Sample records for dna typing analysis

  1. Identification of the skeletal remains of a murder victim by DNA analysis.

    PubMed

    Hagelberg, E; Gray, I C; Jeffreys, A J

    1991-08-01

    There is considerable anthropological and forensic interest in the possibility of DNA typing skeletal remains. Trace amounts of DNA can be recovered even from 5,500-year-old bones and multicopy human mitochondrial DNA sequences can frequently be amplified from such DNA using the polymerase chain reaction (PCR). But given the sensitivity of PCR, it is very difficult to exclude contaminating material. We now report the successful identification of the 8-year-old skeletal remains of a murder victim, by comparative typing of nuclear microsatellite markers in the remains and in the presumptive parents of the victim. This analysis establishes the authenticity of the bone DNA and the feasibility of bone DNA typing in forensic investigations.

  2. Analysis of plastome and chondriome genome types in potato somatic hybrids from Solanum tuberosum × Solanum etuberosum.

    PubMed

    Tiwari, Jagesh K; Chandel, Poonam; Singh, Bir Pal; Bhardwaj, Vinay

    2014-01-01

    Cytoplasm types of the potato somatic hybrids from Solanum tuberosum × Solanum etuberosum were analysed using chloroplast (cp) and mitochondrial (mt) organelle genomes-specific markers. Of the 29 markers (15 cpDNA and 14 mtDNA) amplified in the 26 genotypes, 5 cpDNA (H3, NTCP4, NTCP8, NTCP9, and ALC1/ALC3) and 13 mtDNA markers showed polymorphism. The cluster analysis based on the mtDNA markers detected higher diversity compared with the cpDNA markers. Presence of new mtDNA fragments of the markers, namely, T11-2, Nsm1, pumD, Nsm3, and Nsm4, were observed, while monomorphic loci revealed highly conserved genomic regions in the somatic hybrids. The study revealed that the somatic hybrids had diverse cytoplasm types consisting predominantly of T-, W-, and C-, with a few A- and S-type cp genomes; and α-, β-, and γ-type mt genomes. Somatic hybridization has unique potential to widen the cytoplasm types of the cultivated gene pools from wild species through introgression by breeding methods.

  3. Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya.

    PubMed

    Tsai, Chi-Chu; Shih, Huei-Chuan; Ko, Ya-Zhu; Wang, Ren-Huang; Li, Shu-Ju; Chiang, Yu-Chung

    2016-09-24

    Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique-based on DNA analysis-was developed for detecting male-hermaphrodite-specific markers to examine the papaya's sex type. This method is based on the loop-mediated isothermal amplification (LAMP) and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya's sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source.

  4. The effects of metal ions on the DNA damage induced by hydrogen peroxide.

    PubMed

    Kobayashi, S; Ueda, K; Komano, T

    1990-01-01

    The effects of metal ions on DNA damage induced by hydrogen peroxide were investigated using two methods, agarose-gel electrophoretic analysis of supercoiled DNA and sequencing-gel analysis of single end-labeled DNA fragments of defined sequences. Hydrogen peroxide induced DNA damage when iron or copper ion was present. At least two classes of DNA damage were induced, one being direct DNA-strand cleavage, and the other being base modification labile to hot piperidine. The investigation of the damaged sites and the inhibitory effects of radical scavengers revealed that hydroxyl radical was the species which attacked DNA in the reaction of H2O2/Fe(II). On the other hand, two types of DNA damage were induced by H2O2/Cu(II). Type I damage was predominant and inhibited by potassium iodide, but type II was not. The sites of the base-modification induced by type I damage were similar to those by lipid peroxidation products and by ascorbate in the presence of Cu(II), suggesting the involvement of radical species other than free hydroxyl radical in the damaging reactions.

  5. Epigenetic discrimination of identical twins from blood under the forensic scenario.

    PubMed

    Vidaki, Athina; Díez López, Celia; Carnero-Montoro, Elena; Ralf, Arwin; Ward, Kirsten; Spector, Timothy; Bell, Jordana T; Kayser, Manfred

    2017-11-01

    Monozygotic (MZ) twins share the same STR profile, demonstrating a practical problem in forensic casework. DNA methylation has provided a suitable resource for MZ twin differentiation; however, studies addressing the forensic feasibility are lacking. Here, we investigated epigenetic MZ twin differentiation from blood under the forensic scenario comprising i) the discovery of candidate markers in reference-type blood DNA via genome-wide analysis, ii) the technical validation of candidate markers in reference-type blood DNA using a suitable targeted method, and iii) the analysis of the validated markers in trace-type DNA. Genome-wide methylation analysis in blood DNA from 10 MZ twin pairs resulted in 19-111 twin-differentially methylated sites (tDMSs) per pair with >0.3 twin-to-twin differences. Considering all top three candidate tDMSs across all pairs in the technical validation based on methylation-specific qPCR, 67.85% generated >0.1 twin-to-twin differences. Of the validated tDMSs, 68.4% showed >0.1 twin-to-twin differences with qPCR in trace-type DNA across 8 pairs. Using an updated marker selection strategy, 8 additional candidate tDMSs were obtained for an example MZ pair, of which 7 showed >0.1 twin-to-twin differences in both reference- and trace-type DNA. Lastly, we introduce a high-resolution melting curve analysis of the entire fragment that can complement the proposed approach. Overall, our study demonstrates the general feasibility of epigenetic twin differentiation in the forensic context and highlights that the number of informative tDMSs in the final trace DNA analysis is crucial, as some candidate markers identified in reference DNA were shown not informative in the trace DNA due to various, including technical, reasons. Future studies will need to address the optimal number of epigenetic markers required for reliable identification of MZ twin individuals including statistical considerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Laser mass spectrometry for DNA sequencing, disease diagnosis, and fingerprinting

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Chung, C. N.; Allman, S. L.

    1997-05-01

    Since laser mass spectrometry has the potential for achieving very fast DNA analysis, we recently applied it to DNA sequencing, DNA typing for fingerprinting, and DNA screening for disease diagnosis. Two different approaches for sequencing DNA have been successfully demonstrated. One is to sequence DNA with DNA ladders produced from Sanger's enzymatic method. The other is to do direct sequencing without DNA ladders. The need for quick DNA typing for identification purposes is critical for forensic application. Our preliminary results indicate laser mass spectrometry can possible be used for rapid DNA fingerprinting applications at a much lower cost than gel electrophoresis. Population screening for certain genetic disease can be a very efficient step to reducing medical costs through prevention. Since laser mass spectrometry can provide very fast DNA analysis, we applied laser mass spectrometry to disease diagnosis. Clinical samples with both base deletion and point mutation have been tested with complete success.

  7. Theory and Application of DNA Histogram Analysis.

    ERIC Educational Resources Information Center

    Bagwell, Charles Bruce

    The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…

  8. Multicenter Evaluation of Epidemiological Typing of Methicillin-Resistant Staphylococcus aureus Strains by Repetitive-Element PCR Analysis

    PubMed Central

    Deplano, Ariane; Schuermans, Annette; Van Eldere, Johan; Witte, Wolfgang; Meugnier, Hèléne; Etienne, Jerome; Grundmann, Hajo; Jonas, Daniel; Noordhoek, Gerda T.; Dijkstra, Jolanda; van Belkum, Alex; van Leeuwen, Willem; Tassios, Panayotis T.; Legakis, Nicholas J.; van der Zee, Anneke; Bergmans, Anneke; Blanc, Dominique S.; Tenover, Fred C.; Cookson, Barry C.; O'Neil, Gael; Struelens, Marc J.

    2000-01-01

    Rapid and efficient epidemiologic typing systems would be useful to monitor transmission of methicillin-resistant Staphylococcus aureus (MRSA) at both local and interregional levels. To evaluate the intralaboratory performance and interlaboratory reproducibility of three recently developed repeat-element PCR (rep-PCR) methods for the typing of MRSA, 50 MRSA strains characterized by pulsed-field gel electrophoresis (PFGE) (SmaI) analysis and epidemiological data were blindly typed by inter-IS256, 16S-23S ribosomal DNA (rDNA), and MP3 PCR in 12 laboratories in eight countries using standard reagents and protocols. Performance of typing was defined by reproducibility (R), discriminatory power (D), and agreement with PFGE analysis. Interlaboratory reproducibility of pattern and type classification was assessed visually and using gel analysis software. Each typing method showed a different performance level in each center. In the center performing best with each method, inter-IS256 PCR typing achieved R = 100% and D = 100%; 16S-23S rDNA PCR, R = 100% and D = 82%; and MP3 PCR, R = 80% and D = 83%. Concordance between rep-PCR type and PFGE type ranged by center: 70 to 90% for inter-IS256 PCR, 44 to 57% for 16S-23S rDNA PCR, and 53 to 54% for MP3 PCR analysis. In conclusion, the performance of inter-IS256 PCR typing was similar to that of PFGE analysis in some but not all centers, whereas other rep-PCR protocols showed lower discrimination and intralaboratory reproducibility. None of these assays, however, was sufficiently reproducible for interlaboratory exchange of data. PMID:11015358

  9. Rapid DNA analysis for automated processing and interpretation of low DNA content samples.

    PubMed

    Turingan, Rosemary S; Vasantgadkar, Sameer; Palombo, Luke; Hogan, Catherine; Jiang, Hua; Tan, Eugene; Selden, Richard F

    2016-01-01

    Short tandem repeat (STR) analysis of casework samples with low DNA content include those resulting from the transfer of epithelial cells from the skin to an object (e.g., cells on a water bottle, or brim of a cap), blood spatter stains, and small bone and tissue fragments. Low DNA content (LDC) samples are important in a wide range of settings, including disaster response teams to assist in victim identification and family reunification, military operations to identify friend or foe, criminal forensics to identify suspects and exonerate the innocent, and medical examiner and coroner offices to identify missing persons. Processing LDC samples requires experienced laboratory personnel, isolated workstations, and sophisticated equipment, requires transport time, and involves complex procedures. We present a rapid DNA analysis system designed specifically to generate STR profiles from LDC samples in field-forward settings by non-technical operators. By performing STR in the field, close to the site of collection, rapid DNA analysis has the potential to increase throughput and to provide actionable information in real time. A Low DNA Content BioChipSet (LDC BCS) was developed and manufactured by injection molding. It was designed to function in the fully integrated Accelerated Nuclear DNA Equipment (ANDE) instrument previously designed for analysis of buccal swab and other high DNA content samples (Investigative Genet. 4(1):1-15, 2013). The LDC BCS performs efficient DNA purification followed by microfluidic ultrafiltration of the purified DNA, maximizing the quantity of DNA available for subsequent amplification and electrophoretic separation and detection of amplified fragments. The system demonstrates accuracy, precision, resolution, signal strength, and peak height ratios appropriate for casework analysis. The LDC rapid DNA analysis system is effective for the generation of STR profiles from a wide range of sample types. The technology broadens the range of sample types that can be processed and minimizes the time between sample collection, sample processing and analysis, and generation of actionable intelligence. The fully integrated Expert System is capable of interpreting a wide range or sample types and input DNA quantities, allowing samples to be processed and interpreted without a technical operator.

  10. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection.

    PubMed

    Perina, Alejandra; Seoane, David; González-Tizón, Ana M; Rodríguez-Fariña, Fernanda; Martínez-Lage, Andrés

    2011-10-17

    The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection.

  11. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection

    PubMed Central

    2011-01-01

    Background The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. Results The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. Conclusions These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection. PMID:22004418

  12. Direct LAMP Assay without Prior DNA Purification for Sex Determination of Papaya

    PubMed Central

    Tsai, Chi-Chu; Shih, Huei-Chuan; Ko, Ya-Zhu; Wang, Ren-Huang; Li, Shu-Ju; Chiang, Yu-Chung

    2016-01-01

    Papaya (Carica papaya L.) is an economically important tropical fruit tree with hermaphrodite, male and female sex types. Hermaphroditic plants are the major type used for papaya production because their fruits have more commercial advantages than those of female plants. Sex determination of the seedlings, or during the early growth stages, is very important for the papaya seedling industry. Thus far, the only method for determining the sex type of a papaya at the seedling stage has been DNA analysis. In this study, a molecular technique—based on DNA analysis—was developed for detecting male-hermaphrodite-specific markers to examine the papaya’s sex type. This method is based on the loop-mediated isothermal amplification (LAMP) and does not require prior DNA purification. The results show that the method is an easy, efficient, and inexpensive way to determine a papaya’s sex. This is the first report on the LAMP assay, using intact plant materials-without DNA purification-as samples for the analysis of sex determination of papaya. We found that using high-efficiency DNA polymerase was essential for successful DNA amplification, using trace intact plant material as a template DNA source. PMID:27669237

  13. [Analysis of mitochondrial SNPs in addition to conventional STR-typing in a case of aggravated theft].

    PubMed

    Röper, Andrea; Reichert, Walter; Mattern, Rainer

    2007-01-01

    In the field of forensic DNA typing, the analysis of Short Tandem Repeats (STRs) can fail in cases of degraded DNA. The typing of coding region Single Nucleotide Polymorphisms (SNPs) of the mitochondrial genome provides an approach to acquire additional information. In the examined case of aggravated theft, both suspects could be excluded of having left the analyzed hair on the crime scene by SNP typing. This conclusion was not possible subsequent to STR typing. SNP typing of the trace on the torch light left on the crime scene increased the likelihood for suspect no. 2 to be the origin of this trace. This finding was already indicated by STR analysis. Suspect no. 1 was excluded for being the origin of this trace by SNP typing which was also indicated by STR analysis. A limiting factor for the analysis of SNPs is the maternal inheritance of mitochondrial DNA. Individualisation is not possible. In conclusion, it can be said that in the case of traces which cause problems with conventional STR typing the supplementary analysis of coding region SNPs from the mitochondrial genome is very reasonable and greatly contributes to the refinement of analysis methods in the field of forensic genetics.

  14. DNA Clutch Probes for Circulating Tumor DNA Analysis.

    PubMed

    Das, Jagotamoy; Ivanov, Ivaylo; Sargent, Edward H; Kelley, Shana O

    2016-08-31

    Progress toward the development of minimally invasive liquid biopsies of disease is being bolstered by breakthroughs in the analysis of circulating tumor DNA (ctDNA): DNA released from cancer cells into the bloodstream. However, robust, sensitive, and specific methods of detecting this emerging analyte are lacking. ctDNA analysis has unique challenges, since it is imperative to distinguish circulating DNA from normal cells vs mutation-bearing sequences originating from tumors. Here we report the electrochemical detection of mutated ctDNA in samples collected from cancer patients. By developing a strategy relying on the use of DNA clutch probes (DCPs) that render specific sequences of ctDNA accessible, we were able to readout the presence of mutated ctDNA. DCPs prevent reassociation of denatured DNA strands: they make one of the two strands of a dsDNA accessible for hybridization to a probe, and they also deactivate other closely related sequences in solution. DCPs ensure thereby that only mutated sequences associate with chip-based sensors detecting hybridization events. The assay exhibits excellent sensitivity and specificity in the detection of mutated ctDNA: it detects 1 fg/μL of a target mutation in the presence of 100 pg/μL of wild-type DNA, corresponding to detecting mutations at a level of 0.01% relative to wild type. This approach allows accurate analysis of samples collected from lung cancer and melanoma patients. This work represents the first detection of ctDNA without enzymatic amplification.

  15. Performance of Different Analytical Software Packages in Quantification of DNA Methylation by Pyrosequencing.

    PubMed

    Grasso, Chiara; Trevisan, Morena; Fiano, Valentina; Tarallo, Valentina; De Marco, Laura; Sacerdote, Carlotta; Richiardi, Lorenzo; Merletti, Franco; Gillio-Tos, Anna

    2016-01-01

    Pyrosequencing has emerged as an alternative method of nucleic acid sequencing, well suited for many applications which aim to characterize single nucleotide polymorphisms, mutations, microbial types and CpG methylation in the target DNA. The commercially available pyrosequencing systems can harbor two different types of software which allow analysis in AQ or CpG mode, respectively, both widely employed for DNA methylation analysis. Aim of the study was to assess the performance for DNA methylation analysis at CpG sites of the two pyrosequencing software which allow analysis in AQ or CpG mode, respectively. Despite CpG mode having been specifically generated for CpG methylation quantification, many investigations on this topic have been carried out with AQ mode. As proof of equivalent performance of the two software for this type of analysis is not available, the focus of this paper was to evaluate if the two modes currently used for CpG methylation assessment by pyrosequencing may give overlapping results. We compared the performance of the two software in quantifying DNA methylation in the promoter of selected genes (GSTP1, MGMT, LINE-1) by testing two case series which include DNA from paraffin embedded prostate cancer tissues (PC study, N = 36) and DNA from blood fractions of healthy people (DD study, N = 28), respectively. We found discrepancy in the two pyrosequencing software-based quality assignment of DNA methylation assays. Compared to the software for analysis in the AQ mode, less permissive criteria are supported by the Pyro Q-CpG software, which enables analysis in CpG mode. CpG mode warns the operators about potential unsatisfactory performance of the assay and ensures a more accurate quantitative evaluation of DNA methylation at CpG sites. The implementation of CpG mode is strongly advisable in order to improve the reliability of the methylation analysis results achievable by pyrosequencing.

  16. Determining the optimal forensic DNA analysis procedure following investigation of sample quality.

    PubMed

    Hedell, Ronny; Hedman, Johannes; Mostad, Petter

    2018-07-01

    Crime scene traces of various types are routinely sent to forensic laboratories for analysis, generally with the aim of addressing questions about the source of the trace. The laboratory may choose to analyse the samples in different ways depending on the type and quality of the sample, the importance of the case and the cost and performance of the available analysis methods. Theoretically well-founded guidelines for the choice of analysis method are, however, lacking in most situations. In this paper, it is shown how such guidelines can be created using Bayesian decision theory. The theory is applied to forensic DNA analysis, showing how the information from the initial qPCR analysis can be utilized. It is assumed the alternatives for analysis are using a standard short tandem repeat (STR) DNA analysis assay, using the standard assay and a complementary assay, or the analysis may be cancelled following quantification. The decision is based on information about the DNA amount and level of DNA degradation of the forensic sample, as well as case circumstances and the cost for analysis. Semi-continuous electropherogram models are used for simulation of DNA profiles and for computation of likelihood ratios. It is shown how tables and graphs, prepared beforehand, can be used to quickly find the optimal decision in forensic casework.

  17. Non-invasive prenatal detection of achondroplasia using circulating fetal DNA in maternal plasma.

    PubMed

    Lim, Ji Hyae; Kim, Mee Jin; Kim, Shin Young; Kim, Hye Ok; Song, Mee Jin; Kim, Min Hyoung; Park, So Yeon; Yang, Jae Hyug; Ryu, Hyun Mee

    2011-02-01

    To perform a reliable non-invasive detection of the fetal achondroplasia using maternal plasma. We developed a quantitative fluorescent-polymerase chain reaction (QF-PCR) method suitable for detection of the FGFR3 mutation (G1138A) causing achondroplasia. This method was applied in a non-invasive detection of the fetal achondroplasia using circulating fetal-DNA (cf-DNA) in maternal plasma. Maternal plasmas were obtained at 27 weeks of gestational age from women carrying an achondroplasia fetus or a normal fetus. Two percent or less achondroplasia DNA was reliably detected by QF-PCR. In a woman carrying a normal fetus, analysis of cf-DNA showed only one peak of the wild-type G allele. In a woman expected an achondroplasia fetus, analysis of cf-DNA showed the two peaks of wild-type G allele and mutant-type A allele and accurately detected the fetal achondroplasia. The non-invasive method using maternal plasma and QF-PCR may be useful for diagnosis of the fetal achondroplasia.

  18. Superimposed Code Theoretic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2008-01-01

    complements of one another and the DNA duplex formed is a Watson - Crick (WC) duplex. However, there are many instances when the formation of non-WC...that the user’s requirements for probe selection are met based on the Watson - Crick probe locality within a target. The second type, called...AFRL-RI-RS-TR-2007-288 Final Technical Report January 2008 SUPERIMPOSED CODE THEORETIC ANALYSIS OF DNA CODES AND DNA COMPUTING

  19. Unlocking Barriers to DNA Vaccine Immunogenicity: A Cross-Species Analysis of Cytosolic DNA Sensing in Skeletal Muscle Myocytes

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0505 TITLE: Unlocking Barriers to DNA Vaccine Immunogenicity: A Cross-Species Analysis of Cytosolic DNA Sensing in...REPORT TYPE Annual 3. DATES COVERED 10 Sept 2015 – 9 Sept 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Unlocking Barriers to DNA Vaccine ...Annual Report submitted 04/10/2016. 14. ABSTRACT DNA vaccine technology holds great promise as a platform for developing vaccines against both

  20. Biomimetic Molecular Signaling using DNA Walkers on Microparticles.

    PubMed

    Damase, Tulsi Ram; Spencer, Adam; Samuel, Bamidele; Allen, Peter B

    2017-06-22

    We report the release of catalytic DNA walkers from hydrogel microparticles and the detection of those walkers by substrate-coated microparticles. This might be considered a synthetic biology analog of molecular signal release and reception. One type of particles was coated with components of a DNA one-step strand displacement (OSD) reaction to release the walker. A second type of particle was coated with substrate (or "track") for the molecular walker. We distinguish these particle types using fluorescence barcoding: we synthesized and distinguished multiple particle types with multicolor fluorescence microscopy and automated image analysis software. This represents a step toward amplified, multiplex, and microscopically localized detection based on DNA nanotechnology.

  1. Whole genome amplification and real-time PCR in forensic casework

    PubMed Central

    Giardina, Emiliano; Pietrangeli, Ilenia; Martone, Claudia; Zampatti, Stefania; Marsala, Patrizio; Gabriele, Luciano; Ricci, Omero; Solla, Gianluca; Asili, Paola; Arcudi, Giovanni; Spinella, Aldo; Novelli, Giuseppe

    2009-01-01

    Background WGA (Whole Genome Amplification) in forensic genetics can eliminate the technical limitations arising from low amounts of genomic DNA (gDNA). However, it has not been used to date because any amplification bias generated may complicate the interpretation of results. Our aim in this paper was to assess the applicability of MDA to forensic SNP genotyping by performing a comparative analysis of genomic and amplified DNA samples. A 26-SNPs TaqMan panel specifically designed for low copy number (LCN) and/or severely degraded genomic DNA was typed on 100 genomic as well as amplified DNA samples. Results Aliquots containing 1, 0.1 and 0.01 ng each of 100 DNA samples were typed for a 26-SNPs panel. Similar aliquots of the same DNA samples underwent multiple displacement amplification (MDA) before being typed for the same panel. Genomic DNA samples showed 0% PCR failure rate for all three dilutions, whilst the PCR failure rate of the amplified DNA samples was 0% for the 1 ng and 0.1 ng dilutions and 0.077% for the 0.01 ng dilution. The genotyping results of both the amplified and genomic DNA samples were also compared with reference genotypes of the same samples obtained by direct sequencing. The genomic DNA samples showed genotype concordance rates of 100% for all three dilutions while the concordance rates of the amplified DNA samples were 100% for the 1 ng and 0.1 ng dilutions and 99.923% for the 0.01 ng dilution. Moreover, ten artificially-degraded DNA samples, which gave no results when analyzed by current forensic methods, were also amplified by MDA and genotyped with 100% concordance. Conclusion We investigated the suitability of MDA material for forensic SNP typing. Comparative analysis of amplified and genomic DNA samples showed that a large number of SNPs could be accurately typed starting from just 0.01 ng of template. We found that the MDA genotyping call and accuracy rates were only slightly lower than those for genomic DNA. Indeed, when 10 pg of input DNA was used in MDA, we obtained 99.923% concordance, indicating a genotyping error rate of 1/1299 (7.7 × 10-4). This is quite similar to the genotyping error rate of STRs used in current forensic analysis. Such efficiency and accuracy of SNP typing of amplified DNA suggest that MDA can also generate large amounts of genome-equivalent DNA from a minimal amount of input DNA. These results show for the first time that MDA material is suitable for SNP-based forensic protocols and in general when samples fail to give interpretable STR results. PMID:19366436

  2. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    PubMed Central

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  3. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    PubMed

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  4. MethVisual - visualization and exploratory statistical analysis of DNA methylation profiles from bisulfite sequencing.

    PubMed

    Zackay, Arie; Steinhoff, Christine

    2010-12-15

    Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org.

  5. MethVisual - visualization and exploratory statistical analysis of DNA methylation profiles from bisulfite sequencing

    PubMed Central

    2010-01-01

    Background Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. Findings MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. Conclusions The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org. PMID:21159174

  6. DNA methylation assessment from human slow- and fast-twitch skeletal muscle fibers

    PubMed Central

    Begue, Gwénaëlle; Raue, Ulrika; Jemiolo, Bozena

    2017-01-01

    A new application of the reduced representation bisulfite sequencing method was developed using low-DNA input to investigate the epigenetic profile of human slow- and fast-twitch skeletal muscle fibers. Successful library construction was completed with as little as 15 ng of DNA, and high-quality sequencing data were obtained with 32 ng of DNA. Analysis identified 143,160 differentially methylated CpG sites across 14,046 genes. In both fiber types, selected genes predominantly expressed in slow or fast fibers were hypomethylated, which was supported by the RNA-sequencing analysis. These are the first fiber type-specific methylation data from human skeletal muscle and provide a unique platform for future research. NEW & NOTEWORTHY This study validates a low-DNA input reduced representation bisulfite sequencing method for human muscle biopsy samples to investigate the methylation patterns at a fiber type-specific level. These are the first fiber type-specific methylation data reported from human skeletal muscle and thus provide initial insight into basal state differences in myosin heavy chain I and IIa muscle fibers among young, healthy men. PMID:28057818

  7. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed Central

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-01-01

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies. PMID:10189712

  8. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-03-07

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies.

  9. The chloroplast and mitochondrial DNA type are correlated with the nuclear composition of somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia.

    PubMed

    Wolters, A M; Koornneef, M; Gilissen, L J

    1993-09-01

    This paper describes the analysis of chloroplast (cp) DNA and mitochondrial (mt) DNA in 21 somatic hybrid calli of Solanum tuberosum and Nicotiana plumbaginifolia by means of Southern-blot hybridization. Each of these calli contained only one type of cpDNA; 14 had the N. plumbaginifolia (Np) type and seven the S. tuberosum (St) type. N. plumbaginifolia cpDNA was present in hybrids previously shown to contain predominantly N. plumbaginifolia chromosomes whereas hybrids in which S. tuberosum chromosomes predominated possessed cpDNA from potato. We have analyzed the mtDNA of these 21 somatic hybrid calli using four restriction enzyme/probe combinations. Most fusion products had only, or mostly, mtDNA fragments from the parent that predominated in the nucleus. The hybrids containing mtDNA fragments from only one parent (and new fragments) also possessed chloroplasts from the same species. The results suggest the existence of a strong nucleo-cytoplasmic incongruity which affects the genome composition of somatic hybrids between distantly related species.

  10. Extraction of DNA from forensic-type sexual assault specimens using simple, rapid sonication procedures.

    PubMed

    Crouse, C A; Ban, J D; D'Alessio, J K

    1993-10-01

    Sonication procedures for the extraction of DNA from forensic-type semen specimens have been developed, which, when compared to currently utilized sperm DNA extraction techniques, are simple, rapid and result in comparable DNA yields. Sperm DNA extraction by sonication was performed on whole semen, seminal stains, buccal swabs and post-coital specimens. Ultrasound disruption of sperm cells and their ultimate release of cellular DNA has been conducted in the presence of sperm wash buffers followed by organic extraction or Chelex 100 with little or no compromise to DNA quality, quantity or amplifiability. Two advantages of sonication over currently used forensic techniques to extract sperm DNA include 1) sperm DNA extraction that occurs within five minutes of sonication compared with an hour or greater for water bath incubations in classic enzyme digestion DNA extractions and 2) one less preparatory step with the Chelex/sonication protocol and three less steps with the sonication/organic protocol compared with other procedures thus eliminating potential sample-to-sample cross-contamination. Sperm DNA extracted by optimum sonication procedures was used for forensic HLA DQ alpha typing and restriction fragment length polymorphisms analysis without any adverse effects on typing results.

  11. Evidence for 5S rDNA horizontal transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families.

    PubMed

    Merlo, Manuel A; Cross, Ismael; Palazón, José L; Ubeda-Manzanaro, María; Sarasquete, Carmen; Rebordinos, Laureana

    2012-10-07

    The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes and Clupeiformes orders. Two hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATA)n repeats, from dispersed to localized in one locus. The accumulation of (GATA)n repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology.

  12. An analysis of subunit exchange in the dimeric DNA-binding and DNA-bending protein, TF1.

    PubMed

    Andera, L; Schneider, G J; Geiduschek, E P

    1994-01-01

    TF1 is the Bacillus subtilis bacteriophage-encoded dimeric type II DNA-binding protein. This relative of the eubacterial HU proteins and of the Escherichia coli integration host factor binds preferentially to 5-(hydroxymethyluracil)-containing DNA. We have examined the dynamics of exchange of monomer subunits between molecules of dimeric TF1. The analysis takes advantage of the fact that replacement of phenylalanine with arginine at amino acid 61 in the beta-loop 'arm' of TF1 alters DNA-bending and -binding properties, generating DNA complexes with distinctively different mobilities in gel electrophoresis. New species of DNA-protein complexes were formed by mixtures of wild type and mutant TF1, reflecting the formation of heterodimeric TF1, and making the dynamics of monomer exchange between TF1 dimers accessible to a simple gel retardation analysis. Exchange was rapid at high protein concentrations, even at 0 degrees C, and is proposed to be capable of proceeding through an interaction of molecules of TF1 dimer rather than exclusively through dissociation into monomer subunits. Evidence suggesting that DNA-bound TF1 dimers do not exchange subunits readily is also presented.

  13. Massively Parallel DNA Sequencing Facilitates Diagnosis of Patients with Usher Syndrome Type 1

    PubMed Central

    Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-ichi

    2014-01-01

    Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance. PMID:24618850

  14. Massively parallel DNA sequencing facilitates diagnosis of patients with Usher syndrome type 1.

    PubMed

    Yoshimura, Hidekane; Iwasaki, Satoshi; Nishio, Shin-Ya; Kumakawa, Kozo; Tono, Tetsuya; Kobayashi, Yumiko; Sato, Hiroaki; Nagai, Kyoko; Ishikawa, Kotaro; Ikezono, Tetsuo; Naito, Yasushi; Fukushima, Kunihiro; Oshikawa, Chie; Kimitsuki, Takashi; Nakanishi, Hiroshi; Usami, Shin-Ichi

    2014-01-01

    Usher syndrome is an autosomal recessive disorder manifesting hearing loss, retinitis pigmentosa and vestibular dysfunction, and having three clinical subtypes. Usher syndrome type 1 is the most severe subtype due to its profound hearing loss, lack of vestibular responses, and retinitis pigmentosa that appears in prepuberty. Six of the corresponding genes have been identified, making early diagnosis through DNA testing possible, with many immediate and several long-term advantages for patients and their families. However, the conventional genetic techniques, such as direct sequence analysis, are both time-consuming and expensive. Targeted exon sequencing of selected genes using the massively parallel DNA sequencing technology will potentially enable us to systematically tackle previously intractable monogenic disorders and improve molecular diagnosis. Using this technique combined with direct sequence analysis, we screened 17 unrelated Usher syndrome type 1 patients and detected probable pathogenic variants in the 16 of them (94.1%) who carried at least one mutation. Seven patients had the MYO7A mutation (41.2%), which is the most common type in Japanese. Most of the mutations were detected by only the massively parallel DNA sequencing. We report here four patients, who had probable pathogenic mutations in two different Usher syndrome type 1 genes, and one case of MYO7A/PCDH15 digenic inheritance. This is the first report of Usher syndrome mutation analysis using massively parallel DNA sequencing and the frequency of Usher syndrome type 1 genes in Japanese. Mutation screening using this technique has the power to quickly identify mutations of many causative genes while maintaining cost-benefit performance. In addition, the simultaneous mutation analysis of large numbers of genes is useful for detecting mutations in different genes that are possibly disease modifiers or of digenic inheritance.

  15. As solid as a rock-comparison of CE- and MPS-based analyses of the petrosal bone as a source of DNA for forensic identification of challenging cranial bones.

    PubMed

    Kulstein, Galina; Hadrys, Thorsten; Wiegand, Peter

    2018-01-01

    Short tandem repeat (STR) typing from skeletal remains can be a difficult task. Dependent on the environmental conditions of the provenance of the bones, DNA can be degraded and STR typing inhibited. Generally, dense and compact bones are known to preserve DNA better. Several studies already proved that femora and teeth have high DNA typing success rates. Unfortunately, these elements are not present in all cases involving skeletal remains. Processing partial or singular skeletal elements, it is favorable to select bone areas where DNA preservation is comparably higher. Especially, cranial bones are often accidentally discovered during criminal investigations. The cranial bone is composed of multiple parts. In this examination, we evaluated the potential of the petrous bone for human identification of skeletal remains in forensic case work. Material from different sections of eight unknown cranial bones and-where available-additionally other skeletal elements, collected at the DNA department of the Institute of Legal Medicine in Ulm, Germany, from 2010 to 2017, were processed with an optimized DNA extraction and STR typing strategy. The results highlight that STR typing from the petrous bones leads to reportable profiles in all individuals, even in cases where the analysis of the parietal bone failed. Moreover, the comparison of capillary electrophorese (CE) typing to massively parallel sequencing (MPS) analysis shows that MPS has the potential to analyze degraded human remains and is even capable to provide additional information about phenotype and ancestry of unknown individuals.

  16. Distinct Circular Single-Stranded DNA Viruses Exist in Different Soil Types

    PubMed Central

    Swanson, Maud M.; Dawson, Lorna; Freitag, Thomas E.; Singh, Brajesh K.; Torrance, Lesley; Mushegian, Arcady R.

    2015-01-01

    The potential dependence of virus populations on soil types was examined by electron microscopy, and the total abundance of virus particles in four soil types was similar to that previously observed in soil samples. The four soil types examined differed in the relative abundances of four morphological groups of viruses. Machair, a unique type of coastal soil in western Scotland and Ireland, differed from the others tested in having a higher proportion of tailed bacteriophages. The other soils examined contained predominantly spherical and thin filamentous virus particles, but the Machair soil had a more even distribution of the virus types. As the first step in looking at differences in populations in detail, virus sequences from Machair and brown earth (agricultural pasture) soils were examined by metagenomic sequencing after enriching for circular Rep-encoding single-stranded DNA (ssDNA) (CRESS-DNA) virus genomes. Sequences from the family Microviridae (icosahedral viruses mainly infecting bacteria) of CRESS-DNA viruses were predominant in both soils. Phylogenetic analysis of Microviridae major coat protein sequences from the Machair viruses showed that they spanned most of the diversity of the subfamily Gokushovirinae, whose members mainly infect obligate intracellular parasites. The brown earth soil had a higher proportion of sequences that matched the morphologically similar family Circoviridae in BLAST searches. However, analysis of putative replicase proteins that were similar to those of viruses in the Circoviridae showed that they are a novel clade of Circoviridae-related CRESS-DNA viruses distinct from known Circoviridae genera. Different soils have substantially different taxonomic biodiversities even within ssDNA viruses, which may be driven by physicochemical factors. PMID:25841004

  17. A DNA methylation map of human cancer at single base-pair resolution.

    PubMed

    Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M

    2017-10-05

    Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination.

  18. Structural Studies of E. coli Topoisomerase III-DNA Complexes Reveal A Novel Type IA Topoisomerase-DNA Conformational Intermediate

    PubMed Central

    Changela, Anita; DiGate, Russell J.; Mondragón, Alfonso

    2007-01-01

    Summary E. coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5′ phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an 8-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding. PMID:17331537

  19. Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing

    PubMed Central

    Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele

    2007-01-01

    Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300

  20. Molecular dynamics simulations revealed structural differences among WRKY domain-DNA interaction in barley (Hordeum vulgare).

    PubMed

    Pandey, Bharati; Grover, Abhinav; Sharma, Pradeep

    2018-02-12

    The WRKY transcription factors are a class of DNA-binding proteins involved in diverse plant processes play critical roles in response to abiotic and biotic stresses. Genome-wide divergence analysis of WRKY gene family in Hordeum vulgare provided a framework for molecular evolution and functional roles. So far, the crystal structure of WRKY from barley has not been resolved; moreover, knowledge of the three-dimensional structure of WRKY domain is pre-requisites for exploring the protein-DNA recognition mechanisms. Homology modelling based approach was used to generate structures for WRKY DNA binding domain (DBD) and its variants using AtWRKY1 as a template. Finally, the stability and conformational changes of the generated model in unbound and bound form was examined through atomistic molecular dynamics (MD) simulations for 100 ns time period. In this study, we investigated the comparative binding pattern of WRKY domain and its variants with W-box cis-regulatory element using molecular docking and dynamics (MD) simulations assays. The atomic insight into WRKY domain exhibited significant variation in the intermolecular hydrogen bonding pattern, leading to the structural anomalies in the variant type and differences in the DNA-binding specificities. Based on the MD analysis, residual contribution and interaction contour, wild-type WRKY (HvWRKY46) were found to interact with DNA through highly conserved heptapeptide in the pre- and post-MD simulated complexes, whereas heptapeptide interaction with DNA was missing in variants (I and II) in post-MD complexes. Consequently, through principal component analysis, wild-type WRKY was also found to be more stable by obscuring a reduced conformational space than the variant I (HvWRKY34). Lastly, high binding free energy for wild-type and variant II allowed us to conclude that wild-type WRKY-DNA complex was more stable relative to variants I. The results of our study revealed complete dynamic and structural information about WRKY domain-DNA interactions. However, no structure base information reported to date for WRKY variants and their mechanism of interaction with DNA. Our findings highlighted the importance of selecting a sequence to generate newer transgenic plants that would be increasingly tolerance to stress conditions.

  1. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis.

    PubMed

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide

    2014-08-01

    Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Nonlinear matching measure for the analysis of on-off type DNA microarray images

    NASA Astrophysics Data System (ADS)

    Kim, Jong D.; Park, Misun; Kim, Jongwon

    2003-07-01

    In this paper, we propose a new nonlinear matching measure for automatic analysis of the on-off type DNA microarray images in which the hybridized spots are detected by the template matching method. The targeting spots of HPV DNA chips are designed for genotyping the human papilloma virus(HPV). The proposed measure is obtained by binarythresholding over the whole template region and taking the number of white pixels inside the spotted area. This measure is evaluated in terms of the accuracy of the estimated marker location to show better performance than the normalized covariance.

  3. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing.

    PubMed

    Cébron, Aurélie; Bodrossy, Levente; Chen, Yin; Singer, Andrew C; Thompson, Ian P; Prosser, James I; Murrell, J Colin

    2007-10-01

    A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.

  4. A collaborative exercise on DNA methylation based body fluid typing.

    PubMed

    Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young

    2016-10-01

    A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The Potential of Cosmetic Applicators as a Source of DNA for Forensic Analysis.

    PubMed

    Adamowicz, Michael S; Labonte, Renáe D; Schienman, John E

    2015-07-01

    Personal products, such as toothbrushes, have been used as both known reference and evidentiary samples for forensic DNA analysis. This study examined the viability of a broad selection of cosmetic applicators for use as targets for human DNA extraction and short tandem repeat (STR) analysis using standard polymerase chain reaction (PCR) conditions. Applicator types included eyeliner smudgers, pencils and crayons, eye shadow sponges, mascara wands, concealer wands, face makeup sponges, pads and brushes, lipsticks and balms, and lip gloss wands. The quantity and quality of DNA extracted from each type of applicator were examined by assessing the number of loci successfully amplified and the peak balance of the heterozygous alleles in each full STR profile. While degraded DNA, stochastic amplification, and PCR inhibition were observed for some items, full STR profiles were developed for 14 of 76 applicators. The face makeup sponge applicators yielded the highest proportional number of full STR profiles (4/7). © 2015 American Academy of Forensic Sciences.

  6. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure

    PubMed Central

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-01-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron–doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis. PMID:27623951

  7. Development of a dual test procedure for DNA typing and methamphetamine detection using a trace amount of stimulant-containing blood.

    PubMed

    Irii, Toshiaki; Maebashi, Kyoko; Fukui, Kenji; Sohma, Ryoko; Matsumoto, Sari; Takasu, Shojiro; Iwadate, Kimiharu

    2016-05-01

    Investigation of drug-related crimes, such as violation of the Stimulant Drug Control Law, requires identifying the used drug (mainly stimulant drugs, methamphetamine hydrochloride) from a drug solution and the DNA type of the drug user from a trace of blood left in the syringe used to inject the drug. In current standard test procedures, DNA typing and methamphetamine detection are performed as independent tests that use two separate portions of a precious sample. The sample can be entirely used up by either analysis. Therefore, we developed a new procedure involving partial lysis of a stimulant-containing blood sample followed by separation of the lysate into a precipitate for DNA typing and a liquid-phase fraction for methamphetamine detection. The method enables these two tests to be run in parallel using a single portion of sample. Samples were prepared by adding methamphetamine hydrochloride water solution to blood. Samples were lysed with Proteinase K in PBS at 56°C for 20min, cooled at -20°C after adding methanol, and then centrifuged at 15,000rpm. Based on the biopolymer-precipitating ability of alcohol, the precipitate was used for DNA typing and the liquid-phase fraction for methamphetamine detection. For DNA typing, the precipitate was dissolved and DNA was extracted, quantified, and subjected to STR analysis using the AmpFℓSTR® Identifiler® Plus PCR Amplification Kit. For methamphetamine detection, the liquid-phase fraction was evaporated with N2 gas after adding 20μL acetic acid and passed through an extraction column; the substances captured in the column were eluted with a solvent, derivatized, and quantitatively detected using gas chromatograph/mass spectrometry. This method was simple and could be completed in approximately 2h. Both DNA typing and methamphetamine detection were possible, which suggests that this method may be valuable for use in criminal investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Comparison of the Prognostic Utility of the Diverse Molecular Data among lncRNA, DNA Methylation, microRNA, and mRNA across Five Human Cancers

    PubMed Central

    Xu, Li; Fengji, Liang; Changning, Liu; Liangcai, Zhang; Yinghui, Li; Yu, Li; Shanguang, Chen; Jianghui, Xiong

    2015-01-01

    Introduction Advances in high-throughput technologies have generated diverse informative molecular markers for cancer outcome prediction. Long non-coding RNA (lncRNA) and DNA methylation as new classes of promising markers are emerging as key molecules in human cancers; however, the prognostic utility of such diverse molecular data remains to be explored. Materials and Methods We proposed a computational pipeline (IDFO) to predict patient survival by identifying prognosis-related biomarkers using multi-type molecular data (mRNA, microRNA, DNA methylation, and lncRNA) from 3198 samples of five cancer types. We assessed the predictive performance of both single molecular data and integrated multi-type molecular data in patient survival stratification, and compared their relative importance in each type of cancer, respectively. Survival analysis using multivariate Cox regression was performed to investigate the impact of the IDFO-identified markers and traditional variables on clinical outcome. Results Using the IDFO approach, we obtained good predictive performance of the molecular datasets (bootstrap accuracy: 0.71–0.97) in five cancer types. Impressively, lncRNA was identified as the best prognostic predictor in the validated cohorts of four cancer types, followed by DNA methylation, mRNA, and then microRNA. We found the incorporating of multi-type molecular data showed similar predictive power to single-type molecular data, but with the exception of the lncRNA + DNA methylation combinations in two cancers. Survival analysis of proportional hazard models confirmed a high robustness for lncRNA and DNA methylation as prognosis factors independent of traditional clinical variables. Conclusion Our study provides insight into systematically understanding the prognostic performance of diverse molecular data in both single and aggregate patterns, which may have specific reference to subsequent related studies. PMID:26606135

  9. Human papillomavirus types 16 and 18 DNA load in relation to coexistence of other types, particularly those in the same species.

    PubMed

    Xi, Long Fu; Edelstein, Zoe R; Meyers, Craig; Ho, Jesse; Cherne, Stephen L; Schiffman, Mark

    2009-09-01

    Infection with multiple human papillomavirus (HPV) types is common. However, it is unknown whether viral DNA load is related to the coexistence of other types. Study subjects were 802 and 303 women who were positive for HPV16 and HPV18, respectively, at enrollment into the Atypical Squamous Cells of Undetermined Significance and Low-Grade Squamous Intraepithelial Lesion Triage Study. HPV16 and HPV18 E7 copies per nanogram of cellular DNA in cervical swab samples were measured by real-time PCR in triplicate. Concurrent coinfection was common in this population of women with minor cervical lesions; multiple HPV types were detected in 573 (71.4%) of 802 HPV16-positive women and 227 (74.9%) of 303 HPV18-positive women. The adjusted odds ratio associating coinfection with per 1 log unit increase in HPV16 DNA load was 0.78 (95% confidence interval, 0.68-0.89); it was 0.64 (95% confidence interval, 0.52-0.79) for a similar analysis of HPV18 DNA load. Women with, compared with without, coinfection of A9 species types possessed a significantly lower HPV16 DNA load (P < 0.001), whereas women with, compared with without, coinfection of A7 species types possessed a significantly lower HPV18 DNA load (P = 0.001). A trend of decrease in HPV16 DNA load with increasing number of the coexisting non-HPV16 A9 species types was statistically significant (P(trend) = 0.001). Coinfection with other types was associated with lower HPV16 and HPV18 DNA load. The extent of reduction was correlated to phylogenetic distance of the coexisting types to HPV16 and HPV18, respectively.

  10. Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families

    PubMed Central

    2012-01-01

    Background The Batrachoididae family is a group of marine teleosts that includes several species with more complicated physiological characteristics, such as their excretory, reproductive, cardiovascular and respiratory systems. Previous studies of the 5S rDNA gene family carried out in four species from the Western Atlantic showed two types of this gene in two species but only one in the other two, under processes of concerted evolution and birth-and-death evolution with purifying selection. Here we present results of the 5S rDNA and another two gene families in Halobatrachus didactylus, an Eastern Atlantic species, and draw evolutionary inferences regarding the gene families. In addition we have also mapped the genes on the chromosomes by two-colour fluorescence in situ hybridization (FISH). Results Two types of 5S rDNA were observed, named type α and type β. Molecular analysis of the 5S rDNA indicates that H. didactylus does not share the non-transcribed spacer (NTS) sequences with four other species of the family; therefore, it must have evolved in isolation. Amplification with the type β specific primers amplified a specific band in 9 specimens of H. didactylus and two of Sparus aurata. Both types showed regulatory regions and a secondary structure which mark them as functional genes. However, the U2 snRNA gene and the ITS-1 sequence showed one electrophoretic band and with one type of sequence. The U2 snRNA sequence was the most variable of the three multigene families studied. Results from two-colour FISH showed no co-localization of the gene coding from three multigene families and provided the first map of the chromosomes of the species. Conclusions A highly significant finding was observed in the analysis of the 5S rDNA, since two such distant species as H. didactylus and Sparus aurata share a 5S rDNA type. This 5S rDNA type has been detected in other species belonging to the Batrachoidiformes and Perciformes orders, but not in the Pleuronectiformes and Clupeiformes orders. Two hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATA)n repeats, from dispersed to localized in one locus. The accumulation of (GATA)n repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology. PMID:23039906

  11. Vanadium accelerates polymerase chain reaction and expands the applicability of forensic DNA testing.

    PubMed

    Kaminiwa, Junko; Honda, Katsuya; Sugano, Yukiko; Yano, Shizue; Nishi, Takeki; Sekine, Yuko

    2013-05-01

    Polymerase chain reaction (PCR) has been rapidly established as one of the most widely used techniques in molecular biology. Because most DNA analysis is PCR-based, the analysis of unamplifiable DNA of poor quality or low quantity is nearly impossible. However, we observed that if an appropriate concentration of vanadium chloride is added to the standard reaction mixture, the enzymatic amplification of DNA could be enhanced. Using multiplex PCR with the addition of vanadium, DNA typing was possible from even trace amounts of DNA that we were unable to amplify using normal reaction conditions. This method might be an effective tool for not only criminal investigations and ancient DNA analysis, but also for nearly all fields using DNA technology. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  12. Intricate and Cell Type-Specific Populations of Endogenous Circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens.

    PubMed

    Shoura, Massa J; Gabdank, Idan; Hansen, Loren; Merker, Jason; Gotlib, Jason; Levene, Stephen D; Fire, Andrew Z

    2017-10-05

    Investigations aimed at defining the 3D configuration of eukaryotic chromosomes have consistently encountered an endogenous population of chromosome-derived circular genomic DNA, referred to as extrachromosomal circular DNA (eccDNA). While the production, distribution, and activities of eccDNAs remain understudied, eccDNA formation from specific regions of the linear genome has profound consequences on the regulatory and coding capabilities for these regions. Here, we define eccDNA distributions in Caenorhabditis elegans and in three human cell types, utilizing a set of DNA topology-dependent approaches for enrichment and characterization. The use of parallel biophysical, enzymatic, and informatic approaches provides a comprehensive profiling of eccDNA robust to isolation and analysis methodology. Results in human and nematode systems provide quantitative analysis of the eccDNA loci at both unique and repetitive regions. Our studies converge on and support a consistent picture, in which endogenous genomic DNA circles are present in normal physiological states, and in which the circles come from both coding and noncoding genomic regions. Prominent among the coding regions generating DNA circles are several genes known to produce a diversity of protein isoforms, with mucin proteins and titin as specific examples. Copyright © 2017 Shoura et al.

  13. Maintenance of Genome Stability and Breast Cancer: Molecular Analysis of DNA Damage-Activated Kinases

    DTIC Science & Technology

    2008-03-01

    Breast Cancer: Molecular Analysis of DNA Damage-Activated Kinases PRINCIPAL INVESTIGATOR: Daniel Mordes...Maintenance of Genome Stability and Breast Cancer: Molecular Analysis of DNA Damage-Activated Kinases 5b. GRANT NUMBER W81XWH-06-1-0352 5c...shown that this domain of Dpb11 stimulates the kinase activity of wild-type Mec1-Ddc2 yet did not simulate Mec1-ddc2-top. Thus, we have demonstrated

  14. A DNA methylation map of human cancer at single base-pair resolution

    PubMed Central

    Vidal, E; Sayols, S; Moran, S; Guillaumet-Adkins, A; Schroeder, M P; Royo, R; Orozco, M; Gut, M; Gut, I; Lopez-Bigas, N; Heyn, H; Esteller, M

    2017-01-01

    Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination. PMID:28581523

  15. Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghua; Ai, Junjie; Gu, Qiaorong; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2017-03-01

    Low-abundance mutations in the presence of wild-type DNA can be determined using molecular beacon (MB) as probe. A MB is generally used as DNA probe because it can distinguish single-base mismatched target DNA from fully matched target DNA. However, the probe can not determine low-abundance mutations in the presence of wild-type DNA. In this study, this limitation is addressed by enhancing the stability of unpaired base-containing dsDNA with a hydrogen-bonding ligand, which was added after hybridization of the MB to the target DNA. The ligand formed hydrogen bonds with unpaired bases and stabilized the unpaired base-containing dsDNA if target DNA is mutated one. As a result, more MBs were opened by the mutant genes in the presence of the ligand and a further increase in the fluorescence intensity was obtained. By contrast, fluorescence intensity did not change if target DNA is wild-type one. Consequent increase in the fluorescence intensity of the MB was regarded as a signal derived from mutant genes. The proposed method was applied in synthetic template systems to determine point mutation in DNA obtained from PCR analysis. The method also allows rapid and simple discrimination of a signal if it is originated in the presence of mutant gene or alternatively by a lower concentration of wild gene.

  16. Development of a rapid 21-plex autosomal STR typing system for forensic applications.

    PubMed

    Yang, Meng; Yin, Caiyong; Lv, Yuexin; Yang, Yaran; Chen, Jing; Yu, Zailiang; Liu, Xu; Xu, Meibo; Chen, Feng; Wu, Huijuan; Yan, Jiangwei

    2016-10-01

    DNA-STR genotyping technology has been widely used in forensic investigations. Even with such success, there is a great need to reduce the analysis time. In this study, we established a new rapid 21-plex STR typing system, including 13 CODIS loci, Penta D, Penta E, D12S391, D2S1338, D6S1043, D19S433, D2S441 and Amelogenin loci. This system could shorten the amplification time to a minimum of 90 min and does not require DNA extraction from the samples. Validation of the typing system complied with the Scientific Working Group on DNA Analysis Methods (SWGDAM) and the Chinese National Standard (GA/T815-2009) guidelines. The results demonstrated that this 21-plex STR typing system was a valuable tool for rapid criminal investigation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multiplexed Microsphere Suspension-Array Assay for Urine Mitochondrial DNA Typing by C-Stretch Length in Hypervariable Regions.

    PubMed

    Aoki, Kimiko; Tanaka, Hiroyuki; Kawahara, Takashi

    2018-07-01

    The standard method for personal identification and verification of urine samples in doping control is short tandem repeat (STR) analysis using nuclear DNA (nDNA). The DNA concentration of urine is very low and decreases under most conditions used for sample storage; therefore, the amount of DNA from cryopreserved urine samples may be insufficient for STR analysis. We aimed to establish a multiplexed assay for urine mitochondrial DNA typing containing only trace amounts of DNA, particularly for Japanese populations. A multiplexed suspension-array assay using oligo-tagged microspheres (Luminex MagPlex-TAG) was developed to measure C-stretch length in hypervariable region 1 (HV1) and 2 (HV2), five single nucleotide polymorphisms (SNPs), and one polymorphic indel. Based on these SNPs and the indel, the Japanese population can be classified into five major haplogroups (D4, B, M7a, A, D5). The assay was applied to DNA samples from urine cryopreserved for 1 - 1.5 years (n = 63) and fresh blood (n = 150). The assay with blood DNA enabled Japanese subjects to be categorized into 62 types, exhibiting a discriminatory power of 0.960. The detection limit for cryopreserved urine was 0.005 ng of nDNA. Profiling of blood and urine pairs revealed that 5 of 63 pairs showed different C-stretch patterns in HV1 or HV2. The assay described here yields valuable information in terms of the verification of urine sample sources employing only trace amounts of recovered DNA. However, blood cannot be used as a reference sample.

  18. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line.

    PubMed

    Liu, Huitao; Cui, Peng; Zhan, Kehui; Lin, Qiang; Zhuo, Guoyin; Guo, Xiaoli; Ding, Feng; Yang, Wenlong; Liu, Dongcheng; Hu, Songnian; Yu, Jun; Zhang, Aimin

    2011-03-29

    Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.

  19. Application of forensic DNA testing in the legal system.

    PubMed

    Primorac, D; Schanfield, M S

    2000-03-01

    DNA technology has taken an irreplaceable position in the field of the forensic sciences. Since 1985, when Peter Gill and Alex Jeffreys first applied DNA technology to forensic problems, to the present, more than 50,000 cases worldwide have been solved through the use of DNA based technology. Although the development of DNA typing in forensic science has been extremely rapid, today we are witnessing a new era of DNA technology including automation and miniaturization. In forensic science, DNA analysis has become "the new form of scientific evidence" and has come under public scrutiny and the demand to show competence. More and more courts admit the DNA based evidence. We believe that in the near future this technology will be generally accepted in the legal system. There are two main applications of DNA analysis in forensic medicine: criminal investigation and paternity testing. In this article we present background information on DNA, human genetics, and the application of DNA analysis to legal problems, as well as the commonly applied respective mathematics.

  20. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2013-11-01

    A Gram-stain-positive bacterial strain, S4-3(T), was isolated from traditional pickle in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, pheS gene sequence analysis, rpoA gene sequence analysis, dnaK gene sequence analysis, fatty acid methyl ester (FAME) analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain S4-3(T) showed 97.9-98.7 % 16S rRNA gene sequence similarities, 84.4-94.1 % pheS gene sequence similarities and 94.4-96.9 % rpoA gene sequence similarities to the type strains of Lactobacillus nantensis, Lactobacillus mindensis, Lactobacillus crustorum, Lactobacillus futsaii, Lactobacillus farciminis and Lactobacillus kimchiensis. dnaK gene sequence similarities between S4-3(T) and Lactobacillus nantensis LMG 23510(T), Lactobacillus mindensis LMG 21932(T), Lactobacillus crustorum LMG 23699(T), Lactobacillus futsaii JCM 17355(T) and Lactobacillus farciminis LMG 9200(T) were 95.4, 91.5, 90.4, 91.7 and 93.1 %, respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus heilongjiangensis sp. nov., is proposed and the type strain is S4-3(T) ( = LMG 26166(T) = NCIMB 14701(T)).

  1. An integratable microfluidic cartridge for forensic swab samples lysis.

    PubMed

    Yang, Jianing; Brooks, Carla; Estes, Matthew D; Hurth, Cedric M; Zenhausern, Frederic

    2014-01-01

    Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (μTAS) for rapid DNA analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Preferential access to genetic information from endogenous hominin ancient DNA and accurate quantitative SNP-typing via SPEX

    PubMed Central

    Brotherton, Paul; Sanchez, Juan J.; Cooper, Alan; Endicott, Phillip

    2010-01-01

    The analysis of targeted genetic loci from ancient, forensic and clinical samples is usually built upon polymerase chain reaction (PCR)-generated sequence data. However, many studies have shown that PCR amplification from poor-quality DNA templates can create sequence artefacts at significant levels. With hominin (human and other hominid) samples, the pervasive presence of highly PCR-amplifiable human DNA contaminants in the vast majority of samples can lead to the creation of recombinant hybrids and other non-authentic artefacts. The resulting PCR-generated sequences can then be difficult, if not impossible, to authenticate. In contrast, single primer extension (SPEX)-based approaches can genotype single nucleotide polymorphisms from ancient fragments of DNA as accurately as modern DNA. A single SPEX-type assay can amplify just one of the duplex DNA strands at target loci and generate a multi-fold depth-of-coverage, with non-authentic recombinant hybrids reduced to undetectable levels. Crucially, SPEX-type approaches can preferentially access genetic information from damaged and degraded endogenous ancient DNA templates over modern human DNA contaminants. The development of SPEX-type assays offers the potential for highly accurate, quantitative genotyping from ancient hominin samples. PMID:19864251

  3. Investigating the Epigenetic Discrimination of Identical Twins Using Buccal Swabs, Saliva, and Cigarette Butts in the Forensic Setting.

    PubMed

    Vidaki, Athina; Kalamara, Vivian; Carnero-Montoro, Elena; Spector, Timothy D; Bell, Jordana T; Kayser, Manfred

    2018-05-14

    Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changela, Anita; DiGate, Russell J.; Mondragon, Alfonso

    Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5{prime} phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is boundmore » along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.« less

  5. The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization.

    PubMed

    Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti

    2016-08-01

    The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.

  6. [Laser microdissection for biology and medicine].

    PubMed

    Podgornyĭ, O V; Lazarev, V N; Govorun, V M

    2012-01-01

    For routine extraction of DNA, RNA, proteins and metabolites, small tissue pieces are placed into lysing solution. These tissue pieces in general contain different cell types. For this reason, lysate contains components of different cell types, which complicates the interpretation of molecular analysis results. The laser microdissection allows overcoming this trouble. The laser microdissection is a method to procure tissue samples contained defined cell subpopulations, individual cells and even subsellular components under direct microscopic visualization. Collected samples can be undergone to different downstream molecular assays: DNA analysis, RNA transcript profiling, cDNA library generation and gene expression analysis, proteomic analysis and metabolite profiling. The laser microdissection has wide applications in oncology (research and routine), cellular and molecular biology, biochemistry and forensics. This paper reviews the principles of different laser microdissection instruments, examples of laser microdissection application and problems of sample preparation for laser microdissection.

  7. Mitochondrial sequence analysis for forensic identification using pyrosequencing technology.

    PubMed

    Andréasson, H; Asp, A; Alderborn, A; Gyllensten, U; Allen, M

    2002-01-01

    Over recent years, requests for mtDNA analysis in the field of forensic medicine have notably increased, and the results of such analyses have proved to be very useful in forensic cases where nuclear DNA analysis cannot be performed. Traditionally, mtDNA has been analyzed by DNA sequencing of the two hypervariable regions, HVI and HVII, in the D-loop. DNA sequence analysis using the conventional Sanger sequencing is very robust but time consuming and labor intensive. By contrast, mtDNA analysis based on the pyrosequencing technology provides fast and accurate results from the human mtDNA present in many types of evidence materials in forensic casework. The assay has been developed to determine polymorphic sites in the mitochondrial D-loop as well as the coding region to further increase the discrimination power of mtDNA analysis. The pyrosequencing technology for analysis of mtDNA polymorphisms has been tested with regard to sensitivity, reproducibility, and success rate when applied to control samples and actual casework materials. The results show that the method is very accurate and sensitive; the results are easily interpreted and provide a high success rate on casework samples. The panel of pyrosequencing reactions for the mtDNA polymorphisms were chosen to result in an optimal discrimination power in relation to the number of bases determined.

  8. A genetic investigation of Korean mummies from the Joseon Dynasty.

    PubMed

    Kim, Na Young; Lee, Hwan Young; Park, Myung Jin; Yang, Woo Ick; Shin, Kyoung-Jin

    2011-01-01

    Two Korean mummies (Danwoong-mirra and Yoon-mirra) found in medieval tombs in the central region of the Korean peninsula were genetically investigated by analysis of mitochondrial DNA (mtDNA), Y-chromosomal short tandem repeat (Y-STR) and the ABO gene. Danwoong-mirra is a male child mummy and Yoon-mirra is a pregnant female mummy, dating back about 550 and 450 years, respectively. DNA was extracted from soft tissues or bones. mtDNA, Y-STR and the ABO gene were amplified using a small size amplicon strategy and were analyzed according to the criteria of ancient DNA analysis to ensure that authentic DNA typing results were obtained from these ancient samples. Analysis of mtDNA hypervariable region sequence and coding region single nucleotide polymorphism (SNP) information revealed that Danwoong-mirra and Yoon-mirra belong to the East Asian mtDNA haplogroups D4 and M7c, respectively. The Y-STRs were analyzed in the male child mummy (Danwoong-mirra) using the AmpFlSTR® Yfiler PCR Amplification Kit and an in-house Y-miniplex plus system, and could be characterized in 4 loci with small amplicon size. The analysis of ABO gene SNPs using multiplex single base extension methods revealed that the ABO blood types of Danwoong-mirra and Yoon-mirra are AO01 and AB, respectively. The small size amplicon strategy and the authentication process in the present study will be effectively applicable to future genetic analyses of various forensic and ancient samples.

  9. DNA analysis of an uncommon missense mutation in a Gaucher disease patient of Jewish-Polish-Russian descent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choy, F.Y.M.; Wei, C.; Applegarth, D.A.

    1994-06-01

    Gaucher disease is the most frequent lysosomal lipid storage disease. It results from deficient glucocerebrosidase activity and is transmitted as an autosomal recessive trait. Three clinical forms of Gaucher disease have been described: type 1, non-neuronopathic; type 2, acute neuronopathic; and type 3, subacute neuronopathic. We have sequenced the full length cDNA of the glucocerebrosidase gene and identified an uncommon mutation in nucleotide position 1604 (genoma DNA nucleotide position 6683) from a Gaucher disease patient of Jewish-Polish-Russian descent with type 1 Gaucher disease. It is a G{yields}A transition in exon 11 that results in {sup 496}Arg{yields}{sup 496}His of glucocerebrosidase. Thismore » missense mutation is present in the heterozygous form and creates a new cleavage site for the endonuclease HphI. We have developed a simple method to detect the presence of this mutation by using HphI restriction fragment length polymorphism analysis of glucocerebrosidase genomic DNA or cDNA. The mutation in the other Gaucher allele of this patient is an A{yields}G transition at cDNA nucleotide position 1226 which creates an XhoI cleavage site after PCR mismatch amplification. The presence of this mutation was also confirmed by sequence analysis. Based on previous reports that mutation 1226 is present only in type 1 Gaucher disease and the observation that there is no neurological involvement in this patient, we conclude that our patient with the 1226/1604 genotype is diagnosed as having type 1 Gaucher disease. Since it was also postulated that mutation 1226 in the homozygous form will usually result in a good prognosis, we speculate that the orthopedic complications and the unusual presence of glomerulosclerosis in this patient may be attributable to the mutation at nucleotide 1604. This speculation will require a description of more patients with this mutation for confirmation. 32 refs., 5 figs.« less

  10. Comparison of semi-automated commercial rep-PCR fingerprinting, spoligotyping, 12-locus MIRU-VNTR typing and single nucleotide polymorphism analysis of the embB gene as molecular typing tools for Mycobacterium bovis.

    PubMed

    Armas, Federica; Camperio, Cristina; Coltella, Luana; Selvaggini, Serena; Boniotti, Maria Beatrice; Pacciarini, Maria Lodovica; Di Marco Lo Presti, Vincenzo; Marianelli, Cinzia

    2017-08-04

    Highly discriminatory genotyping strategies are essential in molecular epidemiological studies of tuberculosis. In this study we evaluated, for the first time, the efficacy of the repetitive sequence-based PCR (rep-PCR) DiversiLab Mycobacterium typing kit over spoligotyping, 12-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and embB single nucleotide polymorphism (SNP) analysis for Mycobacterium bovis typing. A total of 49 M. bovis animal isolates were used. DNA was extracted and genomic DNA was amplified using the DiversiLab Mycobacterium typing kit. The amplified fragments were separated and detected using a microfluidics chip with Agilent 2100. The resulting rep-PCR-based DNA fingerprints were uploaded to and analysed using web-based DiversiLab software through Pearson's correlation coefficient. Rep-PCR DiversiLab grouped M. bovis isolates into ten different clusters. Most isolates sharing identical spoligotype, MIRU-VNTR profile or embB gene polymorphism were grouped into different rep-PCR clusters. Rep-PCR DiversiLab displayed greater discriminatory power than spoligotyping and embB SNP analysis but a lower resolution power than the 12-locus MIRU-VNTR analysis. MIRU-VNTR confirmed that it is superior to the other PCR-based methods tested here. In combination with spoligotyping and 12-locus MIRU-VNTR analysis, rep-PCR improved the discriminatory power for M. bovis typing.

