spectrometry was employed for screening bioactive compounds binding to the triplex DNA from the extracts of Stephania tetrandra S. Moore. Two compounds were screened out and identified as fangchinoline and tetrandrine, based on the comparison of retention time and MS 2 data with those of standards. The binding mechanisms of fangchinoline and tetrandrine at the molecular level were explored using MS 2 , fluorescence spectroscopy, ultraviolet-visible spectroscopy, and circular dichroism. Collision-induced dissociation experiments showed that the complexes with fangchinoline and tetrandrine were dissociated by ligand elimination. According to these measurements, an intercalating binding is the most appropriate binding mode of these two alkaloids to the triplex DNA. The current work provides not only deep insight into alkaloid-triplex DNA complexes but also useful guidelines for the design of efficient anticancer agents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Super-lncRNAs: identification of lncRNAs that target super-enhancers via RNA:DNA:DNA triplex formation.

    PubMed

    Soibam, Benjamin

    2017-11-01

    Super-enhancers are characterized by high levels of Mediator binding and are major contributors to the expression of their associated genes. They exhibit high levels of local chromatin interactions and a higher order of local chromatin organization. On the other hand, lncRNAs can localize to specific DNA sites by forming a RNA:DNA:DNA triplex, which in turn can contribute to local chromatin organization. In this paper, we characterize a new class of lncRNAs called super-lncRNAs that target super-enhancers and which can contribute to the local chromatin organization of the super-enhancers. Using a logistic regression model based on the number of RNA:DNA:DNA triplex sites a lncRNA forms within the super-enhancer, we identify 442 unique super-lncRNA transcripts in 27 different human cell and tissue types; 70% of these super-lncRNAs were tissue restricted. They primarily harbor a single triplex-forming repeat domain, which forms an RNA:DNA:DNA triplex with multiple anchor DNA sites (originating from transposable elements) within the super-enhancers. Super-lncRNAs can be grouped into 17 different clusters based on the tissue or cell lines they target. Super-lncRNAs in a particular cluster share common short structural motifs and their corresponding super-enhancer targets are associated with gene ontology terms pertaining to the tissue or cell line. Super-lncRNAs may use these structural motifs to recruit and transport necessary regulators (such as transcription factors and Mediator complexes) to super-enhancers, influence chromatin organization, and act as spatial amplifiers for key tissue-specific genes associated with super-enhancers. © 2017 Soibam; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Effect of competing self-structure on triplex formation with purine-rich oligodeoxynucleotides containing GA repeats.

    PubMed Central

    Noonberg, S B; François, J C; Garestier, T; Hélène, C

    1995-01-01

    Competition between triplex formation with double-stranded DNA and oligonucleotide self-association was investigated in 23mer GA and GT oligonucleotides containing d(GA)5 or d(GT)5 repeats. Whereas triplex formation with GT oligonucleotides was diminished when temperature increased from 4 to 37 degrees C, triplex formation with GA oligonucleotides was enhanced when temperature increased within the same range due to the presence of competing intermolecular GA oligonucleotide self-structure. This self-structure was determined to be a homoduplex stabilized by the internal GA repeats. UV spectroscopy of these homoduplexes demonstrated a single sharp transition with rapid kinetics (Tm = 38.5-43.5 degrees C over strand concentrations of 0.5-4 microM, respectively, with transition enthalpy, delta H = -89 +/- 7 kcal/mol) in 10 mM MgCl2, 100 mM NaCl, pH 7.0. Homoduplex formation was strongly stabilized by multivalent cations (spermine > Mg2+ = Ca2+) and destabilized by low concentrations of monovalent cations (K+ = Li+ = Na+) in the presence of divalent cations. However, unlike GA or GT oligonucleotide-containing triplexes, the homoduplex formed even in the absence of multivalent cations, stabilized by only moderate concentrations of monovalent cations (Li+ > Na+ > K+). Through the development of multiple equilibrium states and the resulting depletion of free oligonucleotide, it was found that the presence of competing self-structure could decrease triplex formation under a variety of experimental conditions. Images PMID:7596824

  6. New Approaches Towards Recognition of Nucleic Acid Triple Helices

    PubMed Central

    Arya, Dev P.

    2012-01-01

    We show that groove recognition of nucleic acid triple helices can be achieved with aminosugars. Among these aminosugars, neomycin is the most effective aminoglycoside (groove binder) for stabilizing a DNA triple helix. It stabilizes both the T·A·T triplex and mixed-base DNA triplexes better than known DNA minor groove binders (which usually destabilize the triplex) and polyamines. Neomycin selectively stabilizes the triplex (T·A·T and mixed base) without any effect on the DNA duplex. The selectivity of neomycin likely originates from its potential and shape complementarity to the triplex Watson–Hoogsteen groove, making it the first molecule that selectively recognizes a triplex groove over a duplex groove. The groove recognition of aminoglycosides is not limited to DNA triplexes, but also extends to RNA and hybrid triple helical structures. Intercalator–neomycin conjugates are shown to simultaneously probe the base stacking and groove surface in the DNA triplex. Calorimetric and spectrosocopic studies allow the quantification of the effect of surface area of the intercalating moiety on binding to the triplex. These studies outline a novel approach to the recognition of DNA triplexes that incorporates the use of non-competing binding sites. These principles of dual recognition should be applicable to the design of ligands that can bind any given nucleic acid target with nanomolar affinities and with high selectivity. PMID:21073199

  7. Secondary binding sites for heavily modified triplex forming oligonucleotides

    PubMed Central

    Cardew, Antonia S.; Brown, Tom; Fox, Keith R.

    2012-01-01

    In order to enhance DNA triple helix stability synthetic oligonucleotides have been developed that bear amino groups on the sugar or base. One of the most effective of these is bis-amino-U (B), which possesses 5-propargylamino and 2′-aminoethoxy modifications. Inclusion of this modified nucleotide not only greatly enhances triplex stability, but also increases the affinity for related sequences. We have used a restriction enzyme protection, selection and amplification assay (REPSA) to isolate sequences that are bound by the heavily modified 9-mer triplex-forming oligonucleotide B6CBT. The isolated sequences contain An tracts (n = 6), suggesting that the 5′-end of this TFO was responsible for successful triplex formation. DNase I footprinting with these sequences confirmed triple helix formation at these secondary targets and demonstrated no interaction with similar oligonucleotides containing T or 5-propargylamino-dU. PMID:22180535

  8. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.

    PubMed

    Mukherjee, Anirban; Vasquez, Karen M

    2011-08-01

    Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. pH-independent triple-helix formation with 6-oxocytidine as cytidine analogue.

    PubMed

    Parsch, U; Engels, J W

    2000-07-03

    The syntheses of six different phosphoramidite building blocks of 6-oxocytosine and 5-allyl-6-oxocytosine as analogues of N(3)-protonated cytosine are described. These compounds have been incorporated into oligonucleotides by standard solid-phase synthesis. Hybridization of 15-mer Hoogsteen strands with target 21-mer duplexes was investigated. Comparison of the triplex-forming abilities of the different building blocks revealed that: i) 5-allyl substitution has a negative influence on triplex stability, ii) a uniform backbone of the Hoogsteen strand stabilizes triplexes relative to mixed backbones; iii) RNA strands with 6-oxocytidine or 5-allyl-6-oxocytidine do not form a triple helix with the DNA target duplex, probably due to backbone torsional constraints; and (iv) a 15-mer DNA sequence with three isolated 2'-deoxy-6-oxocytidines has the highest T(m) of all cytidine analogues investigated in this study. CD experiments provided further evidence for the presence or absence of triplex structures. In the course of these temperature-dependent CD measurements we were able to detect duplex and triplex melting independent from each other at selected wavelengths. This methodology is especially interesting in cases where UV melting curves show only one transition owing to spectral overlap.

  10. Microarray Detection of Duplex and Triplex DNA Binders with DNA-Modified Gold Nanoparticles

    PubMed Central

    Lytton-Jean, Abigail K. R.; Han, Min Su; Mirkin, Chad A.

    2008-01-01

    We have designed a chip-based assay, using microarray technology, for determining the relative binding affinities of duplex and triplex DNA binders. This assay combines the high discrimination capabilities afforded by DNA-modified Au nanoparticles with the high-throughput capabilities of DNA microarrays. The detection and screening of duplex DNA binders are important because these molecules, in many cases, are potential anticancer agents as well as toxins. Triplex DNA binders are also promising drug candidates. These molecules, in conjunction with triplex forming oligonucleotides, could potentially be used to achieve control of gene expression by interfering with transcription factors that bind to DNA. Therefore, the ability to screen for these molecules in a high-throughput fashion could dramatically improve the drug screening process. The assay reported here provides excellent discrimination between strong, intermediate, and weak duplex and triplex DNA binders in a high-throughput fashion. PMID:17614366

  11. p53 Specifically Binds Triplex DNA In Vitro and in Cells

    PubMed Central

    Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L.; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej

    2016-01-01

    Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed. PMID:27907175

  12. High-throughput screening of triplex DNA binders from complicated samples by 96-well pate format in conjunction with peak area-fading UHPLC-Orbitrap MS.

    PubMed

    Yang, Hongmei; Yao, Wenbin; Wang, Yihan; Shi, Lei; Su, Rui; Wan, Debin; Xu, Niusheng; Lian, Wenhui; Chen, Changbao; Liu, Shuying

    2017-02-14

    Conventional strategies for the screening of DNA triplex binders cannot be used for complicated samples, such as ligand libraries created by combinatorial chemistry or from natural product extracts. In the current study, an ultra-high-performance liquid chromatography coupled with an Orbitrap mass spectrometry (UHPLC-Orbitrap-MS)-based approach, which we call peak area-fading (PAF) UHPLC-Orbitrap-MS and was designed for just such a purpose, is reported. The triplex DNA modified 96-well plate and the single stranded oligonucleotide modified 96-well plate (as control) were incubated with ligand libraries, and the unbound ligands were directly determined via UHPLC-ESI-MS. The binders were detected through the decrease (fading) in the peak areas compared to those of the control group. Several factors, such as incubation time, incubation temperature, and buffer, which might affect the binding affinity and reproducibility, were optimized. The potential of the approach was examined using the extracts of Rhizoma Coptidis and Phellodendron chinense Schneid cortexe. The triplex DNA-binding capabilities of the five components (epiberberine, coptisine, jatrorrhizine, berberrubine, and columbamine) were found for the first time, indicating their efficiency for the analysis of complicated samples. In contrast to our previous study, which suffered from a serious drawback of poor reproducibility, this method is more robust and more suitable for high-throughput measurements, opening a new experimental strategy in assessing large libraries of potential drug candidates that work by forming a drug/DNA complex.

  13. Functionalizing Designer DNA Crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine nucleotides is usually pH dependent (pH < 6) four different TFOs were examined: TFO-1 was unmodified while TFOs 2-4 contained additional stabilizing analogues capable of extending triplex formation to pH 7. In addition, each of the TFOs contained a Cy5 dye at the 5'-end of the oligonucleotide to aid in characterization of TFO binding - crystals were obtained with all four variations of TFOs. Formation of DNA triplex in the motif was characterized by an electrophoretic mobility shift assay (EMSA), UV melting studies and FRET. Crystals containing TFO-1 (unmodified) and TFO-2 (with 2'-amino ethoxy modification) were isolated and flash-frozen in liquid nitrogen for X-ray data collection at beam line NSLS-X25. X-ray data was also collected for crystals of the 3-turn triangle without any TFO bound to it. Difference maps were done between the crystals with TFO against the one without to identify any additional electron density corresponding to the third strand in the triplex binding region. The data from the crystal containing TFO-2 was used to further analyze if the additional density can match the expected position of the TFO on the triangle motif. Since the additional density did not correspond to the entire binding region, 2Fo-Fc, 3Fo-2Fc and 4Fo-3Fc maps were done to check for missing pieces of the electron density. From the resulting 2Fo-Fc map, the asymmetric unit from the 3-turn triangle (31-bp duplex model based on previous structure 3UBI) was inserted into the density as a reference. However, the electron density corresponding to the TFO was still not continuous throughout the 13-nt triplex binding region and allowed only a partial fit of the TFO. The third nucleotide in positions 1, 3, 4, 6, 7 were fit into the density in the major groove of the underlying duplex with proper triplex configuration. The third chapter describes the triplex approach to position a functional group (the UV cross-linking agent psoralen) within a pre-formed DNA motif. Triplex formation and psoralen cross-linking of the motif were analyzed by native and denaturing gel electrophoresis respectively. Motifs containing the Psoralen-TFO were also successfully crystallized and the crosslinking shown by analyzing the denatured crystals on a gel. The end goal would be to form a crosslinked designed DNA crystal that can diffract to a higher resolution. The fourth chapter describes the use of serial femtosecond crystallography for structure determination of designed DNA lattices. X-ray diffraction data from self-assembled 3D DNA microcrystals were collected from a stream of crystals in solution. Serial femtosecond crystallography eliminates the need for large crystals and the need for freezing, thus overcoming any associated crystal defects and radiation damage. Self-assembled nano/microcrystals were successfully made and were diffracted at room temperature. The best diffraction was from the 1-nt SE motif to an extent of 3.5 A in resolution.

  14. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes.

    PubMed

    Bierhoff, H; Schmitz, K; Maass, F; Ye, J; Grummt, I

    2010-01-01

    Alternative transcription of the same gene in sense and antisense orientation regulates expression of protein-coding genes. Here we show that noncoding RNA (ncRNA) in sense and antisense orientation also controls transcription of rRNA genes (rDNA). rDNA exists in two types of chromatin--a euchromatic conformation that is permissive to transcription and a heterochromatic conformation that is transcriptionally silent. Silencing of rDNA is mediated by NoRC, a chromatin-remodeling complex that triggers heterochromatin formation. NoRC function requires RNA that is complementary to the rDNA promoter (pRNA). pRNA forms a DNA:RNA triplex with a regulatory element in the rDNA promoter, and this triplex structure is recognized by DNMT3b. The results imply that triplex-mediated targeting of DNMT3b to specific sequences may be a common pathway in epigenetic regulation. We also show that rDNA is transcribed in antisense orientation. The level of antisense RNA (asRNA) is down-regulated in cancer cells and up-regulated in senescent cells. Ectopic asRNA triggers trimethylation of histone H4 at lysine 20 (H4K20me3), suggesting that antisense transcripts guide the histone methyltransferase Suv4-20 to rDNA. The results reveal that noncoding RNAs in sense and antisense orientation are important determinants of the epigenetic state of rDNA.

  15. Triplex-mediated analysis of cytosine methylation at CpA sites in DNA.

    PubMed

    Johannsen, Marie W; Gerrard, Simon R; Melvin, Tracy; Brown, Tom

    2014-01-18

    Modified triplex-forming oligonucleotides distinguish 5-methyl cytosine from unmethylated cytosine in DNA duplexes by differences in triplex melting temperatures. The discrimination is sequence-specific; dramatic differences in stabilisation are seen for CpA methylation, whereas CpG methylation is not detected. This direct detection of DNA methylation constitutes a new approach for epigenetic analysis.

  16. Selective Inhibition of the Human tie-1 Promoter with Triplex-Forming Oligonucleotides Targeted to Ets Binding Sites

    PubMed Central

    Hewett, Peter W; Daft, Emma L; Laughton, Charles A; Ahmad, Shakil; Ahmed, Asif; Murray, J Clifford

    2006-01-01

    The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21–22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (Kd ~10−7 M) at 37 °C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction. PMID:16838069

  17. Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to Ets binding sites.

    PubMed

    Hewett, Peter W; Daft, Emma L; Laughton, Charles A; Ahmad, Shakil; Ahmed, Asif; Murray, J Clifford

    2006-01-01

    The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction.

  18. Monitoring DNA triplex formation using multicolor fluorescence and application to insulin-like growth factor I promoter downregulation.

    PubMed

    Hégarat, Nadia; Novopashina, Darya; Fokina, Alesya A; Boutorine, Alexandre S; Venyaminova, Alya G; Praseuth, Danièle; François, Jean-Christophe

    2014-03-01

    Inhibition of insulin-like growth factor I (IGF-I) signaling is a promising antitumor strategy and nucleic acid-based approaches have been investigated to target genes in the pathway. Here, we sought to modulate IGF-I transcriptional activity using triple helix formation. The IGF-I P1 promoter contains a purine/pyrimidine (R/Y) sequence that is pivotal for transcription as determined by deletion analysis and can be targeted with a triplex-forming oligonucleotide (TFO). We designed modified purine- and pyrimidine-rich TFOs to bind to the R/Y sequence. To monitor TFO binding, we developed a fluorescence-based gel-retardation assay that allowed independent detection of each strand in three-stranded complexes using end-labeling with Alexa 488, cyanine (Cy)3 and Cy5 fluorochromes. We characterized TFOs for their ability to inhibit restriction enzyme activity, compete with DNA-binding proteins and inhibit IGF-I transcription in reporter assays. TFOs containing modified nucleobases, 5-methyl-2'-deoxycytidine and 5-propynyl-2'-deoxyuridine, specifically inhibited restriction enzyme cleavage and formed triplexes on the P1 promoter fragment. In cells, deletion of the R/Y-rich sequence led to 48% transcriptional inhibition of a reporter gene. Transfection with TFOs inhibited reporter gene activity to a similar extent, whereas transcription from a mutant construct with an interrupted R/Y region was unaffected, strongly suggesting the involvement of triplex formation in the inhibitory mechanisms. Our results indicate that nuclease-resistant TFOs will likely inhibit endogenous IGF-I gene function in cells. © 2014 FEBS.

  19. DNA triplex structure, thermodynamics, and destabilisation: insight from molecular simulations.

    PubMed

    Boehm, Belinda J; Whidborne, Charles; Button, Alexander L; Pukala, Tara L; Huang, David M

    2018-05-23

    Molecular dynamics simulations are used to elucidate the structure and thermodynamics of DNA triplexes associated with the neurodegenerative disease Friedreich's ataxia (FRDA), as well as complexes of these triplexes with the small molecule netropsin, which is known to destabilise triplexes. The ability of molecular simulations in explicit solvent to accurately capture triplex thermodynamics is verified for the first time, with the free energy to dissociate a 15-base antiparallel purine triplex-forming oligomer (TFO) from the duplex found to be slightly higher than reported experimentally. The presence of netropsin in the minor groove destabilises the triplex as expected, reducing the dissociation free energy by approximately 50%. Netropsin binding is associated with localised narrowing of the minor groove near netropsin, an effect that has previously been under contention. This leads to localised widening of the major groove, weakening hydrogen bonds between the TFO and duplex. Consequently, destabilisation is found to be highly localised, occurring only when netropsin is bound directly opposite the TFO. The simulations also suggest that near saturation of the minor groove with ligand is required for complete triplex dissociation. A structural analysis of the DNA triplexes that can form with the FRDA-related duplex sequence indicates that the triplex with a parallel homopyrimidine TFO is likely to be more stable than the antiparallel homopurine-TFO triplex, which may have implications for disease onset and treatment.

  20. Synthesis and monitored selection of nucleotide surrogates for binding T:A base pairs in homopurine-homopyrimidine DNA triple helices.

    PubMed

    Mokhir, A A; Connors, W H; Richert, C

    2001-09-01

    A total of 16 oligodeoxyribonucleotides of general sequence 5'-TCTTCTZTCTTTCT-3', where Z denotes an N-acyl-N-(2-hydroxyethyl)glycine residue, were prepared via solid phase synthesis. The ability of these oligonucleotides to form triplexes with the duplex 5'-AGAAGATAGAAAGA-HEG-TCTTTCTATCTTCT-3', where HEG is a hexaethylene glycol linker, was tested. In these triplexes, an 'interrupting' T:A base pair faces the Z residue in the third strand. Among the acyl moieties of Z tested, an anthraquinone carboxylic acid residue linked via a glycinyl group gave the most stable triplex, whose UV melting point was 8.4 degrees C higher than that of the triplex with 5'-TCTTCTGTCTTTCT-3' as the third strand. The results from exploratory nuclease selection experiments suggest that a combinatorial search for strands capable of recognizing mixed sequences by triple helix formation is feasible.

  1. Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition

    PubMed Central

    Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576

  2. Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.

    PubMed

    Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M

    2014-01-01

    Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.

  3. Fluorescent triplex-forming DNA oligonucleotides labeled with a thiazole orange dimer unit

    PubMed Central

    Ikeda, Shuji; Yanagisawa, Hiroyuki; Yuki, Mizue; Okamoto, Akimitsu

    2013-01-01

    Fluorescent probes for the detection of a double-stranded DNA were prepared by labeling a triplex-forming DNA oligonucleotide with a thiazole orange (TO) dimer unit. They belong to ECHO (exciton-controlled hybridization-sensitive fluorescent oligonucleotide) probes which we have previously reported. The excitonic interaction between the two TO molecules was expected to effectively suppress the background fluorescence of the probes. The applicability of the ECHO probes for the detection of double-stranded DNA was confirmed by examining the thermal stability and photophysical and kinetic properties of the DNA triplexes formed by the ECHO probes. PMID:23445822

  4. G-triplex structure and formation propensity

    PubMed Central

    Cerofolini, Linda; Amato, Jussara; Giachetti, Andrea; Limongelli, Vittorio; Novellino, Ettore; Parrinello, Michele; Fragai, Marco; Randazzo, Antonio; Luchinat, Claudio

    2014-01-01

    The occurrence of a G-triplex folding intermediate of thrombin binding aptamer (TBA) has been recently predicted by metadynamics calculations, and experimentally supported by Nuclear Magnetic Resonance (NMR), Circular Dichroism (CD) and Differential Scanning Calorimetry (DSC) data collected on a 3′ end TBA-truncated 11-mer oligonucleotide (11-mer-3′-t-TBA). Here we present the solution structure of 11-mer-3′-t-TBA in the presence of potassium ions. This structure is the first experimental example of a G-triplex folding, where a network of Hoogsteen-like hydrogen bonds stabilizes six guanines to form two G:G:G triad planes. The G-triplex folding of 11-mer-3′-t-TBA is stabilized by the potassium ion and destabilized by increasing the temperature. The superimposition of the experimental structure with that predicted by metadynamics shows a great similarity, with only significant differences involving two loops. These new structural data show that 11-mer-3′-t-TBA assumes a G-triplex DNA conformation as its stable form, reinforcing the idea that G-triplex folding intermediates may occur in vivo in human guanine-rich sequences. NMR and CD screening of eight different constructs obtained by removing from one to four bases at either the 3′ and the 5′ ends show that only the 11-mer-3′-t-TBA yields a relatively stable G-triplex. PMID:25378342

  5. Repairing the sickle cell mutation. I. Specific covalent binding of a photoreactive third strand to the mutated base pair.

    PubMed

    Broitman, S; Amosova, O; Dolinnaya, N G; Fresco, J R

    1999-07-30

    A DNA third strand with a 3'-psoralen substituent was designed to form a triplex with the sequence downstream of the T.A mutant base pair of the human sickle cell beta-globin gene. Triplex-mediated psoralen modification of the mutant T residue was sought as an approach to gene repair. The 24-nucleotide purine-rich target sequence switches from one strand to the other and has four pyrimidine interruptions. Therefore, a third strand sequence favorable to two triplex motifs was used, one parallel and the other antiparallel to it. To cope with the pyrimidine interruptions, which weaken third strand binding, 5-methylcytosine and 5-propynyluracil were used in the third strand. Further, a six residue "hook" complementary to an overhang of a linear duplex target was added to the 5'-end of the third strand via a T(4) linker. In binding to the overhang by Watson-Crick pairing, the hook facilitates triplex formation. This third strand also binds specifically to the target within a supercoiled plasmid. The psoralen moiety at the 3'-end of the third strand forms photoadducts to the targeted T with high efficiency. Such monoadducts are known to preferentially trigger reversion of the mutation by DNA repair enzymes.

  6. Novel electrochemiluminescence of silver nanoclusters fabricated on triplex DNA scaffolds for label-free detection of biothiols.

    PubMed

    Feng, Lingyan; Wu, Li; Xing, Feifei; Hu, Lianzhe; Ren, Jinsong; Qu, Xiaogang

    2017-12-15

    Electrochemiluminescence (ECL) of metal nanoclusters and their application have been widely reported due to the good biocompatibility, fascinating electrocatalytic activity and so on. Using DNA as synthesis template opens new opportunities to modulate the physical properties of AgNCs. Triplex DNA has been reported for the site-specific, homogeneous and highly stable silver nanoclusters (AgNCs) fabrication from our recent research. Here we further explore their extraordinary ECL properties and applications in biosensor utilization. By reasonable design of DNA sequence, AgNCs were obtained in the predefined position of CG.C + sites of triplex DNA, and the ECL emission at a low potential was observed with this novel DNA template. Finally, a simple and label-free method was developed for biothiols detection based on the enhanced catalytic reaction and a robust interaction between the triplex-AgNCs and cysteine, by influencing the microenvironment provided by DNA template. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Triplex DNA formation-mediated strand displacement reaction for highly sensitive fluorescent detection of melamine.

    PubMed

    Liu, Xiaojuan; Xu, Ningning; Gai, Panpan; Li, Feng

    2018-08-01

    Since melamine is a strong hazard to human health, the development of new methods for highly sensitive detection of melamine is highly desirable. Herein, a novel fluorescent biosensing strategy was designed for sensitive and selective melamine assay based on the recognition ability of abasic (AP) site in triplex towards melamine and signal amplification by Mg 2+ -dependent DNAzyme. In this strategy, the melamine-induced formation of triplex DNA was employed to trigger the strand displacement reaction (SDR). The SDR process converted the specific target recognition into the release and activation of Mg 2+ -dependent DNAzyme, which could catalyze the cleavage of fluorophore/quencher labeled DNA substrate (FQ), resulting in a significantly increased fluorescent signal. Under the optimal conditions, the fluorescent signal has a linear relationship with the logarithm of the melamine concentration in a wide range of 0.005-50 μM. The detection limit was estimated to be 0.9 nM (0.1ppb), which is sufficiently sensitive for practical application. Furthermore, this strategy exhibits high selectivity against other potential interfering substances, and the practical application of this strategy for milk samples reveals that the proposed strategy works well for melamine assay in real samples. Therefore, this strategy presents a new method for the sensitive melamine assay and holds great promise for sensing applications in the environment and the food safety field. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Human XPA and RPA DNA repair proteins participate in specific recognition of triplex-induced helical distortions

    NASA Astrophysics Data System (ADS)

    Vasquez, Karen M.; Christensen, Jesper; Li, Lei; Finch, Rick A.; Glazer, Peter M.

    2002-04-01

    Nucleotide excision repair (NER) plays a central role in maintaining genomic integrity by detecting and repairing a wide variety of DNA lesions. Xeroderma pigmentosum complementation group A protein (XPA) is an essential component of the repair machinery, and it is thought to be involved in the initial step as a DNA damage recognition and/or confirmation factor. Human replication protein A (RPA) and XPA have been reported to interact to form a DNA damage recognition complex with greater specificity for damaged DNA than XPA alone. The mechanism by which these two proteins recognize such a wide array of structures resulting from different types of DNA damage is not known. One possibility is that they recognize a common feature of the lesions, such as distortions of the helical backbone. We have tested this idea by determining whether human XPA and RPA proteins can recognize the helical distortions induced by a DNA triple helix, a noncanonical DNA structure that has been shown to induce DNA repair, mutagenesis, and recombination. We measured binding of XPA and RPA, together or separately, to substrates containing triplexes with three, two, or no strands covalently linked by psoralen conjugation and photoaddition. We found that RPA alone recognizes all covalent triplex structures, but also forms multivalent nonspecific DNA aggregates at higher concentrations. XPA by itself does not recognize the substrates, but it binds them in the presence of RPA. Addition of XPA decreases the nonspecific DNA aggregate formation. These results support the hypothesis that the NER machinery is targeted to helical distortions and demonstrate that RPA can recognize damaged DNA even without XPA.

  9. Transcription blockage by stable H-DNA analogs in vitro

    PubMed Central

    Pandey, Shristi; Ogloblina, Anna M.; Belotserkovskii, Boris P.; Dolinnaya, Nina G.; Yakubovskaya, Marianna G.; Mirkin, Sergei M.; Hanawalt, Philip C.

    2015-01-01

    DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn2+ or by increased concentrations of K+ and Li+. Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed. PMID:26101261

  10. A directional nucleation-zipping mechanism for triple helix formation

    PubMed Central

    Alberti, Patrizia; Arimondo, Paola B.; Mergny, Jean-Louis; Garestier, Thérèse; Hélène, Claude; Sun, Jian-Sheng

    2002-01-01

    A detailed kinetic study of triple helix formation was performed by surface plasmon resonance. Three systems were investigated involving 15mer pyrimidine oligonucleotides as third strands. Rate constants and activation energies were validated by comparison with thermodynamic values calculated from UV-melting analysis. Replacement of a T·A base pair by a C·G pair at either the 5′ or the 3′ end of the target sequence allowed us to assess mismatch effects and to delineate the mechanism of triple helix formation. Our data show that the association rate constant is governed by the sequence of base triplets on the 5′ side of the triplex (referred to as the 5′ side of the target oligopurine strand) and provides evidence that the reaction pathway for triple helix formation in the pyrimidine motif proceeds from the 5′ end to the 3′ end of the triplex according to the nucleation-zipping model. It seems that this is a general feature for all triple helices formation, probably due to the right-handedness of the DNA double helix that provides a stronger base stacking at the 5′ than at the 3′ duplex–triplex junction. Understanding the mechanism of triple helix formation is not only of fundamental interest, but may also help in designing better triple helix-forming oligonucleotides for gene targeting and control of gene expression. PMID:12490709

  11. Thermal stability of G-rich anti-parallel DNA triplexes upon insertion of LNA and α-L-LNA.

    PubMed

    Kosbar, Tamer R; Sofan, Mamdouh A; Abou-Zeid, Laila; Pedersen, Erik B

    2015-05-14

    G-rich anti-parallel DNA triplexes were modified with LNA or α-L-LNA in their Watson-Crick and TFO strands. The triplexes were formed by targeting a pyrimidine strand to a putative hairpin formed by Hoogsteen base pairing in order to use the UV melting method to evaluate the stability of the triplexes. Their thermal stability was reduced when the TFO strand was modified with LNA or α-L-LNA. The same trend was observed when the TFO strand and the purine Watson-Crick strand both were modified with LNA. When all triad components were modified with α-L-LNA and LNA in the middle of the triplex, the thermal melting was increased. When the pyrimidine sequence was modified with a single insertion of LNA or α-L-LNA the ΔTm increased. Moreover, increasing the number of α-L-LNA in the pyrimidine target sequence to six insertions, leads to a high increase in the thermal stability. The conformational S-type structure of α-L-LNA in anti-parallel triplexes is preferable for triplex stability.

  12. Transcription blockage by stable H-DNA analogs in vitro.

    PubMed

    Pandey, Shristi; Ogloblina, Anna M; Belotserkovskii, Boris P; Dolinnaya, Nina G; Yakubovskaya, Marianna G; Mirkin, Sergei M; Hanawalt, Philip C

    2015-08-18

    DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn(2+) or by increased concentrations of K(+) and Li(+). Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Alternate-strand triple-helix formation by the 3'-3'-linked oligodeoxynucleotides with the intercalators at the junction point.

    PubMed

    Ueno, Y; Mikawa, M; Hoshika, S; Takeba, M; Kitade, Y; Matsuda, A

    2001-01-01

    3'-3'-Linked oligodeoxynucleotides (ODNs) with the anthraquinonyl group at the junction point were synthesized on a DNA synthesizer using a controlled pore glass (CPG), which has pentaerythritol carrying the intercalator at one of the four hydroxymethyl groups. Stability of the triplexes with the target duplexes was studied by thermal denaturation. The 3'-3'-linked ODNs with the anthraquinonyl group enhanced the thermal stability of the triplexes when compared with those without the intercalator and the unmodified nonamer. The inhibitory activity of the 3'-3'-linked ODNs against the cleavage of the target DNA by the restriction enzyme Hind III was tested. It was found that the 3'-3'-linked ODN with the anthraquinonyl group at the junction point inhibited the cleavage by the enzyme more effectively than the nonamer and the 3'-3'-linked ODN without the intercalator.

  14. Intrastrand triplex DNA repeats in bacteria: a source of genomic instability

    PubMed Central

    Holder, Isabelle T.; Wagner, Stefanie; Xiong, Peiwen; Sinn, Malte; Frickey, Tancred; Meyer, Axel; Hartig, Jörg S.

    2015-01-01

    Repetitive nucleic acid sequences are often prone to form secondary structures distinct from B-DNA. Prominent examples of such structures are DNA triplexes. We observed that certain intrastrand triplex motifs are highly conserved and abundant in prokaryotic genomes. A systematic search of 5246 different prokaryotic plasmids and genomes for intrastrand triplex motifs was conducted and the results summarized in the ITxF database available online at http://bioinformatics.uni-konstanz.de/utils/ITxF/. Next we investigated biophysical and biochemical properties of a particular G/C-rich triplex motif (TM) that occurs in many copies in more than 260 bacterial genomes by CD and nuclear magnetic resonance spectroscopy as well as in vivo footprinting techniques. A characterization of putative properties and functions of these unusually frequent nucleic acid motifs demonstrated that the occurrence of the TM is associated with a high degree of genomic instability. TM-containing genomic loci are significantly more rearranged among closely related Escherichia coli strains compared to control sites. In addition, we found very high frequencies of TM motifs in certain Enterobacteria and Cyanobacteria that were previously described as genetically highly diverse. In conclusion we link intrastrand triplex motifs with the induction of genomic instability. We speculate that the observed instability might be an adaptive feature of these genomes that creates variation for natural selection to act upon. PMID:26450966

  15. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.

    PubMed

    Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen

    2018-03-26

    A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Interference between Triplex and Protein Binding to Distal Sites on Supercoiled DNA.

    PubMed

    Noy, Agnes; Maxwell, Anthony; Harris, Sarah A

    2017-02-07

    We have explored the interdependence of the binding of a DNA triplex and a repressor protein to distal recognition sites on supercoiled DNA minicircles using MD simulations. We observe that the interaction between the two ligands through their influence on their DNA template is determined by a subtle interplay of DNA mechanics and electrostatics, that the changes in flexibility induced by ligand binding play an important role and that supercoiling can instigate additional ligand-DNA contacts that would not be possible in simple linear DNA sequences. Copyright © 2017. Published by Elsevier Inc.

  17. Duplex and triplex formation of mixed pyrimidine oligonucleotides with stacking of phenyl-triazole moieties in the major groove.

    PubMed

    Andersen, Nicolai Krog; Døssing, Holger; Jensen, Frank; Vester, Birte; Nielsen, Poul

    2011-08-05

    5-(1-Phenyl-1,2,3-triazol-4-yl)-2'-deoxycytidine was synthesized from a modified CuAAC protocol and incorporated into mixed pyrimidine oligonucleotide sequences together with the corresponding 5-(1-phenyl-1,2,3-triazol-4-yl)-2'-deoxyuridine. With consecutive incorporations of the two modified nucleosides, improved duplex formation with a complementary RNA and improved triplex formation with a complementary DNA duplex were observed. The improvement is due to π-π stacking of the phenyl-triazole moieties in the major groove. The strongest stacking and most pronounced positive influence on thermal stability was found in between the uridine analogues or with the cytidine analogue placed in the 3' direction to the uridine analogue. Modeling indicated a different orientation of the phenyl-triazole moieties in the major groove to account for the difference between the two nucleotides. The modified oligonucleotides were all found to be significantly stabilized toward nucleolytic degration.

  18. Calorimetric and spectroscopic studies of aminoglycoside binding to AT-rich DNA triple helices

    PubMed Central

    Xi, Hongjuan; Kumar, Sunil; Dosen-Micovic, Ljiljana; Arya, Dev P.

    2013-01-01

    Calorimetric and fluorescence techniques were used to characterize the binding of aminoglycosides-neomycin, paromomycin, and ribostamycin, with 5′-dA12-x-dT12-x-dT12-3′ intramolecular DNA triplex (x = hexaethylene glycol) and poly(dA).2poly(dT) triplex. Our results demonstrate the following features: (1) UV thermal analysis reveals that the Tm for triplex decreases with increasing pH value in the presence of neomycin, while the Tm for the duplex remains unchanged. (2) The binding affinity of neomycin decreases with increased pH, although there is an increase in observed binding enthalpy. (3) ITC studies conducted in two buffers (sodium cacodylate and MOPS) yield the number of protonated drug amino groups (Δn) as 0.29 and 0.40 for neomycin and paromomycin interaction with 5′-dA12-x-dT12-x-dT12-3′, respectively. (4) The specific heat capacity change (ΔCp) determined by ITC studies is negative, with more negative values at lower salt concentrations. From 100 mM to 250 mM KCl, the ΔCp ranges from −402 to −60 cal/(mol K) for neomycin. At pH 5.5, a more positive ΔCp is observed, with a value of −98 cal/(mol K) at 100 mM KCl. ΔCp is not significantly affected by ionic strength. (5) Salt dependence studies reveal that there are at least three amino groups of neomycin participating in the electrostatic interactions with the triplex. (6) FID studies using thiazole orange were used to derive the AC50 (aminoglycoside concentration needed to displace 50% of the dye from the triplex) values. Neomycin shows a seven fold higher affinity than paromomycin and eleven fold higher affinity than ribostamycin at pH 6.8. (7) Modeling studies, consistent with UV and ITC results, show the importance of an additional positive charge in triplex recognition by neomycin. The modeling and thermodynamic studies indicate that neomycin binding to the DNA triplex depends upon significant contributions from charge as well as shape complementarity of the drug to the DNA triplex Watson–Hoogsteen groove. PMID:20167243

  19. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions.

    PubMed

    Miyoshi, Daisuke; Nakamura, Kaori; Tateishi-Karimata, Hisae; Ohmichi, Tatsuo; Sugimoto, Naoki

    2009-03-18

    It has been revealed recently that molecular crowding, which is one of the largest differences between in vivo and in vitro conditions, is a critical factor determining the structure, stability, and function of nucleic acids. However, the effects of molecular crowding on Watson-Crick and Hoogsteen base pairs remain unclear. In order to investigate directly and quantitatively the molecular crowding effects on base pair types in nucleic acids, we designed intramolecular parallel- and antiparallel-stranded DNA duplexes consisting of Hoogsteen and Watson-Crick base pairs, respectively, as well as an intramolecular parallel-stranded triplex containing both types of base pairs. Thermodynamic analyses demonstrated that the values of free energy change at 25 degrees C for Hoogsteen base-pair formations decreased from +1.45 +/- 0.15 to +1.09 +/- 0.13 kcal mol(-1), and from -1.89 +/- 0.13 to -2.71 +/- 0.11 kcal mol(-1) in the intramolecular duplex and triplex, respectively, when the concentration of PEG 200 (polyethylene glycol with average molecular weight 200) increased from 0 to 20 wt %. However, corresponding values for Watson-Crick formation in the duplex and triplex increased from -10.2 +/- 0.2 to -8.7 +/- 0.1 kcal mol(-1), and from -10.8 +/- 0.2 to -9.2 +/- 0.2 kcal mol(-1), respectively. Furthermore, it was revealed that the opposing effects of molecular crowding on the Hoogsteen and Watson-Crick base pairs were due to different behaviors of water molecules binding to the DNA strands.

  20. Exponential growth and selection in self-replicating materials from DNA origami rafts

    NASA Astrophysics Data System (ADS)

    He, Xiaojin; Sha, Ruojie; Zhuo, Rebecca; Mi, Yongli; Chaikin, Paul M.; Seeman, Nadrian C.

    2017-10-01

    Self-replication and evolution under selective pressure are inherent phenomena in life, and but few artificial systems exhibit these phenomena. We have designed a system of DNA origami rafts that exponentially replicates a seed pattern, doubling the copies in each diurnal-like cycle of temperature and ultraviolet illumination, producing more than 7 million copies in 24 cycles. We demonstrate environmental selection in growing populations by incorporating pH-sensitive binding in two subpopulations. In one species, pH-sensitive triplex DNA bonds enable parent-daughter templating, while in the second species, triplex binding inhibits the formation of duplex DNA templating. At pH 5.3, the replication rate of species I is ~1.3-1.4 times faster than that of species II. At pH 7.8, the replication rates are reversed. When mixed together in the same vial, the progeny of species I replicate preferentially at pH 7.8 similarly at pH 5.3, the progeny of species II take over the system. This addressable selectivity should be adaptable to the selection and evolution of multi-component self-replicating materials in the nanoscopic-to-microscopic size range.

  1. Moving beyond Watson-Crick models of coarse grained DNA dynamics.

    PubMed

    Linak, Margaret C; Tourdot, Richard; Dorfman, Kevin D

    2011-11-28

    DNA produces a wide range of structures in addition to the canonical B-form of double-stranded DNA. Some of these structures are stabilized by Hoogsteen bonds. We developed an experimentally parameterized, coarse-grained model that incorporates such bonds. The model reproduces many of the microscopic features of double-stranded DNA and captures the experimental melting curves for a number of short DNA hairpins, even when the open state forms complicated secondary structures. We demonstrate the utility of the model by simulating the folding of a thrombin aptamer, which contains G-quartets, and strand invasion during triplex formation. Our results highlight the importance of including Hoogsteen bonding in coarse-grained models of DNA.

  2. Psoralen interstrand cross-link repair is specifically altered by an adjacent triple-stranded structure

    PubMed Central

    Guillonneau, F.; Guieysse, A. L.; Nocentini, S.; Giovannangeli, C.; Praseuth, D.

    2004-01-01

    Targeting DNA-damaging agents to specific DNA sites by using sequence-specific DNA ligands has been successful in directing genomic modifications. The understanding of repair processing of such targeted damage and the influence of the adjacent complex is largely unknown. In this way, directed interstrand cross-links (ICLs) have already been generated by psoralen targeting. The mechanisms responsible for ICL removal are far from being understood in mammalian cells, with the proposed involvement of both mutagenic and recombinogenic pathways. Here, a unique ICL was introduced at a selected site by photoactivation of a psoralen moiety with the use of psoralen conjugates of triplex-forming oligonucleotides. The processing of psoralen ICL was evaluated in vitro and in cells for two types of cross-linked substrates, either containing a psoralen ICL alone or with an adjacent triple-stranded structure. We show that the presence of a neighbouring triplex structure interferes with different stages of psoralen ICL processing: (i) the ICL-induced DNA repair synthesis in HeLa cell extracts is inhibited by the triplex structure, as measured by the efficiency of ‘true’ and futile repair synthesis, stopping at the ICL site; (ii) in HeLa cells, the ICL removal via a nucleotide excision repair (NER) pathway is delayed in the presence of a neighbouring triplex; and (iii) the binding to ICL of recombinant xeroderma pigmentosum A protein, which is involved in pre-incision recruitment of NER factors is impaired by the presence of the third DNA strand. These data characterize triplex-induced modulation of ICL repair pathways at specific steps, which might have implications for the controlled induction of targeted genomic modifications and for the associated cellular responses. PMID:14966263

  3. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters.

    PubMed

    Jasiński, Maciej; Feig, Michael; Trylska, Joanna

    2018-06-06

    Peptide nucleic acids are promising nucleic acid analogs for antisense therapies as they can form stable duplex and triplex structures with DNA and RNA. Computational studies of PNA-containing duplexes and triplexes are an important component for guiding their design, yet existing force fields have not been well validated and parametrized with modern computational capabilities. We present updated CHARMM and Amber force fields for PNA that greatly improve the stability of simulated PNA-containing duplexes and triplexes in comparison with experimental structures and allow such systems to be studied on microsecond time scales. The force field modifications focus on reparametrized PNA backbone torsion angles to match high-level quantum mechanics reference energies for a model compound. The microsecond simulations of PNA-PNA, PNA-DNA, PNA-RNA, and PNA-DNA-PNA complexes also allowed a comprehensive analysis of hydration and ion interactions with such systems.

  4. The TTSMI database: a catalog of triplex target DNA sites associated with genes and regulatory elements in the human genome.

    PubMed

    Jenjaroenpun, Piroon; Chew, Chee Siang; Yong, Tai Pang; Choowongkomon, Kiattawee; Thammasorn, Wimada; Kuznetsov, Vladimir A

    2015-01-01

    A triplex target DNA site (TTS), a stretch of DNA that is composed of polypurines, is able to form a triple-helix (triplex) structure with triplex-forming oligonucleotides (TFOs) and is able to influence the site-specific modulation of gene expression and/or the modification of genomic DNA. The co-localization of a genomic TTS with gene regulatory signals and functional genome structures suggests that TFOs could potentially be exploited in antigene strategies for the therapy of cancers and other genetic diseases. Here, we present the TTS Mapping and Integration (TTSMI; http://ttsmi.bii.a-star.edu.sg) database, which provides a catalog of unique TTS locations in the human genome and tools for analyzing the co-localization of TTSs with genomic regulatory sequences and signals that were identified using next-generation sequencing techniques and/or predicted by computational models. TTSMI was designed as a user-friendly tool that facilitates (i) fast searching/filtering of TTSs using several search terms and criteria associated with sequence stability and specificity, (ii) interactive filtering of TTSs that co-localize with gene regulatory signals and non-B DNA structures, (iii) exploration of dynamic combinations of the biological signals of specific TTSs and (iv) visualization of a TTS simultaneously with diverse annotation tracks via the UCSC genome browser. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, Charles R.; Ito, Takashi; Smith, Cassandra L.

    1996-01-01

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel.

  6. DNA purification by triplex-affinity capture and affinity capture electrophoresis

    DOEpatents

    Cantor, C.R.; Ito, Takashi; Smith, C.L.

    1996-01-09

    The invention provides a method for purifying or isolating double stranded DNA intact using triple helix formation. The method includes the steps of complexing an oligonucleotide and double stranded DNA to generate a triple helix and immobilization of the triple helix on a solid phase by means of a molecular recognition system such as avidin/biotin. The purified DNA is then recovered intact by treating the solid phase with a reagent that breaks the bonds between the oligonucleotide and the intact double stranded DNA while not affecting the Watson-Crick base pairs of the double helix. The present invention also provides a method for purifying or isolating double stranded DNA intact by complexing the double stranded DNA with a specific binding partner and recovering the complex during electrophoresis by immobilizing it on a solid phase trap imbedded in an electrophoretic gel. 6 figs.

  7. Alternative DNA structure formation in the mutagenic human c-MYC promoter

    PubMed Central

    del Mundo, Imee Marie A.; Zewail-Foote, Maha; Kerwin, Sean M.

    2017-01-01

    Abstract Mutation ‘hotspot’ regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. PMID:28334873

  8. Application of differential scanning calorimetry to measure the differential binding of ions, water and protons in the unfolding of DNA molecules.

    PubMed

    Olsen, Chris M; Shikiya, Ronald; Ganugula, Rajkumar; Reiling-Steffensmeier, Calliste; Khutsishvili, Irine; Johnson, Sarah E; Marky, Luis A

    2016-05-01

    The overall stability of DNA molecules globally depends on base-pair stacking, base-pairing, polyelectrolyte effect and hydration contributions. In order to understand how they carry out their biological roles, it is essential to have a complete physical description of how the folding of nucleic acids takes place, including their ion and water binding. To investigate the role of ions, water and protons in the stability and melting behavior of DNA structures, we report here an experimental approach i.e., mainly differential scanning calorimetry (DSC), to determine linking numbers: the differential binding of ions (Δnion), water (ΔnW) and protons (ΔnH(+)) in the helix-coil transition of DNA molecules. We use DSC and temperature-dependent UV spectroscopic techniques to measure the differential binding of ions, water, and protons for the unfolding of a variety of DNA molecules: salmon testes DNA (ST-DNA), one dodecamer, one undecamer and one decamer duplexes, nine hairpin loops, and two triplexes. These methods can be applied to any conformational transition of a biomolecule. We determined complete thermodynamic profiles, including all three linking numbers, for the unfolding of each molecule. The favorable folding of a DNA helix results from a favorable enthalpy-unfavorable entropy compensation. DSC thermograms and UV melts as a function of salt, osmolyte and proton concentrations yielded releases of ions and water. Therefore, the favorable folding of each DNA molecule results from the formation of base-pair stacks and uptake of both counterions and water molecules. In addition, the triplex with C(+)GC base triplets yielded an uptake of protons. Furthermore, the folding of a DNA duplex is accompanied by a lower uptake of ions and a similar uptake of four water molecules as the DNA helix gets shorter. In addition, the oligomer duplexes and hairpin thermodynamic data suggest ion and water binding depends on the DNA sequence rather than DNA composition. Copyright © 2015. Published by Elsevier B.V.

  9. Improved DNA hybridization parameters by Twisted Intercalating Nucleic Acid (TINA).

    PubMed

    Schneider, Uffe Vest

    2012-01-01

    This thesis establishes oligonucleotide design rules and applications of a novel group of DNA stabilizing molecules collectively called Twisted Intercalating Nucleic Acid - TINA. Three peer-reviewed publications form the basis for the thesis. One publication describes an improved and rapid method for determination of DNA melting points and two publications describe the effects of positioning TINA molecules in parallel triplex helix and antiparallel duplex helix forming DNA structures. The third publication establishes that TINA molecules containing oligonucleotides improve an antiparallel duplex hybridization based capture assay's analytical sensitivity compared to conventionel DNA oligonucleotides. Clinical microbiology is traditionally based on pathogenic microorganisms' culture and serological tests. The introduction of DNA target amplification methods like PCR has improved the analytical sensitivity and total turn around time involved in clinical diagnostics of infections. Due to the relatively weak hybridization between the two strands of double stranded DNA, a number of nucleic acid stabilizing molecules have been developed to improve the sensitivity of DNA based diagnostics through superior binding properties. A short introduction is given to Watson-Crick and Hoogsteen based DNA binding and the derived DNA structures. A number of other nucleic acid stabilizing molecules are described. The stabilizing effect of TINA molecules on different DNA structures is discussed and considered in relation to other nucleic acid stabilizing molecules and in relation to future use of TINA containing oligonucleotides in clinical diagnostics and therapy. In conclusion, design of TINA modified oligonucleotides for antiparallel duplex helixes and parallel triplex helixes follows simple purpose dependent rules. TINA molecules are well suited for improving multiplex PCR assays and can be used as part of novel technologies. Future research should test whether combinations of TINA molecules and other nucleic acid stabilizing molecules can increase analytical sensitivity whilst maintaining nucleobase mismatch discrimination in triplex helix based diagnostic assays.

  10. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery

    PubMed Central

    Bahal, Raman; Ali McNeer, Nicole; Quijano, Elias; Liu, Yanfeng; Sulkowski, Parker; Turchick, Audrey; Lu, Yi-Chien; Bhunia, Dinesh C.; Manna, Arunava; Greiner, Dale L.; Brehm, Michael A.; Cheng, Christopher J.; López-Giráldez, Francesc; Ricciardi, Adele; Beloor, Jagadish; Krause, Diane S.; Kumar, Priti; Gallagher, Patrick G.; Braddock, Demetrios T.; Mark Saltzman, W.; Ly, Danith H.; Glazer, Peter M.

    2016-01-01

    The blood disorder, β-thalassaemia, is considered an attractive target for gene correction. Site-specific triplex formation has been shown to induce DNA repair and thereby catalyse genome editing. Here we report that triplex-forming peptide nucleic acids (PNAs) substituted at the γ position plus stimulation of the stem cell factor (SCF)/c-Kit pathway yielded high levels of gene editing in haematopoietic stem cells (HSCs) in a mouse model of human β-thalassaemia. Injection of thalassemic mice with SCF plus nanoparticles containing γPNAs and donor DNAs ameliorated the disease phenotype, with sustained elevation of blood haemoglobin levels into the normal range, reduced reticulocytosis, reversal of splenomegaly and up to 7% β-globin gene correction in HSCs, with extremely low off-target effects. The combination of nanoparticle delivery, next generation γPNAs and SCF treatment may offer a minimally invasive treatment for genetic disorders of the blood that can be achieved safely and simply by intravenous administration. PMID:27782131

  11. Alternative DNA structure formation in the mutagenic human c-MYC promoter.

    PubMed

    Del Mundo, Imee Marie A; Zewail-Foote, Maha; Kerwin, Sean M; Vasquez, Karen M

    2017-05-05

    Mutation 'hotspot' regions in the genome are susceptible to genetic instability, implicating them in diseases. These hotspots are not random and often co-localize with DNA sequences potentially capable of adopting alternative DNA structures (non-B DNA, e.g. H-DNA and G4-DNA), which have been identified as endogenous sources of genomic instability. There are regions that contain overlapping sequences that may form more than one non-B DNA structure. The extent to which one structure impacts the formation/stability of another, within the sequence, is not fully understood. To address this issue, we investigated the folding preferences of oligonucleotides from a chromosomal breakpoint hotspot in the human c-MYC oncogene containing both potential G4-forming and H-DNA-forming elements. We characterized the structures formed in the presence of G4-DNA-stabilizing K+ ions or H-DNA-stabilizing Mg2+ ions using multiple techniques. We found that under conditions favorable for H-DNA formation, a stable intramolecular triplex DNA structure predominated; whereas, under K+-rich, G4-DNA-forming conditions, a plurality of unfolded and folded species were present. Thus, within a limited region containing sequences with the potential to adopt multiple structures, only one structure predominates under a given condition. The predominance of H-DNA implicates this structure in the instability associated with the human c-MYC oncogene. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Sensitive and label-free detection of miRNA-145 by triplex formation.

    PubMed

    Aviñó, Anna; Huertas, César S; Lechuga, Laura M; Eritja, Ramon

    2016-01-01

    The development of new strategies for detecting microRNAs (miRNAs) has become a crucial step in the diagnostic field. miRNA profiles depend greatly on the sample and the analytical platform employed, leading sometimes to contradictory results. In this work, we study the use of modified parallel tail-clamps to detect a miRNA sequence involved in tumor suppression by triplex formation. Thermal denaturing curves and circular dichroism (CD) measurements have been performed to confirm that parallel clamps carrying 8-aminoguanine form the most stable triplex structures with their target miRNA. The modified tail-clamps have been tested as bioreceptors in a surface plasmon resonance (SPR) biosensor for the detection of miRNA-145. The detection limit was improved 2.4 times demonstrating that a stable triplex structure is formed between target miRNA and 8-aminoguanine tail-clamp bioreceptor. This new approach is an essential step toward the label-free and reliable detection of miRNA signatures for diagnostic purposes.

  13. Efficient triple helix formation by oligodeoxyribonucleotides containing alpha- or beta-2-amino-5-(2-deoxy-D-ribofuranosyl) pyridine residues.

    PubMed

    Bates, P J; Laughton, C A; Jenkins, T C; Capaldi, D C; Roselt, P D; Reese, C B; Neidle, S

    1996-11-01

    Triple helices containing C+xGxC triplets are destabilised at physiological pH due to the requirement for base protonation of 2'-deoxycytidine (dC), which has a pKa of 4.3. The C nucleoside 2-amino-5-(2'-deoxy-beta-D-ribofuranosyl)pyridine (beta-AP) is structurally analogous to dC but is considerably more basic, with a pKa of 5.93. We have synthesised 5'-psoralen linked oligodeoxyribonucleotides (ODNs) containing thymidine (dT) and either beta-AP or its alpha-anomer (alpha-AP) and have assessed their ability to form triplexes with a double-stranded target derived from standard deoxynucleotides (i.e. beta-anomers). Third strand ODNs derived from dT and beta-AP were found to have considerably higher binding affinities for the target than the corresponding ODNs derived from dT and either dC or 5-methyl-2'-deoxycytidine (5-Me-dC). ODNs containing dT and alpha-AP also showed enhanced triplex formation with the duplex target and, in addition are more stable in serum-containing medium than standard oligopyrimidine-derived ODNs or ODNs derived from dT and beta-AP. Molecular modelling studies showed that an alpha-anomeric AP nucleotide can be accommodated within an otherwise beta-anomeric triplex with only minor perturbation of the triplex structure. Molecular dynamics (MD) simulations on triplexes containing either the alpha- or beta-anomer of (N1-protonated) AP showed that in both cases the base retained two standard hydrogen bonds to its associated guanine when the 'A-type' model of the triplex was used as the start-point for the simulation, but that bifurcated hydrogen bonds resulted when the alternative 'B-type' triplex model was used. The lack of a differential stability between alpha-AP- and beta-AP-containing triplexes at pH >7, predicted from the behaviour of the B-type models, suggests that the A-type models are more appropriate.

  14. Assembly of the Herpes Simplex Virus Capsid: Preformed Triplexes Bind to the Nascent Capsid

    PubMed Central

    Spencer, Juliet V.; Newcomb, William W.; Thomsen, Darrell R.; Homa, Fred L.; Brown, Jay C.

    1998-01-01

    The herpes simplex virus type 1 (HSV-1) capsid is a T=16 icosahedral shell that forms in the nuclei of infected cells. Capsid assembly also occurs in vitro in reaction mixtures created from insect cell extracts containing recombinant baculovirus-expressed HSV-1 capsid proteins. During capsid formation, the major capsid protein, VP5, and the scaffolding protein, pre-VP22a, condense to form structures that are extended into procapsids by addition of the triplex proteins, VP19C and VP23. We investigated whether triplex proteins bind to the major capsid-scaffold protein complexes as separate polypeptides or as preformed triplexes. Assembly products from reactions lacking one triplex protein were immunoprecipitated and examined for the presence of the other. The results showed that neither triplex protein bound unless both were present, suggesting that interaction between VP19C and VP23 is required before either protein can participate in the assembly process. Sucrose density gradient analysis was employed to determine the sedimentation coefficients of VP19C, VP23, and VP19C-VP23 complexes. The results showed that the two proteins formed a complex with a sedimentation coefficient of 7.2S, a value that is consistent with formation of a VP19C-VP232 heterotrimer. Furthermore, VP23 was observed to have a sedimentation coefficient of 4.9S, suggesting that this protein exists as a dimer in solution. Deletion analysis of VP19C revealed two domains that may be required for attachment of the triplex to major capsid-scaffold protein complexes; none of the deletions disrupted interaction of VP19C with VP23. We propose that preformed triplexes (VP19C-VP232 heterotrimers) interact with major capsid-scaffold protein complexes during assembly of the HSV-1 capsid. PMID:9557680

  15. Proton-Fueled, Reversible DNA Hybridization Chain Assembly for pH Sensing and Imaging.

    PubMed

    Liu, Lan; Liu, Jin-Wen; Huang, Zhi-Mei; Wu, Han; Li, Na; Tang, Li-Juan; Jiang, Jian-Hui

    2017-07-05

    Design of DNA self-assembly with reversible responsiveness to external stimuli is of great interest for diverse applications. We for the first time develop a pH-responsive, fully reversible hybridization chain reaction (HCR) assembly that allows sensitive sensing and imaging of pH in living cells. Our design relies on the triplex forming sequences that form DNA triplex with toehold regions under acidic conditions and then induce a cascade of strand displacement and DNA assembly. The HCR assembly has shown dynamic responses in physiological pH ranges with excellent reversibility and demonstrated the potential for in vitro detection and live-cell imaging of pH. Moreover, this method affords HCR assemblies with highly localized fluorescence responses, offering advantages of improving sensitivity and better selectivity. The proton-fueled, reversible HCR assembly may provide a useful approach for pH-related cell biology study and disease diagnostics.

  16. Drastic stabilization of parallel DNA hybridizations by a polylysine comb-type copolymer with hydrophilic graft chain.

    PubMed

    Miyoshi, Daisuke; Ueda, Yu-Mi; Shimada, Naohiko; Nakano, Shu-Ichi; Sugimoto, Naoki; Maruyama, Atsushi

    2014-09-01

    Electrostatic interactions play a major role in protein-DNA interactions. As a model system of a cationic protein, herein we focused on a comb-type copolymer of a polycation backbone and dextran side chains, poly(L-lysine)-graft-dextran (PLL-g-Dex), which has been reported to form soluble interpolyelectrolyte complexes with DNA strands. We investigated the effects of PLL-g-Dex on the conformation and thermodynamics of DNA oligonucleotides forming various secondary structures. Thermodynamic analysis of the DNA structures showed that the parallel conformations involved in both DNA duplexes and triplexes were significantly and specifically stabilized by PLL-g-Dex. On the basis of thermodynamic parameters, it was further possible to design DNA switches that undergo structural transition responding to PLL-g-Dex from an antiparallel duplex to a parallel triplex even with mismatches in the third strand hybridization. These results suggest that polycationic molecules are able to induce structural polymorphism of DNA oligonucleotides, because of the conformation-selective stabilization effects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Thermodynamic contributions for the incorporation of GTA triplets within canonical TAT/TAT and C+GC/C+GC base-triplet stacks of DNA triplexes.

