Sample records for dna-based diet analysis

  1. Adélie Penguin Population Diet Monitoring by Analysis of Food DNA in Scats

    PubMed Central

    Jarman, Simon N.; McInnes, Julie C.; Faux, Cassandra; Polanowski, Andrea M.; Marthick, James; Deagle, Bruce E.; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches. PMID:24358158

  2. Adélie penguin population diet monitoring by analysis of food DNA in scats.

    PubMed

    Jarman, Simon N; McInnes, Julie C; Faux, Cassandra; Polanowski, Andrea M; Marthick, James; Deagle, Bruce E; Southwell, Colin; Emmerson, Louise

    2013-01-01

    The Adélie penguin is the most important animal currently used for ecosystem monitoring in the Southern Ocean. The diet of this species is generally studied by visual analysis of stomach contents; or ratios of isotopes of carbon and nitrogen incorporated into the penguin from its food. There are significant limitations to the information that can be gained from these methods. We evaluated population diet assessment by analysis of food DNA in scats as an alternative method for ecosystem monitoring with Adélie penguins as an indicator species. Scats were collected at four locations, three phases of the breeding cycle, and in four different years. A novel molecular diet assay and bioinformatics pipeline based on nuclear small subunit ribosomal RNA gene (SSU rDNA) sequencing was used to identify prey DNA in 389 scats. Analysis of the twelve population sample sets identified spatial and temporal dietary change in Adélie penguin population diet. Prey diversity was found to be greater than previously thought. Krill, fish, copepods and amphipods were the most important food groups, in general agreement with other Adélie penguin dietary studies based on hard part or stable isotope analysis. However, our DNA analysis estimated that a substantial portion of the diet was gelatinous groups such as jellyfish and comb jellies. A range of other prey not previously identified in the diet of this species were also discovered. The diverse prey identified by this DNA-based scat analysis confirms that the generalist feeding of Adélie penguins makes them a useful indicator species for prey community composition in the coastal zone of the Southern Ocean. Scat collection is a simple and non-invasive field sampling method that allows DNA-based estimation of prey community differences at many temporal and spatial scales and provides significant advantages over alternative diet analysis approaches.

  3. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias.

    PubMed

    Thomas, Austen C; Jarman, Simon N; Haman, Katherine H; Trites, Andrew W; Deagle, Bruce E

    2014-08-01

    Ecologists are increasingly interested in quantifying consumer diets based on food DNA in dietary samples and high-throughput sequencing of marker genes. It is tempting to assume that food DNA sequence proportions recovered from diet samples are representative of consumer's diet proportions, despite the fact that captive feeding studies do not support that assumption. Here, we examine the idea of sequencing control materials of known composition along with dietary samples in order to correct for technical biases introduced during amplicon sequencing and biological biases such as variable gene copy number. Using the Ion Torrent PGM(©) , we sequenced prey DNA amplified from scats of captive harbour seals (Phoca vitulina) fed a constant diet including three fish species in known proportions. Alongside, we sequenced a prey tissue mix matching the seals' diet to generate tissue correction factors (TCFs). TCFs improved the diet estimates (based on sequence proportions) for all species and reduced the average estimate error from 28 ± 15% (uncorrected) to 14 ± 9% (TCF-corrected). The experimental design also allowed us to infer the magnitude of prey-specific digestion biases and calculate digestion correction factors (DCFs). The DCFs were compared with possible proxies for differential digestion (e.g. fish protein%, fish lipid%) revealing a strong relationship between the DCFs and percent lipid of the fish prey, suggesting prey-specific corrections based on lipid content would produce accurate diet estimates in this study system. These findings demonstrate the value of parallel sequencing of food tissue mixtures in diet studies and offer new directions for future research in quantitative DNA diet analysis. © 2013 John Wiley & Sons Ltd.

  4. DNA-Based Diet Analysis for Any Predator

    PubMed Central

    Dunshea, Glenn

    2009-01-01

    Background Prey DNA from diet samples can be used as a dietary marker; yet current methods for prey detection require a priori diet knowledge and/or are designed ad hoc, limiting their scope. I present a general approach to detect diverse prey in the feces or gut contents of predators. Methodology/Principal Findings In the example outlined, I take advantage of the restriction site for the endonuclease Pac I which is present in 16S mtDNA of most Odontoceti mammals, but absent from most other relevant non-mammalian chordates and invertebrates. Thus in DNA extracted from feces of these mammalian predators Pac I will cleave and exclude predator DNA from a small region targeted by novel universal primers, while most prey DNA remain intact allowing prey selective PCR. The method was optimized using scat samples from captive bottlenose dolphins (Tursiops truncatus) fed a diet of 6–10 prey species from three phlya. Up to five prey from two phyla were detected in a single scat and all but one minor prey item (2% of the overall diet) were detected across all samples. The same method was applied to scat samples from free-ranging bottlenose dolphins; up to seven prey taxa were detected in a single scat and 13 prey taxa from eight teleost families were identified in total. Conclusions/Significance Data and further examples are provided to facilitate rapid transfer of this approach to any predator. This methodology should prove useful to zoologists using DNA-based diet techniques in a wide variety of study systems. PMID:19390570

  5. Universal DNA-based methods for assessing the diet of grazing livestock and wildlife from feces.

    PubMed

    Pegard, Anthony; Miquel, Christian; Valentini, Alice; Coissac, Eric; Bouvier, Frédéric; François, Dominique; Taberlet, Pierre; Engel, Erwan; Pompanon, François

    2009-07-08

    Because of the demand for controlling livestock diets, two methods that characterize the DNA of plants present in feces were developed. After DNA extraction from fecal samples, a short fragment of the chloroplastic trnL intron was amplified by PCR using a universal primer pair for plants. The first method generates a signature that is the electrophoretic migration pattern of the PCR product. The second method consists of sequencing several hundred DNA fragments from the PCR product through pyrosequencing. These methods were validated with a blind analysis of feces from concentrate- and pasture-fed lambs. The signature method allowed differentiation of the two diets and confirmed the presence of concentrate in one of them. The pyrosequencing method allowed the identification of up to 25 taxa in a diet. These methods are complementary to the chemical methods already used. They could be applied to the control of diets and the study of food preferences.

  6. Estimation of a Killer Whale (Orcinus orca) Population’s Diet Using Sequencing Analysis of DNA from Feces

    PubMed Central

    Ford, Michael J.; Hempelmann, Jennifer; Hanson, M. Bradley; Ayres, Katherine L.; Baird, Robin W.; Emmons, Candice K.; Lundin, Jessica I.; Schorr, Gregory S.; Wasser, Samuel K.; Park, Linda K.

    2016-01-01

    Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca) in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%). Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population’s summer diet. PMID:26735849

  7. Estimation of a Killer Whale (Orcinus orca) Population's Diet Using Sequencing Analysis of DNA from Feces.

    PubMed

    Ford, Michael J; Hempelmann, Jennifer; Hanson, M Bradley; Ayres, Katherine L; Baird, Robin W; Emmons, Candice K; Lundin, Jessica I; Schorr, Gregory S; Wasser, Samuel K; Park, Linda K

    2016-01-01

    Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca) in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%). Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population's summer diet.

  8. DNA Repair and the Accumulation of Oxidatively Damaged DNA Are Affected by Fruit Intake in Mice

    PubMed Central

    Croteau, Deborah L.; de Souza-Pinto, Nadja C.; Harboe, Charlotte; Keijzers, Guido; Zhang, Yongqing; Becker, Kevin; Sheng, Shan

    2010-01-01

    AGING is associated with elevated oxidative stress and DNA damage. To achieve healthy aging, we must begin to understand how diet affects cellular processes. We postulated that fruit-enriched diets might initiate a program of enhanced DNA repair and thereby improve genome integrity. C57Bl/6 J mice were fed for 14 weeks a control diet or a diet with 8% peach or nectarine extract. The activities of DNA repair enzymes, the level of DNA damage, and gene expression changes were measured. Our study showed that repair of various oxidative DNA lesions was more efficient in liver extracts derived from mice fed fruit-enriched diets. In support of these findings, gas chromatography–mass spectrometry analysis revealed that there was a decrease in the levels of formamidopyrimidines in peach-fed mice compared with the controls. Additionally, microarray analysis revealed that NTH1 was upregulated in peach-fed mice. Taken together, these results suggest that an increased intake of fruits might modulate the efficiency of DNA repair, resulting in altered levels of DNA damage. PMID:20847039

  9. Diet Quality Associated with Total Sodium Intake among US Adults Aged ≥18 Years-National Health and Nutrition Examination Survey, 2009-2012.

    PubMed

    Mercado, Carla I; Cogswell, Mary E; Perrine, Cria G; Gillespie, Cathleen

    2017-10-25

    Diet quality or macronutrient composition of total daily sodium intake (dNa) <2300 mg/day in the United States (US) is unknown. Using data from 2011-2014 NHANES (National Health and Nutrition Examination Survey), we examined 24-h dietary recalls ( n = 10,142) from adults aged ≥18 years and investigated how diet composition and quality are associated with dNa. Diet quality was assessed using components of macronutrients and Healthy Eating Index 2010 (HEI-2010). Associations were tested using linear regression analysis adjusted for total energy (kcal), age, gender, and race/ethnicity. One-day dNa in the lower quartiles were more likely reported among women, older adults (≥65 years old), and lower quartiles of total energy (kcal) ( p -values ≤ 0.001). With increasing dNa, there was an increase in the mean protein, fiber, and total fat densities, while total carbohydrates densities decreased. As dNa increased, meat protein, refined grains, dairy, and total vegetables, greens and beans densities increased; while total fruit and whole fruit densities decreased. Modified HEI-2010 total score (total score without sodium component) increased as dNa increased (adjusted coefficient: 0.11, 95% confidence interval = 0.07, 0.15). Although diet quality, based on modified HEI-2010 total score, increased on days with greater dNa, there is much room for improvement with mean diet quality of about half of the optimal level.

  10. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids released via lipolysis of white adipose tissue. PMID:27187182

  11. From Puffins to Plankton: A DNA-Based Analysis of a Seabird Food Chain in the Northern Gulf of Maine

    PubMed Central

    Bowser, A. Kirsten; Diamond, Antony W.; Addison, Jason A.

    2013-01-01

    The predator-prey interactions within food chains are used to both characterize and understand ecosystems. Conventional methods of constructing food chains from visual identification of prey in predator diet can suffer from poor taxonomic resolution, misidentification, and bias against small or completely digestible prey. Next-generation sequencing (NGS) technology has become a powerful tool for diet reconstruction through barcoding of DNA in stomach content or fecal samples. Here we use multi-locus (16S and CO1) next-generation sequencing of DNA barcodes on the feces of Atlantic puffin (Fratercula arctica) chicks (n=65) and adults (n=64) and the stomach contents of their main prey, Atlantic herring (Clupea harengus, n=44) to investigate a previously studied food chain. We compared conventional and molecular-derived chick diet, tested the similarity between the diets of puffin adults and chicks, and determined whether herring prey can be detected in puffin diet samples. There was high variability in the coverage of prey groups between 16S and CO1 markers. We identified more unique prey with our 16S compared to CO1 barcoding markers (51 and 39 taxa respectively) with only 12 taxa identified by both genes. We found no significant difference between the 16S-identified diets of puffin adults (n=17) and chicks (n=41). Our molecular method is more taxonomically resolved and detected chick prey at higher frequencies than conventional field observations. Many likely planktonic prey of herring were detected in feces from puffin adults and chicks, highlighting the impact secondary consumption may have on the interpretation of molecular dietary analysis. This study represents the first simultaneous molecular investigation into the diet of multiple components of a food chain and highlights the utility of a multi-locus approach to diet reconstruction that is broadly applicable to food web analysis. PMID:24358258

  12. Discovering hidden biodiversity: the use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems.

    PubMed

    Jo, Hyunbin; Ventura, Marc; Vidal, Nicolas; Gim, Jeong-Soo; Buchaca, Teresa; Barmuta, Leon A; Jeppesen, Erik; Joo, Gea-Jae

    2016-01-01

    Ecological monitoring contributes to the understanding of complex ecosystem functions. The diets of fish reflect the surrounding environment and habitats and may, therefore, act as useful integrating indicators of environmental status. It is, however, often difficult to visually identify items in gut contents to species level due to digestion of soft-bodied prey beyond visual recognition, but new tools rendering this possible are now becoming available. We used a molecular approach to determine the species identities of consumed diet items of an introduced generalist feeder, brown trout (Salmo trutta), in 10 Tasmanian lakes and compared the results with those obtained from visual quantification of stomach contents. We obtained 44 unique taxa (OTUs) belonging to five phyla, including seven classes, using the barcode of life approach from cytochrome oxidase I (COI). Compared with visual quantification, DNA analysis showed greater accuracy, yielding a 1.4-fold higher number of OTUs. Rarefaction curve analysis showed saturation of visually inspected taxa, while the curves from the DNA barcode did not saturate. The OTUs with the highest proportions of haplotypes were the families of terrestrial insects Formicidae, Chrysomelidae, and Torbidae and the freshwater Chironomidae. Haplotype occurrence per lake was negatively correlated with lake depth and transparency. Nearly all haplotypes were only found in one fish gut from a single lake. Our results indicate that DNA barcoding of fish diets is a useful and complementary method for discovering hidden biodiversity.

  13. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem.

    PubMed

    Jakubavičiūtė, Eglė; Bergström, Ulf; Eklöf, Johan S; Haenel, Quiterie; Bourlat, Sarah J

    2017-01-01

    The three-spined stickleback (Gasterosteus aculeatus L., hereafter 'stickleback') is a common mesopredatory fish in marine, coastal and freshwater areas. In large parts of the Baltic Sea, stickleback densities have increased >10-fold during the last decades, and it is now one of the dominating fish species both in terms of biomass and effects on lower trophic levels. Still, relatively little is known about its diet-knowledge which is essential to understand the increasing role sticklebacks play in the ecosystem. Fish diet analyses typically rely on visual identification of stomach contents, a labour-intensive method that is made difficult by prey digestion and requires expert taxonomic knowledge. However, advances in DNA-based metabarcoding methods promise a simultaneous identification of most prey items, even from semi-digested tissue. Here, we studied the diet of stickleback from the western Baltic Sea coast using both DNA metabarcoding and visual analysis of stomach contents. Using the cytochrome oxidase (CO1) marker we identified 120 prey taxa in the diet, belonging to 15 phyla, 83 genera and 84 species. Compared to previous studies, this is an unusually high prey diversity. Chironomids, cladocerans and harpacticoids were dominating prey items. Large sticklebacks were found to feed more on benthic prey, such as amphipods, gastropods and isopods. DNA metabarcoding gave much higher taxonomic resolution (median rank genus) than visual analysis (median rank order), and many taxa identified using barcoding could not have been identified visually. However, a few taxa identified by visual inspection were not revealed by barcoding. In summary, our results suggest that the three-spined stickleback feeds on a wide variety of both pelagic and benthic organisms, indicating that the strong increase in stickleback populations may affect many parts of the Baltic Sea coastal ecosystem.

  14. Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions.

    PubMed

    Deagle, B E; Tollit, D J; Jarman, S N; Hindell, M A; Trites, A W; Gales, N J

    2005-05-01

    The DNA of prey present in animal scats may provide a valuable source of information for dietary studies. We conducted a captive feeding trial to test whether prey DNA could be reliably detected in scat samples from Steller sea lions (Eumetopias jubatus). Two sea lions were fed a diet of fish (five species) and squid (one species), and DNA was extracted from the soft component of collected scats. Most of the DNA obtained came from the predator, but prey DNA could be amplified using prey-specific primers. The four prey species fed in consistent daily proportions throughout the trial were detected in more than 90% of the scat DNA extractions. Squid and sockeye salmon, which were fed as a relatively small percentage of the daily diet, were detected as reliably as the more abundant diet items. Prey detection was erratic in scats collected when the daily diet was fed in two meals that differed in prey composition, suggesting that prey DNA is passed in meal specific pulses. Prey items that were removed from the diet following one day of feeding were only detected in scats collected within 48 h of ingestion. Proportions of fish DNA present in eight scat samples (evaluated through the screening of clone libraries) were roughly proportional to the mass of prey items consumed, raising the possibility that DNA quantification methods could provide semi-quantitative diet composition data. This study should be of broad interest to researchers studying diet since it highlights an approach that can accurately identify prey species and is not dependent on prey hard parts surviving digestion.

  15. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  16. Using next-generation sequencing to analyse the diet of a highly endangered land snail (Powelliphanta augusta) feeding on endemic earthworms.

    PubMed

    Boyer, Stéphane; Wratten, Stephen D; Holyoake, Andrew; Abdelkrim, Jawad; Cruickshank, Robert H

    2013-01-01

    Predation is often difficult to observe or quantify for species that are rare, very small, aquatic or nocturnal. The assessment of such species' diet can be conducted using molecular methods that target prey DNA remaining in predators' guts and faeces. These techniques do not require high taxonomic expertise, are applicable to soft-bodied prey and allow for identification at the species level. However, for generalist predators, the presence of mixed prey DNA in guts and faeces can be a major impediment as it requires development of specific primers for each potential prey species for standard (Sanger) sequencing. Therefore, next generation sequencing methods have recently been applied to such situations. In this study, we used 454-pyrosequencing to analyse the diet of Powelliphantaaugusta, a carnivorous landsnail endemic to New Zealand and critically endangered after most of its natural habitat has been lost to opencast mining. This species was suspected to feed mainly on earthworms. Although earthworm tissue was not detectable in snail faeces, earthworm DNA was still present in sufficient quantity to conduct molecular analyses. Based on faecal samples collected from 46 landsnails, our analysis provided a complete map of the earthworm-based diet of P. augusta. Predated species appear to be earthworms that live in the leaf litter or earthworms that come to the soil surface at night to feed on the leaf litter. This indicates that P. augusta may not be selective and probably predates any earthworm encountered in the leaf litter. These findings are crucial for selecting future translocation areas for this highly endangered species. The molecular diet analysis protocol used here is particularly appropriate to study the diet of generalist predators that feed on liquid or soft-bodied prey. Because it is non-harmful and non-disturbing for the studied animals, it is also applicable to any species of conservation interest.

  17. Using Next-Generation Sequencing to Analyse the Diet of a Highly Endangered Land Snail (Powelliphanta augusta) Feeding on Endemic Earthworms

    PubMed Central

    Boyer, Stéphane; Wratten, Stephen D.; Holyoake, Andrew; Abdelkrim, Jawad; Cruickshank, Robert H.

    2013-01-01

    Predation is often difficult to observe or quantify for species that are rare, very small, aquatic or nocturnal. The assessment of such species’ diet can be conducted using molecular methods that target prey DNA remaining in predators’ guts and faeces. These techniques do not require high taxonomic expertise, are applicable to soft-bodied prey and allow for identification at the species level. However, for generalist predators, the presence of mixed prey DNA in guts and faeces can be a major impediment as it requires development of specific primers for each potential prey species for standard (Sanger) sequencing. Therefore, next generation sequencing methods have recently been applied to such situations. In this study, we used 454-pyrosequencing to analyse the diet of Powelliphantaaugusta , a carnivorous landsnail endemic to New Zealand and critically endangered after most of its natural habitat has been lost to opencast mining. This species was suspected to feed mainly on earthworms. Although earthworm tissue was not detectable in snail faeces, earthworm DNA was still present in sufficient quantity to conduct molecular analyses. Based on faecal samples collected from 46 landsnails, our analysis provided a complete map of the earthworm-based diet of P . augusta . Predated species appear to be earthworms that live in the leaf litter or earthworms that come to the soil surface at night to feed on the leaf litter. This indicates that P . augusta may not be selective and probably predates any earthworm encountered in the leaf litter. These findings are crucial for selecting future translocation areas for this highly endangered species. The molecular diet analysis protocol used here is particularly appropriate to study the diet of generalist predators that feed on liquid or soft-bodied prey. Because it is non-harmful and non-disturbing for the studied animals, it is also applicable to any species of conservation interest. PMID:24086671

  18. Interaction of methylation-related genetic variants with circulating fatty acids on plasma lipids: a meta-analysis of 7 studies & methylation analysis of 3 studies in the Cohorts for Heart & Aging Research

    USDA-ARS?s Scientific Manuscript database

    Background: DNA methylation is influenced by diet and single nucleotide polymorphisms (SNPs), and methylation modulates gene expression. Objective: We aimed to explore whether the gene-by-diet interactions on blood lipids act through DNA methylation. Design: We selected 7 SNPs on the basis of predic...

  19. Diet-Induced Weight Loss Reduces DNA Damage and Cardiometabolic Risk Factors in Overweight/Obese Women with Polycystic Ovary Syndrome.

    PubMed

    Soares, Nayara Pereira; Santos, Ana Celly Souza dos; Costa, Eduardo Caldas; Azevedo, George Dantas; Damasceno, Débora Cristina; Fayh, Ana Paula Trussardi; Lemos, Telma Maria Araújo Moura

    2016-01-01

    We aimed to investigate the impact of following a diet to induce weight loss (500 kcal deficit per day) over DNA damage and cardiometabolic risk factors in women with overweight/obesity diagnosed with polycystic ovary syndrome (PCOS). A study was conducted in Natal, RN, Brazil selecting overweight/obese (body mass index ≥25 and <39 kg/m2) women (18-35 years). The levels of DNA damage were assessed by a single cell gel electrophoresis. Repeated 24 h dietary recall questionnaires, anthropometry, biochemical profile and sex hormones were collected at baseline and after 12 weeks of intervention. Women exhibiting a decrease in the markers of DNA damage: tail intensity (24.35 ± 5.86 - pre diet vs. 17.15 ± 5.04 - post-diet; p < 0.001) and tail moment (20.47 ± 7.85 - pre diet vs. 14.13 ± 6.29 - post-diet; p < 0.002). Reduction of calorie intake, weight loss, decreased sexual hormone and cardiometabolic markers such as insulin, homeostasis model assessment of insulin resistance and low-density lipoprotein cholesterol were verified In the multivariate regression analysis, quantitative insulin sensitivity check index and progesterone were responsible for the variation markers in DNA damage before the diet, losing its influence upon diet. DNA damage and the impact of cardiometabolic risk factors decreased after the intervention in women with PCOS, indicating the relevance of a nutritional approach in this group of patients. © 2016 S. Karger AG, Basel.

  20. A lifelong exposure to a Western-style diet, but not aging, alters global DNA methylation in mouse colon

    PubMed Central

    Tammen, Stephanie A; Liu, Zhenhua; Friso, Simonetta

    2015-01-01

    BACKGROUND/OBJECTIVES Previous studies have indicated that when compared to young mice, old mice have lower global DNA methylation and higher p16 promoter methylation in colonic mucosa, which is a common finding in colon cancer. It is also known that a Western-style diet (WSD) high in fat and calories, and low in calcium, vitamin D, fiber, methionine and choline (based on the AIN 76A diet) is tumorigenic in colons of mice. Because DNA methylation is modifiable by diet, we investigate whether a WSD disrupts DNA methylation patterns, creating a tumorigenic environment. SUBJECTVIES/METHODS We investigated the effects of a WSD and aging on global and p16 promoter DNA methylation in the colon. Two month old male C57BL/6 mice were fed either a WSD or a control diet (AIN76A) for 6, 12 or 17 months. Global DNA methylation, p16 promoter methylation and p16 expression were determined by LC/MS, methyl-specific PCR and real time RT-PCR, respectively. RESULTS The WSD group demonstrated significantly decreased global DNA methylation compared with the control at 17 months (4.05 vs 4.31%, P = 0.019). While both diets did not change global DNA methylation over time, mice fed the WSD had lower global methylation relative to controls when comparing all animals (4.13 vs 4.30%, P = 0.0005). There was an increase in p16 promoter methylation from 6 to 17 months in both diet groups (P < 0.05) but no differences were observed between diet groups. Expression of p16 increased with age in both control and WSD groups. CONCLUSIONS In this model a WSD reduces global DNA methylation, whereas aging itself has no affect. Although the epigenetic effect of aging was not strong enough to alter global DNA methylation, changes in promoter-specific methylation and gene expression occurred with aging regardless of diet, demonstrating the complexity of epigenetic patterns. PMID:26244073

  1. Modulation of Active Gut Microbiota by Lactobacillus rhamnosus GG in a Diet Induced Obesity Murine Model.

    PubMed

    Ji, Yosep; Park, Soyoung; Park, Haryung; Hwang, Eunchong; Shin, Hyeunkil; Pot, Bruno; Holzapfel, Wilhelm H

    2018-01-01

    Gut microbiota play a key role in the development of metabolic disorders. Defining and correlating structural shifts in gut microbial assemblages with conditions related to metabolic syndrome have, however, been proven difficult. Results from 16S genomic DNA and 16S ribosomal RNA analyses of fecal samples may differ widely, leading to controversial information on the whole microbial community and metabolically active microbiota. Using a C57BL/6J murine model, we compared data from 16S genomic DNA and ribosomal RNA of the fecal microbiota. The study included three groups of experimental animals comprising two groups with high fat diet induced obesity (DIO) while a third group (control) received a low fat diet. One of the DIO groups was treated with the probiotic Lactobacillus rhamnosus GG (LGG). Compared to the data obtained by DNA analysis, a significantly higher abundance of OTUs was accounted for by RNA analysis. Moreover, rRNA based analysis showed a modulation of the active gut microbial population in the DIO group receiving LGG, thus reflecting a change in the induced obesity status of the host. As one of the most widely studied probiotics the functionality of LGG has been linked to the alleviation of metabolic syndrome, and, in some cases, to an impact on the microbiome. Yet, it appears that no study has reported thus far on modulation of the active microbiota by LGG treatment. It is postulated that the resulting impact on calorie consumption affects weight gain concomitantly with modulation of the functional structure of the gut microbial population. Using the 16S rRNA based approach therefore decisively increased the precision of gut microbiota metagenome analysis.

  2. Different mutation patterns of mitochondrial DNA displacement-loop in hepatocellular carcinomas induced by N-nitrosodiethylamine and a choline-deficient l-amino acid-defined diet in rats.

    PubMed

    Onishi, Mariko; Sokuza, Yui; Nishikawa, Tomoki; Mori, Chiharu; Uwataki, Kimiko; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-10-12

    Mutations of the mitochondria DNA (mtDNA) displacement loop (D-loop) were investigated to clarify different changes of exogenous and endogenous liver carcinogenesis in rats. We induced hepatocellular carcinomas (HCCs) in rats with N-nitrosodiethylamine (DEN) and a choline-deficient l-amino acid-defined (CDAA) diet. DNAs were extracted from 10 HCCs induced by DEN and 10 HCCs induced by the CDAA diet. To identify mutations in mtDNA D-loop, polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis, followed by nucleotide sequencing, was performed. Mutations were detected in 5 out of 10 HCCs (50%) induced by DEN. Four out of 5 mutations were G/C to A/T transitions at positions 15707, 15717, 15930, and 16087, and one T/A to C/G transition at position 15559. By contrast, no mutations were found in 10 HCCs induced by the CDAA diet. These results demonstrated that mutations in mtDNA D-loop occur in rat HCCs induced by DEN but not by the CDAA diet, suggesting that mtDNA D-loop is a target of exogenous liver carcinogenesis in rats.