  11. The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus.

    PubMed

    Chen, Zhong-Yuan; Lei, Xiao-Ying; Zhang, Qi-Ya

    2012-06-15

    Plasmid DNAs containing Siniperca chuatsi rhabdovirus (SCRV) glycoprotein gene (pcDNA-G) and nucleoprotein gene (pcDNA-N) were constructed, and used to determine the antiviral immune response elicited by DNA vaccination in mandarin fish. In vitro and in vivo expression of the plasmid constructs was confirmed in transfected cells and muscle tissues of vaccinated fish by Western blot, indirect immunofluorescence or RT-PCR analysis. Fish injected with pcDNA-G exhibited protective effect against SCRV challenge with a relative percent survival (RPS) of 77.5%, but no significant protection (RPS of 2.5%) was observed in fish vaccinated with pcDNA-N. Immunohistochemical analysis showed that vaccination with pcDNA-G decreased histological lesions and suppressed the virus replication in fish target organs, e.g. kidney, liver, spleen, gill and heart. Transcriptional analysis further revealed that the expression levels of type I IFN system genes including interferon regulation factor-7 (IRF-7) gene, myxovirus resistance (Mx) gene and virus inhibitory protein (Viperin) gene were strongly up-regulated after injection with pcDNA-G, whereas the level of transcription of immunoglobulin M (IgM) gene did not show a statistically significant change. These results reveal that type I IFN antiviral immune response is rapidly triggered by the plasmid DNA containing rhabdovirus glycoprotein gene in fish, which offers an explanation of molecular mechanisms for DNA vaccination inducing mandarin fish resist to SCRV disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Hybrid Origins of Citrus Varieties Inferred from DNA Marker Analysis of Nuclear and Organelle Genomes.

    PubMed

    Shimizu, Tokurou; Kitajima, Akira; Nonaka, Keisuke; Yoshioka, Terutaka; Ohta, Satoshi; Goto, Shingo; Toyoda, Atsushi; Fujiyama, Asao; Mochizuki, Takako; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu

    2016-01-01

    Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy-Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies.

  13. Hybrid Origins of Citrus Varieties Inferred from DNA Marker Analysis of Nuclear and Organelle Genomes

    PubMed Central

    Kitajima, Akira; Nonaka, Keisuke; Yoshioka, Terutaka; Ohta, Satoshi; Goto, Shingo; Toyoda, Atsushi; Fujiyama, Asao; Mochizuki, Takako; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu

    2016-01-01

    Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy–Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies. PMID:27902727

  14. 'DNA Strider': a 'C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers.

    PubMed Central

    Marck, C

    1988-01-01

    DNA Strider is a new integrated DNA and Protein sequence analysis program written with the C language for the Macintosh Plus, SE and II computers. It has been designed as an easy to learn and use program as well as a fast and efficient tool for the day-to-day sequence analysis work. The program consists of a multi-window sequence editor and of various DNA and Protein analysis functions. The editor may use 4 different types of sequences (DNA, degenerate DNA, RNA and one-letter coded protein) and can handle simultaneously 6 sequences of any type up to 32.5 kB each. Negative numbering of the bases is allowed for DNA sequences. All classical restriction and translation analysis functions are present and can be performed in any order on any open sequence or part of a sequence. The main feature of the program is that the same analysis function can be repeated several times on different sequences, thus generating multiple windows on the screen. Many graphic capabilities have been incorporated such as graphic restriction map, hydrophobicity profile and the CAI plot- codon adaptation index according to Sharp and Li. The restriction sites search uses a newly designed fast hexamer look-ahead algorithm. Typical runtime for the search of all sites with a library of 130 restriction endonucleases is 1 second per 10,000 bases. The circular graphic restriction map of the pBR322 plasmid can be therefore computed from its sequence and displayed on the Macintosh Plus screen within 2 seconds and its multiline restriction map obtained in a scrolling window within 5 seconds. PMID:2832831

  15. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata.

    PubMed

    Pasion, S G; Hines, J C; Aebersold, R; Ray, D S

    1992-01-01

    A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.

  16. EVALUATION OF RAPID DNA EXTRACTION PROCEDURES FOR THE QUANTITATIVE DETECTION OF FUNGAL CELLS USING REAL TIME PCR ANALYSIS

    EPA Science Inventory

    The ease and rapidity of quantitative DNA sequence detection by real-time PCR instruments promises to make their use increasingly common for the microbial analysis many different types of environmental samples. To fully exploit the capabilities of these instruments, correspondin...

  17. Results of a collaborative study on DNA identification of aged bone samples

    PubMed Central

    Vanek, Daniel; Budowle, Bruce; Dubska-Votrubova, Jitka; Ambers, Angie; Frolik, Jan; Pospisek, Martin; Al Afeefi, Ahmed Anwar; Al Hosani, Khalid Ismaeil; Allen, Marie; Al Naimi, Khudooma Saeed; Al Salafi, Dina; Al Tayyari, Wafa Ali Rashid; Arguetaa, Wendy; Bottinelli, Michel; Bus, Magdalena M.; Cemper-Kiesslich, Jan; Cepil, Olivier; De Cock, Greet; Desmyter, Stijn; El Amri, Hamid; El Ossmani, Hicham; Galdies, Ruth; Grün, Sebastian; Guidet, Francois; Hoefges, Anna; Iancu, Cristian Bogdan; Lotz, Petra; Maresca, Alessandro; Nagy, Marion; Novotny, Jindrich; Rachid, Hajar; Rothe, Jessica; Stenersen, Marguerethe; Stephenson, Mishel; Stevanovitch, Alain; Strien, Juliane; Sumita, Denilce R.; Vella, Joanna; Zander, Judith

    2017-01-01

    Aim A collaborative exercise with several institutes was organized by the Forensic DNA Service (FDNAS) and the Institute of the Legal Medicine, 2nd Faculty of Medicine, Charles University in Prague, Czech Republic, with the aim to test performance of different laboratories carrying out DNA analysis of relatively old bone samples. Methods Eighteen laboratories participating in the collaborative exercise were asked to perform DNA typing of two samples of bone powder. Two bone samples provided by the National Museum and the Institute of Archaelogy in Prague, Czech Republic, came from archeological excavations and were estimated to be approximately 150 and 400 years old. The methods of genetic characterization including autosomal, gonosomal, and mitochondrial markers was selected solely at the discretion of the participating laboratory. Results Although the participating laboratories used different extraction and amplification strategies, concordant results were obtained from the relatively intact 150 years old bone sample. Typing was more problematic with the analysis of the 400 years old bone sample due to poorer quality. Conclusion The laboratories performing identification DNA analysis of bone and teeth samples should regularly test their ability to correctly perform DNA-based identification on bone samples containing degraded DNA and potential inhibitors and demonstrate that risk of contamination is minimized. PMID:28613037

  18. Origin and evolution of Andigena potatoes revealed by chloroplast and nuclear DNA markers.

    PubMed

    Sukhotu, Thitaporn; Hosaka, Kazuyoshi

    2006-06-01

    Andigena potatoes (Solanum tuberosum L. subsp. andigena Hawkes) (2n = 4x = 48) are important, native-farmer-selected cultivars in the Andes, which form a primary gene pool for improving a worldwide grown potato (S. tuberosum subsp. tuberosum). To elucidate the origin of Andigena, 196 Andigena accessions were compared with 301 accessions of 33 closely related cultivated and wild species using several types of chloroplast DNA (ctDNA) markers and nuclear DNA (nDNA) restriction fragment length polymorphism (RFLP) markers. Fourteen ctDNA types (haplotypes) and 115 RFLP bands were detected in Andigena, of which the main haplotypes and frequent RFLP bands were mostly shared with a cultivated diploid species, S. stenotomum Juz. et Buk. Principal component analysis of nDNA polymorphisms revealed a progressive and continuous variation from Peruvian wild species with C-type ctDNA to a group of wild species having S-type ctDNA in its variation range (S. bukasovii, S. canasense, S. candolleanum, and S. multidissectum), to cultivated diploid potatoes (S. phureja and S. stenotomum), and to cultivated tetraploid potatoes (Andigena and Chilean S. tuberosum subsp. tuberosum). These results suggest that the initial Andigena population arose with multiple origins exclusively from S. stenotomum. The overall evolutionary process toward the present-day Andigena was discussed.

  19. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    Treesearch

    M.N. lslam-Faridi; C.D. Nelson; S.P. DiFazio; L.E. Gunter; G.A. Tuskan

    2009-01-01

    The 185-285 rDNA and 55 rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 185-285 rDNA sites and one 55 rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones...

  20. Comparison of (GTG)5-oligonucleotide and ribosomal intergenic transcribed spacer (ITS)-PCR for molecular typing of Klebsiella isolates.

    PubMed

    Ryberg, Anna; Olsson, Crister; Ahrné, Siv; Monstein, Hans-Jürg

    2011-02-01

    Molecular typing of Klebsiella species has become important for monitoring dissemination of β-lactamase-producers in hospital environments. The present study was designed to evaluate poly-trinucleotide (GTG)(5)- and rDNA intergenic transcribed spacer (ITS)-PCR fingerprint analysis for typing of Klebsiella pneumoniae and Klebsiella oxytoca isolates. Multiple displacement amplified DNA derived from 19 K. pneumoniae (some with an ESBL-phenotype), 35 K. oxytoca isolates, five K. pneumoniae, two K. oxytoca, three Raoultella, and one Enterobacter aerogenes type and reference strains underwent (GTG)(5) and ITS-PCR analysis. Dendrograms were constructed using cosine coefficient and the Neighbour joining method. (GTG)(5) and ITS-PCR analysis revealed that K. pneumoniae and K. oxytoca isolates, reference and type strains formed distinct cluster groups, and tentative subclusters could be established. We conclude that (GTG)(5) and ITS-PCR analysis combined with automated capillary electrophoresis provides promising tools for molecular typing of Klebsiella isolates. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Structure-Based Mutational Analysis of the C-Terminal DNA-Binding Domain of Human Immunodeficiency Virus Type 1 Integrase: Critical Residues for Protein Oligomerization and DNA Binding

    PubMed Central

    Lutzke, Ramon A. Puras; Plasterk, Ronald H. A.

    1998-01-01

    The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220–270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220–270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220–270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3′ processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN. PMID:9573250

  2. Genetic Variation of Lactobacillus delbrueckii subsp. lactis Bacteriophages Isolated from Cheese Processing Plants in Finland

    PubMed Central

    Forsman, Päivi; Alatossava, Tapani

    1991-01-01

    The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages. Images PMID:16348513

  3. Variant forms of mitochondrial translation products in yeast: evidence for location of determinants on mitochondrial DNA.

    PubMed

    Douglas, M G; Butow, R A

    1976-04-01

    Products of mitochondrial protein synthesis in yeast have been labeled in vivo with 35SO42-. More than 20 polypeptide species fulfilling the criteria of mitochondrial translation products have been detected by analysis on sodium dodecyl sulfate-exponential polyacrylamide slab gels. A comparison of mitochondrial translation products in two wild-type strains has revealed variant forms of some polypeptide species which show genetic behavior consistent with the location of their structural genes on mtDNA. Our results demonstrate the feasibility of performing genetic analysis on putative gene products of mtDNA in wild-type yeast by direct examination of the segregation and recombination behavior of specific polypeptide species.

  4. A ranking index for quality assessment of forensic DNA profiles forensic DNA profiles

    PubMed Central

    2010-01-01

    Background Assessment of DNA profile quality is vital in forensic DNA analysis, both in order to determine the evidentiary value of DNA results and to compare the performance of different DNA analysis protocols. Generally the quality assessment is performed through manual examination of the DNA profiles based on empirical knowledge, or by comparing the intensities (allelic peak heights) of the capillary electrophoresis electropherograms. Results We recently developed a ranking index for unbiased and quantitative quality assessment of forensic DNA profiles, the forensic DNA profile index (FI) (Hedman et al. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles, Biotechniques 47 (2009) 951-958). FI uses electropherogram data to combine the intensities of the allelic peaks with the balances within and between loci, using Principal Components Analysis. Here we present the construction of FI. We explain the mathematical and statistical methodologies used and present details about the applied data reduction method. Thereby we show how to adapt the ranking index for any Short Tandem Repeat-based forensic DNA typing system through validation against a manual grading scale and calibration against a specific set of DNA profiles. Conclusions The developed tool provides unbiased quality assessment of forensic DNA profiles. It can be applied for any DNA profiling system based on Short Tandem Repeat markers. Apart from crime related DNA analysis, FI can therefore be used as a quality tool in paternal or familial testing as well as in disaster victim identification. PMID:21062433

  5. EMSA Analysis of DNA Binding By Rgg Proteins

    PubMed Central

    LaSarre, Breah; Federle, Michael J.

    2016-01-01

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function (e.g. interruption of DNA-binding in some cases). PMID:27430004

  6. EMSA Analysis of DNA Binding By Rgg Proteins.

    PubMed

    LaSarre, Breah; Federle, Michael J

    2013-08-20

    In bacteria, interaction of various proteins with DNA is essential for the regulation of specific target gene expression. Electrophoretic mobility shift assay (EMSA) is an in vitro approach allowing for the visualization of these protein-DNA interactions. Rgg proteins comprise a family of transcriptional regulators widespread among the Firmicutes. Some of these proteins function independently to regulate target gene expression, while others have now been demonstrated to function as effectors of cell-to-cell communication, having regulatory activities that are modulated via direct interaction with small signaling peptides. EMSA analysis can be used to assess DNA binding of either type of Rgg protein. EMSA analysis of Rgg protein activity has facilitated in vitro confirmation of regulatory targets, identification of precise DNA binding sites via DNA probe mutagenesis, and characterization of the mechanism by which some cognate signaling peptides modulate Rgg protein function ( e.g. interruption of DNA-binding in some cases).

  7. Genetic identification of missing persons: DNA analysis of human remains and compromised samples.

    PubMed

    Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A

    2012-01-01

    Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers. Copyright © 2012 S. Karger AG, Basel.

  8. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies.

    PubMed

    Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita

    2015-08-28

    Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.

  9. Investigating mycobacterial topoisomerase I mechanism from the analysis of metal and DNA substrate interactions at the active site.

    PubMed

    Cao, Nan; Tan, Kemin; Annamalai, Thirunavukkarasu; Joachimiak, Andrzej; Tse-Dinh, Yuk-Ching

    2018-06-14

    We have obtained new crystal structures of Mycobacterium tuberculosis topoisomerase I, including structures with ssDNA substrate bound to the active site, with and without Mg2+ ion present. Significant enzyme conformational changes upon DNA binding place the catalytic tyrosine in a pre-transition state position for cleavage of a specific phosphodiester linkage. Meanwhile, the enzyme/DNA complex with bound Mg2+ ion may represent the post-transition state for religation in the enzyme's multiple-step DNA relaxation catalytic cycle. The first observation of Mg2+ ion coordinated with the TOPRIM residues and DNA phosphate in a type IA topoisomerase active site allows assignment of likely catalytic role for the metal and draws a comparison to the proposed mechanism for type IIA topoisomerases. The critical function of a strictly conserved glutamic acid in the DNA cleavage step was assessed through site-directed mutagenesis. The functions assigned to the observed Mg2+ ion can account for the metal requirement for DNA rejoining but not DNA cleavage by type IA topoisomerases. This work provides new structural insights into a more stringent requirement for DNA rejoining versus cleavage in the catalytic cycle of this essential enzyme, and further establishes the potential for selective interference of DNA rejoining by this validated TB drug target.

  10. Fleet DNA Phase 1 Refinement & Phase 2 Implementation; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Kenneth; Duran, Adam

    2015-06-11

    Fleet DNA acts as a secure data warehouse for medium- and heavy-duty vehicle data. It demonstrates that vehicle drive cycle data can be collected and stored for large-scale analysis and modeling applications. The data serve as a real-world data source for model development and validation. Storage of the results of past/present/future data collection efforts improves analysis efficiency through pooling of shared data and provides the opportunity for 'big data' type analyses. Fleet DNA shows it is possible to develop a common database structure that can store/analyze/report on data sourced from multiple parties, each with unique data formats/types. Data filtration andmore » normalization algorithms developed for the project allow for a wide range of data types and inputs, expanding the project’s potential. Fleet DNA demonstrates the power of integrating Big Data with existing and future tools and analyses: it provides an enhanced understanding and education of users, users can explore greenhouse gases and economic opportunities via AFLEET and ADOPT modeling, drive cycles can be characterized and visualized using DRIVE, high-level vehicle modeling can be performed using real-world drive cycles via FASTSim, and data reporting through Fleet DNA Phase 1 and 2 websites provides external users access to analysis results and gives the opportunity to explore on their own.« less

  11. MutSα's Multi-Domain Allosteric Response to Three DNA Damage Types Revealed by Machine Learning

    NASA Astrophysics Data System (ADS)

    Melvin, Ryan L.; Thompson, William G.; Godwin, Ryan C.; Gmeiner, William H.; Salsbury, Freddie R.

    2017-03-01

    MutSalpha is a key component in the mismatch repair (MMR) pathway. This protein is responsible for initiating the signaling pathways for DNA repair or cell death. Herein we investigate this heterodimer’s post-recognition, post-binding response to three types of DNA damage involving cytotoxic, anti-cancer agents - carboplatin, cisplatin, and FdU. Through a combination of supervised and unsupervised machine learning techniques along with more traditional structural and kinetic analysis applied to all-atom molecular dynamics (MD) calculations, we predict that MutSalpha has a distinct response to each of the three damage types. Via a binary classification tree (a supervised machine learning technique), we identify key hydrogen bond motifs unique to each type of damage and suggest residues for experimental mutation studies. Through a combination of a recently developed clustering (unsupervised learning) algorithm, RMSF calculations, PCA, and correlated motions we predict that each type of damage causes MutS↵to explore a specific region of conformation space. Detailed analysis suggests a short range effect for carboplatin - primarily altering the structures and kinetics of residues within 10 angstroms of the damaged DNA - and distinct longer-range effects for cisplatin and FdU. In our simulations, we also observe that a key phenylalanine residue - known to stack with a mismatched or unmatched bases in MMR - stacks with the base complementary to the damaged base in 88.61% of MD frames containing carboplatinated DNA. Similarly, this Phe71 stacks with the base complementary to damage in 91.73% of frames with cisplatinated DNA. This residue, however, stacks with the damaged base itself in 62.18% of trajectory frames with FdU-substituted DNA and has no stacking interaction at all in 30.72% of these frames. Each drug investigated here induces a unique perturbation in the MutS↵complex, indicating the possibility of a distinct signaling event and specific repair or death pathway (or set of pathways) for a given type of damage.

  12. Evaluation of folate receptor 1 (FOLR1) mRNA expression, its specific promoter methylation and global DNA hypomethylation in type I and type II ovarian cancers.

    PubMed

    Notaro, Sara; Reimer, Daniel; Fiegl, Heidi; Schmid, Gabriel; Wiedemair, Annamarie; Rössler, Julia; Marth, Christian; Zeimet, Alain Gustave

    2016-08-02

    In this retrospective study we evaluated the respective correlations and clinical relevance of FOLR1 mRNA expression, FOLR1 promoter specific methylation and global DNA hypomethylation in type I and type II ovarian cancer. Two hundred fifty four ovarian cancers, 13 borderline tumours and 60 samples of healthy fallopian epithelium and normal ovarian epithelium were retrospectively analysed for FOLR1 expression with RT-PCR. FOLR1 DNA promoter methylation and global DNA hypomethylation (measured by means of LINE1 DNA hypomethylation) were evaluated with MethyLight technique. No correlation between FOLR1 mRNA expression and its specific promoter DNA methylation was found neither in type I nor in type II cancers, however, high FOLR1 mRNA expression was found to be correlated with global DNA hypomethylation in type II cancers (p = 0.033). Strong FOLR1 mRNA expression was revealed for Grades 2-3, FIGO stages III-IV, residual disease > 0, and serous histotype. High FOLR1 expression was found to predict increased platinum sensitivity in type I cancers (odds ratio = 3.288; 1.256-10.75; p = 0.020). One-year survival analysis showed in type I cancers an independent better outcome for strong expression of FOLR1 in FIGO stage III and IV. For the entire follow up period no significant independent outcome for FOLR1 expression was revealed. In type I cancers LINE 1 DNA hypomethylation was found to exhibit a worse PFS and OS which were confirmed to be independent in multivariate COX regression model for both PFS (p = 0.026) and OS (p = 0.012). No correlations were found between FOLR1 expression and its specific promoter methylation, however, high FOLR1 mRNA expression was associated with DNA hypomethylation in type II cancers. FOLR1 mRNA expression did not prove to predict clinical outcome in type II cancers, although strong FOLR1 expression generally denotes ovarian cancers with highly aggressive phenotype. In type I cancers, however, strong FOLR1 expression has been found to be a reliable indicator of improved platinum responsiveness reflecting a transient better one-year follow up outcome in highly FOLR1 expressing type I cancers. An independent prognostic role of global DNA hypomethylation was demonstrated in type I tumours.

  13. Molecular phylogeography of the Andean alpine plant, Gunnera magellanica

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Fujii, N.; Ito, M.; Asakawa, T.; Nishida, H.; Suyama, C.; Ueda, K.

    2015-12-01

    To clarify the evolutionary history of Gunnera magellanica (Gunneraceae), an alpine plant of the Andes mountains, we performed molecular phylogeographic analyses based on the sequences of an internal transcribed spacer (ITS) of nuclear ribosomal DNA and four non-coding regions (trnH-psbA, trnL-trnF, atpB-rbcL, rpl16 intron) of chloroplast DNA. We investigated 3, 4, 4 and 11 populations in, Ecuador, Bolivia, Argentina, and Chile, respectively, and detected six ITS genotypes (Types A-F) in G. magellanica. Five genotypes (Types A-E) were observed in the northern Andes population (Ecuador and Bolivia); only one ITS genotype (Type F) was observed in the southern Andes population (Chile and Argentina). Phylogenetic analyses showed that the ITS genotypes of the northern and southern Andes populations form different clades with high bootstrap probability. Furthermore, network analysis, analysis of molecular variance, and spatial analysis of molecular variance showed that there were two major clusters (the northern and southern Andes populations) in this species. Furthermore, in chloroplast DNA analysis, three major clades (northern Andes, Chillan, and southern Andes) were inferred from phylogenetic analyses using four non-coding regions, a finding that was supported by the above three types of analysis. The Chillan clade is the northernmost population in the southern Andes populations. With the exception of the Chillan clade (Chillan population), results of nuclear DNA and chloroplast DNA analyses were consistent. Both markers showed that the northern and southern Andes populations of G. magellanica were genetically different from each other. This type of clear phylogeographical structure was supported by PERMUT analysis according to Pons & Petit (1995, 1996). Moreover, based on our preliminary estimation that is based on the ITS sequences, the northern and southern Andes clades diverged ~0.63-3 million years ago, during a period of upheaval in the Andes. This suggests that the populations of G. magellanica that were distributed along the Andes have been divided into the two local populations of the northern and southern Andes during the uplift of the Andes.

  14. Characterization of UVC-induced DNA damage in bloodstains: forensic implications.

    PubMed

    Hall, Ashley; Ballantyne, Jack

    2004-09-01

    The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence. DNA typing now plays a critical role within the criminal justice system, but one of the limiting factors with the technology is that DNA isolated from biological stains recovered from the crime scene is sometimes so damaged as to be intractable to analysis. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary. As a model for DNA damage assessment in biological stains recovered from crime scenes, we have subjected human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. It was possible to damage the DNA sufficiently in a bloodstain to cause a standard autosomal short tandem repeat (STR) profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect bipyrimidine photoproducts (BPPPs), single- and double-strand breaks, and DNA-DNA crosslinks, produced some unexpected findings. Contrary to the situation with living tissues or cells in culture, the predominant UVC-induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major form of UVC damage causing genetic profile loss appeared to be single-strand breaks. It was not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed. We demonstrate here that a significant measure of protection against UVC-mediated genetic profile loss in dried biological stain material is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu.

  15. STRBase: a short tandem repeat DNA database for the human identity testing community

    PubMed Central

    Ruitberg, Christian M.; Reeder, Dennis J.; Butler, John M.

    2001-01-01

    The National Institute of Standards and Technology (NIST) has compiled and maintained a Short Tandem Repeat DNA Internet Database (http://www.cstl.nist.gov/biotech/strbase/) since 1997 commonly referred to as STRBase. This database is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. STRBase consolidates and organizes the abundant literature on this subject to facilitate on-going efforts in DNA typing. Observed alleles and annotated sequence for each STR locus are described along with a review of STR analysis technologies. Additionally, commercially available STR multiplex kits are described, published polymerase chain reaction (PCR) primer sequences are reported, and validation studies conducted by a number of forensic laboratories are listed. To supplement the technical information, addresses for scientists and hyperlinks to organizations working in this area are available, along with the comprehensive reference list of over 1300 publications on STRs used for DNA typing purposes. PMID:11125125

  16. 3D visualization software to analyze topological outcomes of topoisomerase reactions

    PubMed Central

    Darcy, I. K.; Scharein, R. G.; Stasiak, A.

    2008-01-01

    The action of various DNA topoisomerases frequently results in characteristic changes in DNA topology. Important information for understanding mechanistic details of action of these topoisomerases can be provided by investigating the knot types resulting from topoisomerase action on circular DNA forming a particular knot type. Depending on the topological bias of a given topoisomerase reaction, one observes different subsets of knotted products. To establish the character of topological bias, one needs to be aware of all possible topological outcomes of intersegmental passages occurring within a given knot type. However, it is not trivial to systematically enumerate topological outcomes of strand passage from a given knot type. We present here a 3D visualization software (TopoICE-X in KnotPlot) that incorporates topological analysis methods in order to visualize, for example, knots that can be obtained from a given knot by one intersegmental passage. The software has several other options for the topological analysis of mechanisms of action of various topoisomerases. PMID:18440983

  17. Application of IS1311 locus 2 PCR-REA assay for the specific detection of 'Bison type' Mycobacterium avium subspecies paratuberculosis isolates of Indian origin.

    PubMed

    Singh, Ajay Vir; Chauhan, Devendra Singh; Singh, Abhinendra; Singh, Pravin Kumar; Sohal, Jagdip Singh; Singh, Shoor Vir

    2015-01-01

    Of the three major genotypes of Mycobacterium avium subspecies paratuberculosis (MAP), 'Bison type' is most prevalent genotype in the domestic livestock species of the country, and has also been recovered from patients suffering from Crohn's disease. Recently, a new assay based on IS1311 locus 2 PCR- restriction endonuclease analysis (REA) was designed to distinguish between 'Indian Bison type' and non-Indian genotypes. The present study investigated discriminatory potential of this new assay while screening of a panel of MAP isolates of diverse genotypes and from different geographical regions. A total of 53 mycobacterial isolates (41 MAP and 12 mycobacterium other than MAP), three MAP genomic DNA and 36 MAP positive faecal DNA samples from different livestock species (cattle, buffaloes, goat, sheep and bison) and geographical regions (India, Canada, USA, Spain and Portugal) were included in the study. The extracted DNA samples (n=92) were analyzed for the presence of MAP specific sequences (IS900, ISMav 2 and HspX) using PCR. DNA samples were further subjected to genotype differentiation using IS1311 PCR-REA and IS1311 L2 PCR-REA methods. All the DNA samples (except DNA from non-MAP mycobacterial isolates) were positive for all the three MAP specific sequences based PCRs. IS1311 PCR-REA showed that MAP DNA samples of Indian origin belonged to 'Bison type'. Whereas, of the total 19 non-Indian MAP DNA samples, 2, 15 and 2 were genotyped as 'Bison type', 'Cattle type' and 'Sheep type', respectively. IS1311 L2 PCR-REA method showed different restriction profiles of 'Bison type' genotype as compared to non-Indian DNA samples. IS1311 L2 PCR-REA method successfully discriminated 'Indian Bison type' from other non-Indian genotypes and showed potential to be future epidemiological tool and for genotyping of MAP isolates.

  18. Cohort analysis of a single nucleotide polymorphism on DNA chips.

    PubMed

    Schwonbeck, Susanne; Krause-Griep, Andrea; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Meinl, Walter; Glatt, Hansrüdi; Bier, Frank F

    2004-11-15

    A method has been developed to determine SNPs on DNA chips by applying a flow-through bioscanner. As a practical application we demonstrated the fast and simple SNP analysis of 24 genotypes in an array of 96 spots with a single hybridisation and dissociation experiment. The main advantage of this methodical concept is the parallel and fast analysis without any need of enzymatic digestion. Additionally, the DNA chip format used is appropriate for parallel analysis up to 400 spots. The polymorphism in the gene of the human phenol sulfotransferase SULT1A1 was studied as a model SNP. Biotinylated PCR products containing the SNP (The SNP summary web site: ) (mutant) and those containing no mutation (wild-type) were brought onto the chips coated with NeutrAvidin using non-contact spotting. This was followed by an analysis which was carried out in a flow-through biochip scanner while constantly rinsing with buffer. After removing the non-biotinylated strand a fluorescent probe was hybridised, which is complementary to the wild-type sequence. If this probe binds to a mutant sequence, then one single base is not fully matching. Thereby, the mismatched hybrid (mutant) is less stable than the full-matched hybrid (wild-type). The final step after hybridisation on the chip involves rinsing with a buffer to start dissociation of the fluorescent probe from the immobilised DNA strand. The online measurement of the fluorescence intensity by the biochip scanner provides the possibility to follow the kinetics of the hybridisation and dissociation processes. According to the different stability of the full-match and the mismatch, either visual discrimination or kinetic analysis is possible to distinguish SNP-containing sequence from the wild-type sequence.

  19. DNA polymorphism in recombining and non-recombing mating-type-specific loci of the smut fungus Microbotryum

    PubMed Central

    Votintseva, A A; Filatov, D A

    2011-01-01

    The population-genetic processes leading to the genetic degeneration of non-recombining regions have mainly been studied in animal and plant sex chromosomes. Here, we report population genetic analysis of the processes in the non-recombining mating-type-specific regions of the smut fungus Microbotryum violaceum. M. violaceum has A1 and A2 mating types, determined by mating-type-specific ‘sex chromosomes' that contain 1–2 Mb long non-recombining regions. If genetic degeneration were occurring, then one would expect reduced DNA polymorphism in the non-recombining regions of this fungus. The analysis of DNA diversity among 19 M. violaceum strains, collected across Europe from Silene latifolia flowers, revealed that (i) DNA polymorphism is relatively low in all 20 studied loci (π∼0.15%), (ii) it is not significantly different between the two mating-type-specific chromosomes nor between the non-recombining and recombining regions, (iii) there is substantial population structure in M. violaceum populations, which resembles that of its host species, S. latifolia, and (iv) there is significant linkage disequilibrium, suggesting that widespread selfing in this species results in a reduction of the effective recombination rate across the genome. We hypothesise that selfing-related reduction of recombination across the M. violaceum genome negates the difference in the level of DNA polymorphism between the recombining and non-recombining regions, and may possibly lead to similar levels of genetic degeneration in the mating-type-specific regions of the non-recombining ‘sex chromosomes' and elsewhere in the genome. PMID:21081967

  20. A 12-year molecular survey of clinical herpes simplex virus type 2 isolates demonstrates the circulation of clade A and B strains in Germany.

    PubMed

    Schmidt-Chanasit, Jonas; Bialonski, Alexandra; Heinemann, Patrick; Ulrich, Rainer G; Günther, Stephan; Rabenau, Holger F; Doerr, Hans Wilhelm

    2010-07-01

    Recently two different herpes simplex virus type 2 (HSV-2) clades (A and B) were described on DNA sequence data of the glycoprotein E (gE), G (gG) and I (gI) genes. To type the circulating HSV-2 wild-type strains in Germany by a novel approach and to monitor potential changes in the molecular epidemiology between 1997 and 2008. A total of 64 clinical HSV-2 isolates were analyzed by a novel approach using the DNA sequences of the complete open reading frames of glycoprotein B (gB) and gG. Recombination analysis of the gB and gG gene sequences was performed to reveal intragenic recombinants. Based on the phylogenetic analysis of the gB coding DNA sequence 8 of 64 (12%) isolates were classified as clade A strains and 56 of 64 (88%) isolates were classified as clade B strains. Analysis of the gG coding DNA sequence classified 4 (6%) isolates as clade A strains and 60 (94%) isolates as clade B strains. In comparison, the 8 isolates classified as clade A strains using the gB sequence data were classified as clade B strains when using the gG coding DNA sequence, suggesting intergenic recombination events. Intragenic recombination events were not detected. The first molecular survey of clinical HSV-2 isolates from Germany demonstrated the circulation of clade A and B strains and of intergenic recombinants over a period of 12 years. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Forensic DNA testing.

    PubMed

    Butler, John M

    2011-12-01

    Forensic DNA testing has a number of applications, including parentage testing, identifying human remains from natural or man-made disasters or terrorist attacks, and solving crimes. This article provides background information followed by an overview of the process of forensic DNA testing, including sample collection, DNA extraction, PCR amplification, short tandem repeat (STR) allele separation and sizing, typing and profile interpretation, statistical analysis, and quality assurance. The article concludes with discussions of possible problems with the data and other forensic DNA testing techniques.

  2. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication.

    PubMed

    Feng, Wenyi; Collingwood, David; Boeck, Max E; Fox, Lindsay A; Alvino, Gina M; Fangman, Walton L; Raghuraman, Mosur K; Brewer, Bonita J

    2006-02-01

    During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.

  3. Identification and expression analysis of a novel R-type lectin from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Kim, Dong Hyun; Patnaik, Bharat Bhusan; Seo, Gi Won; Kang, Seong Min; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2013-11-01

    We have identified novel ricin-type (R-type) lectin by sequencing of random clones from cDNA library of the coleopteran beetle, Tenebrio molitor. The cDNA sequence is comprised of 495 bp encoding a protein of 164 amino acid residues and shows 49% identity with galectin of Tribolium castaneum. Bioinformatics analysis shows that the amino acid residues from 35 to 162 belong to ricin-type beta-trefoil structure. The transcript was significantly upregulated after early hours of injection with peptidoglycans derived from Gram (+) and Gram (-) bacteria, beta-1, 3 glucan from fungi and an intracellular pathogen, Listeria monocytogenes suggesting putative function in innate immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Description of Kribbella italica sp. nov., isolated from a Roman catacomb.

    PubMed

    Everest, Gareth J; Curtis, Sarah M; De Leo, Filomena; Urzì, Clara; Meyers, Paul R

    2015-02-01

    A novel actinobacterium, strain BC637(T), was isolated from a biodeteriogenic biofilm sample collected in 2009 in the Saint Callixstus Roman catacomb. The strain was found to belong to the genus Kribbella by analysis of the 16S rRNA gene. Phylogenetic analysis using the 16S rRNA gene and the gyrB, rpoB, relA, recA and atpD concatenated gene sequences showed that strain BC637(T) was most closely related to the type strains of Kribbella lupini and Kribbella endophytica. DNA-DNA hybridization experiments confirmed that strain BC637(T) is a genomic species that is distinct from its closest phylogenetic relatives, K. endophytica DSM 23718(T) (63 % DNA relatedness) and K. lupini LU14(T) (63 % DNA relatedness). Physiological comparisons showed that strain BC637(T) is phenotypically distinct from the type strains of K. endophytica and K. lupini. Thus, strain BC637(T) represents the type strain of a novel species, for which the name Kribella italica sp. nov. is proposed ( = DSM 28967(T) = NRRL B-59155(T)). © 2015 IUMS.

  5. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve whole mitochondrial genome sequences from even the most challenging samples. PMID:24289217

  6. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    PubMed

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks. Copyright © 2013. Published by Elsevier Ltd.

  7. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences.

    PubMed

    Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui

    2017-06-01

    The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.

  8. Fabrication of high quality cDNA microarray using a small amount of cDNA.

    PubMed

    Park, Chan Hee; Jeong, Ha Jin; Jung, Jae Jun; Lee, Gui Yeon; Kim, Sang-Chul; Kim, Tae Soo; Yang, Sang Hwa; Chung, Hyun Cheol; Rha, Sun Young

    2004-05-01

    DNA microarray technology has become an essential part of biological research. It enables the genome-scale analysis of gene expression in various types of model systems. Manufacturing high quality cDNA microarrays of microdeposition type depends on some key factors including a printing device, spotting pins, glass slides, spotting solution, and humidity during spotting. UsingEthe Microgrid II TAS model printing device, this study defined the optimal conditions for producing high density, high quality cDNA microarrays with the least amount of cDNA product. It was observed that aminosilane-modified slides were superior to other types of surface modified-slides. A humidity of 30+/-3% in a closed environment and the overnight drying of the spotted slides gave the best conditions for arraying. In addition, the cDNA dissolved in 30% DMSO gave the optimal conditions for spotting compared to the 1X ArrayIt, 3X SSC and 50% DMSO. Lastly, cDNA in the concentration range of 100-300 ng/ micro l was determined to be best for arraying and post-processing. Currently, the printing system in this study yields reproducible 9000 spots with a spot size 150 mm diameter, and a 200 nm spot spacing.

  9. Electron Microscopic Analysis of the Products of DNA Synthesis by DNA Polymerases from Calf Thymus and Herpes Simplex Virus Type I

    DTIC Science & Technology

    1988-10-03

    DNA replication showed an average of 2.5 primers per M13 DNA circle. The measurement of the double stranded length from individual replicative intermediates by electron microscopy was within the accuracy of 10% standard deviation. The product length distribution obtained from the HSV-1 DNA polymerase catalyzed replication of M13 DNA primed with a specific pentadecamer and in the presence of E. Coli SSB protein showed a near Poisson distribution. Replication of the same primer-template system or DNA primase primed M13 DNA template by calf thymus DNA polymerase a showed a

  10. [Hereditary motor and sensory neuropathy type 4A].

    PubMed

    2010-01-01

    The first in the Russian Federation clinical cases of patients with autosomal-recessive type of hereditary motor and sensory neuropathy, type 4A, (HMSN 4A) are presented. In all cases, the diagnosis has been verified using molecular-genetic methods (DNA diagnostics). An analysis of features of clinical manifestations was performed in patients, aged from 5 to 34 years, with different disease duration (from 3-to 29 years). Criteria of selection of patients for DNA diagnostics for searching mutations in the GDAP1 gene are specified.

  11. Nuclear Ribosomal DNA Variation and Pathogenic Specialization in Alternaria Fungi Known To Produce Host-Specific Toxins †

    PubMed Central

    Kusaba, Motoaki; Tsuge, Takashi

    1994-01-01

    A total of 99 strains of 11 Alternaria species, including 68 strains of seven fungi known to produce host-specific toxins, were subjected to analysis of restriction fragment length polymorphism (RFLP) in nuclear ribosomal DNA (rDNA). Total DNA was digested with XbaI, and the Southern blots were probed with a nuclear rDNA clone of Alternaria kikuchiana. The hybridization gave 17 different RFLPs from the 99 strains. On the basis of these RFLPs, populations of host-specific toxin-producing fungi could not be differentiated from one another nor from nonpathogenic A. alternata. Each population of the toxin-producing fungi carried rDNA variants. Nine different types, named A1 to A6 and B1 to B3, were detected among the toxin-producing fungi and nonpathogenic A. alternata. All of the populations contained the type A4 variant, and the other rDNA types were also shared by different toxin-producing fungi and A. alternata. In contrast, Alternaria species that are morphologically distinguishable from A. alternata could be differentiated from A. alternata on the basis of the rDNA RFLPs. Polymorphisms in rDNA digested with HaeIII and MspI were also evaluated in 61 Alternaria strains. These restriction enzymes produced 31 variations among all of the samples. The seven toxin-producing fungi and nonpathogenic A. alternata could not be resolved by phylogenetic analysis based on the RFLPs, although they could be differentiated from the other Alternaria species studied. These results provide support for the hypothesis that Alternaria fungi known to produce host-specific toxins are intraspecific variants of A. alternata specialized in pathogenicity. Images PMID:16349367

  12. Adjustment of Cell-Type Composition Minimizes Systematic Bias in Blood DNA Methylation Profiles Derived by DNA Collection Protocols

    PubMed Central

    Shiwa, Yuh; Hachiya, Tsuyoshi; Furukawa, Ryohei; Ohmomo, Hideki; Ono, Kanako; Kudo, Hisaaki; Hata, Jun; Hozawa, Atsushi; Iwasaki, Motoki; Matsuda, Koichi; Minegishi, Naoko; Satoh, Mamoru; Tanno, Kozo; Yamaji, Taiki; Wakai, Kenji; Hitomi, Jiro; Kiyohara, Yutaka; Kubo, Michiaki; Tanaka, Hideo; Tsugane, Shoichiro; Yamamoto, Masayuki; Sobue, Kenji; Shimizu, Atsushi

    2016-01-01

    Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS) using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03) when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50) when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λadjusted = 1.14) by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12–1.45) and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λadjusted = 1.00–1.17). These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models. PMID:26799745

  13. Adjustment of Cell-Type Composition Minimizes Systematic Bias in Blood DNA Methylation Profiles Derived by DNA Collection Protocols.

    PubMed

    Shiwa, Yuh; Hachiya, Tsuyoshi; Furukawa, Ryohei; Ohmomo, Hideki; Ono, Kanako; Kudo, Hisaaki; Hata, Jun; Hozawa, Atsushi; Iwasaki, Motoki; Matsuda, Koichi; Minegishi, Naoko; Satoh, Mamoru; Tanno, Kozo; Yamaji, Taiki; Wakai, Kenji; Hitomi, Jiro; Kiyohara, Yutaka; Kubo, Michiaki; Tanaka, Hideo; Tsugane, Shoichiro; Yamamoto, Masayuki; Sobue, Kenji; Shimizu, Atsushi

    2016-01-01

    Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS) using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03) when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50) when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λ adjusted = 1.14) by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12-1.45) and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λ adjusted = 1.00-1.17). These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models.

  14. Stress-induced DNA Damage biomarkers: Applications and limitations

    NASA Astrophysics Data System (ADS)

    Nikitaki, Zacharenia; Hellweg, Christine; Georgakilas, Alexandros; Ravanat, Jean-Luc

    2015-06-01

    A variety of environmental stresses like chemicals, UV and ionizing radiation and organism’s endogenous processes like replication stress and metabolism can lead to the generation of reactive oxygen and nitrogen species (ROS/RNS) that can attack cellular vital components like DNA, proteins and lipid membranes. Among them, much attention has been focused on DNA since DNA damages play a role in several biological disorders and aging processes. Thus, DNA damage can be used as a biomarker in a reliable and accurate way to quantify for example radiation exposure and can indicate its possible long term effects and cancer risk. Based on the type of DNA lesions detected one can hypothesize on the most probable mechanisms involved in the formation of these lesions for example in the case of UV and ionizing radiation (e.g. X- or α-, γ-rays, energetic ions, neutrons). In this review we describe the most accepted chemical pathways for DNA damage induction and the different types of DNA lesions, i.e. single, complex DNA lesions etc. that can be used as biomarkers. We critically compare DNA damage detection methods and their limitations. In addition to such DNA damage products, we suggest possible gene inductions that can be used to characterize responses to different types of stresses i.e. radiation, oxidative and replication stress, based on bioinformatic approaches and stringent meta-analysis of literature data.

  15. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    PubMed

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for a scale of analysis that revealed a high range of variation in lacunar abundance in both tissue types. Moreover, high-resolution SR micro-CT imaging revealed potential soft tissue remnants within marrow spaces not visible macroscopically. It is hypothesized that soft tissue remnants observed among the trabeculae of skeletal elements with high quantities of cancellous bone tissue are responsible for the high nuclear DNA yields. These findings have significant implications for bone-sample selection for nuclear DNA analysis in a forensic context when skeletal remains are recovered from the ground surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DNA methylation in schizophrenia in different patient-derived cell types.

    PubMed

    Vitale, Alejandra M; Matigian, Nicholas A; Cristino, Alexandre S; Nones, Katia; Ravishankar, Sugandha; Bellette, Bernadette; Fan, Yongjun; Wood, Stephen A; Wolvetang, Ernst; Mackay-Sim, Alan

    2017-01-01

    DNA methylation of gene promoter regions represses transcription and is a mechanism via which environmental risk factors could affect cells during development in individuals at risk for schizophrenia. We investigated DNA methylation in patient-derived cells that might shed light on early development in schizophrenia. Induced pluripotent stem cells may reflect a "ground state" upon which developmental and environmental influences would be minimal. Olfactory neurosphere-derived cells are an adult-derived neuro-ectodermal stem cell modified by developmental and environmental influences. Fibroblasts provide a non-neural control for life-long developmental and environmental influences. Genome-wide profiling of DNA methylation and gene expression was done in these three cell types from the same individuals. All cell types had distinct, statistically significant schizophrenia-associated differences in DNA methylation and linked gene expression, with Gene Ontology analysis showing that the differentially affected genes clustered in networks associated with cell growth, proliferation, and movement, functions known to be affected in schizophrenia patient-derived cells. Only five gene loci were differentially methylated in all three cell types. Understanding the role of epigenetics in cell function in the brain in schizophrenia is likely to be complicated by similar cell type differences in intrinsic and environmentally induced epigenetic regulation.

  17. ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations.

    PubMed

    Linacre, A; Gusmão, L; Hecht, W; Hellmann, A P; Mayr, W R; Parson, W; Prinz, M; Schneider, P M; Morling, N

    2011-11-01

    The use of non-human DNA typing in forensic science investigations, and specifically that from animal DNA, is ever increasing. The term animal DNA in this document refers to animal species encountered in a forensic science examination but does not include human DNA. Non-human DNA may either be: the trade and possession of a species, or products derived from a species, which is contrary to legislation; as evidence where the crime is against a person or property; instances of animal cruelty; or where the animal is the offender. The first instance is addressed by determining the species present, and the other scenarios can often be addressed by assigning a DNA sample to a particular individual organism. Currently there is little standardization of methodologies used in the forensic analysis of animal DNA or in reporting styles. The recommendations in this document relate specifically to animal DNA that is integral to a forensic science investigation and are not relevant to the breeding of animals for commercial purposes. This DNA commission was formed out of discussions at the International Society for Forensic Genetics 23rd Congress in Buenos Aires to outline recommendations on the use of non-human DNA in a forensic science investigation. Due to the scope of non-human DNA typing that is possible, the remit of this commission is confined to animal DNA typing only. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Preliminary crystallographic analysis of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-[beta] receptor promoter DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarkar, Vinod B.; Babayeva, Nigar D.; Rizzino, Angie

    2010-10-08

    Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-{beta} receptor promoter (TR-II) DNA. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 42.66, b = 52, c = 99.78 {angstrom}, and diffracted to a resolution of 2.2 {angstrom}.

  19. TF1, the bacteriophage SPO1-encoded type II DNA-binding protein, is essential for viral multiplication.

    PubMed

    Sayre, M H; Geiduschek, E P

    1988-09-01

    The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.

  20. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed

    Easton, R D; Merriwether, D A; Crews, D E; Ferrell, R E

    1996-07-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.

  1. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed Central

    Easton, R. D.; Merriwether, D. A.; Crews, D. E.; Ferrell, R. E.

    1996-01-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types. PMID:8659527

  2. Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community.

    PubMed

    Robert, Céline; Chassard, Christophe; Lawson, Paul A; Bernalier-Donadille, Annick

    2007-07-01

    A strictly anaerobic cellulolytic bacterium, strain CRE21(T), was isolated from a human faecal sample. Cells were Gram-negative non-motile rods that were about 1.7 microm in length and 0.9 microm in width. Strain CRE21(T) degraded different types of cellulose and was able to grow on a variety of carbohydrates. Cellulose and sugars were mainly converted to acetate, propionate and succinate. The G+C content of the DNA was 41.1 mol%. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Bacteroides with highest sequence similarity to the type strain of Bacteroides intestinalis (98 %). DNA-DNA hybridization results revealed that strain CRE21(T) was distinct from B. intestinalis (40 % DNA-DNA relatedness). Strain CRE21(T) also showed several characteristics distinct from B. intestinalis. In particular, it exhibited different capacity to degrade polysaccharides such as cellulose. On the basis of phylogenetic analysis and the morphological, physiological and biochemical data presented in this study, strain CRE21(T) can be readily differentiated from recognized species of the genus Bacteroides. The name Bacteroides cellulosilyticus sp. nov. is proposed to accommodate this organism. The type strain is CRE21(T) (=DSM 14838(T)=CCUG 44979(T)).

  3. Cell-of-Origin DNA Methylation Signatures Are Maintained during Colorectal Carcinogenesis.

    PubMed

    Bormann, Felix; Rodríguez-Paredes, Manuel; Lasitschka, Felix; Edelmann, Dominic; Musch, Tanja; Benner, Axel; Bergman, Yehudit; Dieter, Sebastian M; Ball, Claudia R; Glimm, Hanno; Linhart, Heinz G; Lyko, Frank

    2018-06-12

    Colorectal adenomas are precursor lesions of colorectal cancers and represent clonal amplifications of single cells from colonic crypts. DNA methylation patterns specify cell-type identity during cellular differentiation and, therefore, provide opportunities for the molecular analysis of tumors. We have now analyzed DNA methylation patterns in colorectal adenomas and identified three biologically defined subclasses that describe different intestinal crypt differentiation stages. Importantly, colorectal carcinomas could be classified into the same methylation subtypes, reflecting their shared cell types of origin with adenomas. Further data analysis also revealed significantly reduced overall survival for one of the subtypes. Our results provide a concept for understanding the methylation patterns observed in colorectal cancer and provide opportunities for tumor subclassification and patient stratification. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan(®) real-time PCR.

    PubMed

    de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza

    2012-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.

  5. Effect of Rap1 binding on DNA distortion and potassium permanganate hypersensitivity.

    PubMed

    Le Bihan, Yann-Vaï; Matot, Béatrice; Pietrement, Olivier; Giraud-Panis, Marie-Josèphe; Gasparini, Sylvaine; Le Cam, Eric; Gilson, Eric; Sclavi, Bianca; Miron, Simona; Le Du, Marie-Hélène

    2013-03-01

    Repressor activator protein 1 (Rap1) is an essential factor involved in transcription and telomere stability in the budding yeast Saccharomyces cerevisiae. Its interaction with DNA causes hypersensitivity to potassium permanganate, suggesting local DNA melting and/or distortion. In this study, various Rap1-DNA crystal forms were obtained using specifically designed crystal screens. Analysis of the DNA conformation showed that its distortion was not sufficient to explain the permanganate reactivity. However, anomalous data collected at the Mn edge using a Rap1-DNA crystal soaked in potassium permanganate solution indicated that the DNA conformation in the crystal was compatible with interaction with permanganate ions. Sequence-conservation analysis revealed that double-Myb-containing Rap1 proteins all carry a fully conserved Arg580 at a position that may favour interaction with permanganate ions, although it is not involved in the hypersensitive cytosine distortion. Permanganate reactivity assays with wild-type Rap1 and the Rap1[R580A] mutant demonstrated that Arg580 is essential for hypersensitivity. AFM experiments showed that wild-type Rap1 and the Rap1[R580A] mutant interact with DNA over 16 successive binding sites, leading to local DNA stiffening but not to accumulation of the observed local distortion. Therefore, Rap1 may cause permanganate hypersensitivity of DNA by forming a pocket between the reactive cytosine and Arg580, driving the permanganate ion towards the C5-C6 bond of the cytosine.

  6. The Extraction and Recovery Efficiency of Pure DNA for Different Types of Swabs.

    PubMed

    Bruijns, Brigitte B; Tiggelaar, Roald M; Gardeniers, Han

    2018-06-11

    The extraction and recovery efficiency of swabs used to collect evidence at crime scenes is relatively low (typically <50%) for bacterial spores and body fluids. Cell-free deoxyribonucleic acid (DNA) is an interesting alternative compared to whole cells as a source for forensic analysis, but extraction and recovery from swabs has not been tested before using pure DNA. In this study cotton, foam, nylon flocked, polyester and rayon swabs are investigated in order to collect pure DNA isolated from saliva samples. The morphology and absorption capacity of swabs is studied. Extraction and recovery efficiencies are determined and compared to the maximum theoretical efficiency. The results indicate that a substantial part of DNA is not extracted from the swab and some types of swab seem to bind effectively with DNA. The efficiency of the different types of swab never exceeds 50%. The nylon flocked 4N6FLOQSwab used for buccal sampling performs the best. © 2018 The Authors. Journal of Forensic Sciences published by Wiley Periodicals, Inc. on behalf of American Academy of Forensic Sciences.

  7. Molecular epidemiology of Pseudomonas aeruginosa.

    PubMed

    Speert, David P

    2002-10-01

    Pseudomonas aeruginosa is a serious opportunistic pathogen in certain compromised hosts, such as those with cystic fibrosis, thermal burns and cancer. It also causes less severe noninvasive disease, such as otitis externa and hot tub folliculitis, in normal hosts. P. aeruginosa is phenotypically very unstable, particularly in patients with chronic infection. Phenotypic typing techniques are useful for understanding the epidemiology of acute infections, but they are limited by their discriminatory power and by their inability to group isolates that are phenotypically unrelated but genetically homologous. Molecular typing techniques, developed over the past decade, are highly discriminatory and are useful for typing strains from patients with chronic infection where the bacterial phenotype is unstable; this is particularly true in cystic fibrosis, where patients often are infected with the same strain for several decades, but the bacteria undergo phenotypic alteration. Molecular typing techniques, which have proven useful in typing P. aeruginosa for epidemiological purposes, include pulsed field gel electrophoresis, restriction fragment length polymorphic DNA analysis, random amplified polymorphic DNA analysis, repetitive extrapalindromic PCR analysis, and multilocus sequence typing. These methods are generally only available in specialized laboratories, but they should be used when data from phenotypic typing analysis are ambiguous or when phenotypic methods are unreliable, such as in cystic fibrosis.

  8. Mosaic organization of DNA nucleotides

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.

    1994-01-01

    Long-range power-law correlations have been reported recently for DNA sequences containing noncoding regions. We address the question of whether such correlations may be a trivial consequence of the known mosaic structure ("patchiness") of DNA. We analyze two classes of controls consisting of patchy nucleotide sequences generated by different algorithms--one without and one with long-range power-law correlations. Although both types of sequences are highly heterogenous, they are quantitatively distinguishable by an alternative fluctuation analysis method that differentiates local patchiness from long-range correlations. Application of this analysis to selected DNA sequences demonstrates that patchiness is not sufficient to account for long-range correlation properties.

  9. Conserved DNA motifs in the type II-A CRISPR leader region.

    PubMed

    Van Orden, Mason J; Klein, Peter; Babu, Kesavan; Najar, Fares Z; Rajan, Rakhi

    2017-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3' end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3' leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3' leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci.

  10. A new method for simultaneous detection and discrimination of Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) using real time PCR with high resolution melting (HRM) analysis.

    PubMed

    Marin, M S; Quintana, S; Leunda, M R; Recavarren, M; Pagnuco, I; Späth, E; Pérez, S; Odeón, A

    2016-01-01

    Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are antigenically and genetically similar. The aim of this study was to develop a simple and reliable one-step real time PCR assay with high resolution melting (HRM) analysis for the simultaneous detection and differentiation of BoHV-1 and BoHV-5. Optimization of assay conditions was performed with DNA from reference strains. Then, DNA from field isolates, clinical samples and tissue samples of experimentally infected animals were studied by real time PCR-HRM. An efficient amplification of real time PCR products was obtained, and a clear melting curve and appropriate melting peaks for both viruses were achieved in the HRM curve analysis for BoHV type identification. BoHV was identified in all of the isolates and clinical samples, and BoHV types were properly differentiated. Furthermore, viral DNA was detected in 12/18 and 7/18 samples from BoHV-1- and BoHV-5-infected calves, respectively. Real time PCR-HRM achieved a higher sensitivity compared with virus isolation or conventional PCR. In this study, HRM was used as a novel procedure. This method provides rapid, sensitive, specific and simultaneous detection of bovine alpha-herpesviruses DNA. Thus, this technique is an excellent tool for diagnosis, research and epidemiological studies of these viruses in cattle. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Conserved DNA motifs in the type II-A CRISPR leader region

    PubMed Central

    Babu, Kesavan; Najar, Fares Z.

    2017-01-01

    The Clustered Regularly Interspaced Short Palindromic Repeats associated (CRISPR-Cas) systems consist of RNA-protein complexes that provide bacteria and archaea with sequence-specific immunity against bacteriophages, plasmids, and other mobile genetic elements. Bacteria and archaea become immune to phage or plasmid infections by inserting short pieces of the intruder DNA (spacer) site-specifically into the leader-repeat junction in a process called adaptation. Previous studies have shown that parts of the leader region, especially the 3′ end of the leader, are indispensable for adaptation. However, a comprehensive analysis of leader ends remains absent. Here, we have analyzed the leader, repeat, and Cas proteins from 167 type II-A CRISPR loci. Our results indicate two distinct conserved DNA motifs at the 3′ leader end: ATTTGAG (noted previously in the CRISPR1 locus of Streptococcus thermophilus DGCC7710) and a newly defined CTRCGAG, associated with the CRISPR3 locus of S. thermophilus DGCC7710. A third group with a very short CG DNA conservation at the 3′ leader end is observed mostly in lactobacilli. Analysis of the repeats and Cas proteins revealed clustering of these CRISPR components that mirrors the leader motif clustering, in agreement with the coevolution of CRISPR-Cas components. Based on our analysis of the type II-A CRISPR loci, we implicate leader end sequences that could confer site-specificity for the adaptation-machinery in the different subsets of type II-A CRISPR loci. PMID:28392985

  12. Genetic Basis of Glycogen Storage Disease Type 1a: Prevalent Mutations at the Glucose-6-Phosphatase Locus

    PubMed Central

    Lei, Ke-Jian; Chen, Yuan-Tsong; Chen, Hungwen; Wong, Lee-Jun C.; Liu, Ji-Lan; McConkie-Rosell, Allyn; Van Hove, Johan L. K.; Ou, Henry C.-Y.; Yeh, Nan Jung; Pan, Lorraine Y.; Chou, Janice Yang

    1995-01-01

    Diagnosis of glycogen storage disease (GSD) type 1a currently is established by demonstrating the lack of glucose-6-phosphatase (G6Pase) activity in the patient's biopsied liver specimen. Recent cloning of the G6Pase gene and identification of mutations within the gene that causes GSD type 1a allow for the development of a DNA-based diagnostic method. Using SSCP analysis and DNA sequencing, we characterized the G6Pase gene of 70 unrelated patients with enzymatically confirmed diagnosis of GSD type 1a and detected mutations in all except 17 alleles (88%). Sixteen mutations were uncovered that were shown by expression to abolish or greatly reduce G6Pase activity and that therefore are responsible for the GSD type 1a disorder. R83C and Q347X are the most prevalent mutations found in Caucasians, 130X and R83C are most prevalent in Hispanics, and R83H is most prevalent in Chinese. The Q347X mutation has thus far been identified only in Caucasian patients, and the 130X mutation has been identified only in Hispanic patients. Our results demonstrate that the DNA-based analysis can accurately, rapidly, and noninvasively detect the majority of mutations in GSD type 1a. This DNA-based diagnosis now permits prenatal diagnosis among at-risk patients and serves as a database in screening and counseling patients clinically suspected of having this disease. ImagesFigure 1Figure 2 PMID:7573034

  13. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov.

    PubMed

    Ehrmann, Matthias A; Müller, Martin R A; Vogel, Rudi F

    2003-01-01

    Genotypic fingerprinting to analyse the bacterial flora of an industrial sourdough revealed a coherent group of strains which could not be associated with a valid species. Comparative 16S rDNA sequence analysis showed that these strains formed a homogeneous cluster distinct from their closest relatives, Lactobacillus farciminis, Lactobacillus alimentarius and Lactobacillus kimchii. To characterize them further, physiological (sugar fermentation, formation of DL-lactate, hydrolysis of arginine, growth temperature, CO2 production) and chemotaxonomic properties have been determined. The DNA G +C content was 37.5 0.2 mol%. The peptidoglycan was of the lysine-D-iso-asparagine (L-Lys-D-Asp) type. The strains were homofermentative, Gram-positive, catalase-negative, non-spore-forming, non-motile rods. They were found as a major stable component of a rye flour sourdough fermentation. Physiological, biochemical as well as genotypic data suggested them to be a new species of the genus Lactobacillus. This was confirmed by DNA-DNA hybridization of genomic DNA, and the name Lactobacillus mindensis is proposed. The type strain of this species is DSM 14500T (=LMG 21508T).

  14. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites.

    PubMed

    Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F

    2011-08-02

    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts.

  15. Molecular and morphological differentiation between the crop and weedy types in velvetleaf (Abutilon theophrasti Medik.) using a chloroplast DNA marker: seed source of the present invasive velvetleaf in Japan.

    PubMed

    Kurokawa, S; Shibaike, H; Akiyama, H; Yoshimura, Y

    2004-12-01

    A comparison of chloroplast DNA (cpDNA) sequences was carried out between the crop and weed types of Abutilon theophrasti to clarify the seed source of the present weedy velvetleaf in Japan. A sequencing analysis of approx. 6% of the chloroplast genome (ca 10 kbp) detected three nucleotide substitutions, one six-base-pair insertion/deletion (indel) and one 30-base pair inversion, which distinguish two haplotypes of cpDNA. A PCR-based survey of the indel and the inversion revealed that the 93 accessions of velvetleaf collected from the world could be divided into two groups. A morphological marker (capsule color) could be used to discriminate the crop type and the weed type, and hence, along with cpDNA haplotype, to distinguish three genotypes (Type I, II, and III). All Japanese cultivars and crop accessions from other countries were Type I. Weed types were divided into Type II and III. All of the samples from the USA, and the samples taken from grain imports to Japan were Type III. Since most of the weedy types distributed in Japan were of Type III, it is argued that they were introduced as seeds in the imported grain. We also found that the Type II plants sporadically occurred in Japan. It is suggested that they originated as hybrids, with indigenous cultivars as the maternal ancestor. Such hybrids must have survived since the cessation of velvetleaf cultivation about a century ago.

  16. Database of amino acid-nucleotide contacts in contacts in DNA-homeodomain protein

    NASA Astrophysics Data System (ADS)

    Grokhlina, T. I.; Zrelov, P. V.; Ivanov, V. V.; Polozov, R. V.; Chirgadze, Yu. N.; Sivozhelezov, V. S.

    2013-09-01

    The analysis of amino acid-nucleotide contacts in interfaces of the protein-DNA complexes, intended to find consistencies in the protein-DNA recognition, is a complex problem that requires an analysis of the physicochemical characteristics of these contacts and the positions of the participating amino acids and nucleotides in the chains of the protein and the DNA, respectively, as well as conservatism of these contacts. Thus, those heterogeneous data should be systematized. For this purpose we have developed a database of amino acid-nucleotide contacts ANTPC (Amino acid Nucleotide Type Position Conservation) following the archetypal example of the proteins in the homeodomain family. We show that it can be used to compare and classify the interfaces of the protein-DNA complexes.

  17. Identification of Trypanosoma cruzi Discrete Typing Units (DTUs) in Latin-American migrants in Barcelona (Spain).

    PubMed

    Abras, Alba; Gállego, Montserrat; Muñoz, Carmen; Juiz, Natalia A; Ramírez, Juan Carlos; Cura, Carolina I; Tebar, Silvia; Fernández-Arévalo, Anna; Pinazo, María-Jesús; de la Torre, Leonardo; Posada, Elizabeth; Navarro, Ferran; Espinal, Paula; Ballart, Cristina; Portús, Montserrat; Gascón, Joaquim; Schijman, Alejandro G

    2017-04-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is divided into six Discrete Typing Units (DTUs): TcI-TcVI. We aimed to identify T. cruzi DTUs in Latin-American migrants in the Barcelona area (Spain) and to assess different molecular typing approaches for the characterization of T. cruzi genotypes. Seventy-five peripheral blood samples were analyzed by two real-time PCR methods (qPCR) based on satellite DNA (SatDNA) and kinetoplastid DNA (kDNA). The 20 samples testing positive in both methods, all belonging to Bolivian individuals, were submitted to DTU characterization using two PCR-based flowcharts: multiplex qPCR using TaqMan probes (MTq-PCR), and conventional PCR. These samples were also studied by sequencing the SatDNA and classified as type I (TcI/III), type II (TcII/IV) and type I/II hybrid (TcV/VI). Ten out of the 20 samples gave positive results in the flowcharts: TcV (5 samples), TcII/V/VI (3) and mixed infections by TcV plus TcII (1) and TcV plus TcII/VI (1). By SatDNA sequencing, we classified the 20 samples, 19 as type I/II and one as type I. The most frequent DTU identified by both flowcharts, and suggested by SatDNA sequencing in the remaining samples with low parasitic loads, TcV, is common in Bolivia and predominant in peripheral blood. The mixed infection by TcV-TcII was detected for the first time simultaneously in Bolivian migrants. PCR-based flowcharts are very useful to characterize DTUs during acute infection. SatDNA sequence analysis cannot discriminate T. cruzi populations at the level of a single DTU but it enabled us to increase the number of characterized cases in chronically infected patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Mitochondrial DNA variant at HVI region as a candidate of genetic markers of type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Gumilar, Gun Gun; Purnamasari, Yunita; Setiadi, Rahmat

    2016-02-01

    Mitochondrial DNA (mtDNA) is maternally inherited. mtDNA mutations which can contribute to the excess of maternal inheritance of type 2 diabetes. Due to the high mutation rate, one of the areas in the mtDNA that is often associated with the disease is the hypervariable region I (HVI). Therefore, this study was conducted to determine the genetic variants of human mtDNA HVI that related to the type 2 diabetes in four samples that were taken from four generations in one lineage. Steps being taken include the lyses of hair follicles, amplification of mtDNA HVI fragment using Polymerase Chain Reaction (PCR), detection of PCR products through agarose gel electrophoresis technique, the measurement of the concentration of mtDNA using UV-Vis spectrophotometer, determination of the nucleotide sequence via direct sequencing method and analysis of the sequencing results using SeqMan DNASTAR program. Based on the comparison between nucleotide sequence of samples and revised Cambridge Reference Sequence (rCRS) obtained six same mutations that these are C16147T, T16189C, C16193del, T16127C, A16235G, and A16293C. After comparing the data obtained to the secondary data from Mitomap and NCBI, it were found that two mutations, T16189C and T16217C, become candidates as genetic markers of type 2 diabetes even the mutations were found also in the generations of undiagnosed type 2 diabetes. The results of this study are expected to give contribution to the collection of human mtDNA database of genetic variants that associated to metabolic diseases, so that in the future it can be utilized in various fields, especially in medicine.