    PubMed

    Soto, Ana Maria; Marky, Luis A

    2002-10-15

    Nucleic acid triple helices may be used in the control of gene expression. One limitation of using triplex-forming oligonucleotides as therapeutic agents is that their target sequences are limited to homopurine tracts. To increase the repertoire of sequences that can be targeted, it has been postulated that a guanine can target a thymidine forming a stable GTA mismatch triplet. In this work, we have used a combination of optical and calorimetric techniques to determine thermodynamic unfolding profiles of two triplexes containing a single GTA triplet, d(A(3)TA(3)C(5)T(3)AT(3)C(5)T(3)GT(3)) (ATA) and d(AGTGAC(5)TCACTC(5)TCGCT) (GTG), and their control triplexes, d(A(7)C(5)T(7)C(5)T(7)) (TAT7) and d(AGAGAC(5)TCTCTC(5)TCTCT) (AG5T). In general, the presence of a GTA mismatch in DNA triplexes is destabilizing; however, this destabilization is greater when placed in a C(+)GC/C(+)GC base-triplet stack than between a TAT/TAT stack. These destabilizations are accompanied by a reduced unfolding enthalpy of approximately 10 kcal/mol, suggesting a decrease in the base stacking contributions surrounding the mismatch. Relative to their corresponding control triplexes, the folding of ATA is accompanied by a lower counterion uptake and a similar proton uptake, while GTG folding is accompanied by an increase in the counterion and proton uptakes. These effects are consistent with the observed decrease in stacking interactions. The overall results indicate that the main difficulty of targeting pyrimidine interruptions is that the decrease in stacking contributions, due to the incorporation of a GTA mismatch, affects the stability of the neighboring base triplets. This suggests that nucleotide analogues that increase the strength of these base-triplet stacks will result in a more effective targeting of pyrimidine interruptions.

  18. Unfolding and Targeting Thermodynamics of a DNA Intramolecular Complex with Joined Triplex-Duplex Domains.

    PubMed

    Johnson, Sarah E; Reiling-Steffensmeier, Calliste; Lee, Hui-Ting; Marky, Luis A

    2018-01-25

    Our laboratory is interested in developing methods that can be used for the control of gene expression. In this work, we are investigating the reaction of an intramolecular complex containing a triplex-duplex junction with partially complementary strands. We used a combination of isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectroscopy techniques to determine standard thermodynamic profiles for these targeting reactions. Specifically, we have designed single strands to target one loop (CTTTC) or two loops (CTTTC and GCAA) of this complex. Both reactions yielded exothermic enthalpies of -66.3 and -82.8 kcal/mol by ITC, in excellent agreement with the reaction enthalpies of -72.7 and -88.7 kcal/mol, respectively, obtained from DSC Hess cycles. The favorable heat contributions result from the formation of base-pair stacks involving mainly the unpaired bases of the loops. This shows that each complementary strand is able to invade and disrupt the secondary structure. The simultaneous targeting of two loops yielded a more favorable reaction free energy, by approximately -8 kcal/mol, which corresponds to the formation of roughly four base-pair stacks involving the unpaired bases of the 5'-GCAA loop. The main conclusion is that the targeting of loops with a large number of unpaired bases results in a more favorable reaction free energy.

  19. Triple-helix molecular switch-based aptasensors and DNA sensors.

    PubMed

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex. Conformational studies by NMR.

    PubMed

    Dittrich, K; Gu, J; Tinder, R; Hogan, M; Gao, X

    1994-04-12

    The antiparallel purine.purine.pyrimidine DNA triplex, RRY6, which contains a T.C.G inverted triplet in the center of the sequence, was examined by proton and phosphorous two-dimensional NMR spectroscopy. The local conformation of the T.C.G triplet (T4.C11.G18) and the effect of this triplet on the global helical structure were analyzed in detail. The formation of the T.C.G triplet is confirmed by a set of cross-strand NOEs, including unusual cross-strand NOEs between the third strand and the pyrimidine strand as opposed to the purine strand of the duplex. NMR data suggest that the T.C.G triplet may be present in an equilibrium between a non-hydrogen-bonded form and a T(O4)-C(NH2) hydrogen-bonded form and that there is a distortion of the in-plane alignment of the three bases. The flanking G.G.C base triplets are well-defined on the 5'-side of T4, but somewhat interrupted on the 3'-side of T4. The effect of the third strand binding on the Watson-Crick duplex was probed by an NMR study of the free duplex RY6. NMR parameters are affected mostly around the T.C.G inversion site. The perturbations extend to at least two adjacent base triplets on either side. The binding of the third purine strand and the accommodation of a central T.C.G inversion in RRY6 does not require a readjustment in sugar pucker, which remains in the range of C2'-endo. 31P resonances of RRY6 distribute over a range of 2.2 ppm. The H-P coupling patterns of the third strand differ from those of the duplex. General spectral patterns defined by the marker protons of the RRY and YRY triplexes are compared.

  1. A fiber optic biosensor for fluorimetric detection of triple-helical DNA.

    PubMed

    Uddin, A H; Piunno, P A; Hudson, R H; Damha, M J; Krull, U J

    1997-10-15

    A fiber optic biosensor was used for the fluorimetric detection of T/AT triple-helical DNA formation. The surfaces of two sets of fused silica optical fibers were functionalized with hexaethylene oxide linkers from which decaadenylic acid oligonucleotides were grown in the 3'to 5'and 5'to 3'direction, respectively, using a DNA synthesizer. Fluorescence studies of hybridization showed unequivocal hybridization between oligomers immobilized on the fibers and complementary oligonucleotides from the solution phase, as detected by fluorescence from intercalated ethidium bromide. The complementary oligonucleotide, dT10, which was expected to Watson-Crick hybridize upon cooling the system below the duplex melting temperature ( T m), provided a fluorescence intensity with a negative temperature coefficient. Upon further cooling, to the point where the pyrimidine motif T*AT triple-helix formation occurred, a fluorescence intensity change with a positive temperature coefficient was observed. The reverse-Hoogsteen T.AT triplex, which is known to form with branched nucleic acids, provided a corresponding decrease in fluorescence intensity with decreasing temperature. Full analytical signal evolution was attainable in minutes.

  2. [DNA structure from A to Z--biological implications of structural diversity of DNA].

    PubMed

    Bukowiecka-Matusiak, Małgorzata; Woźniak, Lucyna A

    2006-01-01

    Deoxyribonucleic acid (DNA) is a biopolymer of nucleotides, usually adopting a double-stranded helical form in cells, with complementary base pairing holding the two strands together. The most stable is B-DNA conformation, although numerous other double helical structures can occur under specific conditions (A-DNA, Z-DNA, P-DNA). The existence of multiple-stranded (triplex, tetraplex) forms in vivo and their biological function in cells are subject of intensive studies.

  3. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells

    PubMed Central

    Jain, Aklank; Bacolla, Albino; del Mundo, Imee M.; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M.

    2013-01-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA. PMID:24049074

  4. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells.

    PubMed

    Jain, Aklank; Bacolla, Albino; Del Mundo, Imee M; Zhao, Junhua; Wang, Guliang; Vasquez, Karen M

    2013-12-01

    Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.

  5. Four base recognition by triplex-forming oligonucleotides at physiological pH

    PubMed Central

    Rusling, David A.; Powers, Vicki E. C.; Ranasinghe, Rohan T.; Wang, Yang; Osborne, Sadie D.; Brown, Tom; Fox, Keith R.

    2005-01-01

    We have achieved recognition of all 4 bp by triple helix formation at physiological pH, using triplex-forming oligonucleotides that contain four different synthetic nucleotides. BAU [2′-aminoethoxy-5-(3-aminoprop-1-ynyl)uridine] recognizes AT base pairs with high affinity, MeP (3-methyl-2 aminopyridine) binds to GC at higher pHs than cytosine, while APP (6-(3-aminopropyl)-7-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one) and S [N-(4-(3-acetamidophenyl)thiazol-2-yl-acetamide)] bind to CG and TA base pairs, respectively. Fluorescence melting and DNase I footprinting demonstrate successful triplex formation at a 19mer oligopurine sequence that contains two CG and two TA interruptions. The complexes are pH dependent, but are still stable at pH 7.0. BAU, MeP and APP retain considerable selectivity, and single base pair changes opposite these residues cause a large reduction in affinity. In contrast, S is less selective and tolerates CG pairs as well as TA. PMID:15911633

  6. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences.

    PubMed

    Bacolla, Albino; Tainer, John A; Vasquez, Karen M; Cooper, David N

    2016-07-08

    Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Topological Behavior of Plasmid DNA

    PubMed Central

    Higgins, N. Patrick; Vologodskii, Alexander V.

    2015-01-01

    The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells. PMID:26104708

  8. Orchestration of Structural, Stereoelectronic, and Hydrogen-Bonding Effects in Stabilizing Triplexes from Engineered Chimeric Collagen Peptides (Pro(X)-Pro(Y)-Gly)6 Incorporating 4(R/S)-Aminoproline.

    PubMed

    Umashankara, Muddegowda; Sonar, Mahesh V; Bansode, Nitin D; Ganesh, Krishna N

    2015-09-04

    Collagens are an important family of structural proteins found in the extracellular matrix with triple helix as the characteristic structural motif. The collagen triplex is made of three left-handed polyproline II (PPII) helices with each PPII strand consisting of repetitive units of the tripeptide motif X-Y-Gly, where the amino acids X and Y are most commonly proline (Pro) and 4R-hydroxyproline (Hyp), respectively. A C4-endo pucker at X-site and C4-exo pucker at Y-site have been proposed to be the key for formation of triplex, and the nature of pucker is dependent on both the electronegativity and stereochemistry of the substituent. The present manuscript describes a new class of collagen analogues-chimeric cationic collagens-wherein both X- and Y-sites in collagen triad are simultaneously substituted by a combination of 4(R/S)-(OH/NH2/NH3(+)/NHCHO)-prolyl units and triplex stabilities measured at different pHs and in EG:H2O. Based on the results a model has been proposed with the premise that any factors which specifically favor the ring puckers of C4-endo at X-site and C4-exo at Y-site stabilize the PPII conformation and hence the derived triplexes. The pH-dependent triplex stability uniquely observed with ionizable 4-amino substituent on proline enables one to define the critical combination of factors C4-(exo/endo), intraresidue H-bonding, stereoelectronic (R/S) and n → π* interactions in dictating the triplex strength. The ionizable NH2 substituent at C4 in R/S configuration is thus a versatile probe for delineating the triplex stabilizing factors and the results have potential for designing of collagen analogues with customized properties for material and biological applications.

  9. Influence of drug binding on DNA hydration: acoustic and densimetric characterizations of netropsin binding to the poly(dAdT).poly(dAdT) and poly(dA).poly(dT) duplexes and the poly(dT).poly(dA).poly(dT) triplex at 25 degrees C.

    PubMed

    Chalikian, T V; Plum, G E; Sarvazyan, A P; Breslauer, K J

    1994-07-26

    We use high-precision acoustic and densimetric techniques to determine, at 25 degrees C, the changes in volume, delta V, and adiabatic compressibility, delta Ks, that accompany the binding of netropsin to the poly(dAdT).poly(dAdT) and poly(dA).poly(dT) duplexes, as well as to the poly(dT).poly(dA).poly(dT) triplex. We find that netropsin binding to the heteropolymeric poly(dAdT).poly(dAdT) duplex is accompanied by negative changes in volume, delta V, and small positive changes in compressibility, delta Ks. By contrast, netropsin binding to the homopolymeric poly(dA).poly(dT) duplex is accompanied by large positive changes in both volume, delta V, and compressibility, delta Ks. Furthermore, netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes changes in both volume and compressibility that are nearly twice as large as those observed when netropsin binds to the poly(dA).poly(dT) duplex. We interpret these macroscopic data in terms of binding-induced microscopic changes in the hydration of the DNA structures and the drug. Specifically, we find that netropsin binding induces the release of approximately 22 waters from the hydration shell of the poly(dAdT).poly(dAdT) heteropolymeric duplex, approximately 40 waters from the hydration shell of the poly(dA).poly(dT) homopolymeric duplex, and about 53 waters from the hydration shell of the poly(dA).poly(dT), induces the release of 18 more water molecules than netropsin binding to the heteropolymeric duplex, poly(dAdT).poly(dAdT). On the basis of apparent molar volume, phi V, and apparent molar adiabatic compressibility, phi Ks, values for the initial drug-free and final drug-bound states of the two all-AT duplexes, we propose that the larger dehydration of the poly(dA).poly(dT) duplex reflects, in part, the formation of a less hydrated poly(dA).poly(dT)-netropsin complex compared with the corresponding poly(dAdT).poly(dAdT)-netropsin complex. In conjunction with our previously published entropy data [Marky, L. A., & Breslauer, K. J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4359-4363], we calculate that each water of hydration released to the bulk solvent by ligand binding contributes 1.6 cal K-1 mol-1 to the entropy of binding. This value corresponds to the average difference between the partial molar entropy of water in the bulk state and water in the hydration shells of the two all-AT duplexes. When netropsin binds to the poly(dT).poly(dA).poly(dT) triplex, the changes in both volume and compressibility suggest that the binding event induces more dehydration of the triplex than of the duplex state. Specifically, we calculate that netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes the release of 13 more waters than netropsin binding to the poly(dA).poly(dT) duplex.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, Huamin; Smith, Lloyd M.

    1997-01-01

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support.

  11. Rapid purification of circular DNA by triplex-mediated affinity capture

    DOEpatents

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  12. Development and Evaluation of a Novel Multicopy-Element-Targeting Triplex PCR for Detection of Mycobacterium avium subsp. paratuberculosis in Feces

    PubMed Central

    Garrido, Joseba M.; Molina, Elena; Geijo, María V.; Elguezabal, Natalia; Vázquez, Patricia; Juste, Ramón A.

    2014-01-01

    The enteropathy called paratuberculosis (PTB), which mainly affects ruminants and has a worldwide distribution, is caused by Mycobacterium avium subsp. paratuberculosis. This disease significantly reduces the cost-effectiveness of ruminant farms, and therefore, reliable and rapid detection methods are needed to control the spread of the bacterium in livestock and in the environment. The aim of this study was to identify a specific and sensitive combination of DNA extraction and amplification to detect M. avium subsp. paratuberculosis in feces. Negative bovine fecal samples were inoculated with increasing concentrations of two different bacterial strains (field and reference) to compare the performance of four extraction and five amplification protocols. The best results were obtained using the JohnePrep and MagMax extraction kits combined with an in-house triplex real-time PCR designed to detect IS900, ISMap02 (an insertion sequence of M. avium subsp. paratuberculosis present in 6 copies per genome), and an internal amplification control DNA simultaneously. These combinations detected 10 M. avium subsp. paratuberculosis cells/g of spiked feces. The triplex PCR detected 1 fg of genomic DNA extracted from the reference strain K10. The performance of the robotized version of the MagMax extraction kit combined with the IS900 and ISMap02 PCR was further evaluated using 615 archival fecal samples from the first sampling of nine Friesian cattle herds included in a PTB control program and followed up for at least 4 years. The analysis of the results obtained in this survey demonstrated that the diagnostic method was highly specific and sensitive for the detection of M. avium subsp. paratuberculosis in fecal samples from cattle and a very valuable tool to be used in PTB control programs. PMID:24727272

  13. Oligo/Polynucleotide-Based Gene Modification: Strategies and Therapeutic Potential

    PubMed Central

    Sargent, R. Geoffrey; Kim, Soya

    2011-01-01

    Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential. PMID:21417933

  14. 2. OVERVIEW OF TRIPLEX COTTAGE IN POOLE POWERHOUSE SETTING. TRIPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERVIEW OF TRIPLEX COTTAGE IN POOLE POWERHOUSE SETTING. TRIPLEX COTTAGE IS VISIBLE AT PHOTO CENTER LEFT. POOLE POWERHOUSE IS ADJACENT TRIPLEX COTTAGE AT PHOTO CENTER RIGHT. SWITCHRACKS ARE VISIBLE ADJACENT TO POWERHOUSE BUILDING. VIEW TO SOUTH. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  15. 4-amino-1H-benzo[g]quinazoline-2-one: a fluorescent analog of cytosine to probe protonation sites in triplex forming oligonucleotides.

    PubMed

    Godde, F; Toulmé, J J; Moreau, S

    2000-08-01

    We developed a new fluorescent analog of cytosine, the 4-amino-1H-benzo[g]quinazoline-2-one, which constitute a probe sensitive to pH. The 2'-O-Me ribonucleoside derivative of this heterocycle was synthesized and exhibited a fluorescence emission centered at 456 nm, characterized by four major excitation maxima (250, 300, 320 and 370 nm) and a fluorescence quantum yield of Phi = 0.62 at pH 7.1. The fluorescence emission maximum shifted from 456 to 492 nm when pH was decreased from 7.1 to 2.1. The pK(a) (4) was close to that of cytosine (4.17). When introduced in triplex forming oligonucleotides this new nucleoside can be used to reveal the protonation state of triplets in triple-stranded structures. Complex formation was detected by a significant quenching of fluorescence emission (approximately 88%) and the N-3 protonation of the quinazoline ring by a shift of the emission maximum from 485 to 465 nm. Using this probe we unambiguously showed that triplex formation of the pyrimidine motif does not require the protonation of all 4-amino-2-one pyrimidine rings.

  16. Four levels of hierarchical organization, including noncovalent chainmail, brace the mature tumor herpesvirus capsid against pressurization.

    PubMed

    Zhou, Z Hong; Hui, Wong Hoi; Shah, Sanket; Jih, Jonathan; O'Connor, Christine M; Sherman, Michael B; Kedes, Dean H; Schein, Stan

    2014-10-07

    Like many double-stranded DNA viruses, tumor gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus withstand high internal pressure. Bacteriophage HK97 uses covalent chainmail for this purpose, but how this is achieved noncovalently in the much larger gammaherpesvirus capsid is unknown. Our cryoelectron microscopy structure of a gammaherpesvirus capsid reveals a hierarchy of four levels of organization: (1) Within a hexon capsomer, each monomer of the major capsid protein (MCP), 1,378 amino acids and six domains, interacts with its neighboring MCPs at four sites. (2) Neighboring capsomers are linked in pairs by MCP dimerization domains and in groups of three by heterotrimeric triplex proteins. (3) Small (∼280 amino acids) HK97-like domains in MCP monomers alternate with triplex heterotrimers to form a belt that encircles each capsomer. (4) One hundred sixty-two belts concatenate to form noncovalent chainmail. The triplex heterotrimer orchestrates all four levels and likely drives maturation to an angular capsid that can withstand pressurization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Relative stabilities of triple helices composed of combinations of DNA, RNA and 2'-O-methyl-RNA backbones: chimeric circular oligonucleotides as probes.

    PubMed

    Wang, S; Kool, E T

    1995-04-11

    Described is a systematic study of the effects of varied backbone structure on the stabilities of pyr.pur.pyr triple helices. The effects were measured using six circular 34 base oligonucleotides containing DNA (D), RNA (R) and/or 2'-O-methyl-RNA (M) residues designed to bind a complementary single-stranded purine target strand by triple helix formation. Eighteen different backbone combinations were studied at pH 5.5 and 7.0 by optical melting experiments and the results compared with the stabilities of the corresponding Watson-Crick duplexes. When the target purine strand is DNA, all circles form pH-dependent triple helical complexes which are considerably stronger than the duplexes alone. When RNA is the target, five of the nine complexes studied are of the pH-dependent triplex type and the other four complexes are not significantly stronger than the corresponding duplexes. The results are useful in the design of the highest affinity ligands for single- and double-stranded DNAs and RNAs and also point out novel ways to engender DNA- or RNA-selective binding.

  18. Fourier transform infrared spectroscopy of 2'-deoxycytidine aggregates in CDCl3 solutions

    NASA Astrophysics Data System (ADS)

    Biemann, Lars; Häber, Thomas; Maydt, Daniela; Schaper, Klaus; Kleinermanns, Karl

    2011-03-01

    We investigated the self-aggregation of 2'-deoxy-3',5'-bis(tert-butyldimethylsilyl)-cytidine dC(TBDMS)2 in CDCl3 solutions by Fourier transform infrared (FT-IR) spectroscopy and report the formation of larger aggregates than dimers in this solvent for the first time. The hydrogen bonding patterns in these complexes, which occur with increasing concentration may serve as a model for DNA super-structures such as triplexes. From the IR spectra, wavelength dependent absolute extinction coefficients of the monomer, dimer as well as a contribution from larger clusters which are supposedly trimers are deduced on the basis of a simple deconvolution method. Our results are supported by RI-B3LYP/TZVP calculations within the conductorlike screening model framework, to account for solvent effects in the ab initio calculations.

  19. Fragile DNA Motifs Trigger Mutagenesis at Distant Chromosomal Loci in Saccharomyces cerevisiae

    PubMed Central

    Saini, Natalie; Zhang, Yu; Nishida, Yuri; Sheng, Ziwei; Choudhury, Shilpa; Mieczkowski, Piotr; Lobachev, Kirill S.

    2013-01-01

    DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes. PMID:23785298

  20. Evaluation of DNA extraction methods for PCR-based detection of Listeria monocytogenes from vegetables.

    PubMed

    Vojkovska, H; Kubikova, I; Kralik, P

    2015-03-01

    Epidemiological data indicate that raw vegetables are associated with outbreaks of Listeria monocytogenes. Therefore, there is a demand for the availability of rapid and sensitive methods, such as PCR assays, for the detection and accurate discrimination of L. monocytogenes. However, the efficiency of PCR methods can be negatively affected by inhibitory compounds commonly found in vegetable matrices that may cause false-negative results. Therefore, the sample processing and DNA isolation steps must be carefully evaluated prior to the introduction of such methods into routine practice. In this study, we compared the ability of three column-based and four magnetic bead-based commercial DNA isolation kits to extract DNA of the model micro-organism L. monocytogenes from raw vegetables. The DNA isolation efficiency of all isolation kits was determined using a triplex real-time qPCR assay designed to specifically detect L. monocytogenes. The kit with best performance, the PowerSoil(™) Microbial DNA Isolation Kit, is suitable for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. Coupled with the triplex real-time qPCR assay, this DNA isolation kit is applicable to the samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. Several recent outbreaks of Listeria monocytogenes have been associated with the consumption of fruits and vegetables. Real-time PCR assays allow fast detection and accurate quantification of microbes. However, the success of real-time PCR is dependent on the success with which template DNA can be extracted. The results of this study suggest that the PowerSoil(™) Microbial DNA Isolation Kit can be used for the extraction of amplifiable DNA from L. monocytogenes cells in vegetable with efficiencies ranging between 29.6 and 70.3%. This method is applicable to samples with bacterial loads of 10(3) bacterial cells per gram of L. monocytogenes. © 2014 The Society for Applied Microbiology.

  1. Triplexer Monitor Design for Failure Detection in FTTH System

    NASA Astrophysics Data System (ADS)

    Fu, Minglei; Le, Zichun; Hu, Jinhua; Fei, Xia

    2012-09-01

    Triplexer was one of the key components in FTTH systems, which employed an analog overlay channel for video broadcasting in addition to bidirectional digital transmission. To enhance the survivability of triplexer as well as the robustness of FTTH system, a multi-ports device named triplexer monitor was designed and realized, by which failures at triplexer ports can be detected and localized. Triplexer monitor was composed of integrated circuits and its four input ports were connected with the beam splitter whose power division ratio was 95∶5. By means of detecting the sampled optical signal from the beam splitters, triplexer monitor tracked the status of the four ports in triplexer (e.g. 1310 nm, 1490 nm, 1550 nm and com ports). In this paper, the operation scenario of the triplexer monitor with external optical devices was addressed. And the integrated circuit structure of the triplexer monitor was also given. Furthermore, a failure localization algorithm was proposed, which based on the state transition diagram. In order to measure the failure detection and localization time under the circumstance of different failed ports, an experimental test-bed was built. Experiment results showed that the detection time for the failure at 1310 nm port by the triplexer monitor was less than 8.20 ms. For the failure at 1490 nm or 1550 nm port it was less than 8.20 ms and for the failure at com port it was less than 7.20 ms.

  2. Energetics, Ion and Water Binding of the Unfolding of AA/UU Base Pair Stacks and UAU/UAU Base Triplet Stacks in RNA.

    PubMed

    Carr, Carolyn E; Khutsishvili, Irine; Marky, Luis A

    2018-06-22

    Triplex formation occurs via interaction of a third strand with the major groove of double stranded nucleic acid, through Hoogsteen hydrogen bonding. In this work, we use a combination of temperature-dependent UV spectroscopy and differential scanning calorimetry to determine complete thermodynamic profiles for the unfolding of poly(rA)•poly(rU) (Duplex) and poly(rA)•2poly(rU) (Triplex). Our thermodynamic results are in good agreement with the much earlier work of Krakauer and Sturtevant using only UV melting techniques. The folding of these two helices yielded an uptake of ions, ΔnNa+ = 0.15 mol Na+/mol base-pair (Duplex) and 0.30 mol Na+/mole base-triplet (Triplex), which are consistent with their polymer behavior and the higher charge density parameter of triple helices. The osmotic stress technique yielded a release of structural water, ΔnW = 2 mol H2O/mol base-pair (Duplex unfolding into single strands) and an uptake of structural water, ΔnW = 2 mol H2O/mole base-pair (Triplex unfolding into Duplex and a single strand). However, an overall release of electrostricted waters is obtained for the unfolding of both complexes from pressure perturbation calorimetric experiments. In total, the ΔV values obtained for the unfolding of Triplex into Duplex and a single strand correspond to an immobilization of two structural waters and a release of three electrostricted waters. The ΔV values obtained for the unfolding of Duplex into two single strands correspond to the release of two structural waters and the immobilization of four electrostricted water molecules.

  3. Prediction of pH-dependent properties of DNA triple helices.

    PubMed

    Hüsler, P L; Klump, H H

    1995-02-20

    The thermodynamic properties of two triple helices were investigated by uv thermal denaturation, differential scanning calorimetry, and pH titrations. Starting from the grand partition function and using matrix methods we present a formalism that describes pH effects on the thermal stability of triple helices. The formalism can be used over a wide pH range and is not restricted to the limiting case where the pH is larger or smaller than the pK alpha of cytosine. Furthermore, it covers nearest neighbor electrostatic effects of closely spaced cytosines in the Hoogsteen strand which can shift the pK alpha of cytosine to lower pH values. A procedure is employed to predict enthalpy and entropy changes for triplex formation. These values are in accordance with the results obtained by differential scanning calorimetry.

  4. Optimization of the Alkyl Linker of TO Base Surrogate in Triplex-Forming PNA for Enhanced Binding to Double-Stranded RNA.

    PubMed

    Sato, Takaya; Sato, Yusuke; Nishizawa, Seiichi

    2017-03-23

    A series of triplex-forming peptide nucleic acid (TFP) probes carrying a thiazole orange (TO) base surrogate through an alkyl linker was synthesized, and the interactions between these so-called tFIT probes and purine-rich sequences within double-stranded RNA (dsRNA) were examined. We found that the TO base surrogate linker significantly affected both the binding affinity and the fluorescence response upon triplex formation with the target dsRNA. Among the probes examined, the TO base surrogate connected through the propyl linker in the tFIT probes increased the binding affinity by a factor of ten while maintaining its function as the fluorescent universal base. Isothermal titration calorimetry experiments revealed that the increased binding affinity resulted from the gain in the binding enthalpy, which could be explained by the enhanced π-stacking interaction between the TO base surrogate and the dsRNA part of the triplex. We expect that these results will provide a molecular basis for designing strong binding tFIT probes for fluorescence sensing of various kinds of purine-rich dsRNAs sequences including those carrying a pyrimidine-purine inversion. The obtained data also offers a new insight into further development of the universal bases incorporated in TFP. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex

    PubMed Central

    Bian, Yunqiang; Tan, Cheng; Wang, Jun; Sheng, Yuebiao; Zhang, Jian; Wang, Wei

    2014-01-01

    In this work we studied the folding process of the hybrid-1 type human telomeric DNA G-quadruplex with solvent and ions explicitly modeled. Enabled by the powerful bias-exchange metadynamics and large-scale conventional molecular dynamic simulations, the free energy landscape of this G-DNA was obtained for the first time and four folding intermediates were identified, including a triplex and a basically formed quadruplex. The simulations also provided atomistic pictures for the structures and cation binding patterns of the intermediates. The results showed that the structure formation and cation binding are cooperative and mutually supporting each other. The syn/anti reorientation dynamics of the intermediates was also investigated. It was found that the nucleotides usually take correct syn/anti configurations when they form native and stable hydrogen bonds with the others, while fluctuating between two configurations when they do not. Misfolded intermediates with wrong syn/anti configurations were observed in the early intermediates but not in the later ones. Based on the simulations, we also discussed the roles of the non-native interactions. Besides, the formation process of the parallel conformation in the first two G-repeats and the associated reversal loop were studied. Based on the above results, we proposed a folding pathway for the hybrid-1 type G-quadruplex with atomistic details, which is new and more complete compared with previous ones. The knowledge gained for this type of G-DNA may provide a general insight for the folding of the other G-quadruplexes. PMID:24722458

  6. Nucleotide Oligomers

    DTIC Science & Technology

    2001-01-01

    translated is ensured. For example, autosomal dominant retinitis pigmentosa (ADRP) is a genetic disorder that results in the degeneration of night and...GLOSSARY A adenosine ADRP Autosomal Dominant Retinitis Pigmentosa C cytidine DNA deoxyribonucleic acid G guanosine mRNA messenger RNA OH hydroxyl PCR...peripheral vision. The genetic defect lies in one, or both copies of a gene required for normal retinal structure and vision, rhodopsin. Triplex

  7. -CH2- lengthening of the internucleotide linkage in the ApA dimer can improve its conformational compatibility with its natural polynucleotide counterpart

    PubMed Central

    Hanu, J.; Barvík, I.; Ruszová-Chmelová, K.; ŠtÆpánek, J.; Turpin, P.-Y.; Bok, J.; Rosenberg, I.; Petrová-Endová, M.

    2001-01-01

    The complete family of ApA phosphonate analogues with the internucleotide linkage elongated by insertion of a -CH2- group was prepared and the hybridisation and structural properties of its members in interaction with polyuridylic acid were investigated using an original 2D Raman approach. Except for the conformationally restricted ACHpA(2′3′endo-5′) modification, all of the isopolar, non-isosteric analogues form triplex-like complexes with poly(rU) at room temperature, in which two polymer strands are bound by Watson–Crick and Hoogsteen bonds to a central pseudostrand consisting of a ‘chain’ of A-dimers. For all of these dimers, the overall conformation of the triplexes was found to be similar according to their extracted Raman spectra. A simple semi-empirical model was introduced to explain the observed dependency of the efficiency of triplex formation on the adenine concentration. Apparently, for most of the modifications studied, the creation of a stable complex at room temperature requires the formation of a central pseudostrand, consisting of several adenine dimers. Molecular dynamics calculations were finally performed to interpret the differences in ‘cooperative’ behaviour between the different dimers studied. The results indicate that the exceptional properties of the ApCH2A(3′-5′) dimer could be caused by the 3D conformational compatibility of this modified linkage with the second (Hoogsteen) poly(rU) strand. PMID:11812852

  8. Fluorescent probes for nucleic Acid visualization in fixed and live cells.

    PubMed

    Boutorine, Alexandre S; Novopashina, Darya S; Krasheninina, Olga A; Nozeret, Karine; Venyaminova, Alya G

    2013-12-11

    This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.

  9. Oligonucleotides Containing Aminated 2'-Amino-LNA Nucleotides: Synthesis and Strong Binding to Complementary DNA and RNA.

    PubMed

    Lou, Chenguang; Samuelsen, Simone V; Christensen, Niels Johan; Vester, Birte; Wengel, Jesper

    2017-04-19

    Mono- and diaminated 2'-amino-LNA monomers were synthesized and introduced into oligonucleotides. Each modification imparts significant stabilization of nucleic acid duplexes and triplexes, excellent sequence selectivity, and significant nuclease resistance. Molecular modeling suggested that structural stabilization occurs via intrastrand electrostatic attraction between the protonated amino groups of the aminated 2'-amino-LNA monomers and the host oligonucleotide backbone.

  10. Structure, stability and behaviour of nucleic acids in ionic liquids

    PubMed Central

    Tateishi-Karimata, Hisae; Sugimoto, Naoki

    2014-01-01

    Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are ‘green’ solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A–T base pairs are more stable than G–C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson–Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices. PMID:25013178

  11. Recognition of Local DNA Structures by p53 Protein

    PubMed Central

    Brázda, Václav; Coufal, Jan

    2017-01-01

    p53 plays critical roles in regulating cell cycle, apoptosis, senescence and metabolism and is commonly mutated in human cancer. These roles are achieved by interaction with other proteins, but particularly by interaction with DNA. As a transcription factor, p53 is well known to bind consensus target sequences in linear B-DNA. Recent findings indicate that p53 binds with higher affinity to target sequences that form cruciform DNA structure. Moreover, p53 binds very tightly to non-B DNA structures and local DNA structures are increasingly recognized to influence the activity of wild-type and mutant p53. Apart from cruciform structures, p53 binds to quadruplex DNA, triplex DNA, DNA loops, bulged DNA and hemicatenane DNA. In this review, we describe local DNA structures and summarize information about interactions of p53 with these structural DNA motifs. These recent data provide important insights into the complexity of the p53 pathway and the functional consequences of wild-type and mutant p53 activation in normal and tumor cells. PMID:28208646

  12. Long-Term Observation of Triplex Surgery for Cataract after Phakic 6H Implantation for Super High Myopia

    PubMed Central

    Liu, Xin; Wang, Xiaoying; Lu, Yi; Zheng, Tianyu; Zhou, Xingtao

    2016-01-01

    Purpose. To analyze the safety, effectiveness, and stability of triplex surgery for phakic 6H anterior chamber phakic intraocular lens explantation and phacoemulsification with in-the-bag IOL implantation for super high myopia in long-term observations. Methods. This retrospective case series evaluated 16 eyes of 10 patients who underwent triplex surgery. Best corrected visual acuity (BCVA), endothelial cell density (ECD), and associated adverse events were evaluated. Results. The mean follow-up time after the triplex surgery was 46 ± 14 months. The mean logMAR BCVA was significantly improved after triplex surgery (P = 0.047). One eye developed endophthalmitis five days postoperatively and underwent pars plana vitrectomy (PPV). Five eyes with preoperative severe endothelial cell loss developed corneal decompensation and underwent keratoplasty at a mean time of 9.4 ± 2.6 months after the triplex surgery. One eye had graft failure and underwent a second keratoplasty. The eye developed rhegmatogenous retinal detachment and underwent PPV with silicone oil 18 months later. ECD before the triplex surgery was not significantly different compared with that at last follow-up (P = 0.495) apart from these five eyes. Three eyes (18.8%) developed posterior capsule opacification. Conclusions. Triplex surgery was safe and effective for phakic 6H related complicated cataracts. Early extraction before severe ECD loss is recommended. PMID:27190642

  13. Binding properties of chiral ruthenium(II) complexes Λ- and Δ-[Ru(bpy)2dppz-11-CO2Me]2+ toward the triplex RNA poly(U)•poly(A)*poly(U).

    PubMed

    Ni, Wen; Liu, Xiaohua; Tan, Lifeng

    2018-05-24

    Two chiral ruthenium(II) complexes containing ligand dppz-CO 2 Me (dppz-11-CO 2 Me = dipyrido[3,2-a,2',3'-c]phenazine-11-carboxylic acid methyl ester), Δ-[Ru(bpy) 2 dppz-11-CO 2 Me] 2+ (bpy = 2,2'-bipyridine; Δ-1) and Λ-[Ru(bpy) 2 dppz-11-CO 2 Me] 2+ (Λ-1), were synthesized and characterized. The binding of the two enantiomers with the triplex RNA poly(U)•poly(A)*poly(U) was carried out by various biophysical techniques. Analysis of the absorption and fluorescence features indicates that the binding strengths of the two enantiomers toward the triplex RNA differ only slightly from each other. The total increase in viscosity and shape of the curves for the triplex RNA with Λ-1 is similar to that with Δ-1, suggesting the binding modes of two enantiomers with the triplex RNA are intercalation. Thermal melting measurements indicate that the stabilization effects clearly depended on the concentrations of Λ-1 and Δ-1. However, the third-strand stabilizing effect of Δ-1 dramatically differs from that of Λ-1 when they interact with the chiral environment of the RNA triple at pH = 7.0 and [Na + ] = 35 mM. Combined with the CD (CD = circular dichroism) variations of the triplex RNA with either Λ-1 or Δ-1, the reason for their different triplex stabilization effects may originate from the two enantiomers through different orientations intercalating into nucleobases of the triplex. In addition, effects of higher ionic strengths on the triplex stabilization in the absence and presence of the two enantiomers have also been studied. The results presented here may be useful for understanding the binding properties of the triplex RNA with small molecule, particularly chiral ruthenium(II) complexes. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. A triplex ribozyme expression system based on a single hairpin ribozyme.

    PubMed

    Aquino-Jarquin, Guillermo; Benítez-Hess, María Luisa; DiPaolo, Joseph A; Alvarez-Salas, Luis M

    2008-09-01

    Triplex ribozyme (RZ) configurations allow for the individual activity of trans-acting RZs in multiple expression cassettes (multiplex), thereby increasing target cleavage relative to conventionally expressed RZs. Although hairpin RZs have been advantageously compared to hammerhead RZs, their longer size and structural features complicated triplex design. We present a triplex expression system based on a single hairpin RZ with transcleavage capability and simple engineering. The system was tested in vitro using cis- and trans-cleavage kinetic assays against a known target RNA from HPV-16 E6/E7 mRNA. Single and multiplex triplex RZ constructs were more efficient in cleaving the target than tandem-cloned hairpin RZs, suggesting that the release of individual RZs enhanced trans-cleavage kinetics. Multiplex systems constructed with two different hairpin RZs resulted in better trans-cleavage compared to standard double-RZ constructs. In addition, the triplex RZ performed cis- and trans-cleavage in cervical cancer cells. The use of triplex configurations with multiplex RZs permit differential targeting of the same or different RNA, thus improving potential use against unstable targets. This prototype will provide the basis for the development of future RZ-based therapies and technologies.

  15. Monolithically integrated fiber-to-the-home diplexers and triplexers using a bilevel etched 2 x 2 optical coupler.

    PubMed

    Zhang, Li; Wang, Lei; He, Jian-Jun

    2009-09-01

    A novel design of monolithically integrated diplexers and triplexers for fiber-to-the-home applications is presented. A bilevel etched asymmetrical 2 x 2 optical coupler is analyzed for efficient couplings of both upstream and downstream signals. The design of the diplexer is extended to a triplexer by adding an etched diffraction grating as an additional downstream demultiplexing element. The total size of the integrated diplexer and triplexer is smaller than 500 microm x 500 microm.

  16. 5. EXTERIOR OF TRIPLEX COTTAGE ROOF SHOWING MANVILLE COMPOSITION SHINGLES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR OF TRIPLEX COTTAGE ROOF SHOWING MANVILLE COMPOSITION SHINGLES, POURED CONCRETE CHIMNEYS, AND TRANSLUCENT PLASTIC COVERING OVER WALKWAY AT REAR OF HOUSE (PHOTO LEFT). VIEW TO NORTHWEST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  17. Bi-directional triplexer with butterfly MMI coupler using SU-8 polymer waveguides

    NASA Astrophysics Data System (ADS)

    Mareš, David; Jeřábek, Vítězslav; Prajzler, Václav

    2015-01-01

    We report about a design of a bi-directional planar optical multiplex/demultiplex filter (triplexer) for the optical part of planar hybrid WDM bi-directional transceiver in fiber-to-the-home (FTTH) PON applications. The triplex lightwave circuit is based on the Epoxy Novolak Resin SU-8 waveguides on the silica-on-silicon substrate with Polymethylmethacrylate cladding layer. The triplexer is comprised of a linear butterfly concept of multimode interference (MMI) coupler separating downstream optical signals of 1490 nm and 1550 nm. For the upstream channel of 1310 nm, an additional directional coupler (DC) is used to add optical signal of 1310 nm propagating in opposite direction. The optical triplexer was designed and optimized using beam propagation method. The insertion losses, crosstalk attenuation, and extinction ratio for all three inputs/outputs were investigated. The intended triplexer was designed using the parameters of the separated DC and MMI filter to approximate the idealized direct connection of both devices.

  18. Herpesvirus capsid assembly and DNA packaging

    PubMed Central

    Heming, Jason D.; Conway, James F.; Homa, Fred L.

    2017-01-01

    Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies one of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25 and pUL36 binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell. PMID:28528442

  19. DNA-directed mutations. Leading and lagging strand specificity

    NASA Technical Reports Server (NTRS)

    Sinden, R. R.; Hashem, V. I.; Rosche, W. A.

    1999-01-01

    The fidelity of replication has evolved to reproduce B-form DNA accurately, while allowing a low frequency of mutation. The fidelity of replication can be compromised, however, by defined order sequence DNA (dosDNA) that can adopt unusual or non B-DNA conformations. These alternative DNA conformations, including hairpins, cruciforms, triplex DNAs, and slipped-strand structures, may affect enzyme-template interactions that potentially lead to mutations. To analyze the effect of dosDNA elements on spontaneous mutagenesis, various mutational inserts containing inverted repeats or direct repeats were cloned in a plasmid containing a unidirectional origin of replication and a selectable marker for the mutation. This system allows for analysis of mutational events that are specific for the leading or lagging strands during DNA replication in Escherichia coli. Deletions between direct repeats, involving misalignment stabilized by DNA secondary structure, occurred preferentially on the lagging strand. Intermolecular strand switch events, correcting quasipalindromes to perfect inverted repeats, occurred preferentially during replication of the leading strand.

  20. Triple helical polynucleotidic structures: an FTIR study of the C+ .G. Ctriplet.

    PubMed

    Akhebat, A; Dagneaux, C; Liquier, J; Taillandier, E

    1992-12-01

    Triple helixes containing one homopurine poly dG or poly rG strand and two homopyrimidine poly dC or poly rC strands have been prepared and studied by FTIR spectroscopy in H2O and D2O solutions. The spectra are discussed by comparison with those of the corresponding third strands (auto associated or not) and of double stranded poly dG.poly dC and poly rG.poly rC in the same concentration range and salt conditions. The triplex formation is characterized by the study of the base-base interactions reflected by changes in the spectral domain involving the in-plane double bond vibrations of the bases. Modifications of the initial duplex conformation (A family form for poly rG.poly rC, B family form for poly dG.poly dC) when the triplex is formed have been investigated. Two spectral domains (950-800 and 1450-1350 cm-1) containing absorption bands markers of the N and S type sugar geometries have been extensively studied. The spectra of the triplexes prepared starting with a double helix containing only riboses (poly rC+.poly rG.poly rC and poly dC+.poly rG.poly rC) as well as that of poly rC+.poly dG.poly dC present exclusively markers of the North type geometry of the sugars. On the contrary in the case of the poly dC+.poly dG.poly dC triplex both N and S type sugars are shown to coexist. The FTIR spectra allow us to propose that in this case the sugars of the purine (poly dG) strand adopt the S type geometry.

  1. Biophysical Characterization of the Strong Stabilization of the RNA Triplex poly(U)•poly(A)*poly(U) by 9-O-(ω-amino) Alkyl Ether Berberine Analogs

    PubMed Central

    Hossain, Maidul; Haq, Lucy; Suresh Kumar, Gopinatha

    2012-01-01

    Background Binding of two 9-O-(ω-amino) alkyl ether berberine analogs BC1 and BC2 to the RNA triplex poly(U)•poly(A)*poly(U) was studied by various biophysical techniques. Methodology/Principal Findings Berberine analogs bind to the RNA triplex non-cooperatively. The affinity of binding was remarkably high by about 5 and 15 times, respectively, for BC1 and BC2 compared to berberine. The site size for the binding was around 4.3 for all. Based on ferrocyanide quenching, fluorescence polarization, quantum yield values and viscosity results a strong intercalative binding of BC1 and BC2 to the RNA triplex has been demonstrated. BC1 and BC2 stabilized the Hoogsteen base paired third strand by about 18.1 and 20.5°C compared to a 17.5°C stabilization by berberine. The binding was entropy driven compared to the enthalpy driven binding of berbeine, most likely due to additional contacts within the grooves of the triplex and disruption of the water structure by the alkyl side chain. Conclusions/Significance Remarkably higher binding affinity and stabilization effect of the RNA triplex by the amino alkyl berberine analogs was achieved compared to berberine. The length of the alkyl side chain influence in the triplex stabilization phenomena. PMID:22666416

  2. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR.

    PubMed

    Zhang, Yubao; Wang, Yajun; Xie, Zhongkui; Yang, Guo; Guo, Zhihong; Wang, Le

    2017-11-01

    Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily. Copyright © 2017. Published by Elsevier B.V.

  3. Relative Stability of the Scleroglucan Triple-Helix and Single Strand: an Insight from Computational and Experimental Techniques

    NASA Astrophysics Data System (ADS)

    Bocchinfuso, Gianfranco; Mazzuca, Claudia; Conflitti, Paolo; Cori, Davide; Coviello, Tommasina; Palleschi, Antonio

    2016-09-01

    Scleroglucan (Sclg) is a polysaccharide that exhibits a triple helix conformation (triplex), both in aqueous solution and in the solid state, which is lost in DMSO solution, at high temperature and at high pH values. The triplex conformation is characterized by a high rigidity, responsible of Sclg peculiar properties. Although the relative stability of triplex and single strand has already been investigated, different structural details are still missing. In the present study, we analyse the structural properties and the factors stabilizing the single chain and the triple helix of Sclg in different conditions. To this end, we simulated both systems in water and in DMSO. The triple helix has been also simulated in the presence of chemical damages on one of the three strands (to reproduce in silico the effect of sonication) or by inducing a partial unfolding of the triplex structure. The computational results have been compared with experimental evidences in which the triplex denaturation, at alkaline pH values, has been followed by monitoring the UV and CD spectra of Congo red, used as a probe molecule. Our results indicate that sonication breaks the Sclg chains without appreciably changing the stability of the other tracts of triple helix. The simulated perturbed or partially unfolded triplexes show a clear tendency to form less ordered aggregates. Finally, our simulations put in evidence an important role of the hydrophobic interactions both in the triplex stability and in the aggregation processes observed after induced denaturation.

  4. Unfolding of a branched double-helical DNA three-way junction with triple-helical ends.

    PubMed

    Hüsler, P L; Klump, H H

    1994-08-15

    We have designed three oligonucleotides (33 mers) which when mixed in a 1:1:1 ratio form double-helical DNA three-way junctions with triple helical ends in the pH interval pH 4 to 5.5. The triplex to coil transition is initiated by raising the temperature and was recorded by temperature gradient gel electrophoresis, uv melting, and differential scanning calorimetry. The transitions can be deconvoluted into three subtransitions representing the independent thermal denaturation of each of the arms. We have proposed a model for the unfolding pathway and give the thermodynamic parameters for each step as calculated using the formalism outlined in the appendix.

  5. Usefulness of FC-TRIPLEX Chagas/Leish IgG1 as confirmatory assay for non-negative results in blood bank screening of Chagas disease.

    PubMed

    Campos, Fernanda Magalhães Freire; Repoles, Laura Cotta; de Araújo, Fernanda Fortes; Peruhype-Magalhães, Vanessa; Xavier, Marcelo Antônio Pascoal; Sabino, Ester Cerdeira; de Freitas Carneiro Proietti, Anna Bárbara; Andrade, Mariléia Chaves; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Gontijo, Célia Maria Ferreira

    2018-04-01

    A relevant issue in Chagas disease serological diagnosis regards the requirement of using several confirmatory methods to elucidate the status of non-negative results from blood bank screening. The development of a single reliable method may potentially contribute to distinguish true and false positive results. Our aim was to evaluate the performance of the multiplexed flow-cytometry anti-T. cruzi/Leishmania IgG1 serology/(FC-TRIPLEX Chagas/Leish IgG1) with three conventional confirmatory criteria (ELISA-EIA, Immunofluorescence assay-IIF and EIA/IIF consensus criterion) to define the final status of samples with actual/previous non-negative results during anti-T. cruzi ELISA-screening in blood banks. Apart from inconclusive results, the FC-TRIPLEX presented a weak agreement index with EIA, while a strong agreement was observed when either IIF or EIA/IIF consensus criteria were applied. Discriminant analysis and Spearman's correlation further corroborates the agreement scores. ROC curve analysis showed that FC-TRIPLEX performance indexes were higher when IIF and EIA/IIF consensus were used as a confirmatory criterion. Logistic regression analysis further demonstrated that the probability of FC-TRIPLEX to yield positive results was higher for inconclusive results from IIF and EIA/IIF consensus. Machine learning tools illustrated the high level of categorical agreement between FC-TRIPLEX versus IIF or EIA/IIF consensus. Together, these findings demonstrated the usefulness of FC-TRIPLEX as a tool to elucidate the status of non-negative results in blood bank screening of Chagas disease. Copyright © 2018. Published by Elsevier B.V.

  6. Determining the folding and binding free energy of DNA-based nanodevices and nanoswitches using urea titration curves

    PubMed Central

    Idili, Andrea

    2017-01-01

    Abstract DNA nanotechnology takes advantage of the predictability of DNA interactions to build complex DNA-based functional nanoscale structures. However, when DNA functional and responsive units that are based on non-canonical DNA interactions are employed it becomes quite challenging to predict, understand and control their thermodynamics. In response to this limitation, here we demonstrate the use of isothermal urea titration experiments to estimate the free energy involved in a set of DNA-based systems ranging from unimolecular DNA-based nanoswitches to more complex DNA folds (e.g. aptamers) and nanodevices. We propose here a set of fitting equations that allow to analyze the urea titration curves of these DNA responsive units based on Watson–Crick and non-canonical interactions (stem-loop, G-quadruplex, triplex structures) and to correctly estimate their relative folding and binding free energy values under different experimental conditions. The results described herein will pave the way toward the use of urea titration experiments in the field of DNA nanotechnology to achieve easier and more reliable thermodynamic characterization of DNA-based functional responsive units. More generally, our results will be of general utility to characterize other complex supramolecular systems based on different biopolymers. PMID:28605461

  7. Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure.

    PubMed

    Mehdizadeh, Farhad; Soroosh, Mohammad; Alipour-Banaei, Hamed; Farshidi, Ebrahim

    2017-03-01

    In this paper, we propose what we believe is a novel all-optical analog-to-digital converter (ADC) based on photonic crystals. The proposed structure is composed of a nonlinear triplexer and an optical coder. The nonlinear triplexer is for creating discrete levels in the continuous optical input signal, and the optical coder is for generating a 2-bit standard binary code out of the discrete levels coming from the nonlinear triplexer. Controlling the resonant mode of the resonant rings through optical intensity is the main objective and working mechanism of the proposed structure. The maximum delay time obtained for the proposed structure was about 5 ps and the total footprint is about 1520  μm2.

  8. A Novel Triplex Quantitative PCR Strategy for Quantification of Toxigenic and Nontoxigenic Vibrio cholerae in Aquatic Environments

    PubMed Central

    Bliem, Rupert; Schauer, Sonja; Plicka, Helga; Obwaller, Adelheid; Sommer, Regina; Steinrigl, Adolf; Alam, Munirul; Reischer, Georg H.; Farnleitner, Andreas H.

    2015-01-01

    Vibrio cholerae is a severe human pathogen and a frequent member of aquatic ecosystems. Quantification of V. cholerae in environmental water samples is therefore fundamental for ecological studies and health risk assessment. Beside time-consuming cultivation techniques, quantitative PCR (qPCR) has the potential to provide reliable quantitative data and offers the opportunity to quantify multiple targets simultaneously. A novel triplex qPCR strategy was developed in order to simultaneously quantify toxigenic and nontoxigenic V. cholerae in environmental water samples. To obtain quality-controlled PCR results, an internal amplification control was included. The qPCR assay was specific, highly sensitive, and quantitative across the tested 5-log dynamic range down to a method detection limit of 5 copies per reaction. Repeatability and reproducibility were high for all three tested target genes. For environmental application, global DNA recovery (GR) rates were assessed for drinking water, river water, and water from different lakes. GR rates ranged from 1.6% to 76.4% and were dependent on the environmental background. Uncorrected and GR-corrected V. cholerae abundances were determined in two lakes with extremely high turbidity. Uncorrected abundances ranged from 4.6 × 102 to 2.3 × 104 cell equivalents liter−1, whereas GR-corrected abundances ranged from 4.7 × 103 to 1.6 × 106 cell equivalents liter−1. GR-corrected qPCR results were in good agreement with an independent cell-based direct detection method but were up to 1.6 log higher than cultivation-based abundances. We recommend the newly developed triplex qPCR strategy as a powerful tool to simultaneously quantify toxigenic and nontoxigenic V. cholerae in various aquatic environments for ecological studies as well as for risk assessment programs. PMID:25724966

  9. Synthesis and triplex forming properties of pyrimidine derivative containing extended functionality.

    PubMed

    Gianolio, D A; McLaughlin, L W

    1999-08-01

    Two pyrimidine nucleosides have been synthesized containing extended hydrogen bonding functionality. In one case the side chain is based upon semicarbazide and in the second monoacetylated carbohydrazide was employed. DNA sequences could be prepared using both analogue nucleosides in a reverse coupling protocol, and provided that the normal capping step was eliminated and that the iodine-based oxidizing solution was replaced with one based upon 10-camphorsulfonyl oxaziridine. Both derivatives exhibited moderate effects in targeting selectively C-G base pairs embedded within a polypurine target sequence.

  10. In silico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level

    PubMed Central

    Yang, Changwon; Kulkarni, Mandar; Lim, Manho

    2017-01-01

    Abstract The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10–12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers. PMID:29112755

  11. Transposable elements and G-quadruplexes.

    PubMed

    Kejnovsky, Eduard; Tokan, Viktor; Lexa, Matej

    2015-09-01

    A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.

  12. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.

    PubMed

    Cer, Regina Z; Donohue, Duncan E; Mudunuri, Uma S; Temiz, Nuri A; Loss, Michael A; Starner, Nathan J; Halusa, Goran N; Volfovsky, Natalia; Yi, Ming; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2013-01-01

    The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance.

  13. In Vitro Selection of pH-Activated DNA Nanostructures.

    PubMed

    Fong, Faye Yi; Oh, Seung Soo; Hawker, Craig J; Soh, H Tom

    2016-12-05

    We report the first in vitro selection of DNA nanostructures that switch their conformation when triggered by change in pH. Previously, most pH-active nanostructures were designed using known pH-active motifs, such as the i-motif or the triplex structure. In contrast, we performed de novo selections starting from a random library and generated nanostructures that can sequester and release Mipomersen, a clinically approved antisense DNA drug, in response to pH change. We demonstrate extraordinary pH-selectivity, releasing up to 714-fold more Mipomersen at pH 5.2 compared to pH 7.5. Interestingly, none of our nanostructures showed significant sequence similarity to known pH-sensitive motifs, suggesting that they may operate via novel structure-switching mechanisms. We believe our selection scheme is general and could be adopted for generating DNA nanostructures for many applications including drug delivery, sensors and pH-active surfaces. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices.

    PubMed Central

    Pilch, D S; Brousseau, R; Shafer, R H

    1990-01-01

    We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH. PMID:2216768

  15. Phylo-typing of clinical Escherichia coli isolates originating from bovine mastitis and canine pyometra and urinary tract infection by means of quadruplex PCR.

    PubMed

    Müştak, Hamit Kaan; Günaydin, Elçin; Kaya, İnci Başak; Salar, Merve Özdal; Babacan, Orkun; Önat, Kaan; Ata, Zafer; Diker, Kadir Serdar

    2015-01-01

    Escherichia coli is one of the major causative agents of bovine mastitis worldwide, and is typically associated with acute, clinical mastitis. Besides this, E. coli strains which belong to the extra-intestinal pathogenic group are also the major cause of urinary tract infections and pyometra in dogs. In this study, it was aimed to investigate phylo-groups/subgroups in 155 E. coli isolates obtained from acute bovine mastitis, 43 from urinary tract infections of dogs and 20 from canine pyometra by a formerly described triplex PCR and recently described new quadruplex polymerase chain reaction (PCR) method. Group A1 (n = 118; 76%) and B1 (n = 71; 46%) were found to be the most prevalent groups by triplex and quadruplex PCR assays in mastitis isolates, respectively. Phylo-typing of 43 urinary tract isolates also revealed that most of the isolates belonged to A1 (n = 23; 54%) by triplex and B2 (n = 36; 84%) by quadruplex PCR assays. The isolates assigned as group A1 (n = 17; 85%) by triplex PCR could not be classified by quadruplex PCR in pyometra isolates. The results support the hypothesis that E. coli strains isolated from bovine mastitis cases are environmental. Also, groups C, E and F were identified as new phylo-groups for the first time in acute bovine mastitis cases. The comparison of triplex PCR with quadruplex PCR results revealed that most of the groups assigned in triplex PCR were altered by quadruplex PCR assay.

  16. Self-entanglement of long linear DNA vectors using transient non-B-DNA attachment points: a new concept for improvement of non-viral therapeutic gene delivery.

    PubMed

    Tolmachov, Oleg E

    2012-05-01

    The cell-specific and long-term expression of therapeutic transgenes often requires a full array of native gene control elements including distal enhancers, regulatory introns and chromatin organisation sequences. The delivery of such extended gene expression modules to human cells can be accomplished with non-viral high-molecular-weight DNA vectors, in particular with several classes of linear DNA vectors. All high-molecular-weight DNA vectors are susceptible to damage by shear stress, and while for some of the vectors the harmful impact of shear stress can be minimised through the transformation of the vectors to compact topological configurations by supercoiling and/or knotting, linear DNA vectors with terminal loops or covalently attached terminal proteins cannot be self-compacted in this way. In this case, the only available self-compacting option is self-entangling, which can be defined as the folding of single DNA molecules into a configuration with mutual restriction of molecular motion by the individual segments of bent DNA. A negatively charged phosphate backbone makes DNA self-repulsive, so it is reasonable to assume that a certain number of 'sticky points' dispersed within DNA could facilitate the entangling by bringing DNA segments into proximity and by interfering with the DNA slipping away from the entanglement. I propose that the spontaneous entanglement of vector DNA can be enhanced by the interlacing of the DNA with sites capable of mutual transient attachment through the formation of non-B-DNA forms, such as interacting cruciform structures, inter-segment triplexes, slipped-strand DNA, left-handed duplexes (Z-forms) or G-quadruplexes. It is expected that the non-B-DNA based entanglement of the linear DNA vectors would consist of the initial transient and co-operative non-B-DNA mediated binding events followed by tight self-ensnarement of the vector DNA. Once in the nucleoplasm of the target human cells, the DNA can be disentangled by type II topoisomerases. The technology for such self-entanglement can be an avenue for the improvement of gene delivery with high-molecular-weight naked DNA using therapeutically important methods associated with considerable shear stress. Priority applications include in vivo muscle electroporation and sonoporation for Duchenne muscular dystrophy patients, aerosol inhalation to reach the target lung cells of cystic fibrosis patients and bio-ballistic delivery to skin melanomas with the vector DNA adsorbed on gold or tungsten projectiles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A magnesium-induced triplex pre-organizes the SAM-II riboswitch

    PubMed Central

    Roy, Susmita; Lammert, Heiko; Dayie, T. Kwaku; Sanbonmatsu, Karissa Y.

    2017-01-01

    Our 13C- and 1H-chemical exchange saturation transfer (CEST) experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function. PMID:28248966

  18. 6-Oxocytidine a novel protonated C-base analogue for stable triple helix formation.

    PubMed Central

    Berressem, R; Engels, J W

    1995-01-01

    2'-O-Methyl-3'-O-phosphoramidite building blocks of 6-oxocytidine 6 and its 5-methyl derivative 7, respectively, were synthesized and incorporated via phosphoramidite chemistry in 15 mer oligodeoxynucleotides [d(T72T7), S2; d(T73T7), S3] to obtain potential Py.Pu.Py triplex forming homopyrimidine strands. UV thermal denaturation studies and CD spectroscopy of 1:1 mixtures of these oligomers and a 21 mer target duplex [d(C3A7GA7C3)-d(G3T7CT7G3), D1] with a complementary purine tract showed a nearly pH-independent (6.0-8.0) triple helix formation with melting temperatures of 21-19 degrees C and 18.5-17.5 degrees C, respectively (buffer system: 50 mM sodium cacodylate, 100 mM NaCl, 20 mM MgCl2). In contrast, with the corresponding 15mer deoxy-C-containing oligonucleotide [d(T(7)1T7), S1] triplex formation was observed only below pH 6.6. Specificity for the recognition of Watson-Crick GC-base pairs was observed by pairing the modified C-bases of the 15mers with all other possible Watson-Crick-base compositions in the target duplex [d(C3A7XA7C3)-d(G3T7YT7G3), X = A,C,T; Y = T,G,A, D2-4]. Additionally, the Watson-Crick-pairing of the modified oligomers S2 and S3 was studied. PMID:7567457

  19. 6-Oxocytidine a novel protonated C-base analogue for stable triple helix formation.