  3. Sliding Window Analyses for Optimal Selection of Mini-Barcodes, and Application to 454-Pyrosequencing for Specimen Identification from Degraded DNA

    PubMed Central

    Boyer, Stephane; Brown, Samuel D. J.; Collins, Rupert A.; Cruickshank, Robert H.; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Wratten, Stephen D.

    2012-01-01

    DNA barcoding remains a challenge when applied to diet analyses, ancient DNA studies, environmental DNA samples and, more generally, in any cases where DNA samples have not been adequately preserved. Because the size of the commonly used barcoding marker (COI) is over 600 base pairs (bp), amplification fails when the DNA molecule is degraded into smaller fragments. However, relevant information for specimen identification may not be evenly distributed along the barcoding region, and a shorter target can be sufficient for identification purposes. This study proposes a new, widely applicable, method to compare the performance of all potential ‘mini-barcodes’ for a given molecular marker and to objectively select the shortest and most informative one. Our method is based on a sliding window analysis implemented in the new R package SPIDER (Species IDentity and Evolution in R). This method is applicable to any taxon and any molecular marker. Here, it was tested on earthworm DNA that had been degraded through digestion by carnivorous landsnails. A 100 bp region of 16 S rDNA was selected as the shortest informative fragment (mini-barcode) required for accurate specimen identification. Corresponding primers were designed and used to amplify degraded earthworm (prey) DNA from 46 landsnail (predator) faeces using 454-pyrosequencing. This led to the detection of 18 earthworm species in the diet of the snail. We encourage molecular ecologists to use this method to objectively select the most informative region of the gene they aim to amplify from degraded DNA. The method and tools provided here, can be particularly useful (1) when dealing with degraded DNA for which only small fragments can be amplified, (2) for cases where no consensus has yet been reached on the appropriate barcode gene, or (3) to allow direct analysis of short reads derived from massively parallel sequencing without the need for bioinformatic consolidation. PMID:22666489

  4. Detecting in situ copepod diet diversity using molecular technique: development of a copepod/symbiotic ciliate-excluding eukaryote-inclusive PCR protocol.

    PubMed

    Hu, Simin; Guo, Zhiling; Li, Tao; Carpenter, Edward J; Liu, Sheng; Lin, Senjie

    2014-01-01

    Knowledge of in situ copepod diet diversity is crucial for accurately describing pelagic food web structure but is challenging to achieve due to lack of an easily applicable methodology. To enable analysis with whole copepod-derived DNAs, we developed a copepod-excluding 18S rDNA-based PCR protocol. Although it is effective in depressing amplification of copepod 18S rDNA, its applicability to detect diverse eukaryotes in both mono- and mixed-species has not been demonstrated. Besides, the protocol suffers from the problem that sequences from symbiotic ciliates are overrepresented in the retrieved 18S rDNA libraries. In this study, we designed a blocking primer to make a combined primer set (copepod/symbiotic ciliate-excluding eukaryote-common: CEEC) to depress PCR amplification of symbiotic ciliate sequences while maximizing the range of eukaryotes amplified. We firstly examined the specificity and efficacy of CEEC by PCR-amplifying DNAs from 16 copepod species, 37 representative organisms that are potential prey of copepods and a natural microplankton sample, and then evaluated the efficiency in reconstructing diet composition by detecting the food of both lab-reared and field-collected copepods. Our results showed that the CEEC primer set can successfully amplify 18S rDNA from a wide range of isolated species and mixed-species samples while depressing amplification of that from copepod and targeted symbiotic ciliate, indicating the universality of CEEC in specifically detecting prey of copepods. All the predetermined food offered to copepods in the laboratory were successfully retrieved, suggesting that the CEEC-based protocol can accurately reconstruct the diets of copepods without interference of copepods and their associated ciliates present in the DNA samples. Our initial application to analyzing the food composition of field-collected copepods uncovered diverse prey species, including those currently known, and those that are unsuspected, as copepod prey. While testing is required, this protocol provides a useful strategy for depicting in situ dietary composition of copepods.

  5. Pyrosequencing of prey DNA in reptile faeces: analysis of earthworm consumption by slow worms.

    PubMed

    Brown, David S; Jarman, Simon N; Symondson, William O C

    2012-03-01

    Little quantitative ecological information exists on the diets of most invertebrate feeding reptiles, particularly nocturnal or elusive species that are difficult to observe. In the UK and elsewhere, reptiles are legally required to be relocated before land development can proceed, but without knowledge of their dietary requirements, the suitability of receptor sites cannot be known. Here, we tested the ability of non-invasive DNA-based molecular diagnostics (454 pyrosequencing) to analyse reptile diets, with the specific aims of determining which earthworm species are exploited by slow worms (the legless lizard Anguis fragilis) and whether they feed on the deeper-living earthworm species that only come to the surface at night. Slow worm faecal samples from four different habitats were analysed using earthworm-specific PCR primers. We found that 86% of slow worms (N=80) had eaten earthworms. In lowland heath and marshy/acid grassland, Lumbricus rubellus, a surface-dwelling epigeic species, dominated slow worm diet. In two other habitats, riverside pasture and calciferous coarse grassland, diet was dominated by deeper-living anecic and endogeic species. We conclude that all species of earthworm are exploited by these reptiles and lack of specialization allows slow worms to thrive in a wide variety of habitats. Pyrosequencing of prey DNA in faeces showed promise as a practical, rapid and relatively inexpensive means of obtaining detailed and valuable ecological information on the diets of reptiles. © 2011 Blackwell Publishing Ltd.

  6. A Low Glycaemic Index Diet in Pregnancy Induces DNA Methylation Variation in Blood of Newborns: Results from the ROLO Randomised Controlled Trial.

    PubMed

    Geraghty, Aisling A; Sexton-Oates, Alexandra; O'Brien, Eileen C; Alberdi, Goiuri; Fransquet, Peter; Saffery, Richard; McAuliffe, Fionnuala M

    2018-04-06

    The epigenetic profile of the developing fetus is sensitive to environmental influence. Maternal diet has been shown to influence DNA methylation patterns in offspring, but research in humans is limited. We investigated the impact of a low glycaemic index dietary intervention during pregnancy on offspring DNA methylation patterns using a genome-wide methylation approach. Sixty neonates were selected from the ROLO (Randomised cOntrol trial of LOw glycaemic index diet to prevent macrosomia) study: 30 neonates from the low glycaemic index intervention arm and 30 from the control, whose mothers received no specific dietary advice. DNA methylation was investigated in 771,484 CpG sites in free DNA from cord blood serum. Principal component analysis and linear regression were carried out comparing the intervention and control groups. Gene clustering and pathway analysis were also explored. Widespread variation was identified in the newborns exposed to the dietary intervention, accounting for 11% of the total level of DNA methylation variation within the dataset. No association was found with maternal early-pregnancy body mass index (BMI), infant sex, or birthweight. Pathway analysis identified common influences of the intervention on gene clusters plausibly linked to pathways targeted by the intervention, including cardiac and immune functioning. Analysis in 60 additional samples from the ROLO study failed to replicate the original findings. Using a modest-sized discovery sample, we identified preliminary evidence of differential methylation in progeny of mothers exposed to a dietary intervention during pregnancy.

  7. Reduced Susceptibility of DNA Methyltransferase 1 Hypomorphic (Dnmt1N/+) Mice to Hepatic Steatosis upon Feeding Liquid Alcohol Diet

    PubMed Central

    Yu, Lianbo; Zhang, Xiaoli; Majumder, Sarmila; Motiwala, Tasneem; Khan, Nuzhat; Belury, Martha; McClain, Craig; Jacob, Samson; Ghoshal, Kalpana

    2012-01-01

    Background Methylation at C-5 (5-mdC) of CpG base pairs, the most abundant epigenetic modification of DNA, is catalyzed by 3 essential DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b). Aberrations in DNA methylation and Dnmts are linked to different diseases including cancer. However, their role in alcoholic liver disease (ALD) has not been elucidated. Methodology/Principal Findings Dnmt1 wild type (Dnmt1 +/+) and hypomorphic (Dnmt1 N/+) male mice that express reduced level of Dnmt1 were fed Lieber-DeCarli liquid diet containing ethanol for 6 weeks. Control mice were pair-fed calorie-matched alcohol-free liquid diet, and Dnmtase activity, 5-mdC content, gene expression profile and liver histopathology were evaluated. Ethanol feeding caused pronounced decrease in hepatic Dnmtase activity in Dnmt1 +/+ mice due to decrease in Dnmt1 and Dnmt3b protein levels and upregulation of miR-148 and miR-152 that target both Dnmt1 and Dnmt3b. Microarray and qPCR analysis showed that the genes involved in lipid, xenobiotic and glutathione metabolism, mitochondrial function and cell proliferation were dysregulated in the wild type mice fed alcohol. Surprisingly, Dnmt1 N/+ mice were less susceptible to alcoholic steatosis compared to Dnmt1 +/+ mice. Expression of several key genes involved in alcohol (Aldh3b1), lipid (Ppara, Lepr, Vldlr, Agpat9) and xenobiotic (Cyp39a1) metabolism, and oxidative stress (Mt-1, Fmo3) were significantly (P<0.05) altered in Dnmt1 N/+ mice relative to the wild type mice fed alcohol diet. However, CpG islands encompassing the promoter regions of Agpat9, Lepr, Mt1 and Ppara were methylation-free in both genotypes irrespective of the diet, suggesting that promoter methylation does not regulate their expression. Similarly, 5-mdC content of the liver genome, as measured by LC-MS/MS analysis, was not affected by alcohol diet in the wild type or hypomorphic mice. Conclusions/Significance Although feeding alcohol diet reduced Dnmtase activity, the loss of one copy of Dnmt1 protected mice from alcoholic hepatosteatosis by dysregulating genes involved in lipid metabolism and oxidative stress. PMID:22905112

  8. Anti-inflammatory effects and the molecular pattern of the therapeutic effects of dietary seeds of Adenanthera Pavonina in albino rats

    NASA Astrophysics Data System (ADS)

    Afolabi, Israel Sunmola; Olawole, Tolulope Dorcas; Adams, Khadijat Abiola; Shopeju, Omolola Ashiedu; Ezeaku, Mmaegbunem Chidera

    2018-04-01

    Adenanthera pavonina is a woody specie of Leguminosae-Mimosiodaea that is widely present across the globe. Little attention has been given to the dietary importance of the seeds, which have been linked with the traditional management of inflammatory conditions and several other diseases. This study determines the anti-inflammatory potential and the molecular effects of consuming the seeds compared to the commonly eaten Vigna uniguiculata (cowpea). The control, group administered with 10 g (AP-10), 20 g (AP-20) and 30 g (AP-30) of A. pavonina based diets; and those previously induced with inflammation administered with 20 kg of V. uniguiculata (BK/BM), normal saline (K-Sal), 20 g A. pavonina based diet (K-AP) and indomethacin (K-Ind) were examined for cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), soluble intracellular adhesion molecule (sICAM) levels in the serum and the effect of diets on the integrity of DNA using RAPD PCR analysis for monitoring their anti-inflammatory activity and the molecular effects. AP-30 based diets significantly reduced (P<0.05) serum sICAM-1 levels compared to that of cowpea. A. pavonina and V. uniguiculata diets exhibited similar ability to significantly reduced (P<0.05) the serum sICAM level of the inflammation induced rats compared with the K-Sal group. Both diet from A. pavonina and V. unguiculata significantly increases (P<0.05) COX-2 activity and the restoration of TNF-α activity. A. pavonina can act as a preventive food for inflammation and other diseases without damaging the DNA integrity in the kidney, liver and the heart.

  9. From milk to diet: feed recognition for milk authenticity.

    PubMed

    Ponzoni, E; Gianì, S; Mastromauro, F; Breviario, D

    2009-11-01

    The presence of plastidial DNA fragments of plant origin in animal milk samples has been confirmed. An experimental plan was arranged with 4 groups of goats, each provided with a different monophytic diet: 3 fresh forages (oats, ryegrass, and X-triticosecale) and one 2-wk-old silage (X-triticosecale). Feed-derived rubisco (ribulose bisphosphate carboxylase, rbcL) DNA fragments were detected in 100% of the analyzed goat milk samples, and the nucleotide sequence of the PCR-amplified fragments was found to be 100% identical to the corresponding fragments amplified from the plant species consumed in the diet. Two additional chloroplast-based molecular markers were used to set up an assay for distinctiveness, conveniently based on a simple PCR. In one case, differences in single nucleotides occurring within the gene encoding for plant maturase K (matK) were exploited. In the other, plant species recognition was based on the difference in the length of the intron present within the transfer RNA leucine (trnL) gene. The presence of plastidial plant DNA, ascertained by the PCR-based amplification of the rbcL fragment, was also assessed in raw cow milk samples collected directly from stock farms or taken from milk sold on the commercial market. In this case, the nucleotide sequence of the amplified DNA fragments reflected the multiple forages present in the diet fed to the animals.

  10. DNA barcoding reveals seasonal shifts in diet and consumption of deep-sea fishes in wedge-tailed shearwaters

    PubMed Central

    Ando, Haruko; Horikoshi, Kazuo; Suzuki, Hajime; Isagi, Yuji

    2018-01-01

    The foraging ecology of pelagic seabirds is difficult to characterize because of their large foraging areas. In the face of this difficulty, DNA metabarcoding may be a useful approach to analyze diet compositions and foraging behaviors. Using this approach, we investigated the diet composition and its seasonal variation of a common seabird species on the Ogasawara Islands, Japan: the wedge-tailed shearwater Ardenna pacifica. We collected fecal samples during the prebreeding (N = 73) and rearing (N = 96) periods. The diet composition of wedge-tailed shearwater was analyzed by Ion Torrent sequencing using two universal polymerase chain reaction primers for the 12S and 16S mitochondrial DNA regions that targeted vertebrates and mollusks, respectively. The results of a BLAST search of obtained sequences detected 31 and 1 vertebrate and mollusk taxa, respectively. The results of the diet composition analysis showed that wedge-tailed shearwaters frequently consumed deep-sea fishes throughout the sampling season, indicating the importance of these fishes as a stable food resource. However, there was a marked seasonal shift in diet, which may reflect seasonal changes in food resource availability and wedge-tailed shearwater foraging behavior. The collected data regarding the shearwater diet may be useful for in situ conservation efforts. Future research that combines DNA metabarcoding with other tools, such as data logging, may provide further insight into the foraging ecology of pelagic seabirds. PMID:29630670

  11. Molecular analysis of the diets of snakes: changes in prey exploitation during development of the rare smooth snake Coronella austriaca.

    PubMed

    Brown, David S; Ebenezer, Katie L; Symondson, William O C

    2014-08-01

    Reptiles are declining in many parts of the world, mainly due to habitat loss and environmental change. A major factor in this is availability of suitable food. For many animals, dietary requirements shift during developmental stages and a habitat will only be suitable for conserving a species if it supports all stages. Conventional methods for establishing diet often rely on visual recognition of morphologically identifiable features of prey in faeces, regurgitation or stomach contents, which suffer from biases and poor resolution of taxa. DNA-based techniques facilitate noninvasive analysis of diet from faeces without these constraints. We tested the hypothesis that diet changes during growth stages of smooth snakes (Coronella austriaca), which have a highly restricted distribution in the UK but are widespread in continental Europe. Small numbers of the sympatric grass snake (Natrix natrix) were analysed for comparison. Faecal samples were collected from snakes and prey DNA analysed using PCR, targeting amphibians, reptiles, mammals and invertebrates. Over 85% of smooth snakes were found to have eaten reptiles and 28% had eaten mammals. Predation on mammals increased with age and was entirely absent among juveniles and subadults. Predation on reptiles did not change ontogenetically. Smooth snakes may, therefore, be restricted to areas of sufficiently high reptile densities to support young snakes. © 2013 John Wiley & Sons Ltd.

  12. A blocking primer increases specificity in environmental DNA detection of bull trout (Salvelinus confluentus)

    Treesearch

    Taylor M. Wilcox; Michael K. Schwartz; Kevin S. McKelvey; Michael K. Young; Winsor H. Lowe

    2014-01-01

    Environmental DNA (eDNA) is increasingly applied as a highly sensitive way to detect aquatic animals non-invasively. However, distinguishing closely related taxa can be particularly challenging. Previous studies of ancient DNA and genetic diet analysis have used blocking primers to enrich target template in the presence of abundant, non-target DNA. Here we apply a...

  13. Comparison of diets for Largemouth and Smallmouth Bass in Eastern Lake Ontario using DNA barcoding and stable isotope analysis

    PubMed Central

    Holden, Jeremy; Eves, Robert; Tufts, Bruce

    2017-01-01

    Largemouth (LMB: Micropterus salmoides) and Smallmouth Bass (SMB: Micropterus dolomieu) are important species in the recreational fisheries of the Laurentian Great Lakes. The invasion of the Round Goby (Neogobius melanostomus) into these lakes has changed several facets of black bass biology, but there is still much to learn about the relationship between these species. Previous dietary analyses have shown Round Goby to be important prey for bass, but have been limited by low visual identification rates of dissected stomach items. Within the present study, DNA barcoding and stable isotope analysis improve prey identification and provide a more quantitative dietary analysis of adult black bass in Lake Ontario, comparing the importance of Round Goby as prey between these two species. Eighty-four LMB (406mm fork length ±4mm SEM) and two hundred sixty-four SMB (422mm ±2mm) obtained as tournament mortalities had prey identified using DNA-based methods. Round Goby was the most prevalent prey species for both predators. The diet of LMB was three times more diverse than that of SMB, which almost entirely consists of Round Goby. Our results provide further support that recent increases in the size of Lake Ontario bass are a result of Round Goby consumption, and that the effects of this dietary shift on body condition are greater for SMB. Techniques developed in this study include reverse-oriented dual priming oligonucleotides used as blocking primers for predator DNA, and an automated design approach of restriction fragment length polymorphism tests for identifying prey DNA barcodes. PMID:28771612

  14. Comparison of diets for Largemouth and Smallmouth Bass in Eastern Lake Ontario using DNA barcoding and stable isotope analysis.

    PubMed

    Nelson, Erich J H; Holden, Jeremy; Eves, Robert; Tufts, Bruce

    2017-01-01

    Largemouth (LMB: Micropterus salmoides) and Smallmouth Bass (SMB: Micropterus dolomieu) are important species in the recreational fisheries of the Laurentian Great Lakes. The invasion of the Round Goby (Neogobius melanostomus) into these lakes has changed several facets of black bass biology, but there is still much to learn about the relationship between these species. Previous dietary analyses have shown Round Goby to be important prey for bass, but have been limited by low visual identification rates of dissected stomach items. Within the present study, DNA barcoding and stable isotope analysis improve prey identification and provide a more quantitative dietary analysis of adult black bass in Lake Ontario, comparing the importance of Round Goby as prey between these two species. Eighty-four LMB (406mm fork length ±4mm SEM) and two hundred sixty-four SMB (422mm ±2mm) obtained as tournament mortalities had prey identified using DNA-based methods. Round Goby was the most prevalent prey species for both predators. The diet of LMB was three times more diverse than that of SMB, which almost entirely consists of Round Goby. Our results provide further support that recent increases in the size of Lake Ontario bass are a result of Round Goby consumption, and that the effects of this dietary shift on body condition are greater for SMB. Techniques developed in this study include reverse-oriented dual priming oligonucleotides used as blocking primers for predator DNA, and an automated design approach of restriction fragment length polymorphism tests for identifying prey DNA barcodes.

  15. The influence of diet on faecal DNA amplification and sex identification in brown bears (Ursus arctos)

    USGS Publications Warehouse

    Murphy, M.A.; Waits, L.P.; Kendall, K.C.

    2003-01-01

    To evaluate the influence of diet on faecal DNA amplification, 11 captive brown bears (Ursus arctos) were placed on six restricted diets: grass (Trifolium spp., Haplopappus hirtus and Poa pratensis), alfalfa (Lupinus spp.), carrots (Daucus spp.), white-tailed deer (Odocoileus virginianus), blueberries (Vaccinium spp.) and salmon (Salmo spp.). DNA was extracted from 50 faecal samples of each restricted diet, and amplification of brown bear DNA was attempted for a mitochondrial DNA (mtDNA) locus and nuclear DNA (nDNA) locus. For mtDNA, no significant differences were observed in amplification success rates across diets. For nDNA, amplification success rates for salmon diet extracts were significantly lower than all other diet extracts (P < 0.001). To evaluate the accuracy of faecal DNA sex identification when female carnivores consume male mammalian prey, female bears were fed male white-tailed deer. Four of 10 extracts amplified, and all extracts were incorrectly scored as male due to amplification of X and Y-chromosome fragments. The potential biases highlighted in this study have broad implications for researchers using faecal DNA for individual and sex identification, and should be evaluated in other species.

  16. Detection of DNA from undeclared animal species in commercial elimination diets for dogs using PCR.

    PubMed

    Horvath-Ungerboeck, Christa; Widmann, Karoline; Handl, Stefanie

    2017-08-01

    Elimination diets are the gold standard for the diagnosis of adverse food reactions (AFR). A broad variety of commercial diets are available containing either hydrolysed protein or novel ingredients which claim to be suitable for elimination diets. Contamination may be one factor accounting for the failure of commercial elimination diet trials. To test commercial diets labelled as suitable for elimination diets for dogs, for DNA of animal origin other than that declared on the label. Twelve commercial dry and tinned dog food products were investigated for DNA of animal origin (chicken, turkey, beef, mutton and pork) using PCR testing. In nine of 10 over-the-counter diets, DNA of one or more animal species other than declared on the label was identified. The DNA most frequently detected was derived from beef (n = 8) and pork (n = 6). Two hydrolysed diets only contained DNA of the declared animal source. Over-the-counter "single protein diets" or canned meat products cannot be recommended for the diagnosis of dogs with AFR because contamination may cause the elimination diet to fail. © 2017 ESVD and ACVD.

  17. Diet-Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR

    PubMed Central

    Tajima, K.; Aminov, R. I.; Nagamine, T.; Matsui, H.; Nakamura, M.; Benno, Y.

    2001-01-01

    A set of PCR primers was designed and validated for specific detection and quantification of Prevotella ruminicola, Prevotella albensis, Prevotella bryantii, Fibrobacter succinogenes, Selenomonas ruminantium-Mitsuokella multiacida, Streptococcus bovis, Ruminococcus flavefaciens, Ruminobacter amylophilus, Eubacterium ruminantium, Treponema bryantii, Succinivibrio dextrinosolvens, and Anaerovibrio lipolytica. By using these primers and the real-time PCR technique, the corresponding species in the rumens of cows for which the diet was switched from hay to grain were quantitatively monitored. The dynamics of two fibrolytic bacteria, F. succinogenes and R. flavefaciens, were in agreement with those of earlier, culture-based experiments. The quantity of F. succinogenes DNA, predominant in animals on the hay diet, fell 20-fold on the third day of the switch to a grain diet and further declined on day 28, with a 57-fold reduction in DNA. The R. flavefaciens DNA concentration on day 3 declined to approximately 10% of its initial value in animals on the hay diet and remained at this level on day 28. During the transition period (day 3), the quantities of two ruminal prevotella DNAs increased considerably: that of P. ruminicola increased 7-fold and that of P. bryantii increased 263-fold. On day 28, the quantity of P. ruminicola DNA decreased 3-fold, while P. bryantii DNA was still elevated 10-fold in comparison with the level found in animals on the initial hay diet. The DNA specific for another xylanolytic bacterium, E. ruminantium, dropped 14-fold during the diet switch and was maintained at this level on day 28. The concentration of a rumen spirochete, T. bryantii, decreased less profoundly and stabilized with a sevenfold decline by day 28. The variations in A. lipolytica DNA were not statistically significant. After an initial slight increase in S. dextrinosolvens DNA on day 3, this DNA was not detected at the end of the experiment. S. bovis DNA displayed a 67-fold increase during the transition period on day 3. However, on day 28, it actually declined in comparison with the level in animals on the hay ration. The amount of S. ruminantium-M. multiacida DNA also increased eightfold following the diet switch, but stabilized with only a twofold increase on day 28. The real-time PCR technique also uncovered differential amplification of rumen bacterial templates with the set of universal bacterial primers. This observation may explain why some predominant rumen bacteria have not been detected in PCR-generated 16S ribosomal DNA libraries. PMID:11375193

  18. Cover cropping alters the diet of arthropods in a banana plantation: a metabarcoding approach.

    PubMed

    Mollot, Gregory; Duyck, Pierre-François; Lefeuvre, Pierre; Lescourret, Françoise; Martin, Jean-François; Piry, Sylvain; Canard, Elsa; Tixier, Philippe

    2014-01-01

    Plant diversification using cover crops may promote natural regulation of agricultural pests by supporting alternative prey that enable the increase of arthropod predator densities. However, the changes in the specific composition of predator diet induced by cover cropping are poorly understood. Here, we hypothesized that the cover crop can significantly alter the diet of predators in agroecosystems. The cover crop Brachiaria decumbens is increasingly used in banana plantations to control weeds and improve physical soil properties. In this paper, we used a DNA metabarcoding approach for the molecular analysis of the gut contents of predators (based on mini-COI) to identify 1) the DNA sequences of their prey, 2) the predators of Cosmopolites sordidus (a major pest of banana crops), and 3) the difference in the specific composition of predator diets between a bare soil plot (BSP) and a cover cropped plot (CCP) in a banana plantation. The earwig Euborellia caraibea, the carpenter ant Camponotus sexguttatus, and the fire ant Solenopsis geminata were found to contain C. sordidus DNA at frequencies ranging from 1 to 7%. While the frequencies of predators positive for C. sordidus DNA did not significantly differ between BSP and CCP, the frequency at which E. caraibea was positive for Diptera was 26% in BSP and 80% in CCP; the frequency at which C. sexguttatus was positive for Jalysus spinosus was 14% in BSP and 0% in CCP; and the frequency at which S. geminata was positive for Polytus mellerborgi was 21% in BSP and 3% in CCP. E. caraibea, C. sexguttatus and S. geminata were identified as possible biological agents for the regulation of C. sordidus. The detection of the diet changes of these predators when a cover crop is planted indicates the possible negative effects on pest regulation if predators switch to forage on alternative prey.

  19. Cover Cropping Alters the Diet of Arthropods in a Banana Plantation: A Metabarcoding Approach

    PubMed Central

    Mollot, Gregory; Duyck, Pierre-François; Lefeuvre, Pierre; Lescourret, Françoise; Martin, Jean-François; Piry, Sylvain; Canard, Elsa; Tixier, Philippe

    2014-01-01

    Plant diversification using cover crops may promote natural regulation of agricultural pests by supporting alternative prey that enable the increase of arthropod predator densities. However, the changes in the specific composition of predator diet induced by cover cropping are poorly understood. Here, we hypothesized that the cover crop can significantly alter the diet of predators in agroecosystems. The cover crop Brachiaria decumbens is increasingly used in banana plantations to control weeds and improve physical soil properties. In this paper, we used a DNA metabarcoding approach for the molecular analysis of the gut contents of predators (based on mini-COI) to identify 1) the DNA sequences of their prey, 2) the predators of Cosmopolites sordidus (a major pest of banana crops), and 3) the difference in the specific composition of predator diets between a bare soil plot (BSP) and a cover cropped plot (CCP) in a banana plantation. The earwig Euborellia caraibea, the carpenter ant Camponotus sexguttatus, and the fire ant Solenopsis geminata were found to contain C. sordidus DNA at frequencies ranging from 1 to 7%. While the frequencies of predators positive for C. sordidus DNA did not significantly differ between BSP and CCP, the frequency at which E. caraibea was positive for Diptera was 26% in BSP and 80% in CCP; the frequency at which C. sexguttatus was positive for Jalysus spinosus was 14% in BSP and 0% in CCP; and the frequency at which S. geminata was positive for Polytus mellerborgi was 21% in BSP and 3% in CCP. E. caraibea, C. sexguttatus and S. geminata were identified as possible biological agents for the regulation of C. sordidus. The detection of the diet changes of these predators when a cover crop is planted indicates the possible negative effects on pest regulation if predators switch to forage on alternative prey. PMID:24695585

  20. Effects of Lactobacillus fermented soymilk and soy yogurt on hepatic lipid accumulation in rats fed a cholesterol-free diet.