  19. Single-molecule analysis of DNA uncoiling by a type II topoisomerase

    NASA Astrophysics Data System (ADS)

    Strick, Terence R.; Croquette, Vincent; Bensimon, David

    2000-04-01

    Type II DNA topoisomerases are ubiquitous ATP-dependent enzymes capable of transporting a DNA through a transient double-strand break in a second DNA segment. This enables them to untangle DNA and relax the interwound supercoils (plectonemes) that arise in twisted DNA. In vivo, they are responsible for untangling replicated chromosomes and their absence at mitosis or meiosis ultimately causes cell death. Here we describe a micromanipulation experiment in which we follow in real time a single Drosophila melanogaster topoisomerase II acting on a linear DNA molecule which is mechanically stretched and supercoiled. By monitoring the DNA's extension in the presence of ATP, we directly observe the relaxation of two supercoils during a single catalytic turnover. By controlling the force pulling on the molecule, we determine the variation of the reaction rate with the applied stress. Finally, in the absence of ATP, we observe the clamping of a DNA crossover by a single topoisomerase on at least two different timescales (configurations). These results show that single molecule experiments are a powerful new tool for the study of topoisomerases.

  20. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes

    PubMed Central

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-01-01

    Abstract Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. PMID:27112572

  1. Physical Localization and DNA Methylation of 45S rRNA Gene Loci in Jatropha curcas L.

    PubMed Central

    Gong, Zhiyun; Xue, Chao; Zhang, Mingliang; Guo, Rui; Zhou, Yong; Shi, Guoxin

    2013-01-01

    In eukaryotes, 45S rRNA genes are arranged in tandem arrays of repeat units, and not all copies are transcribed during mitosis. DNA methylation is considered to be an epigenetic marker for rDNA activation. Here, we established a clear and accurate karyogram for Jatropha curcas L. The chromosomal formula was found to be 2n = 2x = 22 = 12m+10sm. We found that the 45S rDNA loci were located at the termini of chromosomes 7 and 9 in J. curcas. The distribution of 45S rDNA has no significant difference in J. curcas from different sources. Based on the hybridization signal patterns, there were two forms of rDNA - dispersed and condensed. The dispersed type of signals appeared during interphase and prophase, while the condensed types appeared during different stages of mitosis. DNA methylation analysis showed that when 45S rDNA stronger signals were dispersed and connected to the nucleolus, DNA methylation levels were lower at interphase and prophase. However, when the 45S rDNA loci were condensed, especially during metaphase, they showed different forms of DNA methylation. PMID:24386362

  2. Amplification of bovine papillomavirus DNA by N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet irradiation, or infection with herpes simplex virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, J.; Schlehofer, J.R.; Mergener, K.

    1989-09-01

    Treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or irradiation with ultraviolet light (uv254 nm) induces amplification of integrated as well as episomal sequences of bovine papillomavirus (BPV) type 1 DNA in BPV-1-transformed mouse C127 cells (i.e., ID13 cells). This is shown by filter in situ hybridization and Southern blot analysis of cellular DNA. Similarly, infection of ID13 cells with herpes simplex virus (HSV) type 1 which has been shown to be mutagenic for host cell DNA leads to amplification of BPV DNA sequences. In contrast to this induction of DNA amplification by initiators, treatment of ID13 cells with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)more » does not result in increased synthesis of BPV DNA nor does TPA treatment modulate the initiator-induced DNA amplification. Similar to other cell systems infection with adeno-associated virus (AAV) type 2 inhibits BPV-1 DNA amplification irrespective of the inducing agent. In contrast to initiator-induced DNA amplification, treatment with carcinogen (MNNG) or tumor promoters or combination of MNNG and promoter of C127 cells prior to transformation by BPV-1 does not lead to an increase in the number of transformed foci. The induction of amplification of papillomavirus DNA by initiating agents possibly represents one of the mechanisms by which the observed synergism between papillomavirus infection and initiators in tumorigenesis might occur.« less

  3. [The development of reagents set in the format of DNA-chip for genetic typing of strains of Vibrio cholerae].

    PubMed

    Pudova, E A; Markelov, M L; Dedkov, V G; Tchekanova, T A; Sadjin, A I; Kirdiyashkina, N P; Bekova, M V; Deviyatkin, A A

    2014-05-01

    The necessity of development of methods of genic diagnostic of cholera is conditioned by continuation of the Seventh pandemic of cholera, taxonomic variability of strains of Vibrio cholerae involved into pandemic and also permanent danger of delivery of disease to the territory of the Russian Federation. The methods of genic diagnostic of cholera make it possible in a comparatively short time to maximally minutely characterize strains isolated from patients or their environment. The article presents information about working out reagents set for genetic typing of agents of cholera using DNA-chip. The makeup of DNA-chip included oligonucleotide probes making possible to differentiate strains of V. cholerae on serogroups and biovars and to determine their pathogenicity. The single DNA-chip makes it possible to genetically type up to 12 samples concurrently. At that, duration of analysis without accounting stage of DNA separation makes up to 5 hours. In the progress of work, 23 cholera and non-cholera strains were analyzed. The full compliance of DNA-chip typing results to previously known characteristics of strains. Hence, there is a reason to consider availability of further development of reagents set and possibility of its further application in laboratories of regional level and reference centers.

  4. An Optimized DNA Analysis Workflow for the Sampling, Extraction, and Concentration of DNA obtained from Archived Latent Fingerprints.

    PubMed

    Solomon, April D; Hytinen, Madison E; McClain, Aryn M; Miller, Marilyn T; Dawson Cruz, Tracey

    2018-01-01

    DNA profiles have been obtained from fingerprints, but there is limited knowledge regarding DNA analysis from archived latent fingerprints-touch DNA "sandwiched" between adhesive and paper. Thus, this study sought to comparatively analyze a variety of collection and analytical methods in an effort to seek an optimized workflow for this specific sample type. Untreated and treated archived latent fingerprints were utilized to compare different biological sampling techniques, swab diluents, DNA extraction systems, DNA concentration practices, and post-amplification purification methods. Archived latent fingerprints disassembled and sampled via direct cutting, followed by DNA extracted using the QIAamp® DNA Investigator Kit, and concentration with Centri-Sep™ columns increased the odds of obtaining an STR profile. Using the recommended DNA workflow, 9 of the 10 samples provided STR profiles, which included 7-100% of the expected STR alleles and two full profiles. Thus, with carefully selected procedures, archived latent fingerprints can be a viable DNA source for criminal investigations including cold/postconviction cases. © 2017 American Academy of Forensic Sciences.

  5. Kribbella albertanoniae sp. nov., isolated from a Roman catacomb, and emended description of the genus Kribbella.

    PubMed

    Everest, Gareth J; Curtis, Sarah M; De Leo, Filomena; Urzì, Clara; Meyers, Paul R

    2013-10-01

    A novel actinobacterium, strain BC640(T), was isolated from a biofilm sample collected in 2009 in the Saint Callistus Roman catacombs. Analysis of the 16S rRNA gene sequence showed that the strain belonged to the genus Kribbella. Phylogenetic analysis using the 16S rRNA gene and concatenated gyrB, rpoB, relA, recA and atpD gene sequences showed that strain BC640(T) was most closely related to the type strains of Kribbella yunnanensis and Kribbella sandramycini. Based on gyrB genetic distance analysis, strain BC640(T) was shown to be distinct from all Kribbella type strains. DNA-DNA hybridization experiments confirmed that strain BC640(T) represents a genomic species distinct from its closest phylogenetic relatives, K. yunnanensis DSM 15499(T) (53.5±7.8 % DNA relatedness) and K. sandramycini DSM 15626(T) (33.5±5.0 %). Physiological comparisons further showed that strain BC640(T) is phenotypically distinct from the type strains of K. yunnanensis and K. sandramycini. Strain BC640(T) ( = DSM 26744(T) = NRRL B-24917(T)) is thus presented as the type strain of a novel species, for which the name Kribbella albertanoniae sp. nov. is proposed.

  6. The Use and Effectiveness of Triple Multiplex System for Coding Region Single Nucleotide Polymorphism in Mitochondrial DNA Typing of Archaeologically Obtained Human Skeletons from Premodern Joseon Tombs of Korea

    PubMed Central

    Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon

    2015-01-01

    Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190

  7. Assessment of Multiple Types of DNA Damage in Human Placentas from Smoking and Non-smoking Women in the Czech Republic

    PubMed Central

    Margaret Pratt, M.; King, Leon C.; Adams, Linda D.; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A.; Manchester, David K.; Sram, Radim J.; DeMarini, David M.; Poirier, Miriam C.

    2010-01-01

    Three classes of DNA damage were assessed in human placentas collected (in 2000-4) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by 32P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with r7, t8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49–312 PAH-DNA adducts/108 nucleotides, were found by IHC/ACIS in 14 immediately-fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7 – 8.6 stable/bulky DNA adducts/108 nucleotides and 0.6 – 47.2 AB sites/105 nucleotides. For all methods there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and non-smokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. PMID:20839217

  8. Assessment of multiple types of DNA damage in human placentas from smoking and nonsmoking women in the Czech Republic.

    PubMed

    Pratt, M Margaret; King, Leon C; Adams, Linda D; John, Kaarthik; Sirajuddin, Paul; Olivero, Ofelia A; Manchester, David K; Sram, Radim J; DeMarini, David M; Poirier, Miriam C

    2011-01-01

    Three classes of DNA damage were assessed in human placentas collected (2000-2004) from 51 women living in the Teplice region of the Czech Republic, a mining area considered to have some of the worst environmental pollution in Europe in the 1980s. Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were localized and semiquantified using immunohistochemistry (IHC) and the Automated Cellular Imaging System (ACIS). More generalized DNA damage was measured both by (32)P-postlabeling and by abasic (AB) site analysis. Placenta stained with antiserum elicited against DNA modified with 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydro-benzo[a]pyrene (BPDE) revealed PAH-DNA adduct localization in nuclei of the cytotrophoblast (CT) cells and syncytiotrophoblast (ST) knots lining the chorionic villi. The highest levels of DNA damage, 49-312 PAH-DNA adducts/10(8) nucleotides, were found by IHC/ACIS in 14 immediately fixed placenta samples. An additional 37 placenta samples were stored frozen before fixation and embedding, and because PAH-DNA adducts were largely undetectable in these samples, freezing was implicated in the loss of IHC signal. The same placentas (n = 37) contained 1.7-8.6 stable/bulky DNA adducts/10(8) nucleotides and 0.6-47.2 AB sites/10(5) nucleotides. For all methods, there was no correlation among types of DNA damage and no difference in extent of DNA damage between smokers and nonsmokers. Therefore, the data show that DNA from placentas obtained in Teplice contained multiple types of DNA damage, which likely arose from various environmental exposures. In addition, PAH-DNA adducts were present at high concentrations in the CT cells and ST knots of the chorionic villi. Copyright © 2010 Wiley-Liss, Inc.

  9. Alpha3, a transposable element that promotes host sexual reproduction.

    PubMed

    Barsoum, Emad; Martinez, Paula; Aström, Stefan U

    2010-01-01

    Theoretical models predict that selfish DNA elements require host sex to persist in a population. Therefore, a transposon that induces sex would strongly favor its own spread. We demonstrate that a protein homologous to transposases, called alpha3, was essential for mating type switch in Kluyveromyces lactis. Mutational analysis showed that amino acids conserved among transposases were essential for its function. During switching, sequences in the 5' and 3' flanking regions of the alpha3 gene were joined, forming a DNA circle, showing that alpha3 mobilized from the genome. The sequences encompassing the alpha3 gene circle junctions in the mating type alpha (MATalpha) locus were essential for switching from MATalpha to MATa, suggesting that alpha3 mobilization was a coupled event. Switching also required a DNA-binding protein, Mating type switch 1 (Mts1), whose binding sites in MATalpha were important. Expression of Mts1 was repressed in MATa/MATalpha diploids and by nutrients, limiting switching to haploids in low-nutrient conditions. A hairpin-capped DNA double-strand break (DSB) was observed in the MATa locus in mre11 mutant strains, indicating that mating type switch was induced by MAT-specific DSBs. This study provides empirical evidence for selfish DNA promoting host sexual reproduction by mediating mating type switch.

  10. Prenatal diagnosis of glycogen storage disease type 1a by single stranded conformation polymorphism (SSCP).

    PubMed

    Parvari, R; Hershkovitz, E; Carmi, R; Moses, S

    1996-09-01

    Glycogen storage disease type 1a (GSD 1a), a severe metabolic disorder, is caused by the absence of glucose-6-phosphatase (G6Pase) activity. Diagnosis is currently established by demonstrating the lack of G6Pase activity in the patient's liver specimen. Enzymatic diagnosis cannot be performed in chorionic villi or amniocytes as G6Pase is active only in the liver, kidney, and intestinal mucosa. Recent cloning of the G6Pase gene and subsequent identification of the mutations causing GSD 1a have led to the possibility of performing DNA-based diagnosis in chorionic villus samples (CVS) or amniocytes. Here we report the first DNA-based prenatal diagnosis in two families in whom GSD 1a patients were diagnosed. In one Jewish family with a previously identified R83C mutation, single-stranded conformation polymorphism (SSCP) analysis of the DNA extracted from CVS showed a homozygous R83C mutant pattern. As a result, the pregnancy was terminated and the diagnosis was confirmed on DNA analysis of the aborted fetus. In another family of Arabic extraction in which a V166G mutation has been identified in one of the siblings, SSCP analysis performed on DNA extracted from CVS presented the pattern of a normal control. The pregnancy was carried to term and a healthy baby was born. Thus, once mutations causing the disease are identified, prenatal diagnosis of GSD 1a is possible. SSCP analysis of DNA prepared from CVS is reliable, simple and fast, making it a suitable method for prenatal diagnosis.

  11. BATTLE: Biomarker-Based Approaches of Targeted Therapy for Lung Cancer Elimination

    DTIC Science & Technology

    2008-04-01

    although a grade 3 neutropenia was dose-limiting in one importance. Th th ubstrate of the CYP3A4 isoenzyme and P-gp. Its metabolism is sensitive to...tratification in clinis Molecular Pathway Biomarkers Type of Analysis EGFR EGFR Mutation ( exons 18 to 21) DNA sequencing EGFR Increased Copy Number...polysomy/am 1plification) DNA FISH K-Ras/B-Raf K-RAS Mutation (codons 12,13, 61) DNA sequencing B-RAF Mutations ( exons 11 and 15) DNA sequencing

  12. Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA.

    PubMed

    Ray, Bhumika; Agarwal, Shweta; Lohani, Neelam; Rajeswari, Moganty R; Mehrotra, Ranjana

    2016-11-01

    Certain plant-derived alkaloids and flavonoids have shown propitious cytotoxic acitvity against different types of cancer, having deoxyribose nucleic acid (DNA) as their main cellular target. Flavopiridol, a semi-synthetic derivative of rohitukine (a natural compound isolated from Dysoxylum binectariferum plant), has attained much attention owing to its anticancer potential against various haematological malignancies and solid tumours. This work focuses on investigating interaction between flavopiridol and DNA at molecular level in order to decipher its underlying mechanism of action, which is not well understood. To define direct influence of flavopiridol on the structural, conformational and thermodynamic aspects of DNA, various spectroscopic and calorimetric techniques have been used. ATR-FTIR and SERS spectral outcomes indicate a novel insight into groove-directed-intercalation of flavopiridol into DNA via direct binding with nitrogenous bases guanine (C6=O6) and thymine (C2=O2) in DNA groove together with slight external binding to its sugar-phosphate backbone. Circular dichroism spectral analysis of flavopiridol-DNA complexes suggests perturbation in native B-conformation of DNA and its transition into C-form, which may be localized up to a few base pairs of DNA. UV-visible spectroscopic results illustrate dual binding mode of flavopiridol when interacts with DNA having association constant, Ka = 1.18 × 10(4) M(-1). This suggests moderate type of interaction between flavopiridol and DNA. Further, UV melting analysis also supports spectroscopic outcomes. Thermodynamically, flavopiridol-DNA complexation is an enthalpy-driven exothermic process. These conclusions drawn from this study could be helpful in unveiling mechanism of cytoxicity induced by flavopiridol that can be further applied in the development of flavonoid-based new chemotherapeutics with more specificity and better efficacy.

  13. Methylation-sensitive amplification polymorphism analysis of fat and muscle tissues in pigs.

    PubMed

    Ma, J D; Li, M Z; Zhou, S L; Zhou, C W; Li, X W

    2012-09-26

    DNA methylation may be involved in regulating the expression of protein-coding genes, resulting in different fat and muscle phenotypes. Using a methylation-sensitive amplified polymorphism approach, we obtained 7423 bands by selective amplification of genomic DNA from six different fat depots and two heterogeneous muscle types from Duroc/Landrace/Yorkshire cross-bred pigs. The degrees of DNA methylation, determined by the percentages of hemi- and fully methylated sites relative to the total number of CCGG sites, were similar in male and female pigs for each specific tissue [χ(2) test; P (two-tailed) > 0.05]. Gender bias was therefore ignored. There were significant differences in the degree of DNA methylation among the eight tissue types [χ(2) test; P(total) (two-tailed) = 0.009]. However, similar degrees of methylation were observed among the six fat depots [χ(2) test; P(fat) (two-tailed) = 0.24 > 0.05]and between the two muscle types [χ(2) test; P(muscle) (two-tailed) = 0.76 > 0.05]. We conclude that the degree of DNA methylation differs between porcine fat and muscle tissue, but that the methylation status of a particular tissue type is similar, despite being deposited at different body sites.

  14. Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (Ananas comosus L.).

    PubMed

    Urasaki, Naoya; Goeku, Satoko; Kaneshima, Risa; Takamine, Tomonori; Tarora, Kazuhiko; Takeuchi, Makoto; Moromizato, Chie; Yonamine, Kaname; Hosaka, Fumiko; Terakami, Shingo; Matsumura, Hideo; Yamamoto, Toshiya; Shoda, Moriyuki

    2015-06-01

    To explore genome-wide DNA polymorphisms and identify DNA markers for leaf margin phenotypes, a restriction-site-associated DNA sequencing analysis was employed to analyze three bulked DNAs of F1 progeny from a cross between a 'piping-leaf-type' cultivar, 'Yugafu', and a 'spiny-tip-leaf-type' variety, 'Yonekura'. The parents were both Ananas comosus var. comosus. From the analysis, piping-leaf and spiny-tip-leaf gene-specific restriction-site-associated DNA sequencing tags were obtained and designated as PLSTs and STLSTs, respectively. The five PLSTs and two STSLTs were successfully converted to cleaved amplified polymorphic sequence (CAPS) or simple sequence repeat (SSR) markers using the sequence differences between alleles. Based on the genotyping of the F1 with two SSR and three CAPS markers, the five PLST markers were mapped in the vicinity of the P locus, with the closest marker, PLST1_SSR, being located 1.5 cM from the P locus. The two CAPS markers from STLST1 and STLST3 perfectly assessed the 'spiny-leaf type' as homozygotes of the recessive s allele of the S gene. The recombination value between the S locus and STLST loci was 2.4, and STLSTs were located 2.2 cM from the S locus. SSR and CAPS markers are applicable to marker-assisted selection of leaf margin phenotypes in pineapple breeding.

  15. Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome.

    PubMed

    Gu, Junchen; Stevens, Michael; Xing, Xiaoyun; Li, Daofeng; Zhang, Bo; Payton, Jacqueline E; Oltz, Eugene M; Jarvis, James N; Jiang, Kaiyu; Cicero, Theodore; Costello, Joseph F; Wang, Ting

    2016-04-07

    DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types. Copyright © 2016 Gu et al.

  16. Forensic genetic analysis of bone remain samples.

    PubMed

    Siriboonpiputtana, T; Rinthachai, T; Shotivaranon, J; Peonim, V; Rerkamnuaychoke, B

    2018-03-01

    DNA typing from degraded human remains is still challenging forensic DNA scientists not only in the prospective of DNA purification but also in the interpretation of established DNA profiles and data manipulation, especially in mass fatalities. In this report, we presented DNA typing protocol to investigate many skeletal remains in different degrees of decomposing. In addition, we established the grading system aiming for prior determination of the association between levels of decomposing and overall STR amplification efficacy. A total of 80 bone samples were subjected to DNA isolation using the modified DNA IQ™ System (Promega, USA) for bone extraction following with STR analysis using the AmpFLSTR Identifiler ® (Thermo Fisher Scientific, USA). In low destruction group, complete STR profiles were observed as 84.4% whereas partial profiles and non-amplified were found as 9.4% and 6.2%, respectively. Moreover, in medium destruction group, both complete and partial STR profiles were observed as 31.2% while 37.5% of this group was unable to amplify. Nevertheless, we could not purify DNA and were unable to generate STR profile in any sample from the high destroyed bone samples. Compact bones such as femur and humerus have high successful amplification rate superior than loose/spongy bones. Furthermore, costal cartilage could be a designate specimen for DNA isolation in a case of the body that was discovered approximately to 3 days after death which enabled to isolate high quality and quantity of DNA, reduce time and cost, and do not require special tools such as freezer mill. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Comparison between Urine and Cervical Samples for HPV DNA Detection and Typing in Young Women in Colombia.

    PubMed

    Cómbita, Alba Lucía; Gheit, Tarik; González, Paula; Puerto, Devi; Murillo, Raúl Hernando; Montoya, Luisa; Vorsters, Alex; Van Keer, Severien; Van Damme, Pierre; Tommasino, Massimo; Hernández-Suárez, Gustavo; Sánchez, Laura; Herrero, Rolando; Wiesner, Carolina

    2016-09-01

    Urine sampling for HPV DNA detection has been proposed as an effective method for monitoring the impact of HPV vaccination programs; however, conflicting results have been reported. The goal of this study was to evaluate the performance of optimized urine HPV DNA testing in women aged 19 to 25 years. Optimization process included the use of first void urine, immediate mixing of urine with DNA preservative, and the concentration of all HPV DNA, including cell-free DNA fragments. Urine and cervical samples were collected from 535 young women attending cervical screening at health centers from two Colombian cities. HPV DNA detection and genotyping was performed using an HPV type-specific multiplex genotyping assay, which combines multiplex polymerase chain reaction with bead-based Luminex technology. Concordance between HPV DNA detection in urine and cervical samples was determined using kappa statistics and McNemar tests. The accuracy of HPV DNA testing in urine samples was evaluated measuring sensitivity and specificity using as reference the results obtained from cervical samples. Statistical analysis was performed using STATA11.2 software. The findings revealed an overall HPV prevalence of 60.00% in cervical samples and 64.72% in urine samples, HPV-16 being the most frequent HPV type detected in both specimens. Moreover, our results indicate that detection of HPV DNA in first void urine provides similar results to those obtained with cervical samples and can be used to monitor HPV vaccination trials and programs as evidenced by the substantial concordance found for the detection of the four vaccine types. Cancer Prev Res; 9(9); 766-71. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. Drastic stabilization of parallel DNA hybridizations by a polylysine comb-type copolymer with hydrophilic graft chain.

    PubMed

    Miyoshi, Daisuke; Ueda, Yu-Mi; Shimada, Naohiko; Nakano, Shu-Ichi; Sugimoto, Naoki; Maruyama, Atsushi

    2014-09-01

    Electrostatic interactions play a major role in protein-DNA interactions. As a model system of a cationic protein, herein we focused on a comb-type copolymer of a polycation backbone and dextran side chains, poly(L-lysine)-graft-dextran (PLL-g-Dex), which has been reported to form soluble interpolyelectrolyte complexes with DNA strands. We investigated the effects of PLL-g-Dex on the conformation and thermodynamics of DNA oligonucleotides forming various secondary structures. Thermodynamic analysis of the DNA structures showed that the parallel conformations involved in both DNA duplexes and triplexes were significantly and specifically stabilized by PLL-g-Dex. On the basis of thermodynamic parameters, it was further possible to design DNA switches that undergo structural transition responding to PLL-g-Dex from an antiparallel duplex to a parallel triplex even with mismatches in the third strand hybridization. These results suggest that polycationic molecules are able to induce structural polymorphism of DNA oligonucleotides, because of the conformation-selective stabilization effects. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molecular Analysis of Medaka Tumors: New Models for Carcinogenicity Tests

    DTIC Science & Technology

    1993-07-07

    analysis, 5 were reported to have either a 8 cholangiocarcinoma or a hepatocellular carcinoma . Only DNA from the hepatocellular carcinomas were able to... hepatocellular carcinoma were able to induce tumors in nude mice in 3-4 weeks (Table II). In summary, DNA isolated from these tumors had relatively low...DNAs from tumor-bearing livers (cholangiocarcinomas, hepatocellular carcinomas and one mixed type) were able to induce significant numbers of foci

  20. Genetic basis of glycogen storage disease type 1a: Prevalent mutations at the glucose-6-phosphatase locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke-Jian Lei; Hungwen Chen; Ji-Lan Liu

    Diagnosis of glycogen storage disease (GSD) type 1a currently is established by demonstrating the lack of glucose-6-phosphatase (G6Pase) activity in the patient`s biopsied liver specimen. Recent cloning of the G6Pase gene and identification of mutations within the gene that causes GSD type 1a allow for the development of a DNA-based diagnostic method. Using SSCP analysis and DNA sequencing, we characterized the G6Pase gene of 70 unrelated patients with enzymatically confirmed diagnosis of GSD type 1a and detected mutations in all except 17 alleles (88%). Sixteen mutations were uncovered that were shown by expression to abolish or greatly reduce G6Pase activitymore » and that therefore are responsible for the GSD type la disorder. R83C and Q347X are the most prevalent mutations found in Caucasians, 130X and R83C are most prevalent in Hispanics, and R83H is most prevalent in Chinese. The Q347X mutation has thus far been identified only in Caucasian patients, and the 130X mutation has been identified only in Hispanic patients. Our results demonstrate that the DNA-based analysis can accurately, rapidly, and noninvasively detect the majority of mutations in GSD type 1a. This DNA-based diagnosis now permits prenatal diagnosis among at-risk patients and serves as a database in screening and counseling patients clinically suspected of having this disease. 22 refs., 2 figs., 4 tabs.« less

  1. DNA methylation age of human tissues and cell types

    PubMed Central

    2013-01-01

    Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research. PMID:24138928

  2. Differential reporting of mixed DNA profiles and its impact on jurists' evaluation of evidence. An international analysis.

    PubMed

    de Keijser, Jan W; Malsch, Marijke; Luining, Egge T; Weulen Kranenbarg, Marleen; Lenssen, Dominique J H M

    2016-07-01

    While DNA analysis is considered by many the gold standard in forensic science, there is ample room for variation in interpretation and reporting. This seems especially the case when working with (complex) mixed DNA profiles. Two consecutive studies on differential DNA reporting were conducted. In Study 1, we first examined type and magnitude of differences when forensic DNA experts across institutes and jurisdictions are handed an identical forensic case with mixed profiles. In Study 2, we explore the impact of the observed differential reporting on jurists' evaluation of the DNA evidence. 19 DNA expert reports from forensic institutes across Western jurisdictions were obtained. Differences between the reports were many and include extensiveness of the reports, explanations of technical issues, use of explanatory appendices, level of reporting, use of context information, and, most markedly, type and substantive content of the conclusions. In Study 2, a group of criminal law students judged a selection of these reports in a quasi experimental study design. Findings show that these differing reports have quite different evidentiary value for jurists, depending on which expert authored the report. It is argued that the impact of differential reporting on jurists' evaluation was so fundamental and substantive that it is seems reasonable to claim that in an actual court case it could make the difference between acquittal and conviction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Kwon, Soon-Wo; Sa, Tong-Min

    2009-01-01

    A pink-pigmented, aerobic, facultatively methylotrophic bacterial strain, CBMB27T, isolated from leaf tissues of rice (Oryza sativa L. 'Dong-Jin'), was analysed using a polyphasic taxonomic approach. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacterium oryzae, Methylobacterium fujisawaense and Methylobacterium mesophilicum; strain CBMB27T showed sequence similarities of 98.3, 98.5 and 97.3 %, respectively, to the type strains of these three species. DNA-DNA hybridization experiments revealed low levels (<38 %) of DNA-DNA relatedness between strain CBMB27T and its closest relatives. The sequence of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) in strain CBMB27T differed from those of close relatives. The major fatty acid of the isolate was C(18 : 1)omega7c and the G+C content of the genomic DNA was 66.8 mol%. Based on the results of 16S rRNA gene sequence analysis, DNA-DNA hybridization, and physiological and biochemical characterization, which enabled the isolate to be differentiated from all recognized species of the genus Methylobacterium, it was concluded that strain CBMB27T represents a novel species in the genus Methylobacterium for which the name Methylobacterium phyllosphaerae sp. nov. is proposed (type strain CBMB27T =LMG 24361T =KACC 11716T =DSM 19779T).

  4. Reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius.

    PubMed

    Pang, Huili; Kitahara, Maki; Tan, Zhongfang; Wang, Yanping; Qin, Guangyong; Ohkuma, Moriya; Cai, Yimin

    2012-10-01

    Characterization and identification of strain CW 1 ( = JCM 17161) isolated from corn silage were performed. Strain CW 1 was a Gram-positive, catalase-negative and homofermentative rod that produced the DL-form of lactic acid. This strain exhibited more than 99.6% 16S rRNA gene sequence similarity and greater than 82% DNA-DNA reassociation with type strains of Lactobacillus kimchii, L. bobalius and L. paralimentarius. To clarify the taxonomic positions of these type strains, phenotypic characterization, 16S rRNA gene sequencing, ribotyping and DNA-DNA relatedness were examined. The three type strains displayed different L-arabinose, lactose, melibiose, melezitose, raffinose and N-acetyl-β-glucosaminidase fermentation patterns. Phylogenetic analysis showed that L. paralimentarius is a closer neighbour of L. kimchii and L. bobalius, sharing 99.5-99.9% 16S rRNA gene sequence similarity, which was confirmed by the high DNA-DNA relatedness (≥82%) between L. paralimentarius JCM 10415(T), L. bobalius JCM 16180(T) and L. kimchii JCM 10707(T). Therefore, it is proposed that L. kimchii and L. bobalius should be reclassified as later synonyms of L. paralimentarius.

  5. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  6. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations.

    PubMed

    De Bruyne, Katrien; Camu, Nicholas; De Vuyst, Luc; Vandamme, Peter

    2009-01-01

    Two Gram-positive bacterial strains, LMG 24284T and LMG 24285T, were isolated from different spontaneous cocoa bean heap fermentations in Ghana. Analysis of their 16S rRNA gene sequences indicated that they were members of the Lactobacillus plantarum and Lactobacillus salivarius species groups, respectively. DNA-DNA hybridization experiments with their nearest phylogenetic neighbours demonstrated that both strains represented novel species that could be differentiated from their nearest neighbours by pheS sequence analysis, whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism analysis and biochemical characterization. Therefore, two novel Lactobacillus species are proposed, Lactobacillus fabifermentans sp. nov. (type strain LMG 24284T =DSM 21115T) and Lactobacillus cacaonum sp. nov. (type strain LMG 24285T =DSM 21116T).

  7. Typing single polymorphic nucleotides in mitochondrial DNA as a way to access Middle Pleistocene DNA

    PubMed Central

    Valdiosera, Cristina; García, Nuria; Dalén, Love; Smith, Colin; Kahlke, Ralf-Dietrich; Lidén, Kerstin; Angerbjörn, Anders; Arsuaga, Juan Luis; Götherström, Anders

    2006-01-01

    In this study, we have used a technique designed to target short fragments containing informative mitochondrial substitutions to extend the temporal limits of DNA recovery and study the molecular phylogeny of Ursus deningeri. We present a cladistic analysis using DNA recovered from 400 kyr old U. deningeri remains, which demonstrates U. deningeri's relation to Ursus spelaeus. This study extends the limits of recovery from skeletal remains by almost 300 kyr. Plant material from permafrost environments has yielded DNA of this age in earlier studies, and our data suggest that DNA in teeth from cave environments may be equally well preserved. PMID:17148299

  8. Epstein-Barr virus recombinants from overlapping cosmid fragments.

    PubMed

    Tomkinson, B; Robertson, E; Yalamanchili, R; Longnecker, R; Kieff, E

    1993-12-01

    Five overlapping type 1 Epstein-Barr virus (EBV) DNA fragments constituting a complete replication- and transformation-competent genome were cloned into cosmids and transfected together into P3HR-1 cells, along with a plasmid encoding the Z immediate-early activator of EBV replication. P3HR-1 cells harbor a type 2 EBV which is unable to transform primary B lymphocytes because of a deletion of DNA encoding EBNA LP and EBNA 2, but the P3HR-1 EBV can provide replication functions in trans and can recombine with the transfected cosmids. EBV recombinants which have the type 1 EBNA LP and 2 genes from the transfected EcoRI-A cosmid DNA were selectively and clonally recovered by exploiting the unique ability of the recombinants to transform primary B lymphocytes into lymphoblastoid cell lines. PCR and immunoblot analyses for seven distinguishing markers of the type 1 transfected DNAs identified cell lines infected with EBV recombinants which had incorporated EBV DNA fragments beyond the transformation marker-rescuing EcoRI-A fragment. Approximately 10% of the transforming virus recombinants had markers mapping at 7, 46 to 52, 93 to 100, 108 to 110, 122, and 152 kbp from the 172-kbp transfected genome. These recombinants probably result from recombination among the transfected cosmid-cloned EBV DNA fragments. The one recombinant virus examined in detail by Southern blot analysis has all the polymorphisms characteristic of the transfected type 1 cosmid DNA and none characteristic of the type 2 P3HR-1 EBV DNA. This recombinant was wild type in primary B-lymphocyte infection, growth transformation, and lytic replication. Overall, the type 1 EBNA 3A gene was incorporated into 26% of the transformation marker-rescued recombinants, a frequency which was considerably higher than that observed in previous experiments with two-cosmid EBV DNA cotransfections into P3HR-1 cells (B. Tomkinson and E. Kieff, J. Virol. 66:780-789, 1992). Of the recombinants which had incorporated the marker-rescuing cosmid DNA fragment and the fragment encoding the type 1 EBNA 3A gene, most had incorporated markers from at least two other transfected cosmid DNA fragments, indicating a propensity for multiple homologous recombinations. The frequency of incorporation of the nonselected transfected type 1 EBNA 3C gene, which is near the end of two of the transfected cosmids, was 26% overall, versus 3% in previous experiments using transfections with two EBV DNA cosmids. In contrast, the frequency of incorporation of a 12-kb EBV DNA deletion which was near the end of two of the transfected cosmids was only 13%.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. Mitochondrial DNA typing from human axillary, pubic and head hair shafts - success rates and sequence comparisons.

    PubMed

    Pfeiffer, H; Hühne, J; Ortmann, C; Waterkamp, K; Brinkmann, B

    1999-01-01

    The analysis of mitochondrial DNA (mtDNA) from shed hairs has gained high importance in forensic casework since telogen hairs are one of the most common types of evidence left at the crime scene. In this systematic study of hair shafts from 20 individuals, the correlation of mtDNA recovery with hair morphology (length, diameter, volume, colour), with sex, and with body localisation (head, armpit, pubis) was investigated. The highest average success rate of hypervariable region 1 (HV 1) sequencing was found in head hair shafts (75%) followed by pubic (66%) and axillary hair shafts (52%). No statistically significant correlation between morphological parameters or sex and the success rate of sequencing was found. MtDNA sequences of buccal cells, head, pubic and axillary hair shafts did not show intraindividual differences. Heteroplasmic base positions were observed neither in the hair shafts nor in control samples of buccal cells.

  10. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  11. Genomic fragmentation and extrachromosomal telomeric repeats impact assessment of telomere length in human spermatozoa: quantitative experiments and systematic review.

    PubMed

    Kurjanowicz, P; Moskovtsev, S; Librach, C

    2017-11-01

    Can differences in DNA isolation alter assessment of sperm telomere length (spTL) and do they account for conflicting results in the literature on spTL and male fertility? DNA isolation methods preferentially include or exclude short, extrachromosomal (EC) telomere-specific sequences that alter spTL measurements, and are responsible for a proportion of the disparity observed between investigations. The relationship between spTL and male fertility has become an active area of research. The results across investigations, however, have been discordant, generating a need to critically evaluate the existing body of knowledge to guide future investigations. Quantitative experiments determined the effect of DNA isolation on the integrity of sperm DNA and measures of spTL, while a systematic analysis of the current literature evaluated the effect of DNA isolation and study design on experimental outcomes. Two DNA isolation methods were compared: Genomic Tips which isolate 'High Molecular Weight' (HMW) DNA exclusively, and QIAamp® DNA Mini which isolates 'Total' genomic DNA irrespective of size. DNA quality was assessed via field inversion gel electrophoresis (FIGE) and spTL was measured via terminal restriction fragment analysis. In addition, major databases in medicine, health and the life sciences were subject to a targeted search, and results were independently screened according to defined exclusion/inclusion criterion. Findings from primary articles were analyzed for concordance and study designs were compared across six moderator variables (sample size, participant age, fertility status, semen fraction, telomere population and type of analysis). HMW DNA spTL was significantly longer than spTL measured from total DNA (P < 0.01), indicating that Total DNA contained short, EC telomeric repeats that shifted downstream assessment towards shorter spTL. HMW DNA spTL reflected the length of intact, chromosomal telomeres. Major findings on spTL showed the greatest concordance amongst studies that implemented HMW DNA isolation prior to spTL assessment. Studies that utilized Total DNA varied in concordance, but outcomes were similar if (i) a comparative analysis was applied or (ii) a sample size threshold of 81 was achieved for correlative analysis. Chromosomal and EC telomeric DNA were distinguished based on outcomes of HMW DNA isolation and size. Further experiments are required to determine the nature and function of these two types of telomeric sequences. This study reveals a dramatic impact of upstream DNA processing and study design on measurements of spTL, which accounts for conflicting results in the literature. Future assessments of spTL should incorporate independent detection of chromosomal and EC telomeric DNA and specific experimental planning. This study was funded by CReATe Fertility Centre, Toronto, Ontario, Canada. The authors have declared no conflict of interest. N/A. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Genetic relationships within the genus Prevotella analyzed by multilocus enzyme electrophoresis and DNA-DNA hybridization.

    PubMed

    Combe, M L; Pons, J L

    1999-12-01

    The genetic diversity and relationships within the genus Prevotella were studied by analyzing twenty-five strains by multilocus enzyme electrophoresis (MLEE) at nine metabolic enzyme loci and DNA-DNA hybridization. MLEE revealed a high genetic diversity with 25 electrophoretic types (ETs) for the 25 strains studied, a mean number of alleles per enzyme locus of 6.8 and a mean genetic diversity per locus of 0.786. The index of association described by Maynard Smith et al. (1993) revealed a clonal structure within the genus Prevotella. A dendrogram generated by cluster analysis of a matrix of ETs showed that species like P. bivia, P. buccae, P. oris, P. oralis, P. nigrescens, and P. denticola form clusters that are consistent with DNA homologies. However, strains identified as P. melaninogenica or P. loescheii by DNA-DNA hybridization did not constitute distinct subpopulations in MLEE. MLEE analysis demonstrated its high power in differentiating closely related strains. It provides an alternative to 16S rRNA analysis for the study of phylogenetic relationships within the genus Prevotella, especially for differentiating strains with high DNA homology or high rRNA homology.

  13. Computational and experimental analysis of DNA shuffling

    PubMed Central

    Maheshri, Narendra; Schaffer, David V.

    2003-01-01

    We describe a computational model of DNA shuffling based on the thermodynamics and kinetics of this process. The model independently tracks a representative ensemble of DNA molecules and records their states at every stage of a shuffling reaction. These data can subsequently be analyzed to yield information on any relevant metric, including reassembly efficiency, crossover number, type and distribution, and DNA sequence length distributions. The predictive ability of the model was validated by comparison to three independent sets of experimental data, and analysis of the simulation results led to several unique insights into the DNA shuffling process. We examine a tradeoff between crossover frequency and reassembly efficiency and illustrate the effects of experimental parameters on this relationship. Furthermore, we discuss conditions that promote the formation of useless “junk” DNA sequences or multimeric sequences containing multiple copies of the reassembled product. This model will therefore aid in the design of optimal shuffling reaction conditions. PMID:12626764

  14. The prognostic value of KRAS mutation by cell-free DNA in cancer patients: A systematic review and meta-analysis.

    PubMed

    Zhuang, Rongyuan; Li, Song; Li, Qian; Guo, Xi; Shen, Feng; Sun, Hong; Liu, Tianshu

    2017-01-01

    KRAS mutation has been found in various types of cancer. However, the prognostic value of KRAS mutation in cell-free DNA (cfDNA) in cancer patients was conflicting. In the present study, a meta-analysis was conducted to clarify its prognostic significance. Literature searches of Cochrane Library, EMBASE, PubMed and Web of Science were performed to identify studies related to KRAS mutation detected by cfDNA and survival in cancer patients. Two evaluators reviewed and extracted the information independently. Review Manager 5.3 software was used to perform the statistical analysis. Thirty studies were included in the present meta-analysis. Our analysis showed that KRAS mutation in cfDNA was associated with a poorer survival in cancer patients for overall survival (OS, HR 2.02, 95% CI 1.63-2.51, P<0.01) and progression-free survival (PFS, HR 1.64, 95% CI 1.27-2.13, P<0.01). In subgroup analyses, KRAS mutation in pancreatic cancer, colorectal cancer, non-small cell lung cancer and ovarian epithelial cancer had HRs of 2.81 (95% CI 1.83-4.30, P<0.01), 1.67 (95% CI 1.25-2.42, P<0.01), 1.64 (95% CI 1.13-2.39, P = 0.01) and 2.17 (95% 1.12-4.21, p = 0.02) for OS, respectively. In addition, the ethnicity didn't influence the prognostic value of KRAS mutation in cfDNA in cancer patients (p = 0.39). Prognostic value of KRAS mutation was slightly higher in plasma than in serum (HR 2.13 vs 1.65), but no difference was observed (p = 0.37). Briefly, KRAS mutation in cfDNA was a survival prognostic biomarker in cancer patients. Its prognostic value was different in various types of cancer.

  15. Quantitative, competitive PCR analysis of porcine circovirus DNA in serum from pigs with postweaning multisystemic wasting syndrome.

    PubMed

    Liu, Q; Wang, L; Willson, P; Babiuk, L A

    2000-09-01

    A competitive PCR (cPCR) assay was developed for monitoring porcine circovirus (PCV) DNA in serum samples from piglets. The cPCR was based on competitive coamplification of a 502- or 506-bp region of the PCV type 1 (PCV1) or PCV2 ORF2, respectively, with a known concentration of competitor DNA, which produced a 761- or 765-bp fragment, respectively. The cPCR was validated by quantification of a known amount of PCV wild-type plasmids. We also used this technique to determine PCV genome copy numbers in infected cells. Furthermore, we measured PCV DNA loads in clinical samples. More than 50% of clinically healthy piglets could harbor both types of PCV. While PCV1 was detected in only 3 of 16 pigs with postweaning multisystemic wasting syndrome (PMWS), all the sick piglets contained PCV2. A comparison of the PCV2 DNA loads of healthy and sick animals revealed a significant difference, indicating that the development of PMWS may require a certain amount of PCV2.

  16. Utilizing DNA analysis to combat the world wide plague of present day slavery – trafficking in persons

    PubMed Central

    Palmbach, Timothy; Blom, Jeffrey; Hoynes, Emily; Primorac, Dragan; Gaboury, Mario

    2014-01-01

    A study was conducted to determine if modern forensic DNA typing methods can be properly employed throughout the world with a final goal of increasing arrests, prosecutions, and convictions of perpetrators of modern day trafficking in persons while concurrently reducing the burden of victim testimony in legal proceedings. Without interruption of investigations, collection of samples containing DNA was conducted in a variety of settings. Evidentiary samples were analyzed on the ANDE Rapid DNA system. Many of the collected swabs yielded informative short tandem repeat profiles with Rapid DNA technology. PMID:24577820

  17. Utilizing DNA analysis to combat the world wide plague of present day slavery--trafficking in persons.

    PubMed

    Palmbach, Timothy M; Blom, Jeffrey; Hoynes, Emily; Primorac, Dragan; Gaboury, Mario

    2014-02-01

    A study was conducted to determine if modern forensic DNA typing methods can be properly employed throughout the world with a final goal of increasing arrests, prosecutions, and convictions of perpetrators of modern day trafficking in persons while concurrently reducing the burden of victim testimony in legal proceedings. Without interruption of investigations, collection of samples containing DNA was conducted in a variety of settings. Evidentiary samples were analyzed on the ANDE Rapid DNA system. Many of the collected swabs yielded informative short tandem repeat profiles with Rapid DNA technology.

  18. Rapid step-gradient purification of mitochondrial DNA.

    PubMed

    Welter, C; Meese, E; Blin, N

    1988-01-01

    A convenient modification of the step gradient (CsCl/ethidium bomide) procedure is described. This rapid method allows isolation of covalently closed circular DNA separated from contaminating proteins, RNA and chromosomal DNA in ca. 5 h. Large scale preparations can be performed for circular DNA from eukaryotic organelles (mitochondria). The protocol uses organelle pelleting/NaCl-sarcosyl incubation steps for mitochondria followed by a CsCl step gradient and exhibits yields equal to the conventional procedures. It results in DNA sufficiently pure to be used for restriction endonuclease analysis, subcloning, 5'-end labeling, gel retention assays, and various types of hybridization.

  19. Amnion as a surrogate tissue reporter of the effects of maternal preeclampsia on the fetus.

    PubMed

    Suzuki, Masako; Maekawa, Ryo; Patterson, Nicole E; Reynolds, David M; Calder, Brent R; Reznik, Sandra E; Heo, Hye J; Einstein, Francine Hughes; Greally, John M

    2016-01-01

    Preeclampsia, traditionally characterized by high blood pressure and proteinuria, is a common pregnancy complication, which affects 2-8 % of all pregnancies. Although children born to women with preeclampsia have a higher risk of hypertension in later life, the mechanism of this increased risk is unknown. DNA methylation is an epigenetic modification that has been studied as a mediator of cellular memory of adverse exposures in utero. Since each cell type in the body has a unique DNA profile, cell subtype composition is a major confounding factor in studies of tissues with heterogeneous cell types. The best way to avoid this confounding effect is by using purified cell types. However, using purified cell types in large cohort translational studies is difficult. The amnion, the inner layer of the fetal membranes of the placenta, is derived from the epiblast and consists of two cell types, which are easy to isolate from the delivered placenta. In this study, we demonstrate the value of using amnion samples for DNA methylation studies, revealing distinctive patterns between fetuses exposed to proteinuria or hypertension and fetuses from normal pregnancies. We performed a genome-wide DNA methylation analysis, HpaII tiny fragment Enrichment by Ligation-mediated PCR (HELP)-tagging, on 62 amnion samples from the placentas of uncomplicated, normal pregnancies and from those with complications of preeclampsia or hypertension. Using a regression model approach, we found 123, 85, and 99 loci with high-confidence hypertension-associated, proteinuria-associated, and hypertension- and proteinuria-associated DNA methylation changes, respectively. A gene ontology analysis showed DNA methylation changes to be selecting genes with different biological processes in exposure status. We also found that these differentially methylated regions overlap loci previously reported as differentially methylated regions in preeclampsia. Our findings support prior observations that preeclampsia is associated with changes of DNA methylation near genes that have previously been found to be dysregulated in preeclampsia. We propose that amniotic membranes represent a valuable surrogate fetal tissue on which to perform epigenome-wide association studies of adverse intrauterine conditions.

  20. Development of an Automated DNA Detection System Using an Electrochemical DNA Chip Technology

    NASA Astrophysics Data System (ADS)

    Hongo, Sadato; Okada, Jun; Hashimoto, Koji; Tsuji, Koichi; Nikaido, Masaru; Gemma, Nobuhiro

    A new compact automated DNA detection system Genelyzer™ has been developed. After injecting a sample solution into a cassette with a built-in electrochemical DNA chip, processes from hybridization reaction to detection and analysis are all operated fully automatically. In order to detect a sample DNA, electrical currents from electrodes due to an oxidization reaction of electrochemically active intercalator molecules bound to hybridized DNAs are detected. The intercalator is supplied as a reagent solution by a fluid supply unit of the system. The feasibility test proved that the simultaneous typing of six single nucleotide polymorphisms (SNPs) associated with a rheumatoid arthritis (RA) was carried out within two hours and that all the results were consistent with those by conventional typing methods. It is expected that this system opens a new way to a DNA testing such as a test for infectious diseases, a personalized medicine, a food inspection, a forensic application and any other applications.

  1. The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.

    PubMed

    Kazlauskas, Darius; Krupovic, Mart; Venclovas, Česlovas

    2016-06-02

    Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Comparison of Ribotyping, Randomly Amplified Polymorphic DNA Analysis, and Pulsed-Field Gel Electrophoresis in Typing of Lactobacillus rhamnosus and L. casei Strains

    PubMed Central

    Tynkkynen, Soile; Satokari, Reetta; Saarela, Maria; Mattila-Sandholm, Tiina; Saxelin, Maija

    1999-01-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively. PMID:10473394

  3. Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains.

    PubMed

    Tynkkynen, S; Satokari, R; Saarela, M; Mattila-Sandholm, T; Saxelin, M

    1999-09-01

    A total of 24 strains, biochemically identified as members of the Lactobacillus casei group, were identified by PCR with species-specific primers. The same set of strains was typed by randomly amplified polymorphic DNA (RAPD) analysis, ribotyping, and pulsed-field gel electrophoresis (PFGE) in order to compare the discriminatory power of the methods. Species-specific primers for L. rhamnosus and L. casei identified the type strain L. rhamnosus ATCC 7469 and the neotype strain L. casei ATCC 334, respectively, but did not give any signal with the recently revived species L. zeae, which contains the type strain ATCC 15820 and the strain ATCC 393, which was previously classified as L. casei. Our results are in accordance with the suggested new classification of the L. casei group. Altogether, 21 of the 24 strains studied were identified with the species-specific primers. In strain typing, PFGE was the most discriminatory method, revealing 17 genotypes for the 24 strains studied. Ribotyping and RAPD analysis yielded 15 and 12 genotypes, respectively.

  4. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    PubMed

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  5. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces.

    PubMed

    Osawa, Ro; Fujisawa, Tomohiko; Pukall, Rüdiger

    2006-07-01

    A Gram-positive, rod-shaped, non-endospore-forming bacterium, strain ASB1(T), able to degrade tannin, was isolated from faeces of the Japanese large wood mouse, Apodemus speciosus. Comparative analysis of the 16S rRNA gene sequence revealed that the strain could be assigned as a member of the genus Lactobacillus. The nearest phylogenetic neighbours were determined as Lactobacillus animalis DSM 20602(T) (98.9 % 16S rRNA gene sequence similarity) and Lactobacillus murinus ASF 361 (98.9 %). Subsequent polyphasic analysis, including automated ribotyping and DNA-DNA hybridization experiments, confirmed that the isolate represents a novel species, for which the name Lactobacillus apodemi sp. nov. is proposed. The DNA G+C content of the novel strain is 38.5 mol%. The cell-wall peptidoglycan is of type A4alpha L-lys-D-asp. The type strain is ASB1(T) (=DSM 16634(T)=CIP 108913(T)).

  6. Choosing relatives for DNA identification of missing persons.

    PubMed

    Ge, Jianye; Budowle, Bruce; Chakraborty, Ranajit

    2011-01-01

    DNA-based analysis is integral to missing person identification cases. When direct references are not available, indirect relative references can be used to identify missing persons by kinship analysis. Generally, more reference relatives render greater accuracy of identification. However, it is costly to type multiple references. Thus, at times, decisions may need to be made on which relatives to type. In this study, pedigrees for 37 common reference scenarios with 13 CODIS STRs were simulated to rank the information content of different combinations of relatives. The results confirm that first-order relatives (parents and fullsibs) are the most preferred relatives to identify missing persons; fullsibs are also informative. Less genetic dependence between references provides a higher on average likelihood ratio. Distant relatives may not be helpful solely by autosomal markers. But lineage-based Y chromosome and mitochondrial DNA markers can increase the likelihood ratio or serve as filters to exclude putative relationships. © 2010 American Academy of Forensic Sciences.

  7. Nuclear and chloroplast DNA differentiation in Andean potatoes.

    PubMed

    Sukhotu, Thitaporn; Kamijima, Osamu; Hosaka, Kazuyoshi

    2004-02-01

    Over 3500 accessions of Andean landraces have been known in potato, classified into 7 cultivated species ranging from 2x to 5x (Hawkes 1990). Chloroplast DNA (ctDNA), distinguished into T, W, C, S, and A types, showed extensive overlaps in their frequencies among cultivated species and between cultivated and putative ancestral wild species. In this study, 76 accessions of cultivated and 19 accessions of wild species were evaluated for ctDNA types and examined by ctDNA high-resolution markers (ctDNA microsatellites and H3 marker) and nuclear DNA restriction fragment length polymorphisms (RFLPs). ctDNA high-resolution markers identified 25 different ctDNA haplotypes. The S- and A-type ctDNAs were discriminated as unique haplotypes from 12 haplotypes having C-type ctDNA and T-type ctDNA from 10 haplotypes having W-type ctDNA. Differences among ctDNA types were strongly correlated with those of ctDNA high-resolution markers (r = 0.822). Differentiation between W-type ctDNA and C-, S-, and A-type ctDNAs was supported by nDNA RFLPs in most species except for those of recent or immediate hybrid origin. However, differentiation among C-, S-, and A-type ctDNAs was not clearly supported by nDNA RFLPs, suggesting that frequent genetic exchange occurred among them and (or) they shared the same gene pool owing to common ancestry.

  8. Differentiation of Trichophyton rubrum clinical isolates from Japanese and Chinese patients by randomly amplified polymorphic DNA and DNA sequence analysis of the non-transcribed spacer region of the rRNA gene.

    PubMed

    Yang, Xiumin; Sugita, Takashi; Takashima, Masako; Hiruma, Masataro; Li, Ruoyu; Sudo, Hajime; Ogawa, Hideoki; Ikeda, Shigaku

    2009-04-01

    Trichophyton rubrum is the most common pathogen causing dermatophytosis worldwide. Recent genetic investigations showed that the microorganism originated in Africa and then spread to Europe and North America via Asia. We investigated the intraspecific diversity of T. rubrum isolated from two closely located Asian countries, Japan and China. A total of 150 clinical isolates of T. rubrum obtained from Japanese and Chinese patients were analyzed by randomly amplified polymorphic DNA (RAPD) and DNA sequence analysis of the non-transcribed spacer (NTS) region in the rRNA gene. RAPD analysis divided the 150 strains into two major clusters, A and B. Of the Japanese isolates, 30% belonged to cluster A and 70% belonged to cluster B, whereas 91% of the Chinese isolates were in cluster A. The NTS region of the rRNA gene was divided into four major groups (I-IV) based on DNA sequencing. The majority of Japanese isolates were type IV (51%), and the majority of Chinese isolates were type III (75%). These results suggest that although Japan and China are neighboring countries, the origins of T. rubrum isolates from these countries may not be identical. These findings provide information useful for tracing the global transmission routes of T. rubrum.

  9. Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must.

    PubMed

    Mañes-Lázaro, Rosario; Ferrer, Sergi; Rodas, Ana María; Urdiain, Mercedes; Pardo, Isabel

    2008-12-01

    A Lactobacillus strain, designated 203(T), previously isolated from Bobal grape must was characterized phylogenetically, genotypically and phenotypically in order to establish whether it represents a novel species. On the basis of the 16S rRNA gene sequence, strain 203(T) was shown to belong to the genus Lactobacillus, falling within the Lactobacillus alimentarius-Lactobacillus farciminis group and being closely related to the type strains of L. alimentarius, Lactobacillus kimchii and Lactobacillus paralimentarius. DNA-DNA hybridization results confirmed the separate status of strain 203(T) at the species level. To establish the similarities and differences between 203(T) and the three aforementioned closest species, the following methods were used: amplified rDNA restriction analysis, analysis of the 16S-23S rDNA intergenic spacer region, random amplification of polymorphic DNA (RAPD) profiling, ribotyping, carbohydrate fermentation and physiological tests. Strain 203(T) could be differentiated genetically using RAPD analysis and ribotyping. Phenotypically, it can be distinguished from its closest relatives by its ability to grow at pH 3.3, by gas production from gluconate and by certain carbohydrate fermentations. On the basis of these data, strain 203(T) represents a novel species of the genus Lactobacillus, for which the name Lactobacillus bobalius sp. nov. is proposed. The type strain is 203(T) (=CECT 7310(T) =DSM 19674(T)).

  10. Storage and utilization of HLA genomic data--new approaches to HLA typing.

    PubMed

    Helmberg, W

    2000-01-01

    Currently available DNA-based HLA typing assays can provide detailed information about sequence motifs of a tested sample. It is still a common practice, however, for information acquired by high-resolution sequence specific oligonucleotide probe (SSOP) typing or sequence specific priming (SSP) to be presented in a low-resolution serological format. Unfortunately, this representation can lead to significant loss of useful data in many cases. An alternative to assigning allele equivalents to suchDNA typing results is simply to store the observed typing pattern and utilize the information with the help of Virtual DNA Analysis (VDA). Interpretation of the stored typing patterns can then be updated based on newly defined alleles, assuming the sequence motifs detected by the typing reagents are known. Rather than updating reagent specificities in individual laboratories, such updates should be performed in a central, publicly available sequence database. By referring to this database, HLA genomic data can then be stored and transferred between laboratories without loss of information. The 13th International Histocompatibility Workshop offers an ideal opportunity to begin building this common database for the entire human MHC.

  11. 16S Ribosomal DNA Characterization of Nitrogen-Fixing Bacteria Isolated from Banana (Musa spp.) and Pineapple (Ananas comosus (L.) Merril)

    PubMed Central

    Magalhães Cruz, Leonardo; Maltempi de Souza, Emanuel; Weber, Olmar Baler; Baldani, José Ivo; Döbereiner, Johanna; de Oliveira Pedrosa, Fábio

    2001-01-01

    Nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril) were characterized by amplified 16S ribosomal DNA restriction analysis and 16S rRNA sequence analysis. Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans, Burkholderia brasilensis, and Burkholderia tropicalis were identified. Eight other types were placed in close proximity to these genera and other alpha and beta Proteobacteria. PMID:11319127

  12. An optimized procedure for obtaining DNA from fired and unfired ammunition.

    PubMed

    Montpetit, Shawn; O'Donnell, Patrick

    2015-07-01

    Gun crimes are a significant problem facing law enforcement agencies. Traditional forensic examination of firearms involves comparisons of markings imparted to bullets and cartridge casings during the firing process. DNA testing of casings and cartridges may not be routinely done in crime laboratories due a variety of factors including the typically low amounts of DNA recovered. The San Diego Police Department (SDPD) Crime Laboratory conducted a study to optimize the collection and profiling of DNA from fired and unfired ammunition. The method was optimized to where interpretable DNA results were obtained for 26.1% of the total number of forensic casework evidence samples, and provided some insights into the level of secondary transfer that might be expected from this type of evidence. Briefly detailed are the results from the experimental study and the forensic casework analysis using the optimized process. Mixtures (samples having more DNA types than the loader's known genotype detected or visible at any marker) were obtained in 39.8% of research samples and the likely source of DNA mixtures is discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Overexpression of Human-Derived DNMT3A Induced Intergenerational Inheritance of Active DNA Methylation Changes in Rat Sperm

    PubMed Central

    Zheng, Xiaoguo; Li, Zhenhua; Wang, Guishuan; Li, Zhengzheng; Liang, Ajuan; Wang, Hanshu; Dai, Yubing; Huang, Xingxu; Chen, Xuejin; Ma, Yuanwu; Sun, Fei

    2017-01-01

    DNA methylation is the major focus of studies on paternal epigenetic inheritance in mammals, but most previous studies about inheritable DNA methylation changes are passively induced by environmental factors. However, it is unclear whether the active changes mediated by variations in DNA methyltransferase activity are heritable. Here, we established human-derived DNMT3A (hDNMT3A) transgenic rats to study the effect of hDNMT3A overexpression on the DNA methylation pattern of rat sperm and to investigate whether this actively altered DNA methylation status is inheritable. Our results revealed that hDNMT3A was overexpressed in the testis of transgenic rats and induced genome-wide alterations in the DNA methylation pattern of rat sperm. Among 5438 reliable loci identified with 64 primer-pair combinations using a methylation-sensitive amplification polymorphism method, 28.01% showed altered amplified band types. Among these amplicons altered loci, 68.42% showed an altered DNA methylation status in the offspring of transgenic rats compared with wild-type rats. Further analysis based on loci which had identical DNA methylation status in all three biological replicates revealed that overexpression of hDNMT3A in paternal testis induced hypermethylation in sperm of both genotype-negative and genotype-positive offspring. Among the differentially methylated loci, 34.26% occurred in both positive and negative offspring of transgenic rats, indicating intergenerational inheritance of active DNA methylation changes in the absence of hDNM3A transmission. Furthermore, 75.07% of the inheritable loci were hyper-methylated while the remaining were hypomethylated. Distribution analysis revealed that the DNA methylation variations mainly occurred in introns and intergenic regions. Functional analysis revealed that genes related to differentially methylated loci were involved in a wide range of functions. Finally, this study demonstrated that active DNA methylation changes induced by hDNMT3A expression were intergenerationally inherited by offspring without transmission of the transgene, which provided evidence for the transmission of active endogenous-factors-induced epigenetic variations. PMID:29312436

  14. Enterobacter xiangfangensis sp. nov., isolated from Chinese traditional sourdough, and reclassification of Enterobacter sacchari Zhu et al. 2013 as Kosakonia sacchari comb. nov.

    PubMed

    Gu, Chun Tao; Li, Chun Yan; Yang, Li Jie; Huo, Gui Cheng

    2014-08-01

    A Gram-stain-negative bacterial strain, 10-17(T), was isolated from traditional sourdough in Heilongjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, RNA polymerase β subunit (rpoB) gene sequence analysis, DNA gyrase (gyrB) gene sequence analysis, initiation translation factor 2 (infB) gene sequence analysis, ATP synthase β subunit (atpD) gene sequence analysis, fatty acid methyl ester analysis, determination of DNA G+C content, DNA-DNA hybridization and an analysis of phenotypic features. Strain 10-17(T) was phylogenetically related to Enterobacter hormaechei CIP 103441(T), Enterobacter cancerogenus LMG 2693(T), Enterobacter asburiae JCM 6051(T), Enterobacter mori LMG 25706(T), Enterobacter ludwigii EN-119(T) and Leclercia adecarboxylata LMG 2803(T), having 99.5%, 99.3%, 98.7%, 98.5%, 98.4% and 98.4% 16S rRNA gene sequence similarity, respectively. On the basis of polyphasic characterization data obtained in the present study, a novel species, Enterobacter xiangfangensis sp. nov., is proposed and the type strain is 10-17(T) ( = LMG 27195(T) = NCIMB 14836(T) = CCUG 62994(T)). Enterobacter sacchari Zhu et al. 2013 was reclassified as Kosakonia sacchari comb. nov. on the basis of 16S rRNA, rpoB, gyrB, infB and atpD gene sequence analysis and the type strain is strain SP1(T)( = CGMCC 1.12102(T) = LMG 26783(T)). © 2014 IUMS.

  15. The organization of repeating units in mitochondrial DNA from yeast petite mutants.

    PubMed

    Bos, J L; Heyting, C; Van der Horst, G; Borst, P

    1980-04-01

    We have reinvestigated the linkage orientation of repeating units in mtDNAs of yeast ρ(-) petite mutants containing an inverted duplication. All five petite mtDNAs studied contain a continuous segment of wild-type mtDNA, part of which is duplicated and present in inverted form in the repeat. We show by restriction enzyme analysis that the non-duplicated segments between the inverted duplications are present in random orientation in all five petite mtDNAs. There is no segregation of sub-types with unique orientation. We attribute this to the high rate of intramolecular recombination between the inverted duplications. The results provide additional evidence for the high rate of recombination of yeast mtDNA even in haploid ρ(-) petite cells.We conclude that only two types of stable sequence organization exist in petite mtDNA: petites without an inverted duplication have repeats linked in straight head-to-tail arrangement (abcabc); petites with an inverted duplication have repeats in which the non-duplicated segments are present in random orientation.