    PubMed

    Berressem, R; Engels, J W

    1995-09-11

    2'-O-Methyl-3'-O-phosphoramidite building blocks of 6-oxocytidine 6 and its 5-methyl derivative 7, respectively, were synthesized and incorporated via phosphoramidite chemistry in 15 mer oligodeoxynucleotides [d(T72T7), S2; d(T73T7), S3] to obtain potential Py.Pu.Py triplex forming homopyrimidine strands. UV thermal denaturation studies and CD spectroscopy of 1:1 mixtures of these oligomers and a 21 mer target duplex [d(C3A7GA7C3)-d(G3T7CT7G3), D1] with a complementary purine tract showed a nearly pH-independent (6.0-8.0) triple helix formation with melting temperatures of 21-19 degrees C and 18.5-17.5 degrees C, respectively (buffer system: 50 mM sodium cacodylate, 100 mM NaCl, 20 mM MgCl2). In contrast, with the corresponding 15mer deoxy-C-containing oligonucleotide [d(T(7)1T7), S1] triplex formation was observed only below pH 6.6. Specificity for the recognition of Watson-Crick GC-base pairs was observed by pairing the modified C-bases of the 15mers with all other possible Watson-Crick-base compositions in the target duplex [d(C3A7XA7C3)-d(G3T7YT7G3), X = A,C,T; Y = T,G,A, D2-4]. Additionally, the Watson-Crick-pairing of the modified oligomers S2 and S3 was studied.

  20. One-step cross-genogroup multiplex RT-qPCR with an internal control system for the detection of infectious pancreatic necrosis virus (IPNV).

    PubMed

    Hoferer, Marc; Braun, Anne; Skrypski, Julia; Bock, Sabine; Thalheim, Sabine; Sting, Reinhard

    2017-09-01

    Infectious pancreatic necrosis virus (IPNV) causes great losses in fish hatcheries world-wide. The detection of IPNV can be challenging in certain circumstances, particularly due to low viral load and the genetic variability of this RNA virus. For the first time, this project created a quantitative triplex real-time reverse transcription PCR (RT-qPCR), including an endogenous control system, for specific, sensitive and rapid detection of IPNV in routine diagnostics. Multiple sequence alignment of 46 nucleotide sequences of the segment A genome obtained from the NCBI database allowed the design of two RT-qPCR systems covering the IPNV genogroup 1 and genogroups 2-5, respectively. The completed triplex RT-qPCR including a salmonid-specific endogenous control showed high specificity and an analytical sensitivity of 20-40 oligonucleotide copies. Testing of dilution series of virus-loaded cell culture suspensions proved equality of the triplex RT-qPCR with virus detection in cell culture and a higher sensitivity than conventional RT-PCR in field samples. In comparative studies of a total of 77 field samples tested, 51 showed identical positive and 19 identical negative results in cell culture and the triplex RT-qPCR. However, seven other samples yielded positive results in the triplex RT-qPCR, but negative results in cell culture. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Experimental and density functional theory (DFT) studies on the interactions of Ru(II) polypyridyl complexes with the RAN triplex poly(U)˙poly(A)*poly(U).

    PubMed

    Zhang, Hong; Liu, Xuewen; He, Xiaojun; Liu, Ying; Tan, Lifeng

    2014-11-01

    There is renewed interest in investigating triple helices because these novel structures have been implicated as a possible means of controlling cellular processes by endogenous or exogenous mechanisms. Due to the Hoogsteen base pairing, triple helices are, however, thermodynamically less stable than the corresponding duplexes. The poor stability of triple helices limits their practical applications under physiological conditions. In contrast to DNA triple helices, small molecules stabilizing RNA triple helices at present are less well established. Furthermore, most of these studies are limited to organic compounds and, to a far lesser extent, to metal complexes. In this work, two Ru(II) complexes, [Ru(bpy)2(btip)](2+) (Ru1) and [Ru(phen)2(btip)](2+) (Ru2), have been synthesized and characterized. The binding properties of the two metal complexes with the triple RNA poly(U)˙poly(A)*poly(U) were studied by various biophysical and density functional theory methods. The main results obtained here suggest that the slight binding difference in Ru1 and Ru2 may be attributed to the planarity of the intercalative ligand and the LUMO level of Ru(II) complexes. This study further advances our knowledge on the triplex RNA-binding by metal complexes, particularly Ru(II) complexes.

  2. Clustering of Staphylococcus aureus bovine mastitis strains from regions of Central-Eastern Poland based on their biochemical and genetic characteristics.

    PubMed

    Puacz, E; Ilczyszyn, W M; Kosecka, M; Buda, A; Dudziak, W; Polakowska, K; Panz, T; Białecka, A; Kasprowicz, A; Lisowski, A; Krukowski, H; Cuteri, V; Międzobrodzki, J

    2015-01-01

    Staphylococcus aureus strains were isolated from mastitic milk of cows with infected mammary glands. The animals were living in 12 different farms near Lublin, in Central-Eastern Poland. A biochemical identification method based on enzymatic assay was performed, followed by haemolytic and proteolytic tests. PCR-RFLP targeted on the gap gene allowed the genetic identification of strains at the species level and verified phenotypic identification results. A molecular typing method using triplex PCR was performed to recognize the genetic similarity of the analyzed strains. DNA microarray hybridization (StaphyType, Alere Technologies) was used for detection of antibiotic resistance and virulence associated markers. The results obtained indicate high genetic similarity in strains isolated from the same sites. High genetic similarities were also detected between strains isolated from cows from different farms of the same region. A slightly lower similarity was noted however, in strains from various regions indicating that the strains are herd specific and that the cow's infections caused by S. aureus were of a clonal character. In 21 representative isolates selected for DNA-microarray testing, only fosfomycin (fosB) and penicillin resistance markers (blaZ, blaI, blaR) were detected. The presence of genes coding for haemolysins (lukF, lukS, hlgA, hla, hld, hlb), proteases (aur, sspA, sspB, sspP), enterotoxins (entA, entD, entG, entI, entJ, entM, entN, entO, entR, entU, egc-cluster), adhesins (icaA, icaC, icaD, bbp, clfA, clfB, fib, fnbA, map, vwb) or immune evasion proteins (scn, chp, sak) was common and, with exceptions, matched triplex PCR-defined clusters.

  3. TriXY-Homogeneous genetic sexing of highly degraded forensic samples including hair shafts.

    PubMed

    Madel, Maria-Bernadette; Niederstätter, Harald; Parson, Walther

    2016-11-01

    Sexing of biological evidence is an important aspect in forensic investigations. A routinely used molecular-genetic approach to this endeavour is the amelogenin sex test, which is integrated in most commercially available polymerase chain reaction (PCR) kits for human identification. However, this assay is not entirely effective in respect to highly degraded DNA samples. This study presents a homogeneous PCR assay for robust sex diagnosis, especially for the analysis of severely fragmented DNA. The introduced triplex for the X and Y chromosome (TriXY) is based on real-time PCR amplification of short intergenic sequences (<50bp) on both gonosomes. Subsequent PCR product examination and molecular-genetic sex-assignment rely on high-resolution melting (HRM) curve analysis. TriXY was optimized using commercially available multi-donor human DNA preparations of either male or female origin and successfully evaluated on challenging samples, including 46 ancient DNA specimens from archaeological excavations and a total of 16 DNA samples extracted from different segments of eight hair shafts of male and female donors. Additionally, sensitivity and cross-species amplification were examined to further test the assay's utility in forensic investigations. TriXY's closed-tube format avoids post-PCR sample manipulations and, therefore, distinctly reduces the risk of PCR product carry-over contamination and sample mix-up, while reducing labour and financial expenses at the same time. The method is sensitive down to the DNA content of approximately two diploid cells and has proven highly useful on severely fragmented and low quantity ancient DNA samples. Furthermore, it even allowed for sexing of proximal hair shafts with very good results. In summary, TriXY facilitates highly sensitive, rapid, and costeffective genetic sex-determination. It outperforms existing sexing methods both in terms of sensitivity and minimum required template molecule lengths. Therefore, we feel confident that TriXY will prove to be a reliable addition to the toolbox currently used for sex-typing in forensic genetics and other fields of research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Insilico direct folding of thrombin-binding aptamer G-quadruplex at all-atom level.

    PubMed

    Yang, Changwon; Kulkarni, Mandar; Lim, Manho; Pak, Youngshang

    2017-12-15

    The reversible folding of the thrombin-binding DNA aptamer G-quadruplexes (GQs) (TBA-15) starting from fully unfolded states was demonstrated using a prolonged time scale (10-12 μs) parallel tempering metadynamics (PTMetaD) simulation method in conjunction with a modified version of the AMBER bsc1 force field. For unbiased descriptions of the folding free energy landscape of TBA-15, this force field was minimally modified. From this direct folding simulation using the modified bsc1 force field, reasonably converged free energy landscapes were obtained in K+-rich aqueous solution (150 mM), providing detailed atomistic pictures of GQ folding mechanisms for TBA-15. This study found that the TBA folding occurred via multiple folding pathways with two major free energy barriers of 13 and 15 kcal/mol in the presence of several intermediate states of G-triplex variants. The early formation of these intermediates was associated with a single K+ ion capturing. Interestingly, these intermediate states appear to undergo facile transitions among themselves through relatively small energy barriers. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    PubMed Central

    Topham, Christopher M.; Smith, Jeremy C.

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNA·DNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs. PMID:17071666

  6. Draft Genome Sequence of Mycobacterium triplex DSM 44626.

    PubMed

    Sassi, Mohamed; Croce, Olivier; Robert, Catherine; Raoult, Didier; Drancourt, Michel

    2014-05-29

    We announce the draft genome sequence of Mycobacterium triplex strain DSM 44626, a nontuberculosis species responsible for opportunistic infections. The genome described here is composed of 6,382,840 bp, with a G+C content of 66.57%, and contains 5,988 protein-coding genes and 81 RNA genes. Copyright © 2014 Sassi et al.

  7. Simultaneous genotyping of single-nucleotide polymorphisms in alcoholism-related genes using duplex and triplex allele-specific PCR with two-step thermal cycles.

    PubMed

    Shirasu, Naoto; Kuroki, Masahide

    2014-01-01

    We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.

  8. MVA vaccine encoding CMV antigens safely induces durable expansion of CMV-specific T cells in healthy adults

    PubMed Central

    La Rosa, Corinna; Longmate, Jeff; Martinez, Joy; Zhou, Qiao; Kaltcheva, Teodora I.; Tsai, Weimin; Drake, Jennifer; Carroll, Mary; Wussow, Felix; Chiuppesi, Flavia; Hardwick, Nicola; Dadwal, Sanjeet; Aldoss, Ibrahim; Nakamura, Ryotaro; Zaia, John A.

    2017-01-01

    Attenuated poxvirus modified vaccinia Ankara (MVA) is a useful viral-based vaccine for clinical investigation, because of its excellent safety profile and property of inducing potent immune responses against recombinant (r) antigens. We developed Triplex by constructing an rMVA encoding 3 immunodominant cytomegalovirus (CMV) antigens, which stimulates a host antiviral response: UL83 (pp65), UL123 (IE1-exon4), and UL122 (IE2-exon5). We completed the first clinical evaluation of the Triplex vaccine in 24 healthy adults, with or without immunity to CMV and vaccinia virus (previous DryVax smallpox vaccination). Three escalating dose levels (DL) were administered IM in 8 subjects/DL, with an identical booster injection 28 days later and 1-year follow-up. Vaccinations at all DL were safe with no dose-limiting toxicities. No vaccine-related serious adverse events were documented. Local and systemic reactogenicity was transient and self-limiting. Robust, functional, and durable Triplex-driven expansions of CMV-specific T cells were detected by measuring T-cell surface levels of 4-1BB (CD137), binding to CMV-specific HLA multimers, and interferon-γ production. Marked and durable CMV-specific T-cell responses were also detected in Triplex-vaccinated CMV-seronegatives, and in DryVax-vaccinated subjects. Long-lived memory effector phenotype, associated with viral control during CMV primary infection, was predominantly found on the membrane of CMV-specific and functional T cells, whereas off-target vaccine responses activating memory T cells from the related herpesvirus Epstein-Barr virus remained undetectable. Combined safety and immunogenicity results of MVA in allogeneic hematopoietic stem cell transplant (HCT) recipients and Triplex in healthy adults motivated the initiation of a placebo-controlled multicenter trial of Triplex in HCT patients. This trial was registered at www.clinicaltrials.gov as #NCT02506933. PMID:27760761

  9. Detection of mitochondrial DNA with the compact bead array sensor system (cBASS)

    NASA Astrophysics Data System (ADS)

    Mulvaney, Shawn P.; Ibe, Carol N.; Caldwell, Jane M.; Levine, Jay F.; Whitman, Lloyd J.; Tamanaha, Cy R.

    2009-02-01

    Enteric pathogens are a significant contaminant in surface waters used for recreation, fish and shellfish harvesting, crop irrigation, and human consumption. The need for water monitoring becomes more pronounced when industrial, agricultural, and residential lands are found in close proximity. Fecal contamination is particularly problematic and identification of the pollution source essential to remediation efforts. Standard monitoring for fecal contamination relies on indicator organisms, but the technique is too broad to identify the source of contamination. Instead, real-time PCR of mitochondrial DNA (mtDNA) is an emerging method for identification of the contamination source. Presented herein, we evaluate an alternative technology, the compact Bead Array Sensor System (cBASS®) and its assay approach Fluidic Force Discrimination (FFD), for the detection of mtDNA. Previously, we achieved multiplexed, attomolar detection of toxins and femtomolar detection of nucleic acids in minutes with FFD assays. More importantly, FFD assays are compatible with a variety of complex matrices and therefore potentially applicable for samples where the matrix would interfere with PCR amplification. We have designed a triplex assay for the NADH gene found in human, swine, and bovine mtDNA and demonstrated the specific detection of human mtDNA spiked into a waste water sample.

  10. New design of a triplexer using ring resonator integrated with directional coupler based on photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang

    2009-11-01

    In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.

  11. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-01

    Thrombin-binding aptamer (TBA) with the sequence 5‧GGTTGGTGTGGTTGG3‧ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  12. Cooperative gene regulation by microRNA pairs and their identification using a computational workflow

    PubMed Central

    Schmitz, Ulf; Lai, Xin; Winter, Felix; Wolkenhauer, Olaf; Vera, Julio; Gupta, Shailendra K.

    2014-01-01

    MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/. PMID:24875477

  13. Interaction of thionine with triple-, double-, and single-stranded RNAs.

    PubMed

    Lozano, Héctor J; García, Begoña; Busto, Natalia; Leal, José M

    2013-01-10

    The interaction of thionine with triple, double, and single RNA helices has been fully characterized by thermodynamic and kinetic methods. The nature of the interaction of thionine with the synthetic polynucleotides poly(rU), poly(rA)·poly(rU), and poly(rA)·2poly(rU) has been studied at pH = 7.0 and 25 °C by UV absorbance, fluorescence, circular dichroism spectroscopy, viscometry, differential scanning calorimetry, and T-jump kinetic measurements. The results show that at I = 0.1 M thionine binds to a single poly(rU) strand, destabilizes the poly(rA)·2poly(rU) triplex by external binding, and intercalates into poly(rA)·poly(rU) with similar affinity to the thionine/DNA intercalated complex (Paul, P.; Kumar, G. S. J. Fluoresc. 2012, 22, 71-80). On the other hand, the differential scanning calorimetry measurements performed with thionine display a point in which the heat capacity remains unaltered, revealing the equilibrium of isothermal denaturation: thionine/poly(rA)·2poly(rU) + thionine ⇌ thionine/poly(rA)·poly(rU) + thionine/poly(rU), an outcome supported by the other techniques used. The denaturation equilibrium constant, K(D) (25 °C) = 522 M(-1), was evaluated from the affinity with the single, duplex, and triplex RNA.

  14. BIOCONJUGATION OF OLIGONUCLEOTIDES FOR TREATING LIVER FIBROSIS

    PubMed Central

    Ye, Zhaoyang; Hajj Houssein, Houssam S.; Mahato, Ram I.

    2009-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is in urgent need to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remains the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of α1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  15. Thermodynamics of Nucleic Acid ‘Shape Readout’ by an Aminosugar†

    PubMed Central

    Xi, Hongjuan; Davis, Erik; Ranjan, Nihar; Xue, Liang; Hyde-Volpe, David; Arya, Dev P.

    2012-01-01

    Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized to play an equally important role in DNA recognition. Competition Dialysis, UV, Flourescent Intercalator displacement (FID), Computational Docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, these results suggest: (1) Neomycin binds three RNA structures (16S A site rRNA, poly(rA)•poly(rA), and poly(rA)•poly(rU)) with high affinities, Ka~107M−1. (2) The binding of neomycin to A-form GC-rich oligomer d(A2G15C15T2)2 has comparable affinity to RNA structures. (3) The binding of neomycin to DNA•RNA hybrids shows a three-fold variance attributable to their structural differences (poly(dA) •poly(rU), Ka=9.4×106M−1 and poly(rA)•poly(dT), Ka=3.1×106M−1). (4) The interaction of neomycin with DNA triplex poly(dA)•2poly(dT) yields a binding affinity of Ka=2.4×105M−1. (5) Poly(dA-dT)2 showed the lowest association constant for all nucleic acids studied (Ka=<105). (6) Neomycin binds to G-quadruplexes with Ka~104-105M−1. (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin’s affinity for various nucleic acid structures can be ranked as follows, RNAs and GC-rich d(A2G15C15T2)2 structures > poly(dA)•poly(rU) > poly(rA)•poly(dT) > T•A-T triplex , G-quadruplexes, B-form AT-rich or GC-rich DNA sequences. The results illustrate the first example of a small molecule based ‘shape readout’ of different nucleic acid conformations. PMID:21863895

  16. Duodenal atresia in an infant with triple-X syndrome: a new associated malformation in 47,XXX.

    PubMed

    Rolle, Udo; Linse, Barbara; Glasow, Simone; Sandig, Klaus Rainer; Richter, Thomas; Till, Holger

    2007-08-01

    An association between the triple-X syndrome (47,XXX) and gastrointestinal malformations is extremely rare. Most 47,XXX patients present with a normal phenotype, but genitourinary malformations have been described. We report a case of a child with 47,XXX and duodenal atresia. Antenatal ultrasound scan showed a dilated fetal stomach and upper part of the duodenum (double bubble phenomenon) at 31 weeks of gestation in a 31-year-old woman with polyhydramnion. The amniotic fluid karyotype showed 47,XXX. After a scheduled delivery, duodenal atresia was confirmed and treated with duodeno-duodenostomy. The possible association of gastrointestinal and genitourinary tract anomalies requires a detailed postnatal clinical investigation and ultrasonographic examination of the abdomen, retroperitoneum, and pelvis on all triple-X syndrome patients. 2007 Wiley-Liss, Inc.

  17. Ultra compact triplexing filters based on SOI nanowire AWGs

    NASA Astrophysics Data System (ADS)

    Jiashun, Zhang; Junming, An; Lei, Zhao; Shijiao, Song; Liangliang, Wang; Jianguang, Li; Hongjie, Wang; Yuanda, Wu; Xiongwei, Hu

    2011-04-01

    An ultra compact triplexing filter was designed based on a silicon on insulator (SOI) nanowire arrayed waveguide grating (AWG) for fiber-to-the-home FTTH. The simulation results revealed that the design performed well in the sense of having a good triplexing function. The designed SOI nanowire AWGs were fabricated using ultraviolet lithography and induced coupler plasma etching. The experimental results showed that the crosstalk was less than -15 dB, and the 3 dB-bandwidth was 11.04 nm. The peak wavelength output from ports a, c, and b were 1455, 1510 and 1300 nm, respectively, which deviated from our original expectations. The deviation of the wavelength is mainly caused by 45 nm width deviation of the arrayed waveguides during the course of the fabrication process and partly caused by material dispersion.

  18. Ultrafast microfluidic mixer for tracking the early folding kinetics of human telomere G-quadruplex.

    PubMed

    Li, Ying; Liu, Chao; Feng, Xiaojun; Xu, Youzhi; Liu, Bi-Feng

    2014-05-06

    The folding of G-quadruplex is hypothesized to undergo a complex process, from the formation of a hairpin structure to a triplex intermediate and to the final G-quadruplex. Currently, no experimental evidence has been found for the hairpin formation, because it folds in the time regime of 10-100 μs, entailing the development of microfluidic mixers with a mixing time of less than 10 μs. In this paper, we reported an ultrarapid micromixer with a mixing time of 5.5 μs, which represents the fastest turbulent micromixer to our best knowledge. Evaluations of the micromixer were conducted to confirm its mixing efficiency for small molecules and macromolecules. This new micromixer enabled us to interrogate the hairpin formation in the early folding process of human telomere G-quadruplex. The experimental kinetic evidence for the formation of hairpin was obtained for the first time.

  19. Assessment for Melting Temperature Measurement of Nucleic Acid by HRM.

    PubMed

    Wang, Jing; Pan, Xiaoming; Liang, Xingguo

    2016-01-01

    High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping. For the aim of extending HRM for the evaluation of thermal stability of nucleic acid secondary structures on sequence dependence, we investigated effects of the dye of EvaGreen, metal ions, and impurities (such as dNTPs) on melting temperature ( T m ) measurement by HRM. The accuracy of HRM was assessed as compared with UV melting method, and little difference between the two methods was found when the DNA T m was higher than 40°C. Both insufficiency and excessiveness of EvaGreen were found to give rise to a little bit higher T m , showing that the proportion of dye should be considered for precise T m measurement of nucleic acids. Finally, HRM method was also successfully used to measure T m s of DNA triplex, hairpin, and RNA duplex. In conclusion, HRM can be applied in the evaluation of thermal stability of nucleic acid (DNA or RNA) or secondary structural elements (even when dNTPs are present).

  20. Computational Insights into the Stability and Folding Pathways of Human Telomeric DNA G-Quadruplexes.

    PubMed

    Luo, Di; Mu, Yuguang

    2016-06-09

    G-quadruplex is a noncanonical yet crucial secondary structure of nucleic acids, which has proven its importance in cell aging, anticancer therapies, gene expression, and genome stability. In this study, the stability and folding dynamics of human telomeric DNA G-quadruplexes were investigated via enhanced sampling techniques. First, temperature-replica exchange MD (REMD) simulations were employed to compare the thermal stabilities among the five established folding topologies. The hybrid-2 type adopted by extended human telomeric sequence is revealed to be the most stable conformation in our simulations. Next, the free energy landscapes and folding intermediates of the hybrid-1 and -2 types were investigated with parallel tempering metadynamics simulations in the well-tempered ensemble. It was observed that the N-glycosidic conformations of guanines can flip over to accommodate into the cyclic Hoogsteen H-bonding on G-tetrads in which they were not originally involved. Furthermore, a hairpin and a triplex intermediate were identified for the folding of the hybrid-1 type conformation, whereas for the hybrid-2 type, there were no folding intermediates observed from its free energy surface. However, the energy barrier from its native topology to the transition structure is found to be extremely high compared to that of the hybrid-1 type, which is consistent with our stability predictions from the REMD simulations. We hope the insights presented in this work can help to complement current understanding on the stability and dynamics of G-quadruplexes, which is necessary not only to stabilize the structures but also to intervene their formation in genome.

  1. Bladder exstrophy-epispadias complex and triple-X syndrome: incidental finding or causality?

    PubMed

    Ramaekers, Paul; Loeys, Bart; von Lowtzow, Catharina; Reutter, Heiko; Leroy, Yves; Colpaert, Cécile; Blaumeiser, Bettina; Janssens, Katrien; Parizel, Maxim; Jacquemyn, Yves

    2014-10-01

    Bladder exstrophy is a rare malformation. Prenatal diagnosis is usually an incidental finding on routine ultrasound examination. Triple-X syndrome (karyotype 47,XXX) is the most frequent sex chromosome aneuploidy in live-born females (approximately 1 in 1000). The diagnosis is often not made because women with 47,XXX karyotype have no or hardly any clinical symptoms during life. Prenatal diagnosis of triple X karyotype is usually an incidental finding when an invasive prenatal diagnosis is performed for other reasons. Here, we report on two cases with bladder exstrophy and triple-X syndrome, one in a fetus and one in an adult. In view of two previous reports of this association in literature, causality of these two conditions should be considered. A gene dosage effect as possible underlying mechanisms will be discussed. © 2014 Wiley Periodicals, Inc.

  2. E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation.

    PubMed

    Carcagno, Abel L; Giono, Luciana E; Marazita, Mariela C; Castillo, Daniela S; Pregi, Nicolás; Cánepa, Eduardo T

    2012-07-01

    Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.

  3. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes.

    PubMed

    Cer, Regina Z; Bruce, Kevin H; Mudunuri, Uma S; Yi, Ming; Volfovsky, Natalia; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2011-01-01

    Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.

  4. An enzyme-free catalytic DNA circuit for amplified detection of aflatoxin B1 using gold nanoparticles as colorimetric indicators

    NASA Astrophysics Data System (ADS)

    Chen, Junhua; Wen, Junlin; Zhuang, Li; Zhou, Shungui

    2016-05-01

    An enzyme-free biosensor for the amplified detection of aflatoxin B1 has been constructed based on a catalytic DNA circuit. Three biotinylated hairpin DNA probes (H1, H2, and H3) were designed as the assembly components to construct the sensing system (triplex H1-H2-H3 product). Cascaded signal amplification capability was obtained through toehold-mediated strand displacement reactions to open the hairpins and recycle the trigger DNA. By the use of streptavidin-functionalized gold nanoparticles as the signal indicators, the colorimetric readout can be observed by the naked eye. In the presence of a target, the individual nanoparticles (red) aggregate into a cross-linked network of nanoparticles (blue) via biotin-streptavidin coupling. The colorimetric assay is ultrasensitive, enabling the visual detection of trace levels of aflatoxin B1 (AFB1) as low as 10 pM without instrumentation. The calculated limit of detection (LOD) is 2 pM in terms of 3 times standard deviation over the blank response. The sensor is robust and works even when challenged with complex sample matrices such as rice samples. Our sensing platform is simple and convenient in operation, requiring only the mixing of several solutions at room temperature to achieve visible and intuitive results, and holds great promise for the point-of-use monitoring of AFB1 in environmental and food samples.An enzyme-free biosensor for the amplified detection of aflatoxin B1 has been constructed based on a catalytic DNA circuit. Three biotinylated hairpin DNA probes (H1, H2, and H3) were designed as the assembly components to construct the sensing system (triplex H1-H2-H3 product). Cascaded signal amplification capability was obtained through toehold-mediated strand displacement reactions to open the hairpins and recycle the trigger DNA. By the use of streptavidin-functionalized gold nanoparticles as the signal indicators, the colorimetric readout can be observed by the naked eye. In the presence of a target, the individual nanoparticles (red) aggregate into a cross-linked network of nanoparticles (blue) via biotin-streptavidin coupling. The colorimetric assay is ultrasensitive, enabling the visual detection of trace levels of aflatoxin B1 (AFB1) as low as 10 pM without instrumentation. The calculated limit of detection (LOD) is 2 pM in terms of 3 times standard deviation over the blank response. The sensor is robust and works even when challenged with complex sample matrices such as rice samples. Our sensing platform is simple and convenient in operation, requiring only the mixing of several solutions at room temperature to achieve visible and intuitive results, and holds great promise for the point-of-use monitoring of AFB1 in environmental and food samples. Electronic supplementary information (ESI) available: Experimental details and additional data. See DOI: 10.1039/c6nr01381c

  5. Koi herpesvirus represents a third cyprinid herpesvirus (CyHV-3) in the family Herpesviridae.

    PubMed

    Waltzek, Thomas B; Kelley, Garry O; Stone, David M; Way, Keith; Hanson, Larry; Fukuda, Hideo; Hirono, Ikuo; Aoki, Takashi; Davison, Andrew J; Hedrick, Ronald P

    2005-06-01

    The sequences of four complete genes were analysed in order to determine the relatedness of koi herpesvirus (KHV) to three fish viruses in the family Herpesviridae: carp pox herpesvirus (Cyprinid herpesvirus 1, CyHV-1), haematopoietic necrosis herpesvirus of goldfish (Cyprinid herpesvirus 2, CyHV-2) and channel catfish virus (Ictalurid herpesvirus 1, IcHV-1). The genes were predicted to encode a helicase, an intercapsomeric triplex protein, the DNA polymerase and the major capsid protein. The results showed that KHV is related closely to CyHV-1 and CyHV-2, and that the three cyprinid viruses are related, albeit more distantly, to IcHV-1. Twelve KHV isolates from four diverse geographical areas yielded identical sequences for a region of the DNA polymerase gene. These findings, with previously published morphological and biological data, indicate that KHV should join the group of related lower-vertebrate viruses in the family Herpesviridae under the formal designation Cyprinid herpesvirus 3 (CyHV-3).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhen; Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058; Xiang, Wenqing

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry ofmore » oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.« less

  7. Probing of miniPEGγ-PNA-DNA Hybrid Duplex Stability with AFM Force Spectroscopy.

    PubMed

    Dutta, Samrat; Armitage, Bruce A; Lyubchenko, Yuri L

    2016-03-15

    Peptide nucleic acids (PNA) are synthetic polymers, the neutral peptide backbone of which provides elevated stability to PNA-PNA and PNA-DNA hybrid duplexes. It was demonstrated that incorporation of diethylene glycol (miniPEG) at the γ position of the peptide backbone increased the thermal stability of the hybrid duplexes (Sahu, B. et al. J. Org. Chem. 2011, 76, 5614-5627). Here, we applied atomic force microscopy (AFM) based single molecule force spectroscopy and dynamic force spectroscopy (DFS) to test the strength and stability of the hybrid 10 bp duplex. This hybrid duplex consisted of miniPEGγ-PNA and DNA of the same length (γ(MP)PNA-DNA), which we compared to a DNA duplex with a homologous sequence. AFM force spectroscopy data obtained at the same conditions showed that the γ(MP)PNA-DNA hybrid is more stable than the DNA counterpart, 65 ± 15 pN vs 47 ± 15 pN, respectively. The DFS measurements performed in a range of pulling speeds analyzed in the framework of the Bell-Evans approach yielded a dissociation constant, koff ≈ 0.030 ± 0.01 s⁻¹ for γ(MP)PNA-DNA hybrid duplex vs 0.375 ± 0.18 s⁻¹ for the DNA-DNA duplex suggesting that the hybrid duplex is much more stable. Correlating the high affinity of γ(MP)PNA-DNA to slow dissociation kinetics is consistent with prior bulk characterization by surface plasmon resonance. Given the growing interest in γ(MP)PNA as well as other synthetic DNA analogues, the use of single molecule experiments along with computational analysis of force spectroscopy data will provide direct characterization of various modifications as well as higher order structures such as triplexes and quadruplexes.

  8. A rapid and visual aptasensor for Lipopolysaccharides detection based on the bulb-like triplex turn-on switch coupled with HCR-HRP nanostructures.

    PubMed

    Xu, Wentao; Tian, Jingjing; Shao, Xiangli; Zhu, Longjiao; Huang, Kunlun; Luo, Yunbo

    2017-03-15

    For previously reported aptasensor, the sensitivity and selectivity of aptamers to targets were often suppressed due to the reporter label of single-stranded molecular beacon or hindrance of the duplex DNA strand displacement. To solve the affinity declining of aptamers showed in traditional way and realize on-site rapid detection of Lipopolysaccharides (LPS), we developed an ingenious structure-switching aptasensor based on the bulb-like triplex turn-on switch (BTTS) as the effective molecular recognition and signal transduction element and streptavidin-horseradish peroxidase modified hybridization chain reaction (HCR-HRP) nanocomposites as the signal amplifier and signal report element. In the presence of LPS, the bulb-like LPS-aptamer (BLA) and LPS formed the LPS/aptamer complex, while the BTTS disassembled and liberated the dissociative bridge probes (BP) to achieve molecular recognition and signal transduction. Immobilized BP, captured by immobilized capture probes (CP), triggered hybridization chain reactions (HCR) to amplify the switching signal, and the HCR products were then modified with streptavidin-horseradish peroxidase (SA-HRP) to form HCR-HRP nanostructures to output colorimetric signals. In less than four hours, the proposed biosensor showed a detection limit of 50pg/mL of LPS quantitatively with the portable spectrophotometer and the observation limit of 20ng/mL semi-quantitatively with the naked eye, opening up new opportunities for LPS detection in future clinical diagnosis, food security and environment monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with atmore » least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.« less

  10. Biological and Nano-Technological Applications of Artificial DNAs Made Exclusively of Nonnatural C-Nucleosides with Four Types of Nonnatural Bases

    DTIC Science & Technology

    2011-08-19

    A) CD, (B) UV, (C) Tm, and (D) titration experiments of d(iG*)8/d(C)8. d(T/A*/T)n WC WC
 d(T/A/T)n Watson – Crick (WC)
 Hoogsteen
 Symmetrical A...base Figure 7. Triplex formation of the natural T/A/T which has one Watson - Crick (WC)-type and one Hoogsteen-type hydrogen-bondings, and the...Final Report for AOARD Grant FA2386-10-1-4033 “Biological and Nano-technological Applications of Artificial DNAs Made Exclusively of Nonnatutal C

  11. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons.

    PubMed

    Grünewald, Anne; Rygiel, Karolina A; Hepplewhite, Philippa D; Morris, Christopher M; Picard, Martin; Turnbull, Doug M

    2016-03-01

    To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI-IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single-neuron level. Multiple-label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI-IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser-capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication-associated 7S DNA employing a triplex real-time polymerase chain reaction (PCR) assay. Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single-cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription-primed mtDNA replication. Consistent with this, real-time PCR analysis revealed fewer transcription/replication-associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA-encoded factors mechanistically connected via TFAM. © 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  12. Triple helical DNA in a duplex context and base pair opening

    PubMed Central

    Esguerra, Mauricio; Nilsson, Lennart; Villa, Alessandra

    2014-01-01

    It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region. PMID:25228466

  13. Assessment for Melting Temperature Measurement of Nucleic Acid by HRM

    PubMed Central

    2016-01-01

    High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping. For the aim of extending HRM for the evaluation of thermal stability of nucleic acid secondary structures on sequence dependence, we investigated effects of the dye of EvaGreen, metal ions, and impurities (such as dNTPs) on melting temperature (T m) measurement by HRM. The accuracy of HRM was assessed as compared with UV melting method, and little difference between the two methods was found when the DNA T m was higher than 40°C. Both insufficiency and excessiveness of EvaGreen were found to give rise to a little bit higher T m, showing that the proportion of dye should be considered for precise T m measurement of nucleic acids. Finally, HRM method was also successfully used to measure T ms of DNA triplex, hairpin, and RNA duplex. In conclusion, HRM can be applied in the evaluation of thermal stability of nucleic acid (DNA or RNA) or secondary structural elements (even when dNTPs are present). PMID:27833775

  14. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    PubMed

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  15. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs

    PubMed Central

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Žel, Jana; Gruden, Kristina

    2008-01-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1–25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification. PMID:18710880

  16. Mitochondrial DNA Depletion in Respiratory Chain–Deficient Parkinson Disease Neurons

    PubMed Central

    Rygiel, Karolina A.; Hepplewhite, Philippa D.; Morris, Christopher M.; Picard, Martin; Turnbull, Doug M.

    2016-01-01

    Objective To determine the extent of respiratory chain abnormalities and investigate the contribution of mtDNA to the loss of respiratory chain complexes (CI–IV) in the substantia nigra (SN) of idiopathic Parkinson disease (IPD) patients at the single‐neuron level. Methods Multiple‐label immunofluorescence was applied to postmortem sections of 10 IPD patients and 10 controls to quantify the abundance of CI–IV subunits (NDUFB8 or NDUFA13, SDHA, UQCRC2, and COXI) and mitochondrial transcription factors (TFAM and TFB2M) relative to mitochondrial mass (porin and GRP75) in dopaminergic neurons. To assess the involvement of mtDNA in respiratory chain deficiency in IPD, SN neurons, isolated with laser‐capture microdissection, were assayed for mtDNA deletions, copy number, and presence of transcription/replication‐associated 7S DNA employing a triplex real‐time polymerase chain reaction (PCR) assay. Results Whereas mitochondrial mass was unchanged in single SN neurons from IPD patients, we observed a significant reduction in the abundances of CI and II subunits. At the single‐cell level, CI and II deficiencies were correlated in patients. The CI deficiency concomitantly occurred with low abundances of the mtDNA transcription factors TFAM and TFB2M, which also initiate transcription‐primed mtDNA replication. Consistent with this, real‐time PCR analysis revealed fewer transcription/replication‐associated mtDNA molecules and an overall reduction in mtDNA copy number in patients. This effect was more pronounced in single IPD neurons with severe CI deficiency. Interpretation Respiratory chain dysfunction in IPD neurons not only involves CI, but also extends to CII. These deficiencies are possibly a consequence of the interplay between nDNA and mtDNA‐encoded factors mechanistically connected via TFAM. ANN NEUROL 2016;79:366–378 PMID:26605748

  17. Nanoparticles for Site Specific Genome Editing

    NASA Astrophysics Data System (ADS)

    McNeer, Nicole Ali

    Triplex-forming peptide nucleic acids (PNAs) can be used to coordinate the recombination of short 50-60 by "donor DNA" fragments into genomic DNA, resulting in site-specific correction of genetic mutations or the introduction of advantageous genetic modifications. Site-specific gene editing in hematopoietic stem and progenitor cells (HSPCs) could result in treatment or cure of inherited disorders of the blood such as beta-thalassemia. Gene editing in HSPCs and differentiated T cells could help combat HIV/AIDs by modifying receptors, such as CCR5, necessary for R5-tropic HIV entry. However, translation of genome modification technologies to clinical practice is limited by challenges in intracellular delivery, especially in difficult-to-transfect hematolymphoid cells. In vivo gene editing could also provide novel treatment for systemic monogenic disorders such as cystic fibrosis, an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane receptor. Here, we have engineered biodegradable nanoparticles to deliver oligonucleotides for site-specific genome editing of disease-relevant genes in human cells, with high efficiency, low toxicity, and editing of clinically relevant cell types. We designed nanoparticles to edit the human beta-globin and CCR5 genes in hematopoietic cells. We show that poly(lactic-co-glycolic acid) (PLGA) nanoparticles can delivery PNA and donor DNA for site-specific gene modification in human hematopoietic cells in vitro and in vivo in NOD-scid IL2rgammanull mice. Nanoparticles delivered by tail vein localized to hematopoietic compartments in the spleen and bone marrow of humanized mice, resulting in modification of the beta-globin and CCR5 genes. Modification frequencies ranged from 0.005 to 20% of cells depending on the organ and cell type, without detectable toxicity. This project developed highly versatile methods for delivery of therapeutics to hematolymphoid cells and hematopoietic stem cells, and will help to translate gene therapies for diseases of the blood and immune system to clinical practice. In addition, we have expanded the use of this technology to an additional nonhematopoietic model system: correction of the human cystic fibrosis transmembrane receptor gene in human bronchial epithelial cells. The work presented here represents (1) the first use of biodegradable nanoparticles for PNA delivery, (2) the first direct in vivo site-specific genome modification in human cells, and (3) the first use of triplex-PNA technology for site-specific genome editing in cystic fibrosis.

  18. Double triplex real-time PCR assay for simultaneous detection of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, and Staphylococcus haemolyticus and determination of their methicillin resistance directly from positive blood culture bottles.

    PubMed

    Kilic, Abdullah; Basustaoglu, A Celal

    2011-12-01

    We developed and validated here a double triplex real-time PCR assay to simultaneously detect and identify Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus haemolyticus and their methicillin resistance in a single reaction directly from Gram-positive cocci-in-clusters (GPCs)-positive blood culture bottles. From August 15, 2009 through February 15, 2010, 238 GPC-positive samples were collected and identified by conventional methods as 11 methicillin-resistant S. aureus (MRSA), 28 methicillin-susceptible S. aureus (MSSA), 176 MR coagulase-negative staphylococci (MRCoNS), 21 MSCoNS and two Enterococcus faecalis. The double triplex real-time PCR assay was targeted and detected tuf, nuc and mecA genes in the first tube and atlE, gap and mvaA genes in the second tube which could be run simultaneously. The detection limit of the assay was found at 10(3) CFU/ml for the atleE gene, 10(4) CFU/ml for the mva gene and 10(5) CFU/ml for gap, nuc, mecA and tuf genes based on seeding experiments. All Staphylococcus species except two S. epidermidis were correctly identified by the assay. The double triplex real-time PCR assay quickly and accurately detects S. aureus, S. epidermidis, S. hominis and S. haemolyticus and their methicillin resistance in a single reaction directly from positive blood culture bottles within 83 min. Copyright © 2011 Institut Pasteur. All rights reserved.

  19. Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol-gel auto-combustion process

    NASA Astrophysics Data System (ADS)

    Ansari, Fatemeh; Sobhani, Azam; Salavati-Niasari, Masoud

    2016-03-01

    Copper hexaferrite (CuFe12O19) nanostructures were prepared by a simple route utilizing maltose-assisted sol-gel process. The morphology, phase structure, composition and purity of nanostructures can be controlled by type of surfactant and also adjusting the Cu:surfactant, Cu:Fe and Cu:reductant ratios. The bean-shape structures are formed in the absence of the surfactant when the molar ratio of Cu:Fe and Cu:reductant are 1:12 and 1:26, respectively. The agglomerated spherical nanoparticles with diameters ranging from 7 to 20 nm are obtained in the presence of triplex, when ratio of Cu:reductant is 1:26. In the absence of surfactant and also in the presence of triplex, the samples are found to be CuFe12O19. When polymer is used, there are still the peaks of CuFe12O19 and also some boad peaks in XRD patterns, because of the small size and encapsulation of nanostructures with polymer. Magnetic measurments show superparamagnetic behavior for the all samples. The Ms for the samples obtained in the presence of polymer shows that the coating of magnetic nanostructures does not always increase Ms. FT-IR frequency bands in the range 463-626, 607 and 542 cm-1 correspond to the formation of metal oxides in ferrites.

  20. Determination and analysis of site-specific 125I decay-induced DNA double-strand break end-group structures.

    PubMed

    Datta, Kamal; Weinfeld, Michael; Neumann, Ronald D; Winters, Thomas A

    2007-02-01

    End groups contribute to the structural complexity of radiation-induced DNA double-strand breaks (DSBs). As such, end-group structures may affect a cell's ability to repair DSBs. The 3'-end groups of strand breaks caused by gamma radiation, or oxidative processes, under oxygenated aqueous conditions have been shown to be distributed primarily between 3'-phosphoglycolate and 3'-phosphate, with 5'-phosphate ends in both cases. In this study, end groups of the high-LET-like DSBs caused by 125I decay were investigated. Site-specific DNA double-strand breaks were produced in plasmid pTC27 in the presence or absence of 2 M DMSO by 125I-labeled triplex-forming oligonucleotide targeting. End-group structure was assessed enzymatically as a function of the DSB end to serve as a substrate for ligation and various forms of end labeling. Using this approach, we have demonstrated 3'-hydroxyl (3'-OH) and 3'-phosphate (3'-P) end groups and 5'-ends (> or = 42%) terminated by phosphate. A 32P postlabeling assay failed to detect 3'-phosphoglycolate in a restriction fragment terminated by the 125I-induced DNA double-strand break, and this is likely due to restricted oxygen diffusion during irradiation as a frozen aqueous solution. Even so, end-group structure and relative distribution varied as a function of the free radical scavenging capacity of the irradiation buffer.

  1. Multiplex Allele-Specific Amplification from Whole Blood for Detecting Multiple Polymorphisms Simultaneously

    PubMed Central

    Zhu, Jianjie; Chen, Lanxin; Mao, Yong; Zhou, Huan

    2013-01-01

    Allele-specific amplification on the basis of polymerase chain reaction (PCR) has been widely used for single-nucleotide polymorphism (SNP) genotyping. However, the extraction of PCR-compatible genomic DNA from whole blood is usually required. This process is complicated and tedious, and is prone to cause cross-contamination between samples. To facilitate direct PCR amplification from whole blood without the extraction of genomic DNA, we optimized the pH value of PCR solution and the concentrations of magnesium ions and facilitator glycerol. Then, we developed multiplex allele-specific amplifications from whole blood and applied them to a case–control study. In this study, we successfully established triplex, five-plex, and eight-plex allele-specific amplifications from whole blood for determining the distribution of genotypes and alleles of 14 polymorphisms in 97 gastric cancer patients and 141 healthy controls. Statistical analysis results showed significant association of SNPs rs9344, rs1799931, and rs1800629 with the risk of gastric cancer. This method is accurate, time-saving, cost-effective, and easy-to-do, especially suitable for clinical prediction of disease susceptibility. PMID:23072573

  2. Orthogonal Operation of Constitutional Dynamic Networks Consisting of DNA-Tweezer Machines.

    PubMed

    Yue, Liang; Wang, Shan; Cecconello, Alessandro; Lehn, Jean-Marie; Willner, Itamar

    2017-12-26

    Overexpression or down-regulation of cellular processes are often controlled by dynamic chemical networks. Bioinspired by nature, we introduce constitutional dynamic networks (CDNs) as systems that emulate the principle of the nature processes. The CDNs comprise dynamically interconvertible equilibrated constituents that respond to external triggers by adapting the composition of the dynamic mixture to the energetic stabilization of the constituents. We introduce a nucleic acid-based CDN that includes four interconvertible and mechanically triggered tweezers, AA', BB', AB' and BA', existing in closed, closed, open, and open configurations, respectively. By subjecting the CDN to auxiliary triggers, the guided stabilization of one of the network constituents dictates the dynamic reconfiguration of the structures of the tweezers constituents. The orthogonal and reversible operations of the CDN DNA tweezers are demonstrated, using T-A·T triplex or K + -stabilized G-quadruplex as structural motifs that control the stabilities of the constituents. The implications of the study rest on the possible applications of input-guided CDN assemblies for sensing, logic gate operations, and programmed activation of molecular machines.

  3. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    DOE PAGES

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; ...

    2017-09-28

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less

  4. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    NASA Astrophysics Data System (ADS)

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan; Zhou, Xiaolu; Wang, Meng; Zhang, Kerou; Wang, Gangsheng

    2017-10-01

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195 Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated by Xu et al. (2014). We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC), and mineral-associated organic carbon (MOC). However, our work represents the first step toward a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.

  5. Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kefeng; Peng, Changhui; Zhu, Qiuan

    Microbial physiology plays a critical role in the biogeochemical cycles of the Earth system. However, most traditional soil carbon models are lacking in terms of the representation of key microbial processes that control the soil carbon response to global climate change. In this study, the improved process-based model TRIPLEX-GHG was developed by coupling it with the new MEND (Microbial-ENzyme-mediated Decomposition) model to estimate total global soil organic carbon (SOC) and global soil microbial carbon. The new model (TRIPLEX-MICROBE) shows considerable improvement over the previous version (TRIPLEX-GHG) in simulating SOC. We estimated the global soil carbon stock to be approximately 1195more » Pg C, with 348 Pg C located in the high northern latitudes, which is in good agreement with the well-regarded Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). We also estimated the global soil microbial carbon to be 21 Pg C, similar to the 23 Pg C estimated. We found that the microbial carbon quantity in the latitudinal direction showed reversions at approximately 30°N, near the equator and at 25°S. A sensitivity analysis suggested that the tundra ecosystem exhibited the highest sensitivity to a 1°C increase or decrease in temperature in terms of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and mineral-associated organic carbon (MOC). Furthermore, our work represents the first step towards a new generation of ecosystem process models capable of integrating key microbial processes into soil carbon cycles.« less

  6. Cryo-EM structure of a herpesvirus capsid at 3.1 Å.

    PubMed

    Yuan, Shuai; Wang, Jialing; Zhu, Dongjie; Wang, Nan; Gao, Qiang; Chen, Wenyuan; Tang, Hao; Wang, Junzhi; Zhang, Xinzheng; Liu, Hongrong; Rao, Zihe; Wang, Xiangxi

    2018-04-06

    Structurally and genetically, human herpesviruses are among the largest and most complex of viruses. Using cryo-electron microscopy (cryo-EM) with an optimized image reconstruction strategy, we report the herpes simplex virus type 2 (HSV-2) capsid structure at 3.1 angstroms, which is built up of about 3000 proteins organized into three types of hexons (central, peripentonal, and edge), pentons, and triplexes. Both hexons and pentons contain the major capsid protein, VP5; hexons also contain a small capsid protein, VP26; and triplexes comprise VP23 and VP19C. Acting as core organizers, VP5 proteins form extensive intermolecular networks, involving multiple disulfide bonds (about 1500 in total) and noncovalent interactions, with VP26 proteins and triplexes that underpin capsid stability and assembly. Conformational adaptations of these proteins induced by their microenvironments lead to 46 different conformers that assemble into a massive quasisymmetric shell, exemplifying the structural and functional complexity of HSV. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Highly sensitive electrochemical assay for Nosema bombycis gene DNA PTP1 via conformational switch of DNA nanostructures regulated by H+ from LAMP.

    PubMed

    Zhao, Jianmin; Gao, Jiaxi; Zheng, Ting; Yang, Zhehan; Chai, Yaqin; Chen, Shihong; Yuan, Ruo; Xu, Wenju

    2018-05-30

    The portable and rapid detection of biomolecules via pH meters to monitor the concentration of hydrogen ions (H + ) from biological reactions (e.g. loop-mediated isothermal amplification, LAMP) has attracted research interest. However, this assay strategy suffered from inherent drawback of low sensitivity, resulting in great limitations in practical applications. Herein, a novel electrochemical biosensor was constructed for highly sensitive detection of Nosema bombycis gene DNA (PTP1) through transducing chemical stimuli H + from PTP1-based LAMP into electrochemical output signal of electroactive ferrocene (Fc). With use of target PTP1 as the template, the H + from LAMP induced the conformational switch of pH-responsive DNA nanostructures (DNA NSs, Fc-Sp@Ts) that was assembled by the hybridization of Fc-labeled signal probe (Fc-Sp) with DNA-based receptor (Ts). Due to the folding of Ts into stable triplex structure at decreased pH, the configuration change of Fc-Sp@Ts led to the releasing of Fc-Sp, which was subsequently immobilized in the electrode interface through the hybridization with the capture probe modified with -SH (SH-Cp), generating amplified electrochemical signal from Fc. The developed biosensor for PTP1 exhibited a reliable linear range of 1 fg µL -1 to 50 ng µL -1 with the limit of detection of 0.31 fg µL -1 . Thus, by the regulation of H + from LAMP reaction on DNA NSs allostery, this novel and simple transduction scheme would be interesting and promising to open up a novel analytical route for sensitive monitoring of different target DNAs in related disease diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Evaluation of non-extracted genital swabs for real-time HSV PCR.

    PubMed

    Miari, Victoria F; Wall, Gavin R; Clark, Duncan A

    2015-01-01

    Nucleic acid extraction of clinical samples is accepted as a key requirement in molecular diagnostics. At Barts Health NHS Trust, swabs taken from patients with clinical suspicion of HSV infection were routinely extracted on the Qiagen MDx BioRobot prior to testing with a real-time triplex PCR for HSV1, HSV2, and VZV. The aim of this study was to adapt an existing HSV1/HSV2/VZV real-time PCR by replacing VZV with phocine herpesvirus 1 (PhHV) as an internal control (IC) and evaluate whether this adapted assay required the nucleic acid extraction step for predominantly genital swabs. First 313 non-extracted and extracted swabs were tested in parallel with the existing triplex HSV1/HSV2/VZV real-time PCR. The second stage involved testing 176 non-extracted swabs using a triplex real-time PCR for HSV1, HSV2, and PhHV and comparing the results with the samples extracted and tested by the original triplex assay. The results correlated well when the existing assay was used, with only three non-extracted samples that would have been reported as negative compared to the extracted sample result (Cq s 33, 39, 35-two samples HSV1, one sample HSV2). In the evaluation using the adapted assay containing the IC, two of 176 samples were discordant, where a HSV negative non-extracted sample result would have been reported differently to the extracted sample result (Cq s 32, 33-both HSV1). This study demonstrated that it is feasible to test non-extracted swabs for HSV in a real-time PCR that includes an IC. J. Med. Virol. 87: 125-129, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  9. [Preimplantation genetic diagnosis of Duchenne muscular dystrophy by single cell triplex PCR].

    PubMed

    Wu, Yue-Li; Wu, Ling-Qian; Li, Yan-Ping; Liu, Dong-E; Zeng, Qiao; Zhu, Hai-Yan; Pan, Qian; Liang, De-Sheng; Hu, Hao; Long, Zhi-Gao; Li, Juan; Dai, He-Ping; Xia, Kun; Xia, Jia-Hui

    2007-04-01

    To detect two exons of Duchenne muscular dystrophy (DMD) gene and a gender discrimination locus amelogenin gene by single cell triplex PCR, and to evaluate the possibility of this technique for preimplantation genetic diagnosis (PGD) in DMD family with DMD deletion mutation. Single lymphocytes from a normal male, a normal female, two DMD patients (exon 8 and 47 deleted, respectively) and single blastomeres from the couples treated by the in vitro fertilization pre-embryo transfer (IVF-ET) and without family history of DMD were obtained. Exons 8 and 47 of DMD gene were amplified by a triplex PCR assay, the amelogenin gene on X and Y chromosomes were co-amplified to analyze the correlation between embryo gender and deletion status. In the normal single lymphocytes, the amplification rate of exons 8 and 47 of DMD and amelogenin gene were 93.8%, 93.8%, and 95.3% respectively. The false positive rate was 3.3%. In the exon 8 deleted DMD patient, the amplification rate of exon 47 of DMD and amelogenin gene was 95.8%, and the false positive rate was 3.3%. In the exon 47 deleted DMD patient, the amplification rate of exon 8 of DMD and amelogenin gene was 95.8%, and the false positive rate was 0. In the single blastomeres, the amplification rate of exons 8 and 47 of DMD and amelogenin gene was 82.5%, 80.0% and 77.5%, respectively, and the false positive rate was 0. The single cell triplex PCR protocol for the detection of DMD and amelogenin gene is highly sensitive, specific and reliable, and can be used for PGD in those DMD families with DMD deletion mutation.

  10. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches.

    PubMed

    Idili, Andrea; Plaxco, Kevin W; Vallée-Bélisle, Alexis; Ricci, Francesco

    2013-12-23

    Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.

  11. Description and theory of operation of the computer by-pass system for the NASA F-8 digital fly-by-wire control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A triplex digital flight control system was installed in a NASA F-8C airplane to provide fail operate, full authority control. The triplex digital computers and interface circuitry process the pilot commands and aircraft motion feedback parameters according to the selected control laws, and they output the surface commands as an analog signal to the servoelectronics for position control of the aircraft's power actuators. The system and theory of operation of the computer by pass and servoelectronics are described and an automated ground test for each axis is included.

  12. Design and construction of a VHGT-attached WDM-type triplex transceiver module using polymer PLC hybrid integration technology

    NASA Astrophysics Data System (ADS)

    Jerábek, Vitezslav; Hüttel, Ivan; Prajzler, Václav; Busek, K.; Seliger, P.

    2008-11-01

    We report about design and construction of the bidirectional transceiver TRx module for subscriber part of the passive optical network PON for a fiber to the home FTTH topology. The TRx module consists of a epoxy novolak resin polymer planar lightwave circuit (PLC) hybrid integration technology with volume holographic grating triplex filter VHGT, surface-illuminated photodetectors and spot-size converted Fabry-Pérot laser diode in SMD package. The hybrid PLC has composed from a two parts-polymer optical waveguide including VHGT filter section and a optoelectronic microwave section. The both parts are placed on the composite substrate.

  13. Click nucleic acid ligation: applications in biology and nanotechnology.

    PubMed

    El-Sagheer, Afaf H; Brown, Tom

    2012-08-21

    Biochemical strategies that use a combination of synthetic oligonucleotides, thermostable DNA polymerases, and DNA ligases can produce large DNA constructs up to 1 megabase in length. Although these ambitious targets are feasible biochemically, comparable technologies for the chemical synthesis of long DNA strands lag far behind. The best available chemical approach is the solid-phase phosphoramidite method, which can be used to assemble DNA strands up to 150 bases in length. Beyond this point, deficiencies in the chemistry make it impossible to produce pure DNA. A possible alternative approach to the chemical synthesis of large DNA strands is to join together carefully purified synthetic oligonucleotides by chemical methods. Click ligation by the copper-catalyzed azide-alkyne (CuAAC) reaction could facilitate this process. In this Account, we describe the synthesis, characterization, and applications of oligonucleotides prepared by click ligation. The alkyne and azide oligonucleotide strands can be prepared by standard protocols, and the ligation reaction is compatible with a wide range of chemical modifications to DNA and RNA. We have employed click ligation to synthesize DNA constructs up to 300 bases in length and much longer sequences are feasible. When the resulting triazole linkage is placed in a PCR template, various DNA polymerases correctly copy the entire base sequence. We have also successfully demonstrated both in vitro transcription and rolling circle amplification through the modified linkage. This linkage has shown in vivo biocompatibility: an antibiotic resistance gene containing triazole linkages functions in E. coli . Using click ligation, we have synthesized hairpin ribozymes up to 100 nucleotides in length and a hammerhead ribozyme with the triazole linkage located at the substrate cleavage site. At the opposite end of the length scale, click-ligated, cyclic mini-DNA duplexes have been used as models to study base pairing. Cyclic duplexes have potential therapeutic applications. They have extremely high thermodynamic stability, have increased resistance to enzymatic degradation, and have been investigated as decoys for regulatory proteins. For potential nanotechnology applications, we have synthesized double stranded DNA catenanes by click ligation. Other researchers have studied covalently fixed multistranded DNA constructs including triplexes and quadruplexes.

  14. X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues

    DOE PAGES

    Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan; ...

    2016-06-02

    We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less

  15. A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification of 'Candidatus Phytoplasma prunorum'

    PubMed Central

    Minguzzi, Stefano; Terlizzi, Federica; Lanzoni, Chiara; Poggi Pollini, Carlo; Ratti, Claudio

    2016-01-01

    Many efforts have been made to develop a rapid and sensitive method for phytoplasma and virus detection. Taking our cue from previous works, different rapid sample preparation methods have been tested and applied to Candidatus Phytoplasma prunorum (‘Ca. P. prunorum’) detection by RT-qPCR. A duplex RT-qPCR has been optimized using the crude sap as a template to simultaneously amplify a fragment of 16S rRNA of the pathogen and 18S rRNA of the host plant. The specific plant 18S rRNA internal control allows comparison and relative quantification of samples. A comparison between DNA and RNA contribution to qPCR detection is provided, showing higher contribution of the latter. The method presented here has been validated on more than a hundred samples of apricot, plum and peach trees. Since 2013, this method has been successfully applied to monitor ‘Ca. P. prunorum’ infections in field and nursery. A triplex RT-qPCR assay has also been optimized to simultaneously detect ‘Ca. P. prunorum’ and Plum pox virus (PPV) in Prunus. PMID:26742106

  16. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei.

    PubMed

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta; Schmitt, Eberhard; Hausmann, Michael

    2016-07-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes) or TINA-DNA (Twisted Intercalating Nucleic Acids). Gene targets can be specifically labelled with at least about 20 probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3d-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. Copyright © 2016. Published by Elsevier Inc.

  17. Molecular mechanisms of long noncoding RNAs on gastric cancer

    PubMed Central

    Li, Tianwen; Mo, Xiaoyan; Fu, Liyun; Xiao, Bingxiu; Guo, Junming

    2016-01-01

    Long noncoding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. Aberrant expression of lncRNAs has been found associated with gastric cancer, one of the most malignant tumors. By complementary base pairing with mRNAs or forming complexes with RNA binding proteins (RBPs), some lncRNAs including GHET1, MALAT1, and TINCR may mediate mRNA stability and splicing. Other lncRNAs, such as BC032469, GAPLINC, and HOTAIR, participate in the competing endogenous RNA (ceRNA) network. Under certain circumstances, ANRIL, GACAT3, H19, MEG3, and TUSC7 exhibit their biological roles by associating with microRNAs (miRNAs). By recruiting histone-modifying complexes, ANRIL, FENDRR, H19, HOTAIR, MALAT1, and PVT1 may inhibit the transcription of target genes in cis or trans. Through these mechanisms, lncRNAs form RNA-dsDNA triplex. CCAT1, GAPLINC, GAS5, H19, MEG3, and TUSC7 play oncogenic or tumor suppressor roles by correlated with tumor suppressor P53 or onco-protein c-Myc, respectively. In conclusion, interaction with DNA, RNA and proteins is involved in lncRNAs’ participation in gastric tumorigenesis and development. PMID:26788991

  18. X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasar, Selcuk; Schimelman, Jacob B.; Aksoyoglu, M. Alphan

    We report that observed in the folds of guanine-rich oligonucleotides, non-canonical G-quadruplex structures are based on G-quartets formed by hydrogen bonding and cation-coordination of guanosines. In dilute 5'-guanosine monophosphate (GMP) solutions, G-quartets form by the self-assembly of four GMP nucleotides. We use x-ray diffraction to characterize the columnar liquid-crystalline mesophases in concentrated solutions of various model G-quadruplexes. We then probe the transitions between mesophases by varying the PEG solution osmotic pressure, thus mimicking in vivo molecular crowding conditions. Using the GMP-quadruplex, built by the stacking of G-quartets with no covalent linking between them, as the baseline, we report the liquid-crystallinemore » phase behaviors of two other related G-quadruplexes: (i) the intramolecular parallel-stranded G-quadruplex formed by the 22-mer four-repeat human telomeric sequence AG 3 (TTAG 3) 3 and (ii) the intermolecular parallel-stranded G-quadruplex formed by the TG(4)T oligonucleotides. Finally, we compare the mesophases of the G-quadruplexes, under PEG-induced crowding conditions, with the corresponding mesophases of the canonical duplex and triplex DNA analogues.« less

  19. Folding and Unfolding Pathways of the Human Telomeric G-Quadruplex

    PubMed Central

    Gray, Robert D.; Trent, John O.; Chaires, Jonathan B.