    PubMed

    Kitawaki, Ryoko; Nishimura, Yuko; Takagi, Naohiro; Iwasaki, Mitsuhiro; Tsuzuki, Kimiko; Fukuda, Mitsuru

    2009-07-01

    We examined the effects of lactic acid fermented soymilk, in which part of the soymilk was replaced with okara (soy yogurt), on plasma and hepatic lipid profiles in rats fed a cholesterol-free diet. Additionally, we investigated the effects of soy yogurt on hepatic gene expression in rats using DNA microarray analysis. Male Sprague-Dawley rats aged 5 weeks (n=5/group) were fed a control diet (AIN-93) or a test diet in which 20% of the diet was replaced by soy yogurt for 7 weeks. Soy yogurt consumption did not affect body weight or adipose tissue weight as compared with control diet. In the soy yogurt group, the liver weight and hepatic triglyceride content were significantly lower than the control group, and the level of plasma cholesterol was also lower. Furthermore, DNA microarray analysis indicated that soy yogurt ingestion down-regulated the expression of the SREBP-1 gene and enzymes related to lipogenesis in the rat liver, while expression of beta-oxidation-related genes was up-regulated. These results suggest that soy yogurt is beneficial in preventing hepatic lipid accumulation in rats.

  1. Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia)

    NASA Astrophysics Data System (ADS)

    van Geel, Bas; Fisher, Daniel C.; Rountrey, Adam N.; van Arkel, Jan; Duivenvoorden, Joost F.; Nieman, Aline M.; van Reenen, Guido B. A.; Tikhonov, Alexei N.; Buigues, Bernard; Gravendeel, Barbara

    2011-12-01

    Intestinal samples from the one-month-old Siberian mammoth calf 'Lyuba' were studied using light microscopy and ancient DNA to reconstruct its palaeo-environment and diet. The palynological record indicates a 'mammoth steppe'. At least some pollen of arboreal taxa was reworked, and thus the presence of trees on the landscape is uncertain. In addition to visual comparison of 11 microfossil spectra, a PCA analysis contributed to diet reconstruction. This yielded two clusters: one of samples from the small intestine and the other of large-intestine samples, indicating compositional differences in food remains along the intestinal tract, possibly reflecting different episodes of ingestion. Based on observed morphological damage we conclude that the cyperaceous plant remains and some remains of dwarf willows were originally eaten by a mature mammoth, most likely Lyuba's mother. The mammoth calf probably unintentionally swallowed well-preserved mosses and mineral particles while eating fecal material deposited on a soil surface covered with mosses. Coprophagy may have been a common habit for mammoths, and we therefore propose that fecal material should not be used to infer season of death of mammoths. DNA sequences of trnL and rbcL genes amplified from ancient DNA extracted from intestinal samples confirmed and supplemented plant identifications based on microfossils and macro-remains. Results from different extraction methods and barcoding markers complemented each other and show the value of longer protocols in addition to fast and commercially available extraction kits.

  2. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring

    PubMed Central

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which is associated with the insulin signaling pathway in the mice livers. PMID:28072825

  3. Dietary Chromium Restriction of Pregnant Mice Changes the Methylation Status of Hepatic Genes Involved with Insulin Signaling in Adult Male Offspring.

    PubMed

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-01-01

    Maternal undernutrition is linked with an elevated risk of diabetes mellitus in offspring regardless of the postnatal dietary status. This is also found in maternal micro-nutrition deficiency, especial chromium which is a key glucose regulator. We investigated whether maternal chromium restriction contributes to the development of diabetes in offspring by affecting DNA methylation status in liver tissue. After being mated with control males, female weanling 8-week-old C57BL mice were fed a control diet (CON, 1.19 mg chromium/kg diet) or a low chromium diet (LC, 0.14 mg chromium/kg diet) during pregnancy and lactation. After weaning, some offspring were shifted to the other diet (CON-LC, or LC-CON), while others remained on the same diet (CON-CON, or LC-LC) for 29 weeks. Fasting blood glucose, serum insulin, and oral glucose tolerance test was performed to evaluate the glucose metabolism condition. Methylation differences in liver from the LC-CON group and CON-CON groups were studied by using a DNA methylation array. Bisulfite sequencing was carried out to validate the results of the methylation array. Maternal chromium limitation diet increased the body weight, blood glucose, and serum insulin levels. Even when switched to the control diet after weaning, the offspring also showed impaired glucose tolerance and insulin resistance. DNA methylation profiling of the offspring livers revealed 935 differentially methylated genes in livers of the maternal chromium restriction diet group. Pathway analysis identified the insulin signaling pathway was the main process affected by hypermethylated genes. Bisulfite sequencing confirmed that some genes in insulin signaling pathway were hypermethylated in livers of the LC-CON and LC-LC group. Accordingly, the expression of genes in insulin signaling pathway was downregulated. There findings suggest that maternal chromium restriction diet results in glucose intolerance in male offspring through alterations in DNA methylation which is associated with the insulin signaling pathway in the mice livers.

  4. Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet

    PubMed Central

    2011-01-01

    Background Efforts towards utilisation of diets without fish meal (FM) or fish oil (FO) in finfish aquaculture have been being made for more than two decades. Metabolic responses to substitution of fishery products have been shown to impact growth performance and immune system of fish as well as their subsequent nutritional value, particularly in marine fish species, which exhibit low capacity for biosynthesis of long-chain poly-unsaturated fatty acids (LC-PUFA). The main objective of the present study was to analyse the effects of a plant-based diet on the hepatic transcriptome of European sea bass (Dicentrarchus labrax). Results We report the first results obtained using a transcriptomic approach on the liver of two half-sibfamilies of the European sea bass that exhibit similar growth rates when fed a fish-based diet (FD), but significantly different growth rates when fed an all-plant diet (VD). Overall gene expression was analysed using oligo DNA microarrays (GPL9663). Statistical analysis identified 582 unique annotated genes differentially expressed between groups of fish fed the two diets, 199 genes regulated by genetic factors, and 72 genes that exhibited diet-family interactions. The expression of several genes involved in the LC-PUFA and cholesterol biosynthetic pathways was found to be up-regulated in fish fed VD, suggesting a stimulation of the lipogenic pathways. No significant diet-family interaction for the regulation of LC-PUFA biosynthesis pathways could be detected by microarray analysis. This result was in agreement with LC-PUFA profiles, which were found to be similar in the flesh of the two half-sibfamilies. In addition, the combination of our transcriptomic data with an analysis of plasmatic immune parameters revealed a stimulation of complement activity associated with an immunodeficiency in the fish fed VD, and different inflammatory status between the two half-sibfamilies. Biological processes related to protein catabolism, amino acid transaminations, RNA splicing and blood coagulation were also found to be regulated by diet, while the expression of genes involved in protein and ATP synthesis differed between the half-sibfamilies. Conclusions Overall, the combined gene expression, compositional and biochemical studies demonstrated a large panel of metabolic and physiological effects induced by total substitution of both FM and FO in the diets of European sea bass and revealed physiological characteristics associated with the two half-sibfamilies. PMID:22017880

  5. Induction of olfaction and cancer-related genes in mice fed a high-fat diet as assessed through the mode-of-action by network identification analysis.

    PubMed

    Choi, Youngshim; Hur, Cheol-Goo; Park, Taesun

    2013-01-01

    The pathophysiological mechanisms underlying the development of obesity and metabolic diseases are not well understood. To gain more insight into the genetic mediators associated with the onset and progression of diet-induced obesity and metabolic diseases, we studied the molecular changes in response to a high-fat diet (HFD) by using a mode-of-action by network identification (MNI) analysis. Oligo DNA microarray analysis was performed on visceral and subcutaneous adipose tissues and muscles of male C57BL/6N mice fed a normal diet or HFD for 2, 4, 8, and 12 weeks. Each of these data was queried against the MNI algorithm, and the lists of top 5 highly ranked genes and gene ontology (GO)-annotated pathways that were significantly overrepresented among the 100 highest ranked genes at each time point in the 3 different tissues of mice fed the HFD were considered in the present study. The 40 highest ranked genes identified by MNI analysis at each time point in the different tissues of mice with diet-induced obesity were subjected to clustering based on their temporal patterns. On the basis of the above-mentioned results, we investigated the sequential induction of distinct olfactory receptors and the stimulation of cancer-related genes during the development of obesity in both adipose tissues and muscles. The top 5 genes recognized using the MNI analysis at each time point and gene cluster identified based on their temporal patterns in the peripheral tissues of mice provided novel and often surprising insights into the potential genetic mediators for obesity progression.

  6. The Mediterranean diet improves the systemic lipid and DNA oxidative damage in metabolic syndrome individuals. A randomized, controlled, trial.

    PubMed

    Mitjavila, Maria Teresa; Fandos, Marta; Salas-Salvadó, Jordi; Covas, María-Isabel; Borrego, Silvia; Estruch, Ramón; Lamuela-Raventós, Rosa; Corella, Dolores; Martínez-Gonzalez, Miguel Ángel; Sánchez, Julia M; Bulló, Mónica; Fitó, Montserrat; Tormos, Carmen; Cerdá, Concha; Casillas, Rosario; Moreno, Juan José; Iradi, Antonio; Zaragoza, Cristóbal; Chaves, Javier; Sáez, Guillermo T

    2013-04-01

    Metabolic syndrome (MetS), in which a non-classic feature is an increase in systemic oxidative biomarkers, presents a high risk of diabetes and cardiovascular disease (CVD). Adherence to the Mediterranean Diet (MedDiet) is associated with a reduced risk of MetS. However, the effect of the MedDiet on biomarkers for oxidative damage has not been assessed in MetS individuals. We have investigated the effect of the MedDiet on systemic oxidative biomarkers in MetS individuals. Randomized, controlled, parallel clinical trial in which 110 female with MetS, aged 55-80, were recruited into a large trial (PREDIMED Study) to test the efficacy of the traditional MedDiet on the primary prevention of CVD. Participants were assigned to a low-fat diet or two traditional MedDiets (MedDiet + virgin olive oil or MedDiet + nuts). Both MedDiet group participants received nutritional education and either free extra virgin olive oil for all the family (1 L/week), or free nuts (30 g/day). Diets were ad libitum. Changes in urine levels of F2-Isoprostane (F2-IP) and the DNA damage base 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) were evaluated at 1-year trial. After 1-year urinary F2-IP decreased in all groups, the decrease in MedDiet groups reaching a borderline significance versus that of the Control group. Urinary 8-oxo-dG was also reduced in all groups, with a higher decrease in both MedDiet groups versus the Control one (P < 0.001). MedDiet reduces oxidative damage to lipids and DNA in MetS individuals. Data from this study provide evidence to recommend the traditional MedDiet as a useful tool in the MetS management. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. Fructose-Rich Diet Affects Mitochondrial DNA Damage and Repair in Rats.

    PubMed

    Cioffi, Federica; Senese, Rosalba; Lasala, Pasquale; Ziello, Angela; Mazzoli, Arianna; Crescenzo, Raffaella; Liverini, Giovanna; Lanni, Antonia; Goglia, Fernando; Iossa, Susanna

    2017-03-24

    Evidence indicates that many forms of fructose-induced metabolic disturbance are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage; however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are events involved in metabolic disease resulting from a fructose-rich diet. In the present study, we evaluated the degree of oxidative damage to liver mtDNA and its repair, in addition to the state of oxidative stress and antioxidant defense in the liver of rats fed a high-fructose diet. We used male rats feeding on a high-fructose or control diet for eight weeks. Our results showed an increase in mtDNA damage in the liver of rats fed a high-fructose diet and this damage, as evaluated by the expression of DNA polymerase γ, was not repaired; in addition, the mtDNA copy number was found to be significantly reduced. A reduction in the mtDNA copy number is indicative of impaired mitochondrial biogenesis, as is the finding of a reduction in the expression of genes involved in mitochondrial biogenesis. In conclusion, a fructose-rich diet leads to mitochondrial and mtDNA damage, which consequently may have a role in liver dysfunction and metabolic diseases.

  8. Diet-related DNA adduct formation in relation to carcinogenesis.

    PubMed

    Hemeryck, Lieselot Y; Vanhaecke, Lynn

    2016-08-01

    The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Elevated urinary urea by high-protein diet could be one of the inducements of bladder disorders.

    PubMed

    Liu, Ming; Li, Min; Liu, Jiangfeng; Wang, Hongkai; Zhong, Dandan; Zhou, Hong; Yang, Baoxue

    2016-02-16

    Previous work found that urea accumulation in urothelial cells caused by urea transporter B knockout led to DNA damage and apoptosis that contributed to the carcinogenesis. The purpose of this study is to explore the potential connection between high urinary urea concentration and the bladder disorders. A high protein diet rat model was conducted by feeding with 40 % protein diet. In-silico modeling and algorithm, based on the results of microarray and proteomics from the bladder urothelium, were used for the reconstruction of accurate cellular networks and the identification of novel master regulators in the high-protein diet rat model. Pathway and biological process enrichment analysis were used to characterize predicted targets of candidate mRNAs/proteins. The expression pattern of the most significant master regulators was evaluated by qPCR and immunohistochemistry. Based on the analysis of different expressed mRNAs/proteins, 15 significant ones (CRP, MCPT2, MCPT9, EPXH2, SERPING1, SRGN, CDKN1C, CDK6, CCNB1, PCNA, BAX, MAGEB16, SERPINE1, HSPA2, FOS) were highly identified and verified by qPCR and immunohistochemistry. They were involved in immune and inflammatory response, cell cycle arrest, apoptosis and pathways in cancer. These abnormally activated processes caused the bladder interstitial congestion and inflammatory infiltrates under the thinner urothelium, cell desquamation, cytoplasm vacuolization, nucleus swelling and malformation in the high-protein diet group. We provided evidences that high urinary urea concentration caused by high-protein diet might be a potential carcinogenic factor in bladder.

  10. Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa.

    PubMed

    Zeng, Huawei; Yan, Lin; Cheng, Wen-Hsing; Uthus, Eric O

    2011-08-01

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. This study was to investigate whether selenium (Se) affects the methylation of globe genomic DNA and the exon-specific p53 gene. Three groups of rats (n = 6-7/group) were fed the AIN-93G basal diet supplemented with 0 [Se deficient (D)], 0.15 [Se adequate (A)], or 4 mg [Se supranutritional (S)] (Se as l-selenomethionine)/kg diet for 104 d, respectively. Rats fed the A or S diet had greater plasma and liver glutathione peroxidase activity, liver thioredoxin reductase activity, and plasma homocysteine concentration than those fed the D diet. However, compared with the A diet, rats fed the S diet did not further increase these Se-dependent enzyme activities or homocysteine concentration. In contrast, Se concentrations in kidney, liver, gastrocnemius muscle, and plasma were increased in a Se-dose-dependent manner. Interestingly, rats fed the S diet had significantly less global liver genomic DNA methylation than those fed the D diet. However, the S diet significantly increased the methylation of the p53 gene (exons 5-8) but not the β-actin gene (exons 2-3) DNA in liver and colon mucosa compared with those fed the D diet. Taken together, long-term Se consumption not only affects selenoprotein enzyme activities, homocysteine, tissue Se concentrations, and global genomic DNA methylation but also increases exon-specific DNA methylation of the p53 gene in a Se-dose-dependent manner in rat liver and colon mucosa.

  11. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet

    PubMed Central

    Hsiao, Pi-Jung; Hsieh, Tusty-Jiuan; Kuo, Kung-Kai; Hung, Wei-Wen; Tsai, Kun-Bow; Yang, Ching-Hsiu; Yu, Ming-Lung; Shin, Shyi-Jang

    2008-01-01

    Background Pioglitazone was reported to improve hepatic steatosis and necroinflammation in human studies. To investigate whether the hepato-protective effect of pioglitazone was associated with an improvement of antioxidant defense mechanism, oxidative DNA damage and repair activity were determined in a high fat diet model. Male C57BL/6 mice were respectively fed with a 30% fat diet, the same diet with pioglitazone 100 mg/kg/day, or a chow diet as control for 8 weeks. Tissue oxidative stress was indicated by malondialdehyde concentration. Oxidative DNA damage was detected by immunohistochemical 8-oxoG staining. Enzymatic antioxidant defense was detected by the real-time PCR of superoxide dismutase (Sod1, Sod2) and DNA glycosylase (Ogg1, MutY). Oxidative DNA repair was detected by immunohistochemical staining and western blotting of OGG1 expression. Results Our results show that hepatic steatosis was induced by a high-fat diet and improved by adding pioglitazone. Malondialdehyde concentration and 8-oxoG staining were strongly increased in the high-fat diet group, but attenuated by pioglitazone. Gene expressions of antioxidant defense mechanism: Sod1, Sod2, Ogg1 and MutY significantly decreased in the high-fat diet group but reversed by pioglitazone co-administration. Conclusion The attenuation of hepatic oxidative DNA damage by pioglitazone in a high-fat diet may be mediated by up-regulation of the antioxidant defense mechanism and oxidative DNA repair activity. The diminution of oxidative damage may explain the clinical benefit of pioglitazone treatment in patients with non-alcoholic fatty liver disease. PMID:18822121

  12. Feeding a High Concentration Diet Induces Unhealthy Alterations in the Composition and Metabolism of Ruminal Microbiota and Host Response in a Goat Model

    PubMed Central

    Hua, Canfeng; Tian, Jing; Tian, Ping; Cong, Rihua; Luo, Yanwen; Geng, Yali; Tao, Shiyu; Ni, Yingdong; Zhao, Ruqian

    2017-01-01

    There is limited knowledge about the impact of long-term feeding a high-concentrate (HC) diet on rumen microbiota, metabolome, and host cell functions. In this study, a combination of mass spectrometry-based metabolomics techniques, 454 pyrosequencing of 16S rDNA genes, and RT-PCR was applied to evaluate the changes of ruminal microbiota composition, ruminal metabolites, and related genes expression in rumen epithelial cells of lactating goats received either a 35% concentrate diet or a 65% concentrate diet for 4 or 19 weeks, respectively. Results show that feeding a HC diet reduced the microbiota diversity and led to the disorders of metabolism in the rumen. The concentrations of lactate, phosphorus, NH3-N and endotoxin Lipopolysaccharide in ruminal fluids, and plasma histamine, lactate and urine N (UN) were increased significantly in goats fed with a HC diet. A significant increase of genes expression related to volatile fatty acids transport, cell apoptosis, and inflammatory responses were also observed in goats fed with a HC diet. Correlation analysis revealed some potential relationships between bacteria abundance and metabolites concentrations. Our findings indicate that a HC diet can induce ruminal microbiota dysbiosis and metabolic disorders, thus increasing risks to host health and potential harm to the environment. PMID:28210249

  13. Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy.

    PubMed

    Siqueira, Flavia R; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2016-02-01

    A low-salt (LS) diet during pregnancy has been linked to insulin resistance in adult offspring, at least in the experimental setting. However, it remains unclear if this effect is due to salt restriction during early or late pregnancy. To better understand this phenomenon, 12-week-old female Wistar rats were fed a LS or normal-salt (NS) diet during gestation or a LS diet during either the first (LS10) or second (LS20) half of gestation. Glucose tolerance test, HOMA-IR, gene expression analysis and DNA methylation measurements were conducted for the Insr, Igf1, Igf1r, Ins1 and Ins2 genes in the livers of neonates and in the liver, white adipose tissue and muscle of 20-week-old male offspring. Birth weight was lower in the LS20 and LS animals compared with the NS and LS10 rats. In the liver, the Igf1 levels in the LS10, LS20 and LS neonates were lower than those in the NS neonates. Methylation of the Insr, Igf1r, Ins1 and Ins2 genes was influenced in a variable manner by low salt intake during pregnancy. Increased liver Igf1 methylation was observed in the LS and LS20 neonates compared with their NS and LS10 counterparts. Glucose intolerance was observed in adult offspring as an effect of low salt intake over the duration of pregnancy. Compared to the NS animals, the HOMA-IR was higher in the 12-week-old LS and 20-week-old LS-10 rats. Based on these results, it appears that the reason a LS diet during pregnancy induces a low birth weight is its negative correlation with Igf1 DNA methylation in neonates. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Phylogenetic Characterization of Fecal Microbial Communities of Dogs Fed Diets with or without Supplemental Dietary Fiber Using 454 Pyrosequencing

    PubMed Central

    Middelbos, Ingmar S.; Vester Boler, Brittany M.; Qu, Ani; White, Bryan A.; Swanson, Kelly S.; Fahey, George C.

    2010-01-01

    Background Dogs suffer from many of the same maladies as humans that may be affected by the gut microbiome, but knowledge of the canine microbiome is incomplete. This work aimed to use 16S rDNA tag pyrosequencing to phylogenetically characterize hindgut microbiome in dogs and determine how consumption of dietary fiber affects community structure. Principal Findings Six healthy adult dogs were used in a crossover design. A control diet without supplemental fiber and a beet pulp-supplemented (7.5%) diet were fed. Fecal DNA was extracted and the V3 hypervariable region of the microbial 16S rDNA gene amplified using primers suitable for 454-pyrosequencing. Microbial diversity was assessed on random 2000-sequence subsamples of individual and pooled DNA samples by diet. Our dataset comprised 77,771 reads with an average length of 141 nt. Individual samples contained approximately 129 OTU, with Fusobacteria (23 – 40% of reads), Firmicutes (14 – 28% of reads) and Bacteroidetes (31 – 34% of reads) being co-dominant phyla. Feeding dietary fiber generally decreased Fusobacteria and increased Firmicutes, but these changes were not equally apparent in all dogs. UniFrac analysis revealed that structure of the gut microbiome was affected by diet and Firmicutes appeared to play a strong role in by-diet clustering. Conclusions Our data suggest three co-dominant bacterial phyla in the canine hindgut. Furthermore, a relatively small amount of dietary fiber changed the structure of the gut microbiome detectably. Our data are among the first to characterize the healthy canine gut microbiome using pyrosequencing and provide a basis for studies focused on devising dietary interventions for microbiome-associated diseases. PMID:20339542

  15. DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: a case study on subterranean rodents

    PubMed Central

    Lopes, C M; De Barba, M; Boyer, F; Mercier, C; da Silva Filho, P J S; Heidtmann, L M; Galiano, D; Kubiak, B B; Langone, P; Garcias, F M; Gielly, L; Coissac, E; de Freitas, T R O; Taberlet, P

    2015-01-01

    Closely related sympatric species commonly develop different ecological strategies to avoid competition. Ctenomys minutus and C. flamarioni are subterranean rodents parapatrically distributed in the southern Brazilian coastal plain, showing a narrow sympatric zone. To gain understanding on food preferences and possible competition for food resources, we evaluated their diet composition performing DNA metabarcoding analyzes of 67 C. minutus and 100 C. flamarioni scat samples, collected along the species geographical ranges. Thirteen plant families, mainly represented by Poaceae, Araliaceae, Asteraceae and Fabaceae, were identified in the diet of C. minutus. For C. flamarioni, 10 families were recovered, with a predominance of Poaceae, Araliaceae and Asteraceae. A significant correlation between diet composition and geographical distance was detected in C. minutus, whereas the diet of C. flamarioni was quite homogeneous throughout its geographical distribution. No significant differences were observed between males and females of each species. However, differences in diet composition between species were evident according to multivariate analysis. Our results suggest some level of diet partitioning between C. flamarioni and C. minutus in the sympatric region. While the first species is more specialized on few plant items, the second showed a more varied and heterogeneous diet pattern among individuals. These differences might have been developed to avoid competition in the region of co-occurrence. Resource availability in the environment also seems to influence food choices. Our data indicate that C. minutus and C. flamarioni are generalist species, but that some preference for Poaceae, Asteraceae and Araliaceae families can be suggested for both rodents. PMID:25649502

  16. DNA Analyses in Food Safety and Quality: Current Status and Expectations

    NASA Astrophysics Data System (ADS)

    Marchelli, Rosangela; Tedeschi, Tullia; Tonelli, Alessandro

    Food safety and quality are very important issues receiving a lot of attention in most countries by producers, consumers and regulatory and control authorities. In particular, DNA analysis in food is becoming popular not only in relation to genetically modified products (GMOs), in which DNA modification is the "clue" of the novelty, but also in other fields like microbiology and pathogen detection, which require long times for the cultivation and specially in cases in which the microorganisms are not cultivable like some viruses, as well as for authenticity and allergen detection. A new topic concerning "nutrigenetics and nutrigenomics" has also been mentioned, very important but still in its infancy, which could lead in the future to a personalized diet. In this chapter we have described the main areas of food research and fields of application where DNA analysis is being performed and the relative methods of detection, which are generally based on PCR. The possibility/opportunity to detect DNA without previous amplification (PCR-free) will be discussed. We have examined the following areas: (1) genetically modified foods (GMOs); (2) food allergens; (3) microbiological contaminations; (4) food authenticity; (5) nutrigenetics/nutrigenomics.

  17. Combining suppressive subtractive hybridization and cDNA microarrays to identify dietary phosphorus-responsive genes of the rainbow trout (Oncorhynchus mykiss) kidney.

    PubMed

    Lake, Jennifer; Gravel, Catherine; Koko, Gabriel Koffi D; Robert, Claude; Vandenberg, Grant W

    2010-03-01

    Phosphorus (P)-responsive genes and how they regulate renal adaptation to phosphorous-deficient diets in animals, including fish, are not well understood. RNA abundance profiling using cDNA microarrays is an efficient approach to study nutrient-gene interactions and identify these dietary P-responsive genes. To test the hypothesis that dietary P-responsive genes are differentially expressed in fish fed varying P levels, rainbow trout were fed a practical high-P diet (R20: 0.96% P) or a low-P diet (R0: 0.38% P) for 7 weeks. The differentially-expressed genes between dietary groups were identified and compared from the kidney by combining suppressive subtractive hybridization (SSH) with cDNA microarray analysis. A number of genes were confirmed by real-time PCR, and correlated with plasma and bone P concentrations. Approximately 54 genes were identified as potential dietary P-responsive after 7 weeks on a diet deficient in P according to cDNA microarray analysis. Of 18 selected genes, 13 genes were confirmed to be P-responsive at 7 weeks by real-time PCR analysis, including: iNOS, cytochrome b, cytochrome c oxidase subunit II , alpha-globin I, beta-globin, ATP synthase, hyperosmotic protein 21, COL1A3, Nkef, NDPK, glucose phosphate isomerase 1, Na+/H+ exchange protein and GDP dissociation inhibitor 2. Many of these dietary P-responsive genes responded in a moderate way (R0/R20 ratio: <2-3 or >0.5) and in a transient manner to dietary P limitation. In summary, renal adaptation to dietary P deficiency in trout involves changes in the expression of several genes, suggesting a profile of metabolic stress, since many of these differentially-expressed candidates are associated with the cellular adaptative responses. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  18. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans.