  16. Association of Tissue-Specific DNA Methylation Alterations with α-Thalassemia Southeast Asian Deletion

    PubMed Central

    Pangeson, Tanapat; Sanguansermsri, Phanchana; Sanguansermsri, Torpong; Seeratanachot, Teerapat; Suwanakhon, Narutchala; Srikummool, Metawee; Kaewkong, Worasak; Mahingsa, Khwanruedee

    2017-01-01

    In the wild-type allele, DNA methylation levels of 10 consecutive CpG sites adjacent to the upstream 5′-breakpoint of α-thalassemia Southeast Asian (SEA) deletion are not different between placenta and leukocytes. However, no previous study has reported the map of DNA methylation in the SEA allele. This report aims to show that the SEA mutation is associated with DNA methylation changes, resulting in differential methylation between placenta and leukocytes. Methylation-sensitive high-resolution analysis was used to compare DNA methylation among placenta, leukocytes, and unmethylated control DNA. The result indicates that the DNA methylation between placenta and leukocyte DNA is different and shows that the CpG status of both is not fully unmethylated. Mapping of individual CpG sites was performed by targeted bisulfite sequencing. The DNA methylation level of the 10 consecutive CpG sites was different between placenta and leukocyte DNA. When the 10th CpG of the mutation allele was considered as a hallmark for comparing DNA methylation level, it was totally different from the unmethylated 10th CpG of the wild-type allele. Finally, the distinct DNA methylation patterns between both DNA were extracted. In total, 24 patterns were found in leukocyte samples and 9 patterns were found in placenta samples. This report shows that the large deletion is associated with DNA methylation change. In further studies for clinical application, the distinct DNA methylation pattern might be a potential marker for detecting cell-free fetal DNA. PMID:29162979

  17. Regulation of Xenopus laevis DNA topoisomerase I activity by phosphorylation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiserman, H.B.; Ingebritsen, T.S.; Benbow, R.M.

    1988-05-03

    DNA topoisomerase I has been purified to electrophoretic homogeneity from ovaries of the frog Xenopus laevis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most purified fraction revealed a single major band at 110 kDa and less abundant minor bands centered at 62 kDa. Incubation of the most purified fraction with immobilized calf intestinal alkaline phosphatase abolished all DNA topoisomerase enzymatic activity in a time-dependent reaction. Treatment of the dephosphorylated X. laevis DNA topoisomerase I with a X. laevis casein kinase type II activity and ATP restored DNA topoisomerase activity to a level higher than that observed in the most purifiedmore » fraction. In vitro labeling experiments which employed the most purified DNA topoisomerase I fraction, (..gamma..-/sup 32/P)ATP, and the casein kinase type II enzyme showed that both the 110- and 62-kDa bands became phosphorylated in approximately molar proportions. Phosphoamino acid analysis showed that only serine residues became phosphorylated. Phosphorylation was accompanied by an increase in DNA topoisomerase activity in vitro. Dephosphorylation of DNA topoisomerase I appears to block formation of the initial enzyme-substrate complex on the basis of the failure of the dephosphorylated enzyme to nick DNA in the presence of camptothecin. The authors conclude that X. laevis DNA topoisomerase I is partially phosphorylated as isolated and that this phosphorylation is essential for expression of enzymatic activity in vitro. On the basis of the ability of the casein kinase type II activity to reactivate dephosphorylated DNA topoisomerase I, they speculate that this kinase may contribute to the physiological regulation of DNA topoisomerase I activity.« less

  18. An epigenome-wide association study of total serum IgE in Hispanic children.

    PubMed

    Chen, Wei; Wang, Ting; Pino-Yanes, Maria; Forno, Erick; Liang, Liming; Yan, Qi; Hu, Donglei; Weeks, Daniel E; Baccarelli, Andrea; Acosta-Perez, Edna; Eng, Celeste; Han, Yueh-Ying; Boutaoui, Nadia; Laprise, Catherine; Davies, Gwyneth A; Hopkin, Julian M; Moffatt, Miriam F; Cookson, William O C M; Canino, Glorisa; Burchard, Esteban G; Celedón, Juan C

    2017-08-01

    Total IgE is a therapeutic target in patients with allergic diseases. DNA methylation in white blood cells (WBCs) was associated with total IgE levels in an epigenome-wide association study of white subjects. Whether DNA methylation of eosinophils explains these findings is insufficiently understood. We tested for association between genome-wide DNA methylation in WBCs and total IgE levels in 2 studies of Hispanic children: the Puerto Rico Genetics of Asthma and Lifestyle Study (PR-GOAL; n = 306) and the Genes-environments and Admixture in Latino Americans (GALA II) study (n = 573). Whole-genome methylation of DNA from WBCs was measured by using the Illumina Infinium HumanMethylation450 BeadChip. Total IgE levels were measured by using the UniCAP 100 system. In PR-GOAL WBC types (ie, neutrophils, eosinophils, basophils, lymphocytes, and monocytes) in peripheral blood were measured by using Coulter Counter techniques. In the GALA II study WBC types were imputed. Multivariable linear regression was used for the analysis of DNA methylation and total IgE levels, which was first conducted separately for each cohort, and then results from the 2 cohorts were combined in a meta-analysis. CpG sites in multiple genes, including novel findings and results previously reported in white subjects, were significantly associated with total IgE levels. However, adjustment for WBC types resulted in markedly fewer significant sites. Top findings from this adjusted meta-analysis were in the genes ZFPM1 (P = 1.5 × 10 -12 ), ACOT7 (P = 2.5 × 10 -11 ), and MND1 (P = 1.4 × 10 -9 ). In an epigenome-wide association study adjusted for WBC types (including eosinophils), methylation changes in genes enriched in pathways relevant to asthma and immune responses were associated with total IgE levels among Hispanic children. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Comparison of hard tissues that are useful for DNA analysis in forensic autopsy.

    PubMed

    Kaneko, Yu; Ohira, Hiroshi; Tsuda, Yukio; Yamada, Yoshihiro

    2015-11-01

    Forensic analysis of DNA from hard tissues can be important when investigating a variety of cases resulting from mass disaster or criminal cases. This study was conducted to evaluate the most suitable tissues, method and sample size for processing of hard tissues prior to DNA isolation. We also evaluated the elapsed time after death in relation to the quantity of DNA extracted. Samples of hard tissues (37 teeth, 42 skull, 42 rib, and 39 nails) from 42 individuals aged between 50 and 83 years were used. The samples were taken from remains following forensic autopsy (from 2 days to 2 years after death). To evaluate the integrity of the nuclear DNA isolated, the percentage of allele calls for short tandem repeat profiles were compared between the hard tissues. DNA typing results indicated that until 1 month after death, any of the four hard tissue samples could be used as an alternative to teeth, allowing analysis of all of the loci. However, in terms of the sampling site, collection method and sample size adjustment, the rib appeared to be the best choice in view of the ease of specimen preparation. Our data suggest that the rib could be an alternative hard tissue sample for DNA analysis of human remains. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Influence of pasteurization, brining conditions and production environment on the microbiota of artisan Gouda-type cheeses.

    PubMed

    Van Hoorde, Koenraad; Heyndrickx, Marc; Vandamme, Peter; Huys, Geert

    2010-05-01

    To monitor the effect of the indigenous milk microbiota and of technological and environmental parameters on the microbiota established in ripened cheese, the diversity and dynamics of the predominant microbial communities in artisan Gouda-type cheeses produced under different conditions was studied. A total of 22 cheese types differing in milk source, milk treatment, production environment and brining conditions were analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) using total DNA extracts as well as DNA extracted from culturable fractions. Through band position analysis and band sequencing, the majority of DGGE bands could be attributed to lactic acid bacteria (LAB), although a few bands also belonged to staphylococci and gamma-Proteobacteria. Aided by principal component analysis (PCA) and multivariate analysis of variance (MANOVA), cheeses produced at different locations could clearly be differentiated. The same approach also allowed to distinguish raw and pasteurized milk cheeses, the former showing a more diverse microbiota in terms of a higher species richness and number of DGGE bands. No substantial differences were found between cheeses brined at two different locations. In conclusion, the combined PCR-DGGE approach relying on both total DNA extracts and culturable fractions proved its value for analyzing the effect of technological and environmental parameters on the diversity and dynamics of the microbiota in Gouda-type cheeses. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. Pseudoscalar lattice modes in the amino acid crystals and DNA

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Sverbil, V. P.; Gorshunov, B. P.; Seredin, A. I.

    2017-11-01

    Intense sharp lines corresponding to the librational modes were found in the low-frequency Raman scattering spectra of the glycine, lysine, asparagine and tyrosine aminoacids as well as in the dry DNA crystal lattices. According to the group-theoretical analysis such modes were assigned to the pseudoscalar type of symmetry.

  2. Image Analysis of DNA Fiber and Nucleus in Plants.

    PubMed

    Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi

    2016-01-01

    Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.

  3. DNA methylation and genome rearrangement characteristics of phase change in cultured shoots of Sequoia sempervirens.

    PubMed

    Huang, Li-Chun; Hsiao, Lin-June; Pu, Szu-Yuan; Kuo, Ching-I; Huang, Bau-Lian; Tseng, Tsung-Che; Huang, Hao-Jen; Chen, Yu-Ting

    2012-06-01

    Epigenetic machinery regulates the expression of individual genes and plays a crucial role in globally shaping and maintaining developmental patterning. We studied the extent of DNA methylation in the nucleus, mitochondrion and chloroplast in cultured Sequoia sempervirens (coast redwood) adult, juvenile and rejuvenated shoots by measuring the ratio of methylcytosine to total cytosine using high-performance liquid chromatography (HPLC). We also analyzed nuclear DNA (nuDNA) polymorphisms of different shoot types by methylation-sensitive amplified fragment length polymorphism (MSAP) and Southern blot analysis. The extent of nuDNA methylation was greater in the adult vegetative than juvenile and rejuvenated shoots (8% vs 6.5-7.5%). In contrast, the proportion of methylcytosine was higher in mitochondrial DNA (mDNA) of juvenile and rejuvenated shoots than adult shoots (6.6% vs 7.8-8.2%). MSAP and Southern blot analyses identified three MSAP fragments which could be applied as phase-specific molecular markers. We also found nuclear genome and mtDNA rearrangement may be as important as DNA methylation status during the phase change. Our findings strongly suggest that DNA methylation and genome rearrangement may affect the dynamic tissue- and cell type-specific changes that determine the developmental phase of S. sempervirens shoots. Copyright © Physiologia Plantarum 2012.

  4. Agreement in DNA methylation levels from the Illumina 450K array across batches, tissues, and time

    PubMed Central

    Forest, Marie; O'Donnell, Kieran J.; Voisin, Greg; Gaudreau, Helene; MacIsaac, Julia L.; McEwen, Lisa M.; Silveira, Patricia P.; Steiner, Meir; Kobor, Michael S.; Meaney, Michael J.; Greenwood, Celia M.T.

    2018-01-01

    ABSTRACT Epigenome-wide association studies (EWAS) have focused primarily on DNA methylation as a chemically stable and functional epigenetic modification. However, the stability and accuracy of the measurement of methylation in different tissues and extraction types is still being actively studied, and the longitudinal stability of DNA methylation in commonly studied peripheral tissues is of great interest. Here, we used data from two studies, three tissue types, and multiple time points to assess the stability of DNA methylation measured with the Illumina Infinium HumanMethylation450 BeadChip array. Redundancy analysis enabled visual assessment of agreement of replicate samples overall and showed good agreement after removing effects of tissue type, age, and sex. At the probe level, analysis of variance contrasts separating technical and biological replicates clearly showed better agreement between technical replicates versus longitudinal samples, and suggested increased stability for buccal cells versus blood or blood spots. Intraclass correlations (ICCs) demonstrated that inter-individual variability is of similar magnitude to within-sample variability at many probes; however, as inter-individual variability increased, so did ICC. Furthermore, we were able to demonstrate decreasing agreement in methylation levels with time, despite a maximal sampling interval of only 576 days. Finally, at 6 popular candidate genes, there was a large range of stability across probes. Our findings highlight important sources of technical and biological variation in DNA methylation across different tissues over time. These data will help to inform longitudinal sampling strategies of future EWAS. PMID:29381404

  5. Genetic heterogeneity of Usher syndrome type II.

    PubMed Central

    Pieke Dahl, S; Kimberling, W J; Gorin, M B; Weston, M D; Furman, J M; Pikus, A; Möller, C

    1993-01-01

    Usher syndrome is an autosomal recessive disorder characterised by retinitis pigmentosa and congenital sensorineural hearing loss. A gene for Usher syndrome type II (USH2) has been localised to chromosome 1q32-q41. DNA from a family with four of seven sibs affected with clinical characteristics of Usher syndrome type II was genotyped using markers spanning the 1q32-1q41 region. These included D1S70 and D1S81, which are believed to flank USH2. Genotypic results and subsequent linkage analysis indicated non-linkage of this family to these markers. The A test analysis for heterogeneity with this family and 32 other Usher type II families was statistically significant at p < 0.05. Further clinical evaluation of this family was done in light of the linkage results to determine if any phenotypic characteristics would allow for clinical identification of the unlinked type. No clear phenotypic differences were observed; however, this unlinked family may represent a previously unreported subtype of Usher type II characterised by a milder form of retinitis pigmentosa and mild vestibular abnormalities. Heterogeneity of Usher syndrome type II complicates efforts to isolate and clone Usher syndrome genes using linkage analysis and limits the use of DNA markers in early detection of Usher type II. Images PMID:7901420

  6. Global DNA hypomethylation in peripheral blood leukocytes as a biomarker for cancer risk: a meta-analysis.

    PubMed

    Woo, Hae Dong; Kim, Jeongseon

    2012-01-01

    Good biomarkers for early detection of cancer lead to better prognosis. However, harvesting tumor tissue is invasive and cannot be routinely performed. Global DNA methylation of peripheral blood leukocyte DNA was evaluated as a biomarker for cancer risk. We performed a meta-analysis to estimate overall cancer risk according to global DNA hypomethylation levels among studies with various cancer types and analytical methods used to measure DNA methylation. Studies were systemically searched via PubMed with no language limitation up to July 2011. Summary estimates were calculated using a fixed effects model. The subgroup analyses by experimental methods to determine DNA methylation level were performed due to heterogeneity within the selected studies (p<0.001, I(2): 80%). Heterogeneity was not found in the subgroup of %5-mC (p = 0.393, I(2): 0%) and LINE-1 used same target sequence (p = 0.097, I(2): 49%), whereas considerable variance remained in LINE-1 (p<0.001, I(2): 80%) and bladder cancer studies (p = 0.016, I(2): 76%). These results suggest that experimental methods used to quantify global DNA methylation levels are important factors in the association study between hypomethylation levels and cancer risk. Overall, cancer risks of the group with the lowest DNA methylation levels were significantly higher compared to the group with the highest methylation levels [OR (95% CI): 1.48 (1.28-1.70)]. Global DNA hypomethylation in peripheral blood leukocytes may be a suitable biomarker for cancer risk. However, the association between global DNA methylation and cancer risk may be different based on experimental methods, and region of DNA targeted for measuring global hypomethylation levels as well as the cancer type. Therefore, it is important to select a precise and accurate surrogate marker for global DNA methylation levels in the association studies between global DNA methylation levels in peripheral leukocyte and cancer risk.

  7. Clarification of the Concept of Ganoderma orbiforme with High Morphological Plasticity

    PubMed Central

    Wang, Dong-Mei; Wu, Sheng-Hua; Yao, Yi-Jian

    2014-01-01

    Ganoderma has been considered a very difficult genus among the polypores to classify and is currently in a state of taxonomic chaos. In a study of Ganoderma collections including numerous type specimens, we found that six species namely G. cupreum, G. densizonatum, G. limushanense, G. mastoporum, G. orbiforme, G. subtornatum, and records of G. fornicatum from Mainland China and Taiwan are very similar to one another in basidiocarp texture, pilear cuticle structure, context color, pore color and basidiospore characteristics. Further, we sequenced the nrDNA ITS region (ITS1 and ITS2) and partial mtDNA SSU region of the studied materials, and performed phylogenetic analyses based on these sequence data. The nrDNA ITS sequence analysis results show that the eight nrDNA ITS sequences derived from this study have single-nucleotide polymorphisms in ITS1 and/or ITS2 at inter- and intra-individual levels. In the nrDNA ITS phylogenetic trees, all the sequences from this study are grouped together with those of G. cupreum and G. mastoporum retrieved from GenBank to form a distinct clade. The mtDNA SSU sequence analysis results reveal that the five mtDNA SSU sequences derived from this study are clustered together with those of G. cupreum retrieved from GenBank and also form a distinct clade in the mtDNA SSU phylogenetic trees. Based on morphological and molecular data, we conclude that the studied taxa are conspecific. Among the names assigned to this species, G. fornicatum given to Asian collections has nomenclatural priority over the others. However, the type of G. fornicatum from Brazil is probably lost and a modern description based on the type lacks. The identification of the Asian collections to G. fornicatum therefore cannot be confirmed. To the best of our knowledge, G. orbiforme is the earliest valid name for use. PMID:24875218

  8. DNA-PCR analysis of bloodstains sampled by the polyvinyl-alcohol method.

    PubMed

    Schyma, C; Huckenbeck, W; Bonte, W

    1999-01-01

    Among the usual techniques of sampling gunshot residues (GSR), the polyvinyl-alcohol method (PVAL) includes the advantage of embedding all particles, foreign bodies and stains on the surface of the shooter's hand in exact and reproducible topographic localization. The aim of the present study on ten persons killed by firearms was to check the possibility of DNA-PCR typing of blood traces embedded in the PVAL gloves in a second step following GSR analysis. The results of these examinations verify that the PVAL technique does not include factors that inhibit successful PCR typing. Thus the PVAL method can be recommended as a combination technique to secure and preserve inorganic and biological traces at the same time.

  9. High-Resolution Melting Analysis for Rapid Detection of Sequence Type 131 Escherichia coli.

    PubMed

    Harrison, Lucas B; Hanson, Nancy D

    2017-06-01

    Escherichia coli isolates belonging to the sequence type 131 (ST131) clonal complex have been associated with the global distribution of fluoroquinolone and β-lactam resistance. Whole-genome sequencing and multilocus sequence typing identify sequence type but are expensive when evaluating large numbers of samples. This study was designed to develop a cost-effective screening tool using high-resolution melting (HRM) analysis to differentiate ST131 from non-ST131 E. coli in large sample populations in the absence of sequence analysis. The method was optimized using DNA from 12 E. coli isolates. Singleplex PCR was performed using 10 ng of DNA, Type-it HRM buffer, and multilocus sequence typing primers and was followed by multiplex PCR. The amplicon sizes ranged from 630 to 737 bp. Melt temperature peaks were determined by performing HRM analysis at 0.1°C resolution from 50 to 95°C on a Rotor-Gene Q 5-plex HRM system. Derivative melt curves were compared between sequence types and analyzed by principal component analysis. A blinded study of 191 E. coli isolates of ST131 and unknown sequence types validated this methodology. This methodology returned 99.2% specificity (124 true negatives and 1 false positive) and 100% sensitivity (66 true positives and 0 false negatives). This HRM methodology distinguishes ST131 from non-ST131 E. coli without sequence analysis. The analysis can be accomplished in about 3 h in any laboratory with an HRM-capable instrument and principal component analysis software. Therefore, this assay is a fast and cost-effective alternative to sequencing-based ST131 identification. Copyright © 2017 Harrison and Hanson.

  10. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.

    PubMed

    Excoffier, L; Smouse, P E; Quattro, J M

    1992-06-01

    We present here a framework for the study of molecular variation within a single species. Information on DNA haplotype divergence is incorporated into an analysis of variance format, derived from a matrix of squared-distances among all pairs of haplotypes. This analysis of molecular variance (AMOVA) produces estimates of variance components and F-statistic analogs, designated here as phi-statistics, reflecting the correlation of haplotypic diversity at different levels of hierarchical subdivision. The method is flexible enough to accommodate several alternative input matrices, corresponding to different types of molecular data, as well as different types of evolutionary assumptions, without modifying the basic structure of the analysis. The significance of the variance components and phi-statistics is tested using a permutational approach, eliminating the normality assumption that is conventional for analysis of variance but inappropriate for molecular data. Application of AMOVA to human mitochondrial DNA haplotype data shows that population subdivisions are better resolved when some measure of molecular differences among haplotypes is introduced into the analysis. At the intraspecific level, however, the additional information provided by knowing the exact phylogenetic relations among haplotypes or by a nonlinear translation of restriction-site change into nucleotide diversity does not significantly modify the inferred population genetic structure. Monte Carlo studies show that site sampling does not fundamentally affect the significance of the molecular variance components. The AMOVA treatment is easily extended in several different directions and it constitutes a coherent and flexible framework for the statistical analysis of molecular data.

  11. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)☆

    PubMed Central

    Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagacé, Robert; Irwin, Jodi

    2013-01-01

    Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325

  12. In Vivo Control of CpG and Non-CpG DNA Methylation by DNA Methyltransferases

    PubMed Central

    Arand, Julia; Spieler, David; Karius, Tommy; Branco, Miguel R.; Meilinger, Daniela; Meissner, Alexander; Jenuwein, Thomas; Xu, Guoliang; Leonhardt, Heinrich; Wolf, Verena; Walter, Jörn

    2012-01-01

    The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position–, cell type–, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs. PMID:22761581

  13. Rapid, direct extraction of DNA from soils for PCR analysis using polyvinylpolypyrrolidone spin columns.

    PubMed

    Berthelet, M; Whyte, L G; Greer, C W

    1996-04-15

    Polyvinylpolypyrrolidone spin columns were used to rapidly purify crude soil DNA extracts from humic materials for polymerase chain reaction (PCR) analysis. The PCR detection limit for the tfdC gene, encoding chlorocatechol dioxygenase from the 2,4-dichlorophenoxyacetic acid degradation pathway, was 10(1)-10(2) cells/g soil in inoculated soils. The procedure could be applied to the amplification of biodegradative genes from indigenous microbial populations from a wide variety of soil types, and the entire analysis could be performed within 8 h.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rorsman, F.; Bywater, M.; Knott, T.J.

    The human platelet-derived growth factor (PDGF) A-chain locus was characterized by restriction endonuclease analysis, and the nucleotide sequence of its exons was determined. Seven exons were identified, spanning approximately 22 kilobase pairs of genomic DNA. Alternative exon usage, identified by cDNA cloning, occurs in a human glioblastoma cell line and may give rise to two types of A-chain precursors with different C termini. The exon-intron arrangement was similar to that of the PDGF B-chain/sis locus and seemed to divide the precursor proteins into functional domains. Southern blot analysis of genomic DNA showed that a single PDGF A-chain gene was presentmore » in the human genome.« less

  15. MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens.

    PubMed

    Kamisugi, Yasuko; Schaefer, Didier G; Kozak, Jaroslav; Charlot, Florence; Vrielynck, Nathalie; Holá, Marcela; Angelis, Karel J; Cuming, Andrew C; Nogué, Fabien

    2012-04-01

    The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development.

  16. MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens

    PubMed Central

    Kamisugi, Yasuko; Schaefer, Didier G.; Kozak, Jaroslav; Charlot, Florence; Vrielynck, Nathalie; Holá, Marcela; Angelis, Karel J.; Cuming, Andrew C.; Nogué, Fabien

    2012-01-01

    The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development. PMID:22210882

  17. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1

    PubMed Central

    Erdal, Erkin; Haider, Syed; Rehwinkel, Jan; Harris, Adrian L.

    2017-01-01

    Radiotherapy and chemotherapy are effective treatment methods for many types of cancer, but resistance is common. Recent findings indicate that antiviral type I interferon (IFN) signaling is induced by these treatments. However, the underlying mechanisms still need to be elucidated. Expression of a set of IFN-stimulated genes comprises an IFN-related DNA damage resistance signature (IRDS), which correlates strongly with resistance to radiotherapy and chemotherapy across different tumors. Classically, during viral infection, the presence of foreign DNA in the cytoplasm of host cells can initiate type I IFN signaling. Here, we demonstrate that DNA-damaging modalities used during cancer therapy lead to the release of ssDNA fragments from the cell nucleus into the cytosol, engaging this innate immune response. We found that the factors that control DNA end resection during double-strand break repair, including the Bloom syndrome (BLM) helicase and exonuclease 1 (EXO1), play a major role in generating these DNA fragments and that the cytoplasmic 3′–5′ exonuclease Trex1 is required for their degradation. Analysis of mRNA expression profiles in breast tumors demonstrates that those with lower Trex1 and higher BLM and EXO1 expression levels are associated with poor prognosis. Targeting BLM and EXO1 could therefore represent a novel approach for circumventing the IRDS produced in response to cancer therapeutics. PMID:28279982

  18. Differential DNA Methylation Analysis without a Reference Genome.

    PubMed

    Klughammer, Johanna; Datlinger, Paul; Printz, Dieter; Sheffield, Nathan C; Farlik, Matthias; Hadler, Johanna; Fritsch, Gerhard; Bock, Christoph

    2015-12-22

    Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish). Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org). The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    PubMed

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.

  20. Single-strand conformation polymorphism (SSCP)-based mutation scanning approaches to fingerprint sequence variation in ribosomal DNA of ascaridoid nematodes.

    PubMed

    Zhu, X Q; Gasser, R B

    1998-06-01

    In this study, we assessed single-strand conformation polymorphism (SSCP)-based approaches for their capacity to fingerprint sequence variation in ribosomal DNA (rDNA) of ascaridoid nematodes of veterinary and/or human health significance. The second internal transcribed spacer region (ITS-2) of rDNA was utilised as the target region because it is known to provide species-specific markers for this group of parasites. ITS-2 was amplified by PCR from genomic DNA derived from individual parasites and subjected to analysis. Direct SSCP analysis of amplicons from seven taxa (Toxocara vitulorum, Toxocara cati, Toxocara canis, Toxascaris leonina, Baylisascaris procyonis, Ascaris suum and Parascaris equorum) showed that the single-strand (ss) ITS-2 patterns produced allowed their unequivocal identification to species. While no variation in SSCP patterns was detected in the ITS-2 within four species for which multiple samples were available, the method allowed the direct display of four distinct sequence types of ITS-2 among individual worms of T. cati. Comparison of SSCP/sequencing with the methods of dideoxy fingerprinting (ddF) and restriction endonuclease fingerprinting (REF) revealed that also ddF allowed the definition of the four sequence types, whereas REF displayed three of four. The findings indicate the usefulness of the SSCP-based approaches for the identification of ascaridoid nematodes to species, the direct display of sequence variation in rDNA and the detection of population variation. The ability to fingerprint microheterogeneity in ITS-2 rDNA using such approaches also has implications for studying fundamental aspects relating to mutational change in rDNA.

  1. Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations

    PubMed Central

    Szczurek, Aleksander; Klewes, Ludger; Xing, Jun; Gourram, Amine; Birk, Udo; Knecht, Hans; Dobrucki, Jurek W.; Mai, Sabine

    2017-01-01

    Abstract Advanced light microscopy is an important tool for nanostructure analysis of chromatin. In this report we present a general concept for Single Molecule localization Microscopy (SMLM) super-resolved imaging of DNA-binding dyes based on modifying the properties of DNA and the dye. By careful adjustment of the chemical environment leading to local, reversible DNA melting and hybridization control over the fluorescence signal of the DNA-binding dye molecules can be introduced. We postulate a transient binding as the basis for our variation of binding-activated localization microscopy (BALM). We demonstrate that several intercalating and minor-groove binding DNA dyes can be used to register (optically isolate) only a few DNA-binding dye signals at a time. To highlight this DNA structure fluctuation-assisted BALM (fBALM), we applied it to measure, for the first time, nanoscale differences in nuclear architecture in model ischemia with an anticipated structural resolution of approximately 50 nm. Our data suggest that this approach may open an avenue for the enhanced microscopic analysis of chromatin nano-architecture and hence the microscopic analysis of nuclear structure aberrations occurring in various pathological conditions. It may also become possible to analyse nuclear nanostructure differences in different cell types, stages of development or environmental stress conditions. PMID:28082388

  2. Forensic DNA methylation profiling from minimal traces: How low can we go?

    PubMed

    Naue, Jana; Hoefsloot, Huub C J; Kloosterman, Ate D; Verschure, Pernette J

    2018-03-01

    Analysis of human DNA methylation (DNAm) can provide additional investigative leads in crime cases, e.g. the type of tissue or body fluid, the chronological age of an individual, and differentiation between identical twins. In contrast to the genetic profile, the DNAm level is not the same in every cell. At the single cell level, DNAm represents a binary event at a defined CpG site (methylated versus non-methylated). The DNAm level from a DNA extract however represents the average level of methylation of the CpG of interest of all molecules in the forensic sample. The variance of DNAm levels between replicates is often attributed to technological issues, i.e. degradation of DNA due to bisulfite treatment, preferential amplification of DNA, and amplification failure. On the other hand, we show that stochastic variations can lead to gross fluctuation in the analysis of methylation levels in samples with low DNA levels. This stochasticity in DNAm results is relevant since low DNA amounts (1pg - 1ng) is rather the norm than the exception when analyzing forensic DNA samples. This study describes a conceptual analysis of DNAm profiling and its dependence on the amount of input DNA. We took a close look at the variation of DNAm analysis due to DNA input and its consequences for different DNAm-based forensic applications. As can be expected, the 95%-confidence interval of measured DNAm becomes narrower with increasing amounts of DNA. We compared this aspect for two different DNAm-based forensic applications: body fluid identification and chronological age determination. Our study shows that DNA amount should be well considered when using DNAm for forensic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Simultaneous analysis of nuclear and mitochondrial DNA, mRNA and miRNA from backspatter from inside parts of firearms generated by shots at "triple contrast" doped ballistic models.

    PubMed

    Grabmüller, Melanie; Schyma, Christian; Euteneuer, Jan; Madea, Burkhard; Courts, Cornelius

    2015-09-01

    When a firearm projectile hits a biological target a spray of biological material (e.g., blood and tissue fragments) can be propelled from the entrance wound back towards the firearm. This phenomenon has become known as "backspatter" and if caused by contact shots or shots from short distances traces of backspatter may reach, consolidate on, and be recovered from, the inside surfaces of the firearm. Thus, a comprehensive investigation of firearm-related crimes must not only comprise of wound ballistic assessment but also backspatter analysis, and may even take into account potential correlations between these emergences. The aim of the present study was to evaluate and expand the applicability of the "triple contrast" method by probing its compatibility with forensic analysis of nuclear and mitochondrial DNA and the simultaneous investigation of co-extracted mRNA and miRNA from backspatter collected from internal components of different types of firearms after experimental shootings. We demonstrate that "triple contrast" stained biological samples collected from the inside surfaces of firearms are amenable to forensic co-analysis of DNA and RNA and permit sequence analysis of the entire mtDNA displacement-loop, even for "low template" DNA amounts that preclude standard short tandem repeat DNA analysis. Our findings underscore the "triple contrast" method's usefulness as a research tool in experimental forensic ballistics.

  4. A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis

    PubMed Central

    2017-01-01

    Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described. PMID:28542338

  5. A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis.

    PubMed

    Young, Brian; King, Jonathan L; Budowle, Bruce; Armogida, Luigi

    2017-01-01

    Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described.

  6. [Preinvasive vulvar and cervical cancer in a 32-year-old woman, DNA HPV 16 positive with mtDNA mutation--case study].

    PubMed

    Kedzia, Witold; Malkowska-Walczak, Blanka; Józefiak, Agata; Wadowicka, Alicja; Guglas, Bogna; Pruski, Dominik; Kedzia, Helena; Spaczyński, Marek

    2009-07-01

    Coincidence of preinvasive vulvar and cervical cancer in young women is very rare. Lesions like VIN 3/preinvasive vulvar cancer and CIN 3/preinvasive cervical cancer are strictly connected with viral infection and are multilocular. In the presented case the following tests have been performed: HPV DNA test for the presence of 13 oncogenic HPV types, mRNA HPV test for the presence of transcripts for HPV 16, 18, 31, 33, 45 and the analysis of mtDNA D-Loop region. In the examined patient HPV 16 infection, as well as the presence of transcripts for HPV 16 E6/7 were diagnosed. The analysis of mtDNA D-Loop region showed nucleotide lesions like: T>C 16.192, T>C 16.223, T>C 16.292, C>T 16.325, C>T 16.579.

  7. Explanation for excessive DNA single-strand breaks and endogenous repair foci in pluripotent mouse embryonic stem cells.

    PubMed

    Banáth, J P; Bañuelos, C A; Klokov, D; MacPhail, S M; Lansdorp, P M; Olive, P L

    2009-05-01

    Pluripotent mouse embryonic stem cells (mES cells) exhibit approximately 100 large gammaH2AX repair foci in the absence of measurable numbers of DNA double-strand breaks. Many of these cells also show excessive numbers of DNA single-strand breaks (>10,000 per cell) when analyzed using the alkaline comet assay. To understand the reasons for these unexpected observations, various methods for detecting DNA strand breaks were applied to wild-type mES cells and to mES cells lacking H2AX, ATM, or DNA-PKcs. H2AX phosphorylation and expression of other repair complexes were measured using flow and image analysis of antibody-stained cells. Results indicate that high numbers of endogenous gammaH2AX foci and single-strand breaks in pluripotent mES cells do not require ATM or DNA-PK kinase activity and appear to be associated with global chromatin decondensation rather than pre-existing DNA damage. This will limit applications of gammaH2AX foci analysis in mES cells to relatively high levels of initial or residual DNA damage. Excessive numbers of single-strand breaks in the alkaline comet assay can be explained by the vulnerability of replicating chromatin in mES cells to osmotic shock. This suggests that caution is needed in interpreting results with the alkaline comet assay when applied to certain cell types or after treatment with agents that make chromatin vulnerable to osmotic changes. Differentiation of mES cells caused a reduction in histone acetylation, gammaH2AX foci intensity, and DNA single-strand breakage, providing a link between chromatin structural organization, excessive gammaH2AX foci, and sensitivity of replicating mES cell chromatin to osmotic shock.

  8. Application of pulsed field gel electrophoresis to the 1993 epidemic of whooping cough in the UK.

    PubMed Central

    Syedabubakar, S. N.; Matthews, R. C.; Preston, N. W.; Owen, D.; Hillier, V.

    1995-01-01

    The purpose of this study was to DNA fingerprint the majority (64%) of isolates received at the Pertussis Reference Laboratory during the 1993 whooping cough epidemic by pulsed field gel electrophoresis of Xba I-generated restriction digests. Two DNA restriction patterns, types 1 and 3, predominated (40% and 23%, respectively, of 180 isolates) but type 2, identified in a previous study was notably absent. Twenty-one new DNA types occurred (24% of isolates), some being atypical as bands 155-230 kb were no longer conserved, but there was no statistically significant difference in their incidence in the upswing (June-September) compared to the downswing (October-December) phase of the epidemic. There was a relatively high proportion of new types, compared to type 1, at the peak (September). About 50% of isolates received were from the North Western Region, where 44% of isolates were DNA type 1. Whereas only 1 out of 10 isolates from Scotland were of this type, suggesting some geographic variation. Statistically significant findings included a higher proportion of isolates from female patients (P < 0.01), most marked in the 12-24 months age group (P < 0.05); a higher proportion of infants under 12 months requiring hospital admission compared to older children (P < 0.05); and a greater number of isolates from unvaccinated children (P < 0.01). Analysis of serotype according to four age groups (under 3 months, 3-12 months, 12-24 months and above 2 years) showed statistically significant differences (P < 0.05) with a noticeably lower proportion (38%) of serotype 1,3 in 3-12 months age group and higher prevalence (74%) of serotype 1,3 in the 12-24 months age group. There was no correlation between DNA type and serotype. Images Fig. 2 PMID:7641824

  9. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme.

    PubMed Central

    Burke, W D; Calalang, C C; Eickbush, T H

    1987-01-01

    Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover. Images PMID:2439905

  10. Enterococcus Xinjiangensis sp. nov., Isolated from Yogurt of Xinjiang, China.

    PubMed

    Ren, Xiaopu; Li, Mingyang; Guo, Dongqi

    2016-09-01

    A Gram-strain-positive bacterial strain 48(T) was isolated from traditional yogurt in Xinjiang Province, China. The bacterium was characterized by a polyphasic approach, including 16S rRNA gene sequence analysis, polymerase α subunit (rpoA) gene sequence analysis, determination of DNA G+C content, DNA-DNA hybridization with the type strain of Enterococcus ratti and analysis of phenotypic features. Strain 48(T) accounted for 96.1, 95.8, 95.8, and 95.7 % with Enterococcus faecium CGMCC 1.2136(T), Enterococcus hirae ATCC 9790(T), Enterococcus durans CECT 411(T), and E. ratti ATCC 700914(T) in the 16S rRNA gene sequence similarities, respectively. The sequence of rpoA gene showed similarities of 99.0, 96.0, 96.0, and 96 % with that of E. faecium ATCC 19434(T), Enterococcus villorum LMG12287, E. hirae ATCC 9790(T), and E. durans ATCC 19432(T), respectively. Based upon of polyphasic characterization data obtained in the study, a novel species, Enterococcus xinjiangensis sp. nov., was proposed and the type strain was 48(T)(=CCTCC AB 2014041(T) = JCM 30200(T)).

  11. Single-Molecule Counting of Point Mutations by Transient DNA Binding

    NASA Astrophysics Data System (ADS)

    Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan

    2017-03-01

    High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.

  12. High-resolution melting analysis of the single nucleotide polymorphism hot-spot region in the rpoB gene as an indicator of reduced susceptibility to rifaximin in Clostridium difficile.

    PubMed

    Pecavar, Verena; Blaschitz, Marion; Hufnagl, Peter; Zeinzinger, Josef; Fiedler, Anita; Allerberger, Franz; Maass, Matthias; Indra, Alexander

    2012-06-01

    Clostridium difficile, a Gram-positive, spore-forming, anaerobic bacterium, is the main causative agent of hospital-acquired diarrhoea worldwide. In addition to metronidazole and vancomycin, rifaximin, a rifamycin derivative, is a promising antibiotic for the treatment of recurring C. difficile infections (CDI). However, exposure of C. difficile to this antibiotic has led to the development of rifaximin-resistance due to point mutations in the β-subunit of the RNA polymerase (rpoB) gene. In the present study, 348 C. difficile strains with known PCR-ribotypes were investigated for respective single nucleotide polymorphisms (SNPs) within the proposed rpoB hot-spot region by using high-resolution melting (HRM) analysis. This method allows the detection of SNPs by comparing the altered melting behaviour of dsDNA with that of wild-type DNA. Discrimination between wild-type and mutant strains was enhanced by creating heteroduplexes by mixing sample DNA with wild-type DNA, leading to characteristic melting curve shapes from samples containing SNPs in the respective rpoB section. In the present study, we were able to identify 16 different rpoB sequence-types (ST) by sequencing analysis of a 325 bp fragment. The 16 PCR STs displayed a total of 24 different SNPs. Fifteen of these 24 SNPs were located within the proposed 151 bp SNP hot-spot region, resulting in 11 different HRM curve profiles (CP). Eleven SNPs (seven of which were within the proposed hot-spot region) led to amino acid substitutions associated with reduced susceptibility to rifaximin and 13 SNPs (eight of which were within the hot-spot region) were synonymous. This investigation clearly demonstrates that HRM analysis of the proposed SNP hot-spot region in the rpoB gene of C. difficile is a fast and cost-effective method for the identification of C. difficile samples with reduced susceptibility to rifaximin and even allows simultaneous SNP subtyping of the respective C. difficile isolates.

  13. Multiplex pyrosequencing of InDel markers for forensic DNA analysis.

    PubMed

    Bus, Magdalena M; Karas, Ognjen; Allen, Marie

    2016-12-01

    The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator ® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator ® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof-of-principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost-effective alternative for some applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular basis of splotch and Waardenburg Pax-3 mutations.

    PubMed Central

    Chalepakis, G; Goulding, M; Read, A; Strachan, T; Gruss, P

    1994-01-01

    Pax genes control certain aspects of development, as mutations result in (semi)dominant defects apparent during embryogenesis. Pax-3 has been associated with the mouse mutant splotch (Sp) and the human Waardenburg syndrome type 1 (WS1). We have examined the molecular basis of splotch and WS1 by studying the effect of mutations on DNA binding, using a defined target sequence. Pax-3 contains two different types of functional DNA-binding domains, a paired domain and a homeodomain. Mutational analysis of Pax-3 reveals different modes of DNA binding depending on the presence of these domains. A segment of Pax-3 located between the two DNA-binding domains, including a conserved octapeptide, participates in protein homodimerization. Pax-3 mutations found in splotch alleles and WS1 individuals change DNA binding and, in the case of a protein product of the Sp allele, dimerization. These findings were taken as a basis to define the molecular nature of the mutants. Images PMID:7909605

  15. MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome.

    PubMed

    Naess, Karin; Freyer, Christoph; Bruhn, Helene; Wibom, Rolf; Malm, Gunilla; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran

    2009-05-01

    Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.

  16. Cytology smears as diagnostic material for EGFR gene testing in non-small cell lung cancer.

    PubMed

    Powrózek, Tomasz; Krawczyk, Paweł; Pankowski, Juliusz; Reszka, Katarzyna; Jakubiak, Magdalena; Obrochta, Anna; Wojas-Krawczyk, Kamila; Buczkowski, Jarosław; Milanowski, Janusz

    2015-11-14

    Cytology smears can be effectively used for EGFR mutation testing in the qualification of NSCLC patients for EGFR tyrosine kinase inhibitor therapy. However, tissue specimens are preferred for EGFR mutation analysis. The aim of this study was to estimate the effectiveness of the real-time PCR method for EGFR testing in histology and cytology materials obtained simultaneously from NSCLC patients. Fourteen adenocarcinoma patients with EGFR-mutation-positive primary tumor tissues were included in the study. Corresponding cytological smears of metastatic lymph nodes obtained by EBUS-TBNA were examined. EGFR Mutation Analysis Kit (EntroGen, USA) and real-time PCR (m2000rt system, Abbott, USA) were used for EGFR mutation analysis in both types of material. In primary tumor tissues, 12 deletions in exon 19 and 2 substitutions in exon 21 (L858R mutation) of the EGFR gene were found. Except for 1 deletion in exon 19, the same EGFR gene mutations were detected in all corresponding cytology samples. The percentage of tumor cells, DNA concentration, percentage of mutated DNA as well as ΔCt values were similar in cytology slides and histology material. In both types of materials, no significant correlations were found between the percentage of tumor cells and the percentage of mutated DNA nor between the DNA concentration and the percentage of mutated DNA. We demonstrated the high effectiveness of a sensitive real-time PCR method in EGFR gene mutation detection in cytology smears.

  17. Functional analysis of H. sapiens DNA polymerase γ spacer mutation W748S with and without common variant E1143G

    PubMed Central

    Palin, Eino JH; Lesonen, Annamari; Farr, Carol L; Euro, Liliya; Suomalainen, Anu; Kaguni, Laurie S

    2010-01-01

    Mitochondrial DNA polymerase, POLG, is the sole DNA polymerase found in animal mitochondria. In humans, POLGα W748S in cis with an E1143G mutation has been linked to a new type of recessive ataxia, MIRAS, which is the most common inherited ataxia in Finland. We investigated the biochemical phenotypes of the W748S amino acid change, using recombinant human POLG. We measured processive and non-processive DNA polymerase activity, DNA binding affinity, enzyme processivity, and subunit interaction with recombinant POLGβ. In addition, we studied the effects of the W748S and E1143G mutations in primary human cell cultures using retroviral transduction. Here, we examined cell viability, mitochondrial DNA copy number, and products of mitochondrial translation. Our results indicate that the W748S mutant POLGα does not exhibit a clear biochemical phenotype, making it indistinguishable from wild type POLGα and as such, fail to replicate previously published results. Furthermore, results from the cell models were concurrent with the findings from patients, and support our biochemical findings. PMID:20153822

  18. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Kempf, Michael; Chen, Fei; Satomi, Masataka; Nicholson, Wayne; Kern, Roger

    2003-01-01

    One of the spore-formers isolated from a spacecraft-assembly facility, belonging to the genus Bacillus, is described on the basis of phenotypic characterization, 16S rDNA sequence analysis and DNA-DNA hybridization studies. It is a Gram-positive, facultatively anaerobic, rod-shaped eubacterium that produces endospores. The spores of this novel bacterial species exhibited resistance to UV, gamma-radiation, H2O2 and desiccation. The 18S rDNA sequence analysis revealed a clear affiliation between this strain and members of the low G+C Firmicutes. High 16S rDNA sequence similarity values were found with members of the genus Bacillus and this was supported by fatty acid profiles. The 16S rDNA sequence similarity between strain FO-92T and Bacillus benzoevorans DSM 5391T was very high. However, molecular characterizations employing small-subunit 16S rDNA sequences were at the limits of resolution for the differentiation of species in this genus, but DNA-DNA hybridization data support the proposal of FO-92T as Bacillus nealsonii sp. nov. (type strain is FO-92T =ATCC BAAM-519T =DSM 15077T).

  19. Mutation-Induced Population Shift in the MexR Conformational Ensemble Disengages DNA Binding: A Novel Mechanism for MarR Family Derepression.

    PubMed

    Anandapadamanaban, Madhanagopal; Pilstål, Robert; Andresen, Cecilia; Trewhella, Jill; Moche, Martin; Wallner, Björn; Sunnerhagen, Maria

    2016-08-02

    MexR is a repressor of the MexAB-OprM multidrug efflux pump operon of Pseudomonas aeruginosa, where DNA-binding impairing mutations lead to multidrug resistance (MDR). Surprisingly, the crystal structure of an MDR-conferring MexR mutant R21W (2.19 Å) presented here is closely similar to wild-type MexR. However, our extended analysis, by molecular dynamics and small-angle X-ray scattering, reveals that the mutation stabilizes a ground state that is deficient of DNA binding and is shared by both mutant and wild-type MexR, whereas the DNA-binding state is only transiently reached by the more flexible wild-type MexR. This population shift in the conformational ensemble is effected by mutation-induced allosteric coupling of contact networks that are independent in the wild-type protein. We propose that the MexR-R21W mutant mimics derepression by small-molecule binding to MarR proteins, and that the described allosteric model based on population shifts may also apply to other MarR family members. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    USDA-ARS?s Scientific Manuscript database

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  1. Development and validation of a D-loop mtDNA SNP assay for the screening of specimens in forensic casework.

    PubMed

    Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto

    2013-05-01

    Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Variability of chloroplast DNA and nuclear ribosomal DNA in cassava (Manihot esculenta Crantz) and its wild relatives.

    PubMed

    Fregene, M A; Vargas, J; Ikea, J; Angel, F; Tohme, J; Asiedu, R A; Akoroda, M O; Roca, W M

    1994-11-01

    Chloroplast DNA (cp) and nuclear ribosomal DNA (rDNA) variation was investigated in 45 accessions of cultivated and wild Manihot species. Ten independent mutations, 8 point mutations and 2 length mutations were identified, using eight restriction enzymes and 12 heterologous cpDNA probes from mungbean. Restriction fragment length polymorphism analysis defined nine distinct chloroplast types, three of which were found among the cultivated accessions and six among the wild species. Cladistic analysis of the cpDNA data using parsimony yielded a hypothetical phylogeny of lineages among the cpDNAs of cassava and its wild relatives that is congruent with morphological evolutionary differentiation in the genus. The results of our survey of cpDNA, together with rDNA restriction site change at the intergenic spacer region and rDNA repeat unit length variation (using rDNA cloned fragments from taro as probe), suggest that cassava might have arisen from the domestication of wild tuberous accessions of some Manihot species, followed by intensive selection. M. esculenta subspp flabellifolia is probably a wild progenitor. Introgressive hybridization with wild forms and pressures to adapt to the widely varying climates and topography in which cassava is found might have enhanced the crop's present day variability.

  3. Low template STR typing: effect of replicate number and consensus method on genotyping reliability and DNA database search results.

    PubMed

    Benschop, Corina C G; van der Beek, Cornelis P; Meiland, Hugo C; van Gorp, Ankie G M; Westen, Antoinette A; Sijen, Titia

    2011-08-01

    To analyze DNA samples with very low DNA concentrations, various methods have been developed that sensitize short tandem repeat (STR) typing. Sensitized DNA typing is accompanied by stochastic amplification effects, such as allele drop-outs and drop-ins. Therefore low template (LT) DNA profiles are interpreted with care. One can either try to infer the genotype by a consensus method that uses alleles confirmed in replicate analyses, or one can use a statistical model to evaluate the strength of the evidence in a direct comparison with a known DNA profile. In this study we focused on the first strategy and we show that the procedure by which the consensus profile is assembled will affect genotyping reliability. In order to gain insight in the roles of replicate number and requested level of reproducibility, we generated six independent amplifications of samples of known donors. The LT methods included both increased cycling and enhanced capillary electrophoresis (CE) injection [1]. Consensus profiles were assembled from two to six of the replications using four methods: composite (include all alleles), n-1 (include alleles detected in all but one replicate), n/2 (include alleles detected in at least half of the replicates) and 2× (include alleles detected twice). We compared the consensus DNA profiles with the DNA profile of the known donor, studied the stochastic amplification effects and examined the effect of the consensus procedure on DNA database search results. From all these analyses we conclude that the accuracy of LT DNA typing and the efficiency of database searching improve when the number of replicates is increased and the consensus method is n/2. The most functional number of replicates within this n/2 method is four (although a replicate number of three suffices for samples showing >25% of the alleles in standard STR typing). This approach was also the optimal strategy for the analysis of 2-person mixtures, although modified search strategies may be needed to retrieve the minor component in database searches. From the database searches follows the recommendation to specifically mark LT DNA profiles when entering them into the DNA database. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. A search for the primary abnormality in adult-onset type II citrullinemia.

    PubMed

    Kobayashi, K; Shaheen, N; Kumashiro, R; Tanikawa, K; O'Brien, W E; Beaudet, A L; Saheki, T

    1993-11-01

    Deficiency of argininosuccinate synthetase (ASS) causes citrullinemia in human beings. Type II citrullinemia is found in most patients with adult-onset citrullinemia in Japan, and ASS deficiency is found specifically in the liver. Previous studies have shown that the decrease of hepatic ASS activity is caused by a decrease in enzyme protein with normal kinetic properties and that there were no apparent abnormalities in the amount, translational activity, and gross structure of hepatic ASS mRNA. In the present work, we show by sequencing analysis that there was no mutation in the ASS mRNA from two patients with type II citrullinemia. We also report RFLP analysis of a consanguineous family with type II citrullinemia, by using three DNA polymorphisms located within the ASS gene locus. In spite of having consanguineous parents, the patient was not a homozygous haplotype for the ASS gene. The RFLP analysis of 16 affected patients from consanguineous parents showed that 5 of 16 patients had the heterozygous pattern for one of the three DNA probes and that the frequency of the heterozygous haplotype was not different from the control frequency. These results suggest that the primary defect of type II citrullinemia is not within the ASS gene locus.

  5. Production of dammarane-type sapogenins in rice by expressing the dammarenediol-II synthase gene from Panax ginseng C.A. Mey.

    PubMed

    Huang, Zhiwei; Lin, Juncheng; Cheng, Zuxin; Xu, Ming; Huang, Xinying; Yang, Zhijian; Zheng, Jingui

    2015-10-01

    Ginsenosides are the main active ingredients in Chinese medicinal ginseng; 2,3-oxidosqualene is a precursor metabolite to ginsenosides that is present in rice. Because rice lacks a key rate-limiting enzyme (dammarenediol-II synthase, DS), rice cannot synthesize dammarane-type ginsenosides. In this study, the ginseng (Panax ginseng CA Mey.) DS gene (GenBank: AB265170.1) was transformed into rice using agrobacterium, and 64 rice transgenic plants were produced. The Transfer-DNA (T-DNA) insertion sites in homozygous lines of the T2 generation were determined by using high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) and differed in all tested lines. One to two copies of the T-DNA were present in each transformant, and real-time PCR and Western blotting showed that the transformed DS gene could be transcribed and highly expressed. High performance liquid chromatography (HPLC) analysis showed that the dammarane-type sapogenin 20(S)-protopanaxadiol (PPD) content was 0.35-0.59 mg/g dw and the dammarane-type sapogenin 20(S)-protopanaxatriol (PPT) content was 0.23-0.43 mg/g dw in the transgenic rice. LC/MS analysis confirmed production of PPD and PPT. These results indicate that a new "ginseng rice" germplasm containing dammarane-type sapogenins has been successfully developed by transforming the ginseng DS gene into rice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Systematic analysis and evolution of 5S ribosomal DNA in metazoans.

    PubMed

    Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M

    2013-11-01

    Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.

  7. Systematic analysis and evolution of 5S ribosomal DNA in metazoans

    PubMed Central

    Vierna, J; Wehner, S; Höner zu Siederdissen, C; Martínez-Lage, A; Marz, M

    2013-01-01

    Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12 766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades. PMID:23838690

  8. The preservation of microbial DNA in archived soils of various genetic types.

    PubMed

    Ivanova, Ekaterina A; Korvigo, Ilia O; Aparin, Boris F; Chirak, Evgenii L; Pershina, Elizaveta V; Romaschenko, Nikolay S; Provorov, Nikolai A; Andronov, Evgeny E

    2017-01-01

    This study is a comparative analysis of samples of archived (stored for over 70-90 years) and modern soils of two different genetic types-chernozem and sod-podzolic soils. We revealed a reduction in biodiversity of archived soils relative to their modern state. Particularly, long-term storage in the museum exerted a greater impact on the microbiomes of sod-podzolic soils, while chernozem samples better preserved the native community. Thus, the persistence of microbial DNA in soil is largely determined by the physico-chemical characteristics that differ across soil types. Chernozems create better conditions for the long-term DNA preservation than sod-podzolic soils. This results in supposedly higher levels of biodiversity conservation in the microbiomes of chernozem with preservation of major microbial taxa dominant in the modern (control) soil samples, which makes archived chernozems a promising object for paleosoil studies.

  9. Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis.

    PubMed

    Bouakaze, Caroline; Keyser, Christine; Crubézy, Eric; Montagnon, Daniel; Ludes, Bertrand

    2009-07-01

    In the present study, a multiplexed genotyping assay for ten single nucleotide polymorphisms (SNPs) located within six pigmentation candidate genes was developed on modern biological samples and applied to DNA retrieved from 25 archeological human remains from southern central Siberia dating from the Bronze and Iron Ages. SNP genotyping was successful for the majority of ancient samples and revealed that most probably had typical European pigment features, i.e., blue or green eye color, light hair color and skin type, and were likely of European individual ancestry. To our knowledge, this study reports for the first time the multiplexed typing of autosomal SNPs on aged and degraded DNA. By providing valuable information on pigment traits of an individual and allowing individual biogeographical ancestry estimation, autosomal SNP typing can improve ancient DNA studies and aid human identification in some forensic casework situations when used to complement conventional molecular markers.

  10. Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.

    PubMed

    Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.

  11. Genetic variability in isolates of Chromobacterium violaceum from pulmonary secretion, water, and soil.

    PubMed

    Santini, A C; Magalhães, J T; Cascardo, J C M; Corrêa, R X

    2016-04-28

    Chromobacterium violaceum is a free-living Gram-negative bacillus usually found in the water and soil in tropical regions, which causes infections in humans. Chromobacteriosis is characterized by rapid dissemination and high mortality. The aim of this study was to detect the genetic variability among C. violaceum type strain ATCC 12472, and seven isolates from the environment and one from a pulmonary secretion from a chromobacteriosis patient from Ilhéus, Bahia. The molecular characterization of all samples was performed by polymerase chain reaction (PCR) sequencing and 16S rDNA analysis. Primers specific for two ATCC 12472 pathogenicity genes, hilA and yscD, as well as random amplified polymorphic DNA (RAPD), were used for PCR amplification and comparative sequencing of the products. For a more specific approach, the PCR products of 16S rDNA were digested with restriction enzymes. Seven of the samples, including type-strain ATCC 12472, were amplified by the hilA primers; these were subsequently sequenced. Gene yscD was amplified only in type-strain ATCC 12472. MspI and AluI digestion revealed 16S rDNA polymorphisms. This data allowed the generation of a dendogram for each analysis. The isolates of C. violaceum have variability in random genomic regions demonstrated by RAPD. Also, these isolates have variability in pathogenicity genes, as demonstrated by sequencing and restriction enzyme digestion.

  12. Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data

    PubMed Central

    Xiong, Lie; Kuan, Pei-Fen; Tian, Jianan; Keles, Sunduz; Wang, Sijian

    2015-01-01

    In this paper, we propose a novel multivariate component-wise boosting method for fitting multivariate response regression models under the high-dimension, low sample size setting. Our method is motivated by modeling the association among different biological molecules based on multiple types of high-dimensional genomic data. Particularly, we are interested in two applications: studying the influence of DNA copy number alterations on RNA transcript levels and investigating the association between DNA methylation and gene expression. For this purpose, we model the dependence of the RNA expression levels on DNA copy number alterations and the dependence of gene expression on DNA methylation through multivariate regression models and utilize boosting-type method to handle the high dimensionality as well as model the possible nonlinear associations. The performance of the proposed method is demonstrated through simulation studies. Finally, our multivariate boosting method is applied to two breast cancer studies. PMID:26609213

  13. Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA

    PubMed Central

    Namazi, Hamidreza; Kiminezhadmalaie, Mona

    2015-01-01

    Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers. PMID:26539245

  14. Acinetobacter lactucae sp. nov., isolated from iceberg lettuce (Asteraceae: Lactuca sativa).

    PubMed

    Rooney, Alejandro P; Dunlap, Christopher A; Flor-Weiler, Lina B

    2016-09-01

    Strain NRRL B-41902T and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902T was most closely related to species within the genera Acinetobacter, and that a grouping of it and the three other closely related strains was most closely related to the type strain of Acinetobacter pittii, which was also confirmed through a phylogenomic analysis. Moreover, in silico DNA-DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902T and the type strain of A. pittii, which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902T was able to utilize a combination of l-serine, citraconic acid and citramalic acid, which differentiated it from other, closely related Acinetobacter species. Therefore, strain NRRL B-41902T (=CCUG 68785T) is proposed as the type strain of a novel species, Acinetobacter lactucae sp. nov.

  15. Adeno-Associated Virus Type 2 Wild-Type and Vector-Mediated Genomic Integration Profiles of Human Diploid Fibroblasts Analyzed by Third-Generation PacBio DNA Sequencing

    PubMed Central

    Hüser, Daniela; Gogol-Döring, Andreas; Chen, Wei

    2014-01-01

    ABSTRACT Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy. PMID:25031342

  16. DNA typing for the identification of old skeletal remains from Korean War victims.

    PubMed

    Lee, Hwan Young; Kim, Na Young; Park, Myung Jin; Sim, Jeong Eun; Yang, Woo Ick; Shin, Kyoung-Jin

    2010-11-01

    The identification of missing casualties of the Korean War (1950-1953) has been performed using mitochondrial DNA (mtDNA) profiles, but recent advances in DNA extraction techniques and approaches using smaller amplicons have significantly increased the possibility of obtaining DNA profiles from highly degraded skeletal remains. Therefore, 21 skeletal remains of Korean War victims and 24 samples from biological relatives of the supposed victims were selected based on circumstantial evidence and/or mtDNA-matching results and were analyzed to confirm the alleged relationship. Cumulative likelihood ratios were obtained from autosomal short tandem repeat, Y-chromosomal STR, and mtDNA-genotyping results, and mainly confirmed the alleged relationship with values over 10⁵. The present analysis emphasizes the value of mini- and Y-STR systems as well as an efficient DNA extraction method in DNA testing for the identification of old skeletal remains. © 2010 American Academy of Forensic Sciences.

  17. The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili.

    PubMed

    Baynham, Patricia J; Ramsey, Deborah M; Gvozdyev, Borys V; Cordonnier, Ellen M; Wozniak, Daniel J

    2006-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that is commonly found in water and soil. In order to colonize surfaces with low water content, P. aeruginosa utilizes a flagellum-independent form of locomotion called twitching motility, which is dependent upon the extension and retraction of type IV pili. This study demonstrates that AlgZ, previously identified as a DNA-binding protein absolutely required for transcription of the alginate biosynthetic operon, is required for twitching motility. AlgZ may be required for the biogenesis or function of type IV pili in twitching motility. Transmission electron microscopy analysis of an algZ deletion in nonmucoid PAO1 failed to detect surface pili. To examine expression and localization of PilA (the major pilin subunit), whole-cell extracts and cell surface pilin preparations were analyzed by Western blotting. While the PilA levels present in whole-cell extracts were similar for wild-type P. aeruginosa and P. aeruginosa with the algZ deletion, the amount of PilA on the surface of the cells was drastically reduced in the algZ mutant. Analysis of algZ and algD mutants indicates that the DNA-binding activity of AlgZ is essential for the regulation of twitching motility and that this is independent of the role of AlgZ in alginate expression. These data show that AlgZ DNA-binding activity is required for twitching motility independently of its role in alginate production and that this involves the surface localization of type IV pili. Given this new role in twitching motility, we propose that algZ (PA3385) be designated amrZ (alginate and motility regulator Z).

  18. Combined Use of 16S Ribosomal DNA and 16S rRNA To Study the Bacterial Community of Polychlorinated Biphenyl-Polluted Soil

    PubMed Central

    Nogales, Balbina; Moore, Edward R. B.; Llobet-Brossa, Enrique; Rossello-Mora, Ramon; Amann, Rudolf; Timmis, Kenneth N.

    2001-01-01

    The bacterial diversity assessed from clone libraries prepared from rRNA (two libraries) and ribosomal DNA (rDNA) (one library) from polychlorinated biphenyl (PCB)-polluted soil has been analyzed. A good correspondence of the community composition found in the two types of library was observed. Nearly 29% of the cloned sequences in the rDNA library were identical to sequences in the rRNA libraries. More than 60% of the total cloned sequence types analyzed were grouped in phylogenetic groups (a clone group with sequence similarity higher than 97% [98% for Burkholderia and Pseudomonas-type clones]) represented in both types of libraries. Some of those phylogenetic groups, mostly represented by a single (or pair) of cloned sequence type(s), were observed in only one of the types of library. An important difference between the libraries was the lack of clones representative of the Actinobacteria in the rDNA library. The PCB-polluted soil exhibited a high bacterial diversity which included representatives of two novel lineages. The apparent abundance of bacteria affiliated to the beta-subclass of the Proteobacteria, and to the genus Burkholderia in particular, was confirmed by fluorescence in situ hybridization analysis. The possible influence on apparent diversity of low template concentrations was assessed by dilution of the RNA template prior to amplification by reverse transcription-PCR. Although differences in the composition of the two rRNA libraries obtained from high and low RNA concentrations were observed, the main components of the bacterial community were represented in both libraries, and therefore their detection was not compromised by the lower concentrations of template used in this study. PMID:11282645

  19. Candida adriatica sp. nov. and Candida molendinolei sp. nov., two yeast species isolated from olive oil and its by-products.

    PubMed

    Čadež, Neža; Raspor, Peter; Turchetti, Benedetta; Cardinali, Gianluigi; Ciafardini, Gino; Veneziani, Gianluca; Péter, Gábor

    2012-09-01

    Thirteen strains isolated from virgin olive oil or its by-products in several Mediterranean countries were found to be phenotypically and genetically divergent from currently recognized yeast species. Sequence analysis of the large subunit (LSU) rDNA D1/D2 domain and internal transcribed spacer regions/5.8S rDNA revealed that the strains represented two novel species described as Candida adriatica sp. nov. (type strain ZIM 2334(T) = CBS 12504(T) = NCAIM Y.02001(T)) and Candida molendinolei sp. nov. (type strain DBVPG 5508(T) = CBS 12508(T) = NCAIM Y.02000(T)). Phylogenetic analysis based on concatenated sequences of the small subunit rRNA gene, the D1/D2 region of the LSU rDNA and the translation elongation factor-1α gene suggested that C. adriatica sp. nov. and C. molendinolei sp. nov. should be placed within the Lindnera and Nakazawaea clades, respectively.

  20. Experimental assessment and analysis of super-resolution in fluorescence microscopy based on multiple-point spread function fitting of spectrally demultiplexed images

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Kimura, Hitoshi; Ogura, Yusuke; Tanida, Jun

    2018-06-01

    This paper presents an experimental assessment and analysis of super-resolution microscopy based on multiple-point spread function fitting of spectrally demultiplexed images using a designed DNA structure as a test target. For the purpose, a DNA structure was designed to have binding sites at a certain interval that is smaller than the diffraction limit. The structure was labeled with several types of quantum dots (QDs) to acquire their spatial information as spectrally encoded images. The obtained images are analyzed with a point spread function multifitting algorithm to determine the QD locations that indicate the binding site positions. The experimental results show that the labeled locations can be observed beyond the diffraction-limited resolution using three-colored fluorescence images that were obtained with a confocal fluorescence microscope. Numerical simulations show that labeling with eight types of QDs enables the positions aligned at 27.2-nm pitches on the DNA structure to be resolved with high accuracy.

  1. Marinobacter lacisalsi sp. nov., a moderately halophilic bacterium isolated from the saline-wetland wildfowl reserve Fuente de Piedra in southern Spain.

    PubMed

    Aguilera, Margarita; Jiménez-Pranteda, Maria L; Kharroub, Karima; González-Paredes, Ana; Durban, Juan J; Russell, Nick J; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2009-07-01

    A Gram-negative, non-spore-forming, motile, moderately halophilic, aerobic, rod-shaped bacterium, designated strain FP2.5(T), was isolated from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Strain FP2.5(T) was subjected to a polyphasic taxonomic study. It produced colonies with a light-yellow pigment. Strain FP2.5(T) grew at salinities of 3-15 % (w/v) and at temperatures of 20-40 degrees C. The pH range for growth was 5-9. Strain FP2.5(T) was able to utilize various organic acids as sole carbon and energy source. Its major fatty acids were C(16 : 0), C(18 : 1)omega9c and C(16 : 1)omega9c. The DNA G+C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FP2.5(T) appeared to be a member of the genus Marinobacter and clustered closely with the type strains of Marinobacter segnicrescens, Marinobacter bryozoorum and Marinobacter gudaonensis (levels of 16S rRNA gene sequence similarity of 98.1, 97.4 and 97.2 %, respectively). However, DNA-DNA relatedness between the new isolate and the type strains of its closest related Marinobacter species was low; levels of DNA-DNA relatedness between strain FP2.5(T) and M. segnicrescens LMG 23928(T), M. bryozoorum DSM 15401(T) and M. gudaonensis DSM 18066(T) were 36.3, 32.1 and 24.9 %, respectively. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, strain FP2.5(T) is considered to represent a novel species of the genus Marinobacter, for which the name Marinobacter lacisalsi sp. nov. is proposed. The type strain is FP2.5(T) (=CECT 7297(T)=LMG 24237(T)).