    2014-01-01

    Sequence analogues of human telomeric DNA such as d[AGGG(TTAGGG)3] (Tel22) fold into monomeric quadruplex structures in the presence of a suitable cation. To investigate the pathway for unimolecular quadruplex formation, we monitored the kinetics of K+-induced folding of Tel22 by circular dichroism (CD), intrinsic 2-aminopurine fluorescence, and fluorescence resonance energy transfer (FRET). The results are consistent with a four-step pathway U ↔ I1 ↔ I2 ↔ I3 ↔ F where U and F represent unfolded and folded conformational ensembles, and I1, I2, and I3 are intermediates. Previous kinetic studies have shown that I1 is formed in a rapid pre-equilibrium and may consist of an ensemble of “prefolded” hairpin structures brought about by cation-induced electrostatic collapse of the DNA. The current study shows that I1 converts to I2 with a relaxation time τ1 = 0.1 s at 25 °C in 25 mM KCl. The CD spectrum of I2 is characteristic of an antiparallel quadruplex that could form as a result of intra-molecular fold-over of the I1 hairpins. I3 is relatively slowly formed (τ2 ≈ 3700 s) and has CD and FRET properties consistent with those expected of a triplex structure as previously observed in equilibrium melting studies. I3 converts to F with τ3 ≈ 750 s. Identical pathways with different kinetic constants involving a rapidly formed antiparallel intermediate were observed with oligonucleotides forming mixed parallel/antiparallel hybrid-1 and hybrid-2 topologies (e.g. d[TTGGG(TTAGGG)3A and d[TAGGG(TTAGGG)3TT]). Aspects of the kinetics of unfolding were also monitored by the spectroscopic methods listed above and by time-resolved fluorescence lifetime measurements using a complementary strand trap assay. These experiments reveal a slow, rate-limiting step along the unfolding pathway. PMID:24487181

  20. Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit.

    PubMed

    Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping

    2006-05-29

    Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.

  1. Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit

    NASA Astrophysics Data System (ADS)

    Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping

    2006-05-01

    Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.

  2. An on-chip silicon compact triplexer based on cascaded tilted multimode interference couplers

    NASA Astrophysics Data System (ADS)

    Chen, Jingye; Liu, Penghao; Shi, Yaocheng

    2018-03-01

    An on-chip triplexer based on cascaded tilted multimode interference (MMI) couplers has been demonstrated to separate the 1310 nm wavelength band into one port and 1490 nm and 1550 nm wavelength bands into the other two ports respectively. By utilizing the dispersive self-imaging and pseudo self-imaging, the device length is not critically determined by the common multiple of beat lengths for different wavelengths. The total device size can be reduced to ∼450 μm, which is half of the butterfly structure reported. The whole device, fabricated with only one fully-etching step, is characterized with <-15 dB low crosstalk (CT) and ∼1 dB insertion loss (IL).

  3. Multispectroscopic and Theoretical Exploration of the Comparative Binding Aspects of Bioflavonoid Fisetin with Triple- and Double-Helical Forms of RNA.

    PubMed

    Bhuiya, Sutanwi; Haque, Lucy; Goswami, Rapti; Das, Suman

    2017-12-14

    The interactions of RNA triplex (U.A*U) and duplex (A.U) with naturally occurring flavonoid fisetin (FTN) have been examined at pH 7.0 using various spectroscopic, viscometric, and theoretical studies. Experimental observations showed that the ligand binds with both double- and triple-helical forms of RNA, although the binding affinity is greater for the triplex structure (5.94 × 10 6 M -1 ) compared to that for the duplex counterpart (1.0 × 10 5 M -1 ). Thermal melting experiments revealed that the Hoogsteen base-paired third strand of triplex was stabilized to a greater extent (∼14 °C) compared with the Watson-Crick base-paired second strand (∼4 °C) in the presence of FTN. From fluorimetric study, we observed that U.A*U and A.U primarily bind to the photoproduced tautomer of FTN in the excited state. Steady-state and time-resolved anisotropy measurements illustrate considerable modulations of the spectroscopic properties of the tautomeric FTN within the RNA environment. Viscometric, fluorescence quenching, and thermal melting studies all together support the mode of binding to be intercalation. Theoretical study explains the experimental absorption and emission (dual fluorescence) behavior of FTN along with the excited-state intramolecular proton transfer process.

  4. Simultaneous detection of Zika, Chikungunya and Dengue viruses by a multiplex real-time RT-PCR assay.

    PubMed

    Pabbaraju, Kanti; Wong, Sallene; Gill, Kara; Fonseca, Kevin; Tipples, Graham A; Tellier, Raymond

    2016-10-01

    In the recent past, arboviruses such as Chikungunya (CHIKV) and Zika (ZIKV) have increased their area of endemicity and presented as an emerging global public health threat. To design an assay for the simultaneous detection of ZIKV, CHIKV and Dengue (DENV) 1-4 from patients with symptoms of arboviral infection. This would be advantageous because of the similar clinical presentation typically encountered with these viruses and their co-circulation in endemic areas. In this study we have developed and validated a triplex real time reverse transcription PCR assay using hydrolysis probes targeting the non-structural 5 (NS5) region of ZIKV, non-structural protein 4 (nsP4) from CHIKV and 3' untranslated region (3'UTR) of DENV 1-4. The 95% LOD by the triplex assay was 15 copies/reaction for DENV-1 and less than 10 copies/reaction for all other viruses. The triplex assay was 100% specific and did not amplify any of the other viruses tested. The assay was reproducible and adaptable to testing different specimen types including serum, plasma, urine, placental tissue, brain tissue and amniotic fluid. This assay can be easily implemented for diagnostic testing of patient samples, even in a high throughput laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A Multiplex Real-Time PCR Assay to Diagnose and Separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae) in the New World

    PubMed Central

    Gilligan, Todd M.; Tembrock, Luke R.; Farris, Roxanne E.; Barr, Norman B.; van der Straten, Marja J.; van de Vossenberg, Bart T. L. H.; Metz-Verschure, Eveline

    2015-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult—adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae. PMID:26558366

  6. A Multiplex Real-Time PCR Assay to Diagnose and Separate Helicoverpa armigera and H. zea (Lepidoptera: Noctuidae) in the New World.

    PubMed

    Gilligan, Todd M; Tembrock, Luke R; Farris, Roxanne E; Barr, Norman B; van der Straten, Marja J; van de Vossenberg, Bart T L H; Metz-Verschure, Eveline

    2015-01-01

    The Old World bollworm, Helicoverpa armigera (Hübner), and the corn earworm, H. zea (Boddie), are two of the most important agricultural pests in the world. Diagnosing these two species is difficult-adults can only be separated with a complex dissection, and larvae cannot be identified to species using morphology, necessitating the use of geographic origin for identification in most instances. With the discovery of H. armigera in the New World, identification of immature Helicoverpa based on origin is no longer possible because H. zea also occurs in all of the geographic regions where H. armigera has been discovered. DNA barcoding and restriction fragment length polymorphism (RFLP) analyses have been reported in publications to distinguish these species, but these methods both require post-PCR processing (i.e., DNA sequencing or restriction digestion) to complete. We report the first real-time PCR assay to distinguish these pests based on two hydrolysis probes that bind to a segment of the internal transcribed spacer region 2 (ITS2) amplified using a single primer pair. One probe targets H. armigera, the second probe targets H. zea, and a third probe that targets a conserved segment of 18S rDNA is used as a control of DNA quality. The assay can be completed in 50 minutes when using isolated DNA and is successfully tested on larvae intercepted at ports of entry and adults captured during domestic surveys. We demonstrate that the assay can be run in triplex with no negative effects on sensitivity, can be run using alternative real-time PCR reagents and instruments, and does not cross react with other New World Heliothinae.

  7. Design of molecular beacons as signaling probes for adenosine triphosphate detection in cancer cells based on chemiluminescence resonance energy transfer.

    PubMed

    Zhang, Shusheng; Yan, Yameng; Bi, Sai

    2009-11-01

    In the present study, binary and triplex DNA molecular beacons, as signaling probes based on a luminol-H(2)O(2)-horseradish peroxidase (HRP)-fluorescein chemiluminescence resonance energy transfer (CRET) system and structure-switching aptamers for highly sensitive detection of small molecules, are developed using adenosine triphosphate (ATP) as a model analyte to demonstrate the generality of the strategy. This CRET process occurs from donor luminol to acceptor fluorescein, which is oxidized by H(2)O(2) and catalyzed by HRP. DNA aptamer for ATP is first attached on the surface of magnetic nanoparticles (MNPs). The cDNA linker has an extension that hybridizes with two other DNAs (LumAuNP-DNA and F-DNA) or three other DNAs (HRP-DNA, LumAuNP-DNA, and F-DNA) to fabricate CRET-BMBP-MNP or CRET-TMBP-MNP conjugates that provide the CRET signals. Thus, in the absence of ATP, when the MNPs are removed from the solution, they also take with them the linker DNA and the CRET signal probes, and no CRET signal can be detected. However, when ATP is introduced, a competition for the ATP aptamer between ATP and the cDNA linker occurs. As a result, CRET-BMBP and CRET-TMBP are forced to dissociate from the MNP surface based on the structure switching of the aptamer. The CRET signals are proportional to the concentration of ATP. In order to accelerate the rate of the aptamer structure-switching process, an invader DNA is introduced into the proposed strategy. The present CRET system provides a low detection limit of 1.1 x 10(-7) and 3.2 x 10(-7) M for ATP detection by BMBP and TMBP, respectively, which also exhibits a good selectivity for ATP detection. Sample assays of ATP in K562 leukemia cells and 4T1 breast cancer cells confirm the reliability and practicality of the protocol, which reveal a good prospect of this platform for biological sample analysis.

  8. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts.

    PubMed

    Noda, S; Kitade, O; Inoue, T; Kawai, M; Kanuka, M; Hiroshima, K; Hongoh, Y; Constantino, R; Uys, V; Zhong, J; Kudo, T; Ohkuma, M

    2007-03-01

    A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms -- termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut.

  9. Linear and circular dichroism characterization of thionine binding mode with DNA polynucleotides

    NASA Astrophysics Data System (ADS)

    Tuite, Eimer Mary; Nordén, Bengt

    2018-01-01

    The binding mode of thionine (3,7-diamino-5-phenothiazinium) with alternating and non-alternating DNA polynucleotides at low binding ratios was conclusively determined using linear and circular dichroism spectroscopies. The binding to [poly(dG-dC)]2 and poly(dG)·poly(dC) was purely intercalative and was insensitive to ionic strength. Intercalative binding to [poly(dA-dT)]2 is observed at low ionic strength, but a shift of some dye to an non-intercalative mode is observed as the background salt concentration increases. With poly(dA)·poly(dT), intercalative binding is unfavourable, although some dye molecules may intercalate at low ionic strength, and groove binding is strongly promoted with increasing concentration of background salt. However, stacking with bases is observed with single-stranded poly(dA) and with triplex poly(dT)*poly(dA)·poly(dT) which suggests that the unusual structure of poly(dA)·poly(dT) precludes intercalation. Thionine behaves similarly to the related dye methylene blue, and small differences may be attributed either to the ability of thionine to form H-bonds that stabilize intercalation or to its improved stacking interactions in the basepair pocket on steric grounds.

  10. Validation of the SHOX2/PTGER4 DNA Methylation Marker Panel for Plasma-Based Discrimination between Patients with Malignant and Nonmalignant Lung Disease.

    PubMed

    Weiss, Gunter; Schlegel, Anne; Kottwitz, Denise; König, Thomas; Tetzner, Reimo

    2017-01-01

    Low-dose computed tomography (LDCT) is used for screening for lung cancer (LC) in high-risk patients in the United States. The definition of high risk and the impact of frequent false-positive results of low-dose computed tomography remains a challenge. DNA methylation biomarkers are valuable noninvasive diagnostic tools for cancer detection. This study reports on the evaluation of methylation markers in plasma DNA for LC detection and discrimination of malignant from nonmalignant lung disease. Circulating DNA was extracted from 3.5-mL plasma samples, treated with bisulfite using a commercially available kit, purified, and assayed by real-time polymerase chain reaction for assessment of DNA methylation of short stature homeobox 2 gene (SHOX2), prostaglandin E receptor 4 gene (PTGER4), and forkhead box L2 gene (FOXL2). In three independent case-control studies these assays were evaluated and optimized. The resultant assay, a triplex polymerase chain reaction combining SHOX2, PTGER4, and the reference gene actin, beta gene (ACTB), was validated using plasma from patients with and without malignant disease. A panel of SHOX2 and PTGER4 provided promising results in three independent case-control studies examining a total of 330 plasma specimens (area under the receiver operating characteristic curve = 91%-98%). A validation study with 172 patient samples demonstrated significant discriminatory performance in distinguishing patients with LC from subjects without malignancy (area under the curve = 0.88). At a fixed specificity of 90%, sensitivity for LC was 67%; at a fixed sensitivity of 90%, specificity was 73%. Measurement of SHOX2 and PTGER4 methylation in plasma DNA allowed detection of LC and differentiation of nonmalignant diseases. Development of a diagnostic test based on this panel may provide clinical utility in combination with current imaging techniques to improve LC risk stratification. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. [Population data analysis of miniSTR loci: D10S1248, D14S1434 and D22S1045 in the Pomerania-Kujawy region of Poland].

    PubMed

    Kodroń, Agata; Rychlicka, Edyta; Milewska, Iwona; Woźniak, Marcin; Grzybowski, Tomasz

    2010-01-01

    This paper presents the allele frequencies and forensic parameters of the three miniSTR loci D10S1248, D14S1434 and D22S1045 in the Pomerania-Kujawy region of Poland. Genomic DNA was extracted by a standard phenol-chloroform extraction procedure. The three miniSTR loci D10S1248, D14S1434 and D22S1045 were amplified in a triplex polymerase chain reaction with the primer sets designed by Coble and Butler in a GeneAmp PCR System 9700 (Applied Biosystems). The amplified products were separated and detected by capillary electrophoresis on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems).The genotype frequency distributions showed no deviations from Hardy-Weinberg equilibrium expectations. The values of forensic parameters confirm that D10S1248 and D22S1045 are highly informative genetic markers, whereas D14S1434 is a moderately useful for forensic genetic identification purposes.

  12. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot

    NASA Technical Reports Server (NTRS)

    Su, L.; Chen, L.; Egli, M.; Berger, J. M.; Rich, A.

    1999-01-01

    Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 A crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson-Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.

  13. Probing the recognition surface of a DNA triplex: binding studies with intercalator-neomycin conjugates.

    PubMed

    Xue, Liang; Xi, Hongjuan; Kumar, Sunil; Gray, David; Davis, Erik; Hamilton, Paris; Skriba, Michael; Arya, Dev P

    2010-07-06

    Thermodynamic studies on the interactions between intercalator-neomycin conjugates and a DNA polynucleotide triplex [poly(dA).2poly(dT)] were conducted. To draw a complete picture of such interactions, naphthalene diimide-neomycin (3) and anthraquinone-neomycin (4) conjugates were synthesized and used together with two other analogues, previously synthesized pyrene-neomycin (1) and BQQ-neomycin (2) conjugates, in our investigations. A combination of experiments, including UV denaturation, circular dichroism (CD) titration, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC), revealed that all four conjugates (1-4) stabilized poly(dA).2poly(dT) much more than its parent compound, neomycin. UV melting experiments clearly showed that the temperature (T(m3-->2)) at which poly(dA).2poly(dT) dissociated into poly(dA).poly(dT) and poly(dT) increased dramatically (>12 degrees C) in the presence of intercalator-neomycin conjugates (1-4) even at a very low concentration (2 muM). In contrast to intercalator-neomycin conjugates, the increment of T(m3-->2) of poly(dA).2poly(dT) induced by neomycin was negligible under the same conditions. The binding preference of intercalator-neomycin conjugates (1-4) to poly(dA).2poly(dT) was also confirmed by competition dialysis and a fluorescent intercalator displacement assay. Circular dichroism titration studies revealed that compounds 1-4 had slightly larger binding site size ( approximately 7-7.5) with poly(dA).2poly(dT) as compared to neomycin ( approximately 6.5). The thermodynamic parameters of these intercalator-neomycin conjugates with poly(dA).2poly(dT) were derived from an integrated van't Hoff equation using the T(m3-->2) values, the binding site size numbers, and other parameters obtained from DSC and ITC. The binding affinity of all tested ligands with poly(dA).2poly(dT) increased in the following order: neomycin < 1 < 3 < 4 < 2. Among them, the binding constant [(2.7 +/- 0.3) x 10(8) M(-1)] of 2 with poly(dA).2poly(dT) was the highest, almost 1000-fold greater than that of neomycin. The binding of compounds 1-4 with poly(dA).2poly(dT) was mostly enthalpy-driven and gave negative DeltaC(p) values. The results described here suggest that the binding affinity of intercalator-neomycin conjugates for poly(dA).2poly(dT) increases as a function of the surface area of the intercalator moiety.

  14. Detection and characterization of recombinant DNA expressing vip3A-type insecticidal gene in GMOs--standard single, multiplex and construct-specific PCR assays.

    PubMed

    Singh, Chandra K; Ojha, Abhishek; Bhatanagar, Raj K; Kachru, Devendra N

    2008-01-01

    Vegetative insecticidal protein (Vip), a unique class of insecticidal protein, is now part of transgenic plants for conferring resistance against lepidopteron pests. In order to address the imminent regulatory need for detection and labeling of vip3A carrying genetically modified (GM) products, we have developed a standard single PCR and a multiplex PCR assay. As far as we are aware, this is the first report on PCR-based detection of a vip3A-type gene (vip-s) in transgenic cotton and tobacco. Our assay involves amplification of a 284-bp region of the vip-s gene. This assay can possibly detect as many as 20 natural wild-type isolates bearing a vip3A-like gene and two synthetic genes of vip3A in transgenic plants. The limit of detection as established by our assay for GM trait (vip-s) is 0.1%. Spiking with nontarget DNA originating from diverse plant sources had no inhibitory effect on vip-s detection. Since autoclaving of vip-s bearing GM leaf samples showed no deterioration/interference in detection efficacy, the assay seems to be suitable for processed food products as well. The vip-s amplicon identity was reconfirmed by restriction endonuclease assay. The primer set for vip-s was equally effective in a multiplex PCR assay format (duplex, triplex and quadruplex), used in conjunction with the primer sets for the npt-II selectable marker gene, Cauliflower mosaic virus 35S promoter and nopaline synthetase terminator, enabling concurrent detection of the transgene, regulatory sequences and marker gene. Further, the entire transgene construct was amplified using the forward primer of the promoter and the reverse primer of the terminator. The resultant amplicon served as a template for nested PCR to confirm the construct integrity. The method is suitable for screening any vip3A-carrying GM plant and food. The availability of a reliable PCR assay method prior to commercial release of vip3A-based transgenic crops and food would facilitate rapid and efficient regulatory compliance.

  15. Long non-coding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer

    PubMed Central

    Beaver, Laura M.; Kuintzle, Rachael; Buchanan, Alex; Wiley, Michelle W.; Glasser, Sarah T.; Wong, Carmen P.; Johnson, Gavin S.; Chang, Jeff H.; Löhr, Christiane V.; Williams, David E.; Dashwood, Roderick H.; Hendrix, David A.; Ho, Emily

    2017-01-01

    Long non-coding RNAs (lncRNAs) have emerged as important in cancer development and progression. The impact of diet on lncRNA expression is largely unknown. Sulforaphane (SFN), obtained from vegetables like broccoli, can prevent and suppress cancer formation. Here we tested the hypothesis that SFN attenuates the expression of cancer-associated lncRNAs. We analyzed whole genome RNA-sequencing data of normal human prostate epithelial cells and prostate cancer cells treated with 15 μM SFN or DMSO. SFN significantly altered expression of ~100 lncRNAs in each cell type, and normalized the expression of some lncRNAs that were differentially expressed in cancer cells. SFN-mediated alterations in lncRNA expression correlated with genes that regulate cell cycle, signal transduction, and metabolism. LINC01116 was functionally investigated because it was overexpressed in several cancers, and was transcriptionally repressed after SFN treatment. Knockdown of LINC01116 with siRNA decreased proliferation of prostate cancer cells, and significantly upregulated several genes including GAPDH (regulates glycolysis), MAP1LC3B2 (autophagy) and H2AFY (chromatin structure). A 4-fold decrease in the ability of the cancer cells to form colonies was found when the LINC01116 gene was disrupted through a CRISPR/CAS9 method, further supporting an oncogenic function for LINC01116 in PC-3 cells.. We identified a novel isoform of LINC01116 and bioinformatically investigated the possibility that LINC01116 could interact with target genes via ssRNA:dsDNA triplexes. Our data reveal that chemicals from the diet can influence the expression of functionally important lncRNAs, and suggest a novel mechanism by which SFN may prevent and suppress prostate cancer. PMID:28131897

  16. Long noncoding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer.

    PubMed

    Beaver, Laura M; Kuintzle, Rachael; Buchanan, Alex; Wiley, Michelle W; Glasser, Sarah T; Wong, Carmen P; Johnson, Gavin S; Chang, Jeff H; Löhr, Christiane V; Williams, David E; Dashwood, Roderick H; Hendrix, David A; Ho, Emily

    2017-04-01

    Long noncoding RNAs (lncRNAs) have emerged as important in cancer development and progression. The impact of diet on lncRNA expression is largely unknown. Sulforaphane (SFN), obtained from vegetables like broccoli, can prevent and suppress cancer formation. Here we tested the hypothesis that SFN attenuates the expression of cancer-associated lncRNAs. We analyzed whole-genome RNA-sequencing data of normal human prostate epithelial cells and prostate cancer cells treated with 15 μM SFN or dimethylsulfoxide. SFN significantly altered expression of ~100 lncRNAs in each cell type and normalized the expression of some lncRNAs that were differentially expressed in cancer cells. SFN-mediated alterations in lncRNA expression correlated with genes that regulate cell cycle, signal transduction and metabolism. LINC01116 was functionally investigated because it was overexpressed in several cancers, and was transcriptionally repressed after SFN treatment. Knockdown of LINC01116 with siRNA decreased proliferation of prostate cancer cells and significantly up-regulated several genes including GAPDH (regulates glycolysis), MAP1LC3B2 (autophagy) and H2AFY (chromatin structure). A four-fold decrease in the ability of the cancer cells to form colonies was found when the LINC01116 gene was disrupted through a CRISPR/CAS9 method, further supporting an oncogenic function for LINC01116 in PC-3 cells. We identified a novel isoform of LINC01116 and bioinformatically investigated the possibility that LINC01116 could interact with target genes via ssRNA:dsDNA triplexes. Our data reveal that chemicals from the diet can influence the expression of functionally important lncRNAs, and suggest a novel mechanism by which SFN may prevent and suppress prostate cancer. Published by Elsevier Inc.

  17. Self-organisation of an oligodeoxynucleotide containing the G- and C-rich stretches of the direct repeats of the human mitochondrial DNA.

    PubMed

    Nonin-Lecomte, Sylvie; Dardel, Frédéric; Lestienne, Patrick

    2005-08-01

    Stretches of cytosines and guanosines have been shown in vitro to adopt non-canonical structures known as i-motifs and G-quartets, respectively. When combined, such sequences are expected to either retain their structure or form duplexes or triple helices. All these structures may occur in vivo whenever the sequence criteria are met. Such stretches are present in the circular genome of human mitochondria, as two 10 nucleotide-long perfect tandem direct repeats (DR1 and DR2). The DR1 and DR2 repeats are G-rich on the heavy strand and C-rich on the light strand. Previous results suggested that during replication, transient formation of a parallel GGC triple helix between the neo-synthesised G-rich DR1 and the double-stranded homologous DR2 could be involved in a rearrangement process leading to genome instability. In order to get structural insights into the interaction between the two repeats, we have studied by nuclear magnetic resonance (NMR) the assembly properties of a 24-mer oligodeoxyribonucleotide in which the C- and G-rich segments of the DRs are covalently tethered by a TTTT linker. We show here that this 24-mer self-associates into a triplex-containing symmetrical tetramer. The core of the structure is composed of anti-parallel Watson-Crick (WC) base pairs. Two additional strands are hydrogen-bonded to the Hoogsteen side of the Gs, thus forming CGC(+) triple helices, with G-rich ends folding into G-quartets. These results suggest that such structures could occur when the two DRs are put to close proximity in a biological context.

  18. 29. SECOND FLOOR EAST SIDE APARTMENT EAST BEDROOM INTERIOR. ALUMINUMFRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SECOND FLOOR EAST SIDE APARTMENT EAST BEDROOM INTERIOR. ALUMINUM-FRAME SLIDING-GLASS WINDOWS ARE REPLACEMENTS. VIEW TO NORTHEAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  19. TriPleX: a versatile dielectric photonic platform

    NASA Astrophysics Data System (ADS)

    Wörhoff, Kerstin; Heideman, René G.; Leinse, Arne; Hoekman, Marcel

    2015-04-01

    Photonic applications based on planar waveguide technology impose stringent requirements on properties such as optical propagation losses, light coupling to optical fibers, integration density, as well as on reliability and reproducibility. The latter is correlated to a high level of control of the refractive index and waveguide geometry. In this paper, we review a versatile dielectric waveguide platform, called TriPleX, which is based on alternating silicon nitride and silicon dioxide films. Fabrication with CMOS-compatible equipment based on low-pressure chemical vapor deposition enables the realization of stable material compositions being a prerequisite to the control of waveguide properties and modal shape. The transparency window of both materials allows for the realization of low-loss waveguides over a wide wavelength range (400 nm-2.35 μm). Propagation losses as low as 5×10-4 dB/cm are reported. Three basic geometries (box shell, double stripe, and filled box) can be distinguished. A specific tapering technology is developed for on-chip, low-loss (<0.1 dB) spotsize convertors, allowing for combining efficient fiber to chip coupling with high-contrast waveguides required for increased functional complexity as well as for hybrid integration with other photonic platforms such as InP and SOI. The functionality of the TriPleX platform is captured by verified basic building blocks. The corresponding library and associated design kit is available for multi-project wafer (MPW) runs. Several applications of this platform technology in communications, biomedicine, sensing, as well as a few special fields of photonics are treated in more detail.

  20. 22. FIRST FLOOR APARTMENT SOUTH BEDROOM INTERIOR SHOWING PAIRED 6LIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. FIRST FLOOR APARTMENT SOUTH BEDROOM INTERIOR SHOWING PAIRED 6-LIGHT OVER 6-LIGHT DOUBLE-HUNG, WOOD-FRAMED WINDOWS. VIEW TO SOUTH. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  1. How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles

    PubMed Central

    Hou, Sen; Trochimczyk, Piotr; Sun, Lili; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Zhang, Xuzhu; Wielgus-Kutrowska, Beata; Bzowska, Agnieszka; Holyst, Robert

    2016-01-01

    In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequisites for their formation using multiple techniques such as fluorescence correlation spectroscopy, dynamic light scattering, fluorescence analytical ultracentrifugation etc. In >25% PEG 6k solution, macromolecular crowding promotes the formation of DNA nanoparticles with dimensions of several hundreds of nanometers. The formation of DNA nanoparticles is a fast and reversible process. Both plasmid DNA (2686 bp) and double-stranded/single-stranded DNA fragment (66bp/nt) can form nanoparticles. We attribute the enhanced nanoparticle formation to the depletion effect of macromolecular crowding. This study presents our idea to enhance the formation of DNA nanoparticles by macromolecular crowding, providing the first step towards a final solution to efficient gene therapy. PMID:26903405

  2. How can macromolecular crowding inhibit biological reactions? The enhanced formation of DNA nanoparticles.

    PubMed

    Hou, Sen; Trochimczyk, Piotr; Sun, Lili; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Zhang, Xuzhu; Wielgus-Kutrowska, Beata; Bzowska, Agnieszka; Holyst, Robert

    2016-02-23

    In contrast to the already known effect that macromolecular crowding usually promotes biological reactions, solutions of PEG 6k at high concentrations stop the cleavage of DNA by HindIII enzyme, due to the formation of DNA nanoparticles. We characterized the DNA nanoparticles and probed the prerequisites for their formation using multiple techniques such as fluorescence correlation spectroscopy, dynamic light scattering, fluorescence analytical ultracentrifugation etc. In >25% PEG 6k solution, macromolecular crowding promotes the formation of DNA nanoparticles with dimensions of several hundreds of nanometers. The formation of DNA nanoparticles is a fast and reversible process. Both plasmid DNA (2686 bp) and double-stranded/single-stranded DNA fragment (66 bp/nt) can form nanoparticles. We attribute the enhanced nanoparticle formation to the depletion effect of macromolecular crowding. This study presents our idea to enhance the formation of DNA nanoparticles by macromolecular crowding, providing the first step towards a final solution to efficient gene therapy.

  3. Mycobacterium avium subsp. avium found in raptors exposed to infected domestic fowl.

    PubMed

    Kriz, Petr; Kaevska, Marija; Bartejsova, Iva; Pavlik, Ivo

    2013-09-01

    We report a case of a falcon breeding facility, where raptors (both diurnal and nocturnal) were raised in contact with domestic fowl (Gallus gallus f. domesticus) infected by Mycobacterium avium subsp. avium. Fecal and environmental samples from 20 raptors and four common ravens (Corvus corax) were collected. Mycobacterium a. avium DNA was detected in feces of four raptors (bald eagle [Haliaeetus leucocephalus], eagle owl [Bubo bubo], barn owl [Tyto alba], and little owl [Athene noctua]) using triplex quantitative real-time PCR. As both the flock of domestic fowl and one of the infected raptors had the same origin (zoological collection), they might have had a common source of colonization/infection. However, the detection of M. a. avium in feces of three other raptors may point at transmission of the agent between the birds in the facility. Contact of raptors with domestic fowl infected by M. a. avium may pose a risk for transmission of the infection for them; however, raptors from the falcon breeding facility seemed to be relatively resistant to the infection.

  4. Asymmetric triplex metallohelices with high and selective activity against cancer cells

    NASA Astrophysics Data System (ADS)

    Faulkner, Alan D.; Kaner, Rebecca A.; Abdallah, Qasem M. A.; Clarkson, Guy; Fox, David J.; Gurnani, Pratik; Howson, Suzanne E.; Phillips, Roger M.; Roper, David I.; Simpson, Daniel H.; Scott, Peter

    2014-09-01

    Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli.

  5. Molecular Differentiation of Treponema pallidum Subspecies in Skin Ulceration Clinically Suspected as Yaws in Vanuatu Using Real-Time Multiplex PCR and Serological Methods

    PubMed Central

    Chi, Kai-Hua; Danavall, Damien; Taleo, Fasihah; Pillay, Allan; Ye, Tun; Nachamkin, Eli; Kool, Jacob L.; Fegan, David; Asiedu, Kingsley; Vestergaard, Lasse S.; Ballard, Ronald C.; Chen, Cheng-Yen

    2015-01-01

    We developed a TaqMan-based real-time quadriplex polymerase chain reaction (PCR) to simultaneously detect Treponema pallidum subspecies pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum, the causative agents of venereal syphilis, yaws, and bejel, respectively. The PCR assay was applied to samples from skin ulcerations of clinically presumptive yaws cases among children on Tanna Island, Vanuatu. Another real-time triplex PCR was used to screen for the point mutations in the 23S rRNA genes that have previously been associated with azithromycin resistance in T. pallidum subsp. pallidum strains. Seropositivity by the classical syphilis serological tests was 35.5% among children with skin ulcerations clinically suspected with yaws, whereas the presence of T. pallidum subsp. pertenue DNA was only found in lesions from 15.5% of children. No evidence of T. pallidum subsp. pertenue infection, by either PCR or serology was found in ∼59% of cases indicating alternative causes of yaws-like lesions in this endemic area. PMID:25404075

  6. 15. FIRST FLOOR APARTMENT LIVING ROOM INTERIOR. OPEN DOORWAY AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. FIRST FLOOR APARTMENT LIVING ROOM INTERIOR. OPEN DOORWAY AT PHOTO CENTER OPENS TO KITCHEN. OPEN DOORWAY AT PHOTO LEFT OPENS TO BATHROOM. VIEW TO NORTHWEST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  7. Effects of a triplex mixture of Peganum harmala, Rhus coriaria, and Urtica dioica aqueous extracts on metabolic and histological parameters in diabetic rats.

    PubMed

    Abedi Gaballu, Fereydoon; Abedi Gaballu, Yousef; Moazenzade Khyavy, Omid; Mardomi, Alireza; Ghahremanzadeh, Kazem; Shokouhi, Behrooz; Mamandy, Himan

    2015-08-01

    Several therapeutic effects such as antioxidant and blood glucose-lowering activities have been reported for Peganum harmala L (Zygophyllaceae) (PH) seeds, Rhus coriaria L (Anacardiaceae) (RC) fruits, and Urtica dioica L (Urticaceae) (UD) leaves. This study investigates the effects of a triplex mixture (1:1:1) of these medicinal plants on metabolic and histological parameters in diabetic rats. Aqueous extracts of PH, RC and UD were administered as either monotherapy or in combination at a final dose of 200 mg/kg to alloxan-induced diabetic rats by daily gavage. Biochemical parameters including blood glucose, liver function-related enzymes, lipid profile, and creatinine were estimated by spectrophotometric methods. Tissues from the liver and kidney stained with hematoxylin/eosin were histologically examined. The results obtained from the exposure groups were compared to either healthy or diabetic control groups. Compared with the diabetic control rats, all aqueous extracts (ED50 = 11.5 ± 2.57 mg/ml) led to significant decreases in the levels of ALP (1.39-2.23-fold, p < 0.05), low-density lipoprotein cholesterol (LDL-C) (1.79-3.26-fold, p < 0.05), and blood glucose (1.27-4.16-fold, p < 0.05). The serum concentrations of TG was decreased only by treatment with UD and triplex mixture (1.25- and 1.20-fold, respectively, p < 0.05). Among the studied parameters, alanine aminotransferase (ALT), LDL-C, TG, and creatinine recovered to healthy control levels after 4 weeks of treatment with the extract mixture. This study showed that PH, RC, and UD extracts, especially their combination, had significant antidiabetic, hypolipidemic, and liver and renal damage recovering effects.

  8. Cost-effectiveness of additional blood screening tests in the Netherlands.

    PubMed

    Borkent-Raven, Barbara A; Janssen, Mart P; van der Poel, Cees L; Bonsel, Gouke J; van Hout, Ben A

    2012-03-01

    During the past decade, blood screening tests such as triplex nucleic acid amplification testing (NAT) and human T-cell lymphotropic virus type I or I (HTLV-I/II) antibody testing were added to existing serologic testing for hepatitis B virus (HBV), human immunodeficiency virus (HIV), and hepatitis C virus (HCV). In some low-prevalence regions these additional tests yielded disputable benefits that can be valuated by cost-effectiveness analyses (CEAs). CEAs are used to support decision making on implementation of medical technology. We present CEAs of selected additional screening tests that are not uniformly implemented in the EU. Cost-effectiveness was analyzed of: 1) HBV, HCV, and HIV triplex NAT in addition to serologic testing; 2) HTLV-I/II antibody test for all donors, for first-time donors only, and for pediatric recipients only; and 3) hepatitis A virus (HAV) for all donations. Disease progression of the studied viral infections was described in five Markov models. In the Netherlands, the incremental cost-effectiveness ratio (ICER) of triplex NAT is €5.20 million per quality-adjusted life-year (QALY) for testing minipools of six donation samples and €4.65 million/QALY for individual donation testing. The ICER for anti-HTLV-I/II is €45.2 million/QALY if testing all donations, €2.23 million/QALY if testing new donors only, and €27.0 million/QALY if testing blood products for pediatric patients only. The ICER of HAV NAT is €18.6 million/QALY. The resulting ICERs are very high, especially when compared to other health care interventions. Nevertheless, these screening tests are implemented in the Netherlands and elsewhere. Policy makers should reflect more explicit on the acceptability of costs and effects whenever additional blood screening tests are implemented. © 2011 American Association of Blood Banks.

  9. The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation

    PubMed Central

    Long, Quanxin; Yan, Ran; Hu, Jieli; Cai, Dawei; Kim, Elena S.; Zhang, Hu; Liu, Yuanjie

    2017-01-01

    Hepadnavirus covalently closed circular (ccc) DNA is the bona fide viral transcription template, which plays a pivotal role in viral infection and persistence. Upon infection, the non-replicative cccDNA is converted from the incoming and de novo synthesized viral genomic relaxed circular (rc) DNA, presumably through employment of the host cell’s DNA repair mechanisms in the nucleus. The conversion of rcDNA into cccDNA requires preparation of the extremities at the nick/gap regions of rcDNA for strand ligation. After screening 107 cellular DNA repair genes, we herein report that the cellular DNA ligase (LIG) 1 and 3 play a critical role in cccDNA formation. Ligase inhibitors or functional knock down/out of LIG1/3 significantly reduced cccDNA production in an in vitro cccDNA formation assay, and in cccDNA-producing cells without direct effect on viral core DNA replication. In addition, transcomplementation of LIG1/3 in the corresponding knock-out or knock-down cells was able to restore cccDNA formation. Furthermore, LIG4, a component in non-homologous end joining DNA repair apparatus, was found to be responsible for cccDNA formation from the viral double stranded linear (dsl) DNA, but not rcDNA. In conclusion, we demonstrate that hepadnaviruses utilize the whole spectrum of host DNA ligases for cccDNA formation, which sheds light on a coherent molecular pathway of cccDNA biosynthesis, as well as the development of novel antiviral strategies for treatment of hepatitis B. PMID:29287110

  10. 24. SECOND FLOOR EAST SIDE APARTMENT LIVING ROOM INTERIOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SECOND FLOOR EAST SIDE APARTMENT LIVING ROOM INTERIOR SHOWING DOORWAY INTO KITCHEN AT PHOTO CENTER LEFT AND OPEN DOORWAY INTO BATHROOM AT PHOTO RIGHT. VIEW TO SOUTHWEST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  11. 32. SECOND FLOOR WEST SIDE APARTMENT LIVING ROOM INTERIOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. SECOND FLOOR WEST SIDE APARTMENT LIVING ROOM INTERIOR SHOWING DOORWAY INTO KITCHEN AT PHOTO CENTER RIGHT, AND OPEN DOORWAY IN BATHROOM AT PHOTO LEFT. VIEW TO SOUTHWEST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  12. 37. SECOND FLOOR WEST SIDE APARTMENT EAST BEDROOM INTERIOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SECOND FLOOR WEST SIDE APARTMENT EAST BEDROOM INTERIOR SHOWING PAIRED 6-LIGHT OVER 6-LIGHT DOUBLE-HUNG, WOOD-FRAME WINDOWS ON NORTH WALL. VIEW TO NORTHEAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  13. Single step production of Cas9 mRNA for zygote injection.

    PubMed

    Redel, Bethany K; Beaton, Benjamin P; Spate, Lee D; Benne, Joshua A; Murphy, Stephanie L; O'Gorman, Chad W; Spate, Anna M; Prather, Randall S; Wells, Kevin D

    2018-03-01

    Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary. A sequence from the mMalat1 gene was cloned downstream of the IRES/Cas9 cassette described above. An mRNA concentration curve was constructed with either commercially available Cas9 mRNA or the IRES/ Cas9/triplex, by injection into porcine zygotes. Blastocysts were genotyped to determine if differences existed in the percent of embryos modified. The concentration curve identified differences due to concentration and RNA type injected. Single step production of Cas9 mRNA provides an alternative source of Cas9 for use in zygote injections.

  14. 16. FIRST FLOOR APARTMENT KITCHEN INTERIOR SHOWING OPEN DOORWAY TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. FIRST FLOOR APARTMENT KITCHEN INTERIOR SHOWING OPEN DOORWAY TO LIVING ROOM AND PAIRED 6-LIGHT OVER 6-LIGHT DOUBLE-HUNG, WOOD-FRAME WINDOWS OVER SINK. VIEW TO EAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  15. 12. INTERIOR OF COVERED WALKWAY BEHIND SECOND FLOOR APARTMENTS FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR OF COVERED WALKWAY BEHIND SECOND FLOOR APARTMENTS FROM OPPOSITE VIEW OF CA-XXX-11. DOOR AT PHOTO LEFT OPENS INTO THE KITCHEN OF THE WEST SIDE SECOND FLOOR APARTMENT. VIEW TO EAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  16. 34. SECOND FLOOR WEST SIDE APARTMENT KITCHEN INTERIOR. DOORWAY AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SECOND FLOOR WEST SIDE APARTMENT KITCHEN INTERIOR. DOORWAY AT PHOTO LEFT LEADS TO PANTRY. GROUP OF THREE 6-LIGHT WOOD-FRAME CASEMENT WINDOWS OPEN TO WALKWAY AT REAR OF BUILDING. VIEW TO SOUTH. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  17. 36. SECOND FLOOR WEST SIDE APARTMENT EAST BEDROOM INTERIOR. OPEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. SECOND FLOOR WEST SIDE APARTMENT EAST BEDROOM INTERIOR. OPEN DOORWAY AT PHOTO LEFT CENTER LEADS TO CLOSET, AND OPEN DOORWAY AT PHOTO RIGHT CENTER LEADS TO LIVING ROOM. VIEW TO SOUTH. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  18. 23. SECOND FLOOR EAST SIDE APARTMENT LIVING ROOM INTERIOR. PAIRED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SECOND FLOOR EAST SIDE APARTMENT LIVING ROOM INTERIOR. PAIRED 4-LIGHT OVER 1-LIGHT DOUBLE-HUNG, WOOD-FRAME WINDOWS FLANK ENTRY DOOR. DOORWAY AT PHOTO RIGHT OPENS TO KITCHEN. VIEW TO SOUTHEAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  19. 38. SECOND FLOOR WEST SIDE APARTMENT WEST BEDROOM INTERIOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. SECOND FLOOR WEST SIDE APARTMENT WEST BEDROOM INTERIOR SHOWING PAIRED 6-LIGHT OVER 6-LIGHT DOUBLE-HUNG, WOOD-FRAME WINDOWS ON WEST WALL AND OPEN DOORWAY TO LIVING ROOM. VIEW TO WEST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  20. 33. SECOND FLOOR WEST SIDE APARTMENT KITCHEN INTERIOR. 6LIGHT PANEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SECOND FLOOR WEST SIDE APARTMENT KITCHEN INTERIOR. 6-LIGHT PANEL DOOR AND 6-LIGHT CASEMENT WINDOW AT PHOTO CENTER AND PHOTO RIGHT RESPECTIVELY OPEN TO EXTERIOR STAIRWAY LANDING. VIEW TO WEST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  1. DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation.

    PubMed

    Nakama, Mina; Kawakami, Kei; Kajitani, Takuya; Urano, Takeshi; Murakami, Yota

    2012-03-01

    Certain noncoding RNAs (ncRNAs) implicated in the regulation of chromatin structure associate with chromatin. During the formation of RNAi-directed heterochromatin in fission yeast, ncRNAs transcribed from heterochromatin are thought to recruit the RNAi machinery to chromatin for the formation of heterochromatin; however, the molecular details of this association are not clear. Here, using RNA immunoprecipitation assay, we showed that the heterochromatic ncRNA was associated with chromatin via the formation of a DNA-RNA hybrid and bound to the RNA-induced transcriptional silencing (RITS) complex. The presence of DNA-RNA hybrid in the cell was also confirmed by immunofluorescence analysis using anti-DNA-RNA hybrid antibody. Over-expression and depletion of RNase H in vivo decreased and increased the amount of DNA-RNA hybrid formed, respectively, and both disturbed heterochromatin. Moreover, DNA-RNA hybrid was formed on, and over-expression of RNase H inhibited the formation of, artificial heterochromatin induced by tethering of RITS to mRNA. These results indicate that heterochromatic ncRNAs are retained on chromatin via the formation of DNA-RNA hybrids and provide a platform for the RNAi-directed heterochromatin assembly and suggest that DNA-RNA hybrid formation plays a role in chromatic ncRNA function. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  2. Triple Helix Formation in a Topologically Controlled DNA Nanosystem.

    PubMed

    Yamagata, Yutaro; Emura, Tomoko; Hidaka, Kumi; Sugiyama, Hiroshi; Endo, Masayuki

    2016-04-11

    In the present study, we demonstrate single-molecule imaging of triple helix formation in DNA nanostructures. The binding of the single-molecule third strand to double-stranded DNA in a DNA origami frame was examined using two different types of triplet base pairs. The target DNA strand and the third strand were incorporated into the DNA frame, and the binding of the third strand was controlled by the formation of Watson-Crick base pairing. Triple helix formation was monitored by observing the structural changes in the incorporated DNA strands. It was also examined using a photocaged third strand wherein the binding of the third strand was directly observed using high-speed atomic force microscopy during photoirradiation. We found that the binding of the third strand could be controlled by regulating duplex formation and the uncaging of the photocaged strands in the designed nanospace. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mechanism for CCC DNA synthesis in hepadnaviruses.

    PubMed

    Sohn, Ji A; Litwin, Samuel; Seeger, Christoph

    2009-11-30

    Hepadnavirus replication requires the synthesis of a covalently closed circular (CCC) DNA from the relaxed circular (RC) viral genome by an unknown mechanism. CCC DNA formation could require enzymatic activities of the viral reverse transcriptase (RT), or cellular DNA repair enzymes, or both. Physical mapping of the 5' and 3' ends of RC DNA and sequence analysis of CCC DNA revealed that CCC DNA synthesis requires the removal of the RT and an RNA oligomer from the 5' ends of minus and plus strand DNA, respectively, removal of sequences from the terminally redundant minus strand, completion of the less than full-length plus strand, and ligation of the ends. Two models have been proposed that could explain CCC DNA formation. The first (model 1) invokes a role for the RT to catalyze a cleavage-ligation reaction leading to the formation of a unit length minus strand in CCC DNA and a DNA repair reaction for the completion and ligation of plus strand DNA; the second (model 2) predicts that CCC DNA formation depends entirely on cellular DNA repair enzymes. To determine which mechanism is utilized, we developed cell lines expressing duck hepatitis B virus genomes carrying mutations permitting us to follow the fate of viral DNA sequences during their conversion from RC to CCC DNA. Our results demonstrated that the oligomer at the 5' end of minus strand DNA is completely or at least partially removed prior to CCC DNA synthesis. The results indicated that both RC DNA strands undergo DNA repair reactions carried out by the cellular DNA repair machinery as predicted by model 2. Thus, our study provided the basis for the identification of the cellular components required for CCC DNA formation.

  4. 30. SECOND FLOOR EAST SIDE APARTMENT WEST BEDROOM INTERIOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. SECOND FLOOR EAST SIDE APARTMENT WEST BEDROOM INTERIOR SHOWING PAIRED 6-LIGHT OVER 6-LIGHT DOUBLE-HUNG, WOOD-FRAME WINDOWS THROUGH NORTH WALL. ORIGINAL LOUVERED DOORS FRAME CLOSET AT PHOTO LEFT. VIEW TO NORTH. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  5. 9. EXTERIOR OF ENCLOSED PORTION OF SECOND FLOOR WEST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EXTERIOR OF ENCLOSED PORTION OF SECOND FLOOR WEST SIDE APARTMENT ENTRYWAY SHOWING STAIR LANDING AND OPEN FRONT DOOR FLANKED BY PAIRED 4-LIGHT OVER 4-LIGHT DOUBLE-HUNG, WOOD-FRAME WINDOWS. VIEW TO NORTHEAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  6. 20. FIRST FLOOR APARTMENT NORTH BEDROOM INTERIOR LOOKING THROUGH DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. FIRST FLOOR APARTMENT NORTH BEDROOM INTERIOR LOOKING THROUGH DOOR FROM LIVING ROOM. GROUP OF THREE 6-LIGHT OVER 6-LIGHT DOUBLE-HUNG, WOOD-FRAME WINDOWS AT PHOTO CENTER THROUGH NORTH (FRONT) WALL OF HOUSE. VIEW TO EAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  7. Fabrication of a TFF-Attached WDM-Type Triplex Transceiver Module Using Silica PLC Hybrid Integration Technology

    NASA Astrophysics Data System (ADS)

    Han, Young-Tak; Park, Yoon-Jung; Park, Sang-Ho; Shin, Jang-Uk; Lee, Chul-Wook; Ko, Hyunsung; Baek, Yongsoon; Park, Chul-Hee; Kwon, Yoon-Koo; Hwang, Wol-Yon; Oh, Kwang-Ryong; Sung, Heekyung

    2006-12-01

    An optical triplex transceiver (TRx) module, which consists of thin-film filter (TFF)-attached wavelength-division multiplexer (WDM) and photodiode (PD) carriers, has been fabricated using a silica planar lightwave circuit (PLC) hybrid integration technology. Two types of TFFs were attached to a diced sidewall of a silica-terraced PLC platform to realize the TFF-attached WDM. The PD carriers with a 45° mirror, on which receiving surface-illuminated PDs were bonded, were assembled with the PLC platform to form receiver (Rx) parts. As the main performances of the packaged TRx module, a very clear transmitter (Tx) eye pattern and minimum Rx sensitivity of -25.7 dBm were obtained under a 1.25-Gb/s Tx Rx operation for digital applications. For an analog Rx application, a module responsivity of about 0.8 A/W was achieved, and a second-order intermodulation distortion value of less than -70 dBc at an optical modulation index of 40% was obtained under a two-tone test of 400 and 450 MHz.

  8. Development of a 30-kA cable-in-conduit conductor for pulsed poloidal coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takashi, Y.; Dresner, L.; Kato, T.

    1983-05-01

    This paper describes design parameters of a 30-kA cable-in-conduit conductor (JF-30), and the test results of stability margin measured by using a triplex in a conduit. Cross sectional size of JF-30 is 35mm X 35 mm and 567 NbTi-Cu-CuNi strands are in a stainless steel conduit whose thickness is 2 mm. Void fraction is 33 % and the designed stability margin is 270 mJ/cc at 5 atm and 7 T. Stability test by a triplex showed a favorable margin, a few hundreds of mJ at 7 T even without helium flow. In addition, the stability was strongly increased when heliummore » flow up to 0.2 g/s was applied. At around 3 atm, the authors found that the stability margin was more than 2 J/cc which exceeded the present heater capacity. This resulted in an extension of current range, in which the sample is stable, up to 150 to 200 % when compared to the case without helium flow.« less

  9. Development and validation of duplex, triplex, and pentaplex real-time PCR screening assays for the detection of genetically modified organisms in food and feed.

    PubMed

    Huber, Ingrid; Block, Annette; Sebah, Daniela; Debode, Frédéric; Morisset, Dany; Grohmann, Lutz; Berben, Gilbert; Stebih, Dejan; Milavec, Mojca; Zel, Jana; Busch, Ulrich

    2013-10-30

    Worldwide, qualitative methods based on PCR are most commonly used as screening tools for genetically modified material in food and feed. However, the increasing number and diversity of genetically modified organisms (GMO) require effective methods for simultaneously detecting several genetic elements marking the presence of transgenic events. Herein we describe the development and validation of a pentaplex, as well as complementary triplex and duplex real-time PCR assays, for the detection of the most common screening elements found in commercialized GMOs: P-35S, T-nos, ctp2-cp4-epsps, bar, and pat. The use of these screening assays allows the coverage of many GMO events globally approved for commercialization. Each multiplex real-time PCR assay shows high specificity and sensitivity with an absolute limit of detection below 20 copies for the targeted sequences. We demonstrate by intra- and interlaboratory tests that the assays are robust as well as cost- and time-effective for GMO screening if applied in routine GMO analysis.

  10. Controlled assembly of artificial protein-protein complexes via DNA duplex formation.

    PubMed

    Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J

    2015-03-18

    DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.

  11. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine–purine inversion site of an RNA duplex

    PubMed Central

    Toh, Desiree-Faye Kaixin; Devi, Gitali; Patil, Kiran M.; Qu, Qiuyu; Maraswami, Manikantha; Xiao, Yunyun; Loh, Teck Peng; Zhao, Yanli; Chen, Gang

    2016-01-01

    RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson–Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent. PMID:27596599

  12. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus

    PubMed Central

    Qi, Yonghe; Gao, Zhenchao; Peng, Bo; Yan, Huan; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui

    2016-01-01

    Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV. PMID:27783675

  13. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus.

    PubMed

    Qi, Yonghe; Gao, Zhenchao; Xu, Guangwei; Peng, Bo; Liu, Chenxuan; Yan, Huan; Yao, Qiyan; Sun, Guoliang; Liu, Yang; Tang, Dingbin; Song, Zilin; He, Wenhui; Sun, Yinyan; Guo, Ju-Tao; Li, Wenhui

    2016-10-01

    Hepatitis B virus (HBV) infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP), followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc) DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc) DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s) that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s) responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK), a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV.

  14. Does Tyrosyl DNA Phosphodiesterase-2 Play a Role in Hepatitis B Virus Genome Repair?

    PubMed Central

    Boregowda, Rajeev; Sohn, Ji A.; Ledesma, Felipe Cortes; Caldecott, Keith W.; Seeger, Christoph; Hu, Jianming

    2015-01-01

    Hepatitis B virus (HBV) replication and persistence are sustained by a nuclear episome, the covalently closed circular (CCC) DNA, which serves as the transcriptional template for all viral RNAs. CCC DNA is converted from a relaxed circular (RC) DNA in the virion early during infection as well as from RC DNA in intracellular progeny nucleocapsids via an intracellular amplification pathway. Current antiviral therapies suppress viral replication but cannot eliminate CCC DNA. Thus, persistence of CCC DNA remains an obstacle toward curing chronic HBV infection. Unfortunately, very little is known about how CCC DNA is formed. CCC DNA formation requires removal of the virally encoded reverse transcriptase (RT) protein from the 5’ end of the minus strand of RC DNA. Tyrosyl DNA phosphodiesterase-2 (Tdp2) was recently identified as the enzyme responsible for cleavage of tyrosyl-5’ DNA linkages formed between topoisomerase II and cellular DNA. Because the RT-DNA linkage is also a 5’ DNA-phosphotyrosyl bond, it has been hypothesized that Tdp2 might be one of several elusive host factors required for CCC DNA formation. Therefore, we examined the role of Tdp2 in RC DNA deproteination and CCC DNA formation. We demonstrated Tdp2 can cleave the tyrosyl-minus strand DNA linkage using authentic HBV RC DNA isolated from nucleocapsids and using RT covalently linked to short minus strand DNA produced in vitro. On the other hand, our results showed that Tdp2 gene knockout did not block CCC DNA formation during HBV infection of permissive human hepatoma cells and did not prevent intracellular amplification of duck hepatitis B virus CCC DNA. These results indicate that although Tdp2 can remove the RT covalently linked to the 5’ end of the HBV minus strand DNA in vitro, this protein might not be required for CCC DNA formation in vivo. PMID:26079492

  15. Environmental Stress-Induced Bacterial Lysis and Extracellular DNA Release Contribute to Campylobacter jejuni Biofilm Formation.

    PubMed

    Feng, Jinsong; Ma, Lina; Nie, Jiatong; Konkel, Michael E; Lu, Xiaonan

    2018-03-01

    Campylobacter jejuni is a microaerophilic bacterium and is believed to persist in a biofilm to antagonize environmental stress. This study investigated the influence of environmental conditions on the formation of C. jejuni biofilm. We report an extracellular DNA (eDNA)-mediated mechanism of biofilm formation in response to aerobic and starvation stress. The eDNA was determined to represent a major form of constitutional material of C. jejuni biofilms and to be closely associated with bacterial lysis. Deletion mutation of the stress response genes spoT and recA enhanced the aerobic influence by stimulating lysis and increasing eDNA release. Flagella were also involved in biofilm formation but mainly contributed to attachment rather than induction of lysis. The addition of genomic DNA from either Campylobacter or Salmonella resulted in a concentration-dependent stimulation effect on biofilm formation, but the effect was not due to forming a precoating DNA layer. Enzymatic degradation of DNA by DNase I disrupted C. jejuni biofilm. In a dual-species biofilm, eDNA allocated Campylobacter and Salmonella at distinct spatial locations that protect Campylobacter from oxygen stress. Our findings demonstrated an essential role and multiple functions of eDNA in biofilm formation of C. jejuni , including facilitating initial attachment, establishing and maintaining biofilm, and allocating bacterial cells. IMPORTANCE Campylobacter jejuni is a major cause of foodborne illness worldwide. In the natural environment, the growth of C. jejuni is greatly inhibited by various forms of environmental stress, such as aerobic stress and starvation stress. Biofilm formation can facilitate the distribution of C. jejuni by enabling the survival of this fragile microorganism under unfavorable conditions. However, the mechanism of C. jejuni biofilm formation in response to environmental stress has been investigated only partially. The significance of our research is in identifying extracellular DNA released by bacterial lysis as a major form of constitution material that mediates the formation of C. jejuni biofilm in response to environmental stress, which enhances our understanding of the formation mechanism of C. jejuni biofilm. This knowledge can aid the development of intervention strategies to limit the distribution of C. jejuni . Copyright © 2018 American Society for Microbiology.

  16. Diet-related DNA adduct formation in relation to carcinogenesis.

    PubMed

    Hemeryck, Lieselot Y; Vanhaecke, Lynn

    2016-08-01

    The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Successful Validation of RNA Purification and Quantitative Real-Time PCR Analysis of Gene Expression on the International Space Station

    NASA Technical Reports Server (NTRS)

    Tran, L.; Parra, Macarena P.; Jung, J.; Boone, T.; Schonfeld, Julie; Almeida, Eduardo

    2017-01-01

    The NASA Ames WetLab-2 system was developed to offer new on-orbit gene expression analysis capabilities to ISS researchers and can be used to conduct on-orbit RNA isolation and quantitative real time PCR (RT-qPCR) analysis of gene expression from a wide range of biological samples ranging from microbes to mammalian tissues. On orbit validation included three quantitative PCR (qPCR) runs using an E. coli genomic DNA template pre-loaded at three different concentrations. The flight Ct values for the DNA standards showed no statistically significant differences relative to ground controls although there was increased noise in Ct curves, likely due to microgravity-related bubble retention in the optical windows. RNA was successfully purified from both E. coli and mouse liver samples and successfully generated singleplex, duplex and triplex data although with higher standard deviations than ground controls, also likely due to bubbles. Using volunteer science activities, a potential bubble reduction strategy was tested and resulted in smooth amplification curves and tighter Cts between replicates. The WetLab-2 validation experiment demonstrates a novel molecular biology workbench on ISS which allows scientists to purify and stabilize RNA, and to conduct RT-qPCR analyses on-orbit with rapid results. This novel ability is an important step towards utilizing ISS as a National Laboratory facility with the capability to conduct and adjust science experiments in real time without sample return, and opens new possibilities for rapid medical diagnostics and biological environmental monitoring on ISS.

  18. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part I: Isolation and lytic activity estimation of bacteriophages.

    PubMed

    Bicalho, R C; Santos, T M A; Gilbert, R O; Caixeta, L S; Teixeira, L M; Bicalho, M L S; Machado, V S

    2010-01-01

    The objective of this study was to isolate bacteriophages from environmental samples of 2 large commercial dairy farms using Escherichia coli isolated from the uteri of postpartum Holstein dairy cows as hosts. A total of 11 bacteriophage preparations were isolated from manure systems of commercial dairy farms and characterized for in vitro antimicrobial activity. In addition, a total of 57 E. coli uterine isolates from 5 dairy cows were phylogenetically grouped by triplex PCR. Each E. coli bacterial host from the uterus was inoculated with their respective bacteriophage preparation at several different multiplicities of infections (MOI) to determine minimum inhibitory MOI. The effect of a single dose (MOI=10(2)) of bacteriophage on the growth curve of all 57 E. coli isolates was assessed using a microplate technique. Furthermore, genetic diversity within and between the different bacteriophage preparations was assessed by bacteriophage purification followed by DNA extraction, restriction, and agarose gel electrophoresis. Phylogenetic grouping based on triplex PCR showed that all isolates of E. coli belonged to phylogroup B1. Bacterial growth was completely inhibited at considerably low MOI, and the effect of a single dose (MOI=10(2)) of bacteriophage preparations on the growth curve of all 57 E. coli isolates showed that all bacteriophage preparations significantly decreased the growth rate of the isolates. Bacteriophage preparation 1230-10 had the greatest antimicrobial activity and completely inhibited the growth of 71.7% (n=57) of the isolates. The combined action of bacteriophage preparations 1230-10, 6375-10, 2540-4, and 6547-2, each at MOI=10(2), had the broadest spectrum of action and completely inhibited the growth (final optical density at 600 nm

  19. In vitro study of DNA Adduct 8-OHdG Formation by using Bisphenol A in Calf Thymus DNA and 2’-Deoxyguanosine

    NASA Astrophysics Data System (ADS)

    Budiawan; Cahaya Dani, Intan; Bakri, Ridla; Handayani, Sri; Ratna Dewi, Evi

    2018-01-01

    The in vitro study of DNA Adduct 8-OHdG Formation due to BisphenolA (BPA) as xenobiotics has been conducted by using calf thymus DNA and 2’deoxyguanosine. The method of study was conducted by incubating calf thymus DNA and 2’dG with compounds trigger to radicals in the variation of pH (7.4 and 8.4), temperature (37°C and 60°C), and BPA concentrations (2 ppm and 10 ppm). To represent the work of CYP 450 enzyme in metabolic process of xenobiotics in the body and the effect of metal presence to the formation of radicals that can lead to 8-OHdG formation, we used iron(II) solution and also fenton reagent (Fe(II) and H2O2). The DNA used has 1.8 purity ratio (checked at λ260/λ280 by using Spectrophotometry UV-Vis). The results by using HPLC method showed that BPA could interact with DNA and DNA base (represent as calf thymus and 2’dG) and potentially induced 8-OHdG formation. The presence of iron(II) metal and Fenton reagent also induced the higher 8-OHdG formation. The higher of pH, temperature and concentrations also lead to 8-OHdG formation (ranger between 4 - 70 ppb).