    PubMed

    da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H

    2006-07-01

    Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Fifty-one men and women aged 18-70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138-550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase-mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dysfunction also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected.

  19. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring

    PubMed Central

    Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei

    2018-01-01

    Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536

  20. Determinants of anti-benzo[a]pyrene diol epoxide-DNA adduct formation in lymphomonocytes of the general population.

    PubMed

    Pavanello, Sofia; Pulliero, Alessandra; Saia, Bruno Onofrio; Clonfero, Erminio

    2006-12-10

    We evaluated determinants of anti-benzo[a]pyrenediolepoxide-(B[a]PDE)-DNA adduct formation (adduct induced by the ultimate carcinogenic metabolite of B[a]P) in lymphomonocytes of subjects environmentally exposed to low doses of polycyclic aromatic hydrocarbons (PAHs) (B[a]P). Our study population consisted of 585 Caucasian subjects, all municipal workers living in North-East Italy and recruited during their periodic check-ups after informed consent. PAH (B[a]P) exposure was assessed by questionnaire. Anti-B[a]PDE-DNA levels were measured by HPLC fluorescence analysis. We found that cigarette smoking (smokers (22%) versus non-smokers, p<0.0001), dietary intake of PAH-rich meals (> or =52 (38%) versus <52 times/year, p<0.0001), and outdoor exposure (> or =4 (19%) versus <4h/day; p=0.0115) significantly influenced adduct levels. Indoor exposure significantly increased the frequency of positive subjects (> or =0.5 adducts/10(8) nucleotides; chi(2) for linear trend, p=0.051). In linear multiple regression analysis the major determinants of increased DNA adduct levels (ln values) were smoking (t=6.362, p<0.0001) and diet (t=4.035, p<0.0001). In this statistical analysis, indoor and outdoor exposure like other factors of PAH exposure had no influence. In non-smokers, the influence of diet (p<0.0001) and high indoor exposure (p=0.016) on anti-B[a]PDE-DNA adduct formation became more evident, but not that of outdoor exposure, as was confirmed by linear multiple regression analysis (diet, t=3.997, p<0.0001 and high indoor exposure, t=2.522, p=0.012). This study indicates that anti-B[a]PDE-DNA adducts can be detected in the general population and are modulated by PAH (B[a]P) exposure not only with smoking - information already known from studies with limited number of subjects - but also with dietary habits and high indoor exposure. In non-smokers, these two factors are the principal determinants of DNA adduct formation. The information provided here seems to be important, since DNA adduct formation in surrogate tissue is an index of genotoxic exposure also in target organs (e.g., lung) and their increase may also be predictive of higher risk for PAH-related cancers.

  1. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities.

    PubMed

    Lettat, A; Hassanat, F; Benchaar, C

    2013-08-01

    Methane produced by the methanogenic Archaea that inhabit the rumen is a potent greenhouse gas and represents an energy loss for the animal. Although several strategies have been proposed to mitigate enteric CH4 production, little is known about the effects of dietary changes on the microbial consortia involved in ruminal methanogenesis. Thus, the current study aimed to examine how the metabolically active microbes are affected when dairy cows were fed diets with increasing proportions of corn silage (CS). For this purpose, 9 ruminally cannulated lactating dairy cows were used in a replicated 3 × 3 Latin square design and fed a total mixed ration (60:40 forage:concentrate ratio on a dry matter basis) with the forage portion being either alfalfa silage (0% CS), corn silage (100% CS), or a 50:50 mixture (50% CS). Enteric CH4 production was determined using respiration chambers and total rumen content was sampled for the determination of fermentation characteristics and molecular biology analyses (cDNA-based length heterogeneity PCR, quantitative PCR). The cDNA-based length heterogeneity PCR targeting active microbes revealed similar bacterial communities in cows fed 0% CS and 50% CS diets, whereas important differences were observed between 0% CS and 100% CS diets, including a reduction in the bacterial richness and diversity in cows fed 100% CS diet. As revealed by quantitative PCR, feeding the 100% CS diet increased the number of total bacteria, Prevotella spp., Archaea, and methanogenic activity, though it reduced protozoal number. Meanwhile, increasing the CS proportion in the diet increased propionate concentration but decreased ruminal pH, CH4 production (L/kg of dry matter intake), and concentrations of acetate and butyrate. Based on these microbial and fermentation changes, and because CH4 production was reduced by feeding 100% CS diet, this study shows that the use of cDNA-based quantitative PCR to estimate archaeal growth and activity is not reliable enough to reflect changes in ruminal methanogenesis. A more robust technique to characterize changes in archaeal community structures will help to better understand the microbial process involved in ruminal methanogenesis and, hence, enabling the development of more effective dietary CH4 mitigation strategies. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Effects of a high fat or a balanced omega 3/omega 6 diet on cytokines levels and DNA damage in experimental colitis.

    PubMed

    Vieira de Barros, Karina; Gomes de Abreu, Gilclay; Xavier, Roberta Araujo Navarro; Real Martinez, Carlos Augusto; Ribeiro, Marcelo Lima; Gambero, Alessandra; de Oliveira Carvalho, Patrícia; Silveira, Vera Lúcia Flor

    2011-02-01

    High-fat diets have been shown to be a risk factor for ulcerative colitis (UC). Omega-6 polyunsaturated fatty acids are considered to increase lipid peroxidation, while the omega-3 polyunsaturated fatty acid exerts a chemopreventative effect. We evaluated the effect of high-fat diets (20%) enriched with fish or soybean oil on colonic inflammation and DNA damage in dextran sulfate sodium-induced colitis. Male Wistar rats (28-30 days) were fed an American Institute of Nutrition (AIN)-93 diet for 47 days and divided into five groups: control normal fat non-colitic (C) or control colitis (CC), high soybean fat group (HS) colitis, high fish fat group colitis, or high-fat soybean plus fish oil colitis. UC was induced from day 35 until day 41 by 3% dextran sulfate sodium. On day 47, the rats were anesthetized; blood samples collected for corticosterone determination, and the distal colon was excised to quantify interleukin-4 (IL-4), IL-10, and interferon-gamma levels, myeloperoxidase activity, histological analyses, and DNA damage. The disease activity index was recorded daily. The disease activity index, histological analysis, myeloperoxidase activity, IL-4, interferon-gamma, and corticosterone levels did not differ among the colitic groups. IL-10 was significantly increased by the high fish fat group diet in relation to HS, but only the high soybean-fish fat diet increased the IL-10/IL-4 ratio (anti-inflammatory/pro-inflammatory) to levels closer to the C group and reduced DNA damage compared to the HS group (P<0.05). The data show that high-fat diets did not exacerbate UC and suggest that the soybean and fish oil mixture, more than the fish oil alone, could be a complementary therapy to achieve a cytokine balance in UC. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: a DNA microarray analysis.

    PubMed

    Kondo, S; Kamei, A; Xiao, J Z; Iwatsuki, K; Abe, K

    2013-09-01

    We previously reported that supplementation with Bifidobacterium breve B-3 reduced body weight gain and accumulation of visceral fat in a dose-dependent manner, and improved serum levels of total cholesterol, glucose and insulin in a mouse model of diet-induced obesity. In this study, we investigated the expression of genes in the liver using DNA microarray analysis and q-PCR to reveal the mechanism of these anti-obesity effects in this mouse model. Administration of B. breve B-3 led to regulated gene expression of pathways involved in lipid metabolism and response to stress. The results indicate that these regulations in the liver are related to the anti-metabolic syndrome effects of B. breve B-3.

  4. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes.

    PubMed

    Lambrot, R; Xu, C; Saint-Phar, S; Chountalos, G; Cohen, T; Paquet, M; Suderman, M; Hallett, M; Kimmins, S

    2013-01-01

    Epidemiological studies suggest that a father's diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health.

  5. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes

    PubMed Central

    Lambrot, R.; Xu, C.; Saint-Phar, S.; Chountalos, G.; Cohen, T.; Paquet, M.; Suderman, M.; Hallett, M.; Kimmins, S.

    2013-01-01

    Epidemiological studies suggest that a father’s diet can influence offspring health. A proposed mechanism for paternal transmission of environmental information is via the sperm epigenome. The epigenome includes heritable information such as DNA methylation. We hypothesize that the dietary supply of methyl donors will alter epigenetic reprogramming in sperm. Here we feed male mice either a folate-deficient or folate-sufficient diet throughout life. Paternal folate deficiency is associated with increased birth defects in the offspring, which include craniofacial and musculoskeletal malformations. Genome-wide DNA methylation analysis and the subsequent functional analysis identify differential methylation in sperm of genes implicated in development, chronic diseases such as cancer, diabetes, autism and schizophrenia. While >300 genes are differentially expressed in offspring placenta, only two correspond to genes with differential methylation in sperm. This model suggests epigenetic transmission may involve sperm histone H3 methylation or DNA methylation and that adequate paternal dietary folate is essential for offspring health. PMID:24326934

  6. The impact of communicating genetic risks of disease on risk-reducing health behaviour: systematic review with meta-analysis.

    PubMed

    Hollands, Gareth J; French, David P; Griffin, Simon J; Prevost, A Toby; Sutton, Stephen; King, Sarah; Marteau, Theresa M

    2016-03-15

    To assess the impact of communicating DNA based disease risk estimates on risk-reducing health behaviours and motivation to engage in such behaviours. Systematic review with meta-analysis, using Cochrane methods. Medline, Embase, PsycINFO, CINAHL, and the Cochrane Central Register of Controlled Trials up to 25 February 2015. Backward and forward citation searches were also conducted. Randomised and quasi-randomised controlled trials involving adults in which one group received personalised DNA based estimates of disease risk for conditions where risk could be reduced by behaviour change. Eligible studies included a measure of risk-reducing behaviour. We examined 10,515 abstracts and included 18 studies that reported on seven behavioural outcomes, including smoking cessation (six studies; n=2663), diet (seven studies; n=1784), and physical activity (six studies; n=1704). Meta-analysis revealed no significant effects of communicating DNA based risk estimates on smoking cessation (odds ratio 0.92, 95% confidence interval 0.63 to 1.35, P=0.67), diet (standardised mean difference 0.12, 95% confidence interval -0.00 to 0.24, P=0.05), or physical activity (standardised mean difference -0.03, 95% confidence interval -0.13 to 0.08, P=0.62). There were also no effects on any other behaviours (alcohol use, medication use, sun protection behaviours, and attendance at screening or behavioural support programmes) or on motivation to change behaviour, and no adverse effects, such as depression and anxiety. Subgroup analyses provided no clear evidence that communication of a risk-conferring genotype affected behaviour more than communication of the absence of such a genotype. However, studies were predominantly at high or unclear risk of bias, and evidence was typically of low quality. Expectations that communicating DNA based risk estimates changes behaviour is not supported by existing evidence. These results do not support use of genetic testing or the search for risk-conferring gene variants for common complex diseases on the basis that they motivate risk-reducing behaviour. This is a revised and updated version of a Cochrane review from 2010, adding 11 studies to the seven previously identified. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  7. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea).

    PubMed

    Berry, Tina E; Osterrieder, Sylvia K; Murray, Dáithí C; Coghlan, Megan L; Richardson, Anthony J; Grealy, Alicia K; Stat, Michael; Bejder, Lars; Bunce, Michael

    2017-07-01

    The analysis of apex predator diet has the ability to deliver valuable insights into ecosystem health, and the potential impacts a predator might have on commercially relevant species. The Australian sea lion ( Neophoca cinerea ) is an endemic apex predator and one of the world's most endangered pinnipeds. Given that prey availability is vital to the survival of top predators, this study set out to understand what dietary information DNA metabarcoding could yield from 36 sea lion scats collected across 1,500 km of its distribution in southwest Western Australia. A combination of PCR assays were designed to target a variety of potential sea lion prey, including mammals, fish, crustaceans, cephalopods, and birds. Over 1.2 million metabarcodes identified six classes from three phyla, together representing over 80 taxa. The results confirm that the Australian sea lion is a wide-ranging opportunistic predator that consumes an array of mainly demersal fauna. Further, the important commercial species Sepioteuthis australis (southern calamari squid) and Panulirus cygnus (western rock lobster) were detected, but were present in <25% of samples. Some of the taxa identified, such as fish, sharks and rays, clarify previous knowledge of sea lion prey, and some, such as eel taxa and two gastropod species, represent new dietary insights. Even with modest sample sizes, a spatial analysis of taxa and operational taxonomic units found within the scat shows significant differences in diet between many of the sample locations and identifies the primary taxa that are driving this variance. This study provides new insights into the diet of this endangered predator and confirms the efficacy of DNA metabarcoding of scat as a noninvasive tool to more broadly define regional biodiversity.

  8. The effects of dietary supplementation of methionine on genomic stability and p53 gene promoter methylation in rats.

    PubMed

    Amaral, Cátia Lira Do; Bueno, Rafaela de Barros E Lima; Burim, Regislaine Valéria; Queiroz, Regina Helena Costa; Bianchi, Maria de Lourdes Pires; Antunes, Lusânia Maria Greggi

    2011-05-18

    Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet's effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet's effects on genomic stability and DNA methylation. 2011 Elsevier B.V. All rights reserved.

  9. Choline deficiency increases lymphocyte apoptosis and DNA damage in humans2,3

    PubMed Central

    da Costa, Kerry-Ann; Niculescu, Mihai D; Craciunescu, Corneliu N; Fischer, Leslie M; Zeisel, Steven H

    2008-01-01

    Background: Whereas deficiency of the essential nutrient choline is associated with DNA damage and apoptosis in cell and rodent models, it has not been shown in humans. Objective: The objective was to ascertain whether lymphocytes from choline-deficient humans had greater DNA damage and apoptosis than did those from choline-sufficient humans. Design: Fifty-one men and women aged 18–70 y were fed a diet containing the recommended adequate intake of choline (control) for 10 d. They then were fed a choline-deficient diet for up to 42 d before repletion with 138–550 mg choline/d. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated. DNA damage and apoptosis were then assessed by activation of caspase-3, terminal deoxynucleotide transferase–mediated dUTP nick end-labeling, and single-cell gel electrophoresis (COMET) assays. Results: All subjects fed the choline-deficient diet had lymphocyte DNA damage, as assessed by COMET assay, twice that found when they were fed the control diet. The subjects who developed organ dysfunction (liver or muscle) when fed the choline-deficient diet had significantly more apoptotic lymphocytes, as assessed by the activated caspase-3 assay, than when fed the control diet. Conclusions: A choline-deficient diet increased DNA damage in humans. Subjects in whom these diets induced liver or muscle dys-function also had higher rates of apoptosis in their peripheral lymphocytes than did subjects who did not develop organ dysfunction. Assessment of DNA damage and apoptosis in lymphocytes appears to be a clinically useful measure in humans (such as those receiving parenteral nutrition) in whom choline deficiency is suspected. PMID:16825685

  10. Elucidating the diet of the island flying fox (Pteropus hypomelanus) in Peninsular Malaysia through Illumina Next-Generation Sequencing.

    PubMed

    Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Peng, Lee Yin; Campos-Arceiz, Ahimsa; McConkey, Kim R; Forget, Pierre-Michel; Gan, Han Ming

    2017-01-01

    There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and time-consuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox ( Pteropus hypomelanus ) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox's diet appeared to be dominated by figs ( Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genus- and species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets.

  11. Elucidating the diet of the island flying fox (Pteropus hypomelanus) in Peninsular Malaysia through Illumina Next-Generation Sequencing

    PubMed Central

    Clements, Gopalasamy Reuben; Peng, Lee Yin; Campos-Arceiz, Ahimsa; McConkey, Kim R.; Forget, Pierre-Michel; Gan, Han Ming

    2017-01-01

    There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and time-consuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox (Pteropus hypomelanus) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox’s diet appeared to be dominated by figs (Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genus- and species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets. PMID:28413729

  12. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet

    PubMed Central

    Meyer, Christopher P.; Mills, Suzanne C.

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators’ diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach highlights a highly complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. Therefore, we strongly encourage further empirical approaches to dietary studies prior to making assumptions of trophic equivalency in food web reconstruction. PMID:26137428

  13. Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet.

    PubMed

    Leray, Matthieu; Meyer, Christopher P; Mills, Suzanne C

    2015-01-01

    Understanding the role of predators in food webs can be challenging in highly diverse predator/prey systems composed of small cryptic species. DNA based dietary analysis can supplement predator removal experiments and provide high resolution for prey identification. Here we use a metabarcoding approach to provide initial insights into the diet and functional role of coral-dwelling predatory fish feeding on small invertebrates. Fish were collected in Moorea (French Polynesia) where the BIOCODE project has generated DNA barcodes for numerous coral associated invertebrate species. Pyrosequencing data revealed a total of 292 Operational Taxonomic Units (OTU) in the gut contents of the arc-eye hawkfish (Paracirrhites arcatus), the flame hawkfish (Neocirrhites armatus) and the coral croucher (Caracanthus maculatus). One hundred forty-nine (51%) of them had species-level matches in reference libraries (>98% similarity) while 76 additional OTUs (26%) could be identified to higher taxonomic levels. Decapods that have a mutualistic relationship with Pocillopora and are typically dominant among coral branches, represent a minor contribution of the predators' diets. Instead, predators mainly consumed transient species including pelagic taxa such as copepods, chaetognaths and siphonophores suggesting non random feeding behavior. We also identified prey species known to have direct negative interactions with stony corals, such as Hapalocarcinus sp, a gall crab considered a coral parasite, as well as species of vermetid snails known for their deleterious effects on coral growth. Pocillopora DNA accounted for 20.8% and 20.1% of total number of sequences in the guts of the flame hawkfish and coral croucher but it was not detected in the guts of the arc-eye hawkfish. Comparison of diets among the three fishes demonstrates remarkable partitioning with nearly 80% of prey items consumed by only one predator. Overall, the taxonomic resolution provided by the metabarcoding approach highlights a highly complex interaction web and demonstrates that levels of trophic partitioning among coral reef fishes have likely been underestimated. Therefore, we strongly encourage further empirical approaches to dietary studies prior to making assumptions of trophic equivalency in food web reconstruction.

  14. DNA and Protein Analyses to Confirm the Absence of Cross-Contamination and Support the Clinical Reliability of Extensively Hydrolysed Diets for Adverse Food Reaction-Pets.

    PubMed

    Lesponne, Isabelle; Naar, Jérôme; Planchon, Sébastien; Serchi, Tommaso; Montano, Mauricio

    2018-06-26

    Adverse food reactions (AFR) are a common cause of skin diseases in cats and dogs. The correct diagnosis and management of AFR relies upon clinical nutrition. The reliability of commercial hypoallergenic diets commonly used in AFR has been questioned because studies have shown the presence of proteins not declared on the label ingredients. It is proposed that extensively hydrolysed protein-based diets constitute a reliable nutritional solution. Royal Canin Anallergenic™ Canine and Feline diets are formulated with very low molecular weight feather protein and purified corn starch. Protein gel electrophoresis and thin layer paper chromatography were used to characterize protein hydrolysis in these diets and their hydrolysed raw materials; protein species were identified by mass spectrometry. To detect cross-contaminating protein, species-specific DNA was measured and correlated with ancillary protein content using calibration curves. The only protein components detected in the extensively hydrolysed feather protein raw material were amino acids and small oligopeptides. GBSS-I (Granule-bound starch synthase 1) was detected in the finished diets; this has not been reported as a clinically apparent allergen in dogs or cats. The DNA threshold corresponding to the maximum acceptable level of ancillary protein was not exceeded in 99.9% of more than 2150 product batches tested and no products were released to the market with cross-contaminating proteins. These results demonstrate the extensive level of protein hydrolysis in Royal Canin Anallergenic™ Canine and Feline diets and the absence of cross-contaminating protein, both key requirements for a diet to be used during diagnosis and for management of pets with AFR.

  15. Augmentation of French grunt diet description using combined visual and DNA-based analyses

    USGS Publications Warehouse

    Hargrove, John S.; Parkyn, Daryl C.; Murie, Debra J.; Demopoulos, Amanda W.J.; Austin, James D.

    2012-01-01

    Trophic linkages within a coral-reef ecosystem may be difficult to discern in fish species that reside on, but do not forage on, coral reefs. Furthermore, dietary analysis of fish can be difficult in situations where prey is thoroughly macerated, resulting in many visually unrecognisable food items. The present study examined whether the inclusion of a DNA-based method could improve the identification of prey consumed by French grunt, Haemulon flavolineatum, a reef fish that possesses pharyngeal teeth and forages on soft-bodied prey items. Visual analysis indicated that crustaceans were most abundant numerically (38.9%), followed by sipunculans (31.0%) and polychaete worms (5.2%), with a substantial number of unidentified prey (12.7%). For the subset of prey with both visual and molecular data, there was a marked reduction in the number of unidentified sipunculans (visual – 31.1%, combined &ndash 4.4%), unidentified crustaceans (visual &ndash 15.6%, combined &ndash 6.7%), and unidentified taxa (visual &ndash 11.1%, combined &ndash 0.0%). Utilising results from both methodologies resulted in an increased number of prey placed at the family level (visual &ndash 6, combined &ndash 33) and species level (visual &ndash 0, combined &ndash 4). Although more costly than visual analysis alone, our study demonstrated the feasibility of DNA-based identification of visually unidentifiable prey in the stomach contents of fish.

  16. High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver.

    PubMed

    Zhou, Dan; Hlady, Ryan A; Schafer, Marissa J; White, Thomas A; Liu, Chen; Choi, Jeong-Hyeon; Miller, Jordan D; Roberts, Lewis R; LeBrasseur, Nathan K; Robertson, Keith D

    2017-01-02

    High-fat diet consumption and sedentary lifestyle elevates risk for obesity, non-alcoholic fatty liver disease, and cancer. Exercise training conveys health benefits in populations with or without these chronic conditions. Diet and exercise regulate gene expression by mediating epigenetic mechanisms in many tissues; however, such effects are poorly documented in the liver, a central metabolic organ. To dissect the consequences of diet and exercise on the liver epigenome, we measured DNA methylation, using reduced representation bisulfite sequencing, and transcription, using RNA-seq, in mice maintained on a fast food diet with sedentary lifestyle or exercise, compared with control diet with and without exercise. Our analyses reveal that genome-wide differential DNA methylation and expression of gene clusters are induced by diet and/or exercise. A combination of fast food and exercise triggers extensive gene alterations, with enrichment of carbohydrate/lipid metabolic pathways and muscle developmental processes. Through evaluation of putative protective effects of exercise on diet-induced DNA methylation, we show that hypermethylation is effectively prevented, especially at promoters and enhancers, whereas hypomethylation is only partially attenuated. We assessed diet-induced DNA methylation changes associated with liver cancer-related epigenetic modifications and identified significant increases at liver-specific enhancers in fast food groups, suggesting partial loss of liver cell identity. Hypermethylation at a subset of gene promoters was associated with inhibition of tissue development and promotion of carcinogenic processes. Our study demonstrates extensive reprogramming of the epigenome by diet and exercise, emphasizing the functional relevance of epigenetic mechanisms as an interface between lifestyle modifications and phenotypic alterations.

  17. Cereal foods are the major source of betaine in the Western diet--analysis of betaine and free choline in cereal foods and updated assessments of betaine intake.

    PubMed

    Ross, Alastair B; Zangger, Alicia; Guiraud, Seu Ping

    2014-02-15

    Betaine and its precursor choline are important components of one-carbon metabolism, remethylating homocysteine into methionine and providing methyl groups for DNA methylation. Cereals are the main source of betaine in the diet, though there is little literature available on the content of betaine in cereal products, nor on betaine intake from cereals. Betaine and free-choline concentrations were measured by liquid-chromatography with tandem mass spectrometry in a wide range of commercially available cereal foods and cereal fractions. Whole grain wheat and related fractions were the best overall common source of betaine, while the pseudocereal quinoa had the highest amount of betaine measured (3900 μg/g). Based on estimates of dietary intake data cereal foods provide approximately 60-67% of betaine in Western diets, and 20-40% of betaine in South-East Asian diets. Average intake of betaine was 131 mg/d, well below those used in intervention studies using betaine to lower blood homocysteine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A Structural and Functional Elucidation of the Rumen Microbiome Influenced by Various Diets and Microenvironments

    PubMed Central

    Deusch, Simon; Camarinha-Silva, Amélia; Conrad, Jürgen; Beifuss, Uwe; Rodehutscord, Markus; Seifert, Jana

    2017-01-01

    The structure and function of the microbiome inhabiting the rumen are, amongst other factors, mainly shaped by the animal's feed intake. Describing the influence of different diets on the inherent community arrangement and associated metabolic activities of the most active ruminal fractions (bacteria and archaea) is of great interest for animal nutrition, biotechnology, and climatology. Samples were obtained from three fistulated Jersey cows rotationally fed with corn silage, grass silage or grass hay, each supplemented with a concentrate mixture. Samples were fractionated into ruminal fluid, particle-associated rumen liquid, and solid matter. DNA, proteins and metabolites were analyzed subsequently. DNA extracts were used for Illumina sequencing of the 16S rRNA gene and the metabolomes of rumen fluids were determined by 500 MHz-NMR spectroscopy. Tryptic peptides derived from protein extracts were measured by LC-ESI-MS/MS and spectra were processed by a two-step database search for quantitative metaproteome characterization. Data are available via ProteomeXchange with the identifier PXD006070. Protein- and DNA-based datasets revealed significant differences between sample fractions and diets and affirmed similar trends concerning shifts in phylogenetic composition. Ribosomal genes and proteins belonging to the phylum of Proteobacteria, particularly Succinivibrionaceae, exhibited a higher abundance in corn silage-based samples while fiber-degraders of the Lachnospiraceae family emerged in great quantities throughout the solid phase fractions. The analysis of 8163 quantified bacterial proteins revealed the presence of 166 carbohydrate active enzymes in varying abundance. Cellulosome affiliated proteins were less expressed in the grass silage, glycoside hydrolases appeared in slightest numbers in the corn silage. Most expressed glycoside hydrolases belonged to families 57 and 2. Enzymes analogous to ABC transporters for amino acids and monosaccharides were more abundant in the corn silage whereas oligosaccharide transporters showed a higher abundance in the fiber-rich diets. Proteins involved in carbon metabolism were detected in high numbers and identification of metabolites like short-chain fatty acids, methylamines and phenylpropionate by NMR enabled linkage between producers and products. This study forms a solid basis to retrieve deeper insight into the complex network of microbial adaptation in the rumen. PMID:28883813

  19. Isolation and Characterization of Burkholderia rinojensis sp. nov., a Non-Burkholderia cepacia Complex Soil Bacterium with Insecticidal and Miticidal Activities

    PubMed Central

    Fernandez, Lorena E.; Koivunen, Marja; Yang, April; Flor-Weiler, Lina; Marrone, Pamela G.