  2. Improved Y-STR typing for disaster victim identification, missing persons investigations, and historical human skeletal remains.

    PubMed

    Ambers, Angie; Votrubova, Jitka; Vanek, Daniel; Sajantila, Antti; Budowle, Bruce

    2018-02-23

    Bones are a valuable source of DNA in forensic, anthropological, and archaeological investigations. There are a number of scenarios in which the only samples available for testing are highly degraded and/or skeletonized. Often it is necessary to perform more than one type of marker analysis on such samples in order to compile sufficient data for identification. Lineage markers, such as Y-STRs and mitochondrial DNA (mtDNA), represent important systems to complement autosomal DNA markers and anthropological metadata in making associations between unidentified remains and living relatives or for characterization of the remains for historical and archaeological studies. In this comparative study, Y-STR typing with both Yfiler™ and Yfiler™ Plus (Thermo Fisher Scientific, Waltham, MA, USA) was performed on a variety of human skeletal remains, including samples from the American Civil War (1861-1865), the late nineteenth century gold rush era in Deadwood, SD, USA (1874-1877), the Seven Years' War (1756-1763), a seventeenth-century archaeological site in Raspenava, Bohemia (Czech Republic), and World War II (1939-1945). The skeletal remains used for this study were recovered from a wide range of environmental conditions and were extracted using several common methods. Regardless of the DNA extraction method used and the age/condition of the remains, 22 out of 24 bone samples yielded a greater number of alleles using the Yfiler™ Plus kit compared to the Yfiler™ kit using the same quantity of input DNA. There was no discernable correlation with the degradation index values for these samples. Overall, the efficacy of the Yfiler™ Plus assay was demonstrated on degraded DNA from skeletal remains. Yfiler™ Plus increases the discriminatory power over the previous generation multiplex due to the larger set of Y-STR markers available for analysis and buffer modifications with the newer version kit. Increased haplotype resolution is provided to infer or refute putative genetic relationships.

  3. Comparative reactivity of mismatched and unpaired bases in relation to their type and surroundings. Chemical cleavage of DNA mismatches in mutation detection analysis.

    PubMed

    Yakubovskaya, Marianna G; Belyakova, Anna A; Gasanova, Viktoria K; Belitsky, Gennady A; Dolinnaya, Nina G

    2010-07-01

    Systematic study of chemical reactivity of non-Watson-Crick base pairs depending on their type and microenvironment was performed on a model system that represents two sets of synthetic DNA duplexes with all types of mismatched and unmatched bases flanked by T.A or G.C pairs. Using comparative cleavage pattern analysis, we identified the main and additional target bases and performed quantitative study of the time course and efficacy of DNA modification caused by potassium permanganate or hydroxylamine. Potassium permanganate in combination with tetraethylammonium chloride was shown to induce DNA cleavage at all mismatched or bulged T residues, as well as at thymines of neighboring canonical pairs. Other mispaired (bulged) bases and thymine residues located on the second position from the mismatch site were not the targets for KMnO(4) attack. In contrast, hydroxylamine cleaved only heteroduplexes containing mismatched or unmatched C residues, and did not modify adjacent cytosines. However when G.C pairs flank bulged C residue, neighboring cytosines are also attacked by hydroxylamine due to defect migration. Chemical reactivity of target bases was shown to correlate strongly with the local disturbance of DNA double helix at mismatch or bulge site. With our model system, we were able to prove the absence of false-negative and false-positive results. Portion of heteroduplex reliably revealed in a mixture with corresponding homoduplex consists of 5% for bulge bases and "open" non-canonical pairs, and 10% for wobble base pairs giving minimal violations in DNA structure. This study provides a complete understanding of the principles of mutation detection methodology based on chemical cleavage of mismatches and clarifies the advantages and limitations of this approach in various biological and conformational studies of DNA. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  4. Novel insertion mutation in a non-Jewish Caucasian type 1 Gaucher disease patient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choy, F.Y.M.; Humphries, M.L.; Ferreira, P.

    1997-01-20

    Gaucher disease is the most prevalent lysosomal storage disorder. It is autosomal recessive, resulting in lysosomal glucocerebrosidase deficiency. Three clinical forms of Gaucher disease have been described: type 1 (nonneuronopathic), type 2 (acute neuronopathic), and type 3 (subacute neuronopathic). We performed PCR-thermal cycle sequence analysis of glucocerebrosidase genomic DNA and identified a novel mutation in a non-Jewish type 1 Gaucher disease patient. It is a C insertion in exon 3 at cDNA nucleotide position 122 and genomic nucleotide position 1626. This mutation causes a frameshift and, subsequently, four of the five codons immediately downstream of the insertion were changed whilemore » the sixth was converted to a stop codon, resulting in premature termination of protein translation. The 122CC insertion abolishes a Cac81 restriction endonuclease cleavage site, allowing a convenient and reliable method for detection using RFLP analysis of PCR-amplified glucocerebrosidase genomic DNA. The mutation in the other Gaucher allele was found to be an A{r_arrow}G substitution at glucocerebrosidase cDNA nucleotide position 1226 that so far has only been reported among type 1 Gaucher disease patients. Since mutation 122CC causes a frameshift and early termination of protein translation, it most likely results in a meaningless transcript and subsequently no residual glucocerebrosidase enzyme activity. We speculate that mutation 122CC may result in a worse prognosis than mutations associated with partial activity. When present in the homozygous form, it could be a lethal allele similar to what has been postulated for the other known insertion mutation, 84GG. Our patient, who is a compound heterozygote 122CC/1226G, has moderately severe type 1 Gaucher disease. Her clinical response to Ceredase{reg_sign} therapy that began 31 months ago has been favorable, though incomplete. 30 refs., 3 figs., 2 tabs.« less

  5. DNA "nano-claw": logic-based autonomous cancer targeting and therapy.

    PubMed

    You, Mingxu; Peng, Lu; Shao, Na; Zhang, Liqin; Qiu, Liping; Cui, Cheng; Tan, Weihong

    2014-01-29

    Cell types, both healthy and diseased, can be classified by inventories of their cell-surface markers. Programmable analysis of multiple markers would enable clinicians to develop a comprehensive disease profile, leading to more accurate diagnosis and intervention. As a first step to accomplish this, we have designed a DNA-based device, called "Nano-Claw". Combining the special structure-switching properties of DNA aptamers with toehold-mediated strand displacement reactions, this claw is capable of performing autonomous logic-based analysis of multiple cancer cell-surface markers and, in response, producing a diagnostic signal and/or targeted photodynamic therapy. We anticipate that this design can be widely applied in facilitating basic biomedical research, accurate disease diagnosis, and effective therapy.

  6. The Genetic Privacy Act and commentary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annas, G.J.; Glantz, L.H.; Roche, P.A.

    1995-02-28

    The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. Therefore, to effectively protect genetic privacy unauthorized collection and analysis of individually identifiable DNA must be prohibited. As a result, the premise of the Act is that no stranger should have or control identifiable DNA samples or genetic information about an individual unless that individual specifically authorizes the collection of DNA samples for the purpose of genetic analysis, authorized the creation of that private information, andmore » has access to and control over the dissemination of that information.« less

  7. Purification of crime scene DNA extracts using centrifugal filter devices

    PubMed Central

    2013-01-01

    Background The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to recovery rate and general performance for various types of PCR-inhibitory crime scene samples. Methods Recovery rates for DNA purification using Amicon Ultra 30 K and Microsep 30 K were gathered using quantitative PCR. Mock crime scene DNA extracts were analyzed using quantitative PCR and short tandem repeat (STR) profiling to test the general performance and inhibitor-removal properties of the two filter devices. Additionally, the outcome of long-term routine casework DNA analysis applying each of the devices was evaluated. Results Applying Microsep 30 K, 14 to 32% of the input DNA was recovered, whereas Amicon Ultra 30 K retained 62 to 70% of the DNA. The improved purity following filter purification counteracted some of this DNA loss, leading to slightly increased electropherogram peak heights for blood on denim (Amicon Ultra 30 K and Microsep 30 K) and saliva on envelope (Amicon Ultra 30 K). Comparing Amicon Ultra 30 K and Microsep 30 K for purification of DNA extracts from mock crime scene samples, the former generated significantly higher peak heights for rape case samples (P-values <0.01) and for hairs (P-values <0.036). In long-term routine use of the two filter devices, DNA extracts purified with Amicon Ultra 30 K were considerably less PCR-inhibitory in Quantifiler Human qPCR analysis compared to Microsep 30 K. Conclusions Amicon Ultra 30 K performed better than Microsep 30 K due to higher DNA recovery and more efficient removal of PCR-inhibitory substances. The different performances of the filter devices are likely caused by the quality of the filters and plastic wares, for example, their DNA binding properties. DNA purification using centrifugal filter devices can be necessary for successful DNA profiling of impure crime scene samples and for consistency between different PCR-based analysis systems, such as quantification and STR analysis. In order to maximize the possibility to obtain complete STR DNA profiles and to create an efficient workflow, the level of DNA purification applied should be correlated to the inhibitor-tolerance of the STR analysis system used. PMID:23618387

  8. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients.

    PubMed

    Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre

    2013-12-01

    Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.

  9. Toward a DNA Taxonomy of Alpine Rhithrogena (Ephemeroptera: Heptageniidae) Using a Mixed Yule-Coalescent Analysis of Mitochondrial and Nuclear DNA

    PubMed Central

    Vuataz, Laurent; Sartori, Michel; Wagner, André; Monaghan, Michael T.

    2011-01-01

    Aquatic larvae of many Rhithrogena mayflies (Ephemeroptera) inhabit sensitive Alpine environments. A number of species are on the IUCN Red List and many recognized species have restricted distributions and are of conservation interest. Despite their ecological and conservation importance, ambiguous morphological differences among closely related species suggest that the current taxonomy may not accurately reflect the evolutionary diversity of the group. Here we examined the species status of nearly 50% of European Rhithrogena diversity using a widespread sampling scheme of Alpine species that included 22 type localities, general mixed Yule-coalescent (GMYC) model analysis of one standard mtDNA marker and one newly developed nDNA marker, and morphological identification where possible. Using sequences from 533 individuals from 144 sampling localities, we observed significant clustering of the mitochondrial (cox1) marker into 31 GMYC species. Twenty-one of these could be identified based on the presence of topotypes (expertly identified specimens from the species' type locality) or unambiguous morphology. These results strongly suggest the presence of both cryptic diversity and taxonomic oversplitting in Rhithrogena. Significant clustering was not detected with protein-coding nuclear PEPCK, although nine GMYC species were congruent with well supported terminal clusters of nDNA. Lack of greater congruence in the two data sets may be the result of incomplete sorting of ancestral polymorphism. Bayesian phylogenetic analyses of both gene regions recovered four of the six recognized Rhithrogena species groups in our samples as monophyletic. Future development of more nuclear markers would facilitate multi-locus analysis of unresolved, closely related species pairs. The DNA taxonomy developed here lays the groundwork for a future revision of the important but cryptic Rhithrogena genus in Europe. PMID:21611178

  10. Fourteen-Genome Comparison Identifies DNA Markers for Severe-Disease-Associated Strains of Clostridium difficile▿†

    PubMed Central

    Forgetta, Vincenzo; Oughton, Matthew T.; Marquis, Pascale; Brukner, Ivan; Blanchette, Ruth; Haub, Kevin; Magrini, Vince; Mardis, Elaine R.; Gerding, Dale N.; Loo, Vivian G.; Miller, Mark A.; Mulvey, Michael R.; Rupnik, Maja; Dascal, Andre; Dewar, Ken

    2011-01-01

    Clostridium difficile is a common cause of infectious diarrhea in hospitalized patients. A severe and increased incidence of C. difficile infection (CDI) is associated predominantly with the NAP1 strain; however, the existence of other severe-disease-associated (SDA) strains and the extensive genetic diversity across C. difficile complicate reliable detection and diagnosis. Comparative genome analysis of 14 sequenced genomes, including those of a subset of NAP1 isolates, allowed the assessment of genetic diversity within and between strain types to identify DNA markers that are associated with severe disease. Comparative genome analysis of 14 isolates, including five publicly available strains, revealed that C. difficile has a core genome of 3.4 Mb, comprising ∼3,000 genes. Analysis of the core genome identified candidate DNA markers that were subsequently evaluated using a multistrain panel of 177 isolates, representing more than 50 pulsovars and 8 toxinotypes. A subset of 117 isolates from the panel had associated patient data that allowed assessment of an association between the DNA markers and severe CDI. We identified 20 candidate DNA markers for species-wide detection and 10,683 single nucleotide polymorphisms (SNPs) associated with the predominant SDA strain (NAP1). A species-wide detection candidate marker, the sspA gene, was found to be the same across 177 sequenced isolates and lacked significant similarity to those of other species. Candidate SNPs in genes CD1269 and CD1265 were found to associate more closely with disease severity than currently used diagnostic markers, as they were also present in the toxin A-negative and B-positive (A-B+) strain types. The genetic markers identified illustrate the potential of comparative genomics for the discovery of diagnostic DNA-based targets that are species specific or associated with multiple SDA strains. PMID:21508155

  11. Market surveillance on non-halal additives incorporated in surimi based products using polymerase chain reaction (PCR)-southern hybridization analysis

    NASA Astrophysics Data System (ADS)

    Aravindran, S.; Sahilah, A. M.; Aminah, A.

    2014-09-01

    Halal surveillance on halal ingredients incorporated in surimi based products were studied using polymerase chain reaction (PCR)-southern hybridization on chip analysis. The primers used in this technique were targeted on mitochondria DNA (mtDNA) of cytochrome b (cyt b) gene sequence which able to differentiate 7 type (beef, chicken, duck, goat, buffalo, lamb and pork) of species on a single chip. 17 (n = 17*3) different brands of surimi-based product were purchased randomly from Selangor local market in January 2013. Of 17 brands, 3 (n = 3*3) brands were positive for chicken DNA, 1 (n = 1*3) brand was positive for goat DNA, and the remainder 13 brands (n = 13*3) have no DNA species detected. The sensitivity of PCR-southern hybridization primers to detect each meat species was 0.1 ng. In the present study, it is evidence that PCR-Southern Hybridization analysis offered a reliable result due to its highly specific and sensitive properties in detecting non-halal additive such as plasma protein incorporation in surimi-based product.

  12. A potential new diagnostic tool to aid DNA analysis from heat compromised bone using colorimetry: A preliminary study.

    PubMed

    Fredericks, Jamie D; Ringrose, Trevor J; Dicken, Anthony; Williams, Anna; Bennett, Phil

    2015-03-01

    Extracting viable DNA from many forensic sample types can be very challenging, as environmental conditions may be far from optimal with regard to DNA preservation. Consequently, skeletal tissue can often be an invaluable source of DNA. The bone matrix provides a hardened material that encapsulates DNA, acting as a barrier to environmental insults that would otherwise be detrimental to its integrity. However, like all forensic samples, DNA in bone can still become degraded in extreme conditions, such as intense heat. Extracting DNA from bone can be laborious and time-consuming. Thus, a lot of time and money can be wasted processing samples that do not ultimately yield viable DNA. We describe the use of colorimetry as a novel diagnostic tool that can assist DNA analysis from heat-treated bone. This study focuses on characterizing changes in the material and physical properties of heated bone, and their correlation with digitally measured color variation. The results demonstrate that the color of bone, which serves as an indicator of the chemical processes that have occurred, can be correlated with the success or failure of subsequent DNA amplification. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Methylobacterium pseudosasicola sp. nov. and Methylobacterium phyllostachyos sp. nov., isolated from bamboo leaf surfaces.

    PubMed

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj

    2014-07-01

    Two strains of Gram-negative, methylotrophic bacteria, isolated because of their abilities to promote plant growth, were subjected to a polyphasic taxonomic study. The isolates were strictly aerobic, motile, pink-pigmented, facultatively methylotrophic, non-spore-forming rods. The chemotaxonomic characteristics of the isolates included the presence of C18 : 1ω7c as the major cellular fatty acid. The DNA G+C contents of strains BL36(T) and BL47(T) were 69.4 and 69.8 mol%, respectively. 16S rRNA gene sequence analysis of strains BL36(T) and BL47(T) placed them under the genus Methylobacterium, with the pairwise sequence similarity between them and the type strains of closely related species ranging from 97.2 to 99.0%. On the basis of their phenotypic and phylogenetic distinctiveness and the results of DNA-DNA hybridization analysis, the isolates represent two novel species within the genus Methylobacterium, for which the names Methylobacterium pseudosasicola sp. nov. (type strain BL36(T) = NBRC 105203(T) = ICMP 17621(T)) and Methylobacterium phyllostachyos sp. nov. (type strain BL47(T) = NBRC 105206(T) = ICMP 17619(T)) are proposed. © 2014 IUMS.

  14. Analysis of cytoplasmic genomes in somatic hybrids between navel orange (Citrus sinensis Osb.) and 'Murcott' tangor.

    PubMed

    Kobayashi, S; Ohgawara, T; Fujiwara, K; Oiyama, I

    1991-07-01

    Somatic hybrid plants were produced by protoplast fusion of navel orange and 'Murcott' tangor. Hybridity of the plants was confirmed by the restriction endonuclease analysis of nuclear ribosomal DNA. All of the plants (16 clones) were normal, uniform, and had the amphidiploid chromosome number of 36 (2n=2x=18 for each parent). The cpDNA analysis showed that each of the 16 somatic hybrids contained either one parental chloroplast genome or the other. In all cases, the mitochondrial genomes of the regenerated somatic hybrids were of the navel orange type.

  15. A PCR technique based on the Hip1 interspersed repetitive sequence distinguishes cyanobacterial species and strains.

    PubMed

    Smith, J K; Parry, J D; Day, J G; Smith, R J

    1998-10-01

    The use of primers based on the Hip1 sequence as a typing technique for cyanobacteria has been investigated. The discovery of short repetitive sequence structures in bacterial DNA during the last decade has led to the development of PCR-based methods for typing, i.e., distinguishing and identifying, bacterial species and strains. An octameric palindromic sequence known as Hip1 has been shown to be present in the chromosomal DNA of many species of cyanobacteria as a highly repetitious interspersed sequence. PCR primers were constructed that extended the Hip1 sequence at the 3' end by two bases. Five of the 16 possible extended primers were tested. Each of the five primers produced a different set of products when used to prime PCR from cyanobacterial genomic DNA. Each primer produced a distinct set of products for each of the 15 cyanobacterial species tested. The ability of Hip1-based PCR to resolve taxonomic differences was assessed by analysis of independent isolates of Anabaena flos-aquae and Nostoc ellipsosporum obtained from the CCAP (Culture Collection of Algae and Protozoa, IFE, Cumbria, UK). A PCR-based RFLP analysis of products amplified from the 23S-16S rDNA intergenic region was used to characterize the isolates and to compare with the Hip1 typing data. The RFLP and Hip1 typing yielded similar results and both techniques were able to distinguish different strains. On the basis of these results it is suggested that the Hip1 PCR technique may assist in distinguishing cyanobacterial species and strains.

  16. X-Ray Induced DNA Damage and Repair in Germ Cells of PARP1−/− Male Mice

    PubMed Central

    Villani, Paola; Fresegna, Anna Maria; Ranaldi, Roberto; Eleuteri, Patrizia; Paris, Lorena; Pacchierotti, Francesca; Cordelli, Eugenia

    2013-01-01

    Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in DNA repair, recombination, replication, and chromatin remodeling. The aim of this study was to evaluate possible differences between PARP1−/− and wild-type mice regarding induction and repair of DNA lesions in irradiated male germ cells. Comet assay was applied to detect DNA damage in testicular cells immediately, and two hours after 4 Gy X-ray irradiation. A similar level of spontaneous and radiation-induced DNA damage was observed in PARP1−/− and wild-type mice. Conversely, two hours after irradiation, a significant level of residual damage was observed in PARP1−/− cells only. This finding was particularly evident in round spermatids. To evaluate if PARP1 had also a role in the dynamics of H2AX phosphorylation in round spermatids, in which γ-H2AX foci had been shown to persist after completion of DNA repair, we carried out a parallel analysis of γ-H2AX foci at 0.5, 2, and 48 h after irradiation in wild-type and PARP1−/− mice. No evidence was obtained of an effect of PARP1 depletion on H2AX phosphorylation induction and removal. Our results suggest that, in round spermatids, under the tested experimental conditions, PARP1 has a role in radiation-induced DNA damage repair rather than in long-term chromatin modifications signaled by phosphorylated H2AX. PMID:24009020

  17. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  18. A Hybrid DNA Extraction Method for the Qualitative and Quantitative Assessment of Bacterial Communities from Poultry Production Samples

    PubMed Central

    Rothrock, Michael J.; Hiett, Kelli L.; Gamble, John; Caudill, Andrew C.; Cicconi-Hogan, Kellie M.; Caporaso, J. Gregory

    2014-01-01

    The efficacy of DNA extraction protocols can be highly dependent upon both the type of sample being investigated and the types of downstream analyses performed. Considering that the use of new bacterial community analysis techniques (e.g., microbiomics, metagenomics) is becoming more prevalent in the agricultural and environmental sciences and many environmental samples within these disciplines can be physiochemically and microbiologically unique (e.g., fecal and litter/bedding samples from the poultry production spectrum), appropriate and effective DNA extraction methods need to be carefully chosen. Therefore, a novel semi-automated hybrid DNA extraction method was developed specifically for use with environmental poultry production samples. This method is a combination of the two major types of DNA extraction: mechanical and enzymatic. A two-step intense mechanical homogenization step (using bead-beating specifically formulated for environmental samples) was added to the beginning of the “gold standard” enzymatic DNA extraction method for fecal samples to enhance the removal of bacteria and DNA from the sample matrix and improve the recovery of Gram-positive bacterial community members. Once the enzymatic extraction portion of the hybrid method was initiated, the remaining purification process was automated using a robotic workstation to increase sample throughput and decrease sample processing error. In comparison to the strict mechanical and enzymatic DNA extraction methods, this novel hybrid method provided the best overall combined performance when considering quantitative (using 16S rRNA qPCR) and qualitative (using microbiomics) estimates of the total bacterial communities when processing poultry feces and litter samples. PMID:25548939

  19. A Ten-Week Biochemistry Lab Project Studying Wild-Type and Mutant Bacterial Alkaline Phosphatase

    ERIC Educational Resources Information Center

    Witherow, D. Scott

    2016-01-01

    This work describes a 10-week laboratory project studying wild-type and mutant bacterial alkaline phosphatase, in which students purify, quantitate, and perform kinetic assays on wild-type and selected mutants of the enzyme. Students also perform plasmid DNA purification, digestion, and gel analysis. In addition to simply learning important…

  20. DNA methylation at hepatitis B viral integrants is associated with methylation at flanking human genomic sequences

    PubMed Central

    Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Oikawa, Ritsuko; Toyota, Minoru; Yamamoto, Masakazu; Kokudo, Norihiro; Tanaka, Shinji; Arii, Shigeki; Yotsuyanagi, Hiroshi; Koike, Kazuhiko; Itoh, Fumio

    2015-01-01

    Integration of DNA viruses into the human genome plays an important role in various types of tumors, including hepatitis B virus (HBV)–related hepatocellular carcinoma. However, the molecular details and clinical impact of HBV integration on either human or HBV epigenomes are unknown. Here, we show that methylation of the integrated HBV DNA is related to the methylation status of the flanking human genome. We developed a next-generation sequencing-based method for structural methylation analysis of integrated viral genomes (denoted G-NaVI). This method is a novel approach that enables enrichment of viral fragments for sequencing using unique baits based on the sequence of the HBV genome. We detected integrated HBV sequences in the genome of the PLC/PRF/5 cell line and found variable levels of methylation within the integrated HBV genomes. Allele-specific methylation analysis revealed that the HBV genome often became significantly methylated when integrated into highly methylated host sites. After integration into unmethylated human genome regions such as promoters, however, the HBV DNA remains unmethylated and may eventually play an important role in tumorigenesis. The observed dynamic changes in DNA methylation of the host and viral genomes may functionally affect the biological behavior of HBV. These findings may impact public health given that millions of people worldwide are carriers of HBV. We also believe our assay will be a powerful tool to increase our understanding of the various types of DNA virus-associated tumorigenesis. PMID:25653310

  1. Fragman: an R package for fragment analysis

    USDA-ARS?s Scientific Manuscript database

    Determination of microsatellite lengths or other DNA fragment types is an important initial component of many genetic studies such as mutation detection, linkage and QTL mapping, genetic diversity, pedigree analysis, and detection of heterozygosity. A handful of commercial and freely available softw...

  2. Extracting DNA from 'jaws': high yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material.

    PubMed

    Nielsen, E E; Morgan, J A T; Maher, S L; Edson, J; Gauthier, M; Pepperell, J; Holmes, B J; Bennett, M B; Ovenden, J R

    2017-05-01

    Archived specimens are highly valuable sources of DNA for retrospective genetic/genomic analysis. However, often limited effort has been made to evaluate and optimize extraction methods, which may be crucial for downstream applications. Here, we assessed and optimized the usefulness of abundant archived skeletal material from sharks as a source of DNA for temporal genomic studies. Six different methods for DNA extraction, encompassing two different commercial kits and three different protocols, were applied to material, so-called bio-swarf, from contemporary and archived jaws and vertebrae of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples of white shark (Carcharodon carcharias). Application of the optimized methods to 38 museum and private angler trophy specimens dating back to 1912 yielded sufficient DNA for downstream genomic analysis for 68% of the samples. No clear relationships between age of samples, DNA quality and quantity were observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws and vertebrae are potential high-yield sources of DNA for genomic-scale analysis. It also highlights that even for similar tissue types, a careful evaluation of extraction protocols can vastly improve DNA yield. © 2016 John Wiley & Sons Ltd.

  3. Cloning and analysis of DnaJ family members in the silkworm, Bombyx mori.

    PubMed

    Li, Yinü; Bu, Cuiyu; Li, Tiantian; Wang, Shibao; Jiang, Feng; Yi, Yongzhu; Yang, Huipeng; Zhang, Zhifang

    2016-01-15

    Heat shock proteins (Hsps) are involved in a variety of critical biological functions, including protein folding, degradation, and translocation and macromolecule assembly, act as molecular chaperones during periods of stress by binding to other proteins. Using expressed sequence tag (EST) and silkworm (Bombyx mori) transcriptome databases, we identified 27 cDNA sequences encoding the conserved J domain, which is found in DnaJ-type Hsps. Of the 27 J domain-containing sequences, 25 were complete cDNA sequences. We divided them into three types according to the number and presence of conserved domains. By analyzing the gene structures, intron numbers, and conserved domains and constructing a phylogenetic tree, we found that the DnaJ family had undergone convergent evolution, obtaining new domains to expand the diversity of its family members. The acquisition of the new DnaJ domains most likely occurred prior to the evolutionary divergence of prokaryotes and eukaryotes. The expression of DnaJ genes in the silkworm was generally higher in the fat body. The tissue distribution of DnaJ1 proteins was detected by western blotting, demonstrating that in the fifth-instar larvae, the DnaJ1 proteins were expressed at their highest levels in hemocytes, followed by the fat body and head. We also found that the DnaJ1 transcripts were likely differentially translated in different tissues. Using immunofluorescence cytochemistry, we revealed that in the blood cells, DnaJ1 was mainly localized in the cytoplasm. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells.

    PubMed

    Fernández, Agustín F; Bayón, Gustavo F; Urdinguio, Rocío G; Toraño, Estela G; García, María G; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M; Riancho, José A; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A; Fraga, Mario F

    2015-01-01

    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. © 2015 Fernández et al.; Published by Cold Spring Harbor Laboratory Press.

  5. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis

    PubMed Central

    Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh

    2017-01-01

    ABSTRACT Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (ΔatlA) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an ΔatlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the ΔatlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in ΔatlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans, which contributes to biofilm formation in infective endocarditis. PMID:28674029

  6. j5 DNA assembly design automation.

    PubMed

    Hillson, Nathan J

    2014-01-01

    Modern standardized methodologies, described in detail in the previous chapters of this book, have enabled the software-automated design of optimized DNA construction protocols. This chapter describes how to design (combinatorial) scar-less DNA assembly protocols using the web-based software j5. j5 assists biomedical and biotechnological researchers construct DNA by automating the design of optimized protocols for flanking homology sequence as well as type IIS endonuclease-mediated DNA assembly methodologies. Unlike any other software tool available today, j5 designs scar-less combinatorial DNA assembly protocols, performs a cost-benefit analysis to identify which portions of an assembly process would be less expensive to outsource to a DNA synthesis service provider, and designs hierarchical DNA assembly strategies to mitigate anticipated poor assembly junction sequence performance. Software integrated with j5 add significant value to the j5 design process through graphical user-interface enhancement and downstream liquid-handling robotic laboratory automation.

  7. High-Throughput Analysis of T-DNA Location and Structure Using Sequence Capture.

    PubMed

    Inagaki, Soichi; Henry, Isabelle M; Lieberman, Meric C; Comai, Luca

    2015-01-01

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA-genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. Our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

  8. [Role of phosphorylation of MARCKS-PSD in the secretion of MUC5AC induced by cold temperatures in human airway epithelial cells].

    PubMed

    Li, Minchao; Perelman, Juliy M; Zhou, Xiangdong

    2012-05-01

    To construct phosphorylation sites domain (PSD) mutant of myristoylated alaninerich C kinase substrate (MARCKS) and explore the role of transient receptor potential melastatin 8 cation channels (TRPM8) and MARCKS in cold-induced synthesis and exocytosis of mucin (MUC) 5AC. Human placental cDNA was used as a template to amplify the full coding region of MARCKS cDNA by PCR. Ser159, Ser 163, Ser 167, Ser 170 in the PSD were mutated to aspartic acids by an overlap PCR method. The resultant PSD mutant cDNA and the wild-type MARCKS cDNA were each subcloned into a mammalian expression vector pcDNA3.0. Recombinant constructs were confirmed by restriction enzyme digestion analysis and DNA sequencing. In intervention experiments, cells were pretreated with the TRPM8 channel antagonist BCTC and transfected with MARCKS-PSD mutant cDNA, and thereafter cold stimulation was applied. The levels of MUC5AC were measured by immunofluorescence and ELISA to clarify the roles of TRPM8 and PSD mutant on the synthesis and secretion of MUC5AC induced by cold, respectively. Restriction enzyme digestion analysis and DNA sequencing revealed that the pcDNA3.0- MARCKS and pcDNA3.0-MARCKS-PSD mutants were successfully constructed. The levels of intracellular and secreted MUC5AC of cold treated group were significantly higher than those of control group (P<0.05). BCTC attenuated the cold-induced synthesis and secretion of MUC5AC when compared with cold treated group (P<0.05). Transfection of 16HBE cells with the MARCKS-PSD mutant cDNA resulted in significant inhibition of mucin secretion in response to cold, and significantly higher level of intracellular MUC5AC than that of control group (P<0.01), whereas transfection with the vector DNA or the wild-type MARCKS cDNA had no effect on the mucin synthesis and secretion in response to cold (P>0.05). TRPM8 and phosphorylation of MARCKS-PSD mediates the cold-induced exocytosis of MUC5AC by airway epithelial cells.

  9. Molecular cloning, sequence analysis and phylogeny of first caudata g-type lysozyme in axolotl (Ambystoma mexicanum).

    PubMed

    Yu, Haining; Gao, Jiuxiang; Lu, Yiling; Guang, Huijuan; Cai, Shasha; Zhang, Songyan; Wang, Yipeng

    2013-11-01

    Lysozymes are key proteins that play important roles in innate immune defense in many animal phyla by breaking down the bacterial cell-walls. In this study, we report the molecular cloning, sequence analysis and phylogeny of the first caudate amphibian g-lysozyme: a full-length spleen cDNA library from axolotl (Ambystoma mexicanum). A goose-type (g-lysozyme) EST was identified and the full-length cDNA was obtained using RACE-PCR. The axolotl g-lysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 184 amino acids. The calculated molecular mass and the theoretical isoelectric point (pl) of this mature protein are 21523.0 Da and 4.37, respectively. Expression of g-lysozyme mRNA is predominantly found in skin, with lower levels in spleen, liver, muscle, and lung. Phylogenetic analysis revealed that caudate amphibian g-lysozyme had distinct evolution pattern for being juxtaposed with not only anura amphibian, but also with the fish, bird and mammal. Although the first complete cDNA sequence for caudate amphibian g-lysozyme is reported in the present study, clones encoding axolotl's other functional immune molecules in the full-length cDNA library will have to be further sequenced to gain insight into the fundamental aspects of antibacterial mechanisms in caudate.

  10. Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database.

    PubMed

    Garcia, Sònia; Kovařík, Ales; Leitch, Andrew R; Garnatje, Teresa

    2017-03-01

    The online resource http://www.plantrdnadatabase.com/ stores information on the number, chromosomal locations and structure of the 5S and 18S-5.8S-26S (35S) ribosomal DNAs (rDNA) in plants. This resource was exploited to study relationships between rDNA locus number, distribution, the occurrence of linked (L-type) and separated (S-type) 5S and 35S rDNA units, chromosome number, genome size and ploidy level. The analyses presented summarise current knowledge on rDNA locus numbers and distribution in plants. We analysed 2949 karyotypes, from 1791 species and 86 plant families, and performed ancestral character state reconstructions. The ancestral karyotype (2n = 16) has two terminal 35S sites and two interstitial 5S sites, while the median (2n = 24) presents four terminal 35S sites and three interstitial 5S sites. Whilst 86.57% of karyotypes show S-type organisation (ancestral condition), the L-type arrangement has arisen independently several times during plant evolution. A non-terminal position of 35S rDNA was found in about 25% of single-locus karyotypes, suggesting that terminal locations are not essential for functionality and expression. Single-locus karyotypes are very common, even in polyploids. In this regard, polyploidy is followed by subsequent locus loss. This results in a decrease in locus number per monoploid genome, forming part of the diploidisation process returning polyploids to a diploid-like state over time. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Solibacillus kalamii sp. nov., isolated from a high-efficiency particulate arrestance filter system used in the International Space Station.

    PubMed

    Checinska Sielaff, Aleksandra; Kumar, Rajendran Mathan; Pal, Deepika; Mayilraj, Shanmugam; Venkateswaran, Kasthuri

    2017-04-01

    A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ISSFR-015T, was isolated from a high-efficiency particulate arrestance filter in the International Space Station and was characterized by polyphasic taxonomy. A comparative analysis of the 16S rRNA gene sequence (1494 bp) of strain ISSFR-015T showed highest similarity to Solibacillus isronensis B3W22T (98.9 %), followed by Solibacillus silvestris HR3-23T (98.6 %) and Bacillus cecembensis PN5T (96.7 %). DNA-DNA hybridization analysis revealed that the DNA relatedness values of strain ISSFR-015T with other closely related species were in the range of 41-47 % [S. silvestrisMTCC 10789T (47 %), S. isronensis MTCC 7902T (41 %) and B. cecembensis MTCC 9127T (43 %)]. The DNA G+C content of strain ISSFR-015T was 45.4 mol%. The major fatty acids were iso-C15 : 0 (45.2 %) and C17 : 1ω10c (12.1 %). The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and one unknown phospholipid. The isoprenoid quinones present in strain ISSFR-015T were MK-7 (86.8 %), MK-6 (11.6 %) and MK-8 (1.0 %). The peptidoglycan type of the cell wall was A4α l-Lys-d-Glu. Based on the phylogenetic analysis, strain ISSFR-015T belongs to the genus Solibacillus. The polyphasic taxonomic data, including low DNA-DNA hybridization values, and the chemotaxonomic analysis confirmed that strain ISSFR-015T represents a novel species, for which the name Solibacillus kalamii sp. nov. is proposed. The type strain for this proposed species is ISSFR-015T (=NRRL B-65388T=DSM 101595T).

  12. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    NASA Astrophysics Data System (ADS)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  13. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    PubMed Central

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-01-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level. PMID:28382928

  14. Winnowing DNA for Rare Sequences: Highly Specific Sequence and Methylation Based Enrichment

    PubMed Central

    Thompson, Jason D.; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre

    2012-01-01

    Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue. PMID:22355378

  15. Typing and Subtyping of 83 Clinical Isolates Purified from Surgically Implanted Silicone Feeding Tubes by Random Amplified Polymorphic DNA Amplification

    PubMed Central

    Dautle, Melanie P.; Ulrich, Ricky L.; Hughes, Thomas A.

    2002-01-01

    In this study, 83 clinical isolates purified from biofilms colonizing 18 silicone gastrostomy devices (12 “buttons” and six tubes converted to skin level devices) were selected for subtype characterization utilizing genetic analysis. The tubes, previously used for feeding, remained in place for 3 to 47 months (mean, 20.0 months) in children ranging in age from 6 months to 17 years. Classification of specific microbes using random amplified polymorphic DNA (RAPD) analysis revealed genetic similarities and differences among isolates belonging to the same genus. Both gram-positive and -negative bacteria were investigated, including 2 isolates of Bacillus brevis, 4 isolates of Bacillus licheniformis, 2 isolates of Bacillus pumilus, 3 isolates of Enterococcus durans, 19 isolates of Enterococcus faecalis, 8 isolates of Enterococcus faecium, 2 isolates of Enterococcus hirae, 7 isolates of Escherichia coli, 8 isolates of Lactobacillus plantarum, 19 isolates of Staphylococcus aureus, 2 isolates of Staphylococcus epidermidis, and 7 isolates of Staphylococcus saprophyticus. Amplified DNA fragments (amplicons) provided species-specific fingerprints for comparison by agarose gel electrophoresis. A total of 62 distinct RAPD types were categorized from the five genera studied. Typing analysis suggested cross acquisition of E. coli, E. faecalis, and S. aureus in three patient pairs. Genomic polymorphism detection proved efficient and reliable for classifying bacterial subtypes isolated from biofilms adhering to various portions of commonly employed enteral access tubes. PMID:11825951

  16. Novel division level bacterial diversity in a Yellowstone hot spring.

    PubMed

    Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R

    1998-01-01

    A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These results expand substantially our knowledge of the extent of bacterial diversity and call into question the commonly held notion that Archaea dominate hydrothermal environments. Finally, the currently known extent of division level bacterial phylogenetic diversity is collated and summarized.

  17. Gene Identification Algorithms Using Exploratory Statistical Analysis of Periodicity

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shashi Bajaj; Sen, Pradip Kumar

    2010-10-01

    Studying periodic pattern is expected as a standard line of attack for recognizing DNA sequence in identification of gene and similar problems. But peculiarly very little significant work is done in this direction. This paper studies statistical properties of DNA sequences of complete genome using a new technique. A DNA sequence is converted to a numeric sequence using various types of mappings and standard Fourier technique is applied to study the periodicity. Distinct statistical behaviour of periodicity parameters is found in coding and non-coding sequences, which can be used to distinguish between these parts. Here DNA sequences of Drosophila melanogaster were analyzed with significant accuracy.

  18. Flavonoids in Helichrysum pamphylicum inhibit mammalian type I DNA topoisomerase.

    PubMed

    Topcu, Zeki; Ozturk, Bintug; Kucukoglu, Ozlem; Kilinc, Emrah

    2008-01-01

    DNA topoisomerases are important targets for cancer chemotherapy. We investigated the effects of a methanolic extract of Helichrysum pamphylicum on mammalian DNA topoisomerase I via in vitro plasmid supercoil relaxation assays. The extracts manifested a considerable inhibition of the enzyme's activity in a dose-dependent manner. We also performed a HPLC analysis to identify the flavonoid content of the H. pamphylicum extract and tested the identified flavonoids; luteolin, luteolin-4-glucoside, naringenin, helichrysinA and isoquercitrin, on DNA topoisomerase I activity. The measurement of the total antioxidant capacity of the flavonoid standards suggested that the topoisomerase inhibition might be correlated with the antioxidant capacity of the plant.

  19. Relationship between SPOP mutation and breast cancer in Chinese population.

    PubMed

    Khan, M A; Zhu, L; Tania, M; Xiao, X L; Fu, J J

    2015-10-16

    SPOP protein has been found to have ubiquitin ligase activity. Mutations in SPOP gene have been recently reported in some cancers such as prostate, gastric, colorectal cancer. We investigated SPOP DNA mutation in tumor tissues collected from 70 Chinese female breast cancer patients in Southwestern China by DNA sequencing. The results did not show mutation in our tissue samples, indicating that a mutation in the SPOP gene may not be associated with breast cancer, particularly in Chinese women. This DNA mutation analysis or DNA genotyping may provide useful and important information for genetic counseling and personalized medical treatment for different types of cancers.

  20. Use of repetitive DNA sequences to distinguish Mus musculus and Mus caroli cells by in situ hybridization.

    PubMed

    Siracusa, L D; Chapman, V M; Bennett, K L; Hastie, N D; Pietras, D F; Rossant, J

    1983-02-01

    Mammalian chimaeras have proved useful for investigating early steps in embryonic development. However, a complete clonal analysis of cell lineages has been limited by the lack of a marker which is ubiquitous and can distinguish parental cell types in situ. We have developed a cell marker system which fulfils these criteria. Chimaeric mice were successfully produced from two mouse species which possess sufficient genetic differences to allow unequivocal identification of parental cell types. DNA-DNA in situ hybridization with cloned, species-specific sequences was performed to distinguish the parental cell types. We have identified a cloned, Mus musculus satellite DNA sequence which shows hybridization differences between Mus musculus and Mus caroli DNA. This clone was used a a probe in in situ hybridizations to bone marrow chromosomes from Mus musculus, Mus caroli, and an interspecific F1 hybrid. The clone could qualitatively distinguish Mus musculus from Mus caroli chromosomes after in situ hybridization, even when they were derived from the same F1 hybrid cell. Quantitation of this hybridization to interphase nuclei from bone marrow spreads indicates that the probe can successfully distinguish Mus musculus from Mus caroli cells and can determine the percentage contribution of Mus musculus in mixtures of bone marrow cells of these species and in chimaeric bone marrow cell preparations.

  1. Genetic identification of female Cannabis sativa plants at early developmental stage.

    PubMed

    Techen, Natascha; Chandra, Suman; Lata, Hemant; Elsohly, Mahmoud A; Khan, Ikhlas A

    2010-11-01

    Sequence-characterized amplified region (SCAR) markers were used to identify female plants at an early developmental stage in four different varieties of Cannabis sativa. Using the cetyl trimethylammonium bromide (CTAB) method, DNA was isolated from two-week-old plants of three drug-type varieties (Terbag W1, Terbag K2, and Terbag MX) and one fiber-type variety (Terbag Fedora A7) of C. sativa grown under controlled environmental conditions through seeds. Attempts to use MADC2 (male-associated DNA from Cannabis sativa) primers as a marker to identify the sex of Cannabis sativa plants were successful. Amplification of genomic DNA using MADC2-F and MADC2-R primers produced two distinct fragments, one with a size of approximately 450 bp for female plants and one for male plants with a size of approximately 300 bp. After harvesting the tissues for DNA extraction, plants were subjected to a flowering photoperiod (i.e., 12-h light cycle), and the appearance of flowers was compared with the DNA analysis. The results of the molecular analysis were found to be concordant with the appearance of male or female flowers. The results of this study represent a quick and reliable technique for the identification of sex in Cannabis plants using SCAR markers at a very early developmental stage. © Georg Thieme Verlag KG Stuttgart · New York.

  2. WE-H-BRA-08: A Monte Carlo Cell Nucleus Model for Assessing Cell Survival Probability Based On Particle Track Structure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B; Georgia Institute of Technology, Atlanta, GA; Wang, C

    Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities.more » These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell survival curves for high-LET radiation.« less

  3. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and molecular sensing for diagnostics.

  4. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Varner, J.E.

    1985-07-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 asmore » a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding.« less

  5. A new model for ancient DNA decay based on paleogenomic meta-analysis

    PubMed Central

    Ware, Roselyn; Smith, Oliver; Collins, Matthew

    2017-01-01

    Abstract The persistence of DNA over archaeological and paleontological timescales in diverse environments has led to a revolutionary body of paleogenomic research, yet the dynamics of DNA degradation are still poorly understood. We analyzed 185 paleogenomic datasets and compared DNA survival with environmental variables and sample ages. We find cytosine deamination follows a conventional thermal age model, but we find no correlation between DNA fragmentation and sample age over the timespans analyzed, even when controlling for environmental variables. We propose a model for ancient DNA decay wherein fragmentation rapidly reaches a threshold, then subsequently slows. The observed loss of DNA over time may be due to a bulk diffusion process in many cases, highlighting the importance of tissues and environments creating effectively closed systems for DNA preservation. This model of DNA degradation is largely based on mammal bone samples due to published genomic dataset availability. Continued refinement to the model to reflect diverse biological systems and tissue types will further improve our understanding of ancient DNA breakdown dynamics. PMID:28486705

  6. Strand invasion structures in the inverted repeat of Candida albicans mitochondrial DNA reveal a role for homologous recombination in replication.

    PubMed

    Gerhold, Joachim M; Aun, Anu; Sedman, Tiina; Jõers, Priit; Sedman, Juhan

    2010-09-24

    Molecular recombination and transcription are proposed mechanisms to initiate mitochondrial DNA (mtDNA) replication in yeast. We conducted a comprehensive analysis of mtDNA from the yeast Candida albicans. Two-dimensional agarose gel electrophoresis of mtDNA intermediates reveals no bubble structures diagnostic of specific replication origins, but rather supports recombination-driven replication initiation of mtDNA in yeast. Specific species of Y structures together with DNA copy number analyses of a C. albicans mutant strain provide evidence that a region in a mainly noncoding inverted repeat is predominantly involved in replication initiation via homologous recombination. Our further findings show that the C. albicans mtDNA forms a complex branched network that does not contain detectable amounts of circular molecules. We provide topological evidence for recombination-driven mtDNA replication initiation and introduce C. albicans as a suitable model organism to study wild-type mtDNA maintenance in yeast. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov.

    PubMed

    Holmes, B; Steigerwalt, A G; Nicholson, A C

    2013-12-01

    The taxonomic classification of 182 phenotypically similar isolates was evaluated using DNA-DNA hybridization and 16S rRNA gene sequence analysis. These bacterial isolates were mainly derived from clinical sources; all were Gram-negative non-fermenters and most were indole-producing. Phenotypically, they resembled species from the genera Chryseobacterium, Elizabethkingia or Empedobacter or belonged to CDC groups IIc, IIe, IIh and IIi. Based on these analyses, four novel species are described: Chryseobacterium bernardetii sp. nov. (type strain NCTC 13530(T) = CCUG 60564(T) = CDC G229(T)), Chryseobacterium carnis sp. nov. (type strain NCTC 13525(T) = CCUG 60559(T) = CDC G81(T)), Chryseobacterium lactis sp. nov. (type strain NCTC 11390(T) = CCUG 60566(T) = CDC KC1864(T)) and Chryseobacterium nakagawai sp. nov. (type strain NCTC 13529(T) = CCUG 60563(T) = CDC G41(T)). The new combination Chryseobacterium taklimakanense comb. nov. (type strain NCTC 13490(T) = X-65(T) = CCTCC AB 208154(T) = NRRL B-51322(T)) is also proposed to accommodate the reclassified Planobacterium taklimakanense.

  8. Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis

    PubMed Central

    Pourcel, C; André-Mazeaud, F; Neubauer, H; Ramisse, F; Vergnaud, G

    2004-01-01

    Background Yersinia pestis, the agent of plague, is a young and highly monomorphic species. Three biovars, each one thought to be associated with the last three Y. pestis pandemics, have been defined based on biochemical assays. More recently, DNA based assays, including DNA sequencing, IS typing, DNA arrays, have significantly improved current knowledge on the origin and phylogenetic evolution of Y. pestis. However, these methods suffer either from a lack of resolution or from the difficulty to compare data. Variable number of tandem repeats (VNTRs) provides valuable polymorphic markers for genotyping and performing phylogenetic analyses in a growing number of pathogens and have given promising results for Y. pestis as well. Results In this study we have genotyped 180 Y. pestis isolates by multiple locus VNTR analysis (MLVA) using 25 markers. Sixty-one different genotypes were observed. The three biovars were distributed into three main branches, with some exceptions. In particular, the Medievalis phenotype is clearly heterogeneous, resulting from different mutation events in the napA gene. Antiqua strains from Asia appear to hold a central position compared to Antiqua strains from Africa. A subset of 7 markers is proposed for the quick comparison of a new strain with the collection typed here. This can be easily achieved using a Web-based facility, specifically set-up for running such identifications. Conclusion Tandem-repeat typing may prove to be a powerful complement to the existing phylogenetic tools for Y. pestis. Typing can be achieved quickly at a low cost in terms of consumables, technical expertise and equipment. The resulting data can be easily compared between different laboratories. The number and selection of markers will eventually depend upon the type and aim of investigations. PMID:15186506

  9. A comparison of DNA fragmentation methods - Applications for the biochip technology.

    PubMed

    Sapojnikova, Nelly; Asatiani, Nino; Kartvelishvili, Tamar; Asanishvili, Lali; Zinkevich, Vitaly; Bogdarina, Irina; Mitchell, Julian; Al-Humam, Abdulmohsen

    2017-08-20

    The efficiency of hybridization signal detection in a biochip is affected by the method used for test DNA preparation, such as fragmentation, amplification and fluorescent labelling. DNA fragmentation is the commonest methods used and it is recognised as a critical step in biochip analysis. Currently methods used for DNA fragmentation are based either on sonication or on the enzymatic digestion. In this study, we compared the effect of different types of enzymatic DNA fragmentations, using DNase I to generate ssDNA breaks, NEBNext dsDNA fragmentase and SaqAI restrictase, on DNA labelling. DNA from different Desulfovibrio species was used as a substrate for these enzymes. Of the methods used, DNA fragmented by NEBNext dsDNA Fragmentase digestion was subsequently labelled with the greatest efficiency. As a result of this, the use of this enzyme to fragment target DNA increases the sensitivity of biochip-based detection significantly, and this is an important consideration when determining the presence of targeted DNA in ecological and medical samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of DNA extraction and sample preservation method on rumen bacterial population.

    PubMed

    Fliegerova, Katerina; Tapio, Ilma; Bonin, Aurelie; Mrazek, Jakub; Callegari, Maria Luisa; Bani, Paolo; Bayat, Alireza; Vilkki, Johanna; Kopečný, Jan; Shingfield, Kevin J; Boyer, Frederic; Coissac, Eric; Taberlet, Pierre; Wallace, R John

    2014-10-01

    The comparison of the bacterial profile of intracellular (iDNA) and extracellular DNA (eDNA) isolated from cow rumen content stored under different conditions was conducted. The influence of rumen fluid treatment (cheesecloth squeezed, centrifuged, filtered), storage temperature (RT, -80 °C) and cryoprotectants (PBS-glycerol, ethanol) on quality and quantity parameters of extracted DNA was evaluated by bacterial DGGE analysis, real-time PCR quantification and metabarcoding approach using high-throughput sequencing. Samples clustered according to the type of extracted DNA due to considerable differences between iDNA and eDNA bacterial profiles, while storage temperature and cryoprotectants additives had little effect on sample clustering. The numbers of Firmicutes and Bacteroidetes were lower (P < 0.01) in eDNA samples. The qPCR indicated significantly higher amount of Firmicutes in iDNA sample frozen with glycerol (P < 0.01). Deep sequencing analysis of iDNA samples revealed the prevalence of Bacteroidetes and similarity of samples frozen with and without cryoprotectants, which differed from sample stored with ethanol at room temperature. Centrifugation and consequent filtration of rumen fluid subjected to the eDNA isolation procedure considerably changed the ratio of molecular operational taxonomic units (MOTUs) of Bacteroidetes and Firmicutes. Intracellular DNA extraction using bead-beating method from cheesecloth sieved rumen content mixed with PBS-glycerol and stored at -80 °C was found as the optimal method to study ruminal bacterial profile. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A LDR-PCR approach for multiplex polymorphisms genotyping of severely degraded DNA with fragment sizes <100 bp.

    PubMed

    Zhang, Zhen; Wang, Bao-Jie; Guan, Hong-Yu; Pang, Hao; Xuan, Jin-Feng

    2009-11-01

    Reducing amplicon sizes has become a major strategy for analyzing degraded DNA typical of forensic samples. However, amplicon sizes in current mini-short tandem repeat-polymerase chain reaction (PCR) and mini-sequencing assays are still not suitable for analysis of severely degraded DNA. In this study, we present a multiplex typing method that couples ligase detection reaction with PCR that can be used to identify single nucleotide polymorphisms and small-scale insertion/deletions in a sample of severely fragmented DNA. This method adopts thermostable ligation for allele discrimination and subsequent PCR for signal enhancement. In this study, four polymorphic loci were used to assess the ability of this technique to discriminate alleles in an artificially degraded sample of DNA with fragment sizes <100 bp. Our results showed clear allelic discrimination of single or multiple loci, suggesting that this method might aid in the analysis of extremely degraded samples in which allelic drop out of larger fragments is observed.

  12. GEAR: genomic enrichment analysis of regional DNA copy number changes.

    PubMed

    Kim, Tae-Min; Jung, Yu-Chae; Rhyu, Mun-Gan; Jung, Myeong Ho; Chung, Yeun-Jun

    2008-02-01

    We developed an algorithm named GEAR (genomic enrichment analysis of regional DNA copy number changes) for functional interpretation of genome-wide DNA copy number changes identified by array-based comparative genomic hybridization. GEAR selects two types of chromosomal alterations with potential biological relevance, i.e. recurrent and phenotype-specific alterations. Then it performs functional enrichment analysis using a priori selected functional gene sets to identify primary and clinical genomic signatures. The genomic signatures identified by GEAR represent functionally coordinated genomic changes, which can provide clues on the underlying molecular mechanisms related to the phenotypes of interest. GEAR can help the identification of key molecular functions that are activated or repressed in the tumor genomes leading to the improved understanding on the tumor biology. GEAR software is available with online manual in the website, http://www.systemsbiology.co.kr/GEAR/.

  13. Genetic mutation underlying orthostatic intolerance and diagnostic and therapeutic methods relating thereto

    NASA Technical Reports Server (NTRS)

    Blakely, Randy D. (Inventor); Robertson, David (Inventor)

    2006-01-01

    Isolated polynucleotide molecules and peptides encoded by these molecules are used in the analysis of human norepinephrine (NE) transporter variants, as well as in diagnostic and therapeutic applications, relating to a human NE transporter polymorphism. By analyzing genomic DNA or amplified genomic DNA, or amplified cDNA derived from mRNA, it is possible to type a human NE transporter with regard to the human NE transporter polymorphism, for example, in the context of diagnosing and treating NE transport impairments, and disorders associated with NE transport impairments, such as orthostatic intolerance.

  14. The repeating nucleotide sequence in the repetitive mitochondrial DNA from a "low-density" petite mutant of yeast.

    PubMed Central

    Van Kreijl, C F; Bos, J L

    1977-01-01

    The repeating nucleotide sequence of 68 base pairs in the mtDNA from an ethidium-induced cytoplasmic petite mutant of yeast has been determined. For sequence analysis specifically primed and terminated RNA copies, obtained by in vitro transcription of the separated strands, were use. The sequence consists of 66 consecutive AT base pairs flanked by two GC pairs and comprises nearly all of the mutant mitochondrial genome. The sequence, moreover, also represents the first part of wild-type mtDNA sequence so far. Images PMID:198740

  15. Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization.

    PubMed

    Matoba, Hideyuki; Mizutani, Takayuki; Nagano, Katsuya; Hoshi, Yoshikazu; Uchiyama, Hiroshi

    2007-12-01

    In this study, in addition to the karyotype analysis, the chromosomal distributions of 5 S and 18 S rDNAs, and the Arabidopsis-type (T3AG3) telomeric sequences were detected by means of fluorescence in situ hybridization (FISH) to promote the information of chromosomal organization and evolution in the cultivated lettuce and its wild relatives, L. sativa, L. serriola, L. saligna and L. virosa. The karyotype analysis revealed the dissimilarity between L. virosa and the remaining species. In all four Lactuca species studied, one 5 S rDNA and two 18 S rDNA loci were detected. The simultaneous FISH of 5 S and 18 S rDNAs revealed that both rDNA loci of L. sativa, L. serriola and L. saligna were identical, however, that of L. virosa was different from the other species. These analyses indicate the closer relationships between L. sativa/L. serriola and L. saligna rather than L. virosa. Arabidopsis-type telomeric sequences were detected at both ends of their chromatids of all chromosomes not in the other regions. This observation suggests the lack of telomere-mediated chromosomal rearrangements among the Lactuca chromosomes.

  16. Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs.

    PubMed

    Pöggeler, S; Kück, U

    2000-03-01

    The mating-type locus controls mating and sexual development in filamentous ascomycetes. In the heterothallic ascomycete Neurospora crassa, the genes that confer mating behavior comprise dissimilar DNA sequences (idiomorphs) in the mat a and mat A mating partners. In the homothallic fungus Sordaria macrospora, sequences corresponding to both idiomorphs are located contiguously in the mating-type locus, which contains one chimeric gene, Smt A-3, that includes sequences which are similar to sequences found at the mat A and mat a mating-type idiomorphs in N. crassa. In this study, we describe the comparative transcriptional analysis of the chimeric mating-type region of S. macrospora and the corresponding region of the N. crassa mat a idiomorph. By means of RT-PCR experiments, we identified novel intervening sequences in the mating-type loci of both ascomycetes and, hence, concluded that an additional ORF, encoding a putative polypeptide of 79 amino acids, is present in the N. crassa mat a idiomorph. Furthermore, our analysis revealed co-transcription of the novel gene with the mat a-1 gene in N. crassa. The same mode of transcription was found in the corresponding mating-type region of S. macrospora, where the chimeric Smt A-3 gene is co-transcribed with the mat a-specific Smt a-1 gene. Analysis of a Smt A-3 cDNA revealed optional splicing of two introns. We believe that this is the first report of co-transcription of protein-encoding nuclear genes in filamentous fungi. Possible functions of the novel ORFs in regulating mating-type gene expression are discussed.

  17. Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov.

    PubMed

    Yoon, Jung-Hoon; Oh, Tae-Kwang; Park, Yong-Ha

    2004-11-01

    A Gram-variable, endospore-forming moderately halophilic rod, strain SF-121, was isolated from a marine solar saltern of the Yellow Sea in Korea. The result of 16S rRNA gene sequence analysis showed that strain SF-121 has highest sequence similarity (99.7 %) with the type strain of Bacillus halodenitrificans. Phylogenetic analyses based on 16S rRNA gene sequences revealed that B. halodenitrificans DSM 10037(T) and strain SF-121 are more closely related to the genus Virgibacillus than to the genus Bacillus. Strain SF-121 and B. halodenitrificans DSM 10037(T) exhibited 16S rRNA gene similarity levels of 95.3-97.5 % with the type strains of Virgibacillus species and 94.0 % with the type strain of Bacillus subtilis. DNA-DNA relatedness and phenotypic data indicated that B. halodenitrificans DSM 10037(T) and strain SF-121 are members of the same species. B. halodenitrificans DSM 10037(T) and strain SF-121 exhibited DNA-DNA relatedness values of 9-11 % with the type strains of Virgibacillus carmonensis and Virgibacillus marismortui. On the basis of the phenotypic, chemotaxonomic, phylogenetic and genetic data, B. halodenitrificans should be reclassified in the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov.

  18. Population-scale whole genome sequencing identifies 271 highly polymorphic short tandem repeats from Japanese population.

    PubMed

    Hirata, Satoshi; Kojima, Kaname; Misawa, Kazuharu; Gervais, Olivier; Kawai, Yosuke; Nagasaki, Masao

    2018-05-01

    Forensic DNA typing is widely used to identify missing persons and plays a central role in forensic profiling. DNA typing usually uses capillary electrophoresis fragment analysis of PCR amplification products to detect the length of short tandem repeat (STR) markers. Here, we analyzed whole genome data from 1,070 Japanese individuals generated using massively parallel short-read sequencing of 162 paired-end bases. We have analyzed 843,473 STR loci with two to six basepair repeat units and cataloged highly polymorphic STR loci in the Japanese population. To evaluate the performance of the cataloged STR loci, we compared 23 STR loci, widely used in forensic DNA typing, with capillary electrophoresis based STR genotyping results in the Japanese population. Seventeen loci had high correlations and high call rates. The other six loci had low call rates or low correlations due to either the limitations of short-read sequencing technology, the bioinformatics tool used, or the complexity of repeat patterns. With these analyses, we have also purified the suitable 218 STR loci with four basepair repeat units and 53 loci with five basepair repeat units both for short read sequencing and PCR based technologies, which would be candidates to the actual forensic DNA typing in Japanese population.

  19. First Polish DNA "manhunt"--an application of Y-chromosome STRs.

    PubMed

    Dettlaff-Kakol, A; Pawlowski, R

    2002-10-01

    This study presents the application of Y-chromosomal STR polymorphisms to male identification in the case of a serial rapist and woman murderer in Poland. Since August 1996 a rapist from Swinoujscie (northwest Poland) committed at least 14 rapes. In the year 2000 he brutally raped 8 young girls and murdered a 22-year-old girl. DNA profiles obtained from semen stains left at the scenes of crime gave information that one and the same man had committed all the rapes. The Y-chromosome haplotype (9 loci) obtained was used for the elimination process of 421 suspects. One man was found who had an identical DNA profile in all Y-chromosome STR loci analysed and possessed common alleles in 9 out of 10 autosomal loci, strongly suggesting that the real rapist and the typed man were closely related males. Analysis of reference DNA obtained from the man's brother revealed an identical DNA STR profile to that identified at the crime scenes. To the best of our knowledge this is the first case in Poland and probably in Eastern Europe where DNA typing of a large population was used to identify the offender.

  20. The Optimization of Electrophoresis on a Glass Microfluidic Chip and its Application in Forensic Science.

    PubMed

    Han, Jun P; Sun, Jing; Wang, Le; Liu, Peng; Zhuang, Bin; Zhao, Lei; Liu, Yao; Li, Cai X

    2017-11-01

    Microfluidic chips offer significant speed, cost, and sensitivity advantages, but numerous parameters must be optimized to provide microchip electrophoresis detection. Experiments were conducted to study the factors, including sieving matrices (the concentration and type), surface modification, analysis temperature, and electric field strengths, which all impact the effectiveness of microchip electrophoresis detection of DNA samples. Our results showed that the best resolution for ssDNA was observed using 4.5% w/v (7 M urea) lab-fabricated LPA gel, dynamic wall coating of the microchannel, electrophoresis temperatures between 55 and 60°C, and electrical fields between 350 and 450 V/cm on the microchip-based capillary electrophoresis (μCE) system. One base-pair resolution could be achieved in the 19-cm-length microchannel. Furthermore, both 9947A standard genomic DNA and DNA extracted from blood spots were demonstrated to be successfully separated with well-resolved DNA peaks in 8 min. Therefore, the microchip electrophoresis system demonstrated good potential for rapid forensic DNA analysis. © 2017 American Academy of Forensic Sciences.

  1. Cloning and identification of a cDNA that encodes a novel human protein with thrombospondin type I repeat domain, hPWTSR.

    PubMed

    Chen, Jin-Zhong; Wang, Shu; Tang, Rong; Yang, Quan-Sheng; Zhao, Enpeng; Chao, Yaoqiong; Ying, Kang; Xie, Yi; Mao, Yu-Min

    2002-09-01

    A cDNA was isolated from the fetal brain cDNA library by high throughput cDNA sequencing. The 2390 bp cDNA with an open reading fragment (ORF) of 816 bp encodes a 272 amino acids putative protein with a thrombospondin type I repeat (TSR) domain and a cysteine-rich region at the N-terminus, so it is named hPWTSR. We used Northern blot detected two bands with length of about 3 kb and 4 kb respectively, which expressed in human adult tissues with different intensities. The expression pattern was verified by RT-PCR, revealing that the transcripts were expressed ubiquitously in fetal tissues and human tumor tissues too. However, the transcript was detected neither in ovarian carcinoma GI-102 nor in lung carcinoma LX-1. Blast analysis against NCBI database revealed that the new gene contained at least 5 exons and located in human chromosome 6q22.33. Our results demonstrate that the gene is a novel member of TSR supergene family.

  2. Comparative evaluation of different extraction and quantification methods for forensic RNA analysis.

    PubMed

    Grabmüller, Melanie; Madea, Burkhard; Courts, Cornelius

    2015-05-01

    Since about 2005, there is increasing interest in forensic RNA analysis whose versatility may very favorably complement traditional DNA profiling in forensic casework. There is, however, no method available specifically dedicated for extraction of RNA from forensically relevant sample material. In this study we compared five commercially available and commonly used RNA extraction kits and methods (mirVana™ miRNA Isolation Kit Ambion; Trizol® Reagent, Invitrogen; NucleoSpin® miRNA Kit Macherey-Nagel; AllPrep DNA/RNA Mini Kit and RNeasy® Mini Kit both Qiagen) to assess their relative effectiveness of yielding RNA of good quality and their compatibility with co-extraction of DNA amenable to STR profiling. We set up samples of small amounts of dried blood, liquid saliva, semen and buccal mucosa that were aged for different time intervals for co-extraction of RNA and DNA. RNA quality was assessed by determination of 'RNA integrity number' (RIN) and quantitative PCR based expression analysis. DNA quality was assessed via monitoring STR typing success rates. By comparison, the different methods exhibited considerable differences between RNA and DNA yields, RNA quality values and expression levels, and STR profiling success, with the AllPrep DNA/RNA Mini Kit and the NucleoSpin® miRNA Kit excelling at DNA co-extraction and RNA results, respectively. Overall, there was no 'best' method to satisfy all demands of comprehensible co-analysis of RNA and DNA and it appears that each method has specific merits and flaws. We recommend to cautiously choose from available methods and align its characteristics with the needs of the experimental setting at hand. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Methods for applying accurate digital PCR analysis on low copy DNA samples.