  20. Influence of Calcium in Extracellular DNA Mediated Bacterial Aggregation and Biofilm Formation

    PubMed Central

    Koop, Leena; Wong, Yie Kuan; Ahmed, Safia; Siddiqui, Khawar Sohail; Manefield, Mike

    2014-01-01

    Calcium (Ca2+) has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA) being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG) values in iTC data confirmed that the interaction between DNA and Ca2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca2+ to eDNA thereby mediating bacterial aggregation and biofilm formation. PMID:24651318

  1. Myeloperoxidase-induced Genomic DNA-centered Radicals*

    PubMed Central

    Gomez-Mejiba, Sandra E.; Zhai, Zili; Gimenez, Maria S.; Ashby, Michael T.; Chilakapati, Jaya; Kitchin, Kirk; Mason, Ronald P.; Ramirez, Dario C.

    2010-01-01

    Myeloperoxidase (MPO) released by activated neutrophils can initiate and promote carcinogenesis. MPO produces hypochlorous acid (HOCl) that oxidizes the genomic DNA in inflammatory cells as well as in surrounding epithelial cells. DNA-centered radicals are early intermediates formed during DNA oxidation. Once formed, DNA-centered radicals decay by mechanisms that are not completely understood, producing a number of oxidation products that are studied as markers of DNA oxidation. In this study we employed the 5,5-dimethyl-1-pyrroline N-oxide-based immuno-spin trapping technique to investigate the MPO-triggered formation of DNA-centered radicals in inflammatory and epithelial cells and to test whether resveratrol blocks HOCl-induced DNA-centered radical formation in these cells. We found that HOCl added exogenously or generated intracellularly by MPO that has been taken up by the cell or by MPO newly synthesized produces DNA-centered radicals inside cells. We also found that resveratrol passed across cell membranes and scavenged HOCl before it reacted with the genomic DNA, thus blocking DNA-centered radical formation. Taken together our results indicate that the formation of DNA-centered radicals by intracellular MPO may be a useful point of therapeutic intervention in inflammation-induced carcinogenesis. PMID:20406811

  2. 31. SECOND FLOOR WEST SIDE APARTMENT LIVING ROOM INTERIOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SECOND FLOOR WEST SIDE APARTMENT LIVING ROOM INTERIOR SHOWING PAIRED 4-LIGHT OVER 4-LIGHT DOUBLE-HUNG, WOOD-FRAME WINDOWS FLANKING ENTRY DOOR WITH UNUSUAL 8-LIGHT WINDOW. OPEN DOORWAY TO PHOTO LEFT LEADS TO KITCHEN. VIEW TO WEST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  3. Role of the third strand in the binding of proflavine and pt-proflavine to poly(rA).2poly(rU): a thermodynamic and kinetic study.

    PubMed

    García, Begoña; Leal, José M; Paiotta, Vittorio; Ruiz, Rebeca; Secco, Fernando; Venturini, Marcella

    2008-06-12

    The interactions of triple strands of poly(rA).2poly(rU) with proflavine (PR) and the proflavine cis-platinum derivative [{PtCl (tmen)} 2{NC 13H 7(NCH 2CH 2) 2}] (+) (PRPt) are examined at pH 7.0, T = 25 degrees C, and 0.2 M ionic strength by spectrophotometry, spectrofluorometry, circular dichroism, viscosimetry, stopped-flow, and T-jump relaxation techniques. The melting experiments demonstrate that both drugs tend to destabilize the triplex structure, although the PRPt effect is more relevant. By contrast, both drugs tend to slightly stabilize the duplex structure. The viscosity and circular dichroism measurements show that, at a low dye-to-polymer ratio ( C D/ C P), the binding is intercalative, whereas at high C D/ C P values, the external binding dominates. The binding kinetics and equilibria have been investigated over the C D/ C P region, where intercalation is operative. Both drugs bind to the RNA triplex according to the excluded site model. With PR, two kinetic effects have been observed, whereas with PRPt, only one has been observed. The results are interpreted according to the reaction schemes D + S right arrow over left arrow DS I, with PRPt, and D + S right arrow over left arrow DS I right arrow over left arrow DS II, with PR. The electrostatic contribution to the formation activation energy for DS I is similar (40%) for both systems. The results suggest that DS I is a partially intercalated species. Absence of the second step with PRPt is put down to groove interaction of the Pt-containing moiety, which prevents the PR residue from further penetration through the base pairs to form the fully intercalated complex, DS II. Comparison with the binding of the same drugs to the duplex reveals that the occupation of the major groove in poly(rA).2poly(rU) by the third strand plays a critical role in the kinetic behavior.

  4. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis

    PubMed Central

    Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh

    2017-01-01

    ABSTRACT Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis. PMID:28674029

  5. Identification of an Intermediate in Hepatitis B Virus Covalently Closed Circular (CCC) DNA Formation and Sensitive and Selective CCC DNA Detection

    PubMed Central

    Luo, Jun; Cui, Xiuji; Gao, Lu

    2017-01-01

    ABSTRACT Hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multistep and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC DNA to CCC DNA conversion, two 3′ exonucleases, exonuclease I (Exo I) and Exo III, were used in combination to degrade all DNA strands with a free 3′ end, which would nevertheless preserve closed circular DNA in either single-stranded (SS) or double-stranded (DS) form. Indeed, an RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA [cM-RC DNA]) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5′ end of the plus strand in RC DNA, suggesting that minus-strand closing can occur before plus-strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and the factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA, by serving as the viral transcriptional template, is the molecular basis of viral persistence. CCC DNA is converted, in a multistep and ill-understood process, from relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC DNA to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. PMID:28637752

  6. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.

    PubMed

    Paini, Alicia; Scholz, Gabriele; Marin-Kuan, Maricel; Schilter, Benoît; O'Brien, John; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2011-09-01

    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.

  7. Study of DNA adduct 8 hydroxy-2’-deoxyguanosine (8-OHdG) formation through fenton reaction with tert-butylhydroquinone (TBHQ) and butyl hydroxy toluene (BHT)

    NASA Astrophysics Data System (ADS)

    Handayani, S.; Dani, I. C.; Budiawan; Pakuanisa, D.

    2017-05-01

    The research of DNA adduct formation 8-hydroxy-2’-Deoxyguanosine (8-OHdG) as a biomarker of DNA damage due to oxidative stress was carried out by reacting the DNA base 2’-deoxyguanosine-5’-monophosphate with TBHQ and BHT. The formationof 8-OHdG was carried out in various conditions, at temperature of 37° C and 60° C, pH 7.4 and pH 8.4, within 5 hours of incubation time and in the addition of FeSO4. The formation of DNA adducts profile were analyzed using reversed phase HPLC with UV detector at a wavelength of 254 nm. The results of the study showed that TBHQ and BHT can trigger the formation of 8-OHdG from the reaction of 2’-hydroxy Deoxyguanosine-5’-monophosphate in the presence of Fe (II). Meanwhile, in the addition of hydrogen peroxide, the formation of DNA adducts only occur in the test substance TBHQ. The results showed that the condition of higher temperature at 60°C and pH 8,4 affects the higher formation of DNA adducts.

  8. Chlorella virus DNA ligase: nick recognition and mutational analysis.

    PubMed

    Sriskanda, V; Shuman, S

    1998-01-15

    Chlorella virus PBCV-1 DNA ligase seals nicked DNA substrates consisting of a 5'-phosphate-terminated strand and a 3'-hydroxyl-terminated strand annealed to a bridging DNA template strand. The enzyme discriminates at the DNA binding step between substrates containing a 5'-phosphate versus a 5'-hydroxyl at the nick. Mutational analysis of the active site motif KxDGxR (residues 27-32) illuminates essential roles for the conserved Lys, Asp and Arg moieties at different steps of the ligase reaction. Mutant K27A is unable to form the covalent ligase-(Lys-straightepsilonN-P)-adenylate intermediate and hence cannot activate a nicked DNA substrate via formation of the DNA-adenylate intermediate. Nonetheless, K27A catalyzes phosphodiester bond formation at a pre-adenylated nick. This shows that the active site lysine is not required for the strand closure reaction. K27A binds to nicked DNA-adenylate, but not to a standard DNA nick. This suggests that occupancy of the AMP binding pocket of DNA ligase is important for nick recognition. Mutant D29A is active in enzyme-adenylate formation and binds readily to nicked DNA, but is inert in DNA-adenylate formation. R32A is unable to catalyze any of the three reactions of the ligation pathway and does not bind to nicked DNA.

  9. The Mitochondrial Transcription Factor TFAM Coordinates the Assembly of Multiple DNA Molecules into Nucleoid-like Structures

    PubMed Central

    Kaufman, Brett A.; Durisic, Nela; Mativetsky, Jeffrey M.; Costantino, Santiago; Hancock, Mark A.; Grutter, Peter

    2007-01-01

    Packaging DNA into condensed structures is integral to the transmission of genomes. The mammalian mitochondrial genome (mtDNA) is a high copy, maternally inherited genome in which mutations cause a variety of multisystem disorders. In all eukaryotic cells, multiple mtDNAs are packaged with protein into spheroid bodies called nucleoids, which are the fundamental units of mtDNA segregation. The mechanism of nucleoid formation, however, remains unknown. Here, we show that the mitochondrial transcription factor TFAM, an abundant and highly conserved High Mobility Group box protein, binds DNA cooperatively with nanomolar affinity as a homodimer and that it is capable of coordinating and fully compacting several DNA molecules together to form spheroid structures. We use noncontact atomic force microscopy, which achieves near cryo-electron microscope resolution, to reveal the structural details of protein–DNA compaction intermediates. The formation of these complexes involves the bending of the DNA backbone, and DNA loop formation, followed by the filling in of proximal available DNA sites until the DNA is compacted. These results indicate that TFAM alone is sufficient to organize mitochondrial chromatin and provide a mechanism for nucleoid formation. PMID:17581862

  10. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGES

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6 -alkylguaninemore » DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  11. Pre-Incubation of Auric Acid with DNA Is Unnecessary for the Formation of DNA-Templated Gold Nanoclusters.

    PubMed

    Chen, Yang; Tao, Guangyu; Lin, Ruoyun; Pei, Xiaojing; Liu, Feng; Li, Na

    2016-06-06

    The rationale for the preparation of DNA-templated gold nanoclusters (DNA-Au NCs) has not been well understood, thereby slowing down the advancement of the synthesis and applications of DNA-Au NCs. The interaction between metal ions and the DNA template seems to be the key factor for the successful preparation of DNA-templated metal nanoclusters. With the help of circular dichroism in this contribution, we put efforts into interrogating the necessity of pre-incubation of HAuCl4 with poly-adenine template in the formation of Au NCs by citrate reduction. Our results revealed that the pre-incubation of HAuCl4 with poly-adenine is not favorable for the formation of Au NCs, which is distinctly different from the formation process for silver nanoclusters. It is our hope that this study can provide guidance in the preparation of Au NCs with more DNA templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Identification of Intermediate in Hepatitis B Virus CCC DNA Formation and Sensitive and Selective CCC DNA Detection.

    PubMed

    Luo, Jun; Cui, Xiuji; Gao, Lu; Hu, Jianming

    2017-06-21

    The hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC to CCC DNA conversion, two 3' exonucleases Exo I and Exo III, in combination were used to degrade all DNA strands with a free 3' end, which would nevertheless preserve closed circular DNA, either single-stranded (SS) or double-stranded (DS). Indeed, a RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA or cM-RC DNA) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5' end of the plus strand in RC DNA, suggesting that minus strand closing can occur before plus strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the molecular basis of viral persistence, by serving as the viral transcriptional template. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. Copyright © 2017 American Society for Microbiology.

  13. Transferrin facilitates the formation of DNA double-strand breaks via transferrin receptor 1: the possible involvement of transferrin in carcinogenesis of high-grade serous ovarian cancer.

    PubMed

    Shigeta, S; Toyoshima, M; Kitatani, K; Ishibashi, M; Usui, T; Yaegashi, N

    2016-07-07

    Fallopian tubal epithelium is a candidate for the origin of high-grade serous ovarian cancer. Transferrin-containing follicular fluid and/or retrograde menstrual blood are possible risk factors for carcinogenesis. Accumulation of DNA double-strand breaks (DNA-DSBs) in the fallopian tubal epithelium is considered to play an important role in the development of cancer. However, the mechanisms by which DNA-DSBs accumulate have not yet been fully elucidated. The hydroxyl radical, which is produced in a Fenton reaction catalyzed by an iron ion, serves as a potent DNA-DSB-inducing molecule, raising the potential of an iron ion transporter of transferrin in the formation of DNA-DSBs. We studied the potential involvement of transferrin in DNA damage and the development of ovarian cancer. Treatment with transferrin facilitated the formation of histone 2AX phosphorylated at Serine 139 (γH2AX), which is known as a DNA-DSB marker, in human fallopian tube secretory epithelial cells and A2780 ovarian cancer cells. Knockdown of transferrin receptor 1 (TfR1), but not transferrin receptor 2, suppressed the transferrin uptake and consequent formation of γH2AX. As hydroxyl radicals in reactive oxygen species (ROS) are involved in DNA-DSBs, the formation of ROS was determined. Treatment with TfR1-specific small interference RNAs significantly diminished transferrin-induced formation of ROS. Moreover, TfR1-dependent uptake of transferrin was revealed to augment the formation of DNA-DSBs in the presence of hydrogen peroxide, which served as a substrate for the Fenton reaction. An ex vivo study with murine fallopian tubes further demonstrated that transferrin treatment introduced DNA-DSBs in the fallopian tubal epithelium. Collectively, these data suggested that the transferrin-TfR1 axis accounts for the induction of DNA-DSBs that potentially lead to DNA damage/genome instability. These findings also suggested that exposure to transferrin initiates and promotes the development of ovarian cancer by aiding the accumulation of DNA-DSBs in the fallopian tubal epithelium.

  14. Comparison of human immunodeficiency virus assays in window phase and elite controller samples: viral load distribution and implications for transmission risk

    PubMed Central

    Vermeulen, Marion; Coleman, Charl; Mitchel, Josephine; Reddy, Ravi; van Drimmelen, Harry; Fickett, Tracy; Busch, Michael; Lelie, Nico

    2016-01-01

    BACKGROUND After 3 years of individual-donation nucleic acid test (ID-NAT) screening by the South African National Blood Service (SANBS), a repository of 73 human immunodeficiency virus antibody (anti-HIV)-negative window period (WP)-yield samples and 28 anti-HIV–positive, HIV-RNA–negative elite controllers (ECs) became available for comparison of a p24 antigen (p24 Ag) assay (Innogenetics), two viral load assays (Siemens branch DNA [bDNA] 3.0 and Abbott real-time polymerase chain reaction [RT-PCR]), and three triplex NAT assays (Novartis Diagnostics Ultrio and Ultrio-Plus and Roche TaqScreen) by replicate testing of dilutions. STUDY DESIGN AND METHODS Viral loads were assessed by bDNA and RT-PCR assays and if below 100 copies (cps)/mL, by Ultrio limiting dilution probit analysis. The probability of virus transmission by WP and EC donations was estimated for different levels of the 50% minimum infectious dose (ID50) using Poisson distribution statistics. RESULTS The equal distribution of WP donations plotted by log HIV-RNA levels indicated a random appearance of donors in the ramp-up phase. The HIV p24 Ag assay detected 45% of WP samples and the cutoff crossing point was estimated at 8140 (bDNA)/ 22,710 (RT-PCR) cps/mL. On replicate retesting of 40 HIV p24 Ag–negative ID-NAT WP-yield samples Ultrio minipool (MP)8, Ultrio-Plus MP8, and TaqScreen MP6 detected 79, 81, and 78%, respectively. Modeling with an estimated ID50 of 31.6 virions/RBC indicated that 15% of p24 Ag–negative ID-NAT WP-yield donations would have transmitted HIV if MP6–8 NAT had been used. Only 2% of RBC transfusions from ECs are estimated to be infectious with a worst-case ID50 estimate of 316 virions. CONCLUSION Our analysis of viremia and infectivity of WP and EC donations enables comparison of the efficacy of NAT options in preventing HIV transmission risk. PMID:23445273

  15. Comparison of human immunodeficiency virus assays in window phase and elite controller samples: viral load distribution and implications for transmission risk.

    PubMed

    Vermeulen, Marion; Coleman, Charl; Mitchel, Josephine; Reddy, Ravi; van Drimmelen, Harry; Fickett, Tracy; Busch, Michael; Lelie, Nico

    2013-10-01

    After 3 years of individual-donation nucleic acid test (ID-NAT) screening by the South African National Blood Service (SANBS), a repository of 73 human immunodeficiency virus antibody (anti-HIV)-negative window period (WP)-yield samples and 28 anti-HIV-positive, HIV-RNA-negative elite controllers (ECs) became available for comparison of a p24 antigen (p24 Ag) assay (Innogenetics), two viral load assays (Siemens branch DNA [bDNA] 3.0 and Abbott real-time polymerase chain reaction [RT-PCR]), and three triplex NAT assays (Novartis Diagnostics Ultrio and Ultrio-Plus and Roche TaqScreen) by replicate testing of dilutions. Viral loads were assessed by bDNA and RT-PCR assays and if below 100 copies (cps)/mL, by Ultrio limiting dilution probit analysis. The probability of virus transmission by WP and EC donations was estimated for different levels of the 50% minimum infectious dose (ID50 ) using Poisson distribution statistics. The equal distribution of WP donations plotted by log HIV-RNA levels indicated a random appearance of donors in the ramp-up phase. The HIV p24 Ag assay detected 45% of WP samples and the cutoff crossing point was estimated at 8140 (bDNA)/22,710 (RT-PCR) cps/mL. On replicate retesting of 40 HIV p24 Ag-negative ID-NAT WP-yield samples Ultrio minipool (MP)8, Ultrio-Plus MP8, and TaqScreen MP6 detected 79, 81, and 78%, respectively. Modeling with an estimated ID50 of 31.6 virions/RBC indicated that 15% of p24 Ag-negative ID-NAT WP-yield donations would have transmitted HIV if MP6-8 NAT had been used. Only 2% of RBC transfusions from ECs are estimated to be infectious with a worst-case ID50 estimate of 316 virions. Our analysis of viremia and infectivity of WP and EC donations enables comparison of the efficacy of NAT options in preventing HIV transmission risk. © 2013 American Association of Blood Banks.

  16. A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paini, Alicia, E-mail: alicia.paini@rdls.nestle.co; Nestle Research Center, PO Box 44, Lausanne; Punt, Ans

    2010-05-15

    Estragole has been shown to be hepatocarcinogenic in rodent species at high-dose levels. Translation of these results into the likelihood of formation of DNA adducts, mutation, and ultimately cancer upon more realistic low-dose exposures remains a challenge. Recently we have developed physiologically based biokinetic (PBBK) models for rat and human predicting bioactivation of estragole. These PBBK models, however, predict only kinetic characteristics. The present study describes the extension of the PBBK model to a so-called physiologically based biodynamic (PBBD) model predicting in vivo DNA adduct formation of estragole in rat liver. This PBBD model was developed using in vitro datamore » on DNA adduct formation in rat primary hepatocytes exposed to 1'-hydroxyestragole. The model was extended by linking the area under the curve for 1'-hydroxyestragole formation predicted by the PBBK model to the area under the curve for 1'-hydroxyestragole in the in vitro experiments. The outcome of the PBBD model revealed a linear increase in DNA adduct formation with increasing estragole doses up to 100 mg/kg bw. Although DNA adduct formation of genotoxic carcinogens is generally seen as a biomarker of exposure rather than a biomarker of response, the PBBD model now developed is one step closer to the ultimate toxic effect of estragole than the PBBK model described previously. Comparison of the PBBD model outcome to available data showed that the model adequately predicts the dose-dependent level of DNA adduct formation. The PBBD model predicts DNA adduct formation at low levels of exposure up to a dose level showing to cause cancer in rodent bioassays, providing a proof of principle for modeling a toxicodynamic in vivo endpoint on the basis of solely in vitro experimental data.« less

  17. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms.

    PubMed

    Schwartz, Kelly; Ganesan, Mahesh; Payne, David E; Solomon, Michael J; Boles, Blaise R

    2016-01-01

    Persistent staphylococcal infections often involve surface-associated communities called biofilms. Staphylococcus aureus biofilm development is mediated by the co-ordinated production of the biofilm matrix, which can be composed of polysaccharides, extracellular DNA (eDNA) and proteins including amyloid fibers. The nature of the interactions between matrix components, and how these interactions contribute to the formation of matrix, remain unclear. Here we show that the presence of eDNA in S. aureus biofilms promotes the formation of amyloid fibers. Conditions or mutants that do not generate eDNA result in lack of amyloids during biofilm growth despite the amyloidogeneic subunits, phenol soluble modulin peptides, being produced. In vitro studies revealed that the presence of DNA promotes amyloid formation by PSM peptides. Thus, this work exposes a previously unacknowledged interaction between biofilm matrix components that furthers our understanding of functional amyloid formation and S. aureus biofilm biology. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  18. Modulation of cyclobutane thymine photodimer formation in T11-tracts in rotationally phased nucleosome core particles and DNA minicircles.

    PubMed

    Wang, Kesai; Taylor, John-Stephen A

    2017-07-07

    Cyclobutane pyrimidine dimers (CPDs) are DNA photoproducts linked to skin cancer, whose mutagenicity depends in part on their frequency of formation and deamination. Nucleosomes modulate CPD formation, favoring outside facing sites and disfavoring inward facing sites. A similar pattern of CPD formation in protein-free DNA loops suggests that DNA bending causes the modulation in nucleosomes. To systematically study the cause and effect of nucleosome structure on CPD formation and deamination, we have developed a circular permutation synthesis strategy for positioning a target sequence at different superhelix locations (SHLs) across a nucleosome in which the DNA has been rotationally phased with respect to the histone octamer by TG motifs. We have used this system to show that the nucleosome dramatically modulates CPD formation in a T11-tract that covers one full turn of the nucleosome helix at seven different SHLs, and that the position of maximum CPD formation at all locations is shifted to the 5΄-side of that found in mixed-sequence nucleosomes. We also show that an 80-mer minicircle DNA using the same TG-motifs faithfully reproduces the CPD pattern in the nucleosome, indicating that it is a good model for protein-free rotationally phased bent DNA of the same curvature as in a nucleosome, and that bending is modulating CPD formation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. 25. SECOND FLOOR EAST SIDE APARTMENT KITCHEN INTERIOR SHOWING GROUP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SECOND FLOOR EAST SIDE APARTMENT KITCHEN INTERIOR SHOWING GROUP OF THREE 6-LIGHT WOOD-FRAME CASEMENT WINDOWS OVER THE SINK, AND OPEN DOORWAY TO TOP OF EXTERIOR STAIR LANDING AND WALKWAY AT REAR OF HOUSE. WALKWAY IS VISIBLE THROUGH KITCHEN WINDOWS. VIEW TO SOUTH. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  20. Multi-antigen CMV-MVA Triplex Vaccine in Reducing CMV Complications in Patients Previously Infected With CMV and Undergoing Donor Hematopoietic Cell Transplant

    ClinicalTrials.gov

    2018-05-04

    Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia in Remission; Chronic Lymphocytic Leukemia; Chronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Cytomegaloviral Infection; Hodgkin Lymphoma; Lymphadenopathy; Lymphoblastic Lymphoma; Myelodysplastic Syndrome; Myelofibrosis; Myeloproliferative Neoplasm; Non-Hodgkin Lymphoma

  1. Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model

    USGS Publications Warehouse

    Zhu, Qing; Liu, Jinxun; Peng, C.; Chen, H.; Fang, X.; Jiang, H.; Yang, G.; Zhu, D.; Wang, W.; Zhou, X.

    2014-01-01

    A new process-based model TRIPLEX-GHG was developed based on the Integrated Biosphere Simulator (IBIS), coupled with a new methane (CH4) biogeochemistry module (incorporating CH4 production, oxidation, and transportation processes) and a water table module to investigate CH4 emission processes and dynamics that occur in natural wetlands. Sensitivity analysis indicates that the most sensitive parameters to evaluate CH4 emission processes from wetlands are r (defined as the CH4 to CO2 release ratio) and Q10 in the CH4 production process. These two parameters were subsequently calibrated to data obtained from 19 sites collected from approximately 35 studies across different wetlands globally. Being heterogeneously spatially distributed, r ranged from 0.1 to 0.7 with a mean value of 0.23, and the Q10 for CH4 production ranged from 1.6 to 4.5 with a mean value of 2.48. The model performed well when simulating magnitude and capturing temporal patterns in CH4 emissions from natural wetlands. Results suggest that the model is able to be applied to different wetlands under varying conditions and is also applicable for global-scale simulations.

  2. Numerical investigation of PCM in vertical triplex tube thermal energy storage system for CSP applications

    NASA Astrophysics Data System (ADS)

    Almsater, Saleh; Saman, Wasim; Bruno, Frank

    2017-06-01

    Numerical study for phase change material (PCM) in high temperature vertical triplex tube thermal energy storage system (TTTESS) were performed, using ANSYS FLUENT 15. For validation purposes, numerical modelling of a low temperature PCM was initially conducted and the predicted results were compared with the numerical and experimental data from the literature. The average temperature for freezing and melting agree well with the results from the literature. The validated model for the low temperature PCM was extended to high temperature TTTESS; the supercritical CO2 as the heat transfer fluid (HTF) flows in the inside and outside tubes during the charging and discharging processes, whereas the Lithium and Potassium carbonate (Li2CO3-K2CO3) (35%-65%) as the PCM is enclosed between them. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. This study also provides results demonstrating the effect of adding more fins relative to the case of no fins on the freezing and melting fraction of the PCM. Compared to 2 tank system, the TTTESS with eight fins can provide significant performance with less size.

  3. A Smart Responsive Dual Aptamers-Targeted Bubble-Generating Nanosystem for Cancer Triplex Therapy and Ultrasound Imaging.

    PubMed

    Zhao, Feifei; Zhou, Jie; Su, Xiangjie; Wang, Yuhui; Yan, Xiaosa; Jia, Shaona; Du, Bin

    2017-05-01

    The absence of targeted, single treatment methods produces low therapeutic value for treating cancers. To increase the accumulation of drugs in tumors and improve the treatment effectiveness, near-infrared 808 nm photothermal responsive dual aptamers-targeted docetaxel (DTX)-containing nanoparticles is proposed. In this system, DTX and NH 4 HCO 3 are loaded in thermosensitive liposomes. The surface of liposomes is coated with gold nanoshells and connected with sulfydryl (SH) modified AS1411 and S2.2 aptamers. The nanosystem has good biocompatibility and uniform size (diameter about 200 nm). The drug is rapidly released, reaching a maximum amount (84%) at 4 h under 808 nm laser irradiation. The experiments conducted in vitro and in vivo demonstrate the nanosystem can synergistically inhibit tumor growth by combination of chemotherapy, photothermal therapy, and biological therapy. Dual ligand functionalization significantly increases cellular uptake on breast cancer cell line (MCF-7) cells and achieves ultrasound imaging (USI) at tumor site. The results indicate that this drug delivery system is a promising theranostic agent involving light-thermal response at tumor sites, dual ligand targeted triplex therapy, and USI. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Heat transfer enhancement in triplex-tube latent thermal energy storage system with selected arrangements of fins

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng

    2018-01-01

    The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.

  5. Srs2 prevents Rad51 filament formation by repetitive motion on DNA.

    PubMed

    Qiu, Yupeng; Antony, Edwin; Doganay, Sultan; Koh, Hye Ran; Lohman, Timothy M; Myong, Sua

    2013-01-01

    Srs2 dismantles presynaptic Rad51 filaments and prevents its re-formation as an anti-recombinase. However, the molecular mechanism by which Srs2 accomplishes these tasks remains unclear. Here we report a single-molecule fluorescence study of the dynamics of Rad51 filament formation and its disruption by Srs2. Rad51 forms filaments on single-stranded DNA by sequential binding of primarily monomers and dimers in a 5'-3' direction. One Rad51 molecule binds to three nucleotides, and six monomers are required to achieve a stable nucleation cluster. Srs2 exhibits ATP-dependent repetitive motion on single-stranded DNA and this activity prevents re-formation of the Rad51 filament. The same activity of Srs2 cannot prevent RecA filament formation, indicating its specificity for Rad51. Srs2's DNA-unwinding activity is greatly suppressed when Rad51 filaments form on duplex DNA. Taken together, our results reveal an exquisite and highly specific mechanism by which Srs2 regulates the Rad51 filament formation.

  6. Nuclear, chloroplast, and mitochondrial data of a US cannabis DNA database.

    PubMed

    Houston, Rachel; Birck, Matthew; LaRue, Bobby; Hughes-Stamm, Sheree; Gangitano, David

    2018-05-01

    As Cannabis sativa (marijuana) is a controlled substance in many parts of the world, the ability to track biogeographical origin of cannabis could provide law enforcement with investigative leads regarding its trade and distribution. Population substructure and inbreeding may cause cannabis plants to become more genetically related. This genetic relatedness can be helpful for intelligence purposes. Analysis of autosomal, chloroplast, and mitochondrial DNA allows for not only prediction of biogeographical origin of a plant but also discrimination between individual plants. A previously validated, 13-autosomal STR multiplex was used to genotype 510 samples. Samples were analyzed from four different sites: 21 seizures at the US-Mexico border, Northeastern Brazil, hemp seeds purchased in the US, and the Araucania area of Chile. In addition, a previously reported multi-loci system was modified and optimized to genotype five chloroplast and two mitochondrial markers. For this purpose, two methods were designed: a homopolymeric STR pentaplex and a SNP triplex with one chloroplast (Cscp001) marker shared by both methods for quality control. For successful mitochondrial and chloroplast typing, a novel real-time PCR quantitation method was developed and validated to accurately estimate the quantity of the chloroplast DNA (cpDNA) using a synthetic DNA standard. Moreover, a sequenced allelic ladder was also designed for accurate genotyping of the homopolymeric STR pentaplex. For autosomal typing, 356 unique profiles were generated from the 425 samples that yielded full STR profiles and 25 identical genotypes within seizures were observed. Phylogenetic analysis and case-to-case pairwise comparisons of 21 seizures at the US-Mexico border, using the Fixation Index (F ST ) as genetic distance, revealed the genetic association of nine seizures that formed a reference population. For mitochondrial and chloroplast typing, subsampling was performed, and 134 samples were genotyped. Complete haplotypes (STRs and SNPs) were observed for 127 samples. As expected, extensive haplotype sharing was observed; five distinguishable haplotypes were detected. In the reference population, the same haplotype was observed 39 times and two unique haplotypes were also detected. Haplotype sharing was observed between the US border seizures, Brazil, and Chile, while the hemp samples generated a distinct haplotype. Phylogenetic analysis of the four populations was performed, and results revealed that both autosomal and lineage markers could discern population substructure.

  7. Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees

    PubMed Central

    Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles

    2015-01-01

    DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238

  8. DNA damage inhibits lateral root formation by up-regulating cytokinin biosynthesis genes in Arabidopsis thaliana.

    PubMed

    Davis, La Ode Muhammad Muchdar; Ogita, Nobuo; Inagaki, Soichi; Takahashi, Naoki; Umeda, Masaaki

    2016-11-01

    Lateral roots (LRs) are an important organ for water and nutrient uptake from soil. Thus, control of LR formation is crucial in the adaptation of plant growth to environmental conditions. However, the underlying mechanism controlling LR formation in response to external factors has remained largely unknown. Here, we found that LR formation was inhibited by DNA damage. Treatment with zeocin, which causes DNA double-strand breaks, up-regulated several DNA repair genes in the LR primordium (LRP) through the signaling pathway mediated by the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1). Cell division was severely inhibited in the LRP of zeocin-treated sog1-1 mutant, which in turn inhibited LR formation. This result suggests that SOG1-mediated maintenance of genome integrity is crucial for proper cell division during LRP development. Furthermore, zeocin induced several cytokinin biosynthesis genes in a SOG1-dependent manner, thereby activating cytokinin signaling in the LRP. LR formation was less inhibited by zeocin in mutants defective in cytokinin biosynthesis or signaling, suggesting that elevated cytokinin signaling is crucial for the inhibition of LR formation in response to DNA damage. We conclude that SOG1 regulates DNA repair and cytokinin signaling separately and plays a key role in controlling LR formation under genotoxic stress. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  9. High-resolution biophysical analysis of the dynamics of nucleosome formation

    PubMed Central

    Hatakeyama, Akiko; Hartmann, Brigitte; Travers, Andrew; Nogues, Claude; Buckle, Malcolm

    2016-01-01

    We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical “Widom” sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides ‘snapshots’ of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization. PMID:27263658

  10. DNA G-Wire Formation Using an Artificial Peptide is Controlled by Protease Activity.

    PubMed

    Usui, Kenji; Okada, Arisa; Sakashita, Shungo; Shimooka, Masayuki; Tsuruoka, Takaaki; Nakano, Shu-Ichi; Miyoshi, Daisuke; Mashima, Tsukasa; Katahira, Masato; Hamada, Yoshio

    2017-11-16

    The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca 2+ , and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.

  11. CryoEM structure of the spliceosome immediately after branching

    PubMed Central

    Galej, Wojciech P.; Wilkinson, Max E.; Fica, Sebastian M.; Oubridge, Chris; Newman, Andrew J.; Nagai, Kiyoshi

    2016-01-01

    Pre-mRNA splicing proceeds by two consecutive trans-esterification reactions via a lariat-intron intermediate. We present the 3.8Å cryoEM structure of the spliceosome immediately after lariat formation. The 5’-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 snRNA triplex, and the 5’-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2’OH. The 5’-exon is held between the Prp8 N-terminal and Linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5’-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step one factors Yju2 and Cwc25 stabilise docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 RT and Linker domains and extends towards Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation. PMID:27459055

  12. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment

    NASA Astrophysics Data System (ADS)

    Conde, João; Oliva, Nuria; Atilano, Mariana; Song, Hyun Seok; Artzi, Natalie

    2016-03-01

    The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs--a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)--provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo, and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer.

  13. Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor.

    PubMed

    Zhou, Zhixue; Du, Yan; Dong, Shaojun

    2011-07-01

    Double-strand DNA (dsDNA) can act as an efficient template for the formation of copper nanoparticles (Cu NPs) at low concentration of CuSO(4), and the formed Cu NPs have excellent fluorescence, whereas a single-strand DNA (ssDNA) template does not support Cu NPs' formation. This property of dsDNA-Cu NPs makes it suitable for DNA sensing. However, exploration of dsDNA-Cu NPs applied in biological analysis is still at an early stage. In this regard, we report herein for the first time a sensitive, cost-effective, and simple aptamer sensor (aptasensor) using dsDNA-Cu NPs as fluorescent probe. The design consists of a dsDNA with reporter DNA (here, aptamer) as template for the formation of Cu NPs, and the formed dsDNA-Cu NPs show high fluorescence. Using adenosine triphosphate (ATP) as a model analyte, the introduction of ATP triggers the structure switching of reporter DNA to form aptamer-ATP complex, causing the destruction of the double helix and thus no formation of the Cu NPs, resulting in low fluorescence. The preferable linear range (0.05-500 μM), sensitivity (LOD 28 nM), and simplicity for the detection of ATP indicate that dsDNA-Cu NPs may have great prospects in the field of biological analysis. We also use this novel fluorescent probe to determine ATP in 1% human serum and human adenocarcinoma HeLa cells. The dsDNA-Cu NPs probes provide recovery of 104-108% in 1% human serum and a prominent fluorescent signal is obtained in cellular ATP assay, revealing the practicality of using dsDNA-Cu NPs for the determination of ATP in real samples. Besides, this design is simply based on nucleic acid hybridization, so it can be generally applied to other aptamers for label-free detection of a broad range of analytes. Successful detection of cocaine with detection limit of 0.1 μM demonstrates its potential to be a general method.

  14. Does Extracellular DNA Production Vary in Staphylococcal Biofilms Isolated From Infected Implants versus Controls?

    PubMed

    Zatorska, Beata; Groger, Marion; Moser, Doris; Diab-Elschahawi, Magda; Lusignani, Luigi Segagni; Presterl, Elisabeth

    2017-08-01

    Prosthetic implant infections caused by Staphylococcus aureus and epidermidis are major challenges for early diagnosis and treatment owing to biofilm formation on the implant surface. Extracellular DNA (eDNA) is actively excreted from bacterial cells in biofilms, contributing to biofilm stability, and may offer promise in the detection or treatment of such infections. (1) Does DNA structure change during biofilm formation? (2) Are there time-dependent differences in eDNA production during biofilm formation? (3) Is there differential eDNA production between clinical and control Staphylococcal isolates? (4) Is eDNA production correlated to biofilm thickness? We investigated eDNA presence during biofilm formation in 60 clinical and 30 control isolates of S aureus and S epidermidis. The clinical isolates were isolated from patients with infections of orthopaedic prostheses and implants: 30 from infected hip prostheses and 30 from infected knee prostheses. The control isolates were taken from healthy volunteers who had not been exposed to antibiotics and a hospital environment during the previous 3 and 12 months, respectively. Control S epidermidis was isolated from the skin of the antecubital fossa, and control S aureus was isolated from the nares. For the biofilm experiments the following methods were used to detect eDNA: (1) fluorescent staining with 4',6-diamidino-2-phenylindole (DAPI), (2) eDNA extraction using a commercial kit, and (3) confocal laser scanning microscopy for 24-hour biofilm observation using propidium iodide and concanavalin-A staining; TOTO ® -1 and SYTO ® 60 staining were used for observation and quantification of eDNA after 6 and 24 hours of biofilm formation. Additionally antibiotic resistance was described. eDNA production as observed by confocal laser scanning microscopy was greater in clinical isolates than controls (clinical isolates mean ± SD: 1.84% ± 1.31%; control mean ± SD: 1.17% ± 1.37%; p < 0.005) after 6 hours of biofilm formation. After 24 hours, the amount of eDNA was greater in biofilms of S epidermidis than in biofilms of S aureus (S aureus mean ± SD: 1.35% ± 2.0%; S epidermidis mean ± SD: 6.42% ± 10.6%; p < 0.05). Clinical isolates of S aureus and S epidermidis produced more eDNA than control isolates at 6 hours of biofilm formation. The extraction method also showed that clinical isolates produced substantially greater amounts of eDNA than controls. S aureus and S epidermidis exhibit a differential production of DNA with time. Clinical isolates associated with implant infections produce greater amounts of eDNA than controls. Future research might focus on the diagnostic value of eDNA as a surrogate laboratory marker for biofilm formation in implant infections. eDNA should be considered as a potential future diagnostic tool or even a possible target to modify biofilms for successful treatment of biofilm-associated infections.

  15. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis.

    PubMed

    Jung, Chiau-Jing; Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh; Chia, Jean-San

    2017-09-01

    Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (Δ atlA ) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an Δ atlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the Δ atlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in Δ atlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans , which contributes to biofilm formation in infective endocarditis. Copyright © 2017 American Society for Microbiology.

  16. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6more » μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.« less

  17. UV and ionizing radiations induced DNA damage, differences and similarities

    NASA Astrophysics Data System (ADS)

    Ravanat, Jean-Luc; Douki, Thierry

    2016-11-01

    Both UV and ionizing radiations damage DNA. Two main mechanisms, so-called direct and indirect pathways, are involved in the degradation of DNA induced by ionizing radiations. The direct effect of radiation corresponds to direct ionization of DNA (one electron ejection) whereas indirect effects are produced by reactive oxygen species generated through water radiolysis, including the highly reactive hydroxyl radicals, which damage DNA. UV (and visible) light damages DNA by again two distinct mechanisms. UVC and to a lesser extend UVB photons are directly absorbed by DNA bases, generating their excited states that are at the origin of the formation of pyrimidine dimers. UVA (and visible) light by interaction with endogenous or exogenous photosensitizers induce the formation of DNA damage through photosensitization reactions. The excited photosensitizer is able to induce either a one-electron oxidation of DNA (type I) or to produce singlet oxygen (type II) that reacts with DNA. In addition, through an energy transfer from the excited photosensitizer to DNA bases (sometime called type III mechanism) formation of pyrimidine dimers could be produced. Interestingly it has been shown recently that pyrimidine dimers are also produced by direct absorption of UVA light by DNA, even if absorption of DNA bases at these wavelengths is very low. It should be stressed that some excited photosensitizers (such as psoralens) could add directly to DNA bases to generate adducts. The review will described the differences and similarities in terms of damage formation (structure and mechanisms) between these two physical genotoxic agents.

  18. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells.

    PubMed

    Ganesan, Shanthi; Keating, Aileen F

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6μM) for 24 or 48h. Cell viability was reduced (P<0.05) after 48h of exposure to 3 or 6μM PM. The NOR-G-OH DNA adduct was detected after 24h of 6μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladimir Larionov, Ph D

    A special interest in the organization of human centromeric DNA was stimulated a few years ago when two independent groups succeeded in reconstituting a functional human centromere, using constructs carrying centromere-specific alphoid DNA arrays. This work demonstrated the importance of DNA components in mammalian centromeres and opened a way for studying the structural requirements for de novo kinetochore formation and for construction of human artificial chromosomes (HACs) with therapeutic potential. To elucidate the structural requirements for formation of HACs with a functional kinetochore, we developed a new method for cloning of large DNA fragments for human centromeric regions that canmore » be used as a substrate for HAC formation. This method exploits in vivo recombination in yeast (TAR cloning). In addition, a new strategy for the construction of alphoid DNA arrays was developed in our lab. The strategy involves the construction of uniform or hybrid synthetic alphoid DNA arrays by the RCA-TAR technique. This technique comprises two steps: rolling circle amplification of an alphoid DNA dimer and subsequent assembling of the amplified fragments by in vivo homologous recombination in yeast (Figure 1). Using this system, we constructed a set of different synthetic alphoid DNA arrays with a predetermined sequence varying in size from 30 to 140 kb and demonstrated that some of the arrays are competent in HAC formation. Because any nucleotide can be changed in a dimer before its amplification, this new technique is optimal for identifying the structural requirements for de novo kinetochore formation in HACs. Moreover, the technique makes possible to introduce into alphoid DNA arrays recognition sites for DNA-binding proteins. We have made the following progress on the studying of human centromeric regions using transformation-associated recombination cloning technology: i) minimal size of alphoid DNA array required for de novo kinetochore formation was estimated; ii) critical role of CENP-B binding site in do novo kinetochore formation was demonstrated; iii) role of gamma-satellite DNA in functional centromere was elucidated; iv) new generation of HAC with a conditional centromere was constructed for the study of epigenetic control of kinetochore function and for gene expression studies. These studies de novo kinetochore formation may thus provide both a fundamental knowledge and new points of intervention for therapy.« less

  20. Recognition of Double Stranded RNA by Guanidine-Modified Peptide Nucleic Acids (GPNA)

    PubMed Central

    Gupta, Pankaj; Muse, Oluwatoyosi; Rozners, Eriks

    2011-01-01

    Double helical RNA has become an attractive target for molecular recognition because many non-coding RNAs play important roles in control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double helical RNA via triple helix formation. Herein we tested if the molecular recognition of RNA can be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex-invasion complex. Nevertheless, promising results were obtained for recognition of biologically relevant double helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from D-arginine recognized the transactivation response element (TAR) of HIV-1 with high affinity and sequence selectivity, presumably via Watson-Crick duplex formation. On the other hand, strong and sequence selective triple helices were formed by unmodified and nucelobase-modified PNAs and the purine rich strand of bacterial A-site. These results suggest that appropriate chemical modifications of PNA may enhance molecular recognition of complex non-coding RNAs. PMID:22146072

  1. Supercoil Formation During DNA Melting

    NASA Astrophysics Data System (ADS)

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan

    2009-03-01

    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  2. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.

    PubMed

    Kahn, Jason S; Hu, Yuwei; Willner, Itamar

    2017-04-18

    The base sequence of nucleic acids encodes structural and functional information into the DNA biopolymer. External stimuli such as metal ions, pH, light, or added nucleic acid fuel strands provide triggers to reversibly switch nucleic acid structures such as metal-ion-bridged duplexes, i-motifs, triplex nucleic acids, G-quadruplexes, or programmed double-stranded hybrids of oligonucleotides (DNA). The signal-triggered oligonucleotide structures have been broadly applied to develop switchable DNA nanostructures and DNA machines, and these stimuli-responsive assemblies provide functional scaffolds for the rapidly developing area of DNA nanotechnology. Stimuli-responsive hydrogels undergoing signal-triggered hydrogel-to-solution transitions or signal-controlled stiffness changes attract substantial interest as functional matrices for controlled drug delivery, materials exhibiting switchable mechanical properties, acting as valves or actuators, and "smart" materials for sensing and information processing. The integration of stimuli-responsive oligonucleotides with hydrogel-forming polymers provides versatile means to exploit the functional information encoded in the nucleic acid sequences to yield stimuli-responsive hydrogels exhibiting switchable physical, structural, and chemical properties. Stimuli-responsive DNA-based nucleic acid structures are integrated in acrylamide polymer chains and reversible, switchable hydrogel-to-solution transitions of the systems are demonstrated by applying external triggers, such as metal ions, pH-responsive strands, G-quadruplex, and appropriate counter triggers that bridge and dissociate the polymer chains. By combining stimuli-responsive nucleic acid bridges with thermosensitive poly(N-isopropylacrylamide) (pNIPAM) chains, systems undergoing reversible solution ↔ hydrogel ↔ solid transitions are demonstrated. Specifically, by bridging acrylamide polymer chains by two nucleic acid functionalities, where one type of bridging unit provides a stimuli-responsive element and the second unit acts as internal "bridging memory", shape-memory hydrogels undergoing reversible and switchable transitions between shaped hydrogels and shapeless quasi-liquid states are demonstrated. By using stimuli-responsive hydrogel cross-linking units that can assemble the bridging units by two different input signals, the orthogonally-triggered functions of the shape-memory were shown. Furthermore, a versatile approach to assemble stimuli-responsive DNA-based acrylamide hydrogel films on surfaces is presented. The method involves the activation of the hybridization chain-reaction (HCR) by a surface-confined promoter strand, in the presence of acrylamide chains modified with two DNA hairpin structures and appropriate stimuli-responsive tethers. The resulting hydrogel-modified surfaces revealed switchable stiffness properties and signal-triggered catalytic functions. By applying the method to assemble the hydrogel microparticles, substrate-loaded, stimuli-responsive microcapsules are prepared. The signal-triggered DNA-based hydrogel microcapsules are applied as drug carriers for controlled release. The different potential applications and future perspectives of stimuli responsive hydrogels are discussed. Specifically, the use of these smart materials and assemblies as carriers for controlled drug release and as shape-memory matrices for information storage and inscription and the use of surface-confined stimuli-responsive hydrogels, exhibiting switchable stiffness properties, for catalysis and controlled growth of cells are discussed.

  3. Significance of the DNA-Histone Complex Level as a Predictor of Major Adverse Cardiovascular Events in Hemodialysis Patients: The Effect of Uremic Toxin on DNA-Histone Complex Formation.

    PubMed

    Jeong, Jong Cheol; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Ryu, Ji Won; Kim, Dong Ki; Joo, Kwon Wook; Kim, Hyun Kyung

    2016-01-01

    Neutrophils can release the DNA-histone complex into circulation following exposure to inflammatory stimuli. This prospective study investigated whether the DNA-histone complex and other biomarkers could predict major cardiovascular adverse events (MACEs) in hemodialysis (HD) patients. The levels of circulating DNA-histone complexes, cell-free DNA, interleukin (IL)-6, and neutrophil elastase were measured in 60 HD patients and 28 healthy controls. MACE was assessed at 24 months. Uremic toxin-induced neutrophil released contents were measured in vitro. Compared with controls, HD patients showed higher levels of DNA-histone complexes and IL-6. The DNA-histone complex level was inversely associated with the Kt/V. In a multivariable Cox analysis, the high level of DNA-histone complexes was a significant independent predictor of MACE. The uremic toxins induced DNA-histone complex formation in normal neutrophils in vitro. The DNA-histone complex is a potentially useful marker to predict MACE in HD patients. Uremic toxins induced DNA-histone complex formation in vitro. © 2015 S. Karger AG, Basel.

  4. Neutrophil extracellular trap formation and extracellular DNA in sputum of stable COPD patients.

    PubMed

    Pedersen, Frauke; Marwitz, Sebastian; Holz, Olaf; Kirsten, Anne; Bahmer, Thomas; Waschki, Benjamin; Magnussen, Helgo; Rabe, Klaus F; Goldmann, Torsten; Uddin, Mohib; Watz, Henrik

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is characterized by neutrophilic airway inflammation. Neutrophil extracellular trap (NET) formation - a meshwork of neutrophil DNA components and neutrophil enzymes are involved in innate immunity and inflammation. Little is known about the presence of these structures in induced sputum from stable COPD patients. Induced sputum samples of 23 COPD patients and 10 healthy controls were collected. Sputum cells were harvested, cultivated and stained for NET components. Extracellular DNA was quantified using a NanoDrop 2000 spectrophotometer. NET formation was markedly upregulated in COPD sputum compared with healthy controls, irrespective of sputum purulence or smoking status. NET formation was associated with significantly higher concentration of extracellular DNA in sputum supernatant (484 ng/μl in COPD versus 268 ng/μl in controls, p = 0.013). Log-transformed extracellular DNA correlated with log-transformed absolute neutrophil numbers in sputum (r = 0.60; p < 0.001) and airway obstruction (r = -0.43; p = 0.013). NET formation associated with higher concentrations of extracellular DNA may be a pathobiological feature of COPD-derived sputum neutrophils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range.

    PubMed

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures.

  6. Novel Polymeric Nanoparticles for Pulmonary Gene Delivery

    NASA Astrophysics Data System (ADS)

    Fields, Rachel Jennifer

    The lung is an important target for gene and drug therapy of many diseases such as chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), tubuerculosis (TB) and lung cancer. In fact, the pulmonary route has been employed as a means of delivering drugs for centuries, dating back 4000 years to India where inhaled vapors were used for medicinal purpose. Currently, pulmonary administration of small, hydrophobic drugs leads to rapid local and systemic absorption. However, delivery of large biomacromolecules, such as therapeutic genes, has not yet been accomplished. Here, I test the hypothesis that a rationally engineered nanoparticle (NP) vector can improve delivery of large biomacromolecules. . In this dissertation I tested this hypothesis using a hybrid NP delivery system consisting of a blend of poly(lactic-co-glycolic acid) (PLGA) and a poly(beta-amino ester) (PBAE), a cationic polymer that is particularly useful for delivery of nucleic acids.. PBAE/PLGA nanoparticles (15% PBAE) loaded with plasmid DNA were surface modified with cell-penetrating peptides (CPPs) via a PEGylated phospholipid linker. This optimized NP formulation was able to induce substantial intracellular uptake and transfect lung epithelial cells in vitro while imparting minimal cellular toxicity. In order to determine the most effective method to deliver these NPs to the lung I used fluorescently labeled particles to study the biodistribution of particles after administration to the lung of mice via various administration routes. I determined that the intranasal route was most effective. I further investigated this route and determined that an average of 37.1 +/- 15.1 % of lung cells had NP association after 4hrs. I also investigated the association of particles with different lung cell types like macrophages and alveolar epithelial cells and determined that our best particle formulations associated with approximately 80% of both of these cell types. To demonstrate the ability of the NPs to deliver difficult to gene therapy reagents, such as PNAs, to cells within the lung, I loaded NPs with PNA and DNA and administered them via the intranasal route. Triplex forming peptide nucleic acids (PNAs) are gene therapy reagents that can mediate site-specific homologous recombination with genomic DNA when successfully delivered to the nucleus of cells in combination with donor DNA oligos. Delivery of NPs resulted in EGFP expression in transgenic mice with an aberrant EGFP gene that could be corrected and effectively expressed with nuclear delivery of a PNA/DNA. This work represents the first successful use of PNA/DNA mediated homologous recombination to target cells of the lung.

  7. Evaluation of Interindividual Human Variation in Bioactivation and DNA Adduct Formation of Estragole in Liver Predicted by Physiologically Based Kinetic/Dynamic and Monte Carlo Modeling.

    PubMed

    Punt, Ans; Paini, Alicia; Spenkelink, Albertus; Scholz, Gabriele; Schilter, Benoit; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2016-04-18

    Estragole is a known hepatocarcinogen in rodents at high doses following metabolic conversion to the DNA-reactive metabolite 1'-sulfooxyestragole. The aim of the present study was to model possible levels of DNA adduct formation in (individual) humans upon exposure to estragole. This was done by extending a previously defined PBK model for estragole in humans to include (i) new data on interindividual variation in the kinetics for the major PBK model parameters influencing the formation of 1'-sulfooxyestragole, (ii) an equation describing the relationship between 1'-sulfooxyestragole and DNA adduct formation, (iii) Monte Carlo modeling to simulate interindividual human variation in DNA adduct formation in the population, and (iv) a comparison of the predictions made to human data on DNA adduct formation for the related alkenylbenzene methyleugenol. Adequate model predictions could be made, with the predicted DNA adduct levels at the estimated daily intake of estragole of 0.01 mg/kg bw ranging between 1.6 and 8.8 adducts in 10(8) nucleotides (nts) (50th and 99th percentiles, respectively). This is somewhat lower than values reported in the literature for the related alkenylbenzene methyleugenol in surgical human liver samples. The predicted levels seem to be below DNA adduct levels that are linked with tumor formation by alkenylbenzenes in rodents, which were estimated to amount to 188-500 adducts per 10(8) nts at the BMD10 values of estragole and methyleugenol. Although this does not seem to point to a significant health concern for human dietary exposure, drawing firm conclusions may have to await further validation of the model's predictions.

  8. 300 nm bandwidth adiabatic SOI polarization splitter-rotators exploiting continuous symmetry breaking.

    PubMed

    Socci, Luciano; Sorianello, Vito; Romagnoli, Marco

    2015-07-27

    Adiabatic polarization splitter-rotators are investigated exploiting continuous symmetry breaking thereby achieving significant device size and losses reduction in a single mask fabrication process for both SOI channel and ridge waveguides. A crosstalk lower than -25 dB is expected over 300nm bandwidth, making the device suitable for full grid CWDM and diplexer/triplexer FTTH applications at 1310, 1490 and 1550nm.

  9. 14. FIRST FLOOR APARTMENT LIVING ROOM INTERIOR. FRONT ENTRY DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. FIRST FLOOR APARTMENT LIVING ROOM INTERIOR. FRONT ENTRY DOOR IS AT PHOTO CENTER FLANKED BY A PAIRED 4-LIGHT OVER 4-LIGHT DOUBLE-HUNG, WOOD-FRAME WINDOWS. OPEN DOORWAY TO PHOTO RIGHT OPENS TO NORTH BEDROOM. DOORWAY TO PHOTO LEFT OPENS TO KITCHEN. VIEW TO NORTHEAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  10. Mechanism of the formation of the RecA-ssDNA nucleoprotein filament structure: a coarse-grained approach.

    PubMed

    Mukherjee, Goutam; Pal, Arumay; Levy, Yaakov

    2017-11-21

    In prokaryotes, the RecA protein catalyzes the repair and strand exchange of double-stranded DNA. RecA binds to single-stranded DNA (ssDNA) and forms a presynaptic complex in which the protein polymerizes around the ssDNA to form a right-handed helical nucleoprotein filament structure. In the present work, the mechanism for the formation of the RecA-ssDNA filament structure is modeled using coarse-grained molecular dynamics simulations. Information from the X-ray structure was used to model the protein itself but not its interactions; the interactions between the protein and the ssDNA were modeled solely by electrostatic, aromatic, and repulsive energies. For the present study, the monomeric, dimeric, and trimeric units of RecA and 4, 8, and 11 NT-long ssDNA, respectively, were studied. Our results indicate that monomeric RecA is not sufficient for nucleoprotein filament formation; rather, dimeric RecA is the elementary binding unit, with higher multimeric units of RecA facilitating filament formation. Our results reveal that loop region flexibility at the primary binding site of RecA is essential for it to bind the incoming ssDNA, that the aromatic residues present in the loop region play an important role in ssDNA binding, and that ATP may play a role in guiding the ssDNA by changing the electrostatic potential of the RecA protein.

  11. Newborn screening using TREC/KREC assay for severe T and B cell lymphopenia in Iran.

    PubMed

    Nourizadeh, Maryam; Shakerian, Leila; Borte, Stephan; Fazlollahi, Mohammadreza; Badalzadeh, Mohsen; Houshmand, Massoud; Alizadeh, Zahra; Dalili, Hossein; Rashidi-Nezhad, Ali; Kazemnejad, Anoshirvan; Moin, Mostafa; Hammarström, Lennart; Pourpak, Zahra

    2018-06-26

    T-cell receptor excision circles (TRECs) and κ-deleting recombination excision circles (KRECs) are recently used for detection of T or B cell lymphopenia in neonates based on region-specific cutoff levels. Here, we report cutoffs for TREC and KREC copies useful for newborn screening and/or diagnosis of primary immunodeficiency diseases (PID) in Iran. DNA was extracted from a single 3.2 mm punch of dried blood spots collected from 2160 anonymized newborns referred to two major referral health centers between 2014 and 2016. For refinement of the cutoffs, 51 patients with a definite diagnosis of severe combined immunodeficiency, X-linked agammaglobulinaemia and combined immunodeficiency, including ataxia telangiectasia, human phosphoglucomutase 3 and Janus kinase-3 deficiency, as well as 47 healthy controls were included. Samples from patients with an X-linked hyper-IgM-syndrome, Wiskott-Aldrich syndrome and DNA ligase 4 deficiency were considered as disease controls. Triplex-quantitative real-time PCR was used. Cutoffs were calculated as TRECs < 11 and KRECs < 6 copies with an ACTB > 700 copies with sensitivity of 100% for TREC and 97% for KREC. Among thirty anonymized newborn samples (1.5%) with abnormal results for TREC and/or KREC, only twenty one available cases were retested and shown to be in the normal range except for three samples (0.15%). All of the patients with a definitive diagnosis were correctly identified based on our established TREC/KREC copy numbers. Determining cutoffs for TREC/KREC is essential for correctly identifying children with PID in newborn screening. Early diagnosis of PID patients enables appropriate measures and therapies like stem cell transplantation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Identification of genes containing expanded purine repeats in the human genome and their apparent protective role against cancer.

    PubMed

    Singh, Himanshu Narayan; Rajeswari, Moganty R

    2016-01-01

    Purine repeat sequences present in a gene are unique as they have high propensity to form unusual DNA-triple helix structures. Friedreich's ataxia is the only human disease that is well known to be associated with DNA-triplexes formed by purine repeats. The purpose of this study was to recognize the expanded purine repeats (EPRs) in human genome and find their correlation with cancer pathogenesis. We developed "PuRepeatFinder.pl" algorithm to identify non-overlapping EPRs without pyrimidine interruptions in the human genome and customized for searching repeat lengths, n ≥ 200. A total of 1158 EPRs were identified in the genome which followed Wakeby distribution. Two hundred and ninety-six EPRs were found in geneic regions of 282 genes (EPR-genes). Gene clustering of EPR-genes was done based on their cellular function and a large number of EPR-genes were found to be enzymes/enzyme modulators. Meta-analysis of 282 EPR-genes identified only 63 EPR-genes in association with cancer, mostly in breast, lung, and blood cancers. Protein-protein interaction network analysis of all 282 EPR-genes identified proteins including those in cadherins and VEGF. The two observations, that EPRs can induce mutations under malignant conditions and that identification of some EPR-gene products in vital cell signaling-mediated pathways, together suggest the crucial role of EPRs in carcinogenesis. The new link between EPR-genes and their functionally interacting proteins throws a new dimension in the present understanding of cancer pathogenesis and can help in planning therapeutic strategies. Validation of present results using techniques like NGS is required to establish the role of the EPR genes in cancer pathology.