    2013-01-01

    Isolate A396, a bacterium isolated from a Japanese soil sample demonstrated strong insecticidal and miticidal activities in laboratory bioassays. The isolate was characterized through biochemical methods, fatty acid methyl ester (FAME) analysis, sequencing of 16S rRNA, multilocus sequence typing and analysis, and DNA-DNA hybridization. FAME analysis matched A396 to Burkholderia cenocepacia, but this result was not confirmed by 16S rRNA or DNA-DNA hybridization. 16S rRNA sequencing indicated closest matches with B. glumae and B. plantarii. DNA-DNA hybridization experiments with B. plantarii, B. glumae, B. multivorans, and B. cenocepacia confirmed the low genetic similarity (11.5 to 37.4%) with known members of the genus. PCR-based screening showed that A396 lacks markers associated with members of the B. cepacia complex. Bioassay results indicated two mechanisms of action: through ingestion and contact. The isolate effectively controlled beet armyworms (Spodoptera exigua; BAW) and two-spotted spider mites (Tetranychus urticae; TSSM). In diet overlay bioassays with BAW, 1% to 4% (vol/vol) dilution of the whole-cell broth caused 97% to 100% mortality 4 days postexposure, and leaf disc treatment bioassays attained 75% ± 22% mortality 3 days postexposure. Contact bioassays led to 50% larval mortality, as well as discoloration, stunting, and failure to molt. TSSM mortality reached 93% in treated leaf discs. Activity was maintained in cell-free supernatants and after heat treatment (60°C for 2 h), indicating that a secondary metabolite or excreted thermostable enzyme might be responsible for the activity. Based on these results, we describe the novel species Burkholderia rinojensis, a good candidate for the development of a biocontrol product against insect and mite pests. PMID:24096416

  20. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus.

    PubMed

    Weyrich, Laura S; Duchene, Sebastian; Soubrier, Julien; Arriola, Luis; Llamas, Bastien; Breen, James; Morris, Alan G; Alt, Kurt W; Caramelli, David; Dresely, Veit; Farrell, Milly; Farrer, Andrew G; Francken, Michael; Gully, Neville; Haak, Wolfgang; Hardy, Karen; Harvati, Katerina; Held, Petra; Holmes, Edward C; Kaidonis, John; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Semal, Patrick; Soltysiak, Arkadiusz; Townsend, Grant; Usai, Donatella; Wahl, Joachim; Huson, Daniel H; Dobney, Keith; Cooper, Alan

    2017-04-20

    Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.

  1. High phosphorus diet-induced changes in NaPi-IIb phosphate transporter expression in the rat kidney: DNA microarray analysis.

    PubMed

    Suyama, Tatsuya; Okada, Shinji; Ishijima, Tomoko; Iida, Kota; Abe, Keiko; Nakai, Yuji

    2012-01-01

    The mechanism by which phosphorus levels are maintained in the body was investigated by analyzing changes in gene expression in the rat kidney following administration of a high phosphorus (HP) diet. Male Wistar rats were divided into two groups and fed a diet containing 0.3% (control) or 1.2% (HP) phosphorous for 24 days. Phosphorous retention was not significantly increased in HP rats, but fractional excretion of phosphorus was significantly increased in the HP group compared to controls, with an excessive amount of the ingested phosphorus being passed through the body. DNA microarray analysis of kidney tissue from both groups revealed changes in gene expression profile induced by a HP diet. Among the genes that were upregulated, Gene Ontology (GO) terms related to ossification, collagen fibril organization, and inflammation and immune response were significantly enriched. In particular, there was significant upregulation of type IIb sodium-dependent phosphate transporter (NaPi-IIb) in the HP rat kidney compared to control rats. This upregulation was confirmed by in situ hybridization. Distinct signals for NaPi-IIb in both the cortex and medulla of the kidney were apparent in the HP group, while the corresponding signals were much weaker in the control group. Immunohistochemical analysis showed that NaPi-IIb localized to the basolateral side of kidney epithelial cells surrounding the urinary duct in HP rats but not in control animals. These data suggest that NaPi-IIb is upregulated in the kidney in response to the active excretion of phosphate in HP diet-fed rats.

  2. Traceability of Plant Diet Contents in Raw Cow Milk Samples

    PubMed Central

    Ponzoni, Elena; Mastromauro, Francesco; Gianì, Silvia; Breviario, Diego

    2009-01-01

    The use of molecular marker in the dairy sector is gaining large acceptance as a reliable diagnostic approach for food authenticity and traceability. Using a PCR approach, the rbcL marker, a chloroplast-based gene, was selected to amplify plant DNA fragments in raw cow milk samples collected from stock farms or bought on the Italian market. rbcL-specific DNA fragments could be found in total milk, as well as in the skimmed and the cream fractions. When the PCR amplified fragments were sent to sequence, the nucleotide composition of the chromatogram reflected the multiple contents of the polyphytic diet. PMID:22253982

  3. High-throughput sequencing of fecal DNA to identify insects consumed by wild Weddell's saddleback tamarins (Saguinus weddelli, Cebidae, Primates) in Bolivia.

    PubMed

    Mallott, E K; Malhi, R S; Garber, P A

    2015-03-01

    The genus Saguinus represents a successful radiation of over 20 species of small-bodied New World monkeys. Studies of the tamarin diet indicate that insects and small vertebrates account for ∼16-45% of total feeding and foraging time, and represent an important source of lipids, protein, and metabolizable energy. Although tamarins are reported to commonly consume large-bodied insects such as grasshoppers and walking sticks (Orthoptera), little is known concerning the degree to which smaller or less easily identifiable arthropod prey comprises an important component of their diet. To better understand tamarin arthropod feeding behavior, fecal samples from 20 wild Bolivian saddleback tamarins (members of five groups) were collected over a 3 week period in June 2012, and analyzed for the presence of arthropod DNA. DNA was extracted using a Qiagen stool extraction kit, and universal insect primers were created and used to amplify a ∼280 bp section of the COI mitochondrial gene. Amplicons were sequenced on the Roche 454 sequencing platform using high-throughput sequencing techniques. An analysis of these samples indicated the presence of 43 taxa of arthropods including 10 orders, 15 families, and 12 identified genera. Many of these taxa had not been previously identified in the tamarin diet. These results highlight molecular analysis of fecal DNA as an important research tool for identifying anthropod feeding patterns in primates, and reveal broad diversity in the taxa, foraging microhabitats, and size of arthropods consumed by tamarin monkeys. © 2014 Wiley Periodicals, Inc.

  4. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors.

    PubMed

    Brevik, Asgeir; Karlsen, Anette; Azqueta, Amaya; Tirado, Anna Estaban; Blomhoff, Rune; Collins, Andrew

    2011-01-01

    Lack of reliable assays for DNA repair has largely prevented measurements of DNA repair from being included in human biomonitoring studies. Using newly developed modifications of the comet assay we tested whether a fruit- and antioxidant-rich plant-based intervention could affect base excision repair (BER) and nucleotide excision repair (NER) in a group of 102 male volunteers. BER and NER repair capacities were measured in lymphocytes before and after a dietary intervention lasting 8 weeks. The study had one control group, one group consuming three kiwifruits per day and one group consuming a variety of antioxidant-rich fruits and plant products in addition to their normal diet. DNA strand breaks were reduced following consumption of both kiwifruits (13%, p = 0.05) and antioxidant-rich plant products (20%, p = 0.02). Increased BER (55%, p = 0.01) and reduced NER (-39%, p < 0.01) were observed in the group consuming a wide variety of plant products. Reduced NER was also observed in the kiwifruit group (-38%, p = 0.05), but BER was not affected in this group. Here we have demonstrated that DNA repair is affected by diet and that modified versions of the comet assay can be used to assess activity of different DNA repair pathways in human biomonitoring studies. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Hypogeous ectomycorrhizal fungal species on roots and in small mammal diet in a mixed-conifer forest

    Treesearch

    Antonio D. Izzo; Marc Meyer; James M. Trappe; Malcolm North; Thomas D. Bruns

    2005-01-01

    The purpose of this study was to estimate the portion of an ectomycorrhizal (ECM) fungi root community with a hypogeous fruiting habit. We used molecular methods (DNA sequence analysis of the internally transcribed spacer [ITS] region of rDNA) to compare three viewpoints: ECM fungi on the roots in a southern Sierra Nevada Abies-dominated old-growth...

  6. Diet overlap and predation between largemouth bass and walleye in Wisconsin lakes using DNA barcoding to improve taxonomic resolution

    USGS Publications Warehouse

    Kelling, Craig J.; Isermann, Daniel A.; Sloss, Brian L.; Turnquist, Keith N.

    2016-01-01

    Over the last decade, the abundance of Largemouth Bass Micropterus salmoides has increased in many northern Wisconsin lakes, causing concern among anglers and biologists regarding the potential for Largemouth Bass to negatively affect populations of Walleye Sander vitreus through predation or competition for prey. Our objectives were to determine whether (1) diet overlap and predation occurred between adult Walleyes and Largemouth Bass in four northern Wisconsin lakes and (2) the use of DNA barcoding to reduce unidentifiable fish in diet samples affected conclusions regarding diet overlap. A single occurrence of Walleye predation was observed in the diets of 945 Largemouth Bass. Moderate to high diet overlap was observed between Largemouth Bass and Walleyes throughout much of the study period. The use of DNA barcoding reduced the amount of unidentified fish in diets to <1% and showed that failure to identify fish or fish parts can affect conclusions regarding diet overlap. Largemouth Bass predation is probably not a primary factor affecting Walleye abundance in the lakes we selected, but observed diet overlap suggests the potential for competition between the two species.

  7. Transcultural Diabetes Nutrition Algorithm (tDNA): Venezuelan Application

    PubMed Central

    Nieto-Martínez, Ramfis; Hamdy, Osama; Marante, Daniel; Inés Marulanda, María; Marchetti, Albert; Hegazi, Refaat A.; Mechanick, Jeffrey I.

    2014-01-01

    Medical nutrition therapy (MNT) is a necessary component of comprehensive type 2 diabetes (T2D) management, but optimal outcomes require culturally-sensitive implementation. Accordingly, international experts created an evidence-based transcultural diabetes nutrition algorithm (tDNA) to improve understanding of MNT and to foster portability of current guidelines to various dysglycemic populations worldwide. This report details the development of tDNA-Venezuelan via analysis of region-specific cardiovascular disease (CVD) risk factors, lifestyles, anthropometrics, and resultant tDNA algorithmic modifications. Specific recommendations include: screening for prediabetes (for biochemical monitoring and lifestyle counseling); detecting obesity using Latin American cutoffs for waist circumference and Venezuelan cutoffs for BMI; prescribing MNT to people with prediabetes, T2D, or high CVD risk; specifying control goals in prediabetes and T2D; and describing regional differences in prevalence of CVD risk and lifestyle. Venezuelan deliberations involved evaluating typical food-based eating patterns, correcting improper dietary habits through adaptation of the Mediterranean diet with local foods, developing local recommendations for physical activity, avoiding stigmatizing obesity as a cosmetic problem, avoiding misuse of insulin and metformin, circumscribing bariatric surgery to appropriate indications, and using integrated health service networks to implement tDNA. Finally, further research, national surveys, and validation protocols focusing on CVD risk reduction in Venezuelan populations are necessary. PMID:24699193

  8. Growth Performance, Carcass Traits and Serum Mineral Chemistry as Affected by Dietary Sodium and Sodium Salts Fed to Broiler Chickens Reared under Phase Feeding System

    PubMed Central

    Mushtaq, M. M. H.; Pasha, T. N.; Saima; Akram, M.; Mushtaq, T.; Parvin, R.; Farooq, U.; Mehmood, S.; Iqbal, K. J.; Hwangbo, J.

    2013-01-01

    A basal diet (0.8 g/kg dNa) was formulated in which each of the two sources (NaHCO3 and Na2SO4) were supplemented in such a way to attain four levels (1.7, 2.6, 3.5, and 4.4 g/kg) of total dNa, respectively, under 4×2 factorial arrangement. Eight dietary treatments were replicated four times, with 40 birds in each replicate (n = 1,280). The diets supplemented with Na2SO4 to attain higher levels of dNa showed highest BW gain and feed intake (FI) during d 1 to 10 (interaction effects) while 2.6 g/kg dNa exhibited improved BW gain and gain:feed (FG) during d 11 to 20. Linear rise in daily water intake (DWI) was associated with diets containing increasing dNa during d 1 to 42 (p≤0.036). During the first 10 d, DWI:FI was found highest in NaHCO3 diets while Na2SO4 diets showed highest DWI:FI during last 10 d of the experiment (p≤0.036). Increasing dNa and changing Na2SO4 with NaHCO3 salt increased pH and resulted in poor growth performance. Dressing weight (p≤0.001) and abdominal fat (p≤0.001; quadratic effect) were reduced, whereas breast (p≤0.001) and thigh (p<0.001) weights were aggravated with increasing dNa (linear effects). Present findings suggested higher levels of dNa from Na2SO4 as the supplemental salt in broiler diets would produce better growth performance, especially in first ten days of life, and improve carcass and body organ characteristics. PMID:25049765

  9. Increased total DNA damage and oxidative stress in brain are associated with decreased longevity in high sucrose diet fed WNIN/Gr-Ob obese rats.

    PubMed

    Potukuchi, Aruna; Addepally, Uma; Sindhu, Kirankumar; Manchala, Raghunath

    2017-06-01

    Obesity and Type 2 Diabetes (T2D) are chronic nutrient-related disorders that occur together and pose a grave burden to society. They are among the most common causes of ageing and death. Obesity and T2D per se accelerate ageing albeit the underlying mechanisms are unclear yet. Also, it is not clear whether or not superimposing T2D on obesity accelerates ageing. Present study validated the hypothesis, 'super-imposing T2D on obesity accelerates ageing' in WNIN/Gr-Ob, the impaired glucose tolerant, obese rat as the model and evaluated probable underlying mechanisms. To estimate the survival analysis of WNIN/Gr-Ob rats induced with T2D. To determine the extent of DNA damage and oxidative stress in the brain, the master controller of the body, in WNIN/Gr-Ob rats with/without high sucrose induced T2D/aggravation of insulin resistance (IR) after 3 and 6 months of feeding. T2D was induced/IR was aggravated by feeding high sucrose diet (HSD) to 9-10 weeks old, male WNIN/Gr-Ob rats. Survival percentage was determined statistically by Kaplan-Meier estimator. Neuronal DNA damage was quantified by the Comet assay while the oxidative stress and antioxidant status were evaluated from the levels of malonaldialdehyde, reduced glutathione, and superoxide dismutase (SOD) activity. HSD feeding decreased longevity of WNIN/Gr-Ob rats and was associated with significantly higher total neuronal DNA damage after three months of feeding but not later. In line with this was the increased neuronal oxidative stress (lipid peroxidation) and decreased antioxidant status (reduced glutathione and SOD activity) in HSD than Starch-based diet (SBD) fed rats. The results suggest that HSD feeding decreased the longevity of WNIN/Gr-Ob obese rats probably by increasing oxidative stress and aggravating IR, a condition that precedes T2D.

  10. Maternal Nutrition Induces Pervasive Gene Expression Changes but No Detectable DNA Methylation Differences in the Liver of Adult Offspring

    PubMed Central

    Cannon, Matthew V.; Buchner, David A.; Hester, James; Miller, Hadley; Sehayek, Ephraim; Nadeau, Joseph H.; Serre, David

    2014-01-01

    Aims Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we characterize the phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic changes induced by maternal diet in adult offspring. Methods We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart. We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results Maternal diet had a significant effect on the body weight of the offspring when they were fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. We did not detect any effect of the maternal diet on DNA methylation in the liver. Conclusions Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver. PMID:24594983

  11. Determination of mammalian deoxyribonucleic acid (DNA) in commercial vegetarian and vegan diets for dogs and cats.

    PubMed

    Kanakubo, K; Fascetti, A J; Larsen, J A

    2017-02-01

    The determination of undeclared ingredients in pet food using different analytical methods has been reported in recent years, raising concerns regarding adequate quality control, dietary efficacy and the potential for purposeful adulteration. The objective of this study was to determine the presence or absence of mammalian DNA using multiplex polymerase chain reaction (PCR) on diets marketed as vegetarian or vegan for dogs and cats. The diets were tested in duplicate; two samples were purchased approximately 3 to 4 months apart with different lot numbers. Multiplex PCR-targeted mitochondrial DNA with two species-specific primers was used to amplify and sequence two sections of the cytochrome b gene for each of the 11 mammalian species. Half of the diets assessed (7/14) were positive for one or more undeclared mammalian DNA source (bovine, porcine, or ovine), and the result was repeatable for one or more species in six diets. While most of the detected DNA was found at both time points, in some cases, the result was positive only at one time point, suggesting the presence may have been due to unintentional cross-contact with animal-sourced ingredients. DNA from feline, cervine, canine, caprine, equine, murine (mouse and rat) and leporine was not identified in any samples. However, evidence of mammalian DNA does not confirm adulteration by the manufacturer nor elucidate its clinical significance when consumed by animals that may benefit from a vegetarian or vegan diet. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  12. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep.

    PubMed

    Lan, Xianyong; Cretney, Evan C; Kropp, Jenna; Khateeb, Karam; Berg, Mary A; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller's grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  13. Maternal Diet during Pregnancy Induces Gene Expression and DNA Methylation Changes in Fetal Tissues in Sheep

    PubMed Central

    Lan, Xianyong; Cretney, Evan C.; Kropp, Jenna; Khateeb, Karam; Berg, Mary A.; Peñagaricano, Francisco; Magness, Ronald; Radunz, Amy E.; Khatib, Hasan

    2013-01-01

    Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from days 67 ± 3 of gestation until necropsy (days 130 ± 1), they were fed one of three diets of alfalfa haylage (HY; fiber), corn (CN; starch), or dried corn distiller’s grains (DG; fiber plus protein plus fat). A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methyltransferase (DNMTs) genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues. PMID:23577020

  14. Effect of processed and red meat on endogenous nitrosation and DNA damage.

    PubMed

    Joosen, Annemiek M C P; Kuhnle, Gunter G C; Aspinall, Sue M; Barrow, Timothy M; Lecommandeur, Emmanuelle; Azqueta, Amaya; Collins, Andrew R; Bingham, Sheila A

    2009-08-01

    Haem in red meat (RM) stimulates the endogenous production of mutagenic nitroso compounds (NOC). Processed (nitrite-preserved red) meat additionally contains high concentrations of preformed NOC. In two studies, of a fresh RM versus a vegetarian (VEG) diet (six males and six females) and of a nitrite-preserved red meat (PM) versus a VEG diet (5 males and 11 females), we investigated whether processing of meat might increase colorectal cancer risk by stimulating nitrosation and DNA damage. Meat diets contained 420 g (males) or 366 g (females) meat/per day. Faecal homogenates from day 10 onwards were analysed for haem and NOC and associated supernatants for genotoxicity. Means are adjusted for differences in male to female ratios between studies. Faecal NOC concentrations on VEG diets were low (2.6 and 3.5 mmol/g) but significantly higher on meat diets (PM 175 +/- 19 nmol/g versus RM 185 +/- 22 nmol/g; P = 0.75). The RM diet resulted in a larger proportion of nitrosyl iron (RM 78% versus PM 54%; P < 0.0001) and less nitrosothiols (RM 12% versus PM 19%; P < 0.01) and other NOC (RM 10% versus PM 27%; P < 0.0001). There was no statistically significant difference in DNA breaks induced by faecal water (FW) following PM and RM diets (P = 0.80). However, PM resulted in higher levels of oxidized pyrimidines (P < 0.05). Surprisingly, VEG diets resulted in significantly more FW-induced DNA strand breaks than the meat diets (P < 0.05), which needs to be clarified in further studies. Meats cured with nitrite have the same effect as fresh RM on endogenous nitrosation but show increased FW-induced oxidative DNA damage.

  15. Genotoxic effects of deoxynivalenol in broiler chickens fed low-protein feeds.

    PubMed

    Awad, W A; Ghareeb, K; Dadak, A; Gille, L; Staniek, K; Hess, M; Böhm, J

    2012-03-01

    Deoxynivalenol (DON) is one of the most abundant and important trichothecenes in food and feed, and it is a significant contaminant due to its frequent occurrence at toxicologically relevant concentrations worldwide. Deoxynivalenol has negative influences on the health and performance of chicks. However, there is little information available regarding the effect of DON on DNA fragmentation in blood lymphocytes. In addition, the effects of Mycofix select (Biomin GmbH, Herzogenburg, Austria) supplementation to DON-contaminated broiler diets on lymphocyte DNA have not yet been demonstrated. Therefore, the aim of the present study was to establish the effect of DON on lipid peroxidation and lymphocyte DNA fragmentation in broilers and to evaluate the potential of Mycofix select in the prevention of toxin-mediated changes. Thirty-two 1-d-old (Ross 308 male) broiler chicks were randomly divided into 4 groups. The control group was fed a noncontaminated diet, and a second group was fed the same diet but supplemented with Mycofix select (0.25%). A third group of broilers was fed a diet artificially contaminated with 10 mg of feed-grade DON/kg of diet, and a fourth group was fed a DON-contaminated diet supplemented with Mycofix select. At the end of the feeding trial, blood was collected and the degree of lymphocyte DNA damage was measured in the plasma by comet assay. Deoxynivalenol increased (P = 0.016) the amount of DNA damage in chicken lymphocytes by 46.8%. Mycofix select protected lymphocyte DNA from the DON effects. To our knowledge, these are the first data on genotoxic effects of a moderate dose of DON on chicken lymphocytes. However, the thiobarbituric acid reactive substances level in liver and liver enzyme activity did not differ among the groups. In conclusion, the present study demonstrated that the diets contaminated with the mycotoxin DON at moderate levels in combination with low-protein feed are able to induce lymphocyte DNA damage in chickens. Supplementation with Mycofix select protected lymphocyte DNA and it was beneficial for maintaining the lymphocyte DNA integrity.

  16. Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers.

    PubMed

    Bøhn, Siv K; Myhrstad, Mari C; Thoresen, Magne; Holden, Marit; Karlsen, Anette; Tunheim, Siv Haugen; Erlund, Iris; Svendsen, Mette; Seljeflot, Ingebjørg; Moskaug, Jan O; Duttaroy, Asim K; Laake, Petter; Arnesen, Harald; Tonstad, Serena; Collins, Andrew; Drevon, Christan A; Blomhoff, Rune

    2010-09-16

    Plant-based diets rich in fruit and vegetables can prevent development of several chronic age-related diseases. However, the mechanisms behind this protective effect are not elucidated. We have tested the hypothesis that intake of antioxidant-rich foods can affect groups of genes associated with cellular stress defence in human blood cells. NCT00520819 http://clinicaltrials.gov. In an 8-week dietary intervention study, 102 healthy male smokers were randomised to either a diet rich in various antioxidant-rich foods, a kiwifruit diet (three kiwifruits/d added to the regular diet) or a control group. Blood cell gene expression profiles were obtained from 10 randomly selected individuals of each group. Diet-induced changes on gene expression were compared to controls using a novel application of the gene set enrichment analysis (GSEA) on transcription profiles obtained using Affymetrix HG-U133-Plus 2.0 whole genome arrays. Changes were observed in the blood cell gene expression profiles in both intervention groups when compared to the control group. Groups of genes involved in regulation of cellular stress defence, such as DNA repair, apoptosis and hypoxia, were significantly upregulated (GSEA, FDR q-values < 5%) by both diets compared to the control group. Genes with common regulatory motifs for aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (AhR/ARNT) were upregulated by both interventions (FDR q-values < 5%). Plasma antioxidant biomarkers (polyphenols/carotenoids) increased in both groups. The observed changes in the blood cell gene expression profiles suggest that the beneficial effects of a plant-based diet on human health may be mediated through optimization of defence processes.

  17. A pilot study to investigate if New Zealand men with prostate cancer benefit from a Mediterranean-style diet

    PubMed Central

    Bishop, Karen S.; Karunasinghe, Nishi; Han, Dug Yeo; Ferguson, Lynnette R.

    2015-01-01

    Carcinoma of the prostate is the most commonly diagnosed malignancy and the third leading cause of mortality in New Zealand men, making it a significant health issue in this country. Global distribution patterns suggest that diet and lifestyle factors may be linked to the development and progression of this cancer. Twenty men with diagnosed prostate cancer adhered to a Mediterranean diet, with specific adaptations, for three months. Prostate-specific antigen, C-reactive protein and DNA damage were evaluated at baseline and after three months of following the diet. Dietary data were collated from diet diaries and an adaptation of a validated Mediterranean diet questionnaire. A significant reduction in DNA damage compared to baseline was apparent, with particular benefit noted for overall adherence to the diet (p = 0.013), increased intake of folate (p = 0.023), vitamin C (p = 0.007), legumes (p = 0.004) and green tea (p = 0.002). Higher intakes of red meat and dairy products were inversely associated with DNA damage (p = 0.003 and p = 0.008 respectively). The results from this small feasibility study suggest that a high-antioxidant diet, modelled on Mediterranean traditions, may be of benefit for men with prostate cancer. Protection against DNA damage appears to be associated with the diet implemented, ostensibly due to reduction in reactive oxidant species. These findings warrant further exploration in a longer trial, with a larger cohort. PMID:26157638

  18. A diet high in fat stimulates adipocyte proliferation in older (22 month) rats.

    PubMed

    Ellis, J R; McDonald, R B; Stern, J S

    1990-01-01

    The effect of a high fat diet in stimulating adipocyte proliferation, as measured by the incorporation of [3H]-thymidine into fat cell DNA, was studied in 22-month-old female Sprague-Dawley rats. Rats were fed a low fat (n = 10) or a high fat diet (n = 9) for a total of six days. On days 4 and 5 of dietary manipulation, rats were injected with 80 microCi/100 g body weight of [3H]-thymidine. Rats were continued on their respective diets for one more day, starved for 72 h and then refed a stock diet for three weeks in order to increase turnover of stroma cells, thus diluting the specific activity of stromal DNA with minimal effect on specific activity of fat cell DNA. The diet groups did not differ significantly with respect to body masses, food intake, parametrial (PARA) and retroperitoneal (RP) depot masses, cell number or cell size. The specific activity of DNA in both PARA and RP depots was greater in the adipocyte than in the stromavascular fraction. Specific activity of fat cells was significantly greater from rats fed the high fat than the low fat diet in both PARA and RP depots. Radioautography of adipose tissue confirmed that there was a greater percentage of adipocyte nuclei labeled in the rats fed the high fat diet. Also, there were few labeled nuclei found in stroma cells. In conclusion, older female rats increased adipocyte proliferation when fed a high fat diet.