    PubMed

    Whale, Alexandra S; Cowen, Simon; Foy, Carole A; Huggett, Jim F

    2013-01-01

    Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.

  4. Methods for Applying Accurate Digital PCR Analysis on Low Copy DNA Samples

    PubMed Central

    Whale, Alexandra S.; Cowen, Simon; Foy, Carole A.; Huggett, Jim F.

    2013-01-01

    Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA. PMID:23472156

  5. A search for the primary abnormality in adult-onset type II citrullinemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Keiko; Shaheen, Nazma; Saheki, Takeyori

    1993-11-01

    Deficiency of argininosuccinate synthetase (ASS) causes citrullinemia in human beings. Type II citrullinemia is found in most patients with adult-onset citrullinemia in Japan, and ASS deficiency is found specifically in the liver. Previous studies have shown that the decrease of hepatic ASS activity is caused by a decrease in enzyme protein with normal kinetic properties and that there were no apparent abnormalities in the amount, translational activity, and gross structure of hepatic ASS mRNA. In the present work, the authors show by sequencing analysis that there was no mutation in the ASS mRNA from two patients with type II citrullinemia.more » The authors also report RFLP analysis of a consanguineous family with type II citrullinemia, by using three DNA polymorphisms located within the ASS gene locus. In spite of having consanguineous parents, the patient was not a homozygous haplotype for the ASS gene. The RFLP analysis of 16 affected patients from consanguineous parents showed that 5 of 16 patients had the heterozygous pattern for one of the three DNA probes and that the frequency of the heterozygous haplotype was not different from the control frequency. These results suggest that the primary defect of type II citrullinemia is not within the ASS gene locus. 29 refs., 1 fig., 3 tabs.« less

  6. Insights into the effects of mutations on Cren7-DNA binding using molecular dynamics simulations and free energy calculations.

    PubMed

    Chen, Lin; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2015-02-28

    A novel, highly conserved chromatin protein, Cren7 is involved in regulating essential cellular processes such as transcription, replication and repair. Although mutations in the DNA-binding loop of Cren7 destabilize the structure and reduce DNA-binding activity, the details are not very clear. Focusing on the specific Cren7-dsDNA complex (PDB code ), we applied molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculations to explore the structural and dynamic effects of W26A, L28A, and K53A mutations in comparison to the wild-type protein. The energetic analysis indicated that the intermolecular van der Waals interaction and nonpolar solvation energy play an important role in the binding process of Cren7 and dsDNA. Compared with the wild type Cren7, all the studied mutants W26A, L28A, and K53A have obviously reduced binding free energies with dsDNA in the reduction of the polar and/or nonpolar interactions. These results further elucidated the previous experiments to understand the Cren7-DNA interaction comprehensively. Our work also would provide support for an understanding of the interactions of proteins with nucleic acids.

  7. Skeletal Remains from World War II Mass Grave: from Discovery to Identification

    PubMed Central

    Definis Gojanović, Marija; Sutlović, Davorka

    2007-01-01

    Aim To present the process of identification of skeletal remains from a mass grave found on a Dalmatian mountain-range in 2005, which allegedly contained the remains of civilians from Herzegovina killed in the World War II, including a group of 8 Franciscan monks. Methods Excavation of the site in Dalmatian hinterland, near the village of Zagvozd, was accomplished according to archeological procedures. Anthropological analysis was performed to estimate sex, age at death, and height of the individuals, as well as pathological and traumatic changes of the bones. Due to the lack of ante-mortem data, DNA typing using Y-chromosome was performed. DNA was isolated from bones and teeth samples using standard phenol/chloroform/isoamyl alcohol extraction. Two Y-chromosome short tandem repeats (STR) systems were used for DNA quantification and amplification. Typing of polymerase chain reaction (PCR) products was performed on an ABI Prism 310 Genetic Analyzer. PCR typing results were matched with results from DNA analysis of samples collected from the relatives of supposed victims – blood samples from the living relatives and bone samples collected during further exhumation of died parents or relatives of the supposed victims. Results The remains contained 18 almost complete skeletons, with considerable post-mortal damage. All remains were men, mainly middle-aged, with gunshot wounds to the head. DNA analysis and cross-matching of the results with relatives’ data resulted in three positive identifications using the Y-chromosomal short tandem repeat (Y-STR) systems. All of the positively identified remains belonged to the Franciscan friars allegedly killed in Herzegovina and buried at the analyzed site. Conclusion Our analysis of remains from a mass grave from the World War II confirmed the value of patrilineal lineage based on Y-STRs, even when missing persons had left no offspring, as was the case with Franciscan monks. Although this report is primarily focused on the identification of remains from a mass grave, it also emphasizes the role of forensic approach in documenting human right violations. PMID:17696307

  8. Cellular responses and gene expression profile changes due to bleomycin-induced DNA damage in human fibroblasts in space

    PubMed Central

    Kidane, Yared; Feiveson, Alan; Stodieck, Louis; Karouia, Fathi; Ramesh, Govindarajan; Rohde, Larry; Wu, Honglu

    2017-01-01

    Living organisms in space are constantly exposed to radiation, toxic chemicals or reactive oxygen species generated due to increased levels of environmental and psychological stresses. Understanding the impact of spaceflight factors, microgravity in particular, on cellular responses to DNA damage is essential for assessing the radiation risk for astronauts and the mutation rate in microorganisms. In a study conducted on the International Space Station, confluent human fibroblasts in culture were treated with bleomycin for three hours in the true microgravity environment. The degree of DNA damage was quantified by immunofluorescence staining for γ-H2AX, which is manifested in three types of staining patterns. Although similar percentages of these types of patterns were found between flight and ground cells, there was a slight shift in the distribution of foci counts in the flown cells with countable numbers of γ-H2AX foci. Comparison of the cells in confluent and in exponential growth conditions indicated that the proliferation rate between flight and the ground may be responsible for such a shift. We also performed a microarray analysis of gene expressions in response to bleomycin treatment. A qualitative comparison of the responsive pathways between the flown and ground cells showed similar responses with the p53 network being the top upstream regulator. The microarray data was confirmed with a PCR array analysis containing a set of genes involved in DNA damage signaling; with BBC3, CDKN1A, PCNA and PPM1D being significantly upregulated in both flight and ground cells after bleomycin treatment. Our results suggest that whether microgravity affects DNA damage response in space can be dependent on the cell type and cell growth condition. PMID:28248986

  9. Lab on a chip genotyping for Brucella spp. based on 15-loci multi locus VNTR analysis.

    PubMed

    De Santis, Riccardo; Ciammaruconi, Andrea; Faggioni, Giovanni; D'Amelio, Raffaele; Marianelli, Cinzia; Lista, Florigio

    2009-04-07

    Brucellosis is an important zoonosis caused by the genus Brucella. In addition Brucella represents potential biological warfare agents due to the high contagious rates for humans and animals. Therefore, the strain typing epidemiological tool may be crucial for tracing back source of infection in outbreaks and discriminating naturally occurring outbreaks versus bioterroristic event. A Multiple Locus Variable-number tandem repeats (VNTR) Analysis (MLVA) assay based on 15 polymorphic markers was previously described. The obtained MLVA band profiles may be resolved by techniques ranging from low cost manual agarose gels to the more expensive capillary electrophoresis sequencing. In this paper a rapid, accurate and reproducible system, based on the Lab on a chip technology was set up for Brucella spp. genotyping. Seventeen DNA samples of Brucella strains isolated in Sicily, previously genotyped, and twelve DNA samples, provided by MLVA Brucella VNTR ring trial, were analyzed by MLVA-15 on Agilent 2100. The DNA fragment sizes produced by Agilent, compared with those expected, showed discrepancies; therefore, in order to assign the correct alleles to the Agilent DNA fragment sizes, a conversion table was produced. In order to validate the system twelve unknown DNA samples were analyzed by this method obtaining a full concordance with the VNTR ring trial results. In this paper we described a rapid and specific detection method for the characterization of Brucella isolates. The comparison of the MLVA typing data produced by Agilent system with the data obtained by standard sequencing or ethidium bromide slab gel electrophoresis showed a general concordance of the results. Therefore this platform represents a fair compromise among costs, speed and specificity compared to any conventional molecular typing technique.

  10. Evaluation of massively parallel sequencing for forensic DNA methylation profiling.

    PubMed

    Richards, Rebecca; Patel, Jayshree; Stevenson, Kate; Harbison, SallyAnn

    2018-05-11

    Epigenetics is an emerging area of interest in forensic science. DNA methylation, a type of epigenetic modification, can be applied to chronological age estimation, identical twin differentiation and body fluid identification. However, there is not yet an agreed, established methodology for targeted detection and analysis of DNA methylation markers in forensic research. Recently a massively parallel sequencing-based approach has been suggested. The use of massively parallel sequencing is well established in clinical epigenetics and is emerging as a new technology in the forensic field. This review investigates the potential benefits, limitations and considerations of this technique for the analysis of DNA methylation in a forensic context. The importance of a robust protocol, regardless of the methodology used, that minimises potential sources of bias is highlighted. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae).

    PubMed

    Zhao, Ya-E; Xu, Ji-Ru; Hu, Li; Wu, Li-Ping; Wang, Zheng-Hang

    2012-05-01

    The study for the first time attempted to accomplish 18S ribosomal DNA (rDNA) complete sequence amplification and analysis for three Demodex species (Demodex folliculorum, Demodex brevis and Demodex canis) based on gDNA extraction from individual mites. The mites were treated by DNA Release Additive and Hot Start II DNA Polymerase so as to promote mite disruption and increase PCR specificity. Determination of D. folliculorum gDNA showed that the gDNA yield reached the highest at 1 mite, tending to descend with the increase of mite number. The individual mite gDNA was successfully used for 18S rDNA fragment (about 900 bp) amplification examination. The alignments of 18S rDNA complete sequences of individual mite samples and those of pooled mite samples ( ≥ 1000mites/sample) showed over 97% identities for each species, indicating that the gDNA extracted from a single individual mite was as satisfactory as that from pooled mites for PCR amplification. Further pairwise sequence analyses showed that average divergence, genetic distance, transition/transversion or phylogenetic tree could not effectively identify the three Demodex species, largely due to the differentiation in the D. canis isolates. It can be concluded that the individual Demodex mite gDNA can satisfy the molecular study of Demodex. 18S rDNA complete sequence is suitable for interfamily identification in Cheyletoidea, but whether it is suitable for intrafamily identification cannot be confirmed until the ascertainment of the types of Demodex mites parasitizing in dogs. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. DNA methylation levels analysis in four tissues of sea cucumber Apostichopus japonicus based on fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) during aestivation.

    PubMed

    Zhao, Ye; Chen, Muyan; Storey, Kenneth B; Sun, Lina; Yang, Hongsheng

    2015-03-01

    DNA methylation plays an important role in regulating transcriptional change in response to environmental stimuli. In the present study, DNA methylation levels of tissues of the sea cucumber Apostichopus japonicus were analyzed by the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique over three stages of the aestivation cycle. Overall, a total of 26,963 fragments were amplified including 9112 methylated fragments among four sea cucumber tissues using 18 pairs of selective primers. Results indicated an average DNA methylation level of 33.79% for A. japonicus. The incidence of DNA methylation was different across tissue types in the non-aestivation stage: intestine (30.16%), respiratory tree (27.61%), muscle (27.94%) and body wall (56.25%). Our results show that hypermethylation accompanied deep-aestivation in A. japonicus, which suggests that DNA methylation may have an important role in regulating global transcriptional suppression during aestivation. Further analysis indicated that the main DNA modification sites were focused on intestine and respiratory tree tissues and that full-methylation but not hemi-methylation levels exhibited significant increases in the deep-aestivation stage. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Porphyromonas endodontalis: prevalence and distribution of restriction enzyme patterns in families.

    PubMed

    Petit, M D; van Winkelhoff, A J; van Steenbergen, T J; de Graaff, J

    1993-08-01

    In this study we determined the prevalence and distribution of Porphyromonas endodontalis in 26 families consisting of 107 subjects. P. endodontalis was present in 24% of the investigated subjects and was recovered most often from the dorsum of the tongue (50%). Isolation was also possible from the tonsils, the buccal mucosa, the saliva and the periodontal pocket. The usefulness of restriction endonuclease analysis as a typing method for this particular species was investigated by typing 19 isolates from unrelated individuals. All these isolates had unique restriction endonuclease patterns. The observed heterogeneity indicates that restriction endonuclease analysis is a sensitive measure of genetic dissimilarity between P. endodontalis isolates and is able to characterize individual isolates. Application of restriction endonuclease analysis to the obtained clinical isolates in this study shows the possibility of the presence of multiple clonal types within one subject. The DNA patterns of all P. endodontalis isolates from unrelated individuals were found to be distinct. In 3 families the DNA patterns of isolates from the mother and her child were indistinguishable. These data indicate the possibility of intrafamilial transmission of P. endodontalis.

  14. Analysis of porcine circovirus type 1 detected in Rotarix vaccine.

    PubMed

    Baylis, Sally A; Finsterbusch, Tim; Bannert, Norbert; Blümel, Johannes; Mankertz, Annette

    2011-01-17

    A metagenomic analysis of live human vaccines has recently demonstrated the presence of porcine circovirus type 1 (PCV1) DNA in the paediatric vaccine Rotarix used in the prevention of acute gastroenteritis. Using real-time PCR for PCV1, titres of PCV1 DNA in several batches of Rotarix were found to be in the order of 6-7 log(10) copies per dose. Pre-treatment of the reconstituted vaccine with the nuclease Benzonase, followed by extraction of nucleic acid and quantification of PCV1 DNA by real-time PCR, revealed that there was no loss of PCV1 DNA titre compared to untreated controls, suggesting that the porcine viral DNA was present in the vaccine in an encapsidated form. PCV1 permissive PS cells, human HEK293 and Vero cells, used for vaccine production, were infected with Rotarix or PCV1, respectively, and subjected to immune fluorescence and RT-PCR. Viral genomes were present in Rotarix-incubated as well as PCV1-infected cells, while viral transcription was seen only in PCV1-infected cells. Similarly, PCV1-specific protein expression was observed in PCV1-infected cells, but not in cells treated with Rotarix. Passaging of the supernatant indicated productive infection in PCV1-infected PS cells, but not in HEK293 and Vero cells or in any cell line incubated with Rotarix. PCV1 DNA present in Rotarix was protected from Benzonase digestion; however, PCV1 was not recognized in immune electron microscopy and unable to infect PS, HEK293 or Vero cells, suggesting that the high amount of PCV1 DNA present in Rotarix does not reflect a corresponding proportion of biologically active virus particles. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. DNA methylation array analysis identifies breast cancer associated RPTOR, MGRN1 and RAPSN hypomethylation in peripheral blood DNA.

    PubMed

    Tang, Qiuqiong; Holland-Letz, Tim; Slynko, Alla; Cuk, Katarina; Marme, Frederik; Schott, Sarah; Heil, Jörg; Qu, Bin; Golatta, Michael; Bewerunge-Hudler, Melanie; Sutter, Christian; Surowy, Harald; Wappenschmidt, Barbara; Schmutzler, Rita; Hoth, Markus; Bugert, Peter; Bartram, Claus R; Sohn, Christof; Schneeweiss, Andreas; Yang, Rongxi; Burwinkel, Barbara

    2016-09-27

    DNA methylation changes in peripheral blood DNA have been shown to be associated with solid tumors. We sought to identify methylation alterations in whole blood DNA that are associated with breast cancer (BC). Epigenome-wide DNA methylation profiling on blood DNA from BC cases and healthy controls was performed by applying Infinium HumanMethylation450K BeadChips. Promising CpG sites were selected and validated in three independent larger sample cohorts via MassARRAY EpiTyper assays. CpG sites located in three genes (cg06418238 in RPTOR, cg00736299 in MGRN1 and cg27466532 in RAPSN), which showed significant hypomethylation in BC patients compared to healthy controls in the discovery cohort (p < 1.00 x 10-6) were selected and successfully validated in three independent cohorts (validation I, n =211; validation II, n=378; validation III, n=520). The observed methylation differences are likely not cell-type specific, as the differences were only seen in whole blood, but not in specific sub cell-types of leucocytes. Moreover, we observed in quartile analysis that women in the lower methylation quartiles of these three loci had higher ORs than women in the higher quartiles. The combined AUC of three loci was 0.79 (95%CI 0.73-0.85) in validation cohort I, and was 0.60 (95%CI 0.54-0.66) and 0.62 (95%CI 0.57-0.67) in validation cohort II and III, respectively. Our study suggests that hypomethylation of CpG sites in RPTOR, MGRN1 and RAPSN in blood is associated with BC and might serve as blood-based marker supplements for BC if these could be verified in prospective studies.

  16. Methylation-sensitive amplified polymorphism analysis of Verticillium wilt-stressed cotton (Gossypium).

    PubMed

    Wang, W; Zhang, M; Chen, H D; Cai, X X; Xu, M L; Lei, K Y; Niu, J H; Deng, L; Liu, J; Ge, Z J; Yu, S X; Wang, B H

    2016-10-06

    In this study, a methylation-sensitive amplification polymorphism analysis system was used to analyze DNA methylation level in three cotton accessions. Two disease-sensitive near-isogenic lines, PD94042 and IL41, and one disease-resistant Gossypium mustelinum accession were exposed to Verticillium wilt, to investigate molecular disease resistance mechanisms in cotton. We observed multiple different DNA methylation types across the three accessions following Verticillium wilt exposure. These included hypomethylation, hypermethylation, and other patterns. In general, the global DNA methylation level was significantly increased in the disease-resistant accession G. mustelinum following disease exposure. In contrast, there was no significant difference in the disease-sensitive accession PD94042, and a significant decrease was observed in IL41. Our results suggest that disease-resistant cotton might employ a mechanism to increase methylation level in response to disease stress. The differing methylation patterns, together with the increase in global DNA methylation level, might play important roles in tolerance to Verticillium wilt in cotton. Through cloning and analysis of differently methylated DNA sequences, we were also able to identify several genes that may contribute to disease resistance in cotton. Our results revealed the effect of DNA methylation on cotton disease resistance, and also identified genes that played important roles, which may shed light on the future cotton disease-resistant molecular breeding.

  17. Tissue-specific DNA methylation is conserved across human, mouse, and rat, and driven by primary sequence conservation.

    PubMed

    Zhou, Jia; Sears, Renee L; Xing, Xiaoyun; Zhang, Bo; Li, Daofeng; Rockweiler, Nicole B; Jang, Hyo Sik; Choudhary, Mayank N K; Lee, Hyung Joo; Lowdon, Rebecca F; Arand, Jason; Tabers, Brianne; Gu, C Charles; Cicero, Theodore J; Wang, Ting

    2017-09-12

    Uncovering mechanisms of epigenome evolution is an essential step towards understanding the evolution of different cellular phenotypes. While studies have confirmed DNA methylation as a conserved epigenetic mechanism in mammalian development, little is known about the conservation of tissue-specific genome-wide DNA methylation patterns. Using a comparative epigenomics approach, we identified and compared the tissue-specific DNA methylation patterns of rat against those of mouse and human across three shared tissue types. We confirmed that tissue-specific differentially methylated regions are strongly associated with tissue-specific regulatory elements. Comparisons between species revealed that at a minimum 11-37% of tissue-specific DNA methylation patterns are conserved, a phenomenon that we define as epigenetic conservation. Conserved DNA methylation is accompanied by conservation of other epigenetic marks including histone modifications. Although a significant amount of locus-specific methylation is epigenetically conserved, the majority of tissue-specific DNA methylation is not conserved across the species and tissue types that we investigated. Examination of the genetic underpinning of epigenetic conservation suggests that primary sequence conservation is a driving force behind epigenetic conservation. In contrast, evolutionary dynamics of tissue-specific DNA methylation are best explained by the maintenance or turnover of binding sites for important transcription factors. Our study extends the limited literature of comparative epigenomics and suggests a new paradigm for epigenetic conservation without genetic conservation through analysis of transcription factor binding sites.

  18. Mechanisms of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced DNA damage in skin epidermal cells and fibroblasts.

    PubMed

    Inturi, Swetha; Tewari-Singh, Neera; Gu, Mallikarjuna; Shrotriya, Sangeeta; Gomez, Joe; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2011-12-15

    Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. An Efficient Method for Genomic DNA Extraction from Different Molluscs Species

    PubMed Central

    Pereira, Jorge C.; Chaves, Raquel; Bastos, Estela; Leitão, Alexandra; Guedes-Pinto, Henrique

    2011-01-01

    The selection of a DNA extraction method is a critical step when subsequent analysis depends on the DNA quality and quantity. Unlike mammals, for which several capable DNA extraction methods have been developed, for molluscs the availability of optimized genomic DNA extraction protocols is clearly insufficient. Several aspects such as animal physiology, the type (e.g., adductor muscle or gills) or quantity of tissue, can explain the lack of efficiency (quality and yield) in molluscs genomic DNA extraction procedure. In an attempt to overcome these aspects, this work describes an efficient method for molluscs genomic DNA extraction that was tested in several species from different orders: Veneridae, Ostreidae, Anomiidae, Cardiidae (Bivalvia) and Muricidae (Gastropoda), with different weight sample tissues. The isolated DNA was of high molecular weight with high yield and purity, even with reduced quantities of tissue. Moreover, the genomic DNA isolated, demonstrated to be suitable for several downstream molecular techniques, such as PCR sequencing among others. PMID:22174651

  20. Enterobacter muelleri sp. nov., isolated from the rhizosphere of Zea mays.

    PubMed

    Kämpfer, Peter; McInroy, John A; Glaeser, Stefanie P

    2015-11-01

    A beige-pigmented, oxidase-negative bacterial strain (JM-458T), isolated from a rhizosphere sample, was studied using a polyphasic taxonomic approach. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain JM-458T with sequences of the type strains of closely related species of the genus Enterobacter showed that it shared highest sequence similarity with Enterobacter mori (98.7 %), Enterobacter hormaechei (98.3 %), Enterobacter cloacae subsp. dissolvens, Enterobacter ludwigii and Enterobacter asburiae (all 98.2 %). 16S rRNA gene sequence similarities to all other Enterobacter species were below 98 %. Multilocus sequence analysis based on concatenated partial rpoB, gyrB, infB and atpD gene sequences showed a clear distinction of strain JM-458T from its closest related type strains. The fatty acid profile of the strain consisted of C16 : 0, C17 : 0 cyclo, iso-C15 : 0 2-OH/C16 : 1ω7c and C18 : 1ω7c as major components. DNA-DNA hybridizations between strain JM-458T and the type strains of E. mori, E. hormaechei and E. ludwigii resulted in relatedness values of 29 % (reciprocal 25 %), 24 % (reciprocal 43 %) and 16 % (reciprocal 17 %), respectively. DNA-DNA hybridization results together with multilocus sequence analysis results and differential biochemical and chemotaxonomic properties showed that strain JM-458T represents a novel species of the genus Enterobacter, for which the name Enterobacter muelleri sp. nov. is proposed. The type strain is JM-458T ( = DSM 29346T = CIP 110826T = LMG 28480T = CCM 8546T).

  1. Sources of Pre-Analytical Variations in Yield of DNA Extracted from Blood Samples: Analysis of 50,000 DNA Samples in EPIC

    PubMed Central

    Caboux, Elodie; Lallemand, Christophe; Ferro, Gilles; Hémon, Bertrand; Mendy, Maimuna; Biessy, Carine; Sims, Matt; Wareham, Nick; Britten, Abigail; Boland, Anne; Hutchinson, Amy; Siddiq, Afshan; Vineis, Paolo; Riboli, Elio; Romieu, Isabelle; Rinaldi, Sabina; Gunter, Marc J.; Peeters, Petra H. M.; van der Schouw, Yvonne T.; Travis, Ruth; Bueno-de-Mesquita, H. Bas; Canzian, Federico; Sánchez, Maria-José; Skeie, Guri; Olsen, Karina Standahl; Lund, Eiliv; Bilbao, Roberto; Sala, Núria; Barricarte, Aurelio; Palli, Domenico; Navarro, Carmen; Panico, Salvatore; Redondo, Maria Luisa; Polidoro, Silvia; Dossus, Laure; Boutron-Ruault, Marie Christine; Clavel-Chapelon, Françoise; Trichopoulou, Antonia; Trichopoulos, Dimitrios; Lagiou, Pagona; Boeing, Heiner; Fisher, Eva; Tumino, Rosario; Agnoli, Claudia; Hainaut, Pierre

    2012-01-01

    The European Prospective Investigation into Cancer and nutrition (EPIC) is a long-term, multi-centric prospective study in Europe investigating the relationships between cancer and nutrition. This study has served as a basis for a number of Genome-Wide Association Studies (GWAS) and other types of genetic analyses. Over a period of 5 years, 52,256 EPIC DNA samples have been extracted using an automated DNA extraction platform. Here we have evaluated the pre-analytical factors affecting DNA yield, including anthropometric, epidemiological and technical factors such as center of subject recruitment, age, gender, body-mass index, disease case or control status, tobacco consumption, number of aliquots of buffy coat used for DNA extraction, extraction machine or procedure, DNA quantification method, degree of haemolysis and variations in the timing of sample processing. We show that the largest significant variations in DNA yield were observed with degree of haemolysis and with center of subject recruitment. Age, gender, body-mass index, cancer case or control status and tobacco consumption also significantly impacted DNA yield. Feedback from laboratories which have analyzed DNA with different SNP genotyping technologies demonstrate that the vast majority of samples (approximately 88%) performed adequately in different types of assays. To our knowledge this study is the largest to date to evaluate the sources of pre-analytical variations in DNA extracted from peripheral leucocytes. The results provide a strong evidence-based rationale for standardized recommendations on blood collection and processing protocols for large-scale genetic studies. PMID:22808065

  2. Insertion of an SVA element, a nonautonomous retrotransposon, in PMS2 intron 7 as a novel cause of Lynch syndrome.

    PubMed

    van der Klift, Heleen M; Tops, Carli M; Hes, Frederik J; Devilee, Peter; Wijnen, Juul T

    2012-07-01

    Heterozygous germline mutations in the mismatch repair gene PMS2 predispose carriers for Lynch syndrome, an autosomal dominant predisposition to cancer. Here, we present a LINE-1-mediated retrotranspositional insertion in PMS2 as a novel mutation type for Lynch syndrome. This insertion, detected with Southern blot analysis in the genomic DNA of the patient, is characterized as a 2.2 kb long 5' truncated SVA_F element. The insertion is not detectable by current diagnostic testing limited to MLPA and direct Sanger sequencing on genomic DNA. The molecular nature of this insertion could only be resolved in RNA from cultured lymphocytes in which nonsense-mediated RNA decay was inhibited. Our report illustrates the technical problems encountered in the detection of this mutation type. Especially large heterozygous insertions will remain unnoticed because of preferential amplification of the smaller wild-type allele in genomic DNA, and are probably underreported in the mutation spectra of autosomal dominant disorders. © 2012 Wiley Periodicals, Inc.

  3. A T-DNA gene required for agropine biosynthesis by transformed plants is functionally and evolutionarily related to a Ti plasmid gene required for catabolism of agropine by Agrobacterium strains.

    PubMed Central

    Hong, S B; Hwang, I; Dessaux, Y; Guyon, P; Kim, K S; Farrand, S K

    1997-01-01

    The mechanisms that ensure that Ti plasmid T-DNA genes encoding proteins involved in the biosynthesis of opines in crown gall tumors are always matched by Ti plasmid genes conferring the ability to catabolize that set of opines on the inducing Agrobacterium strains are unknown. The pathway for the biosynthesis of the opine agropine is thought to require an enzyme, mannopine cyclase, coded for by the ags gene located in the T(R) region of octopine-type Ti plasmids. Extracts prepared from agropine-type tumors contained an activity that cyclized mannopine to agropine. Tumor cells containing a T region in which ags was mutated lacked this activity and did not contain agropine. Expression of ags from the lac promoter conferred mannopine-lactonizing activity on Escherichia coli. Agrobacterium tumefaciens strains harboring an octopine-type Ti plasmid exhibit a similar activity which is not coded for by ags. Analysis of the DNA sequence of the gene encoding this activity, called agcA, showed it to be about 60% identical to T-DNA ags genes. Relatedness decreased abruptly in the 5' and 3' untranslated regions of the genes. ags is preceded by a promoter that functions only in the plant. Expression analysis showed that agcA also is preceded by its own promoter, which is active in the bacterium. Translation of agcA yielded a protein of about 45 kDa, consistent with the size predicted from the DNA sequence. Antibodies raised against the agcA product cross-reacted with the anabolic enzyme. These results indicate that the agropine system arose by a duplication of a progenitor gene, one copy of which became associated with the T-DNA and the other copy of which remained associated with the bacterium. PMID:9244272

  4. In silico characterization and analysis of RTBP1 and NgTRF1 protein through MD simulation and molecular docking - A comparative study.

    PubMed

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2015-02-06

    Gaining access to sequence and structure information of telomere binding proteins helps in understanding the essential biological processes involve in conserved sequence specific interaction between DNA and the proteins. Rice telomere binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix turn helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain but till now there is very less communication on the in silico studies of these complete proteins.Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK web server.Digging up all the facts about the proteins it was reveled that around 120 amino acids in the tail part was showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicates the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and Energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.

  5. In Silico Characterization and Analysis of RTBP1 and NgTRF1 Protein Through MD Simulation and Molecular Docking: A Comparative Study.

    PubMed

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2015-09-01

    Gaining access to sequence and structure information of telomere-binding proteins helps in understanding the essential biological processes involve in conserved sequence-specific interaction between DNA and the proteins. Rice telomere-binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix-turn-helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain, but till now there is very less communication on the in silico studies of these complete proteins. Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK Web server. By digging up all the facts about the proteins, it was revealed that around 120 amino acids in the tail part were showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicate the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA-binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.

  6. Disruption of nucleotide excision repair by the human T-cell leukemia virus type 1 Tax protein.

    PubMed

    Kao, S Y; Marriott, S J

    1999-05-01

    The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is a transcriptional transactivator and viral oncogene. Since cellular transformation has been frequently linked to alterations in genome stability, we investigated the effect of Tax on nucleotide excision repair (NER), a prominent cellular DNA repair pathway. Cells expressing Tax exhibited a reduced capacity for NER as measured by unscheduled DNA synthesis and host cell reactivation assays. The cellular proliferating cell nuclear antigen (PCNA) gene product regulates DNA replication and repair pathways, including NER. Since Tax activates transcription of the PCNA promoter, we investigated whether this activity contributes to the reduction of NER. Tax increased endogenous PCNA protein expression, and analysis of Tax mutant proteins demonstrated that the reduction in NER correlated with Tax transactivation of PCNA gene expression. Direct overexpression of PCNA also reduced NER. We propose that overexpression of PCNA, and disruption of NER induced by Tax, predisposes cells to accumulate DNA damage and contributes to HTLV-1 transformation.

  7. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF.

    PubMed

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-04-06

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins.

  8. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF

    PubMed Central

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-01-01

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins. PMID:15775965

  9. Expressed sequence tag analysis of adult human optic nerve for NEIBank: Identification of cell type and tissue markers

    PubMed Central

    Bernstein, Steven L; Guo, Yan; Peterson, Katherine; Wistow, Graeme

    2009-01-01

    Background The optic nerve is a pure white matter central nervous system (CNS) tract with an isolated blood supply, and is widely used in physiological studies of white matter response to various insults. We examined the gene expression profile of human optic nerve (ON) and, through the NEIBANK online resource, to provide a resource of sequenced verified cDNA clones. An un-normalized cDNA library was constructed from pooled human ON tissues and was used in expressed sequence tag (EST) analysis. Location of an abundant oligodendrocyte marker was examined by immunofluorescence. Quantitative real time polymerase chain reaction (qRT-PCR) and Western analysis were used to compare levels of expression for key calcium channel protein genes and protein product in primate and rodent ON. Results Our analyses revealed a profile similar in many respects to other white matter related tissues, but significantly different from previously available ON cDNA libraries. The previous libraries were found to include specific markers for other eye tissues, suggesting contamination. Immune/inflammatory markers were abundant in the new ON library. The oligodendrocyte marker QKI was abundant at the EST level. Immunofluorescence revealed that this protein is a useful oligodendrocyte cell-type marker in rodent and primate ONs. L-type calcium channel EST abundance was found to be particularly low. A qRT-PCR-based comparative mammalian species analysis reveals that L-type calcium channel expression levels are significantly lower in primate than in rodent ON, which may help account for the class-specific difference in responsiveness to calcium channel blocking agents. Several known eye disease genes are abundantly expressed in ON. Many genes associated with normal axonal function, mRNAs associated with axonal transport, inflammation and neuroprotection are observed. Conclusion We conclude that the new cDNA library is a faithful representation of human ON and EST data provide an initial overview of gene expression patterns in this tissue. The data provide clues for tissue-specific and species-specific properties of human ON that will help in design of therapeutic models. PMID:19778450

  10. Dental DNA fingerprinting in identification of human remains

    PubMed Central

    Girish, KL; Rahman, Farzan S; Tippu, Shoaib R

    2010-01-01

    The recent advances in molecular biology have revolutionized all aspects of dentistry. DNA, the language of life yields information beyond our imagination, both in health or disease. DNA fingerprinting is a tool used to unravel all the mysteries associated with the oral cavity and its manifestations during diseased conditions. It is being increasingly used in analyzing various scenarios related to forensic science. The technical advances in molecular biology have propelled the analysis of the DNA into routine usage in crime laboratories for rapid and early diagnosis. DNA is an excellent means for identification of unidentified human remains. As dental pulp is surrounded by dentin and enamel, which forms dental armor, it offers the best source of DNA for reliable genetic type in forensic science. This paper summarizes the recent literature on use of this technique in identification of unidentified human remains. PMID:21731342

  11. Lack of evidence for intertypic recombinants in the pathogenesis of recurrent genital infections with herpes simplex virus type 1.

    PubMed

    Fife, K H; Boggs, D

    1986-01-01

    Clinical observations indicate that herpes simplex virus type 1 (HSV-1) is significantly less likely than herpes simplex virus type 2 (HSV-2) to establish latency in (or reactivate from) sacral ganglionic tissue. In an effort to identify viral functions associated with latency, we analyzed HSV-1 isolates from three patients with established recurrent genital herpes and sought evidence of DNA sequences and proteins similar to those found in HSV-2. By restriction endonuclease cleavage patterns and by DNA hybridization analysis using either whole HSV-2 DNA or several cloned segments of HSV-2 DNA as probes, we found that the three HSV-1 isolates from patients with recurrent genital herpes showed no unusual homology to HSV-2 as compared with other HSV-1 isolates. Similarly, the proteins of these isolates could not be distinguished from those of other HSV-1 isolates and were distinct from those of HSV-2. At this level of resolution, there was no evidence to suggest that these recurrent genital HSV-1 isolates were intertypic recombinants, nor did they show any other unusual similarity to HSV-2.

  12. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis

    PubMed Central

    El Hage, Aziz; French, Sarah L.; Beyer, Ann L.; Tollervey, David

    2010-01-01

    Pre-rRNA transcription by RNA Polymerase I (Pol I) is very robust on active rDNA repeats. Loss of yeast Topoisomerase I (Top1) generated truncated pre-rRNA fragments, which were stabilized in strains lacking TRAMP (Trf4/Trf5–Air1/Air2–Mtr4 polyadenylation complexes) or exosome degradation activities. Loss of both Top1 and Top2 blocked pre-rRNA synthesis, with pre-rRNAs truncated predominately in the 18S 5′ region. Positive supercoils in front of Pol I are predicted to slow elongation, while rDNA opening in its wake might cause R-loop formation. Chromatin immunoprecipitation analysis showed substantial levels of RNA/DNA hybrids in the wild type, particularly over the 18S 5′ region. The absence of RNase H1 and H2 in cells depleted of Top1 increased the accumulation of RNA/DNA hybrids and reduced pre-rRNA truncation and pre-rRNA synthesis. Hybrid accumulation over the rDNA was greatly exacerbated when Top1, Top2, and RNase H were all absent. Electron microscopy (EM) analysis revealed Pol I pileups in the wild type, particularly over the 18S. Pileups were longer and more frequent in the absence of Top1, and their frequency was exacerbated when RNase H activity was also lacking. We conclude that the loss of Top1 enhances inherent R-loop formation, particularly over the 5′ region of the rDNA, imposing persistent transcription blocks when RNase H is limiting. PMID:20634320

  13. Detection and pharmacokinetics of a cytomegalovirus (CMV) DNA plasmid in human plasma during a clinical trial of an intramuscular CMV vaccine in hematopoietic stem cell transplant recipients.

    PubMed

    Salimnia, H; Fairfax, M R; Chandrasekar, P H

    2014-12-01

    Cytomegalovirus (CMV) causes significant morbidity and mortality in solid organ and bone marrow transplant recipients. DNA vaccines can provide both humoral and cellular immunity without exposing immune-compromised persons to replication-competent CMV. We studied the kinetics of CMV vaccine DNA in plasma. The samples were obtained from vaccine recipients who were enrolled in a double-blinded, placebo-controlled clinical trial of an intramuscular, plasmid-based, bivalent DNA vaccine for CMV in stem cell transplant recipients. Residual specimens on patients enrolled in the vaccine trial were saved until the trial was unblinded and published. Quantitative real-time polymerase chain reaction (PCR) was used to detect and quantify CMV glycoprotein B (gB) DNA in plasma from 4 recipients of the vaccine. The melting temperature of the vaccine gB amplicon was 62.4°C, compared to 68.8°C, which is seen with the wild-type virus. Sequence analysis revealed that there were 3 mismatches between the fluorescent resonance energy transfer probe and the vaccine DNA sequence. Because preemptive treatment of CMV disease in stem cell transplant patients is based on quantitative PCR analysis of viral sequences in plasma, it is important that vaccine sequences not be confused with those in wild-type virus. Confusion could lead to treatment with toxic medications, potentially compromising the transplant. Effects of PCR target choice and amplicon detection techniques on patient management and vaccine trials are discussed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. DNAVaxDB: the first web-based DNA vaccine database and its data analysis

    PubMed Central

    2014-01-01

    Since the first DNA vaccine studies were done in the 1990s, thousands more studies have followed. Here we report the development and analysis of DNAVaxDB (http://www.violinet.org/dnavaxdb), the first publically available web-based DNA vaccine database that curates, stores, and analyzes experimentally verified DNA vaccines, DNA vaccine plasmid vectors, and protective antigens used in DNA vaccines. All data in DNAVaxDB are annotated from reliable resources, particularly peer-reviewed articles. Among over 140 DNA vaccine plasmids, some plasmids were more frequently used in one type of pathogen than others; for example, pCMVi-UB for G- bacterial DNA vaccines, and pCAGGS for viral DNA vaccines. Presently, over 400 DNA vaccines containing over 370 protective antigens from over 90 infectious and non-infectious diseases have been curated in DNAVaxDB. While extracellular and bacterial cell surface proteins and adhesin proteins were frequently used for DNA vaccine development, the majority of protective antigens used in Chlamydophila DNA vaccines are localized to the inner portion of the cell. The DNA vaccine priming, other vaccine boosting vaccination regimen has been widely used to induce protection against infection of different pathogens such as HIV. Parasitic and cancer DNA vaccines were also systematically analyzed. User-friendly web query and visualization interfaces are available in DNAVaxDB for interactive data search. To support data exchange, the information of DNA vaccines, plasmids, and protective antigens is stored in the Vaccine Ontology (VO). DNAVaxDB is targeted to become a timely and vital source of DNA vaccines and related data and facilitate advanced DNA vaccine research and development. PMID:25104313

  15. High-coverage methylation data of a gene model before and after DNA damage and homologous repair.

    PubMed

    Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T; Gottesman, Max E; Porcellini, Antonio; Avvedimento, Enrico V

    2017-04-11

    Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles.

  16. High-coverage methylation data of a gene model before and after DNA damage and homologous repair

    PubMed Central

    Pezone, Antonio; Russo, Giusi; Tramontano, Alfonso; Florio, Ermanno; Scala, Giovanni; Landi, Rosaria; Zuchegna, Candida; Romano, Antonella; Chiariotti, Lorenzo; Muller, Mark T.; Gottesman, Max E.; Porcellini, Antonio; Avvedimento, Enrico V.

    2017-01-01

    Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles. PMID:28398335

  17. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity.

    PubMed

    Cheow, Lih Feng; Courtois, Elise T; Tan, Yuliana; Viswanathan, Ramya; Xing, Qiaorui; Tan, Rui Zhen; Tan, Daniel S W; Robson, Paul; Loh, Yuin-Han; Quake, Stephen R; Burkholder, William F

    2016-10-01

    Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.

  18. Single-cell forensic short tandem repeat typing within microfluidic droplets.

    PubMed

    Geng, Tao; Novak, Richard; Mathies, Richard A

    2014-01-07

    A short tandem repeat (STR) typing method is developed for forensic identification of individual cells. In our strategy, monodisperse 1.5 nL agarose-in-oil droplets are produced with a high frequency using a microfluidic droplet generator. Statistically dilute single cells, along with primer-functionalized microbeads, are randomly compartmentalized in the droplets. Massively parallel single-cell droplet polymerase chain reaction (PCR) is performed to transfer replicas of desired STR targets from the single-cell genomic DNA onto the coencapsulated microbeads. These DNA-conjugated beads are subsequently harvested and reamplified under statistically dilute conditions for conventional capillary electrophoresis (CE) STR fragment size analysis. The 9-plex STR profiles of single cells from both pure and mixed populations of GM09947 and GM09948 human lymphoid cells show that all alleles are correctly called and allelic drop-in/drop-out is not observed. The cell mixture study exhibits a good linear relationship between the observed and input cell ratios in the range of 1:1 to 10:1. Additionally, the STR profile of GM09947 cells could be deduced even in the presence of a high concentration of cell-free contaminating 9948 genomic DNA. Our method will be valuable for the STR analysis of samples containing mixtures of cells/DNA from multiple contributors and for low-concentration samples.

  19. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae.

    PubMed

    Macas, Jiří; Novák, Petr; Pellicer, Jaume; Čížková, Jana; Koblížková, Andrea; Neumann, Pavel; Fuková, Iva; Doležel, Jaroslav; Kelly, Laura J; Leitch, Ilia J

    2015-01-01

    The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.

  20. Monophosphoryl lipid A enhances both humoral and cell-mediated immune responses to DNA vaccination against human immunodeficiency virus type 1.

    PubMed Central

    Sasaki, S; Tsuji, T; Hamajima, K; Fukushima, J; Ishii, N; Kaneko, T; Xin, K Q; Mohri, H; Aoki, I; Okubo, T; Nishioka, K; Okuda, K

    1997-01-01

    To enhance immunity induced by DNA vaccination against human immunodeficiency virus type 1 (HIV-1), we evaluated the efficacy of monophosphoryl lipid A (MPL), an adjuvant of bacterial origin. BALB/c mice were intramuscularly injected with immunogenic DNA, encoding the env and rev genes of the HIV-1(IIIB) strain, formulated with MPL dissolved in different vehicles (MPL in stable emulsion and MPL in aqueous formulation). The sera from mice immunized with the two preparations of MPL revealed 2(6) to 2(9) times higher HIV-1-specific immunoglobulin G (IgG) titers than the sera from mice immunized without MPL. In virus neutralization tests for HIV-1(IIIB), by p24 assay and antifusion assay of infected MOLT-4 cells, MPL tends to elicit antibody more protective than antibody elicited without adjuvant. MPL also elicited stronger delayed-type hypersensitivity and cytotoxic-T-lymphocyte activity against HIV-1(IIIB) compared to DNA alone. HIV-1-specific IgG subclass analysis showed that MPL tends to facilitate IgG2a production, suggesting enhancement of a predominant T-helper-type-1 response, and this enhancement may help to facilitate protective-antibody induction. Furthermore, a chloramphenicol acetyltransferase (CAT) assay was employed to determine whether MPL affected the gene expression process. Interestingly, both MPL preparations reduced CAT activity in the muscle injected with CAT expression vector but increased anti-CAT antibody production. These results indicate that MPL acts as an effective adjuvant for immunogenic DNA injection despite reduced expression of encoding protein in muscle. We conclude that MPL has a strong adjuvant effect on DNA vaccination against HIV-1. PMID:9284115

  1. DNA homology among diverse spiroplasma strains representing several serological groups.

    PubMed

    Lee, I M; Davis, R E

    1980-11-01

    Deoxyribonucleic acid (DNA) homology among 10 strains of spiroplasma associated with plants and insects was assessed by analysis of DNA-DNA hybrids with single strand specific S1 nuclease. Based on DNA homology, the spiroplasmas could be divided into three genetically distinct groups (designated I, II, and III), corresponding to three separate serogroups described previously. DNA sequence homology between the three groups was less than or equal to 5%. Based on DNA homology, group I could be divided into three subgroups (A, B, and C) that corresponded to three serological subgroups of serogroup I. Subgroup A contained Spiroplasma citri strains Maroc R8A2 and C 189; subgroup B contained strains AS 576 from honey bee and G 1 from flowers; subgroup C contained corn stunt spiroplasma strains I-747 and PU 8-17. There was 27-54% DNA sequence homology among these three subgroups. Group II contained strains 23-6 and 27-31 isolated from flowers of tulip tree (Liriodendron tulipifera L.). Group III contained strains SR 3 and SR 9, other isolates from flowers of tulip tree. Based on thermal denaturation, guanine plus cytosine contents of DNA from five type strains representing all groups and subgroups were estimated to be close to 26 mol% for group I strains, close to 25 mol% for group II strains, and close to 29 mol% for group III strains. The genome molecular weights of these five type strains were all estimated to bae about 10(9).

  2. Marinospirillum insulare sp. nov., a novel halophilic helical bacterium isolated from kusaya gravy.

    PubMed

    Satomi, M; Kimura, B; Hayashi, M; Okuzumi, M; Fujii, T

    2004-01-01

    A novel species that belongs to the genus Marinospirillum is described on the basis of phenotypic characteristics, phylogenetic analysis of 16S rRNA and gyrB gene sequences and DNA-DNA hybridization. Four strains of helical, halophilic, Gram-negative, heterotrophic bacteria were isolated from kusaya gravy, which is fermented brine that is used for the production of traditional dried fish in the Izu Islands of Japan. All of the new isolates were motile by means of bipolar tuft flagella, of small cell size, coccoid-body-forming and aerophilic; it was concluded that they belong to the same bacterial species, based on DNA-DNA hybridization values (>70% DNA relatedness). DNA G+C contents of the new strains were 42-43 mol% and they had isoprenoid quinone Q-8 as the major component. Phylogenetic analysis of 16S rRNA gene sequences indicated that the new isolates were members of the genus Marinospirillum; sequence similarity of the new isolates to Marinospirillum minutulum, Marinospirillum megaterium and Marinospirillum alkaliphilum was 98.5, 98.2 and 95.2%, respectively. Phylogenetic analysis based on the gyrB gene indicated that the new isolates had enough phylogenetic distance from M. minutulum and M. megaterium to be regarded as different species, with 84.7 and 78.7% sequence similarity, respectively. DNA-DNA hybridization showed that the new isolates had <36% DNA relatedness to M. minutulum and M. megaterium, supporting the phylogenetic conclusion. Thus, a novel species is proposed: Marinospirillum insulare sp. nov. (type strain, KT=LMG 21802T=NBRC 100033T).

  3. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    PubMed

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Prevotella histicola sp. nov., isolated from the human oral cavity.

    PubMed

    Downes, Julia; Hooper, Samuel J; Wilson, Melanie J; Wade, William G

    2008-08-01

    Three strains of anaerobic, variably pigmenting, Gram-negative bacilli isolated from human oral mucosal tissue were subjected to a comprehensive range of phenotypic and genotypic tests and were found to comprise a homogeneous group. 16S rRNA gene sequence analysis and DNA-DNA hybridization revealed that the strains constituted a novel group within the genus Prevotella, being most closely related to Prevotella melaninogenica and Prevotella veroralis. A novel species, Prevotella histicola sp. nov., is proposed to accommodate these strains. Prevotella histicola is saccharolytic and produces acetic acid and succinic acid as major end products of fermentation and trace to minor amounts of isovaleric acid and lactic acid. The G+C content of the DNA of the type strain is 43 mol%. The type strain of Prevotella histicola is T05-04T (=DSM 19854T=CCUG 55407T).

  5. Optimization and comparative analysis of plant organellar DNA enrichment methods suitable for next generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Plant organellar genomes contain large repetitive elements that may undergo pairing or recombination to form complex structures and/or sub-genomic fragments. Organellar genomes also exist in admixtures within a given cell or tissue type (heteroplasmy) and abundance of sub-types may change through de...

  6. A Laboratory Exercise to Determine Human ABO Blood Type by Noninvasive Methods

    ERIC Educational Resources Information Center

    Martin, Michael P.; Detzel, Stephen M.

    2008-01-01

    Analysis of single-nucleotide polymorphisms and their association with diseases and nondisease phenotypes is of growing importance in human biology studies. In this laboratory exercise, students determine the genetic basis for their ABO blood type; however, no blood is drawn. Students isolate genomic DNA from buccal mucosa cells that are present…

  7. Identification of victims of the 1998 Taoyuan Airbus crash accident using DNA analysis.

    PubMed

    Hsu, C M; Huang, N E; Tsai, L C; Kao, L G; Chao, C H; Linacre, A; Lee, J C

    1999-01-01

    In February 1998 a civilian aeroplane carrying 196 individuals crashed in Taiwan and killed another 6 people on the ground. Although there were dental and medical records, fingerprints, photographic evidence and personal effects to identify some of the victims, DNA analysis was required to further identify severely damaged remains. From the 202 people known to have perished in the plane crash, a total of 685 fragments of human remains were subjected to DNA analysis. The analysis was carried out using nine microsatellite loci, plus amelogenin to cluster the 685 fragments into 202 groups, accounting for all the victims. To establish genetic relatedness of the victims to other victims and living relatives, additional DNA loci were used. In this case the paternity index was increased by using HLA DQA1 plus Polymarker. The same 16 DNA loci were used to test blood samples from 201 relatives to establish parent/child and sibling relationships. With the exception of 19 victims identified by non-genetic evidence, 183 victims were successfully identified by DNA typing with relatively high values of paternity index by the direct or indirect comparison of relatives. The 202 victims were from 37 different families, ranging in size from 2 to 13 members and 74 individuals known to be unrelated to any other victim. The DNA from living relatives was used to identify one member of a family group, from which other victims of the family could be identified. ABO blood group information was further used to confirm genetic relatedness within families. A comparison of the DNA profiling results to the ABO blood group of the victims showed no discrepancies with the exception of two mutations in the FGA locus. In cases of severely damaged victims from a plane crash, DNA analysis proved to be the best choice to identify victims.

  8. Bacillus odysseyi isolate

    NASA Technical Reports Server (NTRS)

    La Duc, Myron Thomas (Inventor); Venkateswaran, Kasthuri (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

  9. The Cancer Genome Atlas Pan-Cancer analysis project.

    PubMed

    Weinstein, John N; Collisson, Eric A; Mills, Gordon B; Shaw, Kenna R Mills; Ozenberger, Brad A; Ellrott, Kyle; Shmulevich, Ilya; Sander, Chris; Stuart, Joshua M

    2013-10-01

    The Cancer Genome Atlas (TCGA) Research Network has profiled and analyzed large numbers of human tumors to discover molecular aberrations at the DNA, RNA, protein and epigenetic levels. The resulting rich data provide a major opportunity to develop an integrated picture of commonalities, differences and emergent themes across tumor lineages. The Pan-Cancer initiative compares the first 12 tumor types profiled by TCGA. Analysis of the molecular aberrations and their functional roles across tumor types will teach us how to extend therapies effective in one cancer type to others with a similar genomic profile.

  10. Genetic relatedness between oral and intestinal isolates of Porphyromonas endodontalis by analysis of random amplified polymorphic DNA.

    PubMed

    Gonçalves, R B; Väisänen, M L; Van Steenbergen, T J; Sundqvist, G; Mouton, C

    1999-01-01

    Genomic fingerprints from the DNA of 27 strains of Porphyromonas endodontalis from diverse clinical and geographic origins were generated as random amplified polymorphic DNA (RAPD) using the technique of PCR amplification with a single primer of arbitrary sequence. Cluster analysis of the combined RAPD data obtained with three selected 9- or 10-mer-long primers identified 25 distinct RAPD types which clustered as three main groups identifying three genogroups. Genogroups I and II included exclusively P. endodontalis isolates of oral origin, while 7/9 human intestinal strains of genogroup III which linked at a similarity level of 52% constituted the most homogeneous group in our study. Genotypic diversity within P. endodontalis, as shown by RAPD analysis, suggests that the taxon is composed of two oral genogroups and one intestinal genogroup. This hypothesis remains to be confirmed.

  11. The use of (GTG)5 oligonucleotide as an RAPD primer to type Campylobacter concisus.

    PubMed

    Matsheka, M I; Lastovica, A J; Zappe, H; Elisha, B G

    2006-06-01

    DNA fingerprinting using (GTG)(5) oligonucleotide as a primer in a random amplified polymorphic DNA (RAPD) assay was assessed by typing isolates of Campylobacter concisus strains, collected over a period of 8 years. RAPD analysis using the (GTG)(5) oligonucleotide as a primer was used to type 100 isolates of C. concisus comprising mostly isolates from children with diarrhoea. Using this method, 86% of the isolates were found to be genotypically diverse. Of these heterogeneous isolates, 25 of the strains were also shown to be genetically distinct in a previous study using pulsed field gel electrophoresis. The remaining isolates (14) could be classified into five profile groups based on the DNA fingerprinting patterns. The assay successfully identified epidemiologically linked strains from the unrelated genetically diverse pool of strains. Laboratory RADP typing using the (GTG)(5) primer proved to be useful in distinguishing related strains of C. concisus from a large pool of unrelated strains of this organism. RAPD typing using (GTG)(5) is a simple method that could be used to investigate the epidemiology of C. concisus. The results suggest that homologous lineages of C. concisus may exist within an otherwise heterogeneous species complex. However, these data need to be confirmed using a more robust typing method.

  12. Molecular prevalence and genetic diversity of bovine Theileria orientalis in Myanmar.

    PubMed

    Bawm, Saw; Shimizu, Kohei; Hirota, Jun-Ichi; Tosa, Yusuke; Htun, Lat Lat; Maw, Ni Ni; Thein, Myint; Kato, Hirotomo; Sakurai, Tatsuya; Katakura, Ken

    2014-08-01

    Theileria orientalis is a causative agent of benign theileriosis in cattle and distributed in mainly Asian countries. In the present study, we examined the prevalence of T. orientalis infection by PCR based on the major piroplasm surface protein gene (MPSP) sequences in cattle in Myanmar, followed by phylogenetic analysis of the MPSP genes. The MPSP gene was amplified in 258 of 713 (36.2%) cattle blood DNA samples collected from five cities in different geographical regions of Myanmar. Phylogenetic analysis of MPSP sequences from 54 T. orientalis-positive DNA samples revealed the presence of six allelic genotypes, including Types 1, 3, 4, 5, 7, and N-3. Types 5 and 7 were the predominant types detected. Sequences of the MPSP genes detected in Myanmar were closely related to those from Thailand, Vietnam or Mongolia. These findings suggest that movement of animals carrying T. orientalis parasites between Southeast Asian countries could be a reason for the similar genotype distribution of the parasites in Myanmar. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Characterization of a New Type of Human Papillomavirus That Causes Skin Warts

    PubMed Central

    Orth, Gérard; Favre, Michel; Croissant, Odile

    1977-01-01

    A human papillomavirus (HPV) was isolated from the lesions of a patient (ML) bearing numerous hand common warts. This virus was compared with the well-characterized HPV found in typical plantar warts (plantar HPV). ML and plantar HPV DNAs have similar molecular weights (5.26 × 106 and 5.23 × 106, respectively) but were shown to be different by restriction enzyme analysis. When the cleavage products of both DNAs by endonuclease EcoRI, BamI, HpaI, or Hind were analyzed by electron microscopy, one, two, one, and four fragments were detected for ML HPV DNA instead of the two, one, two, and six fragments, respectively, detected for plantar HPV DNA. In contrast to plantar HPV DNA, a high proportion of ML HPV DNA molecules were resistant to these restriction enzymes. Most, if not all, of the molecules were either resistant to BamI and sensitive to EcoRI or sensitive to BamI and resistant to EcoRI. After denaturation and renaturation of the cleavage products of ML HPV DNA by a mixture of the two enzymes, the circular “heteroduplexes” formed showed one to three heterology loops corresponding to about 4 to 8% of the genome length. No sequence homology was detected between ML and plantar HPV DNAs by cRNA-DNA filter hybridization, by measuring the reassociation kinetics of an iodinated plantar HPV DNA in the presence of a 25-fold excess of ML HPV DNA, or by the heteroduplex technique. The two viruses had distinct electrophoretic polypeptide patterns and showed no antigenic cross-reaction by immunodiffusion or immunofluorescence techniques. Preliminary cRNA-DNA hybridization experiments, using viral DNAs from single or pooled plantar or hand warts, suggest that hand common warts are associated with viruses similar or related to ML HPV. The existence of at least two distinct types of HPVs that cause skin warts was demonstrated; they were provisionally called HPV type 1 and HPV type 2, with plantar HPV and ML HPV as prototypical viruses, respectively. Images PMID:198572

  14. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status

    PubMed Central

    Friso, Simonetta; Choi, Sang-Woon; Girelli, Domenico; Mason, Joel B.; Dolnikowski, Gregory G.; Bagley, Pamela J.; Olivieri, Oliviero; Jacques, Paul F.; Rosenberg, Irwin H.; Corrocher, Roberto; Selhub, Jacob

    2002-01-01

    DNA methylation, an essential epigenetic feature of DNA that modulates gene expression and genomic integrity, is catalyzed by methyltransferases that use the universal methyl donor S-adenosyl-l-methionine. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), the methyl donor for synthesis of methionine from homocysteine and precursor of S-adenosyl-l-methionine. In the present study we sought to determine the effect of folate status on genomic DNA methylation with an emphasis on the interaction with the common C677T mutation in the MTHFR gene. A liquid chromatography/MS method for the analysis of nucleotide bases was used to assess genomic DNA methylation in peripheral blood mononuclear cell DNA from 105 subjects homozygous for this mutation (T/T) and 187 homozygous for the wild-type (C/C) MTHFR genotype. The results show that genomic DNA methylation directly correlates with folate status and inversely with plasma homocysteine (tHcy) levels (P < 0.01). T/T genotypes had a diminished level of DNA methylation compared with those with the C/C wild-type (32.23 vs.62.24 ng 5-methylcytosine/μg DNA, P < 0.0001). When analyzed according to folate status, however, only the T/T subjects with low levels of folate accounted for the diminished DNA methylation (P < 0.0001). Moreover, in T/T subjects DNA methylation status correlated with the methylated proportion of red blood cell folate and was inversely related to the formylated proportion of red blood cell folates (P < 0.03) that is known to be solely represented in those individuals. These results indicate that the MTHFR C677T polymorphism influences DNA methylation status through an interaction with folate status. PMID:11929966

  15. High-throughput analysis of T-DNA location and structure using sequence capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less

  16. A quantitative and high-throughput assay of human papillomavirus DNA replication.

    PubMed

    Gagnon, David; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome is accomplished by the two viral proteins E1 and E2 in concert with host DNA replication factors. HPV DNA replication is an established model of eukaryotic DNA replication and a potential target for antiviral therapy. Assays to measure the transient replication of HPV DNA in transfected cells have been developed, which rely on a plasmid carrying the viral origin of DNA replication (ori) together with expression vectors for E1 and E2. Replication of the ori-plasmid is typically measured by Southern blotting or PCR analysis of newly replicated DNA (i.e., DpnI digested DNA) several days post-transfection. Although extremely valuable, these assays have been difficult to perform in a high-throughput and quantitative manner. Here, we describe a modified version of the transient DNA replication assay that circumvents these limitations by incorporating a firefly luciferase expression cassette in cis of the ori. Replication of this ori-plasmid by E1 and E2 results in increased levels of firefly luciferase activity that can be accurately quantified and normalized to those of Renilla luciferase expressed from a control plasmid, thus obviating the need for DNA extraction, digestion, and analysis. We provide a detailed protocol for performing the HPV type 31 DNA replication assay in a 96-well plate format suitable for small-molecule screening and EC50 determinations. The quantitative and high-throughput nature of the assay should greatly facilitate the study of HPV DNA replication and the identification of inhibitors thereof.

  17. High-throughput analysis of T-DNA location and structure using sequence capture

    DOE PAGES

    Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.; ...

    2015-10-07

    Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less

  18. DNA typing for personal identification of urine after long-term preservation for testing in doping control.

    PubMed

    Aoki, Kimiko; Tanaka, Hiroyuki; Ueki, Makoto

    2017-08-01

    When the tampering of a urine sample is suspected in doping control, personal identification of the sample needs to be determined by short tandem repeat (STR) analysis using DNA. We established a method for extracting DNA from urine samples stored at -20 °C without using any additives or procedures, which is consistent with how samples are required to be managed for doping control. The method, using the Puregene® Blood Core kit followed by NucleoSpin® gDNA Clean-up or NucleoSpin® gDNA Clean-up XS kit, does not need any special instrument and can provide a purified extract with high-quality DNA from up to 40 mL of urine suitable for STR analysis using an AmpFlSTR® Identifiler® PCR amplification kit. Storing urine at -20 °C is detrimental to the stability of DNA. The DNA concentration of preserved urine could not be predicted by specific gravity or creatinine level at the time of urine collection. The DNA concentration of a purified extract (10 μL) was required to be >0.06 ng/μL to ensure a successful STR analysis. Thus, the required extraction volumes of urine preserved for 3-7 years at -20 °C were estimated to be 30 mL and 20 mL to succeed in at least 86% of men and 91% of women, respectively. Considering the long half-life of DNA during long-term preservation, our extraction method is applicable to urine samples stored even for 10 years, which is currently the storage duration allowed (increased from 8 years) before re-examination in doping control. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. The Product of the Herpes Simplex Virus Type 1 UL25 Gene Is Required for Encapsidation but Not for Cleavage of Replicated Viral DNA

    PubMed Central

    McNab, Alistair R.; Desai, Prashant; Person, Stan; Roof, Lori L.; Thomsen, Darrell R.; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.

    1998-01-01

    The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. PMID:9445000

  20. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes.

    PubMed

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted "bidirectional analysis," which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples.

  1. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes

    PubMed Central

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted “bidirectional analysis,” which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples. PMID:28052096

  2. Effect of sea buckthorn protein on the intestinal microbial community in streptozotocin-induced diabetic mice.

    PubMed

    Yuan, Huaibo; Shi, Fangfang; Meng, Lina; Wang, Wenjuan

    2018-02-01

    This study investigated the intestinal microbial community distribution of Type 2 diabetic mice and discussed the effects of the sea buckthorn protein on the regulation of gut microbes. Date was collected for 12 cases of normal mice (NC group), 12 cases of Type 2 diabetic mice (DC group), and 12 cases of highly concentrated sea buckthorn seed protein dosed mice (SSPH group). This study analysed fecal samples, measured faecal pH value, and cultivated and determined intestinal bacteria count. This investigation also included the extraction of faecal samples for genomic DNA, PCR amplification of bacterial V3 16S rDNA products by denaturing gradient gel electrophoresis, DGGE map analysis of intestinal flora, determination of intestinal bacteria richness, Shannon-Wiener index and evenness index, and image similarity cluster analysis with UPGMA clustering. This study analysed and elucidated differences between the normal mice group, diabetic mice group, and sea buckthorn protein supplemented group, and the structures of respective intestinal flora. The mice supplemented with sea buckthorn protein exhibited an obvious drop in body weight and blood glucose levels. The Bifidobacterium, Lactobacillus, Bacteroides, and Clostridium coccoides populations recovered. The amplification of the 16S rDNA gene V3 region revealed that the species of intestinal microbes in the treatment group were adjusted to a certain extent. Analysis by ARDRA confirmed that sea buckthorn protein could increase type 2 diabetes in mice intestinal microorganism diversity (H) and simpson (E). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The type III effector HsvG of the gall-forming Pantoea agglomerans mediates expression of the host gene HSVGT.

    PubMed

    Nissan, Gal; Manulis-Sasson, Shulamit; Chalupowicz, Laura; Teper, Doron; Yeheskel, Adva; Pasmanik-Chor, Metsada; Sessa, Guido; Barash, Isaac

    2012-02-01

    The type III effector HsvG of the gall-forming Pantoea agglomerans pv. gypsophilae is a DNA-binding protein that is imported to the host nucleus and involved in host specificity. The DNA-binding region of HsvG was delineated to 266 amino acids located within a secondary structure region near the N-terminus of the protein but did not display any homology to canonical DNA-binding motifs. A binding site selection procedure was used to isolate a target gene of HsvG, named HSVGT, in Gypsophila paniculata. HSVGT is a predicted acidic protein of the DnaJ family with 244 amino acids. It harbors characteristic conserved motifs of a eukaryotic transcription factor, including a bipartite nuclear localization signal, zinc finger, and leucine zipper DNA-binding motifs. Quantitative real-time polymerase chain reaction analysis demonstrated that HSVGT transcription is specifically induced in planta within 2 h after inoculation with the wild-type P. agglomerans pv. gypsophilae compared with the hsvG mutant. Induction of HSVGT reached a peak of sixfold at 4 h after inoculation and progressively declined thereafter. Gel-shift assay demonstrated that HsvG binds to the HSVGT promoter, indicating that HSVGT is a direct target of HsvG. Our results support the hypothesis that HsvG functions as a transcription factor in gypsophila.