  13. The tracing of mycobacteria in drinking water supply systems by culture, conventional, and real time PCRs.

    PubMed

    Klanicova, Barbora; Seda, Jaromir; Slana, Iva; Slany, Michal; Pavlik, Ivo

    2013-12-01

    Mycobacteria are widely present in diverse aquatic habitats, where they can survive for months or years while some species can even proliferate. The resistance of different mycobacterial species to disinfection methods like chlorination or ozonation could result in their presence in the final tap water of consumers. In this study, the culture method, Mycobacterium tuberculosis complex conventional duplex PCR for detection of non-tuberculous mycobacteria (NTM) and quantitative real-time PCR (qPCR) to detect three subspecies of M. avium species (M. a. avium, M. a. hominissuis, and M. a. paratuberculosis) were used to trace their possible path of transmission from the watershed through the reservoir and drinking water plant to raw drinking water and finally to households. A total of 124 samples from four drinking water supply systems in the Czech Republic, 52 dam sediments, 34 water treatment plant sludge samples, and 38 tap water household sediments, were analyzed. NTM of 11 different species were isolated by culture from 42 (33.9 %) samples; the most prevalent were M. gordonae (16.7 %), M. triplex (14.3 %), M. lentiflavum (9.5 %), M. a. avium (7.1 %), M. montefiorenase (7.1 %), and M. nonchromogenicum (7.1 %). NTM DNA was detected in 92 (76.7 %) samples. By qPCR analysis a statistically significant decrease (P < 0.01) was observed along the route from the reservoir (dam sediments), through water treatment sludge and finally to household sediments. The concentrations ranged from 10(0) to 10(4) DNA cells/g. It was confirmed that drinking water supply systems (watershed-reservoir-drinking water treatment plant-household) might be a potential transmission route for mycobacteria.

  14. Raffinose Induces Biofilm Formation by Streptococcus mutans in Low Concentrations of Sucrose by Increasing Production of Extracellular DNA and Fructan.

    PubMed

    Nagasawa, Ryo; Sato, Tsutomu; Senpuku, Hidenobu

    2017-08-01

    Streptococcus mutans is the primary etiological agent of dental caries and causes tooth decay by forming a firmly attached biofilm on tooth surfaces. Biofilm formation is induced by the presence of sucrose, which is a substrate for the synthesis of extracellular polysaccharides but not in the presence of oligosaccharides. Nonetheless, in this study, we found that raffinose, which is an oligosaccharide with an intestinal regulatory function and antiallergic effect, induced biofilm formation by S. mutans in a mixed culture with sucrose, which was at concentrations less than those required to induce biofilm formation directly. We analyzed the possible mechanism behind the small requirement for sucrose for biofilm formation in the presence of raffinose. Our results suggested that sucrose contributed to an increase in bacterial cell surface hydrophobicity and biofilm formation. Next, we examined how the effects of raffinose interacted with the effects of sucrose for biofilm formation. We showed that the presence of raffinose induced fructan synthesis by fructosyltransferase and aggregated extracellular DNA (eDNA, which is probably genomic DNA released from dead cells) into the biofilm. eDNA seemed to be important for biofilm formation, because the degradation of DNA by DNase I resulted in a significant reduction in biofilm formation. When assessing the role of fructan in biofilm formation, we found that fructan enhanced eDNA-dependent cell aggregation. Therefore, our results show that raffinose and sucrose have cooperative effects and that this induction of biofilm formation depends on supportive elements that mainly consist of eDNA and fructan. IMPORTANCE The sucrose-dependent mechanism of biofilm formation in Streptococcus mutans has been studied extensively. Nonetheless, the effects of carbohydrates other than sucrose are inadequately understood. Our findings concerning raffinose advance the understanding of the mechanism underlying the joint effects of sucrose and other carbohydrates on biofilm formation. Since raffinose has been reported to have positive effects on enterobacterial flora, research on the effects of raffinose on the oral flora are required prior to its use as a beneficial sugar for human health. Here, we showed that raffinose induced biofilm formation by S. mutans in low concentrations of sucrose. The induction of biofilm formation generally generates negative effects on the oral flora. Therefore, we believe that this finding will aid in the development of more effective oral care techniques to maintain oral flora health. Copyright © 2017 American Society for Microbiology.

  15. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR).

    PubMed

    Gray, Stephen; Allison, Rachal M; Garcia, Valerie; Goldman, Alastair S H; Neale, Matthew J

    2013-07-31

    During meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear. Here, we use Saccharomyces cerevisiae to reveal that meiotic DSB formation is modulated by the Mec1(ATR) branch of the DNA damage signalling cascade, promoting DSB formation when Spo11-mediated catalysis is compromised. Activation of the positive feedback pathway correlates with the formation of single-stranded DNA (ssDNA) recombination intermediates and activation of the downstream kinase, Mek1. We show that the requirement for checkpoint activation can be rescued by prolonging meiotic prophase by deleting the NDT80 transcription factor, and that even transient prophase arrest caused by Ndt80 depletion is sufficient to restore meiotic spore viability in checkpoint mutants. Our observations are unexpected given recent reports that the complementary kinase pathway Tel1(ATM) acts to inhibit DSB formation. We propose that such antagonistic regulation of DSB formation by Mec1 and Tel1 creates a regulatory mechanism, where the absolute frequency of DSBs is maintained at a level optimal for genetic exchange and efficient chromosome segregation.

  16. A new building block for DNA network formation by self-assembly and polymerase chain reaction.

    PubMed

    Bußkamp, Holger; Keller, Sascha; Robotta, Marta; Drescher, Malte; Marx, Andreas

    2014-01-01

    The predictability of DNA self-assembly is exploited in many nanotechnological approaches. Inspired by naturally existing self-assembled DNA architectures, branched DNA has been developed that allows self-assembly to predesigned architectures with dimensions on the nanometer scale. DNA is an attractive material for generation of nanostructures due to a plethora of enzymes which modify DNA with high accuracy, providing a toolbox for many different manipulations to construct nanometer scaled objects. We present a straightforward synthesis of a rigid DNA branching building block successfully used for the generation of DNA networks by self-assembly and network formation by enzymatic DNA synthesis. The Y-shaped 3-armed DNA construct, bearing 3 primer strands is accepted by Taq DNA polymerase. The enzyme uses each arm as primer strand and incorporates the branched construct into large assemblies during PCR. The networks were investigated by agarose gel electrophoresis, atomic force microscopy, dynamic light scattering, and electron paramagnetic resonance spectroscopy. The findings indicate that rather rigid DNA networks were formed. This presents a new bottom-up approach for DNA material formation and might find applications like in the generation of functional hydrogels.

  17. Comparison of intracellular drug retention, DNA damage and cytotoxicity of derivatives of doxorubicin and daunorubicin in a human colon adenocarcinoma cell line (LoVo).

    PubMed

    Belvedere, G; Suarato, A; Geroni, C; Giuliani, F C; D'Incalci, M

    1989-11-01

    Formation of DNA single strand breaks (SSB) was assayed by alkaline elution in LoVo cells treated with doxorubicin, daunorubicin and six derivatives of these drugs modified either in the chromophore or the sugar. Seven compounds showed a biphasic relationship (initial increase and then a decrease) for the formation of DNA-SSB over the concentration range 0.05-10 micrograms/ml. At a drug concentration in the range causing an increase of DNA damage very fast repair of DNA-SSB was observed for 4'-deoxydoxorubicin and 4-demethoxydaunorubicin; the kinetics of DNA-SSB investigated after drug removal at a drug concentration reducing DNA-SSB showed a time dependent increase of DNA damage for both drugs although with different patterns. 4'-Deoxydoxorubicin reduced the effect of radiations on the rate of elution of DNA in a way resembling the formation of DNA interstrand cross links (ISC) at concentrations at which DNA-SSB were reduced. DNA-ISC were not produced by chemical reactions occurring during sample processing for alkaline elution and this derivative was not metabolized by LoVo cells. The IC50 of the anthracyclines were on a several log range, though for most of the derivatives the cytotoxicity curve showed a plateau at growth inhibition of about 15-30% at increasing intracellular drug levels. A relationship between DNA damage and cytotoxicity was observed only in a very small range of DNA-SSB. It is likely that the different effects of these anthracyclines on the formation of DNA-SSB depend on a qualitatively different interaction between drug-DNA and topoisomerase II when the drug concentration is raised.

  18. Interaction of the alpha-subunit of Escherichia coli RNA polymerase with DNA: rigid body nature of the protein-DNA contact.

    PubMed

    Heyduk, E; Baichoo, N; Heyduk, T

    2001-11-30

    The alpha-subunit of Escherichia coli RNA polymerase plays an important role in the activity of many promoters by providing a direct protein-DNA contact with a specific sequence (UP element) located upstream of the core promoter sequence. To obtain insight into the nature of thermodynamic forces involved in the formation of this protein-DNA contact, the binding of the alpha-subunit of E. coli RNA polymerase to a fluorochrome-labeled DNA fragment containing the rrnB P1 promoter UP element sequence was quantitatively studied using fluorescence polarization. The alpha dimer and DNA formed a 1:1 complex in solution. Complex formation at 25 degrees C was enthalpy-driven, the binding was accompanied by a net release of 1-2 ions, and no significant specific ion effects were observed. The van't Hoff plot of temperature dependence of binding was linear suggesting that the heat capacity change (Deltac(p)) was close to zero. Protein footprinting with hydroxyradicals showed that the protein did not change its conformation upon protein-DNA contact formation. No conformational changes in the DNA molecule were detected by CD spectroscopy upon protein-DNA complex formation. The thermodynamic characteristics of the binding together with the lack of significant conformational changes in the protein and in the DNA suggested that the alpha-subunit formed a rigid body-like contact with the DNA in which a tight complementary recognition interface between alpha-subunit and DNA was not formed.

  19. High Throughput Measurement of Extracellular DNA Release and Quantitative NET Formation in Human Neutrophils In Vitro.

    PubMed

    Sil, Payel; Yoo, Dae-Goon; Floyd, Madison; Gingerich, Aaron; Rada, Balazs

    2016-06-18

    Neutrophil granulocytes are the most abundant leukocytes in the human blood. Neutrophils are the first to arrive at the site of infection. Neutrophils developed several antimicrobial mechanisms including phagocytosis, degranulation and formation of neutrophil extracellular traps (NETs). NETs consist of a DNA scaffold decorated with histones and several granule markers including myeloperoxidase (MPO) and human neutrophil elastase (HNE). NET release is an active process involving characteristic morphological changes of neutrophils leading to expulsion of their DNA into the extracellular space. NETs are essential to fight microbes, but uncontrolled release of NETs has been associated with several disorders. To learn more about the clinical relevance and the mechanism of NET formation, there is a need to have reliable tools capable of NET quantitation. Here three methods are presented that can assess NET release from human neutrophils in vitro. The first one is a high throughput assay to measure extracellular DNA release from human neutrophils using a membrane impermeable DNA-binding dye. In addition, two other methods are described capable of quantitating NET formation by measuring levels of NET-specific MPO-DNA and HNE-DNA complexes. These microplate-based methods in combination provide great tools to efficiently study the mechanism and regulation of NET formation of human neutrophils.

  20. Cooperative DNA binding and protein/DNA fiber formation increases the activity of the Dnmt3a DNA methyltransferase.

    PubMed

    Emperle, Max; Rajavelu, Arumugam; Reinhardt, Richard; Jurkowska, Renata Z; Jeltsch, Albert

    2014-10-24

    The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low μm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.

    PubMed

    Weeden, Clare E; Asselin-Labat, Marie-Liesse

    2018-01-01

    Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide.

    PubMed

    Murata, Mariko; Suzuki, Toshinari; Midorikawa, Kaoru; Oikawa, Shinji; Kawanishi, Shosuke

    2004-09-15

    Interstrand DNA cross-linking has been considered to be the primary action mechanism of cyclophosphamide (CP) and its hydroperoxide derivative, 4-hydroperoxycyclophosphamide (4-HC). To clarify the mechanism of anti-tumor effects by 4-HC, we investigated DNA damage in a human leukemia cell line, HL-60, and its H(2)O(2)-resistant clone HP100. Apoptosis DNA ladder formation was detected in HL-60 cells treated with 4-HC, whereas it was not observed in HP100 cells. 4-HC significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, a marker of oxidative DNA damage, in HL-60 cells. On the other hand, CP did not significantly induce 8-oxodG formation and apoptosis in HL-60 cells under the same conditions as did 4-HC. Using (32)P-labeled DNA fragments from the human p53 tumor suppressor gene, 4-HC was found to cause Cu(II)-mediated oxidative DNA damage, but CP did not. Catalase inhibited 4-HC-induced DNA damage, including 8-oxodG formation, suggesting the involvement of H(2)O(2). The generation of H(2)O(2) during 4-HC degradation was ascertained by procedures using scopoletin and potassium iodide. We conclude that, in addition to DNA cross-linking, oxidative DNA damage through H(2)O(2) generation may participate in the anti-tumor effects of 4-HC.

  3. The nucleoid-associated protein Dan organizes chromosomal DNA through rigid nucleoprotein filament formation in E. coli during anoxia.

    PubMed

    Lim, Ci Ji; Lee, Sin Yi; Teramoto, Jun; Ishihama, Akira; Yan, Jie

    2013-01-01

    Dan is a transcription factor that regulates the ttd operon encoding tartrate dehydratase. During anaerobic conditions, its copy number increases by 100-fold, making Dan an abundant nucleoid-associated protein. However, little is known about the mode of Dan-DNA interaction. To understand its cellular functions, we used single-molecule manipulation and imaging techniques to show that Dan binds cooperatively along DNA, resulting in formation of a rigid periodic nucleoprotein filament that strongly restricts accessibility to DNA. Furthermore, in the presence of physiologic levels of magnesium, these filaments interact with each other to cause global DNA condensation. Overall, these results shed light on the architectural role of Dan in the compaction of Escherichia coli chromosomal DNA under anaerobic conditions. Formation of the nucleoprotein filament provides a basis in understanding how Dan may play roles in both chromosomal DNA protection and gene regulation.

  4. M-DNA is stabilised in G•C tracts or by incorporation of 5-fluorouracil

    PubMed Central

    Wood, David O.; Dinsmore, Michael J.; Bare, Grant A.; Lee, Jeremy S.

    2002-01-01

    M-DNA is a complex between the divalent metal ions Zn2+, Ni2+ and Co2+ and duplex DNA which forms at a pH of ∼8.5. The stability and formation of M-DNA was monitored with an ethidium fluorescence assay in order to assess the relationship between pH, metal ion concentration, DNA concentration and the base composition. The dismutation of calf thymus DNA exhibits hysteresis with the formation of M-DNA occurring at a higher pH than the reconversion of M-DNA back to B-DNA. Hysteresis is most prominent with the Ni form of M-DNA where complete reconversion to B-DNA takes several hours even in the presence of EDTA. Increasing the DNA concentration leads to an increase in the metal ion concentration required for M-DNA formation. Both poly(dG)•poly(dC) and poly(dA)•poly(dT) formed M-DNA more readily than the corresponding mixed sequence DNAs. For poly(dG)•(poly(dC) M-DNA formation was observed at pH 7.4 with 0.5 mM ZnCl2. Modified bases were incorporated into a 500 bp fragment of phage λ DNA by polymerase chain reaction. DNAs in which guanine was replaced with hypoxanthine or thymine with 5-fluorouracil formed M-DNA at pHs below 8 whereas substitutions such as 2-aminoadenine and 5-methylcytosine had little effect. Poly[d(A5FU)] also formed a very stable M-DNA duplex as judged from Tm measurements. It is evident that the lower the pKa of the imino proton of the base, the lower the pH at which M-DNA will form; a finding that is consistent with the replacement of the imino proton with the metal ion. PMID:12000844

  5. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    PubMed

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  6. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog

    2016-01-01

    Abstract Aims: Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. Results: We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. Innovation: This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. Conclusion: MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072–1083. PMID:26935406

  7. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy.

    PubMed

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V

    2016-06-20

    Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

  8. Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages.

    PubMed

    Cannan, Wendy J; Tsang, Betty P; Wallace, Susan S; Pederson, David S

    2014-07-18

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages*

    PubMed Central

    Cannan, Wendy J.; Tsang, Betty P.; Wallace, Susan S.; Pederson, David S.

    2014-01-01

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. PMID:24891506

  10. Multiplexed detection of anthrax-related toxin genes.

    PubMed

    Moser, Michael J; Christensen, Deanna R; Norwood, David; Prudent, James R

    2006-02-01

    Simultaneous analysis of three targets in three colors on any real-time polymerase chain reaction (PCR) instrument would increase the flexibility of real-time PCR. For the detection of Bacillus strains that can cause inhalation anthrax-related illness, this ability would be valuable because two plasmids confer virulence, and internal positive controls are needed to monitor the testing in cases lacking target-specific signals. Using a real-time PCR platform called MultiCode-RTx, multiple assays were developed that specifically monitor the presence of Bacillus anthracis-specific virulence plasmid-associated genes. In particular for use on LightCycler-1, two triplex RTx systems demonstrated high sensitivity with limits of detection nearing single-copy levels for both plasmids. Specificity was established using a combination of Ct values and correct amplicon melting temperatures. All reactions were further verified by detection of an internal positive control. For these two triplex RTx assays, the analytical detection limit was one to nine plasmid copy equivalents, 100% analytical specificity with a 95% confidence interval (CI) of 9%, and 100% analytical sensitivity with a CI of 2%. Although further testing using clinical or environmental samples will be required to assess diagnostic sensitivity and specificity, the RTx platform achieves similar results to those of probe-based real-time systems.

  11. Differential DNA lesion formation and repair in heterochromatin and euchromatin

    PubMed Central

    Han, Chunhua; Srivastava, Amit Kumar; Cui, Tiantian; Wang, Qi-En; Wani, Altaf A.

    2016-01-01

    Discretely orchestrated chromatin condensation is important for chromosome protection from DNA damage. However, it is still unclear how different chromatin states affect the formation and repair of nucleotide excision repair (NER) substrates, e.g. ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPD) and the pyrimidine (6-4) pyrimidone photoproducts (6-4PP), as well as cisplatin-induced intrastrand crosslinks (Pt-GG). Here, by using immunofluorescence and chromatin immunoprecipitation assays, we have demonstrated that CPD, which cause minor distortion of DNA double helix, can be detected in both euchromatic and heterochromatic regions, while 6-4PP and Pt-GG, which cause major distortion of DNA helix, can exclusively be detected in euchromatin, indicating that the condensed chromatin environment specifically interferes with the formation of these DNA lesions. Mechanistic investigation revealed that the class III histone deacetylase SIRT1 is responsible for restricting the formation of 6-4PP and Pt-GG in cells, probably by facilitating the maintenance of highly condensed heterochromatin. In addition, we also showed that the repair of CPD in heterochromatin is slower than that in euchromatin, and DNA damage binding protein 2 (DDB2) can promote the removal of CPD from heterochromatic region. In summary, our data provide evidence for differential formation and repair of DNA lesions that are substrates of NER. Both the sensitivity of DNA to damage and the kinetics of repair can be affected by the underlying level of chromatin compaction. PMID:26717995

  12. NF-κB mediates Gadd45β expression and DNA demethylation in the hippocampus during fear memory formation.

    PubMed

    Jarome, Timothy J; Butler, Anderson A; Nichols, Jessica N; Pacheco, Natasha L; Lubin, Farah D

    2015-01-01

    Gadd45-mediated DNA demethylation mechanisms have been implicated in the process of memory formation. However, the transcriptional mechanisms involved in the regulation of Gadd45 gene expression during memory formation remain unexplored. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) controls transcription of genes in neurons and is a critical regulator of synaptic plasticity and memory formation. In silico analysis revealed several NF-κB (p65/RelA and cRel) consensus sequences within the Gadd45β gene promoter. Whether NF-κB activity regulates Gadd45 expression and associated DNA demethylation in neurons during memory formation is unknown. Here, we found that learning in a fear conditioning paradigm increased Gadd45β gene expression and brain-derivedneurotrophic factor (BDNF) DNA demethylation in area CA1 of the hippocampus, both of which were prevented with pharmacological inhibition of NF-κB activity. Further experiments found that conditional mutations in p65/RelA impaired fear memory formation but did not alter changes in Gadd45β expression. The learning-induced increases in Gadd45β mRNA levels, Gadd45β binding at the BDNF gene and BDNF DNA demethylation were blocked in area CA1 of the c-rel knockout mice. Additionally, local siRNA-mediated knockdown of c-rel in area CA1 prevented fear conditioning-induced increases in Gadd45β expression and BDNF DNA demethylation, suggesting that c-Rel containing NF-κB transcription factor complex is responsible for Gadd45β regulation during memory formation. Together, these results support a novel transcriptional role for NF-κB in regulation of Gadd45β expression and DNA demethylation in hippocampal neurons during fear memory.

  13. DNA adduct profiling of in vitro colonic meat digests to map red vs. white meat genotoxicity.

    PubMed

    Hemeryck, Lieselot Y; Rombouts, Caroline; De Paepe, Ellen; Vanhaecke, Lynn

    2018-05-01

    The consumption of red meat has been linked to an increased colorectal cancer (CRC) risk. One of the major hypotheses states that heme iron (present in red meat) stimulates the formation of genotoxic N-nitroso compounds (NOCs) and lipid peroxidation products (LPOs). By means of DNA adductomics, chemically induced DNA adduct formation can be mapped in relation to e.g. dietary exposures. In this study, this state-of-the-art methodology was used to investigate alkylation and (lipid per)oxidation induced DNA adduct formation in in vitro red vs. white meat digests. In doing so, 90 alkylation and (lipid per)oxidation induced DNA adduct types could be (tentatively) identified. Overall, 12 NOC- and/or LPO-related DNA adduct types, i.e. dimethyl-T (or ethyl-T), hydroxymethyl-T, tetramethyl-T, methylguanine (MeG), guanidinohydantoin, hydroxybutyl-C, hydroxymethylhydantoin, malondialdehyde-x3-C, O 6 -carboxymethylguanine, hydroxyethyl-T, carboxyethyl-T and 3,N 4 -etheno-C were singled out as potential heme-rich meat digestion markers. The retrieval of these DNA adduct markers is in support of the heme, NOC and LPO hypotheses, suggesting that DNA adduct formation may indeed contribute to red meat related CRC risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Temporal and spatial features of the formation of DNA adducts in sulfur mustard-exposed skin.

    PubMed

    Batal, Mohamed; Boudry, Isabelle; Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Bérard, Izabel; Cléry-Barraud, Cécile; Douki, Thierry

    2013-12-15

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM-DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM-DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. © 2013.

  15. Features of the damage produced by proflavine on transforming deoxyribonucleic acid.

    PubMed

    Cabrera-Juárez, E; Sánchez-Rincón, D A

    1979-03-01

    Proflavine formed a complex with transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae, with optimal formation at a ratio of proflavine to DNA of 0.06. The rate of dissociation of the complex by dialysis increased in the order: native, denatured, renatured DNA. The transforming activity of the DNA was reduced by its interaction with proflavine. This inactivation was dependent on the physical state of the DNA, the proflavine concentration, and the temperature. DNA that had been denatured and renatured was most sensitive; native DNA was much less sensitive. The inactivation remained after dialysis and was stable to prolonged storage. It is concluded that the inactivation of transforming DNA by proflavine takes place by a mechanism different from that of DNA-proflavine complex formation.

  16. Phosphorylation of an HP1-like protein is a prerequisite for heterochromatin body formation in Tetrahymena DNA elimination.

    PubMed

    Kataoka, Kensuke; Noto, Tomoko; Mochizuki, Kazufumi

    2016-08-09

    Multiple heterochromatic loci are often clustered into a higher order nuclear architecture called a heterochromatin body in diverse eukaryotes. Although phosphorylation of Heterochromatin Protein 1 (HP1) family proteins regulates heterochromatin dynamics, its role in heterochromatin bodies remains unknown. We previously reported that dephosphorylation of the HP1-like protein Pdd1p is required for the formation of heterochromatin bodies during the process of programmed DNA elimination in the ciliated protozoan Tetrahymena Here, we show that the heterochromatin body component Jub4p is required for Pdd1p phosphorylation, heterochromatin body formation, and DNA elimination. Moreover, our analyses of unphosphorylatable Pdd1p mutants demonstrate that Pdd1p phosphorylation is required for heterochromatin body formation and DNA elimination, whereas it is dispensable for local heterochromatin assembly. Therefore, both phosphorylation and the following dephosphorylation of Pdd1p are necessary to facilitate the formation of heterochromatin bodies. We suggest that Jub4p-mediated phosphorylation of Pdd1p creates a chromatin environment that is a prerequisite for subsequent heterochromatin body assembly and DNA elimination.

  17. Mechanism of UVA-dependent DNA damage induced by an antitumor drug dacarbazine in relation to its photogenotoxicity.

    PubMed

    Iwamoto, Takuya; Hiraku, Yusuke; Okuda, Masahiro; Kawanishi, Shosuke

    2008-03-01

    It has been reported that dacarbazine (DTIC) is photogenotoxic. The purpose of this study is to clarify the mechanism of photogenotoxicity induced by DTIC. We examined DNA damage induced by UVA-irradiated DTIC using 32P-5'-end-labeled DNA fragments obtained from human genes. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA was measured by high performance liquid chromatograph with an electrochemical detector. Electron spin resonance (ESR) spin-trapping experiments were performed to detect radical species generated from UVA-irradiated DTIC. UVA-irradiated DTIC caused DNA damage at guanine residues, especially at the 5'-GGT-3' sequence in the presence of Cu(II) and also induced 8-oxodG generation in calf thymus DNA. DTIC-induced photodamage to DNA fragments was partially inhibited by catalase, whereas 8-oxodG formation was significantly increased by catalase. NaN3, a carbene scavenger, inhibited DNA damage and 8-oxodG formation in a dose-dependent manner, suggesting that carbene intermediates are involved. The ESR spin-trapping experiments demonstrated the generation of aryl radicals in the process of photodegradation of DTIC. Photoactivated DTIC generates the carbene and aryl radicals, which may induce both DNA adduct and 8-oxodG formation, resulting in photogenotoxicity. This study could provide an insight into the safe usage of DTIC.

  18. Quantification of DNA using the luminescent oxygen channeling assay.

    PubMed

    Patel, R; Pollner, R; de Keczer, S; Pease, J; Pirio, M; DeChene, N; Dafforn, A; Rose, S

    2000-09-01

    Simplified and cost-effective methods for the detection and quantification of nucleic acid targets are still a challenge in molecular diagnostics. Luminescent oxygen channeling assay (LOCI(TM)) latex particles can be conjugated to synthetic oligodeoxynucleotides and hybridized, via linking probes, to different DNA targets. These oligomer-conjugated LOCI particles survive thermocycling in a PCR reaction and allow quantified detection of DNA targets in both real-time and endpoint formats. The endpoint DNA quantification format utilized two sensitizer bead types that are sensitive to separate illumination wavelengths. These two bead types were uniquely annealed to target or control amplicons, and separate illuminations generated time-resolved chemiluminescence, which distinguished the two amplicon types. In the endpoint method, ratios of the two signals allowed determination of the target DNA concentration over a three-log range. The real-time format allowed quantification of the DNA target over a six-log range with a linear relationship between threshold cycle and log of the number of DNA targets. This is the first report of the use of an oligomer-labeled latex particle assay capable of producing DNA quantification and sequence-specific chemiluminescent signals in a homogeneous format. It is also the first report of the generation of two signals from a LOCI assay. The methods described here have been shown to be easily adaptable to new DNA targets because of the generic nature of the oligomer-labeled LOCI particles.

  19. Relationship between DNA damage response, initiated by camptothecin or oxidative stress, and DNA replication, analyzed by quantitative 3D image analysis.

    PubMed

    Berniak, K; Rybak, P; Bernas, T; Zarębski, M; Biela, E; Zhao, H; Darzynkiewicz, Z; Dobrucki, J W

    2013-10-01

    A method of quantitative analysis of spatial (3D) relationship between discrete nuclear events detected by confocal microscopy is described and applied in analysis of a dependence between sites of DNA damage signaling (γH2AX foci) and DNA replication (EdU incorporation) in cells subjected to treatments with camptothecin (Cpt) or hydrogen peroxide (H2O2). Cpt induces γH2AX foci, likely reporting formation of DNA double-strand breaks (DSBs), almost exclusively at sites of DNA replication. This finding is consistent with the known mechanism of induction of DSBs by DNA topoisomerase I (topo1) inhibitors at the sites of collisions of the moving replication forks with topo1-DNA "cleavable complexes" stabilized by Cpt. Whereas an increased level of H2AX histone phosphorylation is seen in S-phase of cells subjected to H2O2, only a minor proportion of γH2AX foci coincide with DNA replication sites. Thus, the increased level of H2AX phosphorylation induced by H2O2 is not a direct consequence of formation of DNA lesions at the sites of moving DNA replication forks. These data suggest that oxidative stress induced by H2O2 and formation of the primary H2O2-induced lesions (8-oxo-7,8-dihydroguanosine) inhibits replication globally and triggers formation of γH2AX at various distances from replication forks. Quantitative analysis of a frequency of DNA replication sites and γH2AX foci suggests also that stalling of replicating forks by Cpt leads to activation of new DNA replication origins. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  20. Using DNA mechanics to predict in vitro nucleosome positions and formation energies

    PubMed Central

    Morozov, Alexandre V.; Fortney, Karissa; Gaykalova, Daria A.; Studitsky, Vasily M.; Widom, Jonathan; Siggia, Eric D.

    2009-01-01

    In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While competition with other DNA-binding factors and action of chromatin remodeling enzymes significantly affect nucleosome formation in vivo, nucleosome positions in vitro are determined by steric exclusion and sequence alone. We have developed a biophysical model, DNABEND, for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a set of in vitro nucleosome positions mapped at high resolution. We have also made a first ab initio prediction of nucleosomal DNA geometries, and checked its accuracy against the nucleosome crystal structure. We have used DNABEND to design both strong and weak histone- binding sequences, and measured the corresponding free energies of nucleosome formation. We find that DNABEND can successfully predict in vitro nucleosome positions and free energies, providing a physical explanation for the intrinsic sequence dependence of histone–DNA interactions. PMID:19509309

  1. Determination of initiation of DNA replication before and after nuclear formation in Xenopus egg cell free extracts

    PubMed Central

    1993-01-01

    Xenopus egg extracts prepared before and after egg activation retain M- and S-phase specific activity, respectively. Staurosporine, a potent inhibitor of protein kinase, converted M-phase extracts into interphase- like extracts that were capable of forming nuclei upon the addition of sperm DNA. The nuclei formed in the staurosporine treated M-phase extract were incapable of replicating DNA, and they were unable to initiate replication upon the addition of S-phase extracts. Furthermore, replication was inhibited when the staurosporine-treated M- phase extract was added in excess to the staurosporine-treated S-phase extract before the addition of DNA. The membrane-depleted S-phase extract supported neither nuclear formation nor replication; however, preincubation of sperm DNA with these extracts allowed them to form replication-competent nuclei upon the addition of excess staurosporine- treated M-phase extract. These results demonstrate that positive factors in the S-phase extracts determined the initiation of DNA replication before nuclear formation, although these factors were unable to initiate replication after nuclear formation. PMID:8253833

  2. Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

    PubMed Central

    Köck, Josef; Rösler, Christine; Zhang, Jing-Jing; Blum, Hubert E.; Nassal, Michael; Thoma, Christian

    2010-01-01

    Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process. PMID:20824087

  3. PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein.

    PubMed

    Wessel, Sarah R; Marceau, Aimee H; Massoni, Shawn C; Zhou, Ruobo; Ha, Taekjip; Sandler, Steven J; Keck, James L

    2013-06-14

    Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.

  4. R-loop-mediated genomic instability is caused by impairment of replication fork progression

    PubMed Central

    Gan, Wenjian; Guan, Zhishuang; Liu, Jie; Gui, Ting; Shen, Keng; Manley, James L.; Li, Xialu

    2011-01-01

    Transcriptional R loops are anomalous RNA:DNA hybrids that have been detected in organisms from bacteria to humans. These structures have been shown in eukaryotes to result in DNA damage and rearrangements; however, the mechanisms underlying these effects have remained largely unknown. To investigate this, we first show that R-loop formation induces chromosomal DNA rearrangements and recombination in Escherichia coli, just as it does in eukaryotes. More importantly, we then show that R-loop formation causes DNA replication fork stalling, and that this in fact underlies the effects of R loops on genomic stability. Strikingly, we found that attenuation of replication strongly suppresses R-loop-mediated DNA rearrangements in both E. coli and HeLa cells. Our findings thus provide a direct demonstration that R-loop formation impairs DNA replication and that this is responsible for the deleterious effects of R loops on genome stability from bacteria to humans. PMID:21979917

  5. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation.

    PubMed

    Iwasa, Takuma; Han, Yong-Woon; Hiramatsu, Ryo; Yokota, Hiroaki; Nakao, Kimiko; Yokokawa, Ryuji; Ono, Teruo; Harada, Yoshie

    2015-12-14

    The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA-RuvB-Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA-Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA-Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA-RuvB-Holliday junction DNA complex formation.

  6. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.

    PubMed

    Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario

    2016-08-08

    DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.

  7. Photoinduced DNA Interstrand Cross-Link Formation by Naphthalene Boronates via a Carbocation.

    PubMed

    Wang, Yibin; Lin, Zechao; Fan, Heli; Peng, Xiaohua

    2016-07-18

    Most photoinduced DNA cross-link formation by a bifunctional aryl derivative is through a bisquinone methide. DNA cross-linking via a bisarylcarbocation remains a less explored area. We designed and synthesized a series of naphthalene boronates that produce DNA interstrand cross-links via a carbocation upon UV irradiation. A free radical was generated from the naphthalene boronates with 350 nm irradiation and further converted to a carbocation by electron transfer. The activation mechanism was determined using the orthogonal traps, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and methoxyamine that react with either the free radical or the carbocation but not both. This represents a novel example of photoinduced DNA cross-link formation via carbocations generated from a bisaryl derivative. This work provides information useful for the design of novel photoactivated DNA cross-linking agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation of bio-deep eutectic solvent triggered cephalopod shaped silver chloride-DNA hybrid material having antibacterial and bactericidal activity.

    PubMed

    Bhatt, Jitkumar; Mondal, Dibyendu; Bhojani, Gopal; Chatterjee, Shruti; Prasad, Kamalesh

    2015-11-01

    2.5% w/w DNA (Salmon testes) was solubilized in a bio-deep eutectic solvent [(bio-DES), obtained by the complexation of choline chloride and ethylene glycol at 1:2 molar ratio] containing 1% w/w of silver chloride (AgCl) to yield a AgCl decorated DNA based hybrid material. Concentration dependent formation of AgCl crystals in the DES was observed and upon interaction with DNA it gave formation of a cephalopod shaped hybrid material. DNA was found to maintain its chemical and structural stability in the material. Further, AgCl microstructures were found to have orderly self assembled on the DNA helices indicating the electrostatic interaction between Ag(+) and phosphate side chain of DNA as a driving force for the formation of the material with ordered microstructural distribution of AgCl. Furthermore, the functionalized material exhibited excellent antibacterial and bactericidal activity against both Gram negative and Gram positive pathogenic bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. PEG and mPEG-anthracene induce DNA condensation and particle formation.

    PubMed

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2011-08-18

    In this study, we investigated the binding of DNA with poly(ethylene glycol) (PEG) of different sizes and compositions such as PEG 3350, PEG 6000, and mPEG-anthracene in aqueous solution at physiological conditions. The effects of size and composition on DNA aggregation and condensation as well as conformation were determined using Fourier transform infrared (FTIR), UV-visible, CD, fluorescence spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed moderate complex formation for PEG 3350 and PEG 6000 and weaker interaction for mPE-anthracene-DNA adducts with both hydrophilic and hydrophobic contacts. The order of ± stability of the complexes formed is K(PEG 6000) = 1.5 (±0.4) × 10(4) M(-1) > K(PEG 3350) = 7.9 (±1) × 10(3) M(-1) > K(m(PEG-anthracene))= 3.6 (±0.8) × 10(3) M(-1) with nearly 1 bound PEG molecule per DNA. No B-DNA conformational changes were observed, while DNA condensation and particle formation occurred at high PEG concentration.

  10. Electrochemical detection of sequence-specific DNA based on formation of G-quadruplex-hemin through continuous hybridization chain reaction.

    PubMed

    Sun, Xiaofan; Chen, Haohan; Wang, Shuling; Zhang, Yiping; Tian, Yaping; Zhou, Nandi

    2018-08-27

    A high-sensitive detection of sequence-specific DNA was established based on the formation of G-quadruplex-hemin complex through continuous hybridization chain reaction (HCR). Taking HIV DNA sequence as an example, a capture probe complementary to part of HIV DNA was firstly self-assembled onto the surface of Au electrode. Then a specially designed assistant probe with both terminals complementary to the target DNA and a G-quadruplex-forming sequence in the center was introduced into the detection solution. In the presence of both the target DNA and the assistant probe, the target DNA can be captured on the electrode surface and then a continuous HCR can be conducted due to the mutual recognition of the target DNA and the assistant probe, leading to the formation of a large number of G-quadruplex on the electrode surface. With the help of hemin, a pronounced electrochemical signal can be observed in differential pulse voltammetry (DPV), due to the formation of G-quadruplex-hemin complex. The peak current is linearly related with the logarithm of the concentration of the target DNA in the range from 10 fM to 10 pM. The electrochemical sensor has high selectivity to clearly discriminate single-base mismatched and three-base mismatched sequences from the original HIV DNA sequence. Moreover, the established DNA sensor was challenged by detection of HIV DNA in human serum samples, which showed the low detection limit of 6.3 fM. Thus it has great application prospect in the field of clinical diagnosis and environmental monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe

    PubMed Central

    Lenglez, Sandrine; Hermand, Damien; Decottignies, Anabelle

    2010-01-01

    Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites. PMID:20688779

  12. Co-transcriptional formation of DNA:RNA hybrid G-quadruplex and potential function as constitutional cis element for transcription control.

    PubMed

    Zheng, Ke-wei; Xiao, Shan; Liu, Jia-quan; Zhang, Jia-yu; Hao, Yu-hua; Tan, Zheng

    2013-05-01

    G-quadruplex formation in genomic DNA is considered to regulate transcription. Previous investigations almost exclusively focused on intramolecular G-quadruplexes formed by DNA carrying four or more G-tracts, and structure formation has rarely been studied in physiologically relevant processes. Here, we report an almost entirely neglected, but actually much more prevalent form of G-quadruplexes, DNA:RNA hybrid G-quadruplexes (HQ) that forms in transcription. HQ formation requires as few as two G-tracts instead of four on a non-template DNA strand. Potential HQ sequences (PHQS) are present in >97% of human genes, with an average of 73 PHQSs per gene. HQ modulates transcription under both in vitro and in vivo conditions. Transcriptomal analysis of human tissues implies that maximal gene expression may be limited by the number of PHQS in genes. These features suggest that HQs may play fundamental roles in transcription regulation and other transcription-mediated processes.

  13. Features of the damage produced by proflavine on transforming deoxyribonucleic acid.

    PubMed Central

    Cabrera-Juárez, E; Sánchez-Rincón, D A

    1979-01-01

    Proflavine formed a complex with transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae, with optimal formation at a ratio of proflavine to DNA of 0.06. The rate of dissociation of the complex by dialysis increased in the order: native, denatured, renatured DNA. The transforming activity of the DNA was reduced by its interaction with proflavine. This inactivation was dependent on the physical state of the DNA, the proflavine concentration, and the temperature. DNA that had been denatured and renatured was most sensitive; native DNA was much less sensitive. The inactivation remained after dialysis and was stable to prolonged storage. It is concluded that the inactivation of transforming DNA by proflavine takes place by a mechanism different from that of DNA-proflavine complex formation. PMID:312284

  14. XV-15 Tilt Rotor fly-by-wire collective control demonstrator development specifications

    NASA Technical Reports Server (NTRS)

    Meuleners, R. J.

    1981-01-01

    A fly by wire system in the collective control system for XV-15 Tilt Rotor Research Aircraft was evaluated. The collective control system was selected because it requires a system tracking accuracy between right and left rotors of approximately 0.1%. The performance characteristics of the collectors axel provide typical axis control response data. The demonstrator is bread boarded as a dual system instead of the triplex system.

  15. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Poerschke, R. Beach, T. Begg

    IBACOS investigated the performance of a small-diameter high-velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance.

  16. Energy and Charge Localization in Irradiated DNA

    DTIC Science & Technology

    1994-01-01

    distances. Numerous experiments support this viewpoint. As an example we note that exciplex formation in DNA is a rapid process /31/ estimated to be the...B-DNA) and tT is the trapping time. Assuming an exciplex formation time of 10`2 sec gives a transfer distance d, of 1.5 nm or approximately 4 to 5

  17. FORMATION AND PERSISTANCE OF DNA ADDUCTS IN THE LIVER OF BROWN BULLHEADS EXPOSED TO BENZO(A)PYRENE

    EPA Science Inventory

    The formation and persistence of benzo[a]pyrene (BP)-DNA adducts in the liver of brown bullheads (Ictalurus nebulosus) treated with the hydrocarbon (20 mg/kg body wt, i.p.) was investigated using the 32P-postlabeling assay. he highest level of covalent binding of BP to liver DNA ...

  18. Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms

    PubMed Central

    Mlynek, Kevin D.; Callahan, Mary T.; Shimkevitch, Anton V.; Farmer, Jackson T.; Endres, Jennifer L.; Marchand, Mélodie; Bayles, Kenneth W.; Horswill, Alexander R.

    2016-01-01

    Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action—d-cycloserine and fosfomycin—also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation. PMID:26856828

  19. Site-specificity of abnormal excision: the mechanism of formation of a specialized transducing bacteriophage lambda plac5.

    PubMed Central

    Shpakovski, G V; Berlin, Y A

    1984-01-01

    Molecular mechanism of the specialized transducing bacteriophage lambda plac5 formation has been studied. Phage-bacterial DNA junctions in lambda plac5 DNA are localized and primary structure of regions of the abnormal excisional recombination leading to the phage formation is elucidated; the crossover region proved to be comparable with the central part of attP and attB sites (the core and the adjacent tetranucleotide) in length and degree of homology. Bacterial insert in lambda plac5 DNA is shown to end immediately after Z-Y spacer, the DNA not containing lacY gene segments. The data obtained led to the conclusion of site-specific (homologous) character of abnormal excision upon formation of lambda transducing bacteriophages. Possible mechanisms of the excision are discussed. Images PMID:6091038

  20. The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability

    PubMed Central

    Hamperl, Stephan; Cimprich, Karlene A.

    2014-01-01

    Accurate DNA replication and DNA repair are crucial for the maintenance of genome stability, and it is generally accepted that failure of these processes is a major source of DNA damage in cells. Intriguingly, recent evidence suggests that DNA damage is more likely to occur at genomic loci with high transcriptional activity. Furthermore, loss of certain RNA processing factors in eukaryotic cells is associated with increased formation of co-transcriptional RNA:DNA hybrid structures known as R-loops, resulting in double-strand breaks (DSBs) and DNA damage. However, the molecular mechanisms by which R-loop structures ultimately lead to DNA breaks and genome instability is not well understood. In this review, we summarize the current knowledge about the formation, recognition and processing of RNA:DNA hybrids, and discuss possible mechanisms by which these structures contribute to DNA damage and genome instability in the cell. PMID:24746923

  1. THE K-REGION DIHYDRODIOL OF BENZO[A]PYRENE INDUCES DNA DAMAGE AND MORPHOLOGICAL CELL TRANSFORMATION IN C3H10T1/2CL8 MOUSE EMBRYO CELLS WITHOUT THE FORMATION OF DETECTABLE STABLE COVALENT DNA ADDUCTS

    EPA Science Inventory

    The K -region dihydrodiol ofbenzo[ a ]pyrene induces DNA damage and morphological cell transformation in C3HlOTY2CL8 mouse embryo cells without the formation of detectable stable covalent DNA adducts

    Benzo[ a ]pyrene (B[ a ]P) is the most thoroughly studied polycyclic aro...

  2. Hybrid DNA i-motif: Aminoethylprolyl-PNA (pC5) enhance the stability of DNA (dC5) i-motif structure.

    PubMed

    Gade, Chandrasekhar Reddy; Sharma, Nagendra K

    2017-12-15

    This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC 5 ) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses.

    PubMed

    Königer, Christian; Wingert, Ida; Marsmann, Moritz; Rösler, Christine; Beck, Jürgen; Nassal, Michael

    2014-10-07

    Hepatitis B virus (HBV), the causative agent of chronic hepatitis B and prototypic hepadnavirus, is a small DNA virus that replicates by protein-primed reverse transcription. The product is a 3-kb relaxed circular DNA (RC-DNA) in which one strand is linked to the viral polymerase (P protein) through a tyrosyl-DNA phosphodiester bond. Upon infection, the incoming RC-DNA is converted into covalently closed circular (ccc) DNA, which serves as a viral persistence reservoir that is refractory to current anti-HBV treatments. The mechanism of cccDNA formation is unknown, but the release of P protein is one mandatory step. Structural similarities between RC-DNA and cellular topoisomerase-DNA adducts and their known repair by tyrosyl-DNA-phosphodiesterase (TDP) 1 or TDP2 suggested that HBV may usurp these enzymes for its own purpose. Here we demonstrate that human and chicken TDP2, but only the yeast ortholog of TDP1, can specifically cleave the Tyr-DNA bond in virus-adapted model substrates and release P protein from authentic HBV and duck HBV (DHBV) RC-DNA in vitro, without prior proteolysis of the large P proteins. Consistent with TPD2's having a physiological role in cccDNA formation, RNAi-mediated TDP2 depletion in human cells significantly slowed the conversion of RC-DNA to cccDNA. Ectopic TDP2 expression in the same cells restored faster conversion kinetics. These data strongly suggest that TDP2 is a first, although likely not the only, host DNA-repair factor involved in HBV cccDNA biogenesis. In addition to establishing a functional link between hepadnaviruses and DNA repair, our results open new prospects for directly targeting HBV persistence.

  4. Mechanism and manipulation of DNA:RNA hybrid G-quadruplex formation in transcription of G-rich DNA.

    PubMed

    Zhang, Jia-yu; Zheng, Ke-wei; Xiao, Shan; Hao, Yu-hua; Tan, Zheng

    2014-01-29

    We recently reported that a DNA:RNA hybrid G-quadruplex (HQ) forms during transcription of DNA that bears two or more tandem guanine tracts (G-tract) on the nontemplate strand. Putative HQ-forming sequences are enriched in the nearby 1000 nt region right downstream of transcription start sites in the nontemplate strand of warm-blooded animals, and HQ regulates transcription under both in vitro and in vivo conditions. Therefore, knowledge of the mechanism of HQ formation is important for understanding the biological function of HQ as well as for manipulating gene expression by targeting HQ. In this work, we studied the mechanism of HQ formation using an in vitro T7 transcription model. We show that RNA synthesis initially produces an R-loop, a DNA:RNA heteroduplex formed by a nascent RNA transcript and the template DNA strand. In the following round of transcription, the RNA in the R-loop is displaced, releasing the RNA in single-stranded form (ssRNA). Then the G-tracts in the RNA can jointly form HQ with those in the nontemplate DNA strand. We demonstrate that the structural cascade R-loop → ssRNA → HQ offers opportunities to intercept HQ formation, which may provide a potential method to manipulate gene expression.

  5. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement

    PubMed Central

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2016-01-01

    Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates. PMID:27416067

  6. Long conducting polymer nanonecklaces with a `beads-on-a-string' morphology: DNA nanotube-template synthesis and electrical properties

    NASA Astrophysics Data System (ADS)

    Chen, Guofang; Mao, Chengde

    2016-05-01

    Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k

  7. Direct participation of DNA in the formation of singlet oxygen and base damage under UVA irradiation.

    PubMed

    Yagura, Teiti; Schuch, André Passaglia; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Moreno, Natália Cestari; Angeli, José Pedro Friedmann; Mendes, Davi; Severino, Divinomar; Bianchini Sanchez, Angelica; Di Mascio, Paolo; de Medeiros, Marisa Helena Gennari; Menck, Carlos Frederico Martins

    2017-07-01

    UVA light is hardly absorbed by the DNA molecule, but recent works point to a direct mechanism of DNA lesion by these wavelengths. UVA light also excite endogenous chromophores, which causes DNA damage through ROS. In this study, DNA samples were irradiated with UVA light in different conditions to investigate possible mechanisms involved in the induction of DNA damage. The different types of DNA lesions formed after irradiation were determined through the use of endonucleases, which recognize and cleave sites containing oxidized bases and cyclobutane pyrimidine dimers (CPDs), as well as through antibody recognition. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG) was also studied in more detail using electrochemical detection. The results show that high NaCl concentration and concentrated DNA are capable of reducing the induction of CPDs. Moreover, concerning damage caused by oxidative stress, the presence of sodium azide and metal chelators reduce their induction, while deuterated water increases the amounts of oxidized bases, confirming the involvement of singlet oxygen in the generation of these lesions. Curiously, however, high concentrations of DNA also enhanced the formation of oxidized bases, in a reaction that paralleled the increase in the formation of singlet oxygen in the solution. This was interpreted as being due to an intrinsic photosensitization mechanism, depending directly on the DNA molecule to absorb UVA and generate singlet oxygen. Therefore, the DNA molecule itself may act as a chromophore for UVA light, locally producing a damaging agent, which may lead to even greater concerns about the deleterious impact of sunlight. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Modeling DNA bubble formation at the atomic scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beleva, V; Rasmussen, K. O.; Garcia, A. E.

    We describe the fluctuations of double stranded DNA molecules using a minimalist Go model over a wide range of temperatures. Minimalist models allow us to describe, at the atomic level, the opening and formation of bubbles in DNA double helices. This model includes all the geometrical constraints in helix melting imposed by the 3D structure of the molecule. The DNA forms melted bubbles within double helices. These bubbles form and break as a function of time. The equilibrium average number of broken base pairs shows a sharp change as a function of T. We observe a temperature profile of sequencemore » dependent bubble formation similar to those measured by Zeng et al. Long nuclei acid molecules melt partially through the formations of bubbles. It is known that CG rich sequences melt at higher temperatures than AT rich sequences. The melting temperature, however, is not solely determined by the CG content, but by the sequence through base stacking and solvent interactions. Recently, models that incorporate the sequence and nonlinear dynamics of DNA double strands have shown that DNA exhibits a very rich dynamics. Recent extensions of the Bishop-Peyrard model show that fluctuations in the DNA structure lead to opening in localized regions, and that these regions in the DNA are associated with transcription initiation sites. 1D and 2D models of DNA may contain enough information about stacking and base pairing interactions, but lack the coupling between twisting, bending and base pair opening imposed by the double helical structure of DNA that all atom models easily describe. However, the complexity of the energy function used in all atom simulations (including solvent, ions, etc) does not allow for the description of DNA folding/unfolding events that occur in the microsecond time scale.« less

  9. INTERSPECIES COMPARISONS OF BENZO(A)PYRENE METABOLISM AND DNA-ADDUCT FORMATION IN CULTURED HUMAN AND ANIMAL BLADDER AND TRACHEOBRONCHIAL TISSUES

    EPA Science Inventory

    Cultured bladder and tracheobronchial explants from human, monkey, dog, hamster, and rat were used to study the metabolism, covalent binding to DNA, and DNA:adduct formation of (3H0benzo(a)pyrene (BP). Both organs from all species formed large amounts (40 to 70% of total 3H in th...

  10. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage

    PubMed Central

    McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg

    2005-01-01

    Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions. PMID:15933716

  11. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage.

    PubMed

    McNees, Carolyn J; Conlan, Lindus A; Tenis, Nora; Heierhorst, Jörg

    2005-07-06

    Nuclear Rad51 focus formation is required for homology-directed repair of DNA double-strand breaks (DSBs), but its regulation in response to non-DSB lesions is poorly understood. Here we report a novel human SQ/TQ cluster domain-containing protein termed ASCIZ that forms Rad51-containing foci in response to base-modifying DNA methylating agents but not in response to DSB-inducing agents. ASCIZ foci seem to form prior to Rad51 recruitment, and an ASCIZ core domain can concentrate Rad51 in focus-like structures independently of DNA damage. ASCIZ depletion dramatically increases apoptosis after methylating DNA damage and impairs Rad51 focus formation in response to methylating agents but not after ionizing radiation. ASCIZ focus formation and increased apoptosis in ASCIZ-depleted cells depend on the mismatch repair protein MLH1. Interestingly, ASCIZ foci form efficiently during G1 phase, when sister chromatids are unavailable as recombination templates. We propose that ASCIZ acts as a lesion-specific focus scaffold in a Rad51-dependent pathway that resolves cytotoxic repair intermediates, most likely single-stranded DNA gaps, resulting from MLH1-dependent processing of base lesions.

  12. Formation of DNA adducts from oil-derived products analyzed by 32P-HPLC.

    PubMed

    Akkineni, L K; Zeisig, M; Baranczewski, P; Ekström, L G; Möller, L

    2001-01-01

    The aim of this study was to investigate the genotoxic potential of DNA adducts and to compare DNA adduct levels and patterns in petroleum vacuum distillates, coal tar distillate, bitumen fume condensates, and related substances that have a wide range of boiling temperatures. An in vitro assay was used for DNA adduct analysis with human and rat S-9 liver extract metabolic activation followed by 32P-postlabeling and 32P-high-performance liquid chromatography (32p-HPLC). For petroleum distillates originating from one crude oil there was a correlation between in vitro DNA adduct formation and mutagenic index, which showed an increase with a distillation temperature of 250 degrees C and a peak around a distillation point of approximately 400 degrees C. At higher temperatures, the genotoxicity (DNA adducts and mutagenicity) rapidly declined to very low levels. Different petroleum products showed a more than 100-fold range in DNA adduct formation, with severely hydrotreated base oil and bitumen fume condensates being lowest. Coal tar distillates showed ten times higher levels of DNA adduct formation than the most potent petroleum distillate. A clustered DNA adduct pattern was seen over a wide distillation range after metabolic activation with liver extracts of rat or human origin. These clusters were eluted in a region where alkylated aromatic hydrocarbons could be expected. The DNA adduct patterns were similar for base oil and bitumen fume condensates, whereas coal tar distillates had a wider retention time range of the DNA adducts formed. Reference substances were tested in the same in vitro assay. Two- and three-ringed nonalkylated aromatics were rather low in genotoxicity, but some of the three- to four-ringed alkylated aromatics were very potent inducers of DNA adducts. Compounds with an amino functional group showed a 270-fold higher level of DNA adduct formation than the same structures with a nitro functional group. The most potent DNA adduct inducers of the 16 substances tested were, in increasing order, 9,10-dimethylanthracene, 7,12-dimethylbenz[a]anthracene and 9-vinylanthracene. Metabolic activation with human and rat liver extracts gave rise to the same DNA adduct clusters. When bioactivation with material from different human individuals was used, there was a significant correlation between the CYP 1A1 activity and the capacity to form DNA adducts. This pattern was also confirmed using the CYP 1A1 inhibitor ellipticine. The 32P-HPLC method was shown to be sensitive and reproducible, and it had the capacity to separate DNA adduct-forming substances when applied to a great variety of petroleum products.

  13. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation.

    PubMed

    Das, Theerthankar; Kutty, Samuel K; Tavallaie, Roya; Ibugo, Amaye I; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W S; Thomas, Shane R; Kumar, Naresh; Gooding, J Justin; Manefield, Mike

    2015-02-11

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation.

  14. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    PubMed Central

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  15. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.

    2000-01-01

    PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.

  16. Strategies to optimize capsid protein expression and single-stranded DNA formation of adeno-associated virus in Saccharomyces cerevisiae.

    PubMed

    Galli, A; Della Latta, V; Bologna, C; Pucciarelli, D; Cipriani, F; Backovic, A; Cervelli, T

    2017-08-01

    Adeno-associated virus type 2 (AAV) is a nonpathogenic parvovirus that is a promising tool for gene therapy. We aimed to construct plasmids for optimal expression and assembly of capsid proteins and evaluate adenovirus (Ad) protein effect on AAV single-stranded DNA (ssDNA) formation in Saccharomyces cerevisiae. Yeast expression plasmids have been developed in which the transcription of AAV capsid proteins (VP1,2,3) is driven by the constitutive ADH1 promoter or galactose-inducible promoters. Optimal VP1,2,3 expression was obtained from GAL1/10 bidirectional promoter. Moreover, we demonstrated that AAP is expressed in yeast and virus-like particles (VLPs) assembled inside the cell. Finally, the expression of two Ad proteins, E4orf6 and E1b55k, had no effect on AAV ssDNA formation. This study confirms that yeast is able to form AAV VLPs; however, capsid assembly and ssDNA formation are less efficient in yeast than in human cells. Moreover, the expression of Ad proteins did not affect AAV ssDNA formation. New manufacturing strategies for AAV-based gene therapy vectors (rAAV) are needed to reduce costs and time of production. Our study explores the feasibility of yeast as alternative system for rAAV production. © 2017 The Society for Applied Microbiology.

  17. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation.

    PubMed

    Hagiwara, Yoshihiko; Niimi, Atsuko; Isono, Mayu; Yamauchi, Motohiro; Yasuhara, Takaaki; Limsirichaikul, Siripan; Oike, Takahiro; Sato, Hiro; Held, Kathryn D; Nakano, Takashi; Shibata, Atsushi

    2017-12-12

    DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1-2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G 2 -phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm 3 . These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation.

  18. Mechanism for Clastogenic Activity of Naphthalene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchholz, Bruce A.

    2016-06-24

    Naphthalene incubations form DNA adducts in vitro in a dose dependent manner in both mouse and rat tissues. Rodent tissue incubations with naphthalene indicate that naphthalene forms as many DNA adducts as Benzo(a)pyrene, a known DNA binding carcinogen. The mouse airway has the greatest number of DNA adducts, corresponding to the higher metabolic activation of naphthalene in this location. Both rat tissues, the rat olfactory (tumor target) and the airways (non-tumor target), have similar levels of NA-DNA adducts, indicating that short term measures of initial adduct formation do not directly correlate with sites of tumor formation in the NTP bioassays.

  19. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiwamoto, R., E-mail: reiko.kiwamoto@wur.nl; Spenkelink, A.; Rietjens, I.M.C.M.

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure–activity relationships (QSARs) defined with a training set of sixmore » selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. - Highlights: • Physiologically based in silico models were made for 18 α,β-unsaturated aldehydes. • Kinetic parameters were determined by in vitro incubations and a QSAR approach. • DNA adduct formation was negligible at levels relevant for dietary intake. • The use of QSAR-based PBK/D modelling facilitates group evaluations and read-across.« less

  20. Single-Molecule Interactions of a Monoclonal Anti-DNA Antibody with DNA

    PubMed Central

    Nevzorova, Tatiana A.; Zhao, Qingze; Lomakin, Yakov A.; Ponomareva, Anastasia A.; Mukhitov, Alexander R.; Purohit, Prashant K.; Weisel, John W.; Litvinov, Rustem I.

    2017-01-01

    Interactions of DNA with proteins are essential for key biological processes and have both a fundamental and practical significance. In particular, DNA binding to anti-DNA antibodies is a pathogenic mechanism in autoimmune pathology, such as systemic lupus erythematosus. Here we measured at the single-molecule level binding and forced unbinding of surface-attached DNA and a monoclonal anti-DNA antibody MRL4 from a lupus erythematosus mouse. In optical trap-based force spectroscopy, a microscopic antibodycoated latex bead is trapped by a focused laser beam and repeatedly brought into contact with a DNA-coated surface. After careful discrimination of non-specific interactions, we showed that the DNA-antibody rupture force spectra had two regimes, reflecting formation of weaker (20–40 pN) and stronger (>40 pN) immune complexes that implies the existence of at least two bound states with different mechanical stability. The two-dimensional force-free off-rate for the DNA-antibody complexes was ~2.2 × 10−3 s−1, the transition state distance was ~0.94 nm, the apparent on-rate was ~5.26 s−1, and the stiffness of the DNA-antibody complex was characterized by a spring constant of 0.0021 pN/nm, suggesting that the DNA-antibody complex is a relatively stable, but soft and deformable macromolecular structure. The stretching elasticity of the DNA molecules was characteristic of single-stranded DNA, suggesting preferential binding of the MRL4 antibody to one strand of DNA. Collectively, the results provide fundamental characteristics of formation and forced dissociation of DNA-antibody complexes that help to understand principles of DNA-protein interactions and shed light on the molecular basis of autoimmune diseases accompanied by formation of anti-DNA antibodies. PMID:29104846

  1. Identification of Disubstituted Sulfonamide Compounds as Specific Inhibitors of Hepatitis B Virus Covalently Closed Circular DNA Formation

    PubMed Central

    Cai, Dawei; Mills, Courtney; Yu, Wenquan; Yan, Ran; Aldrich, Carol E.; Saputelli, Jeffry R.; Mason, William S.; Xu, Xiaodong; Guo, Ju-Tao; Block, Timothy M.