  19. Relationship between commercially available DNA analysis and phenotypic observations on beef quality and tenderness.

    PubMed

    Magolski, J D; Buchanan, D S; Maddock-Carlin, K R; Anderson, V L; Newman, D J; Berg, E P

    2013-11-01

    Warner-Bratzler shear force values from 560 mixed breed heifers and steers were used to determine estimates of genetic selection. Cattle were marketed from 2008 to 2011, and included five feedlot based research projects at the North Dakota State University-Carrington Research Extension Center. Samples were collected for IGENITY® analysis providing information that included selection indices and estimated breeding values for carcass traits. DNA-based test results were compared with actual carcass measurements. Marbling accounted for over 10% of the variation in WBSF while hot carcass weight was the second most influential carcass trait accounting for 4% (P<0.01). Regression coefficients of IGENITY® molecular breeding value on phenotype for WBSF, marbling, ribeye area, yield grade, and fat thickness were low (R(2)=0.14, 0.02, 0.03, 0.03, and 0.02, respectively). Therefore selecting cattle for a higher degree of marbling and feeding a diet that meets or exceeds recommended nutrients for growth are the most important factors influencing beef tenderness and acceptability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Diet Influences Expression of Autoimmune Associated Genes and Disease Severity By Epigenetic Mechanisms in a Transgenic Lupus Model

    PubMed Central

    Strickland, Faith M.; Hewagama, Anura; Wu, Ailing; Sawalha, Amr H.; Delaney, Colin; Hoeltzel, Mark F.; Yung, Raymond; Johnson, Kent; Mickelson, Barbara; Richardson, Bruce C.

    2013-01-01

    Objective Lupus flares when genetically predisposed people encounter appropriate environmental agents. Current evidence indicates that the environment contributes by inhibiting T cell DNA methylation, causing overexpression of normally silenced genes. DNA methylation depends on both dietary transmethylation micronutrients and Erk-regulated DNA methyltransferase 1 (Dnmt1) levels. We used transgenic mice to study interactions between diet, Dnmt1 levels and genetic predisposition on the development and severity of lupus. Methods A doxycycline-inducible Erk defect was bred into lupus-resistant (C57BL/6) or lupus-susceptible (C57BL/6xSJL) mouse strains. Doxycycline treated mice were fed a standard commercial diet for eighteen weeks then switched to diets supplemented(MS) or restricted(MR) intransmethylation micronutrients. Disease severity was assessed by anti-dsDNA antibodies, proteinuria, hematuria and histopathology of kidney tissues. Pyrosequencing was used to determine micronutrient effects on DNA methylation. Results Doxycycline induced modest levels of anti-dsDNA antibodies in C57BL/6 mice and higher levels in C57BL/6xSJL mice. Doxycycline-treated C57BL/6xSJL mice developed hematuria and glomerulonephritis on the MR and standard but not the MS diet. In contrast C57BL/6 mice developed kidney disease only on the MR diet. Decreasing Erk signaling and methyl donors also caused demethylation and overexpression of the CD40lg gene in female mice, consistent with demethylation of the second X chromosome. Both the dietary methyl donor content and duration of treatment influenced methylation and expression of the CD40lg gene. Conclusions Dietary micronutrients that affect DNA methylation can exacerbate or ameliorate SLE disease in this transgenic murine lupus model, and contribute to lupus susceptibility and severity through genetic/epigenetic interactions. PMID:23576011

  1. Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3-IG differentially methylated region in female infants

    PubMed Central

    Gonzalez-Nahm, Sarah; Mendez, Michelle; Robinson, Whitney; Murphy, Susan K.; Hoyo, Cathrine; Hogan, Vijaya; Rowley, Diane

    2017-01-01

    Abstract Diet is dictated by the surrounding environment, as food access and availability may change depending on where one lives. Maternal diet during pregnancy is an important part of the in utero environment, and may affect the epigenome. Studies looking at overall diet pattern in relation to DNA methylation have been lacking. The Mediterranean diet is known for its health benefits, including decreased inflammation, weight loss, and management of chronic diseases. This study assesses the association between maternal adherence to a Mediterranean diet pattern during pregnancy and infant DNA methylation at birth. Mediterranean diet adherence in early pregnancy was measured in 390 women enrolled in the Newborn Epigenetic Study, and DNA methylation was assessed in their infants at birth. Multinomial logistic regression was used to assess the association between adherence to a Mediterranean diet and infant methylation at the MEG3, MEG3-IG, pleiomorphic adenoma gene-like 1, insulin-like growth factor 2 gene, H19, mesoderm-specific transcript, neuronatin, paternally expressed gene 3, sarcoglycan and paternally expressed gene 10 regions, measured by pyrosequencing. Infants of mothers with a low adherence to a Mediterranean diet had a greater odds of hypo-methylation at the MEG3-IG differentially methylated region (DMR). Sex-stratified models showed that this association was present in girls only. This study provides early evidence on the association between overall diet pattern and methylation at the 9 DMRs included in this study, and suggests that maternal diet can have a sex-specific impact on infant DNA methylation at specific imprinted DMRs. PMID:29492309

  2. Detection of Termites and Other Insects Consumed by African Great Apes using Molecular Fecal Analysis

    PubMed Central

    Hamad, Ibrahim; Delaporte, Eric; Raoult, Didier; Bittar, Fadi

    2014-01-01

    The consumption of insects by apes has previously been reported based on direct observations and/or trail signs in feces. However, DNA-based diet analyses may have the potential to reveal trophic links for these wild species. Herein, we analyzed the insect-diet diversity of 9 feces obtained from three species of African great apes, gorilla (Gorilla gorilla gorilla), chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), using two mitochondrial amplifications for arthropods. A total of 1056 clones were sequenced for Cyt-b and COI gene libraries, which contained 50 and 56 operational taxonomic units (OTUs), respectively. BLAST research revealed that the OTUs belonged to 32 families from 5 orders (Diptera, Isoptera, Lepidoptera, Coleoptera, and Orthoptera). While ants were not detected by this method, the consumption of flies, beetles, moths, mosquitoes and termites was evident in these samples. Our findings indicate that molecular techniques can be used to analyze insect food items in wild animals. PMID:24675424

  3. Plant DNA sequences from feces: potential means for assessing diets of wild primates.

    PubMed

    Bradley, Brenda J; Stiller, Mathias; Doran-Sheehy, Diane M; Harris, Tara; Chapman, Colin A; Vigilant, Linda; Poinar, Hendrik

    2007-06-01

    Analyses of plant DNA in feces provides a promising, yet largely unexplored, means of documenting the diets of elusive primates. Here we demonstrate the promise and pitfalls of this approach using DNA extracted from fecal samples of wild western gorillas (Gorilla gorilla) and black and white colobus monkeys (Colobus guereza). From these DNA extracts we amplified, cloned, and sequenced small segments of chloroplast DNA (part of the rbcL gene) and plant nuclear DNA (ITS-2). The obtained sequences were compared to sequences generated from known plant samples and to those in GenBank to identify plant taxa in the feces. With further optimization, this method could provide a basic evaluation of minimum primate dietary diversity even when knowledge of local flora is limited. This approach may find application in studies characterizing the diets of poorly-known, unhabituated primate species or assaying consumer-resource relationships in an ecosystem. (c) 2007 Wiley-Liss, Inc.

  4. Dasytricha dominance in Surti buffalo rumen revealed by 18S rRNA sequences and real-time PCR assay.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Rank, D N; Kothari, R K; Joshi, C G

    2011-09-01

    The genetic diversity of protozoa in Surti buffalo rumen was studied by amplified ribosomal DNA restriction analysis, 18S rDNA sequence homology and phylogenetic and Real-time PCR analysis methods. Three animals were fed diet comprised green fodder Napier bajra 21 (Pennisetum purpureum), mature pasture grass (Dicanthium annulatum) and concentrate mixture (20% crude protein, 65% total digestible nutrients). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360 bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. A total of 91 clones were examined and identified 14 different 18S RNA sequences based on PCR-RFLP pattern. These 14 phylotypes were distributed into four genera-based 18S rDNA database sequences and identified as Dasytricha (57 clones), Isotricha (14 clones), Ostracodinium (11 clones) and Polyplastron (9 clones). Phylogenetic analyses were also used to infer the makeup of protozoa communities in the rumen of Surti buffalo. Out of 14 sequences, 8 sequences (69 clones) clustered with the Dasytricha ruminantium-like clone and 4 sequences (13 clones) were also phylogenetically placed with the Isotricha prostoma-like clone. Moreover, 2 phylotypes (9 clones) were related to Polyplastron multivesiculatum-like clone. In addition, the number of 18S rDNA gene copies of Dasytricha ruminantium (0.05% to ciliate protozoa) was higher than Entodinium sp. (2.0 × 10(5) vs. 1.3 × 10(4)) in per ml ruminal fluid.

  5. Impact of Consuming Extra-Virgin Olive Oil or Nuts within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cells within the PREDIMED-Navarra Randomized Controlled Trial: A Role for Dietary Lipids.

    PubMed

    Arpón, Ana; Milagro, Fermín I; Razquin, Cristina; Corella, Dolores; Estruch, Ramón; Fitó, Montserrat; Marti, Amelia; Martínez-González, Miguel A; Ros, Emilio; Salas-Salvadó, Jordi; Riezu-Boj, José-Ignacio; Martínez, J Alfredo

    2017-12-23

    DNA methylation could be reversible and mouldable by environmental factors, such as dietary exposures. The objective was to analyse whether an intervention with two Mediterranean diets, one rich in extra-virgin olive oil (MedDiet + EVOO) and the other one in nuts (MedDiet + nuts), was influencing the methylation status of peripheral white blood cells (PWBCs) genes. A subset of 36 representative individuals were selected within the PREvención con DIeta MEDiterránea (PREDIMED-Navarra) trial, with three intervention groups in high cardiovascular risk volunteers: MedDiet + EVOO, MedDiet + nuts, and a low-fat control group. Methylation was assessed at baseline and at five-year follow-up. Ingenuity pathway analysis showed routes with differentially methylated CpG sites (CpGs) related to intermediate metabolism, diabetes, inflammation, and signal transduction. Two CpGs were specifically selected: cg01081346- CPT1B / CHKB-CPT1B and cg17071192- GNAS/GNASAS , being associated with intermediate metabolism. Furthermore, cg01081346 was associated with PUFAs intake, showing a role for specific fatty acids on epigenetic modulation. Specific components of MedDiet, particularly nuts and EVOO, were able to induce methylation changes in several PWBCs genes. These changes may have potential benefits in health; especially those changes in genes related to intermediate metabolism, diabetes, inflammation and signal transduction, which may contribute to explain the role of MedDiet and fat quality on health outcomes.

  6. Impact of Consuming Extra-Virgin Olive Oil or Nuts within a Mediterranean Diet on DNA Methylation in Peripheral White Blood Cells within the PREDIMED-Navarra Randomized Controlled Trial: A Role for Dietary Lipids

    PubMed Central

    Razquin, Cristina; Estruch, Ramón; Fitó, Montserrat; Martínez-González, Miguel A.; Ros, Emilio

    2017-01-01

    DNA methylation could be reversible and mouldable by environmental factors, such as dietary exposures. The objective was to analyse whether an intervention with two Mediterranean diets, one rich in extra-virgin olive oil (MedDiet + EVOO) and the other one in nuts (MedDiet + nuts), was influencing the methylation status of peripheral white blood cells (PWBCs) genes. A subset of 36 representative individuals were selected within the PREvención con DIeta MEDiterránea (PREDIMED-Navarra) trial, with three intervention groups in high cardiovascular risk volunteers: MedDiet + EVOO, MedDiet + nuts, and a low-fat control group. Methylation was assessed at baseline and at five-year follow-up. Ingenuity pathway analysis showed routes with differentially methylated CpG sites (CpGs) related to intermediate metabolism, diabetes, inflammation, and signal transduction. Two CpGs were specifically selected: cg01081346–CPT1B/CHKB-CPT1B and cg17071192–GNAS/GNASAS, being associated with intermediate metabolism. Furthermore, cg01081346 was associated with PUFAs intake, showing a role for specific fatty acids on epigenetic modulation. Specific components of MedDiet, particularly nuts and EVOO, were able to induce methylation changes in several PWBCs genes. These changes may have potential benefits in health; especially those changes in genes related to intermediate metabolism, diabetes, inflammation and signal transduction, which may contribute to explain the role of MedDiet and fat quality on health outcomes. PMID:29295516

  7. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring.

    PubMed

    Keleher, Madeline Rose; Zaidi, Rabab; Shah, Shyam; Oakley, M Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes.

  8. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring

    PubMed Central

    Zaidi, Rabab; Shah, Shyam; Oakley, M. Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M.

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes. PMID:29447215

  9. Transcultural Diabetes Nutrition Algorithm: A Malaysian Application

    PubMed Central

    Hamdy, Osama; Chin Chia, Yook; Lin Lim, Shueh; Kumari Natkunam, Santha; Yeong Tan, Ming; Sulaiman, Ridzoni; Nisak, Barakatun; Chee, Winnie Siew Swee; Marchetti, Albert; Hegazi, Refaat A.; Mechanick, Jeffrey I.

    2013-01-01

    Glycemic control among patients with prediabetes and type 2 diabetes mellitus (T2D) in Malaysia is suboptimal, especially after the continuous worsening over the past decade. Improved glycemic control may be achieved through a comprehensive management strategy that includes medical nutrition therapy (MNT). Evidence-based recommendations for diabetes-specific therapeutic diets are available internationally. However, Asian patients with T2D, including Malaysians, have unique disease characteristics and risk factors, as well as cultural and lifestyle dissimilarities, which may render international guidelines and recommendations less applicable and/or difficult to implement. With these thoughts in mind, a transcultural Diabetes Nutrition Algorithm (tDNA) was developed by an international task force of diabetes and nutrition experts through the restructuring of international guidelines for the nutritional management of prediabetes and T2D to account for cultural differences in lifestyle, diet, and genetic factors. The initial evidence-based global tDNA template was designed for simplicity, flexibility, and cultural modification. This paper reports the Malaysian adaptation of the tDNA, which takes into account the epidemiologic, physiologic, cultural, and lifestyle factors unique to Malaysia, as well as the local guidelines recommendations. PMID:24385984

  10. Transcultural diabetes nutrition algorithm: a malaysian application.

    PubMed

    Hussein, Zanariah; Hamdy, Osama; Chin Chia, Yook; Lin Lim, Shueh; Kumari Natkunam, Santha; Hussain, Husni; Yeong Tan, Ming; Sulaiman, Ridzoni; Nisak, Barakatun; Chee, Winnie Siew Swee; Marchetti, Albert; Hegazi, Refaat A; Mechanick, Jeffrey I

    2013-01-01

    Glycemic control among patients with prediabetes and type 2 diabetes mellitus (T2D) in Malaysia is suboptimal, especially after the continuous worsening over the past decade. Improved glycemic control may be achieved through a comprehensive management strategy that includes medical nutrition therapy (MNT). Evidence-based recommendations for diabetes-specific therapeutic diets are available internationally. However, Asian patients with T2D, including Malaysians, have unique disease characteristics and risk factors, as well as cultural and lifestyle dissimilarities, which may render international guidelines and recommendations less applicable and/or difficult to implement. With these thoughts in mind, a transcultural Diabetes Nutrition Algorithm (tDNA) was developed by an international task force of diabetes and nutrition experts through the restructuring of international guidelines for the nutritional management of prediabetes and T2D to account for cultural differences in lifestyle, diet, and genetic factors. The initial evidence-based global tDNA template was designed for simplicity, flexibility, and cultural modification. This paper reports the Malaysian adaptation of the tDNA, which takes into account the epidemiologic, physiologic, cultural, and lifestyle factors unique to Malaysia, as well as the local guidelines recommendations.

  11. Prey preference of snow leopard (Panthera uncia) in South Gobi, Mongolia.

    PubMed

    Shehzad, Wasim; McCarthy, Thomas Michael; Pompanon, Francois; Purevjav, Lkhagvajav; Coissac, Eric; Riaz, Tiayyba; Taberlet, Pierre

    2012-01-01

    Accurate information about the diet of large carnivores that are elusive and inhabit inaccessible terrain, is required to properly design conservation strategies. Predation on livestock and retaliatory killing of predators have become serious issues throughout the range of the snow leopard. Several feeding ecology studies of snow leopards have been conducted using classical approaches. These techniques have inherent limitations in their ability to properly identify both snow leopard feces and prey taxa. To examine the frequency of livestock prey and nearly-threatened argali in the diet of the snow leopard, we employed the recently developed DNA-based diet approach to study a snow leopard population located in the Tost Mountains, South Gobi, Mongolia. After DNA was extracted from the feces, a region of ∼100 bp long from mitochondrial 12S rRNA gene was amplified, making use of universal primers for vertebrates and a blocking oligonucleotide specific to snow leopard DNA. The amplicons were then sequenced using a next-generation sequencing platform. We observed a total of five different prey items from 81 fecal samples. Siberian ibex predominated the diet (in 70.4% of the feces), followed by domestic goat (17.3%) and argali sheep (8.6%). The major part of the diet was comprised of large ungulates (in 98.8% of the feces) including wild ungulates (79%) and domestic livestock (19.7%). The findings of the present study will help to understand the feeding ecology of the snow leopard, as well as to address the conservation and management issues pertaining to this wild cat.

  12. Prey Preference of Snow Leopard (Panthera uncia) in South Gobi, Mongolia

    PubMed Central

    Shehzad, Wasim; McCarthy, Thomas Michael; Pompanon, Francois; Purevjav, Lkhagvajav; Coissac, Eric; Riaz, Tiayyba; Taberlet, Pierre

    2012-01-01

    Accurate information about the diet of large carnivores that are elusive and inhabit inaccessible terrain, is required to properly design conservation strategies. Predation on livestock and retaliatory killing of predators have become serious issues throughout the range of the snow leopard. Several feeding ecology studies of snow leopards have been conducted using classical approaches. These techniques have inherent limitations in their ability to properly identify both snow leopard feces and prey taxa. To examine the frequency of livestock prey and nearly-threatened argali in the diet of the snow leopard, we employed the recently developed DNA-based diet approach to study a snow leopard population located in the Tost Mountains, South Gobi, Mongolia. After DNA was extracted from the feces, a region of ∼100 bp long from mitochondrial 12S rRNA gene was amplified, making use of universal primers for vertebrates and a blocking oligonucleotide specific to snow leopard DNA. The amplicons were then sequenced using a next-generation sequencing platform. We observed a total of five different prey items from 81 fecal samples. Siberian ibex predominated the diet (in 70.4% of the feces), followed by domestic goat (17.3%) and argali sheep (8.6%). The major part of the diet was comprised of large ungulates (in 98.8% of the feces) including wild ungulates (79%) and domestic livestock (19.7%). The findings of the present study will help to understand the feeding ecology of the snow leopard, as well as to address the conservation and management issues pertaining to this wild cat. PMID:22393381

  13. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles

    USDA-ARS?s Scientific Manuscript database

    In experimental animals, maternal diet during the periconceptional period influences the establishment of DNA methylation at metastable epialleles in the offspring, with permanent phenotypic consequences. Pronounced naturally occurring seasonal differences in the diet of rural Gambian women allowed ...

  14. Comparison of the effect of raw and blanched-frozen broccoli on DNA damage in colonocytes.

    PubMed

    Lynn, Anthony; Fuller, Zoë; Collins, Andrew R; Ratcliffe, Brian

    2015-07-01

    Consumption of cruciferous vegetables may protect against colorectal cancer. Cruciferous vegetables are rich in a number of bioactive constituents including polyphenols, vitamins and glucosinolates. Before consumption, cruciferous vegetables often undergo some form of processing that reduces their content of bioactive constituents and may determine whether they exert protective effects. The aim of this study was to compare the ability of raw and blanched-frozen broccoli to protect colonocytes against DNA damage, improve antioxidant status and induce xenobiotic metabolizing enzymes (XME). Fifteen Landrace × Large White male pigs were divided into five age-matched and weight-matched sets (79 days, SD 3, and 34·7 kg, SD 3·9, respectively). Each set consisted of siblings to minimize genetic variation. Within each set, pigs received a cereal-based diet, unsupplemented (control) or supplemented with 600 g day(-1) of raw or blanched-frozen broccoli for 12 days. The consumption of raw broccoli caused a significant 27% increase in DNA damage in colonocytes (p = 0·03) relative to the control diet, whereas blanched-frozen broccoli had no significant effect. Both broccoli diets had no significant effect on plasma antioxidant status or hepatic and colonic XME. This study is the first to report that the consumption of raw broccoli can damage DNA in porcine colonocytes. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Assessment of DNA damage using comet assay in middle-aged overweight/obese subjects after following a hypocaloric diet supplemented with cocoa extract.

    PubMed

    Ibero-Baraibar, Idoia; Azqueta, Amaya; Lopez de Cerain, Adela; Martinez, J Alfredo; Zulet, M Angeles

    2015-01-01

    Nutrient excess and unbalanced diets can result in overproduction of reactive oxygen species (ROS), which are associated with oxidative stress. Cocoa extract contains antioxidants that inhibit the harmful effects of ROS. This trial analysed the effect of cocoa extract consumption integrated as a bioactive compound into ready-to-eat meals, on oxidative stress at the level of DNA in overweight/obese subjects. Fifty volunteers [57.26(5.24) years, 30.59(2.33)kg/m(2)] participated in a 4-week double-blind, randomised, placebo-controlled parallel nutritional intervention. Half of the volunteers received meals supplemented with 1.4 g/day cocoa extract, while the other half received control meals, both within a 15% energy restriction diet. Lymphocytes were isolated and endogenous strand breaks, oxidised bases and resistance to H2O2-induced damage were measured by the comet assay. The intake of ready-to-eat meals supplemented with cocoa extract did not show relevant changes in the oxidative status of DNA. However, in the cocoa group, oxidised bases negatively correlated with methyl epicatechin-O-sulphate (r = -0.76; P = -0.007) and epicatechin sulphate (r = -0.61; P = -0.046). When volunteers of both groups were analysed together, a marginal decrease (P = 0.072) in oxidised bases was observed, which attributed to weight loss. Subjects who started the intervention with higher levels of damage showed a greater reduction in oxidised bases after 4 weeks (P = 0.040) compared to those who had lower baseline levels. In conclusion, even if 1.4 g of cocoa supplementation for 4 weeks did not show notable changes in terms of antioxidant status of DNA, the energy restriction showed a slightly decrease in oxidised bases and this was seen to a greater extent in subjects who started the intervention with higher levels of damage. On the other hand, the inverse associations found between oxidised bases and some cocoa-derived metabolites suggest that a protective effect might be seen in a longer period of time or in subjects with higher baseline DNA damage. www.clinicaltrials.gov (NCT01596309). © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Oldest Directly Dated Remains of Sheep in China

    PubMed Central

    Dodson, John; Dodson, Eoin; Banati, Richard; Li, Xiaoqiang; Atahan, Pia; Hu, Songmei; Middleton, Ryan J.; Zhou, Xinying; Nan, Sun

    2014-01-01

    The origins of domesticated sheep (Ovis sp.) in China remain unknown. Previous workers have speculated that sheep may have been present in China up to 7000 years ago, however many claims are based on associations with archaeological material rather than independent dates on sheep material. Here we present 7 radiocarbon dates on sheep bone from Inner Mongolia, Ningxia and Shaanxi provinces. DNA analysis on one of the bones confirms it is Ovis sp. The oldest ages are about 4700 to 4400 BCE and are thus the oldest objectively dated Ovis material in eastern Asia. The graphitisised bone collagen had δ13C values indicating some millet was represented in the diet. This probably indicates sheep were in a domestic setting where millet was grown. The younger samples had δ13C values indicating that even more millet was in the diet, and this was likely related to changes in foddering practices PMID:25417648

  17. Oldest Directly Dated Remains of Sheep in China

    NASA Astrophysics Data System (ADS)

    Dodson, John; Dodson, Eoin; Banati, Richard; Li, Xiaoqiang; Atahan, Pia; Hu, Songmei; Middleton, Ryan J.; Zhou, Xinying; Nan, Sun

    2014-11-01

    The origins of domesticated sheep (Ovis sp.) in China remain unknown. Previous workers have speculated that sheep may have been present in China up to 7000 years ago, however many claims are based on associations with archaeological material rather than independent dates on sheep material. Here we present 7 radiocarbon dates on sheep bone from Inner Mongolia, Ningxia and Shaanxi provinces. DNA analysis on one of the bones confirms it is Ovis sp. The oldest ages are about 4700 to 4400 BCE and are thus the oldest objectively dated Ovis material in eastern Asia. The graphitisised bone collagen had δ13C values indicating some millet was represented in the diet. This probably indicates sheep were in a domestic setting where millet was grown. The younger samples had δ13C values indicating that even more millet was in the diet, and this was likely related to changes in foddering practices

  18. Oldest directly dated remains of sheep in China.

    PubMed

    Dodson, John; Dodson, Eoin; Banati, Richard; Li, Xiaoqiang; Atahan, Pia; Hu, Songmei; Middleton, Ryan J; Zhou, Xinying; Nan, Sun

    2014-11-24

    The origins of domesticated sheep (Ovis sp.) in China remain unknown. Previous workers have speculated that sheep may have been present in China up to 7000 years ago, however many claims are based on associations with archaeological material rather than independent dates on sheep material. Here we present 7 radiocarbon dates on sheep bone from Inner Mongolia, Ningxia and Shaanxi provinces. DNA analysis on one of the bones confirms it is Ovis sp. The oldest ages are about 4700 to 4400 BCE and are thus the oldest objectively dated Ovis material in eastern Asia. The graphitisised bone collagen had δ(13)C values indicating some millet was represented in the diet. This probably indicates sheep were in a domestic setting where millet was grown. The younger samples had δ(13)C values indicating that even more millet was in the diet, and this was likely related to changes in foddering practices.

  19. A moderate increase in dietary zinc reduces DNA strand breaks in leukocytes and alters plasma proteins without changing plasma zinc concentrations123

    PubMed Central

    Zyba, Sarah J; Killilea, David W; Holland, Tai C; Kim, Elijah; Moy, Adrian; Sutherland, Barbara; Shigenaga, Mark K

    2017-01-01

    Background: Food fortification has been recommended to improve a population’s micronutrient status. Biofortification techniques modestly elevate the zinc content of cereals, but few studies have reported a positive impact on functional indicators of zinc status. Objective: We determined the impact of a modest increase in dietary zinc that was similar to that provided by biofortification programs on whole-body and cellular indicators of zinc status. Design: Eighteen men participated in a 6-wk controlled consumption study of a low-zinc, rice-based diet. The diet contained 6 mg Zn/d for 2 wk and was followed by 10 mg Zn/d for 4 wk. To reduce zinc absorption, phytate was added to the diet during the initial period. Indicators of zinc homeostasis, including total absorbed zinc (TAZ), the exchangeable zinc pool (EZP), plasma and cellular zinc concentrations, zinc transporter gene expression, and other metabolic indicators (i.e., DNA damage, inflammation, and oxidative stress), were measured before and after each dietary-zinc period. Results: TAZ increased with increased dietary zinc, but plasma zinc concentrations and EZP size were unchanged. Erythrocyte and leukocyte zinc concentrations and zinc transporter expressions were not altered. However, leukocyte DNA strand breaks decreased with increased dietary zinc, and the level of proteins involved in DNA repair and antioxidant and immune functions were restored after the dietary-zinc increase. Conclusions: A moderate 4-mg/d increase in dietary zinc, similar to that which would be expected from zinc-biofortified crops, improves zinc absorption but does not alter plasma zinc. The repair of DNA strand breaks improves, as do serum protein concentrations that are associated with the DNA repair process. This trial was registered at clinicaltrials.gov as NCT02861352. PMID:28003206

  20. Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene

    PubMed Central

    Estruch, G.; Collado, M. C.; Peñaranda, D. S.; Tomás Vidal, A.; Jover Cerdá, M.; Pérez Martínez, G.; Martinez-Llorens, S.