  4. A simple automated instrument for DNA extraction in forensic casework.

    PubMed

    Montpetit, Shawn A; Fitch, Ian T; O'Donnell, Patrick T

    2005-05-01

    The Qiagen BioRobot EZ1 is a small, rapid, and reliable automated DNA extraction instrument capable of extracting DNA from up to six samples in as few as 20 min using magnetic bead technology. The San Diego Police Department Crime Laboratory has validated the BioRobot EZ1 for the DNA extraction of evidence and reference samples in forensic casework. The BioRobot EZ1 was evaluated for use on a variety of different evidence sample types including blood, saliva, and semen evidence. The performance of the BioRobot EZ1 with regard to DNA recovery and potential cross-contamination was also assessed. DNA yields obtained with the BioRobot EZ1 were comparable to those from organic extraction. The BioRobot EZ1 was effective at removing PCR inhibitors, which often co-purify with DNA in organic extractions. The incorporation of the BioRobot EZ1 into forensic casework has streamlined the DNA analysis process by reducing the need for labor-intensive phenol-chloroform extractions.

  5. Formation and Repair of Tobacco Carcinogen-Derived Bulky DNA Adducts

    DOE PAGES

    Hang, Bo

    2010-01-01

    DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N -nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O 6 -alkylguaninemore » DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.« less

  6. Systematic analysis of enzymatic DNA polymerization using oligo-DNA templates and triphosphate analogs involving 2',4'-bridged nucleosides.

    PubMed

    Kuwahara, Masayasu; Obika, Satoshi; Nagashima, Jun-ichi; Ohta, Yuki; Suto, Yoshiyuki; Ozaki, Hiroaki; Sawai, Hiroaki; Imanishi, Takeshi

    2008-08-01

    In order to systematically analyze the effects of nucleoside modification of sugar moieties in DNA polymerase reactions, we synthesized 16 modified templates containing 2',4'-bridged nucleotides and three types of 2',4'-bridged nucleoside-5'-triphospates with different bridging structures. Among the five types of thermostable DNA polymerases used, Taq, Phusion HF, Vent(exo-), KOD Dash and KOD(exo-), the KOD Dash and KOD(exo-) DNA polymerases could smoothly read through the modified templates containing 2'-O,4'-C-methylene-linked nucleotides at intervals of a few nucleotides, even at standard enzyme concentrations for 5 min. Although the Vent(exo-) DNA polymerase also read through these modified templates, kinetic study indicates that the KOD(exo-) DNA polymerase was found to be far superior to the Vent(exo-) DNA polymerase in accurate incorporation of nucleotides. When either of the DNA polymerase was used, the presence of 2',4'-bridged nucleotides on a template strand substantially decreased the reaction rates of nucleotide incorporations. The modified templates containing sequences of seven successive 2',4'-bridged nucleotides could not be completely transcribed by any of the DNA polymerases used; yields of longer elongated products decreased in the order of steric bulkiness of the modified sugars. Successive incorporation of 2',4'-bridged nucleotides into extending strands using 2',4'-bridged nucleoside-5'-triphospates was much more difficult. These data indicate that the sugar modification would have a greater effect on the polymerase reaction when it is adjacent to the elongation terminus than when it is on the template as well, as in base modification.

  7. Detection of Human Papillomavirus Genotypes and Epstein-Barr Virus in Nasopharyngeal Carcinomas at the Korle-Bu Teaching Hospital, Ghana

    PubMed Central

    Asmah, Richard Harry; Adjei, Andrew Anthony; Simpong, David Larbi; Brown, Charles Addoquaye; Gyasi, Richard Kwasi

    2017-01-01

    Nasopharyngeal carcinomas (NPC) are endemic in Far East Asia and commonly harbour Epstein-Barr virus (EBV) which is known to serve as a key oncogenic promoter. Human papillomavirus (HPV) is known to contribute to the pathogenesis of NPC. However, in Ghana these two viruses have not been linked to NPC prevalence. This study was designed to determine the HPV genotypes and EBV involved in NPC tissue biopsies. A retrospective study design involving 72 formalin-fixed paraffin-embedded tissue (FFPET) samples of NPC from 2006 to 2012 were retrieved from the Department of Pathology, University of Ghana School of Biomedical and Allied Health Sciences. Sections were taken for histological analysis and for DNA lysate preparation. The DNA lysates were subjected to polymerase chain reaction (PCR) analysis to determine the presence of HPV genotypes and EBV. HPV specific primers were used to type for fourteen HPV genotypes (HPV-16, 18, 6/11, 31, 33, 35, 44, 42, 43, 45, 56, 52, 58, and 59). Out of the 72 NPC biopsies analyzed by PCR, EBV DNA was present in 18 (25%) cases and HPV DNA in 14 (19.23%). High risk HPV (HR-HPV) genotypes 18 and 31 were associated with the NPC. There were 3 (4.2%) cases of coinfection by both viruses. The EBV DNA present in the undifferentiated variant of the NPC and the histopathology of the NPC in Ghana is similar to the type described in endemic areas. PMID:28421207

  8. Clones from a shooty tobacco crown gall tumor I: deletions, rearrangements and amplifications resulting in irregular T-DNA structures and organizations.

    PubMed

    Peerbolte, R; Leenhouts, K; Hooykaas-van Slogteren, G M; Hoge, J H; Wullems, G J; Schilperoort, R A

    1986-07-01

    Transformed clones from a shooty tobacco crown gall tumor, induced byAgrobacterium tumefaciens strain LBA1501, having a Tn1831 insertion in the auxin locus, were investigated for their T-DNA structure and expression. In addition to clones with the expected phenotype, i.e. phytohormone autonomy, regeneration of non-rooting shoots and octopine synthesis (Aut(+)Reg(+)Ocs(+) 'type I' clones), clones were obtained with an aberrant phenotype. Among these were the Aut(-)Reg(-)Ocs(+) 'type II' clones. Two shooty type I clones and three type II callus clones (all randomly chosen) as well as a rooting shoot regenerated from a type II clone via a high kinetin treatment, all had a T-DNA structure which differed significantly from 'regular' T-DNA structures. No Tn1831 DNA sequences were detected in these clones. The two type I clones were identical: they both contained the same highly truncated T-DNA segments. One TL-DNA segment of approximately 0.7 kb, originating form the left part of the TL-region, was present at one copy per diploid tobacco genome. Another segment with a maximum size of about 7 kb was derived from the right hand part of the TL-region and was present at minimally two copies. Three copies of a truncated TR-DNA segment were detected, probably starting at the right TR-DNA border repeat and ending halfway the regular TR-region. Indications have been obtained that at least some of the T-DNA segments are closely linked, sometimes via intervening plant DNA sequences. The type I clones harbored TL-DNA transcripts 4, 6a/b and 3 as well as TR-DNA transcript 0'. The type II clones harbored three to six highly truncated T-DNA segments, originating from the right part of the TL-region. In addition they had TR-DNA segments, similar to those of the type I clones. On Northern blots TR-DNA transcripts 0' and 1' were detected as well as the TL-DNA transcripts 3 and 6a/b and an 1800 bp hybrid transcript (tr.Y) containing gene 6b sequences. Possible origins of the observed irregularities in T-DNA structures are discussed in relation to fidelity of transformation of plant cells viaAgrobacterium.

  9. Science in Drama: Using Television Programmes to Teach Concepts and Techniques

    ERIC Educational Resources Information Center

    Rutter, Gordon

    2011-01-01

    By using a specific episode of the popular television cartoon series "The Simpsons," a range of techniques can be communicated, including microscope setup and use, simple chemical analysis, observation, and interpretation. Knowledge of blood groups and typing, morphological comparison of hair samples, fingerprint analysis, and DNA fingerprinting…

  10. Evaluation of Methods to Improve the Extraction and Recovery of DNA from Cotton Swabs for Forensic Analysis

    PubMed Central

    Adamowicz, Michael S.; Stasulli, Dominique M.; Sobestanovich, Emily M.; Bille, Todd W.

    2014-01-01

    Samples for forensic DNA analysis are often collected from a wide variety of objects using cotton or nylon tipped swabs. Testing has shown that significant quantities of DNA are retained on the swab, however, and subsequently lost. When processing evidentiary samples, the recovery of the maximum amount of available DNA is critical, potentially dictating whether a usable profile can be derived from a piece of evidence or not. The QIAamp DNA Investigator extraction kit was used with its recommended protocol for swabs (one hour incubation at 56°C) as a baseline. Results indicate that over 50% of the recoverable DNA may be retained on the cotton swab tip, or otherwise lost, for both blood and buccal cell samples when using this protocol. The protocol’s incubation time and temperature were altered, as was incubating while shaking or stationary to test for increases in recovery efficiency. An additional step was then tested that included periodic re-suspension of the swab tip in the extraction buffer during incubation. Aliquots of liquid blood or a buccal cell suspension were deposited and dried on cotton swabs and compared with swab-less controls. The concentration of DNA in each extract was quantified and STR analysis was performed to assess the quality of the extracted DNA. Stationary incubations and those performed at 65°C did not result in significant gains in DNA yield. Samples incubated for 24 hours yielded less DNA. Increased yields were observed with three and 18 hour incubation periods. Increases in DNA yields were also observed using a swab re-suspension method for both cell types. The swab re-suspension method yielded an average two-fold increase in recovered DNA yield with buccal cells and an average three-fold increase with blood cells. These findings demonstrate that more of the DNA collected on swabs can be recovered with specific protocol alterations. PMID:25549111

  11. DNA typing in forensic medicine and in criminal investigations: a current survey.

    PubMed

    Benecke, M

    1997-05-01

    Since 1985 DNA typing of biological material has become one of the most powerful tools for personal identification in forensic medicine and in criminal investigations [1-6]. Classical DNA "fingerprinting" is increasingly being replaced by polymerase chain reaction (PCR) based technology which detects very short polymorphic stretches of DNA [7-15]. DNA loci which forensic scientists study do not code for proteins, and they are spread over the whole genome [16, 17]. These loci are neutral, and few provide any information about individuals except for their identity. Minute amounts of biological material are sufficient for DNA typing. Many European countries are beginning to establish databases to store DNA profiles of crime scenes and known offenders. A brief overview is given of past and present DNA typing and the establishment of forensic DNA databases in Europe.

  12. DNA typing in forensic medicine and in criminal investigations: a current survey

    NASA Astrophysics Data System (ADS)

    Benecke, Mark

    Since 1985 DNA typing of biological material has become one of the most powerful tools for personal identification in forensic medicine and in criminal investigations [1-6]. Classical DNA "fingerprinting" is increasingly being replaced by polymerase chain reaction (PCR) based technology which detects very short polymorphic stretches of DNA [7-15]. DNA loci which forensic scientists study do not code for proteins, and they are spread over the whole genome [16, 17]. These loci are neutral, and few provide any information about individuals except for their identity. Minute amounts of biological material are sufficient for DNA typing. Many European countries are beginning to establish databases to store DNA profiles of crime scenes and known offenders. A brief overview is given of past and present DNA typing and the establishment of forensic DNA databases in Europe.

  13. A new model for ancient DNA decay based on paleogenomic meta-analysis.

    PubMed

    Kistler, Logan; Ware, Roselyn; Smith, Oliver; Collins, Matthew; Allaby, Robin G

    2017-06-20

    The persistence of DNA over archaeological and paleontological timescales in diverse environments has led to a revolutionary body of paleogenomic research, yet the dynamics of DNA degradation are still poorly understood. We analyzed 185 paleogenomic datasets and compared DNA survival with environmental variables and sample ages. We find cytosine deamination follows a conventional thermal age model, but we find no correlation between DNA fragmentation and sample age over the timespans analyzed, even when controlling for environmental variables. We propose a model for ancient DNA decay wherein fragmentation rapidly reaches a threshold, then subsequently slows. The observed loss of DNA over time may be due to a bulk diffusion process in many cases, highlighting the importance of tissues and environments creating effectively closed systems for DNA preservation. This model of DNA degradation is largely based on mammal bone samples due to published genomic dataset availability. Continued refinement to the model to reflect diverse biological systems and tissue types will further improve our understanding of ancient DNA breakdown dynamics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Alteration in the contents of unsaturated fatty acids in dnaA mutants of Escherichia coli.

    PubMed

    Suzuki, E; Kondo, T; Makise, M; Mima, S; Sakamoto, K; Tsuchiya, T; Mizushima, T

    1998-04-01

    DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli, has a high affinity for acidic phospholipids containing unsaturated fatty acids. We have examined here the fatty acid composition of phospholipids in dnaA mutants. A temperature-sensitive dnaA46 mutant showed a lower level of unsaturation of fatty acids (ratio of unsaturated to saturated fatty acids) at 42 degrees C (non-permissive temperature) and at 37 degrees C (semi-permissive temperature), but not at 28 degrees C (permissive temperature), compared with the wild-type strain. Plasmid complementation analysis revealed that the dnaA46 mutation is responsible for the phenotype. Other temperature-sensitive dnaA mutants showed similar results. On the other hand, a cold-sensitive dnaAcos mutant, in which over-initiation of DNA replication occurs at low temperature (28 degrees C), showed a higher level of unsaturation of fatty acids at 28 degrees C. Based on these observations, we discuss the role of phospholipids in the regulation of the activity of DnaA protein.

  15. Systematic prediction of control proteins and their DNA binding sites

    PubMed Central

    Sorokin, Valeriy; Severinov, Konstantin; Gelfand, Mikhail S.

    2009-01-01

    We present here the results of a systematic bioinformatics analysis of control (C) proteins, a class of DNA-binding regulators that control time-delayed transcription of their own genes as well as restriction endonuclease genes in many type II restriction-modification systems. More than 290 C protein homologs were identified and DNA-binding sites for ∼70% of new and previously known C proteins were predicted by a combination of phylogenetic footprinting and motif searches in DNA upstream of C protein genes. Additional analysis revealed that a large proportion of C protein genes are translated from leaderless RNA, which may contribute to time-delayed nature of genetic switches operated by these proteins. Analysis of genetic contexts of newly identified C protein genes revealed that they are not exclusively associated with restriction-modification genes; numerous instances of associations with genes originating from mobile genetic elements were observed. These instances might be vestiges of ancient horizontal transfers and indicate that during evolution ancestral restriction-modification system genes were the sites of mobile elements insertions. PMID:19056824

  16. The "Starch Wars" and the Early History of DNA Profiling.

    PubMed

    Aronson, J D

    2006-01-01

    Just as the movie Star Wars had a prequel, so did the "DNA Wars"-the series of legal, scientific, and personal battles that took place over the admissibility of forensic DNA evidence from 1989 to 1994. Between the late 1970s and the mid-1980s, another forensic identification technique became mired in controversy: electrophoresis-based blood protein analysis. Although the debates over blood analysis were every bit as rancorous and frustrating to almost everybody involved - so much so that they became known as the "Starch Wars" - their importance has not been adequately appreciated in the recent history of forensic science. After reviewing the early history of blood typing, I will describe the development of the Multi-System approach to blood protein analysis that took place in California from 1977 to 1978. I will then elucidate the history of the Starch Wars, and demonstrate the ways that they shaped subsequent disputes over DNA evidence, especially in California. I will show that: (a) many of the forensic scientists, law enforcement officials, and lawyers who became prominent players in the DNA Wars were deeply involved in the court cases involving protein electrophoresis; and (b) many of the issues that became controversial in the disputes over DNA evidence first emerged in the Starch Wars. In the conclusion, I will suggest various ways to improve the quality of forensic science based on my analysis of the Starch Wars. Copyright © 2006 Central Police University.

  17. Motif-based analysis of large nucleotide data sets using MEME-ChIP

    PubMed Central

    Ma, Wenxiu; Noble, William S; Bailey, Timothy L

    2014-01-01

    MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by cLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix–based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP’s interactive HTML output groups and aligns significant motifs to ease interpretation. this protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods. PMID:24853928

  18. In situ hybridization analysis of human papillomavirus DNA in oral mucosal lesions.

    PubMed

    Zeuss, M S; Miller, C S; White, D K

    1991-06-01

    Commercial biotinylated DNA probes specific for human papillomavirus (HPV) types 6 and 11; 16 and 18; and 31, 33, and 35 were used for in situ hybridization analysis of 105 oral mucosal specimens from 5 cases of verruca vulgaris, 15 cases of condyloma acuminatum, 30 cases of squamous papilloma, 20 cases of hyperkeratosis/acanthosis, 15 cases of epithelial dysplasia, 5 cases of carcinoma in situ, and 15 cases of squamous cell carcinoma. Positive hybridization signals were found in 26 specimens (24.8%). Only HPV-6/11 was detected. HPV DNA occurred significantly more often (p less than 0.005, chi-square analysis) in condyloma acuminatum (100%) and verruca vulgaris (100%) than squamous papilloma (13.3%), hyperkeratotic/acanthotic lesions (10%), and malignant and premalignant lesions (0%). The tongue (19.1%) and labial epithelium (17.1%) were infected most frequently. Nuclear reaction products indicating HPV infection were associated primarily with koilocytes. These results demonstrate the usefulness of commercial biotinylated probes for HPV DNA analysis in routine paraffin-embedded lesion specimens. They confirm HPV involvement in benign lesions of the oral mucosa but fail to associate HPV infection with oral cancer and precancer.

  19. [Selected problems of neurofibromatosis with presentation of a case of multiple intracranial and intramedullary tumors].

    PubMed

    Stachura, Z; Zralek, C; Siemianowicz, S; Kiczka-Zralek, M; Zawadzki, T; Kluczewska, E; Giec-Lorenc, A

    1998-01-01

    A case of neurofibromatosis type II in a 19-year-old man is described with clinical and neuroimaging (MRI) findings. The diagnostic criteria of neurofibromatosis type I (NF1) and type II (NF2) and the optimal management options are still controversial. The authors suggest that this patient fulfills criteria of neurofibromatosis type II as well as partially neurofibromatosis type I. At present, without molecular analysis of DNA, this assumption can not be verified.

  20. Biochemical analysis of human POLG2 variants associated with mitochondrial disease

    PubMed Central

    Young, Matthew J.; Longley, Matthew J.; Li, Fang-Yuan; Kasiviswanathan, Rajesh; Wong, Lee-Jun; Copeland, William C.

    2011-01-01

    Defects in mitochondrial DNA (mtDNA) maintenance comprise an expanding repertoire of polymorphic diseases caused, in part, by mutations in the genes encoding the p140 mtDNA polymerase (POLG), its p55 accessory subunit (POLG2) or the mtDNA helicase (C10orf2). In an exploration of nuclear genes for mtDNA maintenance linked to mitochondrial disease, eight heterozygous mutations (six novel) in POLG2 were identified in one control and eight patients with POLG-related mitochondrial disease that lacked POLG mutations. Of these eight mutations, we biochemically characterized seven variants [c.307G>A (G103S); c.457C>G (L153V); c.614C>G (P205R); c.1105A>G (R369G); c.1158T>G (D386E); c.1268C>A (S423Y); c.1423_1424delTT (L475DfsX2)] that were previously uncharacterized along with the wild-type protein and the G451E pathogenic variant. These seven mutations encode amino acid substitutions that map throughout the protein, including the p55 dimer interface and the C-terminal domain that interacts with the catalytic subunit. Recombinant proteins harboring these alterations were assessed for stimulation of processive DNA synthesis, binding to the p140 catalytic subunit, binding to dsDNA and self-dimerization. Whereas the G103S, L153V, D386E and S423Y proteins displayed wild-type behavior, the P205R and R369G p55 variants had reduced stimulation of processivity and decreased affinity for the catalytic subunit. Additionally, the L475DfsX2 variant, which possesses a C-terminal truncation, was unable to bind the p140 catalytic subunit, unable to bind dsDNA and formed aberrant oligomeric complexes. Our biochemical analysis helps explain the pathogenesis of POLG2 mutations in mitochondrial disease and emphasizes the need to quantitatively characterize the biochemical consequences of newly discovered mutations before classifying them as pathogenic. PMID:21555342

  1. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan.

    PubMed

    Denner, E B; Paukner, S; Kämpfer, P; Moore, E R; Abraham, W R; Busse, H J; Wanner, G; Lubitz, W

    2001-05-01

    Strain EDIVT, an exopolysaccharide-producing bacterium, was subjected to polyphasic characterization. The bacterium produced copious amounts of an extracellular polysaccharide, forming slimy, viscous, intensely yellow-pigmented colonies on Czapek-Dox (CZD) agar. The culture fluids of the liquid version of CZD medium were highly viscous after cultivation for 5 d. Cells of strain EDIVT were Gram-negative, catalase-positive, oxidase-negative, nonspore-forming, rod-shaped and motile. Comparisons of 16S rDNA gene sequences demonstrated that EDIVT clusters phylogenetically with the species of the genus Sphingomonas sensu stricto. The G+C content of the DNA (64.5 mol%), the presence of ubiquinone Q-10, the presence of 2-hydroxymyristic acid (14:0 2-OH) as the major hydroxylated fatty acid, the absence of 3-hydroxy fatty acids and the detection of sym-homospermidine as the major component in the polyamine pattern, together with the presence of sphingoglycolipid, supported this delineation. 16S rDNA sequence analysis indicated that strain EDIVT is most closely related (99.4% similarity) to Sphingomonas trueperi LMG 2142T. DNA-DNA hybridization showed that the level of relatedness to S. trueperi is only 45.5%. Further differences were apparent in the cellular fatty acid profile, the polar lipid pattern, the Fourier-transform infrared spectrum and whole-cell proteins and in a number of biochemical characteristics. On the basis of the estimated phylogenetic position derived from 16S rDNA sequence data, DNA-DNA reassociation and phenotypic differences, strain EDIVT (= CIP 106154T = DSM 13101T) was recognized as a new species of Sphingomonas, for which the name Sphingomonas pituitosa sp. nov. is proposed. A component analysis of the exopolysaccharide (named PS-EDIV) suggested that it represents a novel type of sphingan composed of glucose, rhamnose and an unidentified sugar. Glucuronic acid, which is commonly found in sphingans, was absent. The mean molecular mass of PS-EDIV was approximately 3 x 10(6) Da.

  2. Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase.

    PubMed

    Takahashi, Shuntaro; Brazier, John A; Sugimoto, Naoki

    2017-09-05

    Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases.

  3. Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase

    PubMed Central

    Takahashi, Shuntaro; Brazier, John A.; Sugimoto, Naoki

    2017-01-01

    Noncanonical DNA structures that stall DNA replication can cause errors in genomic DNA. Here, we investigated how the noncanonical structures formed by sequences in genes associated with a number of diseases impacted DNA polymerization by the Klenow fragment of DNA polymerase. Replication of a DNA sequence forming an i-motif from a telomere, hypoxia-induced transcription factor, and an insulin-linked polymorphic region was effectively inhibited. On the other hand, replication of a mixed-type G-quadruplex (G4) from a telomere was less inhibited than that of the antiparallel type or parallel type. Interestingly, the i-motif was a better inhibitor of replication than were mixed-type G4s or hairpin structures, even though all had similar thermodynamic stabilities. These results indicate that both the stability and topology of structures formed in DNA templates impact the processivity of a DNA polymerase. This suggests that i-motif formation may trigger genomic instability by stalling the replication of DNA, causing intractable diseases. PMID:28827350

  4. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    PubMed

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.

  5. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines

    PubMed Central

    Yamamoto, Kimiyo N.; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P.; Witt, Kristine L.; Tice, Raymond R.

    2012-01-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the U.S. Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in 7 isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. PMID:21538559

  6. Vagococcus carniphilus sp. nov., isolated from ground beef.

    PubMed

    Shewmaker, P Lynn; Steigerwalt, Arnold G; Morey, Roger E; Carvalho, Maria da Glória S; Elliott, John A; Joyce, Kevin; Barrett, Timothy J; Teixeira, Lucia M; Facklam, Richard R

    2004-09-01

    Nine enterococcus-like strains were referred to the Streptococcus Laboratory at the Centers for Disease Control and Prevention (CDC) for further identification from the National Antimicrobial Resistance Monitoring System Laboratory at the CDC. The cultures were isolated from ground beef purchased from retail in Oregon in 2000. Conventional biochemical testing and analysis of whole-cell protein electrophoretic profiles distinguished these strains from known species of enterococci and vagococci. Comparative 16S rRNA gene sequencing studies revealed that these strains were most closely related to the species Vagococcus fluvialis. DNA-DNA reassociation studies confirmed that these nine strains represented a new taxon. The relative binding ratio was 87 % or greater at the optimal temperature, and the divergence was less than 1 % for strains hybridized against the isolate designated the type strain. DNA-DNA relatedness was 25 % to V. fluvialis and 9 % or less to the other three species of Vagococcus. DNA-DNA relatedness was 33 % or less to the 25 currently described species of Enterococcus. On the basis of this evidence, it is proposed that these strains be classified as Vagococcus carniphilus sp. nov. The type strain of V. carniphilus is 1843-02T (= ATCC BAA-640T = CCUG 46823T). The clinical significance (if any) of these strains is yet to be determined.

  7. Construction of an infectious genomic clone of porcine parvovirus: effect of the 5'-end on DNA replication.

    PubMed

    Casal, J I; Diaz-Aroca, E; Ranz, A I; Manclus, J J

    1990-08-01

    The linear single-stranded DNA genome of the porcine parvovirus, an autonomous parvovirus, was cloned in duplex form into the bacterial plasmid pUC18 using a simple and reliable method. These clones were stable during propagation in Escherichia coli JM109. The recombinant clones of porcine parvovirus were infectious when transfected into monolayers of swine testes cells as identified by the development of cytopathic effect, indirect immunofluorescence with specific antiserum, and hemagglutination assays. DNA isolated from progeny virus arising from transfected infectious clones was found to be indistinguishable from wild-type DNA by restriction enzyme analysis. Defective genomes could also be detected in the progeny DNA even though the infection was initiated with homogeneous, cloned DNA. The presence of the turn of the 5'-end loop seems to be necessary to get stable infectious clones.

  8. Tissue-Specific and Cation/Anion-Specific DNA Methylation Variations Occurred in C. virgata in Response to Salinity Stress

    PubMed Central

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations. PMID:24223802

  9. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    PubMed

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  10. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair.

    PubMed

    Qin, Song; Parthun, Mark R

    2002-12-01

    The modification of newly synthesized histones H3 and H4 by type B histone acetyltransferases has been proposed to play a role in the process of chromatin assembly. The type B histone acetyltransferase Hat1p and specific lysine residues in the histone H3 NH(2)-terminal tail (primarily lysine 14) are redundantly required for telomeric silencing. As many gene products, including other factors involved in chromatin assembly, have been found to participate in both telomeric silencing and DNA damage repair, we tested whether mutations in HAT1 and the histone H3 tail were also sensitive to DNA-damaging agents. Indeed, mutations both in specific lysine residues in the histone H3 tail and in HAT1 resulted in sensitivity to methyl methanesulfonate. The DNA damage sensitivity of the histone H3 and HAT1 mutants was specific for DNA double-strand breaks, as these mutants were sensitive to the induction of an exogenous restriction endonuclease, EcoRI, but not to UV irradiation. While histone H3 mutations had minor effects on nonhomologous end joining, the primary defect in the histone H3 and HAT1 mutants was in the recombinational repair of DNA double-strand breaks. Epistasis analysis indicates that the histone H3 and HAT1 mutants may influence DNA double-strand break repair through Asf1p-dependent chromatin assembly.

  11. Authentication of forensic DNA samples.

    PubMed

    Frumkin, Dan; Wasserstrom, Adam; Davidson, Ariane; Grafit, Arnon

    2010-02-01

    Over the past twenty years, DNA analysis has revolutionized forensic science, and has become a dominant tool in law enforcement. Today, DNA evidence is key to the conviction or exoneration of suspects of various types of crime, from theft to rape and murder. However, the disturbing possibility that DNA evidence can be faked has been overlooked. It turns out that standard molecular biology techniques such as PCR, molecular cloning, and recently developed whole genome amplification (WGA), enable anyone with basic equipment and know-how to produce practically unlimited amounts of in vitro synthesized (artificial) DNA with any desired genetic profile. This artificial DNA can then be applied to surfaces of objects or incorporated into genuine human tissues and planted in crime scenes. Here we show that the current forensic procedure fails to distinguish between such samples of blood, saliva, and touched surfaces with artificial DNA, and corresponding samples with in vivo generated (natural) DNA. Furthermore, genotyping of both artificial and natural samples with Profiler Plus((R)) yielded full profiles with no anomalies. In order to effectively deal with this problem, we developed an authentication assay, which distinguishes between natural and artificial DNA based on methylation analysis of a set of genomic loci: in natural DNA, some loci are methylated and others are unmethylated, while in artificial DNA all loci are unmethylated. The assay was tested on natural and artificial samples of blood, saliva, and touched surfaces, with complete success. Adopting an authentication assay for casework samples as part of the forensic procedure is necessary for maintaining the high credibility of DNA evidence in the judiciary system.

  12. AtlA Mediates Extracellular DNA Release, Which Contributes to Streptococcus mutans Biofilm Formation in an Experimental Rat Model of Infective Endocarditis.

    PubMed

    Jung, Chiau-Jing; Hsu, Ron-Bin; Shun, Chia-Tung; Hsu, Chih-Chieh; Chia, Jean-San

    2017-09-01

    Host factors, such as platelets, have been shown to enhance biofilm formation by oral commensal streptococci, inducing infective endocarditis (IE), but how bacterial components contribute to biofilm formation in vivo is still not clear. We demonstrated previously that an isogenic mutant strain of Streptococcus mutans deficient in autolysin AtlA (Δ atlA ) showed a reduced ability to cause vegetation in a rat model of bacterial endocarditis. However, the role of AtlA in bacterial biofilm formation is unclear. In this study, confocal laser scanning microscopy analysis showed that extracellular DNA (eDNA) was embedded in S. mutans GS5 floes during biofilm formation on damaged heart valves, but an Δ atlA strain could not form bacterial aggregates. Semiquantification of eDNA by PCR with bacterial 16S rRNA primers demonstrated that the Δ atlA mutant strain produced dramatically less eDNA than the wild type. Similar results were observed with in vitro biofilm models. The addition of polyanethol sulfonate, a chemical lysis inhibitor, revealed that eDNA release mediated by bacterial cell lysis is required for biofilm initiation and maturation in the wild-type strain. Supplementation of cultures with calcium ions reduced wild-type growth but increased eDNA release and biofilm mass. The effect of calcium ions on biofilm formation was abolished in Δ atlA cultures and by the addition of polyanethol sulfonate. The VicK sensor, but not CiaH, was found to be required for the induction of eDNA release or the stimulation of biofilm formation by calcium ions. These data suggest that calcium ion-regulated AtlA maturation mediates the release of eDNA by S. mutans , which contributes to biofilm formation in infective endocarditis. Copyright © 2017 American Society for Microbiology.

  13. Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis.

    PubMed Central

    Arakawa, H; Neault, J F; Tajmir-Riahi, H A

    2001-01-01

    Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases. PMID:11509371

  14. Genetic Variation near IRF8 is Associated with Serologic and Cytokine Profiles in Systemic Lupus Erythematosus and Multiple Sclerosis

    PubMed Central

    Chrabot, Beverly S.; Kariuki, Silvia N.; Zervou, Maria I.; Feng, Xuan; Arrington, Jasmine; Jolly, Meenakshi; Boumpas, Dimitrios T.; Reder, Anthony T.; Goulielmos, George N.; Niewold, Timothy B.

    2013-01-01

    Alleles of IRF8 are associated with susceptibility to both systemic lupus erythematosus (SLE) and multiple sclerosis (MS). While high type I interferon (IFN) is thought to be causal in SLE, type I IFN is used as a therapy in MS. We investigated whether IRF8 alleles were associated with type I IFN levels or serologic profiles in SLE and MS. Alleles which have been previously associated with SLE or MS were genotyped in SLE and MS patients. The MS-associated rs17445836G allele was associated with anti-dsDNA autoantibodies in SLE patients (meta-analysis OR=1.92). The same allele was associated with decreased serum IFN activity in SLE patients with anti-dsDNA antibodies, and with decreased type I IFN-induced gene expression in PBMC from anti-dsDNA negative SLE patients. In secondary progressive MS patients, rs17445836G was associated with decreased serum type I IFN. Rs17445836G was associated with increased IRF8 expression in SLE patient B cells. In summary, IRF8 rs17445836G is associated with human autoimmune disease characterized by low type I IFN levels, and this may have pharmacogenetic relevance as type I IFN is modulated in SLE and MS. The association with autoantibodies and increased IRF8 expression in B cells supports a role for rs17445836G in humoral tolerance. PMID:23965942

  15. Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism.

    PubMed

    Le Maréchal, Caroline; Rouxel, Sandra; Ballan, Valentine; Houard, Emmanuelle; Poezevara, Typhaine; Bayon-Auboyer, Marie-Hélène; Souillard, Rozenn; Morvan, Hervé; Baudouard, Marie-Agnès; Woudstra, Cédric; Mazuet, Christelle; Le Bouquin, Sophie; Fach, Patrick; Popoff, Michel; Chemaly, Marianne

    2017-01-01

    Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds.

  16. Development and Validation of a New Reliable Method for the Diagnosis of Avian Botulism

    PubMed Central

    Le Maréchal, Caroline; Rouxel, Sandra; Ballan, Valentine; Houard, Emmanuelle; Poezevara, Typhaine; Bayon-Auboyer, Marie-Hélène; Souillard, Rozenn; Morvan, Hervé; Baudouard, Marie-Agnès; Woudstra, Cédric; Mazuet, Christelle; Le Bouquin, Sophie; Fach, Patrick; Popoff, Michel; Chemaly, Marianne

    2017-01-01

    Liver is a reliable matrix for laboratory confirmation of avian botulism using real-time PCR. Here, we developed, optimized, and validated the analytical steps preceding PCR to maximize the detection of Clostridium botulinum group III in avian liver. These pre-PCR steps included enrichment incubation of the whole liver (maximum 25 g) at 37°C for at least 24 h in an anaerobic chamber and DNA extraction using an enzymatic digestion step followed by a DNA purification step. Conditions of sample storage before analysis appear to have a strong effect on the detection of group III C. botulinum strains and our results recommend storage at temperatures below -18°C. Short-term storage at 5°C is possible for up to 24 h, but a decrease in sensitivity was observed at 48 h of storage at this temperature. Analysis of whole livers (maximum 25 g) is required and pooling samples before enrichment culturing must be avoided. Pooling is however possible before or after DNA extraction under certain conditions. Whole livers should be 10-fold diluted in enrichment medium and homogenized using a Pulsifier® blender (Microgen, Surrey, UK) instead of a conventional paddle blender. Spiked liver samples showed a limit of detection of 5 spores/g liver for types C and D and 250 spores/g for type E. Using the method developed here, the analysis of 268 samples from 73 suspected outbreaks showed 100% specificity and 95.35% sensitivity compared with other PCR-based methods considered as reference. The mosaic type C/D was the most common neurotoxin type found in examined samples, which included both wild and domestic birds. PMID:28076405

  17. Quantitative analysis of genomic DNA degradation in whole blood under various storage conditions for molecular diagnostic testing.

    PubMed

    Permenter, Jessalyn; Ishwar, Arjun; Rounsavall, Angie; Smith, Maddie; Faske, Jennifer; Sailey, Charles J; Alfaro, Maria P

    2015-12-01

    Proper storage of whole blood is crucial for isolating nucleic acids from leukocytes and to ensure adequate performance of downstream assays in the molecular diagnostic laboratory. Short-term and long-term storage recommendations are lacking for successful isolation of genomic DNA (gDNA). Container type (EDTA or heparin), temperature (4 °C and room temperature) and time (1-130 days) were assessed as criterion for sample acceptance policies. The percentage of integrated area (%Ti) between 150 and 10,000 bp from the 2200 TapeStation electropherogram was calculated to measure gDNA degradation. Refrigerated EDTA samples yielded gDNA with low %Ti (high quality). Heparinized samples stored at room temperature yielded gDNA of worst quality. Downstream analysis demonstrated that the quality of the gDNA correlated with the quality of the data; samples with high %Ti generated significantly lower levels of high molecular weight amplicons. Recommendations from these analyses include storing blood samples intended for nucleic acid isolation in EDTA tubes at 4 °C for long term storage (>10 days). gDNA should be extracted within 3 days when blood is stored at room temperature regardless of the container. Finally, refrigerated heparinized samples should not be stored longer than 9 days if expecting high quality gDNA isolates. Laboratories should consider many factors, in addition to the results obtained herein, to update their policies for sample acceptance for gDNA extraction intended for molecular genetic testing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Enhancement of DNA ligase I level by gemcitabine in human cancer cells.

    PubMed

    Sun, Daekyu; Urrabaz, Rheanna; Kelly, Susan; Nguyen, Myhanh; Weitman, Steve

    2002-04-01

    DNA ligase I is an essential enzyme for completing DNA replication and DNA repair by ligating Okazaki fragments and by joining single-strand breaks formed either directly by DNA-damaging agents or indirectly by DNA repair enzymes, respectively. In this study, we examined whether the DNA ligase I level could be modulated in human tumor cell lines by treatment with gemcitabine (2', 2'-difluoro-2'-deoxycytidine), which is a nucleoside analogue of cytidine with proven antitumor activity against a broad spectrum of human cancers in clinical studies. To determine the effect of gemcitabine on DNA ligase I expression, Western blot analysis was used to measure the DNA ligase I levels in MiaPaCa, NGP, and SK-N-BE cells treated with different concentrations of gemcitabine and harvested at different time intervals. Cell cycle analysis was also performed to determine the underlying mechanism of DNA ligase I level enhancement in response to gemcitabine. In addition, other agents that share the same mechanism of action with gemcitabine were used to elucidate further details. When different types of tumor cell lines, including MiaPaCa, NGP, and SK-N-BE, were treated with gemcitabine, the level of DNA ligase I increased severalfold despite significant cell growth inhibition. In contrast, other DNA ligases (III and IV) either remained unchanged or decreased with treatment. Cell cycle analysis showed that arrest in S-phase corresponded to an increase of DNA ligase I levels in gemcitabine treated cells. Other agents, such as 1-beta-D-arabinofuranosylcytosine and hydroxyurea, which partly share mechanisms of action with gemcitabine by targeting DNA polymerases and ribonucleotide reductase, respectively, also caused an increase of DNA ligase I levels. However, 5-fluorouracil, which predominantly targets thymidylate synthase, did not cause an increase of DNA ligase I level. Our results suggest that an arrest of DNA replication caused by gemcitabine treatment through incorporation of gemcitabine triphosphate into replicating DNA and inhibition of ribonucleotide reductase would trigger an increase in DNA ligase I levels in cancer cells. The elevated presence of DNA ligase I in S-phase-arrested cells leads us to speculate that DNA ligase I might have an important role in repairing DNA damage caused by stalled replication forks.

  19. Molecular cloning of human T-cell lymphotrophic virus type I-like proviral genome from the peripheral lymphocyte DNA of a patient with chronic neurologic disorders.

    PubMed Central

    Reddy, E P; Mettus, R V; DeFreitas, E; Wroblewska, Z; Cisco, M; Koprowski, H

    1988-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-I), the etiologic agent of human T-cell leukemia, has recently been shown to be associated with neurologic disorders such as tropical spastic paraparesis, HTLV-associated myelopathy, and possibly with multiple sclerosis. In this communication, we have examined one specific case of neurologic disorder that can be classified as multiple sclerosis or tropical spastic paraparesis. The patient suffering from chronic neurologic disorder was found to contain antibodies to HTLV-I envelope and gag proteins in his serum and cerebrospinal fluid. Lymphocytes from peripheral blood and cerebrospinal fluid of the patient were shown to express viral RNA sequences by in situ hybridization. Southern blot analysis of the patient lymphocyte DNA revealed the presence of HTLV-I-related sequences. Blot-hybridization analysis of the RNA from fresh peripheral lymphocytes stimulated with interleukin 2 revealed the presence of abundant amounts of genomic viral RNA with little or no subgenomic RNA. We have cloned the proviral genome from the DNA of the peripheral lymphocytes and determined its restriction map. This analysis shows that this proviral genome is very similar if not identical to that of the prototype HTLV-I genome. Images PMID:2897123

  20. Determination of the DNA-binding kinetics of three related but heteroimmune bacteriophage repressors using EMSA and SPR analysis

    PubMed Central

    Henriksson-Peltola, Petri; Sehlén, Wilhelmina; Haggård-Ljungquist, Elisabeth

    2007-01-01

    Bacteriophages P2, P2 Hy dis and WΦ are very similar but heteroimmune Escherichia coli phages. The structural genes show over 96% identity, but the repressors show between 43 and 63% identities. Furthermore, the operators, which contain two directly repeated sequences, vary in sequence, length, location relative to the promoter and spacing between the direct repeats. We have compared the in vivo effects of the wild type and mutated operators on gene expression with the complexes formed between the repressors and their wild type or mutated operators using electrophoretic mobility shift assay (EMSA), and real-time kinetics of the protein–DNA interactions using surface plasmon resonance (SPR) analysis. Using EMSA, the repressors formed different protein–DNA complexes, and only WΦ was significantly affected by point mutations. However, SPR analysis showed a reduced association rate constant and an increased dissociation rate constant for P2 and WΦ operator mutants. The association rate constants of P2 Hy dis was too fast to be determined. The P2 Hy dis dissociation response curves were shown to be triphasic, while both P2 and WΦ C were biphasic. Thus, the kinetics of complex formation and the nature of the complexes formed differ extensively between these very closely related phages. PMID:17412705

  1. Potential roles of DNA methylation in the initiation and establishment of replicative senescence revealed by array-based methylome and transcriptome analyses

    PubMed Central

    Sakaki, Mizuho; Ebihara, Yukiko; Okamura, Kohji; Nakabayashi, Kazuhiko; Igarashi, Arisa; Matsumoto, Kenji; Hata, Kenichiro; Kobayashi, Yoshiro

    2017-01-01

    Cellular senescence is classified into two groups: replicative and premature senescence. Gene expression and epigenetic changes are reported to differ between these two groups and cell types. Normal human diploid fibroblast TIG-3 cells have often been used in cellular senescence research; however, their epigenetic profiles are still not fully understood. To elucidate how cellular senescence is epigenetically regulated in TIG-3 cells, we analyzed the gene expression and DNA methylation profiles of three types of senescent cells, namely, replicatively senescent, ras-induced senescent (RIS), and non-permissive temperature-induced senescent SVts8 cells, using gene expression and DNA methylation microarrays. The expression of genes involved in the cell cycle and immune response was commonly either down- or up-regulated in the three types of senescent cells, respectively. The altered DNA methylation patterns were observed in replicatively senescent cells, but not in prematurely senescent cells. Interestingly, hypomethylated CpG sites detected on non-CpG island regions (“open sea”) were enriched in immune response-related genes that had non-CpG island promoters. The integrated analysis of gene expression and methylation in replicatively senescent cells demonstrated that differentially expressed 867 genes, including cell cycle- and immune response-related genes, were associated with DNA methylation changes in CpG sites close to the transcription start sites (TSSs). Furthermore, several miRNAs regulated in part through DNA methylation were found to affect the expression of their targeted genes. Taken together, these results indicate that the epigenetic changes of DNA methylation regulate the expression of a certain portion of genes and partly contribute to the introduction and establishment of replicative senescence. PMID:28158250

  2. A test of the transcription model for biased inheritance of yeast mitochondrial DNA.

    PubMed

    Lorimer, H E; Brewer, B J; Fangman, W L

    1995-09-01

    Two strand-specific origins of replication appear to be required for mammalian mitochondrial DNA (mtDNA) replication. Structural equivalents of these origins are found in the rep sequences of Saccharomyces cerevisiae mtDNA. These striking similarities have contributed to a universal model for the initiation of mtDNA replication in which a primer is created by cleavage of an origin region transcript. Consistent with this model are the properties of deletion mutants of yeast mtDNA ([rho-]) with a high density of reps (HS [rho-]). These mutant mtDNAs are preferentially inherited by the progeny resulting from the mating of HS [rho-] cells with cells containing wild-type mtDNA ([rho+]). This bias is presumed to result from a replication advantage conferred on HS [rho-] mtDNA by the high density of rep sequences acting as origins. To test whether transcription is indeed required for the preferential inheritance of HS [rho-] mtDNA, we deleted the nuclear gene (RPO41) for the mitochondrial RNA polymerase, reducing transcripts by at least 1000-fold. Since [rho-] genomes, but not [rho+] genomes, are stable when RPO41 is deleted, we examined matings between HS [rho-] and neutral [rho-] cells. Neutral [rho-] mtDNAs lack rep sequences and are not preferentially inherited in [rho-] x [rho+] crosses. In HS [rho-] x neutral [rho-] matings, the HS [rho-] mtDNA was preferentially inherited whether both parents were wild type or both were deleted for RPO41. Thus, transcription from the rep promoter does not appear to be necessary for biased inheritance. Our results, and analysis of the literature, suggest that priming by transcription is not a universal mechanism for mtDNA replication initiation.

  3. Synthesis of trimethoprim metal complexes: Spectral, electrochemical, thermal, DNA-binding and surface morphology studies.

    PubMed

    Demirezen, Nihat; Tarınç, Derya; Polat, Duygu; Ceşme, Mustafa; Gölcü, Ayşegül; Tümer, Mehmet

    2012-08-01

    Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and (1)H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Creation of a type IIS restriction endonuclease with a long recognition sequence

    PubMed Central

    Lippow, Shaun M.; Aha, Patti M.; Parker, Matthew H.; Blake, William J.; Baynes, Brian M.; Lipovšek, Daša

    2009-01-01

    Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5′, four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases. PMID:19304757

  5. A Tandemly Arranged Pattern of Two 5S rDNA Arrays in Amolops mantzorum (Anura, Ranidae).

    PubMed

    Liu, Ting; Song, Menghuan; Xia, Yun; Zeng, Xiaomao

    2017-01-01

    In an attempt to extend the knowledge of the 5S rDNA organization in anurans, the 5S rDNA sequences of Amolops mantzorum were isolated, characterized, and mapped by FISH. Two forms of 5S rDNA, type I (209 bp) and type II (about 870 bp), were found in specimens investigated from various populations. Both of them contained a 118-bp coding sequence, readily differentiated by their non-transcribed spacer (NTS) sizes and compositions. Four probes (the 5S rDNA coding sequences, the type I NTS, the type II NTS, and the entire type II 5S rDNA sequences) were respectively labeled with TAMRA or digoxigenin to hybridize with mitotic chromosomes for samples of all localities. It turned out that all probes showed the same signals that appeared in every centromeric region and in the telomeric regions of chromosome 5, without differences within or between populations. Obviously, both type I and type II of the 5S rDNA arrays arranged in tandem, which was contrasting with other frogs or fishes recorded to date. More interestingly, all the probes detected centromeric regions in all karyotypes, suggesting the presence of a satellite DNA family derived from 5S rDNA. © 2017 S. Karger AG, Basel.

  6. Highly Accurate Classification of Watson-Crick Basepairs on Termini of Single DNA Molecules

    PubMed Central

    Winters-Hilt, Stephen; Vercoutere, Wenonah; DeGuzman, Veronica S.; Deamer, David; Akeson, Mark; Haussler, David

    2003-01-01

    We introduce a computational method for classification of individual DNA molecules measured by an α-hemolysin channel detector. We show classification with better than 99% accuracy for DNA hairpin molecules that differ only in their terminal Watson-Crick basepairs. Signal classification was done in silico to establish performance metrics (i.e., where train and test data were of known type, via single-species data files). It was then performed in solution to assay real mixtures of DNA hairpins. Hidden Markov Models (HMMs) were used with Expectation/Maximization for denoising and for associating a feature vector with the ionic current blockade of the DNA molecule. Support Vector Machines (SVMs) were used as discriminators, and were the focus of off-line training. A multiclass SVM architecture was designed to place less discriminatory load on weaker discriminators, and novel SVM kernels were used to boost discrimination strength. The tuning on HMMs and SVMs enabled biophysical analysis of the captured molecule states and state transitions; structure revealed in the biophysical analysis was used for better feature selection. PMID:12547778

  7. Random, double- and single-strand DNA breaks can be differentiated in the method of Comet assay by the shape of the comet image.

    PubMed

    Georgieva, Milena; Zagorchev, Plamen; Miloshev, George

    2015-10-01

    Comet assay is an invaluable tool in DNA research. It is widely used to detect DNA damage as an indicator of exposure to genotoxic stress. A canonical set of parameters and specialized software programs exist for Comet assay data quantification and analysis. None of them so far has proven its potential to employ a computer-based algorithm for assessment of the shape of the comet as an indicator of the exact mechanism by which the studied genotoxins cut in the molecule of DNA. Here, we present 14 unique measurements of the comet image based on the comet morphology. Their mathematical derivation and statistical analysis allowed precise description of the shape of the comet image which in turn discriminated the cause of genotoxic stress. This algorithm led to the development of the "CometShape" software which allowed easy discrimination among different genotoxins depending on the type of DNA damage they induce. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantification of differential gene expression by multiplexed targeted resequencing of cDNA

    PubMed Central

    Arts, Peer; van der Raadt, Jori; van Gestel, Sebastianus H.C.; Steehouwer, Marloes; Shendure, Jay; Hoischen, Alexander; Albers, Cornelis A.

    2017-01-01

    Whole-transcriptome or RNA sequencing (RNA-Seq) is a powerful and versatile tool for functional analysis of different types of RNA molecules, but sample reagent and sequencing cost can be prohibitive for hypothesis-driven studies where the aim is to quantify differential expression of a limited number of genes. Here we present an approach for quantification of differential mRNA expression by targeted resequencing of complementary DNA using single-molecule molecular inversion probes (cDNA-smMIPs) that enable highly multiplexed resequencing of cDNA target regions of ∼100 nucleotides and counting of individual molecules. We show that accurate estimates of differential expression can be obtained from molecule counts for hundreds of smMIPs per reaction and that smMIPs are also suitable for quantification of relative gene expression and allele-specific expression. Compared with low-coverage RNA-Seq and a hybridization-based targeted RNA-Seq method, cDNA-smMIPs are a cost-effective high-throughput tool for hypothesis-driven expression analysis in large numbers of genes (10 to 500) and samples (hundreds to thousands). PMID:28474677

  9. How microbial ancient DNA, found in association with human remains, can be interpreted.

    PubMed Central

    Rollo, F; Marota, I

    1999-01-01

    The analysis of the DNA of ancient micro-organisms in archaeological and palaeontological human remains can contribute to the understanding of issues as different as the spreading of a new disease, a mummification process or the effect of diets on historical human populations. The quest for this type of DNA, however, can represent a particularly demanding task. This is mainly due to the abundance and diffusion of bacteria, fungi, yeasts, algae and protozoans in the most diverse environments of the present-day biosphere and the resulting difficulty in distinguishing between ancient and modern DNA. Nevertheless, at least under some special circumstances, by using rigorous protocols, which include an archaeometric survey of the specimens and evaluation of the palaeoecological consistency of the results of DNA sequence analysis, glimpses of the composition of the original microbial flora (e.g. colonic flora) can be caught in ancient human remains. Potentials and pitfalls of this research field are illustrated by the results of research works performed on prehistoric, pre-Columbian and Renaissance human mummies. PMID:10091251

  10. Methylation Integration (Mint) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    A comprehensive software pipeline and set of Galaxy tools/workflows for integrative analysis of genome-wide DNA methylation and hydroxymethylation data. Data types can be either bisulfite sequencing and/or pull-down methods.

  11. The evolution and population structure of Lactobacillus fermentum from different naturally fermented products as determined by multilocus sequence typing (MLST).

    PubMed

    Dan, Tong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Menghe, Bilige; Zhang, Heping; Sun, Zhihong

    2015-05-20

    Lactobacillus fermentum is economically important in the production and preservation of fermented foods. A repeatable and discriminative typing method was devised to characterize L. fermentum at the molecular level. The multilocus sequence typing (MLST) scheme developed was based on analysis of the internal sequence of 11 housekeeping gene fragments (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). MLST analysis of 203 isolates of L. fermentum from Mongolia and seven provinces/ autonomous regions in China identified 57 sequence types (ST), 27 of which were represented by only a single isolate, indicating high genetic diversity. Phylogenetic analyses based on the sequence of the 11 housekeeping gene fragments indicated that the L. fermentum isolates analyzed belonged to two major groups. A standardized index of association (I A (S)) indicated a weak clonal population structure in L. fermentum. Split decomposition analysis indicated that recombination played an important role in generating the genetic diversity observed in L. fermentum. The results from the minimum spanning tree strongly suggested that evolution of L. fermentum STs was not correlated with geography or food-type. The MLST scheme developed will be valuable for further studies on the evolution and population structure of L. fermentum isolates used in food products.

  12. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome.

    PubMed

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred; Llosa, Matxalen

    2017-06-15

    Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination. Copyright © 2017 American Society for Microbiology.

  13. The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the Human Genome

    PubMed Central

    González-Prieto, Coral; Gabriel, Richard; Dehio, Christoph; Schmidt, Manfred

    2017-01-01

    ABSTRACT Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery. IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination. PMID:28411218

  14. Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA.

    PubMed

    Scalabrin, Matteo; Quintieri, Luigi; Palumbo, Manlio; Riccardi Sirtori, Federico; Gatto, Barbara

    2017-02-20

    The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.

  15. Physical locations of 5S and 18S-25S rDNA in Asian and American diploid Hordeum species with the I genome.

    PubMed

    Taketa, S; Ando, H; Takeda, K; von Bothmer, R

    2001-05-01

    The physical locations of 5S and 18S-25S rDNA sequences in 15 diploid Hordeum species with the I genome were examined by double-target in situ hybridization with pTa71 (18S-25S rDNA) and pTa794 (5S rDNA) clones as probes. All the three Asian species had a species-specific rDNA pattern. In 12 American species studied, eight different rDNA types were found. The type reported previously in H. chilense (the 'chilense' type) was observed in eight American species. The chilense type had double 5S rDNA sites - two sites on one chromosome arm separated by a short distance - and two pairs of major 18S-25S rDNA sites on two pairs of satellite chromosomes. The other seven types found in American species were similar to the chilense type and could be derived from the chilense type through deletion, reduction or addition of a rDNA site. Intraspecific polymorphisms were observed in three American species. The overall similarity in rDNA patterns among American species indicates the close relationships between North and South American species and their derivation from a single ancestral source. The differences in the distribution patterns of 5S and 18S-25S rDNA between Asian and American species suggest differentiation between the I genomes of Asian and American species. The 5S and 18S-25S rDNA sites are useful chromosome markers for delimiting Asian species, but have limited value as a taxonomic character in American species. On the basis of rDNA patterns, karyotype evolution and phylogeny of the I-genome diploid species are discussed.

  16. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain.

    PubMed

    Nunez, Noelia; Clifton, Molly M K; Funnell, Alister P W; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G R; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C M; Mackay, Joel P; Crossley, Merlin

    2011-11-04

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.

  17. The Multi-zinc Finger Protein ZNF217 Contacts DNA through a Two-finger Domain*

    PubMed Central

    Nunez, Noelia; Clifton, Molly M. K.; Funnell, Alister P. W.; Artuz, Crisbel; Hallal, Samantha; Quinlan, Kate G. R.; Font, Josep; Vandevenne, Marylène; Setiyaputra, Surya; Pearson, Richard C. M.; Mackay, Joel P.; Crossley, Merlin

    2011-01-01

    Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif. PMID:21908891

  18. Phylogeography, intraspecific structure and sex-biased dispersal of Dall's porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses.

    PubMed

    Escorza-Treviño, S; Dizon, A E

    2000-08-01

    Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.

  19. Defective Cell Cycle Checkpoint Functions in Melanoma Are Associated with Altered Patterns of Gene Expression

    PubMed Central

    Kaufmann, William K.; Nevis, Kathleen R.; Qu, Pingping; Ibrahim, Joseph G.; Zhou, Tong; Zhou, Yingchun; Simpson, Dennis A.; Helms-Deaton, Jennifer; Cordeiro-Stone, Marila; Moore, Dominic T.; Thomas, Nancy E.; Hao, Honglin; Liu, Zhi; Shields, Janiel M.; Scott, Glynis A.; Sharpless, Norman E.

    2009-01-01

    Defects in DNA damage responses may underlie genetic instability and malignant progression in melanoma. Cultures of normal human melanocytes (NHMs) and melanoma lines were analyzed to determine whether global patterns of gene expression could predict the efficacy of DNA damage cell cycle checkpoints that arrest growth and suppress genetic instability. NHMs displayed effective G1 and G2 checkpoint responses to ionizing radiation-induced DNA damage. A majority of melanoma cell lines (11/16) displayed significant quantitative defects in one or both checkpoints. Melanomas with B-RAF mutations as a class displayed a significant defect in DNA damage G2 checkpoint function. In contrast the epithelial-like subtype of melanomas with wild-type N-RAS and B-RAF alleles displayed an effective G2 checkpoint but a significant defect in G1 checkpoint function. RNA expression profiling revealed that melanoma lines with defects in the DNA damage G1 checkpoint displayed reduced expression of p53 transcriptional targets, such as CDKN1A and DDB2, and enhanced expression of proliferation-associated genes, such as CDC7 and GEMININ. A Bayesian analysis tool was more accurate than significance analysis of microarrays for predicting checkpoint function using a leave-one-out method. The results suggest that defects in DNA damage checkpoints may be recognized in melanomas through analysis of gene expression. PMID:17597816

  20. Acidovorax valerianellae sp. nov., a novel pathogen of lamb's lettuce [Valerianella locusta (L.) Laterr].

    PubMed

    Gardan, Louis; Stead, David E; Dauga, Catherine; Gillis, Moniek

    2003-05-01

    Bacterial spot disease of lamb's lettuce [Valerianella locusta (L.) Laterr.] was first observed in fields in 1991. This new bacterial disease is localized in western France in high-technology field production of lamb's lettuce for the preparation of ready-to-use salad. Nineteen strains isolated in 1992 and 1993 from typical black leaf spots of naturally infected lamb's lettuce were characterized and compared with reference strains of Acidovorax and Delftia. The pathogenicity of the 19 strains was confirmed by artificial inoculation. Biochemical and physiological tests, fatty acid profiles, DNA-DNA hybridization and other nucleic acid-based tests were performed. A numerical taxonomic analysis of the 19 lamb's lettuce strains showed a single homogeneous phenon closely related to previously described phytopathogenic taxa of the genus Acidovorax. DNA-DNA hybridization studies showed that the lamb's lettuce strains were 91-100% related to a representative strain, strain CFBP 4730(T), and constituted a discrete DNA hybridization group, indicating that they belong to the same novel species. Results from DNA-rRNA hybridization, 16S rRNA sequence analysis and fatty acid analysis studies confirmed that this novel species belongs to the beta-subclass of the Proteobacteria and, more specifically, to the family Comamonadaceae and the genus Acidovorax. The name Acidovorax valerianellae sp. nov. is proposed for this novel taxon of phytopathogenic bacteria. The type strain is strain CFBP 4730(T) (= NCPPB 4283(T)).

  1. The Neandertal type site revisited: Interdisciplinary investigations of skeletal remains from the Neander Valley, Germany

    PubMed Central

    Schmitz, Ralf W.; Serre, David; Bonani, Georges; Feine, Susanne; Hillgruber, Felix; Krainitzki, Heike; Pääbo, Svante; Smith, Fred H.

    2002-01-01

    The 1856 discovery of the Neandertal type specimen (Neandertal 1) in western Germany marked the beginning of human paleontology and initiated the longest-standing debate in the discipline: the role of Neandertals in human evolutionary history. We report excavations of cave sediments that were removed from the Feldhofer caves in 1856. These deposits have yielded over 60 human skeletal fragments, along with a large series of Paleolithic artifacts and faunal material. Our analysis of this material represents the first interdisciplinary analysis of Neandertal remains incorporating genetic, direct dating, and morphological dimensions simultaneously. Three of these skeletal fragments fit directly on Neandertal 1, whereas several others have distinctively Neandertal features. At least three individuals are represented in the skeletal sample. Radiocarbon dates for Neandertal 1, from which a mtDNA sequence was determined in 1997, and a second individual indicate an age of ≈40,000 yr for both. mtDNA analysis on the same second individual yields a sequence that clusters with other published Neandertal sequences. PMID:12232049

  2. The preservation of microbial DNA in archived soils of various genetic types

    PubMed Central

    Korvigo, Ilia O.; Aparin, Boris F.; Chirak, Evgenii L.; Pershina, Elizaveta V.; Romaschenko, Nikolay S.; Provorov, Nikolai A.; Andronov, Evgeny E.

    2017-01-01

    This study is a comparative analysis of samples of archived (stored for over 70–90 years) and modern soils of two different genetic types–chernozem and sod-podzolic soils. We revealed a reduction in biodiversity of archived soils relative to their modern state. Particularly, long-term storage in the museum exerted a greater impact on the microbiomes of sod-podzolic soils, while chernozem samples better preserved the native community. Thus, the persistence of microbial DNA in soil is largely determined by the physico-chemical characteristics that differ across soil types. Chernozems create better conditions for the long-term DNA preservation than sod-podzolic soils. This results in supposedly higher levels of biodiversity conservation in the microbiomes of chernozem with preservation of major microbial taxa dominant in the modern (control) soil samples, which makes archived chernozems a promising object for paleosoil studies. PMID:28339464

  3. Non-Homologous End Joining and Homology Directed DNA Repair Frequency of Double-Stranded Breaks Introduced by Genome Editing Reagents.

    PubMed

    Zaboikin, Michail; Zaboikina, Tatiana; Freter, Carl; Srinivasakumar, Narasimhachar

    2017-01-01

    Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.

  4. Human primitive brain displays negative mitochondrial-nuclear expression correlation of respiratory genes.

    PubMed

    Barshad, Gilad; Blumberg, Amit; Cohen, Tal; Mishmar, Dan

    2018-06-14

    Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B ( LDHB ), which associates with high OXPHOS activity, at the expense of LDHA , which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities. © 2018 Barshad et al.; Published by Cold Spring Harbor Laboratory Press.

  5. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.

    PubMed

    Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K

    2017-11-01

    The feasibility of generating mitochondrial DNA (mtDNA) data has expanded considerably with the advent of next-generation sequencing (NGS), specifically in the generation of entire mtDNA genome (mitogenome) sequences. However, the analysis of these data has emerged as the greatest challenge to implementation in forensics. To address this need, a custom toolkit for use in the CLC Genomics Workbench (QIAGEN, Hilden, Germany) was developed through a collaborative effort between the Armed Forces Medical Examiner System - Armed Forces DNA Identification Laboratory (AFMES-AFDIL) and QIAGEN Bioinformatics. The AFDIL-QIAGEN mtDNA Expert, or AQME, generates an editable mtDNA profile that employs forensic conventions and includes the interpretation range required for mtDNA data reporting. AQME also integrates an mtDNA haplogroup estimate into the analysis workflow, which provides the analyst with phylogenetic nomenclature guidance and a profile quality check without the use of an external tool. Supplemental AQME outputs such as nucleotide-per-position metrics, configurable export files, and an audit trail are produced to assist the analyst during review. AQME is applied to standard CLC outputs and thus can be incorporated into any mtDNA bioinformatics pipeline within CLC regardless of sample type, library preparation or NGS platform. An evaluation of AQME was performed to demonstrate its functionality and reliability for the analysis of mitogenome NGS data. The study analyzed Illumina mitogenome data from 21 samples (including associated controls) of varying quality and sample preparations with the AQME toolkit. A total of 211 tool edits were automatically applied to 130 of the 698 total variants reported in an effort to adhere to forensic nomenclature. Although additional manual edits were required for three samples, supplemental tools such as mtDNA haplogroup estimation assisted in identifying and guiding these necessary modifications to the AQME-generated profile. Along with profile generation, AQME reported accurate haplogroups for 18 of the 19 samples analyzed. The single errant haplogroup assignment, although phylogenetically close, identified a bug that only affects partial mitogenome data. Future adjustments to AQME's haplogrouping tool will address this bug as well as enhance the overall scoring strategy to better refine and automate haplogroup assignments. As NGS enables broader use of the mtDNA locus in forensics, the availability of AQME and other forensic-focused mtDNA analysis tools will ease the transition and further support mitogenome analysis within routine casework. Toward this end, the AFMES-AFDIL has utilized the AQME toolbox in conjunction with the CLC Genomics Workbench to successfully validate and implement two NGS mitogenome methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Caenispirillum humi sp. nov., a bacterium isolated from the soil of Korean pine garden.