    2012-01-01

    Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a central role in viral infection and persistence and is the basis for viral rebound after the cessation of therapy, as well as the elusiveness of a cure even after extended treatment. Therefore, there is an urgent need for the development of novel therapeutic agents that directly target cccDNA formation and maintenance. By employing an innovative cell-based cccDNA assay in which secreted HBV e antigen is a cccDNA-dependent surrogate, we screened an in-house small-molecule library consisting of 85,000 drug-like compounds. Two structurally related disubstituted sulfonamides (DSS), termed CCC-0975 and CCC-0346, emerged and were confirmed as inhibitors of cccDNA production, with low micromolar 50% effective concentrations (EC50s) in cell culture. Further mechanistic studies demonstrated that DSS compound treatment neither directly inhibited HBV DNA replication in cell culture nor reduced viral polymerase activity in the in vitro endogenous polymerase assay but synchronously reduced the levels of HBV cccDNA and its putative precursor, deproteinized relaxed circular DNA (DP-rcDNA). However, DSS compounds did not promote the intracellular decay of HBV DP-rcDNA and cccDNA, suggesting that the compounds interfere primarily with rcDNA conversion into cccDNA. In addition, we demonstrated that CCC-0975 was able to reduce cccDNA biosynthesis in duck HBV-infected primary duck hepatocytes. This is the first attempt, to our knowledge, to identify small molecules that target cccDNA formation, and DSS compounds thus potentially serve as proof-of-concept drug candidates for development into therapeutics to eliminate cccDNA from chronic HBV infection. PMID:22644022

  2. Two modes of longe-range orientation of DNA bases realized upon compaction.

    PubMed Central

    Yevdokimov YuM; Salyanov, V I; Berg, H

    1981-01-01

    Formation of compact particles from linear DNA-anthracycline complexes is accompanied by appearance of intense bands in the CD spectra in the region of absorption of DNA bases (UV-region) and in the region of absorption of anthracycline chromophores (visible region). The intense (positive or negative) bands in the region of anthracycline absorption demonstrate an ordered helical location of anthracycline molecules on the DNA template. This fact, in its turn, is related to formation of the DNA superstructure in PEG-containing water-salt solutions with a long-range orientation of nitrogen bases. Possible types of DNA superstructures and the relation between the local- and the long-range order of bases in the DNA superstructure are discussed. PMID:6938929

  3. Xenobiotic metabolism induction and bulky DNA adducts generated by particulate matter pollution in BEAS-2B cell line: geographical and seasonal influence.

    PubMed

    Lepers, Capucine; André, Véronique; Dergham, Mona; Billet, Sylvain; Verdin, Anthony; Garçon, Guillaume; Dewaele, Dorothée; Cazier, Fabrice; Sichel, François; Shirali, Pirouz

    2014-06-01

    Airborne particulate matter (PM) toxicity is of growing interest as diesel exhaust particles have been classified as carcinogenic to humans. However, PM is a mixture of chemicals, and respective contribution of organic and inorganic fractions to PM toxicity remains unclear. Thus, we analysed the link between chemical composition of PM samples and bulky DNA adduct formation supported by CYP1A1 and 1B1 genes induction and catalytic activities. We used six native PM samples, collected in industrial, rural or urban areas, either during the summer or winter, and carried out our experiments on the human bronchial epithelial cell line BEAS-2B. Cell exposure to PM resulted in CYP1A1 and CYP1B1 genes induction. This was followed by an increase in EROD activity, leading to bulky DNA adduct formation in exposed cells. Bulky DNA adduct intensity was associated to global EROD activity, but this activity was poorly correlated with CYPs mRNA levels. However, EROD activity was correlated with both metal and polycyclic aromatic hydrocarbon (PAH) content. Finally, principal components analysis revealed three clusters for PM chemicals, and suggested synergistic effects of metals and PAHs on bulky DNA adduct levels. This study showed the ability of PM samples from various origins to generate bulky DNA adducts in BEAS-2B cells. This formation was promoted by increased expression and activity of CYPs involved in PAHs activation into reactive metabolites. However, our data highlight that bulky DNA adduct formation is only partly explained by PM content in PAHs, and suggest that inorganic compounds, such as iron, may promote bulky DNA adduct formation by supporting CYP activity. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Iron-chelating agent, deferasirox, inhibits neutrophil activation and extracellular trap formation.

    PubMed

    Kono, Mari; Saigo, Katsuyasu; Yamamoto, Shiori; Shirai, Kohei; Iwamoto, Shuta; Uematsu, Tomoko; Takahashi, Takayuki; Imoto, Shion; Hashimoto, Makoto; Minami, Yosuke; Wada, Atsushi; Takenokuchi, Mariko; Kawano, Seiji

    2016-10-01

    Iron-chelating agents, which are frequently prescribed to transfusion-dependent patients, have various useful biological effects in addition to chelation. Reactive oxygen species (ROS) produced by neutrophils can cause pulmonary endothelial cell damage, which can lead to acute lung injury (ALI). We previously reported that deferasirox (DFS), an iron-chelating agent, inhibits phorbol myristate acetate (PMA) or formyl-methionyl-leucyl-phenylalanine (fMLP)-induced ROS production in neutrophils, in vitro. Here, we investigate whether DFS inhibits vacuolization in neutrophils and neutrophil extracellular trap (NET) formation. Human neutrophils were incubated with DFS and stimulated with PMA or fMLP. Human neutrophils were separated from heparinized peripheral blood using density gradient centrifugation, and subsequently incubated with DFS. After 10 minutes, neutrophils were stimulated by PMA or fMLP. Vacuole formation was observed by electron microscopy. For observing NET formations using microscopes, immunohistological analyses using citrullinated histone H3 and myeloperoxidase antibodies, and SYTOX Green (an impermeable DNA detection dye) staining, were conducted. NET formation was measured as the quantity of double-stranded DNA (dsDNA), using the AccuBlue Broad Range dsDNA Quantitation Kit. DFS (50 μmol/L) inhibited vacuole formation in the cytoplasm and NET formation. Additionally, 5-100 μmol/L concentration of DFS inhibited the release of dsDNA in a dose-independent manner. We demonstrate that DFS inhibits not only ROS production but also vacuolization and NET formation in neutrophils. These results suggest the possibility of protective effects of DFS against NET-related adverse effects, including ALI and thrombosis. © 2016 John Wiley & Sons Australia, Ltd.

  5. The effects of DNA supercoiling on G-quadruplex formation.

    PubMed

    Sekibo, Doreen A T; Fox, Keith R

    2017-12-01

    Guanine-rich DNAs can fold into four-stranded structures that contain stacks of G-quartets. Bioinformatics studies have revealed that G-rich sequences with the potential to adopt these structures are unevenly distributed throughout genomes, and are especially found in gene promoter regions. With the exception of the single-stranded telomeric DNA, all genomic G-rich sequences will always be present along with their C-rich complements, and quadruplex formation will be in competition with the corresponding Watson-Crick duplex. Quadruplex formation must therefore first require local dissociation (melting) of the duplex strands. Since negative supercoiling is known to facilitate the formation of alternative DNA structures, we have investigated G-quadruplex formation within negatively supercoiled DNA plasmids. Plasmids containing multiple copies of (G3T)n and (G3T4)n repeats, were probed with dimethylsulphate, potassium permanganate and S1 nuclease. While dimethylsulphate footprinting revealed some evidence for G-quadruplex formation in (G3T)n sequences, this was not affected by supercoiling, and permanganate failed to detect exposed thymines in the loop regions. (G3T4)n sequences were not protected from DMS and showed no reaction with permanganate. Similarly, both S1 nuclease and 2D gel electrophoresis of DNA topoisomers did not detect any supercoil-dependent structural transitions. These results suggest that negative supercoiling alone is not sufficient to drive G-quadruplex formation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Interplay between Antibiotic Efficacy and Drug-Induced Lysis Underlies Enhanced Biofilm Formation at Subinhibitory Drug Concentrations

    PubMed Central

    Yu, Wen; Hallinen, Kelsey M.

    2017-01-01

    ABSTRACT Subinhibitory concentrations of antibiotics have been shown to enhance biofilm formation in multiple bacterial species. While antibiotic exposure has been associated with modulated expression of many biofilm-related genes, the mechanisms of drug-induced biofilm formation remain a focus of ongoing research efforts and may vary significantly across species. In this work, we investigate antibiotic-induced biofilm formation in Enterococcus faecalis, a leading cause of nosocomial infections. We show that biofilm formation is enhanced by subinhibitory concentrations of cell wall synthesis inhibitors but not by inhibitors of protein, DNA, folic acid, or RNA synthesis. Furthermore, enhanced biofilm is associated with increased cell lysis, increases in extracellular DNA (eDNA) levels, and increases in the density of living cells in the biofilm. In addition, we observe similar enhancement of biofilm formation when cells are treated with nonantibiotic surfactants that induce cell lysis. These findings suggest that antibiotic-induced biofilm formation is governed by a trade-off between drug toxicity and the beneficial effects of cell lysis. To understand this trade-off, we developed a simple mathematical model that predicts changes in antibiotic-induced biofilm formation due to external perturbations, and we verified these predictions experimentally. Specifically, we demonstrate that perturbations that reduce eDNA (DNase treatment) or decrease the number of living cells in the planktonic phase (a second antibiotic) decrease biofilm induction, while chemical inhibitors of cell lysis increase relative biofilm induction and shift the peak to higher antibiotic concentrations. Overall, our results offer experimental evidence linking cell wall synthesis inhibitors, cell lysis, increased eDNA levels, and biofilm formation in E. faecalis while also providing a predictive quantitative model that sheds light on the interplay between cell lysis and antibiotic efficacy in developing biofilms. PMID:29061740

  7. Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms.

    PubMed

    Mlynek, Kevin D; Callahan, Mary T; Shimkevitch, Anton V; Farmer, Jackson T; Endres, Jennifer L; Marchand, Mélodie; Bayles, Kenneth W; Horswill, Alexander R; Kaplan, Jeffrey B

    2016-05-01

    Previous studies showed that sub-MIC levels of β-lactam antibiotics stimulate biofilm formation in most methicillin-resistant Staphylococcus aureus (MRSA) strains. Here, we investigated this process by measuring the effects of sub-MIC amoxicillin on biofilm formation by the epidemic community-associated MRSA strain USA300. We found that sub-MIC amoxicillin increased the ability of USA300 cells to attach to surfaces and form biofilms under both static and flow conditions. We also found that USA300 biofilms cultured in sub-MIC amoxicillin were thicker, contained more pillar and channel structures, and were less porous than biofilms cultured without antibiotic. Biofilm formation in sub-MIC amoxicillin correlated with the production of extracellular DNA (eDNA). However, eDNA released by amoxicillin-induced cell lysis alone was evidently not sufficient to stimulate biofilm. Sub-MIC levels of two other cell wall-active agents with different mechanisms of action-d-cycloserine and fosfomycin-also stimulated eDNA-dependent biofilm, suggesting that biofilm formation may be a mechanistic adaptation to cell wall stress. Screening a USA300 mariner transposon library for mutants deficient in biofilm formation in sub-MIC amoxicillin identified numerous known mediators of S. aureus β-lactam resistance and biofilm formation, as well as novel genes not previously associated with these phenotypes. Our results link cell wall stress and biofilm formation in MRSA and suggest that eDNA-dependent biofilm formation by strain USA300 in low-dose amoxicillin is an inducible phenotype that can be used to identify novel genes impacting MRSA β-lactam resistance and biofilm formation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation.

    PubMed

    Guo, Li; Zhao, Yiming; Liu, Dingxin; Liu, Zhichao; Chen, Chen; Xu, Ruobing; Tian, Miao; Wang, Xiaohua; Chen, Hailan; Kong, Michael G

    2018-05-03

    Reactive oxygen and nitrogen species (ROS and RNS) generated by cold atmospheric-pressure plasma could damage genomic DNA, although the precise type of these DNA damage induced by plasma are poorly characterized. Understanding plasma-induced DNA damage will help to elucidate the biological effect of plasma and guide the application of plasma in ROS-based therapy. In this study, it was shown that ROS and RNS generated by physical plasma could efficiently induce DNA-protein crosslinks (DPCs) in bacteria, yeast, and human cells. An in vitro assay showed that plasma treatment resulted in the formation of covalent DPCs by activating proteins to crosslink with DNA. Mass spectrometry and hydroperoxide analysis detected oxidation products induced by plasma. DPC formation were alleviated by singlet oxygen scavenger, demonstrating the importance of singlet oxygen in this process. These results suggested the roles of DPC formation in DNA damage induced by plasma, which could improve the understanding of the biological effect of plasma and help to develop a new strategy in plasma-based therapy including infection and cancer therapy.

  9. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    PubMed Central

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products. PMID:26257724

  10. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    PubMed

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  11. Mg(II) and Ni(II) induce aggregation of poly(rA)poly(rU) to either tetra-aggregate or triplex depending on the metal ion concentration.

    PubMed

    Biver, Tarita; Busto, Natalia; García, Begoña; Leal, José M; Menichetti, Luisa; Secco, Fernando; Venturini, Marcella

    2015-10-01

    The ability of magnesium(II) and nickel(II) to induce dramatic conformational changes in the synthetic RNA poly(rA)poly(rU) has been investigated. Kinetic experiments, spectrofluorometric titrations, melting experiments and DSC measurements contribute in shedding light on a complex behaviour where the action of metal ions (Na(+), Mg(2+), Ni(2+)), in synergism with other operators as the intercalating dye coralyne and temperature, all concur in stabilising a peculiar RNA form. Mg(2+) and Ni(2+) (M) bind rapidly and almost quantitatively to the duplex (AU) to give a RNA/metal ion complex (AUM). Then, by the union of two AUM units, an unstable tetra-aggregate (UAUA(M2)*) is formed which, in the presence of a relatively modest excess of metal, evolves to the UAUM triplex by releasing a single AM strand. On the other hand, under conditions of high metal content, the UAUA(M2)* intermediate rearranges to give a more stable tetra-aggregate (UAUA(M2)). As concerns the role of coralyne (D), it is found that D strongly interacts with UAUA(M2). Also, in the presence of coralyne, the ability of divalent ions to promote the transition of AUD into UAUD is enhanced, according to the efficiency sequence [Ni(2+)]≫[Mg(2+)]≫[Na(+)]. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Stabilizing effect of propionic acid derivative of anthraquinone--polyamine conjugate incorporated into α-β chimeric oligonucleotides on the alternate-stranded triple helix.

    PubMed

    Moriguchi, Tomohisa; Azam, A T M Zafrul; Shinozuka, Kazuo

    2011-06-15

    Two types of anthraquinone conjugates were synthesized as non-nucleosidic oligonucleotide components. These include an anthraquinone derivative conjugated with 2,2-bis(hydroxymethyl)propionic acid and an anthraquinone--polyamine derivative conjugated with 2,2-bis(hydroxymethyl)propionic acid. The conjugates were successfully incorporated into the "linking-region" of the α-β chimeric oligonucleotides via phosphoramidite method as non-nucleosidic backbone units. The resultant novel α-β chimeric oligonucleotides possessed two diastereomers that were generated by the introduction of the anthraquinone conjugate with a stereogenic carbon atom. The isomers were successfully separated by a reversed-phase HPLC. UV-melting experiments revealed that both stereoisomers formed a substantially stable alternate-strand triple helix, irrespective of the stereochemistry of the incorporated non-nucleosidic backbone unit. However, the enhancing effect on thermal stability depended on the length of the alkyl linker connecting anthraquinone moiety and the propionic acid moiety. The sequence discrimination ability of the chimeric oligonucleotides toward mismatch target duplex was also examined. The T(m) values of the triplexes containing the mismatch target were substantially lower than the T(m) values of those containing the full-match target. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) required for the dissociation of the triplexes into the third strand and target duplex were also measured.

  13. A triplex quantitative real-time PCR assay for differential detection of human adenovirus serotypes 2, 3 and 7.

    PubMed

    Qiu, Fang-Zhou; Shen, Xin-Xin; Zhao, Meng-Chuan; Zhao, Li; Duan, Su-Xia; Chen, Chen; Qi, Ju-Ju; Li, Gui-Xia; Wang, Le; Feng, Zhi-Shan; Ma, Xue-Jun

    2018-05-02

    Human adenovirus (HAdV) serotypes 2, 3 and 7 are more prevalent than other serotypes and have been associated with severe pneumonia in pediatric children. Molecular typing of HAdV is not routinely performed in clinical diagnostic laboratories as it is time-consuming and labor-intensive. In the present study, we developed a triplex quantitative real-time PCR assay (tq-PCR) in a single closed tube for differential detection and quantitative analysis of HAdV serotypes 2, 3 and 7. The sensitivity, specificity, reproducibility and clinical performance of tq-PCR were evaluated. The analytical sensitivity of the tq-PCR was 100 copies/reaction for each of HAdV serotypes 2, 3 and 7, and no cross-reaction with other common respiratory viruses or HAdV serotypes 1,4,5,6,31,55 and 57 was observed. The coefficients of variation (CV) of intra-assay and inter-assay were between 0.6% to 3.6%. Of 138 previously-defined HAdV-positive nasopharyngeal aspirates samples tested, the detection agreement between tq-PCR and nested PCR was 96.38% (133/138). The proposed tq-PCR assay is a sensitive, specific and reproducible method and has the potential for clinical use in the rapid and differential detection and quantitation of HAdV serotypes 2, 3 and 7.

  14. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fengxia; Zhang, Minjie; University of Chinese Academy of Sciences, Beijing 100049

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage.more » Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.« less

  15. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes.

    PubMed

    Yoo, Dae-goon; Floyd, Madison; Winn, Matthew; Moskowitz, Samuel M; Rada, Balázs

    2014-08-01

    Cystic fibrosis (CF) airway disease is characterized by Pseudomonas aeruginosa infection and recruitment of neutrophil granulocytes. Neutrophil granule components (myeloperoxidase (MPO), human neutrophil elastase (HNE)), extracellular DNA and P. aeruginosa can all be found in the CF respiratory tract and have all been associated with worsening CF lung function. Pseudomonas-induced formation of neutrophil extracellular traps (NETs) offers a likely mechanism for release of MPO, HNE and DNA from neutrophils. NETs are composed of a DNA backbone decorated with granule proteins like MPO and HNE. Here we sought to examine whether CF clinical isolates of Pseudomonas are capable of inducing NET release from human neutrophil granulocytes. We used two methods to quantify NETs. We modified a previously employed ELISA that detects MPO-DNA complexes and established a new HNE-DNA ELISA. We show that these methods reliably quantify MPO-DNA and HNE-DNA complexes, measures of NET formation. We have found that CF isolates of P. aeruginosa stimulate robust respiratory burst and NET release in human neutrophils. By comparing paired "early" and "late" bacterial isolates obtained from the same CF patient we have found that early isolates induced significantly more NET release than late isolates. Our data support that Pseudomonas-induced NET release represents an important mechanism for release of neutrophil-derived CF inflammatory mediators, and confirm that decreased induction of NET formation is required for long-term adaptation of P. aeruginosa to CF airways. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. An integrated QSAR-PBK/D modelling approach for predicting detoxification and DNA adduct formation of 18 acyclic food-borne α,β-unsaturated aldehydes.

    PubMed

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2015-01-01

    Acyclic α,β-unsaturated aldehydes present in food raise a concern because the α,β-unsaturated aldehyde moiety is considered a structural alert for genotoxicity. However, controversy remains on whether in vivo at realistic dietary exposure DNA adduct formation is significant. The aim of the present study was to develop physiologically based kinetic/dynamic (PBK/D) models to examine dose-dependent detoxification and DNA adduct formation of a group of 18 food-borne acyclic α,β-unsaturated aldehydes without 2- or 3-alkylation, and with no more than one conjugated double bond. Parameters for the PBK/D models were obtained using quantitative structure-activity relationships (QSARs) defined with a training set of six selected aldehydes. Using the QSARs, PBK/D models for the other 12 aldehydes were defined. Results revealed that DNA adduct formation in the liver increases with decreasing bulkiness of the molecule especially due to less efficient detoxification. 2-Propenal (acrolein) was identified to induce the highest DNA adduct levels. At realistic dietary intake, the predicted DNA adduct levels for all aldehydes were two orders of magnitude lower than endogenous background levels observed in disease free human liver, suggesting that for all 18 aldehydes DNA adduct formation is negligible at the relevant levels of dietary intake. The present study provides a proof of principle for the use of QSAR-based PBK/D modelling to facilitate group evaluations and read-across in risk assessment. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batal, Mohamed; Département de Toxicologie et Risques Chimiques, Unité de Brûlure Chimique, Institut de Recherche Biomédicale des Armées, Antenne de La Tronche; Boudry, Isabelle

    Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNAmore » adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM–DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker. - Highlights: • Sulfur mustard adducts are formed in DNA after skin exposure. • DNA damage formation is an early event in the pathological process of skin burn. • The amount of SM–DNA adducts is maximal at the earliest time point investigated. • Adducts are still detected 3 weeks after exposure. • Sulfur mustard diffuses in skin especially when large doses are applied.« less

  18. The study of DNA adduct 8-hydroxy-2‧deoxyguanosine (8-OHdG) formation of butylated hydroxyanisole (BHA) and its metabolite ter-butyl hydroquinone (TBHQ) through in vitro reaction with Calf Thymus DNA and 2‧deoxyguanosine

    NASA Astrophysics Data System (ADS)

    Budiawan; Purwaningsih, S. S.; Cahaya, D. I.

    2017-04-01

    Butylated Hydroxyanisole (BHA) and its metabolite Tert-Butyl Hydroquinone (TBHQ) are synthetic antioxidants, commonly used as food and beverage preservatives. Although WHO declared their safety, the use of these preservatives are still controversial because some studies showed that BHA induced proliferative effects in animal testing and TBHQ is considered as carcinogenic and causes DNA cleavage. This study is aimed to analyze the interaction between Calf Thymus DNA with BHA and TBHQ which are mediated with Copper (II) Chloride. The result of the study in spectrophotometric showed there was bathochromic shift as much as 2-3 nm in DNA treated with TBHQ. The next analysis used HPLC method in stationary phase of ODS, mobile phase of 10mM Natrium Hydrogen Phosphate Buffer and Methanol (85 : 15) for DNA adduct formation, 8-Hydroxy-2-Deoxyguanosine (8-OHDG) as biomarker of risk cancer. The resultof the study showed the formation of DNA adduct 8-OHDG in the interaction between DNA and 20-500 ppm of TBHQ. The 8-OHdG formation was greatly increased by the higher concentration of TBHQ. The relative amount of 8 OHDG which formed was reached 946/105 deoxyguanosine in DNA bases. Confirmation test by LCMS/MS was characterized with the detection of mother ion peak (m/z 284); fragment ion peaks at m/z 167.9, and 139.9; at retention time 3.52 min. Meanwhile the interaction between DNA and 50-250 ppm BHA did not induce 8-OHDG.

  19. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel John; Sanche, Léon

    Purpose: To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials: Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure–response curves. Results: The presence of an average of 2more » Pt-drug–DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10{sup −4} Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Conclusion: Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances.« less

  20. New insights into the mechanism underlying the synergistic action of ionizing radiation with platinum chemotherapeutic drugs: the role of low-energy electrons.

    PubMed

    Rezaee, Mohammad; Hunting, Darel John; Sanche, Léon

    2013-11-15

    To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure-response curves. The presence of an average of 2 Pt-drug-DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1×10(-4) Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    PubMed Central

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  2. Loop L1 governs the DNA-binding specificity and order for RecA-catalyzed reactions in homologous recombination and DNA repair

    PubMed Central

    Shinohara, Takeshi; Ikawa, Shukuko; Iwasaki, Wakana; Hiraki, Toshiki; Hikima, Takaaki; Mikawa, Tsutomu; Arai, Naoto; Kamiya, Nobuo; Shibata, Takehiko

    2015-01-01

    In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mechanism for this conserved binding order remain unknown. A comparison of the loop L1 structures in a DNA-free RecA crystal that we originally determined and in the reported DNA-bound active RecA crystals suggested that the aspartate at position 161 in loop L1 in DNA-free RecA prevented double-stranded, but not single-stranded, DNA-binding to the primary site. This was confirmed by the effects of the Ala-replacement of Asp-161 (D161A), analyzed directly by gel-mobility shift assays and indirectly by DNA-dependent ATPase activity and SOS repressor cleavage. When RecA/Rad51-recombinases interact with double-stranded DNA before single-stranded DNA, homologous joint-formation is suppressed, likely by forming a dead-end product. We found that the D161A-replacement reduced this suppression, probably by allowing double-stranded DNA to bind preferentially and reversibly to the primary site. Thus, Asp-161 in the flexible loop L1 of wild-type RecA determines the preference for single-stranded DNA-binding to the primary site and regulates the DNA-binding order in RecA-catalyzed recombinase reactions. PMID:25561575

  3. Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, Matthew; Rudnicki, Jean; Midkiff, John

    2010-04-12

    The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of amore » lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.« less

  4. Sequence-Dependent Diastereospecific and Diastereodivergent Crosslinking of DNA by Decarbamoylmitomycin C.

    PubMed

    Aguilar, William; Paz, Manuel M; Vargas, Anayatzinc; Clement, Cristina C; Cheng, Shu-Yuan; Champeil, Elise

    2018-04-20

    Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermodynamics of complex structures formed between single-stranded DNA oligomers and the KH domains of the far upstream element binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Kaushik; Sinha, Sudipta Kumar; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in

    The noncovalent interaction between protein and DNA is responsible for regulating the genetic activities in living organisms. The most critical issue in this problem is to understand the underlying driving force for the formation and stability of the complex. To address this issue, we have performed atomistic molecular dynamics simulations of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein (FBP) complexed with two single-stranded DNA (ss-DNA) oligomers in aqueous media. Attempts have been made to calculate the individual components of the net entropy change for the complexation process by adopting suitablemore » statistical mechanical approaches. Our calculations reveal that translational, rotational, and configurational entropy changes of the protein and the DNA components have unfavourable contributions for this protein-DNA association process and such entropy lost is compensated by the entropy gained due to the release of hydration layer water molecules. The free energy change corresponding to the association process has also been calculated using the Free Energy Perturbation (FEP) method. The free energy gain associated with the KH4–DNA complex formation has been found to be noticeably higher than that involving the formation of the KH3–DNA complex.« less

  6. Highly Conductive Thin Uniform Gold-Coated DNA Nanowires.

    PubMed

    Stern, Avigail; Eidelshtein, Gennady; Zhuravel, Roman; Livshits, Gideon I; Rotem, Dvir; Kotlyar, Alexander; Porath, Danny

    2018-06-01

    Over the past decades, DNA, the carrier of genetic information, has been used by researchers as a structural template material. Watson-Crick base pairing enables the formation of complex 2D and 3D structures from DNA through self-assembly. Various methods have been developed to functionalize these structures for numerous utilities. Metallization of DNA has attracted much attention as a means of forming conductive nanostructures. Nevertheless, most of the metallized DNA wires reported so far suffer from irregularity and lack of end-to-end electrical connectivity. An effective technique for formation of thin gold-coated DNA wires that overcomes these drawbacks is developed and presented here. A conductive atomic force microscopy setup, which is suitable for measuring tens to thousands of nanometer long molecules and wires, is used to characterize these DNA-based nanowires. The wires reported here are the narrowest gold-coated DNA wires that display long-range conductivity. The measurements presented show that the conductivity is limited by defects, and that thicker gold coating reduces the number of defects and increases the conductive length. This preparation method enables the formation of molecular wires with dimensions and uniformity that are much more suitable for DNA-based molecular electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Organic honey supplementation reverses pesticide-induced genotoxicity by modulating DNA damage response.

    PubMed

    Alleva, Renata; Manzella, Nicola; Gaetani, Simona; Ciarapica, Veronica; Bracci, Massimo; Caboni, Maria Fiorenza; Pasini, Federica; Monaco, Federica; Amati, Monica; Borghi, Battista; Tomasetti, Marco

    2016-10-01

    Glyphosate (GLY) and organophosphorus insecticides such as chlorpyrifos (CPF) may cause DNA damage and cancer in exposed individuals through mitochondrial dysfunction. Polyphenols ubiquitously present in fruits and vegetables, have been viewed as antioxidant molecules, but also influence mitochondrial homeostasis. Here, honey containing polyphenol compounds was evaluated for its potential protective effect on pesticide-induced genotoxicity. Honey extracts from four floral organic sources were evaluated for their polyphenol content, antioxidant activity, and potential protective effects on pesticide-related mitochondrial destabilization, reactive oxygen and nitrogen species formation, and DNA damage response in human bronchial epithelial and neuronal cells. The protective effect of honey was, then evaluated in a residential population chronically exposed to pesticides. The four honey types showed a different polyphenol profile associated with a different antioxidant power. The pesticide-induced mitochondrial dysfunction parallels ROS formation from mitochondria (mtROS) and consequent DNA damage. Honey extracts efficiently inhibited pesticide-induced mtROS formation, and reduced DNA damage by upregulation of DNA repair through NFR2. Honey supplementation enhanced DNA repair activity in a residential population chronically exposed to pesticides, which resulted in a marked reduction of pesticide-induced DNA lesions. These results provide new insight regarding the effect of honey containing polyphenols on pesticide-induced DNA damage response. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Porcine endothelium induces DNA-histone complex formation in human whole blood: a harmful effect of histone on coagulation and endothelial activation.

    PubMed

    Yoo, Hyun Ju; Kim, Ji-Eun; Gu, Ja Yoon; Lee, Sae Bom; Lee, Hyun Joo; Hwang, Ho Young; Hwang, Yoohwa; Kim, Young Tae; Kim, Hyun Kyung

    2016-11-01

    Neutrophils play a role in xenograft rejection. When neutrophils are stimulated, they eject the DNA-histone complex into the extracellular space, called neutrophil extracellular traps (NET). We investigated whether NET formation actively occurs in the xenograft and contributes to coagulation and endothelial activation. Human whole blood was incubated with porcine aortic endothelial cells (pEC) from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. In the supernatant plasma from human blood, the level of the DNA-histone complex was measured by ELISA, and thrombin generation was measured using a calibrated automated thrombogram. Histone-induced tissue factor and adhesion molecule expression were measured by flow cytometry. pEC from both wild-type and GTKO pigs significantly induced DNA-histone complex formation in human whole blood. The DNA-histone complex produced shortened the thrombin generation time and clotting time. Histone alone dose-dependently induced tissue factor and adhesion molecule expression in pEC. Aurintricarboxylic acid pretreatment partially inhibited pEC-induced DNA-histone complex formation. DNA-histone complex actively generated upon xenotransplantation is a novel target to inhibit coagulation and endothelial activation. To prevent tissue factor and adhesion molecule expression, a strategy to block soluble histone may be required in xenotransplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Functional Specificity of Extracellular Nucleases of Shewanella oneidensis MR-1

    PubMed Central

    Heun, Magnus; Binnenkade, Lucas; Kreienbaum, Maximilian

    2012-01-01

    Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg2+ or Mn2+) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. PMID:22492434

  10. Dose-dependent DNA adduct formation by cinnamaldehyde and other food-borne α,β-unsaturated aldehydes predicted by physiologically based in silico modelling.

    PubMed

    Kiwamoto, R; Ploeg, D; Rietjens, I M C M; Punt, A

    2016-03-01

    Genotoxicity of α,β-unsaturated aldehydes shown in vitro raises a concern for the use of the aldehydes as food flavourings, while at low dose exposures the formation of DNA adducts may be prevented by detoxification. Unlike many α,β-unsaturated aldehydes for which in vivo data are absent, cinnamaldehyde was shown to be not genotoxic or carcinogenic in vivo. The present study aimed at comparing dose-dependent DNA adduct formation by cinnamaldehyde and 18 acyclic food-borne α,β-unsaturated aldehydes using physiologically based kinetic/dynamic (PBK/D) modelling. In rats, cinnamaldehyde was predicted to induce higher DNA adducts levels than 6 out of the 18 α,β-unsaturated aldehydes, indicating that these 6 aldehydes may also test negative in vivo. At the highest cinnamaldehyde dose that tested negative in vivo, cinnamaldehyde was predicted to form at least three orders of magnitude higher levels of DNA adducts than the 18 aldehydes at their respective estimated daily intake. These results suggest that for all the 18 α,β-unsaturated aldehydes DNA adduct formation at doses relevant for human dietary exposure may not raise a concern. The present study illustrates a possible use of physiologically based in silico modelling to facilitate a science-based comparison and read-across on the possible risks posed by DNA reactive agents. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. In the Absence of Writhe, DNA Relieves Torsional Stress with Localized, Sequence-Dependent Structural Failure to Preserve B-form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, Graham L.; Zechiedrich, E. L.; Pettitt, Bernard M.

    2009-09-01

    To understand how underwinding and overwinding the DNA helix affects its structure, we simulated 19 independent DNA systems with fixed degrees of twist using molecular dynamics in a system that does not allow writhe. Underwinding DNA induced spontaneous, sequence-dependent base flipping and local denaturation, while overwinding DNA induced the formation of Pauling-like DNA (P-DNA). The winding resulted in a bimodal state simultaneously including local structural failure and B-form DNA for both underwinding and extreme overwinding. Our simulations suggest that base flipping and local denaturation may provide a landscape influencing protein recognition of DNA sequence to affect, for examples, replication, transcriptionmore » and recombination. Additionally, our findings help explain results from singlemolecule experiments and demonstrate that elastic rod models are strictly valid on average only for unstressed or overwound DNA up to P-DNA formation. Finally, our data support a model in which base flipping can result from torsional stress.« less

  12. Heat stress enhances LTM formation in Lymnaea: role of HSPs and DNA methylation.

    PubMed

    Sunada, Hiroshi; Riaz, Hamza; de Freitas, Emily; Lukowiak, Kai; Swinton, Cayley; Swinton, Erin; Protheroe, Amy; Shymansky, Tamila; Komatsuzaki, Yoshimasa; Lukowiak, Ken

    2016-05-01

    Environmentally relevant stressors alter the memory-forming process in Lymnaea following operant conditioning of aerial respiration. One such stressor is heat. Previously, we found that following a 1 h heat shock, long-term memory (LTM) formation was enhanced. We also had shown that the heat stressor activates at least two heat shock proteins (HSPs): HSP40 and HSP70. Here, we tested two hypotheses: (1) the production of HSPs is necessary for enhanced LTM formation; and (2) blocking DNA methylation prevents the heat stressor-induced enhancement of LTM formation. We show here that the enhancing effect of the heat stressor on LTM formation occurs even if snails experienced the stressor 3 days previously. We further show that a flavonoid, quercetin, which inhibits HSP activation, blocks the enhancing effect of the heat stressor on LTM formation. Finally, we show that injection of a DNA methylation blocker, 5-AZA, before snails experience the heat stressor prevents enhancement of memory formation. © 2016. Published by The Company of Biologists Ltd.

  13. Evaluating the role of coherent delocalized phonon-like modes in DNA cyclization

    DOE PAGES

    Alexandrov, Ludmil B.; Rasmussen, Kim Ø.; Bishop, Alan R.; ...

    2017-08-29

    The innate flexibility of a DNA sequence is quantified by the Jacobson-Stockmayer’s J-factor, which measures the propensity for DNA loop formation. Recent studies of ultra-short DNA sequences revealed a discrepancy of up to six orders of magnitude between experimentally measured and theoretically predicted J-factors. These large differences suggest that, in addition to the elastic moduli of the double helix, other factors contribute to loop formation. We develop a new theoretical model that explores how coherent delocalized phonon-like modes in DNA provide single-stranded ”flexible hinges” to assist in loop formation. We also combine the Czapla-Swigon-Olson structural model of DNA with ourmore » extended Peyrard-Bishop-Dauxois model and, without changing any of the parameters of the two models, apply this new computational framework to 86 experimentally characterized DNA sequences. Our results demonstrate that the new computational framework can predict J-factors within an order of magnitude of experimental measurements for most ultra-short DNA sequences, while continuing to accurately describe the J-factors of longer sequences. Furthermore, we demonstrate that our computational framework can be used to describe the cyclization of DNA sequences that contain a base pair mismatch. Overall, our results support the conclusion that coherent delocalized phonon-like modes play an important role in DNA cyclization.« less

  14. Evaluating the role of coherent delocalized phonon-like modes in DNA cyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrov, Ludmil B.; Rasmussen, Kim Ø.; Bishop, Alan R.

    The innate flexibility of a DNA sequence is quantified by the Jacobson-Stockmayer’s J-factor, which measures the propensity for DNA loop formation. Recent studies of ultra-short DNA sequences revealed a discrepancy of up to six orders of magnitude between experimentally measured and theoretically predicted J-factors. These large differences suggest that, in addition to the elastic moduli of the double helix, other factors contribute to loop formation. We develop a new theoretical model that explores how coherent delocalized phonon-like modes in DNA provide single-stranded ”flexible hinges” to assist in loop formation. We also combine the Czapla-Swigon-Olson structural model of DNA with ourmore » extended Peyrard-Bishop-Dauxois model and, without changing any of the parameters of the two models, apply this new computational framework to 86 experimentally characterized DNA sequences. Our results demonstrate that the new computational framework can predict J-factors within an order of magnitude of experimental measurements for most ultra-short DNA sequences, while continuing to accurately describe the J-factors of longer sequences. Furthermore, we demonstrate that our computational framework can be used to describe the cyclization of DNA sequences that contain a base pair mismatch. Overall, our results support the conclusion that coherent delocalized phonon-like modes play an important role in DNA cyclization.« less

  15. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation.

    PubMed

    Fishburn, James; Tomko, Eric; Galburt, Eric; Hahn, Steven

    2015-03-31

    Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.

  16. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation

    PubMed Central

    Hagiwara, Yoshihiko; Niimi, Atsuko; Isono, Mayu; Yamauchi, Motohiro; Yasuhara, Takaaki; Limsirichaikul, Siripan; Oike, Takahiro; Sato, Hiro; Held, Kathryn D.; Nakano, Takashi; Shibata, Atsushi

    2017-01-01

    DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1–2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G2-phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm3. These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation. PMID:29312614

  17. Analysis of Heat-Labile Sites Generated by Reactions of Depleted Uranium and Ascorbate in Plasmid DNA

    PubMed Central

    Wilson, Janice; Young, Ashley; Civitello, Edgar R.

    2013-01-01

    The goal of this study was to characterize how depleted uranium (DU) causes DNA damage. Procedures were developed to assess the ability of organic and inorganic DNA adducts to convert to single strand breaks (SSB) in pBR322 plasmid DNA in the presence of heat or piperidine. DNA adducts formed by methyl methanesulfonate (MMS), cis-platin (cis-Pt), and chromic chloride were compared to those formed by reaction of uranyl acetate (UA) and ascorbate (Asc). Uranyl ion in the presence of Asc produced U-DNA adducts that converted to SSB upon heating. Piperidine, which acted on DNA methylated by MMS to convert methyl-DNA adducts to SSB, served in the opposite fashion with U-DNA adducts by decreasing SSB. The observation that piperidine also decreased the gel shift for metal-DNA adducts formed by monofunctional cis-Pt and chromic chloride was interpreted to suggest that piperidine served to remove U-DNA adducts. Radical scavengers did not affect formation of U-induced SSB, suggesting that SSB arose from the presence of U-DNA adducts and not from free radicals. A model is proposed to predict how U-DNA adducts may serve as initial lesions that convert to SSB or AP sites. Results suggest that DU can act as a chemical genotoxin that does not require radiation for its mode of action. Characterizing the DNA lesions formed by DU is necessary to assess the relative importance of different DNA lesions in the formation of DU-induced mutations. Understanding mechanisms of formation of DU-induced mutations may contribute to identification of biomarkers of DU exposures in humans. PMID:24218036

  18. The distribution of DNA damage is defined by region-specific susceptibility to DNA damage formation rather than repair differences.

    PubMed

    Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars

    2014-06-01

    The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Role of DNA secondary structures in fragile site breakage along human chromosome 10

    PubMed Central

    Dillon, Laura W.; Pierce, Levi C. T.; Ng, Maggie C. Y.; Wang, Yuh-Hwa

    2013-01-01

    The formation of alternative DNA secondary structures can result in DNA breakage leading to cancer and other diseases. Chromosomal fragile sites, which are regions of the genome that exhibit chromosomal breakage under conditions of mild replication stress, are predicted to form stable DNA secondary structures. DNA breakage at fragile sites is associated with regions that are deleted, amplified or rearranged in cancer. Despite the correlation, unbiased examination of the ability to form secondary structures has not been evaluated in fragile sites. Here, using the Mfold program, we predict potential DNA secondary structure formation on the human chromosome 10 sequence, and utilize this analysis to compare fragile and non-fragile DNA. We found that aphidicolin (APH)-induced common fragile sites contain more sequence segments with potential high secondary structure-forming ability, and these segments clustered more densely than those in non-fragile DNA. Additionally, using a threshold of secondary structure-forming ability, we refined legitimate fragile sites within the cytogenetically defined boundaries, and identified potential fragile regions within non-fragile DNA. In vitro detection of alternative DNA structure formation and a DNA breakage cell assay were used to validate the computational predictions. Many of the regions identified by our analysis coincide with genes mutated in various diseases and regions of copy number alteration in cancer. This study supports the role of DNA secondary structures in common fragile site instability, provides a systematic method for their identification and suggests a mechanism by which DNA secondary structures can lead to human disease. PMID:23297364

  20. Capture and release of cells using a temperature-responsive surface that immobilizes an antibody through DNA duplex formation.

    PubMed

    Kimura, Tsuyoshi; Nakamura, Naoko; Umeda, Kanji; Hashimoto, Yoshihide; Kishida, Akio

    We synthesized a temperature-responsive surface that immobilized an antibody via DNA duplex formation for selective capture and release of target cells. Polyethylene films were modified by grafting poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-AAc)), which were prepared at various ratios of NIPAAm/AAc. The increased hydrophilicity of P(NIPAAm-co-PAA) film with decreased temperature was confirmed by water contact angle measurement. Single strand DNA (20mer) was chemically immobilized on the surface and then antibody (anti-mouse CD45, mCD45) modified with the complementary single strand DNA was immobilized on the surface through DNA duplex formation. The mCD45 antibody immobilization was confirmed by immunostaining. HeLa cells (mCD45 negative) and mouse bone marrow (BM) cells (mCD45 positive) were adhered on the surfaces at 37 °C. Although HeLa cells were detached by 4 °C incubation, BM cells were still adhered on the surface and then the adhered cells were released by DNase treatment. From these results, it was suggested that cells could be selectively captured and collected by using a film having surface that immobilizes an antibody via DNA duplex formation.

  1. DNA methylation regulates neurophysiological spatial representation in memory formation

    PubMed Central

    Roth, Eric D.; Roth, Tania L.; Money, Kelli M.; SenGupta, Sonda; Eason, Dawn E.; Sweatt, J. David

    2015-01-01

    Epigenetic mechanisms including altered DNA methylation are critical for altered gene transcription subserving synaptic plasticity and the retention of learned behavior. Here we tested the idea that one role for activity-dependent altered DNA methylation is stabilization of cognition-associated hippocampal place cell firing in response to novel place learning. We observed that a behavioral protocol (spatial exploration of a novel environment) known to induce hippocampal place cell remapping resulted in alterations of hippocampal Bdnf DNA methylation. Further studies using neurophysiological in vivo single unit recordings revealed that pharmacological manipulations of DNA methylation decreased long-term but not short-term place field stability. Together our data highlight a role for DNA methylation in regulating neurophysiological spatial representation and memory formation. PMID:25960947

  2. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    PubMed

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  3. Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.

    PubMed

    Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C

    2006-07-01

    Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.

  4. Characterisation of cytoplasmic DNA complementary to non-retroviral RNA viruses in human cells

    PubMed Central

    Shimizu, Akira; Nakatani, Yoko; Nakamura, Takako; Jinno-Oue, Atsushi; Ishikawa, Osamu; Boeke, Jef D.; Takeuchi, Yasuhiro; Hoshino, Hiroo

    2014-01-01

    The synthesis and subsequent genomic integration of DNA that is complementary to the genomes of non-retroviral RNA viruses are rarely observed. However, upon infection of various human cell lines and primary fibroblasts with the vesicular stomatitis virus (VSV), we detected DNA complementary to the VSV RNA. The VSV DNA was detected in the cytoplasm as single-stranded DNA fully complementary to the viral mRNA from the poly(A) region to the 7-methyl guanosine cap. The formation of this DNA was cell-dependent. Experimentally, we found that the transduction of cells that do not produce VSV DNA with the long interspersed nuclear element 1 and their infection with VSV could lead to the formation of VSV DNA. Viral DNA complementary to other RNA viruses was also detected in the respective infected human cells. Thus, the genetic information of the non-retroviral RNA virus genome can flow into the DNA of mammalian cells expressing LINE-1-like elements. PMID:24875540

  5. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Jamy C.

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) thatmore » binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in euchromatin. Remarkably, human euchromatin and fly heterochromatin share similar features; such as repeated DNA content, intron lengths and open reading frame sizes. Human cells likely stabilize their DNA content via mechanisms and factors similar to those in Drosophila heterochromatin. Furthermore, my thesis work raises implications for H3K9me and chromatin functions in complex-DNA genome stability, repeated DNA homogenization by molecular drive, and in genome reorganization through evolution.« less

  6. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation with Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons

    PubMed Central

    Rezaee, Mohammad; Hunting, Darel John; Sanche, Léon

    2013-01-01

    Purpose To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. DNA damages were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure-response curves. Results The presence of an average of two Pt-adducts in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5 and 2.4 for carboplatin, cisplatin and oxaliplatin, respectively. Electrons with energies of 10-eV and 10-KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10−4 Pt-adducts per nucleotide which is equivalent to an average of two adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Since carboplatin and cisplatin give rise to identical reactive species which attach to DNA, carboplatin must be considered as a better radiosensitizers for equal number of Pt-adducts. Conclusion Pt-drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation and LEEs are the main species responsible for such an enhancement via the formation of electron resonances. PMID:23910707

  7. Calcium-dependent mitochondrial formation of species mediating DNA single strand breakage in U937 cells exposed to sublethal concentrations of tert-butylhydroperoxide.

    PubMed

    Guidarelli, A; Clementi, E; Sciorati, C; Cattabeni, F; Cantoni, O

    1997-10-01

    Treatment of U937 cells with a sublethal albeit DNA-damaging concentration of tert-butylhydroperoxide (tB-OOH) enhanced mitochondrial Ca++ uptake and ruthenium red (RR), a polycation that inhibits the calcium uniporter of mitochondria, significantly reduced the extent of DNA cleavage generated by the hydroperoxide. Release of Ca++ from the ryanodine(Ry)/caffeine(Cf)-sensitive stores further increased mitochondrial Ca++ uptake and elicited a parallel enhancement in DNA strand scission induced by tB-OOH that was prevented by both Ry and RR. DNA damage caused by tB-OOH alone or associated with either Cf or RR was prevented by iron chelators, insensitive to antioxidants and repaired with kinetics superimposable with those observed after treatment with H2O2. Cf enhanced the DNA-damaging effects of tB-OOH in permeabilized cells as well, and similar effects were observed upon addition of CaCl2. Cf did not further increase the formation of DNA lesions elicited by tB-OOH in the presence of CaCl2. The enhancing effects of Cf were prevented by RR and ryanodine, whereas those mediated by exogenous calcium were prevented only by RR. DNA strand scission caused by tB-OOH alone or associated with Cf in the permeabilized cell system was severely inhibited by ethylene glycol-bis(beta-aminoethyl ether)-N, N,N',N'-tetraacetic acid. The mechanism(s) whereby Ca++ promotes the mitochondrial formation of species that will ultimately result in the formation of DNA lesions was subsequently analyzed using intact as well as permeabilized cells. Hydrogen peroxide was identified to be one of these species.

  8. A physiologically based in silico model for trans-2-hexenal detoxification and DNA adduct formation in human including interindividual variation indicates efficient detoxification and a negligible genotoxicity risk.

    PubMed

    Kiwamoto, R; Spenkelink, A; Rietjens, I M C M; Punt, A

    2013-09-01

    A number of α,β-unsaturated aldehydes are present in food both as natural constituents and as flavouring agents. Their reaction with DNA due to their electrophilic α,β-unsaturated aldehyde moiety may result in genotoxicity as observed in some in vitro models, thereby raising a safety concern. A question that remains is whether in vivo detoxification would be efficient enough to prevent DNA adduct formation and genotoxicity. In this study, a human physiologically based kinetic/dynamic (PBK/D) model of trans-2-hexenal (2-hexenal), a selected model α,β-unsaturated aldehyde, was developed to examine dose-dependent detoxification and DNA adduct formation in humans upon dietary exposure. The kinetic model parameters for detoxification were quantified using relevant pooled human tissue fractions as well as tissue fractions from 11 different individual subjects. In addition, a Monte Carlo simulation was performed so that the impact of interindividual variation in 2-hexenal detoxification on the DNA adduct formation in the population as a whole could be examined. The PBK/D model revealed that DNA adduct formation due to 2-hexenal exposure was 0.039 adducts/10⁸ nucleotides (nt) at the estimated average 2-hexenal dietary intake (0.04 mg 2-hexenal/kg bw) and 0.18 adducts/10⁸ nt at the 95th percentile of the dietary intake (0.178 mg 2-hexenal/kg bw) in the most sensitive people. These levels are three orders of magnitude lower than natural background DNA adduct levels that have been reported in disease-free humans (6.8-110 adducts/10⁸ nt), suggesting that the genotoxicity risk for the human population at realistic dietary daily intakes of 2-hexenal may be negligible.

  9. Evaluation of BAUER UTILUS 10 and TRIPLEX Purification Systems

    DTIC Science & Technology

    1993-08-01

    of the test was to: A. Determine if the compressor and Purification System provides compressed air at the required pressures, flow rates, quality and...optimum filtering, moisture separation, third stage piston ring expansion/cylinder sealing and prevents compressed air return from the storage flasks to the...551 COMPRESSED AIR PLANTS AND SYSTEMS S9086-SY-STM-O0O PARA 551-4.2.2.1. 6. Navy Experimental Diving Unit Test Plan Number 93-01, Jan 93. 7. NAVSEAINST

  10. Triplex in-situ hybridization

    DOEpatents

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  11. Chromosome thripsis by DNA double strand break clusters causes enhanced cell lethality, chromosomal translocations and 53BP1-recruitment

    PubMed Central

    Schipler, Agnes; Mladenova, Veronika; Soni, Aashish; Nikolov, Vladimir; Saha, Janapriya; Mladenov, Emil; Iliakis, George

    2016-01-01

    Chromosome translocations are hallmark of cancer and of radiation-induced cell killing, reflecting joining of incongruent DNA-ends that alter the genome. Translocation-formation requires DNA end-joining mechanisms and incompletely characterized, permissive chromatin conditions. We show that chromatin destabilization by clusters of DNA double-strand-breaks (DSBs) generated by the I-SceI meganuclease at multiple, appropriately engineered genomic sites, compromises c-NHEJ and markedly increases cell killing and translocation-formation compared to single-DSBs. Translocation-formation from DSB-clusters utilizes Parp1 activity, implicating alt-EJ in their formation. Immunofluorescence experiments show that single-DSBs and DSB-clusters uniformly provoke the formation of single γ-H2AX foci, suggesting similar activation of early DNA damage response (DDR). Live-cell imaging also shows similar single-focus recruitment of the early-response protein MDC1, to single-DSBs and DSB-clusters. Notably, the late DDR protein, 53BP1 shows in live-cell imaging strikingly stronger recruitment to DSB-clusters as compared to single-DSBs. This is the first report that chromatin thripsis, in the form of engineered DSB-clusters, compromises first-line DSB-repair pathways, allowing alt-EJ to function as rescuing-backup. DSB-cluster-formation is indirectly linked to the increased biological effectiveness of high ionization-density radiations, such as the alpha-particles emitted by radon gas or the heavy-ions utilized in cancer therapy. Our observations provide the first direct mechanistic explanation for this long-known effect. PMID:27257076

  12. Roles of Two Shewanella oneidensis MR-1 Extracellular Endonucleases ▿ †

    PubMed Central

    Gödeke, Julia; Heun, Magnus; Bubendorfer, Sebastian; Paul, Kristina; Thormann, Kai M.

    2011-01-01

    The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment. PMID:21705528

  13. Comparison of DNA-Reactive Metabolites from Nitrosamine and Styrene Using Voltammetric DNA/Microsomes Sensors

    PubMed Central

    Krishnan, Sadagopan; Bajrami, Besnik; Mani, Vigneshwaran; Pan, Shenmin; Rusling, James F.

    2012-01-01

    Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogenic compounds nitrosamine and styrene. Reactive metabolites formed in the films were trapped as adducts with nucleobases on DNA. The DNA damage was detected by square-wave voltammetry (SWV) using Ru(bpy)32+ as a DNA-oxidation catalyst. These sensors showed a larger rate of increase in signal vs. reaction time for a highly toxic nitrosamine than for the moderately toxic styrene due to more rapid reactive metabolite-DNA adduct formation. Results were consistent with reported in vivo TD50 data for the formation of liver tumors in rats. Analogous polyion/ liver microsome films prepared on 500 nm silica nanoparticles (nanoreactors) and reacted with nitrosamine or styrene, provided LC-MS or GC analyses of metabolite formation rates that correlated well with sensor response. PMID:23100998

  14. DNA Repair by DNA: The UV1C DNAzyme Catalyzes Photoreactivation of Cyclobutane Thymine Dimers in DNA More Effectively than Their de Novo Formation.

    PubMed

    Barlev, Adam; Sekhon, Gurpreet S; Bennet, Andrew J; Sen, Dipankar

    2016-11-01

    UV1C, a 42-nt DNA oligonucleotide, is a deoxyribozyme (DNAzyme) that optimally uses 305 nm wavelength light to catalyze photoreactivation of a cyclobutane thymine dimer placed within a gapped, unnatural DNA substrate, TDP. Herein we show that UV1C is also capable of photoreactivating thymine dimers within an authentic single-stranded DNA substrate, LDP. This bona fide UV1C substrate enables, for the first time, investigation of whether UV1C catalyzes only photoreactivation or also the de novo formation of thymine dimers. Single-turnover experiments carried out with LDP and UV1C, relative to control experiments with LDP alone in single-stranded and double-stranded contexts, show that while UV1C does modestly promote thymine dimer formation, its major activity is indeed photoreactivation. Distinct photostationary states are reached for LDP in its three contexts: as a single strand, as a constituent of a double-helix, and as a 1:1 complex with UV1C. The above results on the cofactor-independent photoreactivation capabilities of a catalytic DNA reinforce a series of recent, unexpected reports that purely nucleotide-based photoreactivation is also operational within conventional double-helical DNA.

  15. Effect of supercoiling on formation of protein-mediated DNA loops

    NASA Astrophysics Data System (ADS)

    Purohit, P. K.; Nelson, P. C.

    2006-12-01

    DNA loop formation is one of several mechanisms used by organisms to regulate genes. The free energy of forming a loop is an important factor in determining whether the associated gene is switched on or off. In this paper we use an elastic rod model of DNA to determine the free energy of forming short (50-100 basepair), protein mediated DNA loops. Superhelical stress in the DNA of living cells is a critical factor determining the energetics of loop formation, and we explicitly account for it in our calculations. The repressor protein itself is regarded as a rigid coupler; its geometry enters the problem through the boundary conditions it applies on the DNA. We show that a theory with these ingredients is sufficient to explain certain features observed in modulation of in vivo gene activity as a function of the distance between operator sites for the lac repressor. We also use our theory to make quantitative predictions for the dependence of looping on superhelical stress, which may be testable both in vivo and in single-molecule experiments such as the tethered particle assay and the magnetic bead assay.

  16. DNA damage response curtails detrimental replication stress and chromosomal instability induced by the dietary carcinogen PhIP

    PubMed Central

    Mimmler, Maximilian; Peter, Simon; Kraus, Alexander; Stroh, Svenja; Nikolova, Teodora; Seiwert, Nina; Hasselwander, Solveig; Neitzel, Carina; Haub, Jessica; Monien, Bernhard H.; Nicken, Petra; Steinberg, Pablo; Shay, Jerry W.; Kaina, Bernd; Fahrer, Jörg

    2016-01-01

    PhIP is an abundant heterocyclic aromatic amine (HCA) and important dietary carcinogen. Following metabolic activation, PhIP causes bulky DNA lesions at the C8-position of guanine. Although C8-PhIP-dG adducts are mutagenic, their interference with the DNA replication machinery and the elicited DNA damage response (DDR) have not yet been studied. Here, we analyzed PhIP-triggered replicative stress and elucidated the role of the apical DDR kinases ATR, ATM and DNA-PKcs in the cellular defense response. First, we demonstrate that PhIP induced C8-PhIP-dG adducts and DNA strand breaks. This stimulated ATR-CHK1 signaling, phosphorylation of histone 2AX and the formation of RPA foci. In proliferating cells, PhIP treatment increased the frequency of stalled replication forks and reduced fork speed. Inhibition of ATR in the presence of PhIP-induced DNA damage strongly promoted the formation of DNA double-strand breaks, activation of the ATM-CHK2 pathway and hyperphosphorylation of RPA. The abrogation of ATR signaling potentiated the cell death response and enhanced chromosomal aberrations after PhIP treatment, while ATM and DNA-PK inhibition had only marginal effects. These results strongly support the notion that ATR plays a key role in the defense against cancer formation induced by PhIP and related HCAs. PMID:27599846

  17. Resistance of the genome of Escherichia coli and Listeria monocytogenes to irradiation evaluated by the induction of cyclobutane pyrimidine dimers and 6-4 photoproducts using gamma and UV-C radiations

    NASA Astrophysics Data System (ADS)

    Beauchamp, S.; Lacroix, M.

    2012-08-01

    The effect of gamma and UV-C irradiation on the production of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4 PPs) in DNA was investigated to compare the natural resistance of the genome of a Gram-positive bacterium and a Gram-negative bacterium against irradiation. Solution of pure DNA and bacterial strains Listeria monocytogenes and Escherichia coli were irradiated using gamma and UV-C rays. Extracted DNA from bacteria and pure DNA samples were then analysed by ELISA using anti-CPDs and anti-6-4 PPs monoclonal antibodies. The results show that gamma rays, as well as UV-C rays, induce the formation of CPDs and 6-4 PPs in DNA. During UV-C irradiation, the three samples showed a difference in their sensitivity against formation of CPDs (P≤0.05). Pure DNA was the most sensitive while the genome of L. monocytogenes was the most resistant. Also during UV-C irradiation, the genome of L. monocytogenes was the only one to show a significant resistance against formation of 6-4 PPs (P≤0.05). During gamma irradiation, for both types of lesion, pure DNA and the genome of E. coli did not show significant difference in their sensitivity (P>0.05) while the genome of L. monocytogenes showed a resistance against formation of CPDs and 6-4 PPs.

  18. Mechanism-based inhibition of C5-cytosine DNA methyltransferases by 2-H pyrimidinone.

    PubMed

    Hurd, P J; Whitmarsh, A J; Baldwin, G S; Kelly, S M; Waltho, J P; Price, N C; Connolly, B A; Hornby, D P

    1999-02-19

    DNA duplexes in which the target cytosine base is replaced by 2-H pyrimidinone have previously been shown to bind with a significantly greater affinity to C5-cytosine DNA methyltransferases than unmodified DNA. Here, it is shown that 2-H pyrimidinone, when incorporated into DNA duplexes containing the recognition sites for M.HgaI-2 and M.MspI, elicits the formation of inhibitory covalent nucleoprotein complexes. We have found that although covalent complexes are formed between 2-H pyrimidinone-modified DNA and both M.HgaI-2 and M.MspI, the kinetics of complex formation are quite distinct in each case. Moreover, the formation of a covalent complex is still observed between 2-H pyrimidinone DNA and M.MspI in which the active-site cysteine residue is replaced by serine or threonine. Covalent complex formation between M.MspI and 2-H pyrimidinone occurs as a direct result of nucleophilic attack by the residue at the catalytic position, which is enhanced by the absence of the 4-amino function in the base. The substitution of the catalytic cysteine residue by tyrosine or chemical modification of the wild-type enzyme with N-ethylmaleimide, abolishes covalent interaction. Nevertheless the 2-H pyrimidinone-substituted duplex still binds to M.MspI with a greater affinity than a standard cognate duplex, since the 2-H pyrimidinone base is mis-paired with guanine. Copyright 1999 Academic Press.

  19. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription

    PubMed Central

    Gerasimova, N. S.; Pestov, N. A.; Kulaeva, O. I.; Clark, D. J.; Studitsky, V. M.

    2016-01-01

    ABSTRACT RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure. PMID:27115204

  20. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication.

    PubMed

    Feng, Wenyi; Collingwood, David; Boeck, Max E; Fox, Lindsay A; Alvino, Gina M; Fangman, Walton L; Raghuraman, Mosur K; Brewer, Bonita J

    2006-02-01

    During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.

  1. Re-wiring of energy metabolism promotes viability during hyperreplication stress in E. coli

    PubMed Central

    Campion, Christopher; Weimann, Allan

    2017-01-01

    Chromosome replication in Escherichia coli is initiated by DnaA. DnaA binds ATP which is essential for formation of a DnaA-oriC nucleoprotein complex that promotes strand opening, helicase loading and replisome assembly. Following initiation, DnaAATP is converted to DnaAADP primarily by the Regulatory Inactivation of DnaA process (RIDA). In RIDA deficient cells, DnaAATP accumulates leading to uncontrolled initiation of replication and cell death by accumulation of DNA strand breaks. Mutations that suppress RIDA deficiency either dampen overinitiation or permit growth despite overinitiation. We characterize mutations of the last group that have in common that distinct metabolic routes are rewired resulting in the redirection of electron flow towards the cytochrome bd-1. We propose a model where cytochrome bd-1 lowers the formation of reactive oxygen species and hence oxidative damage to the DNA in general. This increases the processivity of replication forks generated by overinitiation to a level that sustains viability. PMID:28129339

  2. RPA coordinates DNA end resection and prevents formation of DNA hairpins.

    PubMed

    Chen, Huan; Lisby, Michael; Symington, Lorraine S

    2013-05-23

    Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection

    PubMed Central

    Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu

    2017-01-01

    ABSTRACT Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51. PMID:27892797

  4. Gigantism in a bacterium, Epulopiscium fishelsoni, correlates with complex patterns in arrangement, quantity, and segregation of DNA.