    2015-01-01

    Recent studies have demonstrated the impact of diet on microbiota composition, but the essential need for the optimization of production rates and costs forces farms and aquaculture production to carry out continuous dietary tests. In order to understand the effect of total fishmeal replacement by vegetable-based feed in the sea bream (Sparus aurata), the microbial composition of the stomach, foregut, midgut and hindgut was analysed using high-throughput 16S rDNA sequencing, also considering parameters of growth, survival and nutrient utilisation indices.A total of 91,539 16S rRNA filtered-sequences were analysed, with an average number of 3661.56 taxonomically assigned, high-quality sequences per sample. The dominant phyla throughout the whole gastrointestinal tract were Actinobacteria, Protebacteria and Firmicutes. A lower diversity in the stomach in comparison to the other intestinal sections was observed. The microbial composition of the Recirculating Aquaculture System was totally different to that of the sea bream gastrointestinal tract. Total fishmeal replacement had an important impact on microbial profiles but not on diversity. Streptococcus (p-value: 0.043) and Photobacterium (p-value: 0.025) were highly represented in fish fed with fishmeal and vegetable-meal diets, respectively. In the stomach samples with the vegetable diet, reads of chloroplasts and mitochondria from vegetable dietary ingredients were rather abundant. Principal Coordinate Analysis showed a clear differentiation between diets in the microbiota present in the gut, supporting the presence of specific bacterial consortia associated with the diet.Although differences in growth and nutritive parameters were not observed, a negative effect of the vegetable diet on the survival rate was determined. Further studies are required to shed more light on the relationship between the immune system and sea bream gastrointestinal tract microbiota and should consider the modulation of the microbiota to improve the survival rate and nutritive efficacy when using plant-based diets. PMID:26317431

  1. Raw meat based diet influences faecal microbiome and end products of fermentation in healthy dogs.

    PubMed

    Sandri, Misa; Dal Monego, Simeone; Conte, Giuseppe; Sgorlon, Sandy; Stefanon, Bruno

    2017-02-28

    Dietary intervention studies are required to deeper understand the variability of gut microbial ecosystem in healthy dogs under different feeding conditions and to improve diet formulations. The aim of the study was to investigate in dogs the influence of a raw based diet supplemented with vegetable foods on faecal microbiome in comparison with extruded food. Eight healthy adult Boxer dogs were recruited and randomly divided in two experimental blocks of 4 individuals. Dogs were regularly fed a commercial extruded diet (RD) and starting from the beginning of the trial, one group received the raw based diet (MD) and the other group continued to be fed with the RD diet (CD) for a fortnight. After 14 days, the two groups were inverted, the CD group shifted to the MD and the MD shifted to the CD, for the next 14 days. Faeces were collected at the beginning of the study (T0), after 14 days (T14) before the change of diet and at the end of experimental period (T28) for DNA extraction and analysis of metagenome by sequencing 16SrRNA V3 and V4 regions, short chain fatty acids (SCFA), lactate and faecal score. A decreased proportion of Lactobacillus, Paralactobacillus (P < 0.01) and Prevotella (P < 0.05) genera was observed in the MD group while Shannon biodiversity Index significantly increased (3.31 ± 0.15) in comparison to the RD group (2.92 ± 0.31; P < 0.05). The MD diet significantly (P < 0.05) decreased the Faecal Score and increased the lactic acid concentration in the feces in comparison to the RD treatment (P < 0.01). Faecal acetate was negatively correlated with Escherichia/Shigella and Megamonas (P < 0.01), whilst butyrate was positively correlated with Blautia and Peptococcus (P < 0.05). Positive correlations were found between lactate and Megamonas (P < 0.05), Escherichia/Shigella (P < 0.01) and Lactococcus (P < 0.01). These results suggest that the diet composition modifies faecal microbial composition and end products of fermentation. The administration of MD diet promoted a more balanced growth of bacterial communities and a positive change in the readouts of healthy gut functions in comparison to RD diet.

  2. Aging and alcohol interact to alter hepatic DNA hydroxymethylation

    PubMed Central

    Tammen, Stephanie A.; Dolnikowski, Gregory G.; Ausman, Lynne M.; Liu, Zhenhua; Sauer, Julia; SimonettaFriso; Choi, Sang-Woon

    2014-01-01

    Background Aging and chronic alcohol consumption are both modifiers of DNA methylation but it is not yet known whether chronic alcohol consumption also alters DNA hydroxymethylation, a newly discovered epigenetic mark produced by oxidation of methylcytosine. Furthermore, it has not been tested whether aging and alcohol interact to modify this epigenetic phenomenon, thereby having an independent effect on gene expression. Methods Old (18 months) and young (4 months) male C57BL/6 mice were pair-fed either a Lieber-DeCarli liquid diet with alcohol (18% of energy) or an isocaloricLieber-DeCarli control diet for 5 weeks. Global DNA hydroxymethylation and DNA methylation were analyzed from hepatic DNA using a new LC/MS-MS method. Hepatic mRNA expression of the Tet enzymes and Cyp2e1 were measured via qRTPCR. Results In young mice, mild chronic alcohol exposure significantly reduced global DNA hydroxymethylation compared with control mice (0.22%±0.01% vs 0.29±0.06%, p = 0.004). Alcohol did not significantly alter hydroxymethylcytosine levels in old mice. Old mice fed the control diet showed decreased global DNA hydroxymethylation compared with young mice fed the control diet (0.24±0.02% vs 0.29±0.06%, p = 0.04). This model suggests an interaction between aging and alcohol in determining DNA hydroxymethylation (pinteraction = 0.009). Expression of Tet2 and Tet3 enzymes was decreased in the old mice relative to the young (p < 0.005). Conclusions The observation that alcohol alters DNA hydroxymethylation indicates a new epigenetic effect of alcohol. This is the first study demonstrating the interactive effects of chronic alcohol consumption and aging on DNA hydroxymethylation. PMID:25070523

  3. Highly Overlapping Winter Diet in Two Sympatric Lemming Species Revealed by DNA Metabarcoding

    PubMed Central

    Soininen, Eeva M.; Gauthier, Gilles; Bilodeau, Frédéric; Berteaux, Dominique; Gielly, Ludovic; Taberlet, Pierre; Gussarova, Galina; Bellemain, Eva; Hassel, Kristian; Stenøien, Hans K.; Epp, Laura; Schrøder-Nielsen, Audun; Brochmann, Christian; Yoccoz, Nigel G.

    2015-01-01

    Sympatric species are expected to minimize competition by partitioning resources, especially when these are limited. Herbivores inhabiting the High Arctic in winter are a prime example of a situation where food availability is anticipated to be low, and thus reduced diet overlap is expected. We present here the first assessment of diet overlap of high arctic lemmings during winter based on DNA metabarcoding of feces. In contrast to previous analyses based on microhistology, we found that the diets of both collared (Dicrostonyx groenlandicus) and brown lemmings (Lemmus trimucronatus) on Bylot Island were dominated by Salix while mosses, which were significantly consumed only by the brown lemming, were a relatively minor food item. The most abundant plant taxon, Cassiope tetragona, which alone composes more than 50% of the available plant biomass, was not detected in feces and can thus be considered to be non-food. Most plant taxa that were identified as food items were consumed in proportion to their availability and none were clearly selected for. The resulting high diet overlap, together with a lack of habitat segregation, indicates a high potential for resource competition between the two lemming species. However, Salix is abundant in the winter habitats of lemmings on Bylot Island and the non-Salix portion of the diets differed between the two species. Also, lemming grazing impact on vegetation during winter in the study area is negligible. Hence, it seems likely that the high potential for resource competition predicted between these two species did not translate into actual competition. This illustrates that even in environments with low primary productivity food resources do not necessarily generate strong competition among herbivores. PMID:25635852

  4. The Role of Dietary Extra Virgin Olive Oil and Corn Oil on the Alteration of Epigenetic Patterns in the Rat DMBA-Induced Breast Cancer Model.

    PubMed

    Rodríguez-Miguel, Cristina; Moral, Raquel; Escrich, Raquel; Vela, Elena; Solanas, Montserrat; Escrich, Eduard

    2015-01-01

    Disruption of epigenetic patterns is a major change occurring in all types of cancers. Such alterations are characterized by global DNA hypomethylation, gene-promoter hypermethylation and aberrant histone modifications, and may be modified by environment. Nutritional factors, and especially dietary lipids, have a role in the etiology of breast cancer. Thus, we aimed to analyze the influence of different high fat diets on DNA methylation and histone modifications in the rat dimethylbenz(a)anthracene (DMBA)-induced breast cancer model. Female Sprague-Dawley rats were fed a low-fat, a high corn-oil or a high extra-virgin olive oil (EVOO) diet from weaning or from induction with DMBA. In mammary glands and tumors we analyzed global and gene specific (RASSF1A, TIMP3) DNA methylation by LUMA and bisulfite pyrosequencing assays, respectively. We also determined gene expression and enzymatic activity of DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) and evaluated changes in histone modifications (H3K4me2, H3K27me3, H4K20me3 and H4K16ac) by western-blot. Our results showed variations along time in the global DNA methylation of the mammary gland displaying decreases at puberty and with aging. The olive oil-enriched diet, on the one hand, increased the levels of global DNA methylation in mammary gland and tumor, and on the other, changed histone modifications patterns. The corn oil-enriched diet increased DNA methyltransferase activity in both tissues, resulting in an increase in the promoter methylation of the tumor suppressor genes RASSF1A and TIMP3. These results suggest a differential effect of the high fat diets on epigenetic patterns with a relevant role in the neoplastic transformation, which could be one of the mechanisms of their differential promoter effect, clearly stimulating for the high corn-oil diet and with a weaker influence for the high EVOO diet, on breast cancer progression.

  5. Effect of feeding palm oil by-products based diets on total bacteria, cellulolytic bacteria and methanogenic archaea in the rumen of goats.

    PubMed

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2014-01-01

    Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD), decanter cake diet (DCD), palm kernel cake diet (PKCD) and CD plus 5% PO diet (CPOD) were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0) and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05) DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05) in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats.

  6. Effects of the short-chain triglyceride triacetin on intestinal mucosa and metabolic substrates in rats.

    PubMed

    Lynch, J W; Miles, J M; Bailey, J W

    1994-01-01

    Diets containing either triacetin (the water-soluble triglyceride of acetate) or long-chain triglycerides (LCTs) were fed to rats to determine the effects on intestinal mucosa cells and plasma substrates. Male Sprague-Dawley rats were fed one of three diets, a control diet containing 5% of energy as LCTs or one of two experimental diets that contained 30% of energy as lipid. The lipid component of the two experimental diets was either 100% LCTs or 95% triacetin/5% LCTs. Plasma lactate, glucose, and total ketone body concentrations were not significantly different among dietary treatment groups. Compared with animals fed LCTs and control diet, plasma pyruvate and free fatty acid concentrations were decreased in animals fed triacetin. In contrast, plasma triglyceride concentrations were elevated in animals fed triacetin compared with other groups. Intestinal biochemical measures included total DNA, RNA, protein, and the protein:DNA ratio. Histologic indices measured were villus height in the jejunum and crypt depth in the colon. No significant difference in mucosal protein concentration was observed in the jejunum and colon. Jejunal RNA was significantly decreased in animals fed triacetin compared with other diets. Triacetin feeding significantly increased the DNA content in the jejunum and colon (thereby lowering the protein:DNA ratio), indicating smaller, more numerous cells. Jejunal villus height and colonic crypt depth were not significantly different among dietary treatment groups. Provision of a balanced diet containing 28.5% of the total calories as triacetin had no adverse effects on metabolic substrates and resulted in smaller and more numerous mucosal cells in the jejunum and colon.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Coprolites as a source of information on the genome and diet of the cave hyena

    PubMed Central

    Bon, Céline; Berthonaud, Véronique; Maksud, Frédéric; Labadie, Karine; Poulain, Julie; Artiguenave, François; Wincker, Patrick; Aury, Jean-Marc; Elalouf, Jean-Marc

    2012-01-01

    We performed high-throughput sequencing of DNA from fossilized faeces to evaluate this material as a source of information on the genome and diet of Pleistocene carnivores. We analysed coprolites derived from the extinct cave hyena (Crocuta crocuta spelaea), and sequenced 90 million DNA fragments from two specimens. The DNA reads enabled a reconstruction of the cave hyena mitochondrial genome with up to a 158-fold coverage. This genome, and those sequenced from extant spotted (Crocuta crocuta) and striped (Hyaena hyaena) hyena specimens, allows for the establishment of a robust phylogeny that supports a close relationship between the cave and the spotted hyena. We also demonstrate that high-throughput sequencing yields data for cave hyena multi-copy and single-copy nuclear genes, and that about 50 per cent of the coprolite DNA can be ascribed to this species. Analysing the data for additional species to indicate the cave hyena diet, we retrieved abundant sequences for the red deer (Cervus elaphus), and characterized its mitochondrial genome with up to a 3.8-fold coverage. In conclusion, we have demonstrated the presence of abundant ancient DNA in the coprolites surveyed. Shotgun sequencing of this material yielded a wealth of DNA sequences for a Pleistocene carnivore and allowed unbiased identification of diet. PMID:22456883

  8. Methyl-coenzyme M reductase A as an indicator to estimate methane production from dairy cows.

    PubMed

    Aguinaga Casañas, M A; Rangkasenee, N; Krattenmacher, N; Thaller, G; Metges, C C; Kuhla, B

    2015-06-01

    The evaluation of greenhouse gas mitigation strategies requires the quantitative assessment of individual methane production. Because methane measurement in respiration chambers is highly accurate, but also comprises various disadvantages such as limited capacity and high costs, the establishment of an indicator for estimating methane production of individual ruminants would provide an alternative to direct methane measurement. Methyl-coenzyme M reductase is involved in methanogenesis and the subunit α of methyl-coenzyme M reductase is encoded by the mcrA gene of rumen archaea. We therefore examined the relationship between methane emissions of Holstein dairy cows measured in respiration chambers with 2 different diets (high- and medium-concentrate diet) and the mcrA DNA and mcrA cDNA abundance determined from corresponding rumen fluid samples. Whole-body methane production per kilogram of dry matter intake and mcrA DNA normalized to the abundance of the rrs gene coding for 16S rRNA correlated significantly when using qmcrA primers. Use of qmcrA primers also revealed linear correlation between mcrA DNA copy number and methane yield. Regression analyses based on normalized mcrA cDNA abundances revealed no significant linear correlation with methane production per kilogram of dry matter intake. Furthermore, the correlations between normalized mcrA DNA abundance and the rumen fluid concentration of acetic and isobutyric acid were positive, whereas the correlations with propionic and lactic acid were negative. These data suggest that the mcrA DNA approach based on qmcrA primers could potentially be a molecular proxy for methane yield after further refinement. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Ovine serum immunoglobulin has immunomodulatory effects in growing rats gavaged with Salmonella enteritidis.

    PubMed

    Balan, Prabhu; Han, Kyoung-Sik; Rutherfurd-Markwick, Kay; Singh, Harjinder; Moughan, Paul J

    2011-05-01

    In this study, we aimed to determine whether orally administered ovine serum Ig modulate aspects of immunity and associated gut microflora in growing rats challenged with Salmonella enteritidis. The 4 groups consisted of rats fed a casein-based control diet (BD; ungavaged) and 3 groups of rats gavaged with 1 × 10(7) viable Salmonella enteritidis and fed a BD diet, a BD diet containing freeze-dried ovine Ig (FDOI), or a BD diet containing inactivated ovine Ig (IOI). The rats were randomly allocated to 1 of the 4 diets (n = 15) and consumed it for 18 d. They were orally gavaged on d 15. Phagocytic activity of peripheral blood leukocyte and lymphocyte proliferation in the presence of the concanavalin A (ConA) were greater (P < 0.05) in the ungavaged BD- and gavaged FDOI-fed rats than in the gavaged rats fed either the BD or IOI diet. ConA-stimulated Peyer's patch cells and splenocytes from the gavaged rats fed the FDOI diet produced more IFNγ, IgA, and IgG than the gavaged rats fed either the BD or IOI diet (P < 0.05). The gavaged FDOI-fed rats had higher ileal and colonic digesta and plasma concentrations of anti-Salmonella secretory sIgA and secretory sIgG (P < 0.05). DNA analysis of a denatured gradient gel electrophoresis profile revealed that 6 of 10 bands had sequence similarity to probiotic strains of bacteria in the ileum and colon of the gavaged FDOI-fed rats. In conclusion, an ovine Ig fraction modulated various indices of immune function and associated gut microflora in growing rats inoculated with Salmonella.

  10. Comparative proteomic analysis of fibrotic liver of rats fed high fat diet contained lard versus corn oil.

    PubMed

    Wang, Hualin; Sit, Wat-Hung; Tipoe, George Lim; Liu, Zhiguo; Wan, Jennifer Man-Fan

    2017-02-01

    The influences of dietary fatty acids on the progress of chronic liver diseases have attracted lots of attentions, but the mechanisms of the effects of lipids rich in saturated fatty acids or PUFAs on hepatic fibrogenesis remain unclear. Female Fischer 344 rats were fed normal chow or chow plus 20% (w/w) of corn oil or lard, respectively, and injected CCl 4 twice a week for 4 weeks to induce liver fibrosis. Masson's staining was adopted to illustrate the fibrosis level. The mRNA expression level of α-SMA and the DNA methylation level of its promoter region were analyzed. A 2-DE gel based proteomic approach was constructed to investigate the differential expression level of hepatic proteome between three diet groups. Histological evaluations and α-SMA expression analysis illustrated the high corn oil intake has no effects on hepatic fibrogenesis, but lard intake aggravated liver fibrosis, partly attributed to DNA demethylation of α-SMA promoter region. 2-DE Gel based proteomic study demonstrated excessive lard consumption elevated the expression of fibrosis related alpha-1-antitrypsin precursor, and endoplasmic reticulum stress related proteins such as heat shock cognate 71 kDa, eukaryotic translation initiation factor 4A1 and protein disulfide isomerase associated 3. Moreover, unlike corn oil rich in PUFAs, lard had no effects to elevate the expression of glutathione S-transferases, but decreased the expression of iron store related proteins heme binding protein 1 and ferritin. Lard intake aggravates CCl 4 induced liver fibrosis via enhancing the expression of fibrogenesis and ER stress related proteins, and disturbing the hepatic transmethylation reaction. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster

    PubMed Central

    Aw, Wen C.; Garvin, Michael R.; Melvin, Richard G.

    2017-01-01

    Here we determine the sex-specific influence of mtDNA type (mitotype) and diet on mitochondrial functions and physiology in two Drosophila melanogaster lines. In many species, males and females differ in aspects of their energy production. These sex-specific influences may be caused by differences in evolutionary history and physiological functions. We predicted the influence of mtDNA mutations should be stronger in males than females as a result of the organelle’s maternal mode of inheritance in the majority of metazoans. In contrast, we predicted the influence of diet would be greater in females due to higher metabolic flexibility. We included four diets that differed in their protein: carbohydrate (P:C) ratios as they are the two-major energy-yielding macronutrients in the fly diet. We assayed four mitochondrial function traits (Complex I oxidative phosphorylation, reactive oxygen species production, superoxide dismutase activity, and mtDNA copy number) and four physiological traits (fecundity, longevity, lipid content, and starvation resistance). Traits were assayed at 11 d and 25 d of age. Consistent with predictions we observe that the mitotype influenced males more than females supporting the hypothesis of a sex-specific selective sieve in the mitochondrial genome caused by the maternal inheritance of mitochondria. Also, consistent with predictions, we found that the diet influenced females more than males. PMID:29166659

  12. The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes.

    PubMed

    Alberdi, Antton; Garin, Inazio; Aizpurua, Ostaizka; Aihartza, Joxerra

    2012-01-01

    Molecular analysis of diet overcomes the considerable limitations of traditional techniques for identifying prey remains in bat faeces. We collected faeces from individual Mountain Long-eared Bats Plecotus macrobullaris trapped using mist nets during the summers of 2009 and 2010 in the Pyrenees. We analysed their diet using DNA mini-barcodes to identify prey species. In addition, we inferred some basic features of the bat's foraging ecology that had not yet been addressed. P. macrobullaris fed almost exclusively on moths (97.8%). As prey we detected one dipteran genus (Tipulidae) and 29 moth taxa: 28 were identified at species level (23 Noctuidae, 1 Crambidae, 1 Geometridae, 1 Pyralidae, 1 Sphingidae, 1 Tortricidae), and one at genus level (Rhyacia sp., Noctuidae). Known ecological information about the prey species allowed us to determine that bats had foraged at elevations between 1,500 and 2,500 m amsl (above mean sea level), mostly in subalpine meadows, followed by other open habitats such as orophilous grasslands and alpine meadows. No forest prey species were identified in the diet. As 96.4% of identified prey species were tympanate moths and no evidence of gleaning behaviour was revealed, we suggest P. macrobullaris probably forages by aerial hawking using faint echolocation pulses to avoid detection by hearing moths. As we could identify 87.8% of the analysed sequences (64.1% of the MOTUs, Molecular Operational Taxonomic Units) at species level, we conclude that DNA mini-barcodes are a very useful tool to analyse the diet of moth-specialist bats.

  13. Analysis of DNA Sequences by an Optical Time-Integrating Correlator: Proof-of-Concept Experiments.

    DTIC Science & Technology

    1992-05-01

    DNA ANALYSIS STRATEGY 4 2.1 Representation of DNA Bases 4 2.2 DNA Analysis Strategy 6 3.0 CUSTOM GENERATORS FOR DNA SEQUENCES 10 3.1 Hardware Design 10...of the DNA bases where each base is represented by a 7-bits long pseudorandom sequence. 5 Figure 4: Coarse analysis of a DNA sequence. 7 Figure 5: Fine...a 20-bases long database. 32 xiii LIST OF TABLES PAGE Table 1: Short representations of the DNA bases where each base is represented by 7-bits long

  14. CpG site hypermethylation of E-cadherin and Connexin26 genes in hepatocellular carcinomas induced by a choline-deficient L-Amino Acid-defined diet in rats.

    PubMed

    Tsujiuchi, Toshifumi; Shimizu, Kyoko; Itsuzaki, Yumi; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Honoki, Kanya

    2007-04-01

    We investigated DNA methylation patterns of E-cadherin and Connexin26 (Cx26) genes in rat hepatocellular carcinomas (HCCs) induced by a choline-deficient L-Amino Acid-defined (CDAA) diet. Six-wks-old F344 male rats were continuously fed with a CDAA diet for 75 wks, and were then killed. A total of five HCCs were obtained, and genomic DNA was extracted from each HCC for assessment of methylation status in the 5' upstream regions of E-cadherin and Cx26 genes by bisulfite sequencing, comparing to two normal liver tissues. The five HCCs showed highly methylated E-cadherin and Cx26 genes, while these genes in two normal liver tissues were all unmethylated. For analysis of gene expression, real-time quantitative reverse transcription (RT)-polymerase chain reaction (PCR) was performed. Expressions of E-cadherin and Cx26 genes were significantly reduced in the five HCCs (P < 0.0001 and P < 0.001, respectively) compared to normal liver tissues, correlating with their methylation statuses. These results suggested that hypermethylation of E-cadherin and Cx26 genes may be involved in the development of HCCs induced by a CDAA diet in rats.

  15. Contributions of allochthonous inputs of food to the diets of benthopelagic fish over the northwest Mediterranean slope (to 2300 m)

    NASA Astrophysics Data System (ADS)

    Cartes, Joan E.; Soler-Membrives, A.; Stefanescu, C.; Lombarte, A.; Carrassón, M.

    2016-03-01

    The contributions of allochthonous inputs of food (food falls, plastics and other anthropogenic remains) in the diets of large fish (6 teleosteans, 3 sharks) were analyzed for depths between 500 and 2300 m in the deep Balearic basin (western Mediterranean). The analyses were based on gut contents. The identification was based on a multi-analytic approach, comprising morphological features (including morphometric analysis) and molecular genetics (DNA barcoding method). Remains of a number of anthropogenic, inorganic materials (microplastic fibres, plastic bags and cartons) appeared regularly in the guts of deep-sea fish (e.g., in Trachyrhynchus scabrus and Mora moro), though always at low occurrence (9.1% of fish at most) and negligible weights (< 2%W of diet). In our sampling, covering an area of ca. 12 km2, large food falls contribute only a little to fish diets by weight, W, e.g., in shark diets they represented 4.5%W for Centroscymnus coelolepis and 11%W for Galeus melastomus. However, the importance of food falls (e.g., cetacean blubber and carcharhinid shark remains) was substantial locally (up to 70.8%W of C. coelolepis diet) particularly near canyons. The arrival of livestock remains (beef flesh, goat ribs and vertebrae) was shown by molecular analyses to contributed to deep-sea shark diets (ca. 5.5%W) comparably to natural food falls. These remains, which originate from human activity, may locally alter the food webs of oligotrophic environments like that of the deep Mediterranean. Food falls of both natural and anthropogenic origin were mainly found in fish collected close to canyon axes. The only cetacean fall documented in the deep Balearic Basin was also near a canyon, the carcass of a small (ca. 1.2 m) striped dolphin, Stenella coeruleoalba, collected in a haul at 1750 m off Barcelona.

  16. Single and Combined Effects of Deoxynivalenol Mycotoxin and a Microbial Feed Additive on Lymphocyte DNA Damage and Oxidative Stress in Broiler Chickens

    PubMed Central

    Awad, Wageha A.; Ghareeb, Khaled; Dadak, Agnes; Hess, Michael; Böhm, Josef

    2014-01-01

    The immune and intestinal epithelial cells are particularly sensitive to the toxic effects of deoxynivalenol (DON). The aim of this experiment was to study the effects of DON and/or a microbial feed additive on the DNA damage of blood lymphocytes and on the level of thiobarbituric acid reactive substance (TBARS) as an indicator of lipid peroxidation and oxidative stress in broilers. A total of forty 1-d-old broiler chicks were randomly assigned to 1 of 4 dietary treatments (10 birds per group) for 5 wk. The dietary treatments were 1) basal diet; 2) basal diet contaminated with 10 mg DON/kg feed; 3) basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg/ton of feed of Mycofix Select; 4) basal diet supplemented with Mycofix Select (2.5 kg/ton of feed). At the end of the feeding trial, blood were collected for measuring the level of lymphocyte DNA damage of blood and the TBARS level was measured in plasma, heart, kidney, duodenum and jejunum. The dietary exposure of DON caused a significant increase (P = 0.001) of DNA damage in blood lymphocytes (31.99±0.89%) as indicated in the tail of comet assay. Interestingly addition of Mycofix Select to DON contaminated diet decreased (P = 0.001) the DNA damage (19.82±1.75%) induced by DON. In order to clarify the involvement of lipid peroxidation in the DNA damage of DON, TBARS levels was measured. A significant increase (P = 0.001) in the level of TBARS (23±2 nmol/mg) was observed in the jejunal tissue suggesting that the lipid peroxidation might be involved in the DNA damage. The results indicate that DON is cytotoxic and genotoxic to the chicken intestinal and immune cells and the feed additive have potential ability to prevent DNA damage induced by DON. PMID:24498242

  17. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks.