    PubMed

    Huq, Md Amdadul

    2018-03-01

    A novel bacterial strain MAH-8 T was isolated from a soil sample of a Korean pine garden and was characterized using a polyphasic approach. Cells were Gram-staining negative, pinkish yellow colored, motile and vibrio-shaped. The strain was aerobic and catalase, oxidase positive, optimum growth temperature and pH were 28-30 °C and 7.0, respectively. On the basis of 16S rRNA gene sequence analysis, strain MAH-8 T belongs to the genus Caenispirillum and is most closely related to Caenispirillum bisanense KCTC 12839 T (98.14%), Caenispirillum deserti KCTC 42064 T (96.35%), and Caenispirillum salinarum JCM 17360 T (95.76%). In DNA-DNA hybridization tests, the DNA relatedness between strain MAH-8 T and its closest phylogenetic neighbor was below 45.0%. The DNA G + C content was 70.5 mol% and the predominant respiratory quinone was ubiquinone-10. Flexirubin-type pigments were present and the major cellular fatty acids were C 18:1 ω7c/C 18:1 ω6c, C 16:1 ω7c/C 16:1 ω6c and C 16:0 . The results of DNA-DNA hybridization and genotypic analysis in combination with chemotaxonomic and physiological data demonstrated that strain MAH-8 T represented a novel species within the genus Caenispirillum, for which the name Caenispirillum humi, is proposed. The type strain is MAH-8 T (= KACC 19294 T  = CGMCC 1.16224 T ). The NCBI GenBank Accession Number for the 16S rRNA gene sequence of strain MAH-8 T is KY964275.

  7. DNA types of aspermic Fasciola species in Japan.

    PubMed

    Ichikawa, Madoka; Iwata, Noriyuki; Itagaki, Tadashi

    2010-10-01

    In order to reveal DNA types of aspermic Fasciola forms in Japan, Fasciola specimens obtained from eight prefectures that had not been previously reported were analyzed for DNA of ribosomal internal transcribed spacer 1 (ITS1) and mitochondrial NADH dehydrogenase 1 (ND1) gene. Five combinations in DNA types of both ITS1 and ND1 were revealed from the results of this study and previous studies. The DNA type Fsp2, which is identical to that of F. gigantica in both ITS1 and ND1, was the most predominant in Japan, followed by Fsp1, which is the same DNA type as that of F. hepatica. Fasciola forms with Fsp1 mainly occurred in the northern region of Japan and those with Fsp2 were mainly in the western region. The founder effect related to migration of definitive host and susceptibility of intermediate host snail might play an important role in both geographical distribution and frequency of DNA types in Japanese Fasciola specimens.

  8. Regulation of DNA replication during development

    PubMed Central

    Nordman, Jared; Orr-Weaver, Terry L.

    2012-01-01

    As development unfolds, DNA replication is not only coordinated with cell proliferation, but is regulated uniquely in specific cell types and organs. This differential regulation of DNA synthesis requires crosstalk between DNA replication and differentiation. This dynamic aspect of DNA replication is highlighted by the finding that the distribution of replication origins varies between differentiated cell types and changes with differentiation. Moreover, differential DNA replication in some cell types can lead to increases or decreases in gene copy number along chromosomes. This review highlights the recent advances and technologies that have provided us with new insights into the developmental regulation of DNA replication. PMID:22223677

  9. Application of Pulsed-Field Gel Electrophoresis and Binary Typing as Tools in Veterinary Clinical Microbiology and Molecular Epidemiologic Analysis of Bovine and Human Staphylococcus aureus Isolates

    PubMed Central

    Zadoks, Ruth; van Leeuwen, Willem; Barkema, Herman; Sampimon, Otlis; Verbrugh, Henri; Schukken, Ynte Hein; van Belkum, Alex

    2000-01-01

    Thirty-eight bovine mammary Staphylococcus aureus isolates from diverse clinical, temporal, and geographical origins were genotyped by pulsed-field gel electrophoresis (PFGE) after SmaI digestion of prokaryotic DNA and by means of binary typing using 15 strain-specific DNA probes. Seven pulsed-field types and four subtypes were identified, as were 16 binary types. Concordant delineation of genetic relatedness was documented by both techniques, yet based on practical and epidemiological considerations, binary typing was the preferable method. Genotypes of bovine isolates were compared to 55 previously characterized human S. aureus isolates through cluster analysis of binary types. Genetic clusters containing strains of both human and bovine origin were found, but bacterial genotypes were predominantly associated with a single host species. Binary typing proved an excellent tool for comparison of S. aureus strains, including methicillin-resistant S. aureus, derived from different host species and from different databases. For 28 bovine S. aureus isolates, detailed clinical observations in vivo were compared to strain typing results in vitro. Associations were found between distinct genotypes and severity of disease, suggesting strain-specific bacterial virulence. Circumstantial evidence furthermore supports strain-specific routes of bacterial dissemination. We conclude that PFGE and binary typing can be successfully applied for genetic analysis of S. aureus isolates from bovine mammary secretions. Binary typing in particular is a robust and simple method and promises to become a powerful tool for strain characterization, for resolution of clonal relationships of bacteria within and between host species, and for identification of sources and transmission routes of bovine S. aureus. PMID:10790124

  10. Human papillomavirus types in invasive cervical cancer specimens from Turkey.

    PubMed

    Usubütün, Alp; Alemany, Laia; Küçükali, Türkan; Ayhan, Ali; Yüce, Kunter; de Sanjosé, Silvia; Font, Rebeca; Lloveras, Belen; Klaustermeier, Joellen; Quint, Wim; Muñoz, Nubia; Bosch, Francesc Xavier

    2009-11-01

    The main aim of the study is to describe the human papillomavirus (HPV) type-specific distribution in invasive cervical cancer (ICC) specimens from Turkey. Paraffin-embedded ICC specimens were identified from the histopathologic archives of the Hacettepe University Medical School in Turkey. HPV detection was carried out through amplification of HPV DNA by a SPF-10 broad-spectrum primer polymerase chain reaction and subsequently followed by DNA enzyme immunoassay and genotyping by LiPA25 (version 1). Two hundred seventy-seven ICC cases diagnosed between 1993 and 2004 were retrieved. After histologic evaluation and human beta-globin gene analysis for sample quality, 248 cases were considered suitable for HPV/DNA testing. HPV prevalence was 93.5% (232/248; 95% confidence interval: 90.5%-96.6%). The five most common HPV types identified as single types among HPV-positive cases were HPV16 (64.7%), HPV18 (9.9%), HPV45 (9.9%), HPV31 (3.0%), and HPV33 (2.2%). The study shows that in Turkey, HPV16/HPV18 accounted for 75.4% (95% confidence interval: 69.9%-81.0%) of HPV-positive ICC cases. This information is essential to evaluate the potential impact of the HPV vaccines in the country.

  11. cDNA cloning and characterization of Type I procollagen alpha1 chain in the skate Raja kenojei.

    PubMed

    Hwang, Jae-Ho; Yokoyama, Yoshihiro; Mizuta, Shoshi; Yoshinaka, Reiji

    2006-05-01

    A full-length cDNA of the Type I procollagen alpha1 [pro-alpha1(I)] chain (4388 bp), coding for 1463 amino acid residues in the total length, was determined by RACE PCR using a cDNA library constructed from 4-week embryo of the skate Raja kenojei. The helical region of the skate pro-alpha1(I) chain consisted of 1014 amino acid residues - the same as other fibrillar collagen alpha chains from higher vertebrates. Comparison on denaturation temperatures of Type I collagens from the skate, rainbow trout (Oncorhynchus mykiss) and rat (Rattus norvegicus) revealed that the number of Gly-Pro-Pro and Gly-Gly in the alpha1(I) chains could be directly related to the thermal stability of the helix. The expression property of the skate pro-alpha1(I) chain mRNA and phylogenetic analysis with other vertebrate pro-alpha1(I) chains suggested that skate pro-alpha1(I) chain could be a precursor form of the skate Type I collagen alpha1 chain. The present study is the first evidence for the primary structure of full-length pro-alpha1(I) chain in an elasmobranch.

  12. Sunflower centromeres consist of a centromere-specific LINE and a chromosome-specific tandem repeat.

    PubMed

    Nagaki, Kiyotaka; Tanaka, Keisuke; Yamaji, Naoki; Kobayashi, Hisato; Murata, Minoru

    2015-01-01

    The kinetochore is a protein complex including kinetochore-specific proteins that plays a role in chromatid segregation during mitosis and meiosis. The complex associates with centromeric DNA sequences that are usually species-specific. In plant species, tandem repeats including satellite DNA sequences and retrotransposons have been reported as centromeric DNA sequences. In this study on sunflowers, a cDNA-encoding centromere-specific histone H3 (CENH3) was isolated from a cDNA pool from a seedling, and an antibody was raised against a peptide synthesized from the deduced cDNA. The antibody specifically recognized the sunflower CENH3 (HaCENH3) and showed centromeric signals by immunostaining and immunohistochemical staining analysis. The antibody was also applied in chromatin immunoprecipitation (ChIP)-Seq to isolate centromeric DNA sequences and two different types of repetitive DNA sequences were identified. One was a long interspersed nuclear element (LINE)-like sequence, which showed centromere-specific signals on almost all chromosomes in sunflowers. This is the first report of a centromeric LINE sequence, suggesting possible centromere targeting ability. Another type of identified repetitive DNA was a tandem repeat sequence with a 187-bp unit that was found only on a pair of chromosomes. The HaCENH3 content of the tandem repeats was estimated to be much higher than that of the LINE, which implies centromere evolution from LINE-based centromeres to more stable tandem-repeat-based centromeres. In addition, the epigenetic status of the sunflower centromeres was investigated by immunohistochemical staining and ChIP, and it was found that centromeres were heterochromatic.

  13. Prevalence and predictors of Lymphogranuloma venereum in a high risk population attending a STD outpatients clinic in Italy.

    PubMed

    Foschi, Claudio; Marangoni, Antonella; D'Antuono, Antonietta; Nardini, Paola; Compri, Monica; Bellavista, Sara; Filippini, Andrea; Bacchi Reggiani, Maria Letizia; Cevenini, Roberto

    2014-04-09

    We evaluated LGV prevalence and predictors in a high risk population attending a STI Outpatients Clinic in the North of Italy. A total of 108 patients (99 MSM and 9 women), with a history of unsafe anal sexual intercourses, were enrolled. Anorectal swabs and urine samples were tested for Chlamydia trachomatis (CT) DNA detection by Versant CT/GC DNA 1.0 Assay (Siemens Healthcare Diagnostics Terrytown, USA). RFLP analysis was used for CT molecular typing. L2 CT genotype was identified in 13/108 (12%) rectal swabs. All LGV cases were from MSM, declaring high-risk sexual behaviour and complaining anorectal symptoms. Patients first attending the STI Outpatient Clinic received a significant earlier LGV diagnosis than those first seeking care from general practitioners or gastroenterologists (P = 0.0046). LGV prevalence and characteristics found in our population are in agreement with international reports. Statistical analysis showed that LGV positive patients were older (P = 0.0008) and presented more STIs (P = 0.0023) than LGV negative ones, in particular due to syphilis (P < 0.001), HIV (P < 0.001) and HBV (P = 0.001).Multivariate logistic regression analysis revealed that HIV and syphilis infections are strong risk factors for LGV presence (respectively, P = 0.001 and P = 0.010). Even if our results do not provide sufficient evidence to recommend routine screening of anorectal swabs in high-risk population, they strongly suggest to perform CT NAAT tests and genotyping on rectal specimens in presence of ulcerative proctitis in HIV and/or syphilis-positive MSM. In this context, CT DNA detection by Versant CT/GC DNA 1.0 Assay, followed by RFLP analysis for molecular typing demonstrated to be an excellent diagnostic algorithm for LGV identification.

  14. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from zoo and wild animals.

    PubMed

    Feßler, Andrea T; Thomas, Patricia; Mühldorfer, Kristin; Grobbel, Mirjam; Brombach, Julian; Eichhorn, Inga; Monecke, Stefan; Ehricht, Ralf; Schwarz, Stefan

    2018-05-01

    Antimicrobial resistance of Staphylococcus aureus is a major problem in human and veterinary medicine. The aim of this study was to characterise S. aureus isolates from wild and zoo animals mainly associated with bacterial infections. In total, 23 S. aureus isolates, including nine from wild animals and 14 from zoo animals, were obtained during routine diagnostics. All isolates were subjected to multilocus sequence typing (MLST), spa typing, macrorestriction analysis with subsequent SmaI pulsed-field gelelectrophoresis (PFGE), antimicrobial susceptibility testing and S. aureus-specific DNA-microarray analysis. Resistant isolates were also tested for their respective resistance genes by PCR. Isolates from zoo animals and wildlife showed a high diversity of MLST types, spa types and PFGE patterns. Nineteen different spa types were identified, including three novel types and 16 main macrorestriction patterns. Only few isolates were resistant to members of four classes of antimicrobial agents and harboured the respective resistance genes (β-lactams [blaZ, mecA, mecC], tetracyclines [tet(K), tet(L)] and chloramphenicol [cat pC221 ]) or mutations (fluoroquinolones). The DNA microarray analysis identified one isolate from a zoo animal harbouring the toxic shock syndrome toxin gene tst1. Moreover, several enterotoxin genes were detected in five S. aureus isolates. All isolates were negative for Panton-Valentine leukocidin (PVL) genes, but the animal-associated leukocidin genes lukM/lukF-P83 were found in three isolates from two animals. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair.

    PubMed

    Ihara, Makoto; Takeshita, Satoshi; Okaichi, Kumio; Okumura, Yutaka; Ohnishi, Takeo

    2014-03-01

    From the role of double strand DNA dependent protein kinase (DNA-PKcs) activity of non-homologous end joining (NHEJ) repair for DNA double strand breaks (DSBs), we aim to define possible associations between thermo-sensitisation and the enzyme activities in X-ray irradiated cells. DNA-PKcs deficient mouse, Chinese hamster and human cultured cells were compared to the parental wild-type cells. The radiosensitivities, the number of DSBs and DNA-PKcs activities after heat-treatment were measured. Both DNA-PKcs deficient cells and the wild-type cells showed increased radiosensitivities after heat-treatment. The wild-type cells have two repair processes; fast repair and slow repair. In contrast, DNA-PKcs deficient cells have only the slow repair process. The fast repair component apparently disappeared by heat-treatment in the wild-type cells. In both cell types, additional heat exposure enhanced radiosensitivities. Although DNA-PKcs activity was depressed by heat, the inactivated DNA-PKcs activity recovered during an incubation at 37 °C. DSB repair efficiency was dependent on the reactivation of DNA-PKcs activity. It was suggested that NHEJ is the major process used to repair X-ray-induced DSBs and utilises DNA-PKcs activity, but homologous recombination repair provides additional secondary levels of DSB repair. The thermo-sensitisation in X-ray-irradiated cells depends on the inhibition of NHEJ repair through the depression of DNA-PKcs activities.

  16. Differential Deformability of the DNA Minor Groove and Altered BI/BII Backbone Conformational Equilibrium by the Monovalent Ions Li+, Na+, K+ and Rb+ via Water-Mediated Hydrogen Bonding

    PubMed Central

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    Recently, we reported the differential impact of the monovalent cations Li+, Na+, K+ and Rb+ on DNA conformational properties. These were identified from variations in the calculated solution-state X-ray DNA spectra as a function of the ion type in the solvation buffer in MD simulations using our recently developed polarizable force field based on the classical Drude oscillator. Changes in the DNA structure were found to mainly involve variations in the minor groove width. Because minor groove dimensions vary significantly in protein-DNA complexes and have been shown to play a critical role in both specific and nonspecific DNA readout, understanding the origins of the observed differential DNA modulation by the first-group monovalent ions is of great biological importance. In the present study we show that the primary microscopic mechanism for the phenomenon is the formation of the water-mediated hydrogen bonds between solvated cations located inside the minor groove and simultaneously to two DNA strands, a process whose intensity and impact on DNA structure depends on both the type of the ion and DNA sequence. Additionally, it is shown that formation of such ion-DNA hydrogen bond complexes appreciably modulates the conformation of the backbone by increasing the population of the BII substate. Notably, the differential impact of the ions on DNA conformational behavior is only predicted by the Drude polarizable model for DNA, with virtually no effect observed from MD simulations utilizing the additive CHARMM36 model. Analysis of dipole moments of the water shows the Drude SWM4 model to possess high sensitivity to changes in the local environment, which indicates the important role of electronic polarization in the salt-dependent conformational properties. This also suggests that inclusion of polarization effects is required to model even relatively simple biological systems such as DNA in various ionic solutions. PMID:26575937

  17. Exploring the effect of asymmetric mitochondrial DNA introgression on estimating niche divergence in morphologically cryptic species.

    PubMed

    Wielstra, Ben; Arntzen, Jan W

    2014-01-01

    If potential morphologically cryptic species, identified based on differentiated mitochondrial DNA, express ecological divergence, this increases support for their treatment as distinct species. However, mitochondrial DNA introgression hampers the correct estimation of ecological divergence. We test the hypothesis that estimated niche divergence differs when considering nuclear DNA composition or mitochondrial DNA type as representing the true species range. We use empirical data of two crested newt species (Amphibia: Triturus) which possess introgressed mitochondrial DNA from a third species in part of their ranges. We analyze the data in environmental space by determining Fisher distances in a principal component analysis and in geographical space by determining geographical overlap of species distribution models. We find that under mtDNA guidance in one of the two study cases niche divergence is overestimated, whereas in the other it is underestimated. In the light of our results we discuss the role of estimated niche divergence in species delineation.

  18. Electronic Transport in Single-Stranded DNA Molecule Related to Huntington's Disease

    NASA Astrophysics Data System (ADS)

    Sarmento, R. G.; Silva, R. N. O.; Madeira, M. P.; Frazão, N. F.; Sousa, J. O.; Macedo-Filho, A.

    2018-04-01

    We report a numerical analysis of the electronic transport in single chain DNA molecule consisting of 182 nucleotides. The DNA chains studied were extracted from a segment of the human chromosome 4p16.3, which were modified by expansion of CAG (cytosine-adenine-guanine) triplet repeats to mimics Huntington's disease. The mutated DNA chains were connected between two platinum electrodes to analyze the relationship between charge propagation in the molecule and Huntington's disease. The computations were performed within a tight-binding model, together with a transfer matrix technique, to investigate the current-voltage (I-V) of 23 types of DNA sequence and compare them with the distributions of the related CAG repeat numbers with the disease. All DNA sequences studied have a characteristic behavior of a semiconductor. In addition, the results showed a direct correlation between the current-voltage curves and the distributions of the CAG repeat numbers, suggesting possible applications in the development of DNA-based biosensors for molecular diagnostics.

  19. DNA recovery from latent fingermarks treated with an infrared fluorescent fingerprint powder.

    PubMed

    Al Oleiwi, Abdulrahman; Hussain, Imtiaz; McWhorter, Allyce; Sutton, Raul; King, Roberto S P

    2017-08-01

    The effect of the infrared fluorescent fingermark visualisation powder, fpNatural 1™, on the recovery of both the quantity and quality of touch DNA from fingerprints deposited on glass slides, was investigated using qPCR and STR typing. Four donors each deposited replicate marks, which were either left untreated (n=5) or treated by dusting with fpNatural 1™ (n=5). Each sample was swabbed using the double swab technique, before being extracted using the EZNA Forensic DNA kit and then DNA quantitated before being subjected to DNA profile analysis. Results showed that there was no significant effect of fpNatural 1™ on either the quantity or quality of recovered DNA. This suggests that fpNatural 1™ may prove a good choice of powder for regular use at crime scenes or in the laboratory. The fpNatural 1™ properties of low density, water immiscibility and low DNA affinity may account for these positive outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I.

    PubMed

    Xiang, Dongshan; Zhai, Kun; Xiang, Wenjun; Wang, Lianzhi

    2014-11-01

    A highly sensitive fluorescence method of quantitative detection for specific DNA sequence is developed based on molecular beacon (MB) and nucleic acid dye SYBR Green I by synchronous fluorescence analysis. It is demonstrated by an oligonucleotide sequence of wild-type HBV (target DNA) as a model system. In this strategy, the fluorophore of MB is designed to be 6-carboxyfluorescein group (FAM), and the maximum excitation wavelength and maximum emission wavelength are both very close to that of SYBR Green I. In the presence of targets DNA, the MBs hybridize with the targets DNA and form double-strand DNA (dsDNA), the fluorophore FAM is separated from the quencher BHQ-1, thus the fluorophore emit fluorescence. At the same time, SYBR Green I binds to dsDNA, the fluorescence intensity of SYBR Green I is significantly enhanced. When targets DNA are detected by synchronous fluorescence analysis, the fluorescence peaks of FAM and SYBR Green I overlap completely, so the fluorescence signal of system will be significantly enhanced. Thus, highly sensitive fluorescence quantitative detection for DNA can be realized. Under the optimum conditions, the total fluorescence intensity of FAM and SYBR Green I exhibits good linear dependence on concentration of targets DNA in the range from 2×10(-11) to 2.5×10(-9)M. The detection limit of target DNA is estimated to be 9×10(-12)M (3σ). Compared with previously reported methods of detection DNA with MB, the proposed method can significantly enhance the detection sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system.

    PubMed

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. This database will facilitate the analysis of protein-DNA interactions and the development of programmatic computational methods that capitalize on integration of structural and biochemical datasets. The database can be accessed at http://ProteinDNA.hms.harvard.edu.

  2. Genome size evolution in Ontario ferns (Polypodiidae): evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing.

    PubMed

    Henry, Thomas A; Bainard, Jillian D; Newmaster, Steven G

    2014-10-01

    Genome size is known to correlate with a number of traits in angiosperms, but less is known about the phenotypic correlates of genome size in ferns. We explored genome size variation in relation to a suite of morphological and ecological traits in ferns. Thirty-six fern taxa were collected from wild populations in Ontario, Canada. 2C DNA content was measured using flow cytometry. We tested for genome downsizing following polyploidy using a phylogenetic comparative analysis to explore the correlation between 1Cx DNA content and ploidy. There was no compelling evidence for the occurrence of widespread genome downsizing during the evolution of Ontario ferns. The relationship between genome size and 11 morphological and ecological traits was explored using a phylogenetic principal component regression analysis. Genome size was found to be significantly associated with cell size, spore size, spore type, and habitat type. These results are timely as past and recent studies have found conflicting support for the association between ploidy/genome size and spore size in fern polyploid complexes; this study represents the first comparative analysis of the trend across a broad taxonomic group of ferns.

  3. Yersinia pekkanenii sp. nov.

    PubMed

    Murros-Kontiainen, Anna; Johansson, Per; Niskanen, Taina; Fredriksson-Ahomaa, Maria; Korkeala, Hannu; Björkroth, Johanna

    2011-10-01

    The taxonomic position of three strains from water, soil and lettuce samples was studied by using a polyphasic taxonomic approach. The strains were reported to lack the virulence-encoding genes inv and virF in a previous study. Controversially, API 20 E and some other phenotypic tests suggested that the strains belong to Yersinia pseudotuberculosis, which prompted this polyphasic taxonomic study. In both the phylogenetic analyses of four housekeeping genes (glnA, gyrB, recA and HSP60) and numerical analyses of HindIII and EcoRI ribopatterns, the strains formed a separate group within the genus Yersinia. Analysis of the 16S rRNA gene sequences showed that the strains were related to Yersinia aldovae and Yersinia mollaretii, but DNA-DNA hybridization analysis differentiated them from these species. Based on the results of the phylogenetic and DNA-DNA hybridization analyses, a novel species, Yersinia pekkanenii sp. nov., is proposed. The type strain is ÅYV7.1KOH2(T) ( = DSM 22769(T)  = LMG 25369(T)).

  4. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA.

    PubMed

    Herzner, Anna-Maria; Hagmann, Cristina Amparo; Goldeck, Marion; Wolter, Steven; Kübler, Kirsten; Wittmann, Sabine; Gramberg, Thomas; Andreeva, Liudmila; Hopfner, Karl-Peter; Mertens, Christina; Zillinger, Thomas; Jin, Tengchuan; Xiao, Tsan Sam; Bartok, Eva; Coch, Christoph; Ackermann, Damian; Hornung, Veit; Ludwig, Janos; Barchet, Winfried; Hartmann, Gunther; Schlee, Martin

    2015-10-01

    Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner. DNA structures containing unpaired guanosines flanking short (12- to 20-bp) dsDNA (Y-form DNA) were highly stimulatory and specifically enhanced the enzymatic activity of cGAS. Furthermore, we found that primary HIV-1 reverse transcripts represented the predominant viral cytosolic DNA species during early infection of macrophages and that these ssDNAs were highly immunostimulatory. Collectively, our study identifies unpaired guanosines in Y-form DNA as a highly active, minimal cGAS recognition motif that enables detection of HIV-1 ssDNA.

  5. Biochemical analysis of six genetic variants of error-prone human DNA polymerase ι involved in translesion DNA synthesis.

    PubMed

    Kim, Jinsook; Song, Insil; Jo, Ara; Shin, Joo-Ho; Cho, Hana; Eoff, Robert L; Guengerich, F Peter; Choi, Jeong-Yun

    2014-10-20

    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N(2)-ethyl(Et)G, O(6)-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1-445) proteins and DNA templates containing a G, N(2)-EtG, O(6)-MeG, 8-oxoG, or abasic site. The Δ1-25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg(2+) (but not with Mn(2+)), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg(2+)). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg(2+) or Mn(2+), except for that opposite N(2)-EtG with Mn(2+) (showing a 9-fold increase for dCTP incorporation). The Δ1-25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg(2+)), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1-25 variant, was ∼7-fold stronger with 0.15 mM Mn(2+) than with Mg(2+). The results indicate that the R96G variation severely impairs most of the Mg(2+)- and Mn(2+)-dependent TLS abilities of pol ι, whereas the Δ1-25 variation selectively and substantially enhances the Mg(2+)-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences in TLS, mutation, and cancer susceptibility to genotoxic carcinogens.

  6. Biochemical Analysis of Six Genetic Variants of Error-Prone Human DNA Polymerase ι Involved in Translesion DNA Synthesis

    PubMed Central

    2015-01-01

    DNA polymerase (pol) ι is the most error-prone among the Y-family polymerases that participate in translesion synthesis (TLS). Pol ι can bypass various DNA lesions, e.g., N2-ethyl(Et)G, O6-methyl(Me)G, 8-oxo-7,8-dihydroguanine (8-oxoG), and an abasic site, though frequently with low fidelity. We assessed the biochemical effects of six reported genetic variations of human pol ι on its TLS properties, using the recombinant pol ι (residues 1–445) proteins and DNA templates containing a G, N2-EtG, O6-MeG, 8-oxoG, or abasic site. The Δ1–25 variant, which is the N-terminal truncation of 25 residues resulting from an initiation codon variant (c.3G > A) and also is the formerly misassigned wild-type, exhibited considerably higher polymerase activity than wild-type with Mg2+ (but not with Mn2+), coinciding with its steady-state kinetic data showing a ∼10-fold increase in kcat/Km for nucleotide incorporation opposite templates (only with Mg2+). The R96G variant, which lacks a R96 residue known to interact with the incoming nucleotide, lost much of its polymerase activity, consistent with the kinetic data displaying 5- to 72-fold decreases in kcat/Km for nucleotide incorporation opposite templates either with Mg2+ or Mn2+, except for that opposite N2-EtG with Mn2+ (showing a 9-fold increase for dCTP incorporation). The Δ1–25 variant bound DNA 20- to 29-fold more tightly than wild-type (with Mg2+), but the R96G variant bound DNA 2-fold less tightly than wild-type. The DNA-binding affinity of wild-type, but not of the Δ1–25 variant, was ∼7-fold stronger with 0.15 mM Mn2+ than with Mg2+. The results indicate that the R96G variation severely impairs most of the Mg2+- and Mn2+-dependent TLS abilities of pol ι, whereas the Δ1–25 variation selectively and substantially enhances the Mg2+-dependent TLS capability of pol ι, emphasizing the potential translational importance of these pol ι genetic variations, e.g., individual differences in TLS, mutation, and cancer susceptibility to genotoxic carcinogens. PMID:25162224

  7. RNA-seq Analysis Reveals Unique Transcriptome Signatures in Systemic Lupus Erythematosus Patients with Distinct Autoantibody Specificities

    PubMed Central

    Rai, Richa; Chauhan, Sudhir Kumar; Singh, Vikas Vikram; Rai, Madhukar; Rai, Geeta

    2016-01-01

    Systemic lupus erythematosus (SLE) patients exhibit immense heterogeneity which is challenging from the diagnostic perspective. Emerging high throughput sequencing technologies have been proved to be a useful platform to understand the complex and dynamic disease processes. SLE patients categorised based on autoantibody specificities are reported to have differential immuno-regulatory mechanisms. Therefore, we performed RNA-seq analysis to identify transcriptomics of SLE patients with distinguished autoantibody specificities. The SLE patients were segregated into three subsets based on the type of autoantibodies present in their sera (anti-dsDNA+ group with anti-dsDNA autoantibody alone; anti-ENA+ group having autoantibodies against extractable nuclear antigens (ENA) only, and anti-dsDNA+ENA+ group having autoantibodies to both dsDNA and ENA). Global transcriptome profiling for each SLE patients subsets was performed using Illumina® Hiseq-2000 platform. The biological relevance of dysregulated transcripts in each SLE subsets was assessed by ingenuity pathway analysis (IPA) software. We observed that dysregulation in the transcriptome expression pattern was clearly distinct in each SLE patients subsets. IPA analysis of transcripts uniquely expressed in different SLE groups revealed specific biological pathways to be affected in each SLE subsets. Multiple cytokine signaling pathways were specifically dysregulated in anti-dsDNA+ patients whereas Interferon signaling was predominantly dysregulated in anti-ENA+ patients. In anti-dsDNA+ENA+ patients regulation of actin based motility by Rho pathway was significantly affected. The granulocyte gene signature was a common feature to all SLE subsets; however, anti-dsDNA+ group showed relatively predominant expression of these genes. Dysregulation of Plasma cell related transcripts were higher in anti-dsDNA+ and anti-ENA+ patients as compared to anti-dsDNA+ ENA+. Association of specific canonical pathways with the uniquely expressed transcripts in each SLE subgroup indicates that specific immunological disease mechanisms are operative in distinct SLE patients’ subsets. This ‘sub-grouping’ approach could further be useful for clinical evaluation of SLE patients and devising targeted therapeutics. PMID:27835693

  8. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    PubMed

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  9. Genetic characterization of hybridization and introgression between anadromous rainbow trout (oncorhynchus mykiss irideus) and coastal cutthroat trout (o. clarki clarki)

    USGS Publications Warehouse

    Young, W.P.; Ostberg, C.O.; Keim, P.; Thorgaard, G.H.

    2001-01-01

    Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later-generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment-dependent reduction in hybrid fitness.

  10. Characterization of class II alpha genes and DLA-D region allelic associations in the dog.

    PubMed

    Sarmiento, U M; Storb, R F

    1988-10-01

    Human major histocompatibility complex (HLA) cDNA probes were used to analyze the restriction fragment length polymorphism (RFLP) of the alpha genes of the DLA-D region in dogs. Genomic DNA from peripheral blood leucocytes of 23 unrelated DLA-D homozygous dogs representing nine DLA-D types (defined by mixed leucocyte reaction) was digested with restriction enzymes (BamHI, EcoRI, Hind III, Pvu II, Taq I, Rsa I, Msp I, Pst I and Bgl II), separated by agarose gel electrophoresis and transferred onto Biotrace membrane. The Southern blots were successively hybridized with radiolabelled HLA cDNA probes corresponding to DQ, DP, DZ and DR alpha genes. Clear evidence was obtained for the canine homologues of DQ and DR alpha genes with simple bi- or tri-allelic polymorphism respectively. Evidence for a single, nonpolymorphic DP alpha gene was also obtained. However, the presence of a DZ alpha gene could not be clearly demonstrated in canine genomic DNA. This report extends our previous RFLP analysis documenting polymorphism of DLA class II beta genes in the same panel of homozygous typing cell dogs, and provides the basis for DLA-D genotyping at a population level. This study also characterizes the RFLP-defined preferential allelic associations across the DLA-D region in nine different homozygous typing cell specificities.

  11. Optimized manual and automated recovery of amplifiable DNA from tissues preserved in buffered formalin and alcohol-based fixative.

    PubMed

    Duval, Kristin; Aubin, Rémy A; Elliott, James; Gorn-Hondermann, Ivan; Birnboim, H Chaim; Jonker, Derek; Fourney, Ron M; Frégeau, Chantal J

    2010-02-01

    Archival tissue preserved in fixative constitutes an invaluable resource for histological examination, molecular diagnostic procedures and for DNA typing analysis in forensic investigations. However, available material is often limited in size and quantity. Moreover, recovery of DNA is often severely compromised by the presence of covalent DNA-protein cross-links generated by formalin, the most prevalent fixative. We describe the evaluation of buffer formulations, sample lysis regimens and DNA recovery strategies and define optimized manual and automated procedures for the extraction of high quality DNA suitable for molecular diagnostics and genotyping. Using a 3-step enzymatic digestion protocol carried out in the absence of dithiothreitol, we demonstrate that DNA can be efficiently released from cells or tissues preserved in buffered formalin or the alcohol-based fixative GenoFix. This preparatory procedure can then be integrated to traditional phenol/chloroform extraction, a modified manual DNA IQ or automated DNA IQ/Te-Shake-based extraction in order to recover DNA for downstream applications. Quantitative recovery of high quality DNA was best achieved from specimens archived in GenoFix and extracted using magnetic bead capture.

  12. Molecular Epidemiological Study of Aspergillus fumigatus in a Bone Marrow Transplantation Unit by PCR Amplification of Ribosomal Intergenic Spacer Sequences

    PubMed Central

    Radford, Sarah A.; Johnson, Elizabeth M.; Leeming, John P.; Millar, Michael R.; Cornish, Jacqueline M.; Foot, Annabel B. M.; Warnock, David W.

    1998-01-01

    We have developed a PCR-based method for the subspecific discrimination of Aspergillus fumigatus types by using two primers designed to amplify the intergenic spacer regions between ribosomal DNA transcription units. The method permitted the reproducible discrimination of 11 distinct DNA types among a total of 119 isolates of A. fumigatus collected from patients and from the environment of a bone marrow transplantation (BMT) unit over a three-year period. Ten DNA types of A. fumigatus were isolated from patients in the BMT unit; eight of these types were also found in the hospital environment, and six of these were present in the unit itself. Thirteen BMT patients developed infection with one of three DNA types some months after these had first been found in the environment of the unit. In other instances, the same DNA types of A. fumigatus were isolated from BMT patients that were later recovered from the environment of the unit. Several DNA types of A. fumigatus were found in the hospital environment over an 18-month period. Molecular typing of multiple isolates of A. fumigatus, obtained from postmortem tissue samples, showed that one patient was infected with a single DNA type, but two others had up to three different DNA types. Our findings suggest that A. fumigatus infection in BMT recipients may be nosocomial in origin and underline the need for careful environmental monitoring of units in which high-risk patients are housed. PMID:9574694

  13. CCR investigators use liquid biopsies to uncover cancer in the blood of lymphoma patients | Center for Cancer Research

    Cancer.gov

    CCR investigators are using circulating tumor DNA (ctDNA) as a type of noninvasive liquid biopsy for patients with diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma. are using circulating tumor DNA (ctDNA) as a type of noninvasive liquid biopsy for patients with diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma.

  14. CCR investigators use liquid biopsies to uncover cancer in the blood of lymphoma patients | Center for Cancer Research

    Cancer.gov

    CCR investigators are using circulating tumor DNA (ctDNA) as a type of noninvasive liquid biopsy for patients with diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin lymphoma. are using circulating tumor DNA (ctDNA) as a type of noninvasive liquid biopsy for patients with diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin

  15. Optimization of circulating cell-free DNA recovery for KRAS mutation and HPV detection in plasma.

    PubMed

    Mazurek, Agnieszka M; Fiszer-Kierzkowska, A; Rutkowski, T; Składowski, K; Pierzyna, M; Scieglińska, D; Woźniak, G; Głowacki, G; Kawczyński, R; Małusecka, E

    2013-01-01

    The precise analysis of tumour markers in blood such as circulating cell-free DNA (cfDNA) could have a significant impact in facilitating monitoring of patients after initial therapy. Although high levels of total cfDNA in plasma of cancer patients are consistently demonstrated, a low sensitivity of DNA alterations is reported. The major question regards the recovery of tumour-specific cfDNA such as KRAS mutated DNA and cancer-associated type 16 of human papillomavirus (HPV16). TaqMan technology was used for detection of KRAS mutation, HPV16 and to quantify cfDNA in blood plasma. Comparison of four different column-based commercial kits shows that the cfDNA purification carried out by the Genomic Mini AX Body Fluids kit and the QIAamp Circulating Nucleic Acid kit gave us the possibility to improve the sensitivity of detection of KRAS mutation and HPV16. The optimized method was used to follow the reduction in cancer-specific cfDNA after therapy. We found that large volume extractions with low volume of DNA eluate enabled trace amounts of tumour-specific cfDNA from cancer patients to be effectively identified. Data presented in this study facilitate detection of tumour-specific cfDNA and improve standards needed for the implementation of cfDNA technology into routine clinical practice.

  16. [DNA quantification of blood samples pre-treated with pyramidon].

    PubMed

    Zhu, Chuan-Hong; Zheng, Dao-Li; Ni, Rao-Zhi; Wang, Hai-Sheng; Ning, Ping; Fang, Hui; Liu, Yan

    2014-06-01

    To study DNA quantification and STR typing of samples pre-treated with pyramidon. The blood samples of ten unrelated individuals were anticoagulated in EDTA. The blood stains were made on the filter paper. The experimental groups were divided into six groups in accordance with the storage time, 30 min, 1 h, 3 h, 6 h, 12 h and 24h after pre-treated with pyramidon. DNA was extracted by three methods: magnetic bead-based extraction, QIAcube DNA purification method and Chelex-100 method. The quantification of DNA was made by fluorescent quantitative PCR. STR typing was detected by PCR-STR fluorescent technology. In the same DNA extraction method, the sample DNA decreased gradually with times after pre-treatment with pyramidon. In the same storage time, the DNA quantification in different extraction methods had significant differences. Sixteen loci DNA typing were detected in 90.56% of samples. Pyramidon pre-treatment could cause DNA degradation, but effective STR typing can be achieved within 24 h. The magnetic bead-based extraction is the best method for STR profiling and DNA extraction.

  17. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2010-03-01

    because only certain collections (partitioned by font type) of sequences are allowed to be in each position (e.g., Arial = position 0, Comic ...rigidity of short oligos and the shape of the polar charge. Oligo movement was modeled by a Brownian motion 3 dimensional random walk. The one...temperature, kB is Boltz he viscosity of the medium. The random walk motion is modeled by assuming the oligo is on a three dimensional lattice and may

  18. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.

    PubMed

    Oda, Masaaki; Kumaki, Yuichi; Shigeta, Masaki; Jakt, Lars Martin; Matsuoka, Chisa; Yamagiwa, Akiko; Niwa, Hitoshi; Okano, Masaki

    2013-06-01

    DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES) cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells.

  19. Characterization of non-CG genomic hypomethylation associated with gamma-ray-induced suppression of CMT3 transcription in Arabidopsis thaliana.

    PubMed

    Kim, Ji Eun; Lee, Min Hee; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin-Hong

    2013-12-01

    Ionizing radiation causes various epigenetic changes, as well as a variety of DNA lesions such as strand breaks, cross-links, oxidative damages, etc., in genomes. However, radiation-induced epigenetic changes have rarely been substantiated in plant genomes. The current study investigates whether DNA methylation of Arabidopsis thaliana genome is altered by gamma rays. We found that genomic DNA methylation decreased in wild-type plants with increasing doses of gamma rays (5, 50 and 200 Gy). Irradiation with 200 Gy significantly increased the expression of transcriptionally inactive centromeric 180-bp (CEN) and transcriptionally silent information (TSI) repeats. This increase suggested that there was a substantial release of transcriptional gene silencing by gamma rays, probably by induction of DNA hypomethylation. High expression of the DNA demethylase ROS1 and low expression of the DNA methyltransferase CMT3 supported this hypothesis. Moreover, Southern blot analysis following digestion of genomic DNA with methylation-sensitive enzymes revealed that the DNA hypomethylation occured preferentially at CHG or CHH sites rather than CG sites, depending on the radiation dose. Unlike CEN and TSI repeats, the number of Ta3, AtSN1 and FWA repeats decreased in transcription but increased in non-CG methylation. In addition, the cmt3-11 mutant showed neither DNA hypomethylation nor transcriptional activation of silenced repeats upon gamma irradiation. Furthermore, profiles of genome-wide transcriptomes in response to gamma rays differed between the wild-type and cmt3-11 mutant. These results suggest that gamma irradiation induced DNA hypomethylation preferentially at non-CG sites of transcriptionally inactive repeats in a locus-specific manner, which depends on CMT3 activity.

  20. Molecular characterization of the probiotic strain Bacillus cereus var. toyoi NCIMB 40112 and differentiation from food poisoning strains.

    PubMed

    Klein, Günter

    2011-07-01

    Bacillus cereus var. toyoi strain NCIMB 40112 (Toyocerin), a probiotic authorized in the European Union as feed additive for swine, bovines, poultry, and rabbits, was characterized by DNA fingerprinting applying pulsed-field gel electrophoresis and multilocus sequence typing and was compared with reference strains (of clinical and environmental origins). The probiotic strain was clearly characterized by pulsed-field gel electrophoresis using the restriction enzymes Apa I and Sma I resulting in unique DNA patterns. The comparison to the clinical reference strain B. cereus DSM 4312 was done with the same restriction enzymes, and again a clear differentiation of the two strains was possible by the resulting DNA patterns. The use of the restriction enzymes Apa I and Sma I is recommended for further studies. Furthermore, multilocus sequence typing analysis revealed a sequence type (ST 111) that was different from all known STs of B. cereus strains from food poisoning incidents. Thus, a strain characterization and differentiation from food poisoning strains for the probiotic strain was possible. Copyright ©, International Association for Food Protection

  1. Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA

    PubMed Central

    Watson, Claire L.; Lockwood, Diana N. J.

    2009-01-01

    Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306

  2. Screening of eye-position related genes with DD-RT-PCR and RDA in the hybrids between Japanese flounder Paralichthys olivaceus and stone flounder Kareius bicoloratus

    NASA Astrophysics Data System (ADS)

    Chen, Yanjie; Zhang, Quanqi; Qi, Jie; Sun, Yeying; Zhong, Qiwang; Wang, Xubo; Wang, Zhigang; Li, Shuo; Li, Chunmei

    2009-02-01

    Flatfish or flounder moves one eye to change body proportion into vertebral asymmetry during metamorphosis, during which some become sinistral while others dextral. However, the mechanism behinds the eye-position has not been well understood. In this research, hybrids between Japanese flounder(♀) and stone flounder (♂) show mixed eye-location in both dextral type and sinistral type, and thus become good samples for studying the eye-migration. mRNAs from pro-metamorphosis sinistral and dextral hybrids larvae were screened with classical differential display RT-PCR (DD-RT-PCR) and representational difference analysis of cDNA (cDNA-RDA); 30 and 47 putative fragments were isolated, respectively. The cDNA fragments of creatine kinase and trypsinogen 2 precursor genes isolated by cDNA-RDA exhibited eye-position expression patterns during metamorphosis. However, none of the fragments was proved to be related to flatfishes’ eye-position specifically. Therefore, further studies and more sensitive gene isolated methods are needed to solve the problems.

  3. Techniques for investigation of an apparent outbreak of infections with Candida glabrata.

    PubMed Central

    Arif, S; Barkham, T; Power, E G; Howell, S A

    1996-01-01

    A cluster of Candida glabrata isolates recovered from seven patients in an intensive care unit over a 10-week period were compared with a collection of isolates from six epidemiologically distinct outpatients and a reference strain by several DNA typing methods. Restriction enzyme analysis with HinII distinguished 13 strains from the 14 sources and was the method of choice. Pulsed-field gel electrophoresis and random amplification of polymorphic DNA both detected nine types from the 14 sources; however, the results of these two methods did not always correlate. These methods demonstrated that five of the seven patients had distinguishable strains and that cross-infection was unlikely. PMID:8862586

  4. Unraveling systematic inventory of Echinops (Asteraceae) with special reference to nrDNA ITS sequence-based molecular typing of Echinops abuzinadianus.

    PubMed

    Ali, M A; Al-Hemaid, F M; Lee, J; Hatamleh, A A; Gyulai, G; Rahman, M O

    2015-10-02

    The present study explored the systematic inventory of Echinops L. (Asteraceae) of Saudi Arabia, with special reference to the molecular typing of Echinops abuzinadianus Chaudhary, an endemic species to Saudi Arabia, based on the internal transcribed spacer (ITS) sequences (ITS1-5.8S-ITS2) of nuclear ribosomal DNA. A sequence similarity search using BLAST and a phylogenetic analysis of the ITS sequence of E. abuzinadianus revealed a high level of sequence similarity with E. glaberrimus DC. (section Ritropsis). The novel primary sequence and the secondary structure of ITS2 of E. abuzinadianus could potentially be used for molecular genotyping.

  5. Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site.

    PubMed

    Canganella, F; Jones, W J; Gambacorta, A; Antranikian, G

    1998-10-01

    Thermococcus strains TYST and TYT isolated from the Guaymas Basin hydrothermal vent site and previously described were compared by DNA-DNA hybridization analysis with the closest Thermococcus species in terms of physiology and nutritional aspects. On the basis of the new data and taking into consideration the molecular, physiological and morphological traits published previously, it is proposed that strains TYT and TYST should be classified as new species named Thermococcus aggregans sp. nov. and Thermococcus guaymasensis sp. nov., respectively. The type strain of T. aggregans is strain TYT (= DSM 10597T) and the type strain of T. guaymasensis is strain TYST (= DSM 11113T).

  6. Rapid and sensitive detection of canine parvovirus type 2 by recombinase polymerase amplification.

    PubMed

    Wang, Jianchang; Liu, Libing; Li, Ruiwen; Wang, Jinfeng; Fu, Qi; Yuan, Wanzhe

    2016-04-01

    A novel recombinase polymerase amplification (RPA)-based method for detection of canine parvovirus type 2 (CPV-2) was developed. Sensitivity analysis showed that the detection limit of RPA was 10 copies of CPV-2 genomic DNA. RPA amplified both CPV-2a and -2b DNA but did not amplify the template of other important dog viruses (CCoV, PRV or CDV), demonstrating high specificity. The method was further validated with 57 canine fecal samples. An outstanding advantage of RPA is that it is an isothermal reaction and can be performed in a water bath, making RPA a potential alternative method for CPV-2 detection in resource-limited settings.

  7. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    PubMed Central

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  8. On the connection between inherent DNA flexure and preferred binding of hydroxymethyluracil-containing DNA by the type II DNA-binding protein TF1.

    PubMed

    Grove, A; Galeone, A; Mayol, L; Geiduschek, E P

    1996-07-12

    TF1 is a member of the family of type II DNA-binding proteins, which also includes the bacterial HU proteins and the Escherichia coli integration host factor (IHF). Distinctive to TF1, which is encoded by the Bacillus subtilis bacteriophage SPO1, is its preferential binding to DNA in which thymine is replaced by 5-hydroxymethyluracil (hmU), as it is in the phage genome. TF1 binds to preferred sites within the phage genome and generates pronounced DNA bending. The extent to which DNA flexibility contributes to the sequence-specific binding of TF1, and the connection between hmU preference and DNA flexibility has been examined. Model flexible sites, consisting of consecutive mismatches, increase the affinity of thymine-containing DNA for TF1. In particular, tandem mismatches separated by nine base-pairs generate an increase, by orders of magnitude, in the affinity of TF1 for T-containing DNA with the sequence of a preferred TF1 binding site, and fully match the affinity of TF1 for this cognate site in hmU-containing DNA (Kd approximately 3 nM). Other placements of loops generate suboptimal binding. This is consistent with a significant contribution of site-specific DNA flexibility to complex formation. Analysis of complexes with hmU-DNA of decreasing length shows that a major part of the binding affinity is generated within a central 19 bp segment (delta G0 = 41.7 kJ mol-1) with more-distal DNA contributing modestly to the affinity (delta delta G = -0.42 kJ mol-1 bp-1 on increasing duplex length to 37 bp). However, a previously characterised thermostable and more tightly binding mutant TF1, TF1(E15G/T32I), derives most of its extra affinity from interaction with flanking DNA. We propose that inherent but sequence-dependent deformability of hmU-containing DNA underlies the preferential binding of TF1 and that TF1-induced DNA bendings is a result of distortions at two distinct sites separated by 9 bp of duplex DNA.

  9. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum.

    PubMed

    Bardai, G; Moffatt, P; Glorieux, F H; Rauch, F

    2016-12-01

    We detected disease-causing mutations in 585 of 598 individuals (98 %) with typical features of osteogenesis imperfecta (OI). In mild OI, only collagen type I encoding genes were involved. In moderate to severe OI, mutations in 12 different genes were found; 11 % of these patients had mutations in recessive genes. OI is usually caused by mutations in COL1A1 or COL1A2, the genes encoding collagen type I alpha chains, but mutations in at least 16 other genes have also been associated with OI. It is presently unknown what proportion of individuals with clinical features of OI has a disease-causing mutation in one of these genes. DNA sequence analysis was performed on 598 individuals from 487 families who had a typical OI phenotype. OI type I was diagnosed in 43 % of individuals, and 57 % had moderate to severe OI, defined as OI types other than type I. Disease-causing variants were detected in 97 % of individuals with OI type I and in 99 % of patients with moderate to severe OI. All mutations found in OI type I were dominant and exclusively affected COL1A1 or COL1A2. In moderate to severe OI, dominant mutations were found in COL1A1/COL1A2 (77 %), IFITM5 (9 %), and P4HB (0.6 %). Mutations in one of the recessive OI-associated gene were observed in 12 % of individuals with moderate to severe OI. The genes most frequently involved in recessive OI were SERPINF1 (4.0 % of individuals with moderate to severe OI) and CRTAP (2.9 %). DNA sequence analysis of currently known OI-associated genes identifies disease-causing variants in almost all individuals with a typical OI phenotype. About 20 % of individuals with moderate to severe OI had mutations in genes other than COL1A1/COL1A2.

  10. DNA polymorphism analysis of candidate genes for type 2 diabetes mellitus in a Mexican ethnic group.

    PubMed

    Flores-Martínez, S E; Islas-Andrade, S; Machorro-Lazo, M V; Revilla, M C; Juárez, R E; Mújica-López, K I; Morán-Moguel, M C; López-Cardona, M G; Sánchez-Corona, J

    2004-01-01

    Type 2 diabetes mellitus is a complex metabolic disorder resulting from the action and interaction of many genetic and environmental factors. It has been reported that polymorphisms in genes involved in the metabolism of glucose are associated with the susceptibility to develop type 2 diabetes mellitus. Although the risk of developing type 2 diabetes mellitus increases with age, as well as with obesity and hypertension, its prevalence and incidence are different among geographical regions and ethnic groups. In Mexico, a higher prevalence and incidence has been described in the south of the country, and differences between urban and rural communities have been observed. We studied 73 individuals from Santiago Jamiltepec, a small indigenous community from Oaxaca State, Mexico. This population has shown a high prevalence of type 2 diabetes mellitus, and the aim of this study was to analyze the relationship between the Pst I (insulin gene), Nsi I (insulin receptor gene) and Gly972Arg (insulin receptor substrate 1 gene) polymorphisms and type 2 diabetes mellitus, obesity and hypertension in this population. Clinical evaluation consisted of BMI and blood pressure measurements, and biochemical assays consisted of determination of fasting plasma insulin and glucose levels. PCR and restriction enzyme digestion analysis were applied to genomic DNA to identify the three polymorphisms. From statistical analysis carried out here, individually, the Pst I, Nsi I and Gly972Arg polymorphisms were not associated with the type 2 diabetes, obese or hypertensive phenotypes in this population. Nevertheless, there was an association between the Nsi I and Pst I polymorphisms and increased serum insulin levels.

  11. Unraveling DNA dynamics using atomic force microscopy.

    PubMed

    Suzuki, Yuki; Yoshikawa, Yuko; Yoshimura, Shige H; Yoshikawa, Kenichi; Takeyasu, Kunio

    2011-01-01

    The elucidation of structure-function relationships of biological samples has become important issue in post-genomic researches. In order to unveil the molecular mechanisms controlling gene regulations, it is essential to understand the interplay between fundamental DNA properties and the dynamics of the entire molecule. The wide range of applicability of atomic force microscopy (AFM) has allowed us to extract physicochemical properties of DNA and DNA-protein complexes, as well as to determine their topographical information. Here, we review how AFM techniques have been utilized to study DNA and DNA-protein complexes and what types of analyses have accelerated the understanding of the DNA dynamics. We begin by illustrating the application of AFM to investigate the fundamental feature of DNA molecules; topological transition of DNA, length dependent properties of DNA molecules, flexibility of double-stranded DNA, and capability of the formation of non-Watson-Crick base pairing. These properties of DNA are critical for the DNA folding and enzymatic reactions. The technical advancement in the time-resolution of AFM and sample preparation methods enabled visual analysis of DNA-protein interactions at sub-second time region. DNA tension-dependent enzymatic reaction and DNA looping dynamics by restriction enzymes were examined at a nanoscale in physiological environments. Contribution of physical properties of DNA to dynamics of nucleosomes and transition of the higher-order structure of reconstituted chromatin are also reviewed. Copyright © 2011 John Wiley & Sons, Inc.

  12. Development of a practical NF1 genetic testing method through the pilot analysis of five Japanese families with neurofibromatosis type 1.

    PubMed

    Okumura, Akiko; Ozaki, Mamoru; Niida, Yo

    2015-08-01

    Mutation analysis of NF1, the responsible gene for neurofibromatosis type 1 (NF1), is still difficult due to its large size, lack of mutational hotspots, the presence of many pseudogenes, and its wide spectrum of mutations. To develop a simple and inexpensive NF1 genetic testing for clinical use, we analyzed five Japanese families with NF1 as a pilot study. Our original method, CEL endonuclease mediated heteroduplex incision with polyacrylamide gel electrophoresis and silver staining (CHIPS) was optimized for NF1 mutation screening, and reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the effect of transcription. Also, we employed DNA microarray analysis to evaluate the break points of the large deletion. A new nonsense mutation, p.Gln209(∗), was detected in family 1 and the splicing donor site mutation, c.2850+1G>T, was detected in family 2. In family 3, c.4402A>G was detected in exon 34 and the p.Ser1468Gly missense mutation was predicted. However mRNA analysis revealed that this substitution created an aberrant splicing acceptor site, thereby causing the p.Phe1457(∗) nonsense mutation. In the other two families, type-1 and unique NF1 microdeletions were detected by DNA microarray analysis. Our results show that the combination of CHIPS and RT-PCR effectively screen and characterize NF1 point mutations, and both DNA and RNA level analysis are required to understand the nature of the NF1 mutation. Our results also suggest the possibility of a higher incidence and unique profile of NF1 large deletions in the Japanese population as compared to previous studies performed in Europe. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. Evaluation of a novel material, Diomics X-Swab™, for collection of DNA.

    PubMed

    Marshall, Pamela L; Stoljarova, Monika; Larue, Bobby L; King, Jonathan L; Budowle, Bruce

    2014-09-01

    Success of DNA typing is related to the amount of target material recovered from an evidentiary item. Generally, the more DNA that is recovered, the better the chance is of obtaining a typing result that will be robust and reliable. One method of collecting stain materials is by swabbing. Recovery of DNA from a number of commercially available swabs is not an efficient process. The X-Swab™ (Diomics Corporation, La Jolla, CA) is a unique bio-specimen collection material with highly absorptive properties and can be dissolved during certain extraction conditions. Therefore, more DNA may be collected from a substrate and be released from the swab matrix than other swabs. The ability to recover DNA from X-Swab material and success in STR typing were compared with the Copan 4N6FLOQSwab™ (Brescia, Italy), a device which utilizes a proprietary flocked-swab technology to maximize DNA collection and elution efficiency. Both types of swabs were impregnated with known amounts of DNA and body fluids and allowed to air dry. In addition, blood was placed onto glass slides, allowed to dry and collected using both types of swabs. DNA recovery was assessed by DNA quantitation and by STR typing. Results suggested that X-Swab material yielded greater DNA recovery, particularly of low quantity samples (defined as diluted neat samples), compared with the 4N6FLOQSwab. Results also indicated that X-Swab material itself enhances yield of PCR products. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Translocation of single-stranded DNA through single-walled carbon nanotubes.

    PubMed

    Liu, Haitao; He, Jin; Tang, Jinyao; Liu, Hao; Pang, Pei; Cao, Di; Krstic, Predrag; Joseph, Sony; Lindsay, Stuart; Nuckolls, Colin

    2010-01-01

    We report the fabrication of devices in which one single-walled carbon nanotube spans a barrier between two fluid reservoirs, enabling direct electrical measurement of ion transport through the tube. A fraction of the tubes pass anomalously high ionic currents. Electrophoretic transport of small single-stranded DNA oligomers through these tubes is marked by large transient increases in ion current and was confirmed by polymerase chain reaction analysis. Each current pulse contains about 10(7) charges, an enormous amplification of the translocated charge. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurements, and may open avenues for control of DNA translocation.

  15. Sperm DNA damage output parameters measured by the alkaline Comet assay and their importance.

    PubMed

    Simon, L; Aston, K I; Emery, B R; Hotaling, J; Carrell, D T

    2017-03-01

    The alkaline Comet assay has shown high diagnostic value to determine male reproductive health and prognostic ability to predict ART success. Here, spermatozoon was analysed in 47 fertile donors and 238 patients, including 132 couples undergoing ART [semen was collected: Group I - within 3 months of their treatment (n = 79); and Group II - 3 months prior to their treatment (n = 53)]. We introduce four Comet distribution plots (A, B1, B2 and C) by plotting the level of DNA damage (x-axis) and percentage of comets (y-axis). Fertile donors had low mean DNA damage, olive tail moment and per cent of spermatozoa with damage and increased type A plots. Comet parameters were associated with clinical pregnancies in Group I. About 66% of couples with type A distribution plot were successful after ART, whereas couples with type B1, B2 and C distribution plots achieved 56%, 44% and 33% pregnancies respectively. The efficiency of the Comet assay was due to complete decondensation process, where the compact sperm nuclear DNA (28.2 ± 0.2 μm 3 ) is decondensed to ~63 μm 3 (before lysis) and ~1018 μm 3 (after lysis). A combinational analysis of all the Comet output parameters may provide a comprehensive evaluation of patient's reproductive health as these parameters measure different aspects of DNA damage within the spermatozoa. © 2016 Blackwell Verlag GmbH.

  16. Prevalence of human herpes virus types 1-7 in the semen of men attending an infertility clinic and correlation with semen parameters.

    PubMed

    Neofytou, Eirini; Sourvinos, George; Asmarianaki, Maria; Spandidos, Demetrios A; Makrigiannakis, Antonios

    2009-06-01

    To determine the prevalence of herpes viruses in the semen of an asymptomatic male cohort with and without infertility problems and its association with altered semen parameters. A prospective randomized study. Medical school and IVF clinic. One hundred seventy-two male patients undergoing routine semen analysis: 80 with normal semen parameters (control group) and 92 with abnormal semen parameters. Semen samples were collected by masturbation. The DNA from the Herpesviridae family (herpes simplex virus 1 [HSV-1], herpes simplex virus 2 [HSV-2], Varicella zoster virus [VZV], Epstein-Barr virus [EBV], cytomegalovirus [CMV], human herpes virus type 6 [HHV-6], human herpes virus type 7 [HHV-7]) and routine semen parameters. Viral DNA was detected in 143/172 (83.1%) of the total samples for at least one herpes virus: HSV-1, 2.5%; VZV, 1.2%; EBV, 45%; CMV, 62.5%; HHV-6, 70%; HHV-7, 0% in the normal semen samples and HSV-1, 2.1%; VZV, 3.2%; EBV, 39.1%; CMV, 56.5%; HHV-6, 66.3%; HHV-7, 0% in the abnormal semen samples. No association was found between the presence of viral DNA and semen parameters. Interestingly, a statistical significance between leukocytospermia and the presence of EBV DNA was observed. The DNA of herpes viruses is frequently detected in the semen of asymptomatic fertile and infertile male patients. Further studies are required to investigate the role of herpes viruses in male factor infertility.

  17. Human Leukocyte Antigen Typing Using a Knowledge Base Coupled with a High-Throughput Oligonucleotide Probe Array Analysis

    PubMed Central

    Zhang, Guang Lan; Keskin, Derin B.; Lin, Hsin-Nan; Lin, Hong Huang; DeLuca, David S.; Leppanen, Scott; Milford, Edgar L.; Reinherz, Ellis L.; Brusic, Vladimir

    2014-01-01

    Human leukocyte antigens (HLA) are important biomarkers because multiple diseases, drug toxicity, and vaccine responses reveal strong HLA associations. Current clinical HLA typing is an elimination process requiring serial testing. We present an alternative in situ synthesized DNA-based microarray method that contains hundreds of thousands of probes representing a complete overlapping set covering 1,610 clinically relevant HLA class I alleles accompanied by computational tools for assigning HLA type to 4-digit resolution. Our proof-of-concept experiment included 21 blood samples, 18 cell lines, and multiple controls. The method is accurate, robust, and amenable to automation. Typing errors were restricted to homozygous samples or those with very closely related alleles from the same locus, but readily resolved by targeted DNA sequencing validation of flagged samples. High-throughput HLA typing technologies that are effective, yet inexpensive, can be used to analyze the world’s populations, benefiting both global public health and personalized health care. PMID:25505899

  18. Dynamic investigation of DNA bending and wrapping by type II topoisomerases

    NASA Astrophysics Data System (ADS)

    Shao, Qing; Finzi, Laura; Dunlap, David

    2009-11-01

    Type II topoisomerases catalyze DNA decatenation and unwinding which is crucial for cell division, and therefore type II topoisomerases are some of the main targets of anti-cancer drugs. A recent crystal structure shows that, during the catalytic cycle, a yeast type II topoimerase can bend a 10 base pair DNA segment by up to 150 degrees. Bacterial gyrase, another type II topoisomerase, can wrap DNA into a tight 180 degree turn. Bending a stiff polymer like DNA requires considerable energy and could represent the rate limiting step in the catalytic (topological) cycle. Using modified deoxyribonucleotides in PCR reactions, stiffer DNA fragments have been produced and used as substrates for topoisomerase II-mediated relaxation of plectonemes introduced in single molecules using magnetic tweezers. The wrapping ability of gyrase decreases for diamino-purine-substituted DNA in which every base pair has three hydrogen-bonds. The overall rate of relaxation of plectonemes by recombinant human topoisomerase II alpha also decreases. These results reveal the dynamic properties of DNA bending and wrapping by type II topisomerases and suggest that A:T base pair melting is a rate determining step for bending and wrapping.

  19. Cytogenetic and molecular aspects of absolute teratozoospermia: comparison between polymorphic and monomorphic forms.

    PubMed

    Brahem, Sonia; Elghezal, Hatem; Ghédir, Houda; Landolsi, Hanène; Amara, Abdelbacett; Ibala, Samira; Gribaa, Moez; Saad, Ali; Mehdi, Meriem

    2011-12-01

    To compare the results of cytogenetic and molecular analysis between absolute polymorphic and monomorphic teratozoospermia. The semen samples from patients with polymorphic teratozoospermia (n = 20), globozoospermia (n = 8), or macrocephalic sperm head syndrome (n = 12), and healthy fertile men (n = 20) were analyzed according to the World Health Organization criteria. The constitutional blood karyotype of the patients was performed on cultured lymphocytes, according to standard techniques. Microdeletion analysis of the Y chromosomes used a sequence tagged site-polymerase chain reaction technique. Triple-color fluorescent in situ hybridization for chromosomes X, Y, and 18 were used to analyze the meiotic segregation. DNA fragmentation was detected using the terminal desoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick-end labeling assay. Whatever the type of teratozoospermia, a normal karyotype and an absence of Y chromosome microdeletion were shown for all patients. A significant increase in the sperm aneuploidy rate and DNA fragmentation were shown, regardless of the type of teratozoospermia. Spermatozoa of the patients with globozoospermia carry an abnormal chromosomal constitution and DNA damage rate with the same frequency as that found in the sperm of patients with absolute polymorphic teratozoospermia. However, a greater sperm aneuploidy rate and DNA fragmentation were found in patients whose teratozoospermia was mainly characterized by increased rates of spermatozoa with macrocephalic head and multiple flagella. Our data have demonstrated that DNA fragmentation and sperm aneuploidy are critical tests in teratozoospermic men, because the results could negatively affect the intracytoplasmic sperm injection outcomes and might play an important role in the counseling of couples considering intracytoplasmic sperm injection. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Paenibacillus brassicae sp. nov., isolated from cabbage rhizosphere in Beijing, China.

    PubMed

    Gao, Miao; Yang, Hui; Zhao, Ji; Liu, Jun; Sun, Yan-hua; Wang, Yu-jiong; Sun, Jian-guang

    2013-03-01

    A novel Gram-positive, rod-shaped, motile, spore-forming, nitrogen-fixing bacterium, designated strain 112(T), was isolated from cabbage rhizosphere in Beijing, China. The strain was found to grow at 10-40 °C and pH 4-11, with an optimum of 30 °C and pH 7.0, respectively. Phylogenetic analysis based on a fragment of the full-length 16S rRNA gene sequence revealed that strain 112(T) is a member of the genus Paenibacillus. High levels of 16S rRNA gene similarities were found between strain 112(T), Paenibacillus sabinae DSM 17841(T) (97.82 %) and Paenibacillus forsythiae DSM 17842(T) (97.22 %). However, the DNA-DNA hybridization values between strain 112(T) and the type strains of these two species were 10.36 and 6.28 %, respectively. The predominant menaquinone was found to be menaquinone 7 (MK-7). The major fatty acids were determined to be anteiso-C(15:0) and C(16:0). The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminophospholipids. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. The DNA G+C content was determined to be 55.4 mol%. On the basis of its phenotypic characteristics, 16S rRNA gene sequence analysis and the value of DNA-DNA hybridization, strain 112(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus brassicae sp. nov. is proposed. The type strain is 112(T) (= ACCC 01125(T) = DSM 24983(T)).

Top