    PubMed

    Bresler, V; Montgomery, W L; Fishelson, L; Pollak, P E

    1998-11-01

    Epulopiscium fishelsoni, gut symbiont of the brown surgeonfish (Acanthurus nigrofuscus) in the Red Sea, attains a larger size than any other eubacterium, varies 10- to 20-fold in length (and >2, 000-fold in volume), and undergoes a complex daily life cycle. In early morning, nucleoids contain highly condensed DNA in elongate, chromosome-like structures which are physically separated from the general cytoplasm. Cell division involves production of two (rarely three) nucleoids within a cell, deposition of cell walls around expanded nucleoids, and emergence of daughter cells from the parent cell. Fluorescence measurements of DNA, RNA, and other cell components indicate the following. DNA quantity is proportional to cell volume over cell lengths of approximately 30 micrometers to >500 micrometers. For cells of a given size, nucleoids of cells with two nucleoids (binucleoid) contain approximately equal amounts of DNA. And each nucleoid of a binucleoid cell contains one-half the DNA of the single nucleoid in a uninucleoid cell of the same size. The life cycle involves approximately equal subdivision of DNA among daughter cells, formation of apical caps of condensed DNA from previously decondensed and diffusely distributed DNA, and "pinching" of DNA near the middle of the cell in the absence of new wall formation. Mechanisms underlying these patterns remain unclear, but formation of daughter nucleoids and cells occurs both during diurnal periods of host feeding and bacterial cell growth and during nocturnal periods of host inactivity when mean bacterial cell size declines.

  5. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection.

    PubMed

    Abeyta, Antonio; Castella, Maria; Jacquemont, Celine; Taniguchi, Toshiyasu

    2017-02-16

    Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.

  6. Specific DNA duplex formation at an artificial lipid bilayer: towards a new DNA biosensor technology.

    PubMed

    Werz, Emma; Korneev, Sergei; Montilla-Martinez, Malayko; Wagner, Richard; Hemmler, Roland; Walter, Claudius; Eisfeld, Jörg; Gall, Karsten; Rosemeyer, Helmut

    2012-02-01

    A novel technique is described which comprises a base-specific DNA duplex formation at a lipid bilayer-H(2) O-phase boundary layer. Two different probes of oligonucleotides both carrying a double-tailed lipid at the 5'-terminus were incorporated into stable artificial lipid bilayers separating two compartments (cis/trans-channel) of an optically transparent microfluidic sample carrier with perfusion capabilities. Both the cis- and trans-channels are filled with saline buffer. Injection of a cyanine-5-labeled target DNA sequence, which is complementary to only one of the oligonucleotide probes, into the cis-channel, followed by a thorough perfusion, leads to an immobilization of the labeled complementary oligonucleotide on the membrane as detected by single-molecule fluorescence spectroscopy and microscopy. In the case of fluorescent but non-complementary DNA sequences, no immobilized fluorescent oligonucleotide duplex could be detected on the membrane. This clearly verifies a specific duplex formation at the membrane interface. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Reduced 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)-Initiated Oxidative DNA Damage and Neurodegeneration in Prostaglandin H Synthase-1 Knockout Mice

    PubMed Central

    2010-01-01

    The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/− and −/− knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate. PMID:22778832

  8. Semiquinone formation and DNA base damage by toxic quinones and inhibition by N-acetylcysteine (NAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, D.C.; Shibamoto, T.

    1986-03-05

    Toxic, mutagenic, carcinogenic, and teratogenic effects have been reported for some quinones as well as compounds metabolized to quinones. Semiquinone radical formation, thymidine degradation, and protection by NAC were studied in a hypoxanthine/xanthine oxidase (HX/XO) system. Quinone, benzo(a)pyrene-3,6-quinone, danthron, doxorubicin, emodin, juglone, menadione, and moniliformin were tested. Diethylstilbestrolquinone, N-acetylquinoneimine, and benzoquinonediimine, hypothesized toxic metabolites of diethylstilbestrol, acetaminophen and p-phenylenediamine, respectively, were synthesized and studied. Semiquinone radical formation was assessed in a HX/XO system monitoring cytochrome C reduction. Large differences in rates of semiquinone radical formation were noted for different quinones, with V/Vo values ranging from 1.2 to 10.6. DNA basemore » degradation, thymine or thymidine glycol formation, and thiobarbituric acid reactive substance (TBARS) production were measured in a similar system containing thymine, thymidine, calf thymus DNA, or deoxyribose. TBARS formation was observed with deoxyribose, but thymidine degradation without TBARS formation was noted with thymidine. NAC (0.5 to 10 mM) caused dose-dependent inhibition of quinone-induced cytochrome C reduction.« less

  9. Flexible DNA Path in the MCM Double Hexamer Loaded on DNA.

    PubMed

    Hizume, Kohji; Kominami, Hiroaki; Kobayashi, Kei; Yamada, Hirofumi; Araki, Hiroyuki

    2017-05-16

    The formation of the pre-replicative complex (pre-RC) during the G1 phase, which is also called the licensing of DNA replication, is the initial and essential step of faithful DNA replication during the subsequent S phase. It is widely accepted that in the pre-RC, double-stranded DNA passes through the holes of two ring-shaped minichromosome maintenance (MCM) 2-7 hexamers; however, the spatial organization of the DNA and proteins involved in pre-RC formation is unclear. Here we reconstituted the pre-RC from purified DNA and proteins and visualized the complex using atomic force microscopy (AFM). AFM revealed that the MCM double hexamers formed elliptical particles on DNA. Analysis of the angle of binding of DNA to the MCM double hexamer suggests that the DNA does not completely pass through both holes of the MCM hexamers, possibly because the DNA exited from the gap between Mcm2 and Mcm5. A DNA loop fastened by the MCM double hexamer was detected in pre-RC samples reconstituted from purified proteins as well as those purified from yeast cells, suggesting a higher-order architecture of the loaded MCM hexamers and DNA strands.

  10. Histone H3.3 promotes IgV gene diversification by enhancing formation of AID-accessible single-stranded DNA.

    PubMed

    Romanello, Marina; Schiavone, Davide; Frey, Alexander; Sale, Julian E

    2016-07-01

    Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV sequence diversification. We show that this results from impairment of the ability of AID to access the IgV genes due to reduced formation of ssDNA during IgV transcription. Loss of H3.3 also diminishes IgV R-loop formation. However, reducing IgV R-loops by RNase HI overexpression in wild-type cells does not affect IgV diversification, showing that these structures are not necessary intermediates for AID access. Importantly, the reduction in the formation of AID-accessible ssDNA in cells lacking H3.3 is independent of any effect on the level of transcription or the kinetics of RNAPII elongation, suggesting the presence of H3.3 in the nucleosomes of the IgV genes increases the chances of the IgV DNA becoming single-stranded, thereby creating an effective AID substrate. © 2016 MRC Laboratory of Molecular Biology. Published under the terms of the CC BY 4.0 license.

  11. Mutually Exclusive Formation of G-Quadruplex and i-Motif Is a General Phenomenon Governed by Steric Hindrance in Duplex DNA.

    PubMed

    Cui, Yunxi; Kong, Deming; Ghimire, Chiran; Xu, Cuixia; Mao, Hanbin

    2016-04-19

    G-Quadruplex and i-motif are tetraplex structures that may form in opposite strands at the same location of a duplex DNA. Recent discoveries have indicated that the two tetraplex structures can have conflicting biological activities, which poses a challenge for cells to coordinate. Here, by performing innovative population analysis on mechanical unfolding profiles of tetraplex structures in double-stranded DNA, we found that formations of G-quadruplex and i-motif in the two complementary strands are mutually exclusive in a variety of DNA templates, which include human telomere and promoter fragments of hINS and hTERT genes. To explain this behavior, we placed G-quadruplex- and i-motif-hosting sequences in an offset fashion in the two complementary telomeric DNA strands. We found simultaneous formation of the G-quadruplex and i-motif in opposite strands, suggesting that mutual exclusivity between the two tetraplexes is controlled by steric hindrance. This conclusion was corroborated in the BCL-2 promoter sequence, in which simultaneous formation of two tetraplexes was observed due to possible offset arrangements between G-quadruplex and i-motif in opposite strands. The mutual exclusivity revealed here sets a molecular basis for cells to efficiently coordinate opposite biological activities of G-quadruplex and i-motif at the same dsDNA location.

  12. An Electrostatic Net Model for the Role of Extracellular DNA in Biofilm Formation by Staphylococcus aureus.

    PubMed

    Dengler, Vanina; Foulston, Lucy; DeFrancesco, Alicia S; Losick, Richard

    2015-12-01

    Staphylococcus aureus is an important human pathogen that can form biofilms on various surfaces. These cell communities are protected from the environment by a self-produced extracellular matrix composed of proteins, DNA, and polysaccharide. The exact compositions and roles of the different components are not fully understood. In this study, we investigated the role of extracellular DNA (eDNA) and its interaction with the recently identified cytoplasmic proteins that have a moonlighting role in the biofilm matrix. These matrix proteins associate with the cell surface upon the drop in pH that naturally occurs during biofilm formation, and we found here that this association is independent of eDNA. Conversely, the association of eDNA with the matrix was dependent on matrix proteins. Both proteinase and DNase treatments severely reduced clumping of resuspended biofilms; highlighting the importance of both proteins and eDNA in connecting cells together. By adding an excess of exogenous DNA to DNase-treated biofilm, clumping was partially restored, confirming the crucial role of eDNA in the interconnection of cells. On the basis of our results, we propose that eDNA acts as an electrostatic net, interconnecting cells surrounded by positively charged matrix proteins at a low pH. Extracellular DNA (eDNA) is an important component of the biofilm matrix of diverse bacteria, but its role in biofilm formation is not well understood. Here we report that in Staphylococcus aureus, eDNA associates with cells in a manner that depends on matrix proteins and that eDNA is required to link cells together in the biofilm. These results confirm previous studies that showed that eDNA is an important component of the S. aureus biofilm matrix and also suggest that eDNA acts as an electrostatic net that tethers cells together via the proteinaceous layer of the biofilm matrix. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Effect of heparin and heparan sulphate on open promoter complex formation for a simple tandem gene model using ex situ atomic force microscopy.

    PubMed

    Chammas, Oliver; Bonass, William A; Thomson, Neil H

    2017-05-01

    The influence of heparin and heparan sulphate (HepS) on the appearance and analysis of open promoter complex (RP o ) formation by E. coli RNA polymerase (RNAP) holoenzyme (σ 70 RNAP) on linear DNA using ex situ imaging by atomic force microscopy (AFM) has been investigated. Introducing heparin or HepS into the reaction mix significantly reduces non-specific interactions of the σ 70 RNAP and RNAP after RP o formation allowing for better interpretation of complexes shown within AFM images, particularly on DNA templates containing more than one promoter. Previous expectation was that negatively charged polysaccharides, often used as competitive inhibitors of σRNAP binding and RP o formation, would also inhibit binding of the DNA template to the mica support surface and thereby lower the imaging yield of active RNAP-DNA complexes. We found that the reverse of this was true, and that the yield of RP o formation detected by AFM, for a simple tandem gene model containing two λ PR promoters, increased. Moreover and unexpectedly, HepS was more efficient than heparin, with both of them having a dispersive effect on the sample, minimising unwanted RNAP-RNAP interactions as well as non-specific interactions between the RNAP and DNA template. The success of this method relied on the observation that E. coli RNAP has the highest affinity for the mica surface of all the molecular components. For our system, the affinity of the three constituent biopolymers to muscovite mica was RNAP>Heparin or HepS>DNA. While we observed that heparin and HepS can inhibit DNA binding to the mica, the presence of E. coli RNAP overcomes this effect allowing a greater yield of RP o s for AFM analysis. This method can be extended to other DNA binding proteins and enzymes, which have an affinity to mica higher than DNA, to improve sample preparation for AFM studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Vital Roles of the Second DNA-binding Site of Rad52 Protein in Yeast Homologous Recombination*

    PubMed Central

    Arai, Naoto; Kagawa, Wataru; Saito, Kengo; Shingu, Yoshinori; Mikawa, Tsutomu; Kurumizaka, Hitoshi; Shibata, Takehiko

    2011-01-01

    RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a “recombination mediator” to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing. PMID:21454474

  15. Long Noncoding RNA MEG3 Is an Epigenetic Determinant of Oncogenic Signaling in Functional Pancreatic Neuroendocrine Tumor Cells

    PubMed Central

    Iyer, Sucharitha; Modali, Sita D.

    2017-01-01

    ABSTRACT The long noncoding RNA (lncRNA) MEG3 is significantly downregulated in pancreatic neuroendocrine tumors (PNETs). MEG3 loss corresponds with aberrant upregulation of the oncogenic hepatocyte growth factor (HGF) receptor c-MET in PNETs. Meg3 overexpression in a mouse insulin-secreting PNET cell line, MIN6, downregulates c-Met expression. However, the molecular mechanism by which MEG3 regulates c-MET is not known. Using chromatin isolation by RNA purification and sequencing (ChIRP-Seq), we identified Meg3 binding to unique genomic regions in and around the c-Met gene. In the absence of Meg3, these c-Met regions displayed distinctive enhancer-signature histone modifications. Furthermore, Meg3 relied on functional enhancer of zeste homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2), to inhibit c-Met expression. Another mechanism of lncRNA-mediated regulation of gene expression utilized triplex-forming GA-GT rich sequences. Transfection of such motifs from Meg3 RNA, termed triplex-forming oligonucleotides (TFOs), in MIN6 cells suppressed c-Met expression and enhanced cell proliferation, perhaps by modulating other targets. This study comprehensively establishes epigenetic mechanisms underlying Meg3 control of c-Met and the oncogenic consequences of Meg3 loss or c-Met gain. These findings have clinical relevance for targeting c-MET in PNETs. There is also the potential for pancreatic islet β-cell expansion through c-MET regulation to ameliorate β-cell loss in diabetes. PMID:28847847

  16. Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis

    PubMed Central

    Ciftci, Alper; Findik, Arzu; Onuk, Ertan Emek; Savasan, Serap

    2009-01-01

    This study aimed to detect methicillin resistant and slime producing Staphylococcus aureus in cases of bovine mastitis. A triplex PCR was optimized targetting 16S rRNA, nuc and mecA genes for detection of Staphylococcus species, S. aureus and methicillin resistance, respectively. Furthermore, for detection of slime producing strains, a PCR assay targetting icaA and icaD genes was performed. In this study, 59 strains were detected as S. aureus by both conventional tests and PCR, and 13 of them were found to be methicillin resistant and 4 (30.7%) were positive for mecA gene. Although 22 of 59 (37.2%) S. aureus isolates were slime-producing in Congo Red Agar, in PCR analysis only 15 were positive for both icaA and icaD genes. Sixteen and 38 out of 59 strains were positive for icaA and icaD gene, respectively. Only 2 of 59 strains were positive for both methicillin resistance and slime producing, phenotypically, suggesting lack of correlation between methicillin resistance and slime production in these isolates. In conclusion, the optimized triplex PCR in this study was useful for rapid and reliable detection of methicillin resistant S. aureus. Furthermore, only PCR targetting icaA and icaD may not sufficient to detect slime production and further studies targetting other ica genes should be conducted for accurate evaluation of slime production characters of S. aureus strains. PMID:24031354

  17. UVA irradiation of BrU-substituted DNA in the presence of Hoechst 33258.

    PubMed

    Saha, Abhijit; Kizaki, Seiichiro; Han, Ji Hoon; Yu, Zutao; Sugiyama, Hiroshi

    2018-01-01

    Given that our knowledge of DNA repair is limited because of the complexity of the DNA system, a technique called UVA micro-irradiation has been developed that can be used to visualize the recruitment of DNA repair proteins at double-strand break (DSB) sites. Interestingly, Hoechst 33258 was used under micro-irradiation to sensitize 5-bromouracil ( Br U)-labelled DNA, causing efficient DSBs. However, the molecular basis of DSB formation under UVA micro-irradiation remains unknown. Herein, we investigated the mechanism of DSB formation under UVA micro-irradiation conditions. Our results suggest that the generation of a uracil-5-yl radical through electron transfer from Hoechst 33258 to Br U caused DNA cleavage preferentially at self-complementary 5'-AA Br U Br U-3' sequences to induce DSB. We also investigated the DNA cleavage in the context of the nucleosome to gain a better understanding of UVA micro-irradiation in a cell-like model. We found that DNA cleavage occurred in both core and linker DNA regions although its efficiency reduced in core DNA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons.

    PubMed

    Fukui, Hirokazu; Moraes, Carlos T

    2009-03-15

    Age-dependent accumulation of partially deleted mitochondrial DNA (DeltamtDNA) has been suggested to contribute to aging and the development of age-associated diseases including Parkinson's disease. However, the molecular mechanisms underlying the generation and accumulation of DeltamtDNA have not been addressed in vivo. In this study, we have developed a mouse model expressing an inducible mitochondria-targeted restriction endonuclease (PstI). Using this system, we could trigger mtDNA double-strand breaks (DSBs) in adult neurons. We found that this transient event leads to the generation of a family of DeltamtDNA with features that closely resemble naturally-occurring mtDNA deletions. The formation of these deleted species is likely to be mediated by yet uncharacterized DNA repairing machineries that participate in homologous recombination and non-homologous end-joining. Furthermore, we obtained in vivo evidence that DeltamtDNAs with larger deletions accumulate faster than those with smaller deletions, implying a replicative advantage of smaller mtDNAs. These findings identify DSB, DNA repair systems and replicative advantage as likely mechanisms underlying the generation and age-associated accumulation of DeltamtDNA in mammalian neurons.

  19. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  20. Nanopores formed by DNA origami: a review.

    PubMed

    Bell, Nicholas A W; Keyser, Ulrich F

    2014-10-01

    Nanopores have emerged over the past two decades to become an important technique in single molecule experimental physics and biomolecule sensing. Recently DNA nanotechnology, in particular DNA origami, has been used for the formation of nanopores in insulating materials. DNA origami is a very attractive technique for the formation of nanopores since it enables the construction of 3D shapes with precise control over geometry and surface functionality. DNA origami has been applied to nanopore research by forming hybrid architectures with solid state nanopores and by direct insertion into lipid bilayers. This review discusses recent experimental work in this area and provides an outlook for future avenues and challenges. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Homologous Recombination Repair Signaling in Chemical Carcinogenesis: Prolonged Particulate Hexavalent Chromium Exposure Suppresses the Rad51 Response in Human Lung Cells

    PubMed Central

    Qin, Qin; Xie, Hong; Wise, Sandra S.; Browning, Cynthia L.; Thompson, Kelsey N.; Holmes, Amie L.; Wise, John Pierce

    2014-01-01

    The aim of this study was to focus on hexavalent chromium, [Cr(VI)], a chemical carcinogen and major public health concern, and consider its ability to impact DNA double strand break repair. We further focused on particulate Cr(VI), because it is the more potent carcinogenic form of Cr(VI). DNA double strand break repair serves to protect cells against the detrimental effects of DNA double strand breaks. For particulate Cr(VI), data show DNA double strand break repair must be overcome for neoplastic transformation to occur. Acute Cr(VI) exposures reveal a robust DNA double strand break repair response, however, longer exposures have not been considered. Using the comet assay, we found longer exposures to particulate zinc chromate induced concentration-dependent increases in DNA double strand breaks indicating breaks were occurring throughout the exposure time. Acute (24 h) exposure induced DNA double strand break repair signaling by inducing Mre11 foci formation, ATM phosphorylation and phosphorylated ATM foci formation, Rad51 protein levels and Rad51 foci formation. However, longer exposures reduced the Rad51 response. These data indicate a major chemical carcinogen can simultaneously induce DNA double strand breaks and alter their repair and describe a new and important aspect of the carcinogenic mechanism for Cr(VI). PMID:25173789

  2. Formation of rings from segments of HeLa-cell nuclear deoxyribonucleic acid

    PubMed Central

    Hardman, Norman

    1974-01-01

    Duplex segments of HeLa-cell nuclear DNA were generated by cleavage with DNA restriction endonuclease from Haemophilus influenzae. About 20–25% of the DNA segments produced, when partly degraded with exonuclease III and annealed, were found to form rings visible in the electron microscope. A further 5% of the DNA segments formed structures that were branched in configuration. Similar structures were generated from HeLa-cell DNA, without prior treatment with restriction endonuclease, when the complementary polynucleotide chains were exposed by exonuclease III action at single-chain nicks. After exposure of an average single-chain length of 1400 nucleotides per terminus at nicks in HeLa-cell DNA by exonuclease III, followed by annealing, the physical length of ring closures was estimated and found to be 0.02–0.1μm, or 50–300 base pairs. An almost identical distribution of lengths was recorded for the regions of complementary base sequence responsible for branch formation. It is proposed that most of the rings and branches are formed from classes of reiterated base sequence with an average length of 180 base pairs arranged intermittenly in HeLa-cell DNA. From the rate of formation of branched structures when HeLa-cell DNA segments were heat-denatured and annealed, it is estimated that the reiterated sequences are in families containing approximately 2400–24000 copies. ImagesPLATE 2PLATE 1 PMID:4462738

  3. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer

    PubMed Central

    Hon, Gary C.; Hawkins, R. David; Caballero, Otavia L.; Lo, Christine; Lister, Ryan; Pelizzola, Mattia; Valsesia, Armand; Ye, Zhen; Kuan, Samantha; Edsall, Lee E.; Camargo, Anamaria Aranha; Stevenson, Brian J.; Ecker, Joseph R.; Bafna, Vineet; Strausberg, Robert L.; Simpson, Andrew J.; Ren, Bing

    2012-01-01

    While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells. PMID:22156296

  4. Alteration of Mature Nucleocapsid and Enhancement of Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in Complete-Virion Formation.

    PubMed

    Cui, Xiuji; Luckenbaugh, Laurie; Bruss, Volker; Hu, Jianming

    2015-10-01

    Assembly of hepatitis B virus (HBV) begins with packaging of the pregenomic RNA (pgRNA) into immature nucleocapsids (NC), which are converted to mature NCs containing the genomic relaxed circular (RC) DNA as a result of reverse transcription. Mature NCs have two alternative fates: (i) envelopment by viral envelope proteins, leading to secretion extracellularly as virions, or (ii) disassembly (uncoating) to deliver their RC DNA content into the host cell nucleus for conversion to the covalently closed circular (CCC) DNA, the template for viral transcription. How these two alternative fates are regulated remains to be better understood. The NC shell is composed of multiple copies of a single viral protein, the HBV core (HBc) protein. HBc mutations located on the surface of NC have been identified that allow NC maturation but block its envelopment. The potential effects of some of these mutations on NC uncoating and CCC DNA formation have been analyzed by transfecting HBV replication constructs into hepatoma cells. All envelopment-defective HBc mutations tested were competent for CCC DNA formation, indicating that core functions in envelopment and uncoating/nuclear delivery of RC DNA were genetically separable. Some of the envelopment-defective HBc mutations were found to alter specifically the integrity of mature, but not immature, NCs such that RC DNA became susceptible to nuclease digestion. Furthermore, CCC DNA formation could be enhanced by NC surface mutations that did or did not significantly affect mature NC integrity, indicating that the NC surface residues may be closely involved in NC uncoating and/or nuclear delivery of RC DNA. Hepatitis B virus (HBV) infection is a major health issue worldwide. HBV assembly begins with the packaging into immature nucleocapsids (NCs) of a viral RNA pregenome, which is converted to the DNA genome in mature NCs. Mature NCs are then selected for envelopment and secretion as complete-virion particles or, alternatively, can deliver their DNA to the host cell nucleus to maintain the viral genome as nuclear episomes, which are the basis for virus persistence. Previous studies have identified mutations on the capsid surface that selectively block NC envelopment without affecting NC maturation. We have now discovered that some of the same mutations result in preferential alteration of mature NCs and increased viral nuclear episomes. These findings provide important new insights into the regulation of the two alternative fates of mature NCs and suggest new ways to perturb viral persistence by manipulating levels of viral nuclear episomes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Nucleotide excision repair-dependent DNA double-strand break formation and ATM signaling activation in mammalian quiescent cells.

    PubMed

    Wakasugi, Mitsuo; Sasaki, Takuma; Matsumoto, Megumi; Nagaoka, Miyuki; Inoue, Keiko; Inobe, Manabu; Horibata, Katsuyoshi; Tanaka, Kiyoji; Matsunaga, Tsukasa

    2014-10-10

    Histone H2A variant H2AX is phosphorylated at Ser(139) in response to DNA double-strand break (DSB) and single-stranded DNA (ssDNA) formation. UV light dominantly induces pyrimidine photodimers, which are removed from the mammalian genome by nucleotide excision repair (NER). We previously reported that in quiescent G0 phase cells, UV induces ATR-mediated H2AX phosphorylation plausibly caused by persistent ssDNA gap intermediates during NER. In this study, we have found that DSB is also generated following UV irradiation in an NER-dependent manner and contributes to an earlier fraction of UV-induced H2AX phosphorylation. The NER-dependent DSB formation activates ATM kinase and triggers the accumulation of its downstream factors, MRE11, NBS1, and MDC1, at UV-damaged sites. Importantly, ATM-deficient cells exhibited enhanced UV sensitivity under quiescent conditions compared with asynchronously growing conditions. Finally, we show that the NER-dependent H2AX phosphorylation is also observed in murine peripheral T lymphocytes, typical nonproliferating quiescent cells in vivo. These results suggest that in vivo quiescent cells may suffer from NER-mediated secondary DNA damage including ssDNA and DSB. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Structure and dynamics of proflavine association around DNA.

    PubMed

    Sasikala, Wilbee D; Mukherjee, Arnab

    2016-04-21

    Proflavine is a small molecule that intercalates into DNA and, thereby, acts as an anticancer agent. Intercalation of proflavine is shown to be a two-step process in which the first step is believed to be the formation of a pre-intercalative outside bound state. Experimental studies so far have been unable to capture the nature of the outside bound state. However, the sub-millisecond timescale observed in fluorescence kinetic experiments is often attributed to the binding of proflavine outside of DNA. Here, we have performed molecular dynamics simulations with multiple proflavine molecules to study the structure and dynamics of the formation of the outside bound state of DNA at different ion concentrations. We observed that the timescale of the outside bound state formation is, at least, five orders of magnitude faster (in nanoseconds) than the experimentally reported timescale (sub-milliseconds) attributed to binding outside DNA. Moreover, we also observed the stacked arrangement of proflavine all around DNA, which is different from the experimentally predicted stacking arrangement perpendicular to the helical axis of DNA in the close vicinity of the phosphate groups. This study, therefore, provides insight into the molecular structure and dynamics of the pre-intercalative outside bound state and will help in understanding the overall intercalation mechanism.

  7. Binding characteristics and protective capacity of cyanidin-3-glucoside and its aglycon to calf thymus DNA.

    PubMed

    Zhang, Chao; Guo, Xiaofei; Cai, Wenqian; Ma, Yue; Zhao, Xiaoyan

    2015-04-01

    The binding characteristics and protective capacity of cyanidin (Cy) and cyanidin-3-glucoside (C3G) to calf thymus DNA were explored for the first time. The Cy and C3G gave a bathochromic shift to the ultraviolet-visible spectra of the DNA, indicating the formation of the DNA-Cy and DNA-C3G complexes. The complexes were formed by an intercalative binding mode based on the results of the fluorescence spectra and competitive binding analysis. Meanwhile, the Cy and C3G protected the DNA from the damage induced by the hydroxyl radical. The binding capacity and protective capacity of the C3G were stronger than that of the Cy. Furthermore, the formation of the DNA-anthocyanin complexes was spontaneous when the hydrogen bond and hydrophobic force played a key role. Hence, the Cy and C3G could protect the DNA automatically from the damage induced by the hydroxyl radical. © 2015 Institute of Food Technologists®

  8. [The effect of structure of benzimidazoles on the character of forming intramolecular cross-links in DNA and chromatin].

    PubMed

    Mil', E M; Zhil'tsova, V M; Biniukov, V I; Zhizhina, G P; Stoliarova, L G; Kuznetsov, Iu P

    1994-01-01

    An investigation of a number of benzimidazole class preparations, being distinguished by a position of aminomethyl substitutes, has been carried out. It has been shown, that the non-substituted preparation BIO-10 does not form UV-cross-links in DNA and chromatine; BIO-40, having one substitute in the position 2, causes the formation of inter-molecular cross-links DNA-DNA. The preparation BIO-50, having 2 aminomethyl groups in the imidazole nucleus positions 2 and 6, forms cross-links DNA-DNA and DNA-protein in chromatine. The generation of radicals by the preparations BIO-10 and BIO-50 has been studied by the EPR-method by use of spin trap. It has been demonstrated, that BIO-10, unlike BIO-50, actively generates superoxide. A supposition has been made, that an UV-formation of superoxide-radical in the presence of BIO-10 might be a reason of DNA-macromolecule destruction.

  9. Fluorometric detection of adenine in target DNA by exciplex formation with fluorescent 8-arylethynylated deoxyguanosine.

    PubMed

    Saito, Yoshio; Kugenuma, Kenji; Tanaka, Makiko; Suzuki, Azusa; Saito, Isao

    2012-06-01

    We demonstrated an intriguing method to discriminate adenine by incident appearance of an intense new emission via exciplex formation in hybridization of target DNA with newly designed fluorescent 8-arylethynylated deoxyguanosine derivatives. We described the synthesis of such highly electron donating fluorescent guanosine derivatives and their incorporation into DNA oligomers which may be used for the structural study and the fluorometric analysis of nucleic acids. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection.

    PubMed

    Furst, Ariel L; Hill, Michael G; Barton, Jacqueline K

    2013-12-31

    A method of DNA monolayer formation has been developed using copper-free click chemistry that yields enhanced surface homogeneity and enables variation in the amount of DNA assembled; extremely low-density DNA monolayers, with as little as 5% of the monolayer being DNA, have been formed. These DNA-modified electrodes (DMEs) were characterized visually, with AFM, and electrochemically, and were found to facilitate DNA-mediated reduction of a distally bound redox probe. These low-density monolayers were found to be more homogeneous than traditional thiol-modified DNA monolayers, with greater helix accessibility through an increased surface area-to-volume ratio. Protein binding efficiency of the transcriptional activator TATA-binding protein (TBP) was also investigated on these surfaces and compared to that on DNA monolayers formed with standard thiol-modified DNA. Our low-density monolayers were found to be extremely sensitive to TBP binding, with a signal decrease in excess of 75% for 150 nM protein. This protein was detectable at 4 nM, on the order of its dissociation constant, with our low-density monolayers. The improved DNA helix accessibility and sensitivity of our low-density DNA monolayers to TBP binding reflects the general utility of this method of DNA monolayer formation for DNA-based electrochemical sensor development.

  11. Structural analysis of nucleosomal barrier to transcription.

    PubMed

    Gaykalova, Daria A; Kulaeva, Olga I; Volokh, Olesya; Shaytan, Alexey K; Hsieh, Fu-Kai; Kirpichnikov, Mikhail P; Sokolova, Olga S; Studitsky, Vasily M

    2015-10-27

    Thousands of human and Drosophila genes are regulated at the level of transcript elongation and nucleosomes are likely targets for this regulation. However, the molecular mechanisms of formation of the nucleosomal barrier to transcribing RNA polymerase II (Pol II) and nucleosome survival during/after transcription remain unknown. Here we show that both DNA-histone interactions and Pol II backtracking contribute to formation of the barrier and that nucleosome survival during transcription likely occurs through allosterically stabilized histone-histone interactions. Structural analysis indicates that after Pol II encounters the barrier, the enzyme backtracks and nucleosomal DNA recoils on the octamer, locking Pol II in the arrested state. DNA is displaced from one of the H2A/H2B dimers that remains associated with the octamer. The data reveal the importance of intranucleosomal DNA-protein and protein-protein interactions during conformational changes in the nucleosome structure on transcription. Mechanisms of nucleosomal barrier formation and nucleosome survival during transcription are proposed.

  12. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction ofmore » numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.« less

  13. Myofibroblast secretome and its auto-/paracrine signaling

    PubMed Central

    Bomb, Ritin; Heckle, Mark R.; Sun, Yao; Mancarella, Salvatore; Guntaka, Ramareddy V.; Gerling, Ivan C.; Weber, Karl T.

    2016-01-01

    Summary Myofibroblasts (myoFb) are phenotypically transformed, contractile fibroblast-like cells expressing α-smooth muscle actin microfilaments. They are integral to collagen fibrillogenesis with scar tissue formation at sites of repair irrespective of the etiologic origins of injury or tissue involved. MyoFb can persist long after healing is complete, where their ongoing turnover of collagen accounts for a progressive structural remodeling of an organ (a.k.a. fibrosis, sclerosis or cirrhosis). Such persistent metabolic activity is derived from a secretome consisting of requisite components in the de novo generation of angiotensin (Ang) II. Autocrine and paracrine signaling induced by tissue AngII is expressed via AT1 receptor ligand binding to respectively promote: i) regulation of myoFb collagen synthesis via the fibrogenic cytokine TGF-β1-Smad pathway; and ii) dedifferentiation and protein degradation of atrophic myocytes immobilized and ensnared by fibrillar collagen at sites of scarring. Several cardioprotective strategies in the prevention of fibrosis and involving myofibroblasts are considered. They include: inducing myoFb apoptosis through inactivation of antiapoptotic proteins; AT1 receptor antagonist to interfere with auto-/paracrine myoFb signaling or to induce counterregulatory expression of ACE2; and attacking the AngII-AT1R-TGF-β1-Smad pathway by antibody or the use of triplex-forming oligonucleotides. PMID:26818589

  14. Gigantism in a Bacterium, Epulopiscium fishelsoni, Correlates with Complex Patterns in Arrangement, Quantity, and Segregation of DNA

    PubMed Central

    Bresler, V.; Montgomery, W. L.; Fishelson, L.; Pollak, P. E.

    1998-01-01

    Epulopiscium fishelsoni, gut symbiont of the brown surgeonfish (Acanthurus nigrofuscus) in the Red Sea, attains a larger size than any other eubacterium, varies 10- to 20-fold in length (and >2,000-fold in volume), and undergoes a complex daily life cycle. In early morning, nucleoids contain highly condensed DNA in elongate, chromosome-like structures which are physically separated from the general cytoplasm. Cell division involves production of two (rarely three) nucleoids within a cell, deposition of cell walls around expanded nucleoids, and emergence of daughter cells from the parent cell. Fluorescence measurements of DNA, RNA, and other cell components indicate the following. DNA quantity is proportional to cell volume over cell lengths of ∼30 μm to >500 μm. For cells of a given size, nucleoids of cells with two nucleoids (binucleoid) contain approximately equal amounts of DNA. And each nucleoid of a binucleoid cell contains one-half the DNA of the single nucleoid in a uninucleoid cell of the same size. The life cycle involves approximately equal subdivision of DNA among daughter cells, formation of apical caps of condensed DNA from previously decondensed and diffusely distributed DNA, and “pinching” of DNA near the middle of the cell in the absence of new wall formation. Mechanisms underlying these patterns remain unclear, but formation of daughter nucleoids and cells occurs both during diurnal periods of host feeding and bacterial cell growth and during nocturnal periods of host inactivity when mean bacterial cell size declines. PMID:9791108

  15. Nucleosome Positioning and Epigenetics

    NASA Astrophysics Data System (ADS)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  16. Approaches for characterizing threshold dose-response relationships for DNA-damage pathways involved in carcinogenicity in vivo and micronuclei formation in vitro.

    PubMed

    Clewell, Rebecca A; Andersen, Melvin E

    2016-05-01

    Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. AN EVALUATION OF THE MUTAGENICITY, METABOLISM AND DNA ADDUCT FORMATION OF 5-NITROBENZO[B]NAPHTHO[2,1-D]THIOPHENE

    EPA Science Inventory

    An Evaluation of the Mutagenicity, Metabolism and DNA Adduct Formation of 5-Nitrobenzo[b ]naphtho[2, I-d]thiophene

    Thioarenes, sulfur containing polycyclic aromatic compounds, are environmental contaminants suspected of posing human health risks. In this study, 5-nitroben...

  18. Dynamic maps of UV damage formation and repair for the human genome

    PubMed Central

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-01-01

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS–Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS–Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage. PMID:28607063

  19. Dynamic maps of UV damage formation and repair for the human genome.

    PubMed

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-06-27

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.

  20. Overexpression of dominant negative PARP interferes with tumor formation of HeLa cells in nude mice: evidence for increased tumor cell apoptosis in vivo.

    PubMed

    Hans, M A; Müller, M; Meyer-Ficca, M; Bürkle, A; Küpper, J H

    1999-11-25

    Poly(ADP-ribose) polymerase (PARP4) catalyzes the formation of ADP-ribose polymers covalently attached to proteins by using NAD+ as substrate. PARP is strongly activated by DNA single- or double-strand breaks and is thought to be involved in cellular responses to DNA damage. We characterized a dominant negative PARP mutant, i.e. the DNA-binding domain of this enzyme, whose overexpression in cells leads to increased genetic instability following DNA damage. In order to study whether PARP activity is also implicated in the process of tumorigenesis, we generated stably transfected HeLa cell clones with constitutive overexpression of dominant negative PARP and investigated tumor formation of these clones in nude mice. We found that inhibition of PARP activity dramatically reduces tumor forming ability of HeLa cells. Moreover, we provide strong evidence that the observed reduction in tumor forming ability is due to increased tumor cell apoptosis in vivo. Viewed together, our data and those from other groups show that inhibition of PARP enzyme activity interferes with DNA base excision repair and leads to increased genetic instability and recombination but, on the other hand, can sensitize cells to apoptotic stimuli and by this mechanism may prevent tumor formation.

  1. Solar UV radiation-induced DNA Bipyrimidine photoproducts: formation and mechanistic insights.

    PubMed

    Cadet, Jean; Grand, André; Douki, Thierry

    2015-01-01

    This review chapter presents a critical survey of the main available information on the UVB and UVA bipyrimidine photoproducts which constitute the predominant recipient classes of photo-induced DNA damage. Evidence is provided that UVB irradiation of isolated DNA in aqueous solutions and in cells gives rise to the predominant generation of cis-syn cyclobutane pyrimidine dimers (CPDs) and, to a lesser extent, of pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), the importance of which is strongly primary sequence dependent. A notable change in the photoproduct distribution is observed when DNA either in the dry or in desiccated microorganisms is exposed to UVC or UVB photons with an overwhelming formation of 5-(α-thymidyl)-5,6-dihydrothymidine, also called spore photoproduct (dSP), at the expense of CPDs and 6-4PPs. UVA irradiation of isolated and cellular DNA gives rise predominantly to bipyrimidine photoproducts with the overwhelming formation of thymine-containing cyclobutane pyrimidine dimers at the exclusion of 6-4PPs. UVA photons have been shown to modulate the distribution of UVB dimeric pyrimidine photoproducts by triggering isomerization of the 6-4PPs into related Dewar valence isomers. Mechanistic aspects of the formation of bipyrimidine photoproducts are discussed in the light of recent photophysical and theoretical studies.

  2. Experimental design, modeling and optimization of polyplex formation between DNA oligonucleotides and branched polyethylenimine.

    PubMed

    Clima, Lilia; Ursu, Elena L; Cojocaru, Corneliu; Rotaru, Alexandru; Barboiu, Mihail; Pinteala, Mariana

    2015-09-28

    The complexes formed by DNA and polycations have received great attention owing to their potential application in gene therapy. In this study, the binding efficiency between double-stranded oligonucleotides (dsDNA) and branched polyethylenimine (B-PEI) has been quantified by processing of the images captured from the gel electrophoresis assays. The central composite experimental design has been employed to investigate the effects of controllable factors on the binding efficiency. On the basis of experimental data and the response surface methodology, a multivariate regression model has been constructed and statistically validated. The model has enabled us to predict the binding efficiency depending on experimental factors, such as concentrations of dsDNA and B-PEI as well as the initial pH of solution. The optimization of the binding process has been performed using simplex and gradient methods. The optimal conditions determined for polyplex formation have yielded a maximal binding efficiency close to 100%. In order to reveal the mechanism of complex formation at the atomic-scale, a molecular dynamic simulation has been carried out. According to the computation results, B-PEI amine hydrogen atoms have interacted with oxygen atoms from dsDNA phosphate groups. These interactions have led to the formation of hydrogen bonds between macromolecules, stabilizing the polyplex structure.

  3. Oxidative stress induces protein and DNA radical formation in follicular dendritic cells (FDCs) of the germinal center and modulates its cell death patterns in late sepsis

    PubMed Central

    Chatterjee, Saurabh; Lardinois, Olivier; Bhattacharjee, Suchandra; Tucker, Jeff; Corbett, Jean; Deterding, Leesa; Ehrenshaft, Marilyn; Bonini, Marcelo; Mason, Ronald P.

    2011-01-01

    Profound depletion of follicular dendritic cells (FDCs) is a hallmark of sepsis-like syndrome, but the exact causes for the ensuing cell death are unknown. The cell death-driven depletion contributes to immunoparalysis and is responsible for most of the morbidity and mortality in sepsis. Here we have utilized immuno-spin trapping, a method for detection of free radical formation, to detect oxidative stress-induced protein and DNA radical adducts in FDCs isolated from the spleen of septic mice and human tonsil-derived HK cells, a subtype of germinal center FDCs, to study their role in FDC depletion. At 24 h post-LPS administration, protein radical formation and oxidation was significantly elevated in vivo and in HK cells as shown by ELISA and confocal microscopy. The xanthine oxidase inhibitor allopurinol and the iron chelator desferrioxamine significantly decreased the formation of protein radicals, suggesting the role of xanthine oxidase and Fenton-like chemistry in radical formation. Protein and DNA radical formation correlated mostly with apoptotic features at 24 h and necrotic morphology of all the cell types studied at 48 h with concomitant inhibition of caspase-3. The cytotoxity of FDCs resulted in decreased CD45R/CD138+ve plasma cell numbers, indicating a possible defect in B cell differentiation. In one such mechanism, radical formation initiated by xanthine oxidase formed protein and DNA radicals which may lead to cell death of germinal center FDCs. PMID:21215311

  4. O⁶-carboxymethylguanine DNA adduct formation and lipid peroxidation upon in vitro gastrointestinal digestion of haem-rich meat.

    PubMed

    Vanden Bussche, Julie; Hemeryck, Lieselot Y; Van Hecke, Thomas; Kuhnle, Gunter G C; Pasmans, Frank; Moore, Sharon A; Van de Wiele, Tom; De Smet, Stefaan; Vanhaecke, Lynn

    2014-09-01

    Epidemiological and clinical studies have demonstrated that the consumption of red haem-rich meat may contribute to the risk of colorectal cancer. Two hypotheses have been put forward to explain this causal relationship, i.e. N-nitroso compound (NOC) formation and lipid peroxidation (LPO). In this study, the NOC-derived DNA adduct O(6)-carboxymethylguanine (O(6)-CMG) and the LPO product malondialdehyde (MDA) were measured in individual in vitro gastrointestinal digestions of meat types varying in haem content (beef, pork, chicken). While MDA formation peaked during the in vitro small intestinal digestion, alkylation and concomitant DNA adduct formation was observed in seven (out of 15) individual colonic digestions using separate faecal inocula. From those, two haem-rich meat digestions demonstrated a significantly higher O(6)-CMG formation (p < 0.05). MDA concentrations proved to be positively correlated (p < 0.0004) with haem content of digested meat. The addition of myoglobin, a haem-containing protein, to the digestive simulation showed a dose-response association with O(6)-CMG (p = 0.004) and MDA (p = 0.008) formation. The results suggest the haem-iron involvement for both the LPO and NOC pathway during meat digestion. Moreover, results unambiguously demonstrate that DNA adduct formation is very prone to inter-individual variation, suggesting a person-dependent susceptibility to colorectal cancer development following haem-rich meat consumption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Diversity in Requirement of Genetic and Epigenetic Factors for Centromere Function in Fungi ▿

    PubMed Central

    Roy, Babhrubahan; Sanyal, Kaustuv

    2011-01-01

    A centromere is a chromosomal region on which several proteins assemble to form the kinetochore. The centromere-kinetochore complex helps in the attachment of chromosomes to spindle microtubules to mediate segregation of chromosomes to daughter cells during mitosis and meiosis. In several budding yeast species, the centromere forms in a DNA sequence-dependent manner, whereas in most other fungi, factors other than the DNA sequence also determine the centromere location, as centromeres were able to form on nonnative sequences (neocentromeres) when native centromeres were deleted in engineered strains. Thus, in the absence of a common DNA sequence, the cues that have facilitated centromere formation on a specific DNA sequence for millions of years remain a mystery. Kinetochore formation is facilitated by binding of a centromere-specific histone protein member of the centromeric protein A (CENP-A) family that replaces a canonical histone H3 to form a specialized centromeric chromatin structure. However, the process of kinetochore formation on the rapidly evolving and seemingly diverse centromere DNAs in different fungal species is largely unknown. More interestingly, studies in various yeasts suggest that the factors required for de novo centromere formation (establishment) may be different from those required for maintenance (propagation) of an already established centromere. Apart from the DNA sequence and CENP-A, many other factors, such as posttranslational modification (PTM) of histones at centric and pericentric chromatin, RNA interference, and DNA methylation, are also involved in centromere formation, albeit in a species-specific manner. In this review, we discuss how several genetic and epigenetic factors influence the evolution of structure and function of centromeres in fungal species. PMID:21908596

  6. DNA double-strand breaks and Aurora B mislocalization induced by exposure of early mitotic cells to H2O2 appear to increase chromatin bridges and resultant cytokinesis failure.

    PubMed

    Cho, Min-Guk; Ahn, Ju-Hyun; Choi, Hee-Song; Lee, Jae-Ho

    2017-07-01

    Aneuploidy, an abnormal number of chromosomes that is a hallmark of cancer cells, can arise from tetraploid/binucleated cells through a failure of cytokinesis. Reactive oxygen species (ROS) have been implicated in various diseases, including cancer. However, the nature and role of ROS in cytokinesis progression and related mechanisms has not been clearly elucidated. Here, using time-lapse analysis of asynchronously growing cells and immunocytochemical analyses of synchronized cells, we found that hydrogen peroxide (H 2 O 2 ) treatment at early mitosis (primarily prometaphase) significantly induced cytokinesis failure. Cytokinesis failure and the resultant formation of binucleated cells containing nucleoplasmic bridges (NPBs) seemed to be caused by increases in DNA double-strand breaks (DSBs) and subsequent unresolved chromatin bridges. We further found that H 2 O 2 induced mislocalization of Aurora B during mitosis. All of these effects were attenuated by pretreatment with N-acetyl-L-cysteine (NAC) or overexpression of Catalase. Surprisingly, the PARP inhibitor PJ34 also reduced H 2 O 2 -induced Aurora B mislocalization and binucleated cell formation. Results of parallel experiments with etoposide, a topoisomerase IIα inhibitor that triggers DNA DSBs, suggested that both DNA DSBs and Aurora B mislocalization contribute to chromatin bridge formation. Aurora B mislocalization also appeared to weaken the "abscission checkpoint". Finally, we showed that KRAS-induced binucleated cell formation appeared to be also H 2 O 2 -dependent. In conclusion, we propose that a ROS, mainly H 2 O 2 increases binucleation through unresolved chromatin bridges caused by DNA damage and mislocalization of Aurora B, the latter of which appears to augment the effect of DNA damage on chromatin bridge formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Quantitative Experimental Determination of Primer-Dimer Formation Risk by Free-Solution Conjugate Electrophoresis

    PubMed Central

    Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.

    2012-01-01

    DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820

  8. Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

    PubMed Central

    Li, Ping; Jin, Hui; Yu, Hong-Guo

    2014-01-01

    During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex required for chromosome organization, regulates double-strand break (DSB) formation and repair at the rDNA gene cluster during meiosis in budding yeast. Condensin is highly enriched at the rDNA region during prophase I, released at the prophase I/metaphase I transition, and reassociates with rDNA before anaphase I onset. We show that condensin plays a dual role in maintaining rDNA stability: it suppresses the formation of Spo11-mediated rDNA breaks, and it promotes DSB processing to ensure proper chromosome segregation. Condensin is unnecessary for the export of rDNA breaks outside the nucleolus but required for timely repair of meiotic DSBs. Our work reveals that condensin coordinates meiotic recombination with chromosome segregation at the repetitive rDNA sequence, thereby maintaining genome integrity. PMID:25103240

  9. Self-assembly programming of DNA polyominoes.

    PubMed

    Ong, Hui San; Syafiq-Rahim, Mohd; Kasim, Noor Hayaty Abu; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan

    2016-10-20

    Fabrication of functional DNA nanostructures operating at a cellular level has been accomplished through molecular programming techniques such as DNA origami and single-stranded tiles (SST). During implementation, restrictive and constraint dependent designs are enforced to ensure conformity is attainable. We propose a concept of DNA polyominoes that promotes flexibility in molecular programming. The fabrication of complex structures is achieved through self-assembly of distinct heterogeneous shapes (i.e., self-organised optimisation among competing DNA basic shapes) with total flexibility during the design and assembly phases. In this study, the plausibility of the approach is validated using the formation of multiple 3×4 DNA network fabricated from five basic DNA shapes with distinct configurations (monomino, tromino and tetrominoes). Computational tools to aid the design of compatible DNA shapes and the structure assembly assessment are presented. The formations of the desired structures were validated using Atomic Force Microscopy (AFM) imagery. Five 3×4 DNA networks were successfully constructed using combinatorics of these five distinct DNA heterogeneous shapes. Our findings revealed that the construction of DNA supra-structures could be achieved using a more natural-like orchestration as compared to the rigid and restrictive conventional approaches adopted previously. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.

    PubMed

    Shukla, Lata I; Pazdro, Robert; Huang, James; DeVreugd, Christopher; Becker, David; Sevilla, Michael D

    2004-05-01

    In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar.

  11. Mechanism of chimera formation during the Multiple Displacement Amplification reaction.

    PubMed

    Lasken, Roger S; Stockwell, Timothy B

    2007-04-12

    Multiple Displacement Amplification (MDA) is a method used for amplifying limiting DNA sources. The high molecular weight amplified DNA is ideal for DNA library construction. While this has enabled genomic sequencing from one or a few cells of unculturable microorganisms, the process is complicated by the tendency of MDA to generate chimeric DNA rearrangements in the amplified DNA. Determining the source of the DNA rearrangements would be an important step towards reducing or eliminating them. Here, we characterize the major types of chimeras formed by carrying out an MDA whole genome amplification from a single E. coli cell and sequencing by the 454 Life Sciences method. Analysis of 475 chimeras revealed the predominant reaction mechanisms that create the DNA rearrangements. The highly branched DNA synthesized in MDA can assume many alternative secondary structures. DNA strands extended on an initial template can be displaced becoming available to prime on a second template creating the chimeras. Evidence supports a model in which branch migration can displace 3'-ends freeing them to prime on the new templates. More than 85% of the resulting DNA rearrangements were inverted sequences with intervening deletions that the model predicts. Intramolecular rearrangements were favored, with displaced 3'-ends reannealing to single stranded 5'-strands contained within the same branched DNA molecule. In over 70% of the chimeric junctions, the 3' termini had initiated priming at complimentary sequences of 2-21 nucleotides (nts) in the new templates. Formation of chimeras is an important limitation to the MDA method, particularly for whole genome sequencing. Identification of the mechanism for chimera formation provides new insight into the MDA reaction and suggests methods to reduce chimeras. The 454 sequencing approach used here will provide a rapid method to assess the utility of reaction modifications.

  12. Mechanism of chimera formation during the Multiple Displacement Amplification reaction

    PubMed Central

    Lasken, Roger S; Stockwell, Timothy B

    2007-01-01

    Background Multiple Displacement Amplification (MDA) is a method used for amplifying limiting DNA sources. The high molecular weight amplified DNA is ideal for DNA library construction. While this has enabled genomic sequencing from one or a few cells of unculturable microorganisms, the process is complicated by the tendency of MDA to generate chimeric DNA rearrangements in the amplified DNA. Determining the source of the DNA rearrangements would be an important step towards reducing or eliminating them. Results Here, we characterize the major types of chimeras formed by carrying out an MDA whole genome amplification from a single E. coli cell and sequencing by the 454 Life Sciences method. Analysis of 475 chimeras revealed the predominant reaction mechanisms that create the DNA rearrangements. The highly branched DNA synthesized in MDA can assume many alternative secondary structures. DNA strands extended on an initial template can be displaced becoming available to prime on a second template creating the chimeras. Evidence supports a model in which branch migration can displace 3'-ends freeing them to prime on the new templates. More than 85% of the resulting DNA rearrangements were inverted sequences with intervening deletions that the model predicts. Intramolecular rearrangements were favored, with displaced 3'-ends reannealing to single stranded 5'-strands contained within the same branched DNA molecule. In over 70% of the chimeric junctions, the 3' termini had initiated priming at complimentary sequences of 2–21 nucleotides (nts) in the new templates. Conclusion Formation of chimeras is an important limitation to the MDA method, particularly for whole genome sequencing. Identification of the mechanism for chimera formation provides new insight into the MDA reaction and suggests methods to reduce chimeras. The 454 sequencing approach used here will provide a rapid method to assess the utility of reaction modifications. PMID:17430586

  13. Molecular mechanism of DNA association with single-stranded DNA binding protein

    PubMed Central

    Maffeo, Christopher

    2017-01-01

    Abstract During DNA replication, the single-stranded DNA binding protein (SSB) wraps single-stranded DNA (ssDNA) with high affinity to protect it from degradation and prevent secondary structure formation. Although SSB binds ssDNA tightly, it can be repositioned along ssDNA to follow the advancement of the replication fork. Using all-atom molecular dynamics simulations, we characterized the molecular mechanism of ssDNA association with SSB. Placed in solution, ssDNA–SSB assemblies were observed to change their structure spontaneously; such structural changes were suppressed in the crystallographic environment. Repeat simulations of the SSB–ssDNA complex under mechanical tension revealed a multitude of possible pathways for ssDNA to come off SSB punctuated by prolonged arrests at reproducible sites at the SSB surface. Ensemble simulations of spontaneous association of short ssDNA fragments with SSB detailed a three-dimensional map of local affinity to DNA; the equilibrium amount of ssDNA bound to SSB was found to depend on the electrolyte concentration but not on the presence of the acidic tips of the SSB tails. Spontaneous formation of ssDNA bulges and their diffusive motion along SSB surface was directly observed in multiple 10-µs-long simulations. Such reptation-like motion was confined by DNA binding to high-affinity spots, suggesting a two-step mechanism for SSB diffusion. PMID:29059392

  14. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: implications for cancer intervention

    PubMed Central

    Chen, Wei; Zhu, Hong; Jia, Zhenquan; Li, Jianrong; Misra, Hara P.; Zhou, Kequan; Li, Yunbo

    2009-01-01

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in φX-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25 -2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1. Moreover, the consumption of oxygen caused by 250 µM SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25 - 2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin. PMID:19785994

  15. Inhibition of peroxynitrite-mediated DNA strand cleavage and hydroxyl radical formation by aspirin at pharmacologically relevant concentrations: Implications for cancer intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei; College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035; Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

    Epidemiological studies have suggested that the long-term use of aspirin is associated with a decreased incidence of human malignancies, especially colorectal cancer. Since accumulating evidence indicates that peroxynitrite is critically involved in multistage carcinogenesis, this study was undertaken to investigate the ability of aspirin to inhibit peroxynitrite-mediated DNA damage. Peroxynitrite and its generator 3-morpholinosydnonimine (SIN-1) were used to cause DNA strand breaks in {phi}X-174 plasmid DNA. We demonstrated that the presence of aspirin at concentrations (0.25-2 mM) compatible with amounts in plasma during chronic anti-inflammatory therapy resulted in a significant inhibition of DNA cleavage induced by both peroxynitrite and SIN-1.more » Moreover, the consumption of oxygen caused by 250 {mu}M SIN-1 was found to be decreased in the presence of aspirin, indicating that aspirin might affect the auto-oxidation of SIN-1. Furthermore, EPR spectroscopy using 5,5-dimethylpyrroline-N-oxide (DMPO) as a spin trap demonstrated the formation of DMPO-hydroxyl radical adduct (DMPO-OH) from authentic peroxynitrite, and that aspirin at 0.25-2 mM potently diminished the radical adduct formation in a concentration-dependent manner. Taken together, these results demonstrate for the first time that aspirin at pharmacologically relevant concentrations can inhibit peroxynitrite-mediated DNA strand breakage and hydroxyl radical formation. These results may have implications for cancer intervention by aspirin.« less

  16. Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1

    PubMed Central

    Gödeke, Julia; Paul, Kristina; Lassak, Jürgen; Thormann, Kai M

    2011-01-01

    Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA. PMID:20962878

  17. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining

    PubMed Central

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E.; Iliakis, George

    2014-01-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. PMID:24748665

  18. Requirement for Parp-1 and DNA ligases 1 or 3 but not of Xrcc1 in chromosomal translocation formation by backup end joining.

    PubMed

    Soni, Aashish; Siemann, Maria; Grabos, Martha; Murmann, Tamara; Pantelias, Gabriel E; Iliakis, George

    2014-06-01

    In mammalian cells, ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are repaired in all phases of the cell cycle predominantly by classical, DNA-PK-dependent nonhomologous end joining (D-NHEJ). Homologous recombination repair (HRR) is functional during the S- and G2-phases, when a sister chromatid becomes available. An error-prone, alternative form of end joining, operating as backup (B-NHEJ) functions robustly throughout the cell cycle and particularly in the G2-phase and is thought to backup predominantly D-NHEJ. Parp-1, DNA-ligases 1 (Lig1) and 3 (Lig3), and Xrcc1 are implicated in B-NHEJ. Chromosome and chromatid translocations are manifestations of erroneous DSB repair and are crucial culprits in malignant transformation and IR-induced cell lethality. We analyzed shifts in translocation formation deriving from defects in D-NHEJ or HRR in cells irradiated in the G2-phase and identify B-NHEJ as the main DSB repair pathway backing up both of these defects at the cost of a large increase in translocation formation. Our results identify Parp-1 and Lig1 and 3 as factors involved in translocation formation and show that Xrcc1 reinforces the function of Lig3 in the process without being required for it. Finally, we demonstrate intriguing connections between B-NHEJ and DNA end resection in translocation formation and show that, as for D-NHEJ and HRR, the function of B-NHEJ facilitates the recovery from the G2-checkpoint. These observations advance our understanding of chromosome aberration formation and have implications for the mechanism of action of Parp inhibitors. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Prenatal diagnosis and gonadal findings in X/XXX mosaicism.

    PubMed Central

    Kohn, G; Cohen, M M; Beyth, Y; Ornoy, A

    1977-01-01

    Prenatal diagnosis of a case of X/XXX mosaicism is presented. In spite of the fact that over 50% of the cells cultured from both ovaries were trisomic for the X chromosome, fetal öocytes were rarely found. This case illustrates that the presence of a triple-X cell line, even in a relatively high percentage of ovarian cells, does not necessarily protect the ovary from 'aöogenesis'. This observation might prove useful in the counselling of future cases involving the prenatal detection of sex chromosome mosaicism. Images PMID:856232

  20. Multifunctional Dumbbell-Shaped DNA-Templated Selective Formation of Fluorescent Silver Nanoclusters or Copper Nanoparticles for Sensitive Detection of Biomolecules.

    PubMed

    Chen, Jinyang; Ji, Xinghu; Tinnefeld, Philip; He, Zhike

    2016-01-27

    In this work, a multifunctional template for selective formation of fluorescent silver nanoclusters (AgNCs) or copper nanoparticles (CuNPs) is put forward. This dumbbell-shaped (DS) DNA template is made up of two cytosine hairpin loops and an adenine-thymine-rich double-helical stem which is closed by the loops. The cytosine loops act as specific regions for the growth of AgNCs, and the double-helical stem serves as template for the CuNPs formation. By carefully investigating the sequence and length of DS DNA, we present the optimal design of the template. Benefiting from the smart design and facile synthesis, a simple, label-free, and ultrasensitive fluorescence strategy for adenosine triphosphate (ATP) detection is proposed. Through the systematic comparison, it is found that the strategy based on CuNPs formation is more sensitive for ATP assay than that based on AgNCs synthesis, and the detection limitation was found to be 81 pM. What's more, the CuNPs formation-based method is successfully applied in the detection of ATP in human serum as well as the determination of cellular ATP. In addition to small target molecule, the sensing strategy was also extended to the detection of biomacromolecule (DNA), which illustrates the generality of this biosensor.

Top