    PubMed

    Walugembe, M; Hsieh, J C F; Koszewski, N J; Lamont, S J; Persia, M E; Rothschild, M F

    2015-10-01

    This experiment was conducted to evaluate the effects of feeding dietary fiber on cecal short-chain fatty acid (SCFA) concentration and cecal microbiota of broiler and laying-hen chicks. The lower fiber diet was based on corn-soybean meal (SBM) and the higher fiber diet was formulated using corn-SBM-dried distillers grains with solubles (DDGS) and wheat bran to contain 60.0 g/kg of both DDGS and wheat bran from 1 to 12 d and 80.0 g/kg of both DDGS and wheat bran from 13 to 21 d. Diets were formulated to meet or exceed NRC nutrient requirements. Broiler and laying-hen chicks were randomly assigned to the high and low fiber diets with 11 replicates of 8 chicks for each of the 4 treatments. One cecum from 3 chicks was collected from each replicate: one cecum underwent SCFA concentration analysis, one underwent bacterial DNA isolation for terminal restriction fragment length polymorphism (TRFLP), and the third cecum was used for metagenomics analyses. There were interactions between bird line and dietary fiber for acetic acid (P = 0.04) and total SCFA (P = 0.04) concentration. There was higher concentration of acetic acid (P = 0.02) and propionic acid (P < 0.01) in broiler chicks compared to laying-hen chicks. TRFLP analysis showed that cecal microbiota varied due to diet (P = 0.02) and chicken line (P = 0.03). Metagenomics analyses identified differences in the relative abundance of Helicobacter pullorum and Megamonas hypermegale and the genera Enterobacteriaceae, Campylobacter, Faecalibacterium, and Bacteroides in different treatment groups. These results provide insights into the effect of dietary fiber on SCFA concentration and modulation of cecal microbiota in broiler and laying-hen chicks. © 2015 Poultry Science Association Inc.

  18. Effects of an overload of animal protein on the rat: brain DNA alterations and tissue morphological modifications during fetal and post-natal stage.

    PubMed

    Greco, A M; Sticchi, R; Boschi, G; Vetrani, A; Salvatore, G

    1985-01-01

    On account of many literature reports about the definite correlation between high animal protein intake and cardiovascular diseases, we have studied the effect of a hyperproteic purified diet (casein 40%, lactalbumin 20%) on fetal and post-natal (not further than 40th day) stage of the rat, when cell subdivision process is faster and therefore damage by nutritional imbalance is certainly more serious. Litters of rats were grouped according to mother's (either hyperproteic or common basic) and rat's (after lactation) diet. Brain DNA and histology of various organs were studied. Hyperproteic diet during fetal stage and lactation would inhibit brain cell subdivision since overall content of brain DNA would be decreased on autoptic finding. Structural changes were also shown in liver, heart, kidney and adrenal cortex, especially when hyperproteic diet was continued even after lactation.

  19. Palaeogenetic analysis of (pre)historic artifacts and its significance for anthropology.

    PubMed

    Burger, J; Hummel, S; Pfeiffer, I; Herrmann, B

    2000-03-01

    The possibility of isolating ancient DNA (aDNA) from all kinds of (pre)historic anthropogenetic artifacts opens new perspectives. This study applies palaeogenetic techniques to three anthropological issues: 1. Palaeodiet. DNA sequences from organic residues in vessels identify Precolumbian Aztec diet. 2. (Pre)historic husbandry and economic structures. aDNA data can reveal the species and the genetic evolutionary stage of animals and plants and show the manner and the extent of their growth, cultivation, or domestication. 3. Production techniques, use, and functionality. Identification of the plant or animal source of an archaeological find can reveal the use or the function of the find. Examples from a Celtic "sausage-end" and an Aztec "eye salve" are given.

  20. Toxic threshold of dietary microcystin (-LR) for quart medaka.

    PubMed

    Deng, Dong-Fang; Zheng, Keke; Teh, Foo-Ching; Lehman, Peggy W; Teh, Swee J

    2010-04-01

    This study was designed to estimate the toxic threshold of male and female fish to microcystins based on different biomarkers. Japanese medaka (Oryzias latipes) were fed dietary Microcystin-LR (0, 0.46, 0.85, 2.01 and 3.93 microg MC-LR/g dry diet for 8 weeks at 25 degrees C. The results revealed that dietary MC-LR inhibited growth at the end of 8 weeks. The survival of embryos and the RNA/DNA ratio of whole fish decreased significantly (P < 0.05) in fish fed 3.93 microg MC-LR/g dry diet. Heat shock protein (Hsp60) expression was induced in the liver of female and male fish fed diets containing > or =0.85 and 0.46 microg MC-LR/g diet, respectively. The activity of liver caspase 3/7 was significantly higher in female fish fed 3.93 microg MC-LR/g diet and in males fed 2.01 MC-LR microg/g dry diet than fish fed the control diet. The threshold for inhibition of liver protein phosphatase expression was lower in female (2.01 microg/g diet) than that in male fish (3.93 microg/g diet). Histopathological examination showed significant single-cell necrosis in female and male medaka fed diets containing 0.85 and 3.93 microg MC-LR/g diet, respectively. Based on different biomarkers, this study demonstrated that dietary MC-LR is toxic to Medaka and the effects are gender dependent. Published by Elsevier Ltd.

  1. Dietary olive oil and corn oil differentially affect experimental breast cancer through distinct modulation of the p21Ras signaling and the proliferation-apoptosis balance.

    PubMed

    Solanas, Montserrat; Grau, Laura; Moral, Raquel; Vela, Elena; Escrich, Raquel; Escrich, Eduard

    2010-05-01

    Extra-virgin olive oil (EVOO) has been hypothesized to have chemopreventive effects on breast cancer, unlike high corn oil (HCO) diets that stimulate it. We have investigated mechanisms of these differential modulatory actions on experimental mammary cancer. In 7,12-dimethylbenz(a)anthracene adenocarcinomas of rats fed a high EVOO, HCO and control diets (n = 20 for each group), we have analyzed the expression and activity of ErbB receptors, p21Ras and its extracellular signal-regulated kinase (ERK) 1/2, Akt and RalA/B effectors by immunoblotting analyses. We explored the Ha-ras1 mutation status by Southern blot, mismatch amplification mutation assay and sequencing, and the 3-hydroxy-3-methylglutaryl-coenzyme A reductase and squalene synthase messenger RNA expression by real-time polymerase chain reaction. We analyzed the tumor mitotic index, proliferating cell nuclear antigen (PCNA) levels, and apoptosis through Caspase-3 analysis and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assays. Finally, we measured the 8-oxo-2'-deoxyguanosine levels. Non-parametrical statistics were used. The EVOO diet decreased Ras activation, downregulated the Ras/phosphatidyl inositol 3-kinase/Akt pathway and upregulated the Raf/Erk pathway, compared with the control. In contrast, the HCO diet did not modify Ras activity but rather enhanced the Raf/Erk pathway. The EVOO diet decreased the cleaved ErbB4 levels, compared with the HCO diet, increased apoptosis and diminished the mono-ubiquitylated PCNA levels, which is related to DNA damage. Tumors from rats fed the EVOO diet displayed a more benign phenotype, whereas those from rats fed the HCO diet were biologically more aggressive. In conclusion, high EVOO and corn oil diets exert their modulatory effects on breast cancer through a different combination of Ras signaling pathways, a different proliferation-apoptosis balance and probably distinct levels of DNA damage.

  2. High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut.

    PubMed

    Heisel, Timothy; Montassier, Emmanuel; Johnson, Abigail; Al-Ghalith, Gabriel; Lin, Yi-Wei; Wei, Li-Na; Knights, Dan; Gale, Cheryl A

    2017-01-01

    Dietary fat intake and shifts in gut bacterial community composition are associated with the development of obesity. To date, characterization of microbiota in lean versus obese subjects has been dominated by studies of gut bacteria. Fungi, recently shown to affect gut inflammation, have received little study for their role in obesity. We sought to determine the effects of high-fat diet on fungal and bacterial community structures in a mouse model using the internal transcribed spacer region 2 (ITS2) of fungal ribosomal DNA (rDNA) and the 16S rRNA genes of bacteria. Mice fed a high-fat diet had significantly different abundances of 19 bacterial and 6 fungal taxa than did mice fed standard chow, with high-fat diet causing similar magnitudes of change in overall fungal and bacterial microbiome structures. We observed strong and complex diet-specific coabundance relationships between intra- and interkingdom microbial pairs and dramatic reductions in the number of coabundance correlations in mice fed a high-fat diet compared to those fed standard chow. Furthermore, predicted microbiome functional modules related to metabolism were significantly less abundant in high-fat-diet-fed than in standard-chow-fed mice. These results suggest a role for fungi and interkingdom interactions in the association between gut microbiomes and obesity. IMPORTANCE Recent research shows that gut microbes are involved in the development of obesity, a growing health problem in developed countries that is linked to increased risk for cardiovascular disease. However, studies showing links between microbes and metabolism have been limited to the analysis of bacteria and have ignored the potential contribution of fungi in metabolic health. This study provides evidence that ingestion of a high-fat diet is associated with changes to the fungal (and bacterial) microbiome in a mouse model. In addition, we find that interkingdom structural and functional relationships exist between fungi and bacteria within the gut and that these are perturbed by high-fat diet.

  3. Inhibition of Fried Meat-Induced Colorectal DNA Damage and Altered Systemic Genotoxicity in Humans by Crucifera, Chlorophyllin, and Yogurt

    PubMed Central

    Shaughnessy, Daniel T.; Gangarosa, Lisa M.; Schliebe, Barbara; Umbach, David M.; Xu, Zongli; MacIntosh, Beth; Knize, Mark G.; Matthews, Peggy P.; Swank, Adam E.; Sandler, Robert S.; DeMarini, David M.; Taylor, Jack A.

    2011-01-01

    Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 subjects were randomly assigned to dietary regimens containing meat cooked at either low (100°C) or high temperature (250°C), each for 2 weeks in a crossover design. The other 8 subjects were randomly assigned to dietary regimens containing the high-temperature meat diet alone or in combination with 3 putative mutagen inhibitors: cruciferous vegetables, yogurt, and chlorophyllin tablets, also in a crossover design. Subjects were nonsmokers, at least 18 years old, and not currently taking prescription drugs or antibiotics. We used the Salmonella assay to analyze the meat, urine, and feces for mutagenicity, and the comet assay to analyze rectal biopsies and peripheral blood lymphocytes for DNA damage. Low-temperature meat had undetectable levels of heterocyclic amines (HCAs) and was not mutagenic, whereas high-temperature meat had high HCA levels and was highly mutagenic. The high-temperature meat diet increased the mutagenicity of hydrolyzed urine and feces compared to the low-temperature meat diet. The mutagenicity of hydrolyzed urine was increased nearly twofold by the inhibitor diet, indicating that the inhibitors enhanced conjugation. Inhibitors decreased significantly the mutagenicity of un-hydrolyzed and hydrolyzed feces. The diets did not alter the levels of DNA damage in non-target white blood cells, but the inhibitor diet decreased nearly twofold the DNA damage in target colorectal cells. To our knowledge, this is the first demonstration that dietary factors can reduce DNA damage in the target tissue of fried-meat associated carcinogenesis. Trial Registration ClinicalTrials.gov NCT00340743. PMID:21541030

  4. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods.

    PubMed

    Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J

    2010-09-17

    Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.

  5. Effect of Feeding Palm Oil By-Products Based Diets on Total Bacteria, Cellulolytic Bacteria and Methanogenic Archaea in the Rumen of Goats

    PubMed Central

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2014-01-01

    Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: control diet (CD), decanter cake diet (DCD), palm kernel cake diet (PKCD) and CD plus 5% PO diet (CPOD) were fed to rumen cannulated goats and rumen samples were collected at the start of the experimental diets (day 0) and on days 4, 6, 8, 12, 18, 24 and 30 post dietary treatments. Feeding DCD and PKCD resulted in significantly higher (P<0.05) DNA copy number of total bacteria, Fibrobacter succinogenes, Ruminococcus flavefeciens, and Ruminococcus albus. Rumen methanogenic archaea was significantly lower (P<0.05) in goats fed PKCD and CPOD and the trend showed a severe reduction on days 4 and 6 post experimental diets. In conclusion, results indicated that feeding DCD and PKC increased the populations of cellulolytic bacteria and decreased the density of methanogenic archaea in the rumen of goats. PMID:24756125

  6. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia.

    PubMed

    Matijašić, Bojana Bogovič; Obermajer, Tanja; Lipoglavšek, Luka; Grabnar, Iztok; Avguštin, Gorazd; Rogelj, Irena

    2014-06-01

    The purpose of this study was to discover differences in the human fecal microbiota composition driven by long-term omnivore versus vegan/lacto-vegetarian dietary pattern. In addition, the possible association of demographic characteristics and dietary habits such as consumption of particular foods with the fecal microbiota was examined. This study was conducted on a Slovenian population comprising 31 vegetarian participants (11 lacto-vegetarians and 20 vegans) and 29 omnivore participants. Bacterial DNA was extracted from the frozen fecal samples by Maxwell 16 Tissue DNA Purification Kit (Promega). Relative quantification of selected bacterial groups was performed by real-time PCR. Differences in fecal microbiota composition were evaluated by PCR-DGGE fingerprinting of the V3 16S rRNA region. Participants' demographic characteristics, dietary habits and health status information were collected through a questionnaire. Vegetarian diet was associated with higher ratio (% of group-specific DNA in relation to all bacterial DNA) of Bacteroides-Prevotella, Bacteroides thetaiotaomicron, Clostridium clostridioforme and Faecalibacterium prausnitzii, but with lower ratio (%) of Clostridium cluster XIVa. Real-time PCR also showed a higher concentration and ratio of Enterobacteriaceae (16S rDNA copies/g and %) in female participants (p < 0.05 and p < 0.01) and decrease in Bifidobacterium with age (p < 0.01). DGGE analysis of the 16S rRNA V3 region showed that relative quantity of DGGE bands from certain bacterial groups was lower (Bifidobacterium, Streptococus, Collinsella and Lachnospiraceae) or higher (Subdoligranulum) among vegetarians, indicating the association of dietary type with bacterial community composition. Sequencing of selected DGGE bands revealed the presence of common representatives of fecal microbiota: Bacteroides, Eubacterium, Faecalibacterium, Ruminococcaceae, Bifidobacterium and Lachnospiraceae. Up to 4 % of variance in microbial community analyzed by DGGE could be explained by the vegetarian type of diet. Long-term vegetarian diet contributed to quantity and associated bacterial community shifts in fecal microbiota composition. Consumption of foods of animal origin (eggs, red meat, white meat, milk, yoghurt, other dairy products, fish and seafood) and vegetarian type of diet explained the largest share of variance in microbial community structure. Fecal microbiota composition was also associated with participants' age, gender and body mass.

  7. The role of artichoke leaf tincture (Cynara scolymus) in the suppression of DNA damage and atherosclerosis in rats fed an atherogenic diet.

    PubMed

    Bogavac-Stanojevic, Natasa; Kotur Stevuljevic, Jelena; Cerne, Darko; Zupan, Janja; Marc, Janja; Vujic, Zorica; Crevar-Sakac, Milkica; Sopic, Miron; Munjas, Jelena; Radenkovic, Miroslav; Jelic-Ivanovic, Zorana

    2018-12-01

    Polyphenols and flavonoids in artichoke leaf tincture (ALT) protect cells against oxidative damage. We examined ALT effects on deoxyribonucleic acid (DNA) damage and lipid profiles in rat plasma and gene expression in rat aorta [haemeoxygenase-1 (HO1), haemeoxygenase-2 (HO2), NADPH oxidase 4 (NOX-4), monocyte chemoattractant protein-1 (MCP-1) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)]. Eighteen male Wistar albino rats were divided into three groups (n = 6/group): The control group (CG) was fed with standard pellet chow for 11 weeks; the AD group was fed for a similar period of time with pellet chow supplemented with 2% cholesterol, 3% sunflower oil and 1% sodium cholate. The ADA group was fed with pellet chow (for 1 week), the atherogenic diet (see above) for the following 4 weeks and then with ALT (0.1 mL/kg body weight) and atherogenic diet for 6 weeks. According to HPLC analysis, the isolated main compounds in ALT were chlorogenic acid, caffeic acid, isoquercitrin and rutin. Normalized HO-1 [0.11 (0.04-0.24)] and MCP-1 [0.29 (0.21-0.47)] mRNA levels and DNA scores [12.50 (4.50-36.50)] were significantly lower in the ADA group than in the AD group [0.84 (0.35-2.51)], p = 0.021 for HO-1 [0.85 (0.61-3.45)], p = 0.047 for MCP-1 and [176.5 (66.50-221.25)], p = 0.020 for DNA scores. HO-1 mRNA was lower in the ADA group than in the CG group [0.30 (0.21-0.71), p = 0.049]. Supplementation with ALT limited the effects of the atherogenic diet through reduced MCP-1 expression, thereby preventing oxidative damage.

  8. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    PubMed

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system. Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose that a ketogenic diet and/or calorie restriction should be further evaluated as a possible adjuvant therapy for patients undergoing treatment for neuroblastoma.

  9. Effects of communicating DNA-based disease risk estimates on risk-reducing behaviours.

    PubMed

    Marteau, Theresa M; French, David P; Griffin, Simon J; Prevost, A T; Sutton, Stephen; Watkinson, Clare; Attwood, Sophie; Hollands, Gareth J

    2010-10-06

    There are high expectations regarding the potential for the communication of DNA-based disease risk estimates to motivate behaviour change. To assess the effects of communicating DNA-based disease risk estimates on risk-reducing behaviours and motivation to undertake such behaviours. We searched the following databases using keywords and medical subject headings: Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 4 2010), MEDLINE (1950 to April 2010), EMBASE (1980 to April 2010), PsycINFO (1985 to April 2010) using OVID SP, and CINAHL (EBSCO) (1982 to April 2010). We also searched reference lists, conducted forward citation searches of potentially eligible articles and contacted authors of relevant studies for suggestions. There were no language restrictions. Unpublished or in press articles were eligible for inclusion. Randomised or quasi-randomised controlled trials involving adults (aged 18 years and over) in which one group received actual (clinical studies) or imagined (analogue studies) personalised DNA-based disease risk estimates for diseases for which the risk could plausibly be reduced by behavioural change. Eligible studies had to include a primary outcome measure of risk-reducing behaviour or motivation (e.g. intention) to alter such behaviour. Two review authors searched for studies and independently extracted data. We assessed risk of bias according to the Cochrane Handbook for Systematic Reviews of Interventions. For continuous outcome measures, we report effect sizes as standardised mean differences (SMDs). For dichotomous outcome measures, we report effect sizes as odds ratios (ORs). We obtained pooled effect sizes with 95% confidence intervals (CIs) using the random effects model applied on the scale of standardised differences and log odds ratios. We examined 5384 abstracts and identified 21 studies as potentially eligible. Following a full text analysis, we included 14 papers reporting results of 7 clinical studies (2 papers report on the same trial) and 6 analogue studies.Of the seven clinical studies, five assessed smoking cessation. Meta-analyses revealed no statistically significant effects on either short-term (less than 6 months) smoking cessation (OR 1.35, 95% CI 0.76 to 2.39, P = 0.31, n = 3 studies) or cessation after six months (OR 1.07, 95% CI 0.64 to 1.78, P = 0.80, n = 4 studies). Two clinical studies assessed diet and found effects that significantly favoured DNA-based risk estimates (OR 2.24, 95% CI 1.17 to 4.27, P = 0.01). No statistically significant effects were found in the two studies assessing physical activity (OR 1.03, 95% CI 0.59 to 1.80, P = 0.92) or the one study assessing medication or vitamin use aimed at reducing disease risks (OR 1.26, 95% CI 0.58 to 2.72, P = 0.56). For the six non-clinical analogue studies, meta-analysis revealed a statistically significant effect of DNA-based risk on intention to change behaviour (SMD 0.16, 95% CI 0.04 to 0.29, P = 0.01).There was no evidence that communicating DNA-based disease risk estimates had any unintended adverse effects. Two studies that assessed fear arousal immediately after the presentation of risk information did, however, report greater fear arousal in the DNA-based disease risk estimate groups compared to comparison groups.The quality of included studies was generally poor. None of the clinical or analogue studies were considered to have a low risk of bias, due to either a lack of clarity in reporting, or where details were reported, evidence of a failure to sufficiently safeguard against the risk of bias. Mindful of the weak evidence based on a small number of studies of limited quality, the results of this review suggest that communicating DNA-based disease risk estimates has little or no effect on smoking and physical activity. It may have a small effect on self-reported diet and on intentions to change behaviour. Claims that receiving DNA-based test results motivates people to change their behaviour are not supported by evidence. Larger and better-quality RCTs are needed.

  10. Disturbance of DNA methylation patterns in the early phase of hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined diet in rats.

    PubMed

    Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Sokuza, Yui; Mori, Chiharu; Nishikawa, Tomoki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-09-01

    The authors investigated the DNA methylation patterns of the E-cadherin, Connexin 26 (Cx26), Rassf1a and c-fos genes in the early phase of rat hepatocarcinogenesis induced by a choline-deficient L-amino acid-defined (CDAA) diet. Six-week-old F344 male rats were continuously fed with the CDAA diet, and three animals were then killed at each of 4 and 8 days and 3 weeks. Genomic DNA was extracted from livers for assessment of methylation status in the 5' upstream regions of E-cadherin, Cx26, Rassf1a and c-fos genes by bisulfite sequencing, compared with normal livers. The livers of rats fed the CDAA diet for 4 and 8 days and 3 weeks were methylated in E-cadherin, Cx26 and Rassf1a genes, while normal livers were all unmethylated. In contrast, normal livers were highly methylated in c-fos gene. Although the livers at 4 days were weakly methylated, those at 8 days and 3 weeks were markedly unmethylated. Methylation patterns of CpG sites in E-cadherin, Cx26 and Rassf1a were sparse and the methylation was not associated with gene repression. These results indicate that gene-specific DNA methylation patterns were found in livers of rats after short-term feeding of the CDAA diet, suggesting gene-specific hypermethylation might be involved in the early phase of rat hepatocarcinogenesis induced by the CDAA diet.

  11. Oleuropein Prevents Azoxymethane-Induced Colon Crypt Dysplasia and Leukocytes DNA Damage in A/J Mice.

    PubMed

    Sepporta, Maria Vittoria; Fuccelli, Raffaela; Rosignoli, Patrizia; Ricci, Giovanni; Servili, Maurizio; Fabiani, Roberto

    2016-08-19

    Previous studies have shown that the precursor of olive oil secoiridoids, Oleuropein (OL) has several in vitro chemopreventive properties. OL inhibits proliferation and induces apoptosis in breast, thyroid, prostate, and colorectal cancer (CRC) cells. Much less is known about the effects of OL on animal models of carcinogenesis. In this study, we investigated the ability of OL to prevent the azoxymethane (AOM)-induced colon cancer upset and DNA damage in mice. Animals, fed with a basal diet either enriched or not with OL (125 mg/kg), were injected with AOM (10 mg/kg, once a week for 6 weeks) and sacrificed after either 7 weeks for histological analysis of colon crypt dysplasia and evaluation of DNA damage in leukocytes or 17 weeks for counting the macroscopically observable colon tumors. An OL-enriched diet prevented the AOM-induced preneoplastic lesions in different colon segments, reducing the severity of crypt dysplasia and DNA damage in peripheral leukocytes. In addition, OL significantly reduced the AOM-induced tumor incidence from 57% to 14% (P < .05, chi-square test) in the medial colon segment. This study shows that OL is able to prevent CRC and DNA damage in mice treated with the carcinogen AOM. These results stimulate further human cancer prevention studies with OL-enriched food supplements that are actually available on the market.

  12. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    PubMed

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain

    PubMed Central

    Lauritzen, Knut H.; Hasan-Olive, Md Mahdi; Regnell, Christine E.; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A.; Storm-Mathisen, Jon; Bergersen, Linda H.

    2017-01-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABAA) receptor subunits α1. However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. PMID:27639119

  14. Effect of One Month Duration Ketogenic and non-Ketogenic High Fat Diets on Mouse Brain Bioenergetic Infrastructure

    PubMed Central

    Selfridge, J. Eva; Wilkins, Heather M.; Lezi, E; Carl, Steven M.; Koppel, Scott; Funk, Eric; Fields, Timothy; Lu, Jianghua; Tang, Ee Phie; Slawson, Chad; Wang, WenFang; Zhu, Hao; Swerdlow, Russell H.

    2014-01-01

    Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain’s aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated. PMID:25104046

  15. Diet Composition and Variability of Wild Octopus vulgaris and Alloteuthis media (Cephalopoda) Paralarvae: a Metagenomic Approach

    PubMed Central

    Olmos-Pérez, Lorena; Roura, Álvaro; Pierce, Graham J.; Boyer, Stéphane; González, Ángel F.

    2017-01-01

    The high mortality of cephalopod early stages is the main bottleneck to grow them from paralarvae to adults in culture conditions, probably because the inadequacy of the diet that results in malnutrition. Since visual analysis of digestive tract contents of paralarvae provides little evidence of diet composition, the use of molecular tools, particularly next generation sequencing (NGS) platforms, offers an alternative to understand prey preferences and nutrient requirements of wild paralarvae. In this work, we aimed to determine the diet of paralarvae of the loliginid squid Alloteuthis media and to enhance the knowledge of the diet of recently hatched Octopus vulgaris paralarvae collected in different areas and seasons in an upwelling area (NW Spain). DNA from the dissected digestive glands of 32 A. media and 64 O. vulgaris paralarvae was amplified with universal primers for the mitochondrial gene COI, and specific primers targeting the mitochondrial gene 16S gene of arthropods and the mitochondrial gene 16S of Chordata. Following high-throughput DNA sequencing with the MiSeq run (Illumina), up to 4,124,464 reads were obtained and 234,090 reads of prey were successfully identified in 96.87 and 81.25% of octopus and squid paralarvae, respectively. Overall, we identified 122 Molecular Taxonomic Units (MOTUs) belonging to several taxa of decapods, copepods, euphausiids, amphipods, echinoderms, molluscs, and hydroids. Redundancy analysis (RDA) showed seasonal and spatial variability in the diet of O. vulgaris and spatial variability in A. media diet. General Additive Models (GAM) of the most frequently detected prey families of O. vulgaris revealed seasonal variability of the presence of copepods (family Paracalanidae) and ophiuroids (family Euryalidae), spatial variability in presence of crabs (family Pilumnidae) and preference in small individual octopus paralarvae for cladocerans (family Sididae) and ophiuroids. No statistically significant variation in the occurrences of the most frequently identified families was revealed in A. media. Overall, these results provide new clues about dietary preferences of wild cephalopod paralarvae, thus opening up new scenarios for research on trophic ecology and digestive physiology under controlled conditions. PMID:28596735

  16. Analysis of DNA Sequences by An Optical Time-Integrating Correlator: Proof-Of-Concept Experiments.

    DTIC Science & Technology

    1992-05-01

    TABLES xv LIST OF ABBREVIATIONS xvii 1.0 INTRODUCTION 1 2.0 DNA ANALYSIS STRATEGY 4 2.1 Representation of DNA Bases 4 2.2 DNA Analysis Strategy 6 3.0...Zehnder architecture. 3 Figure 3: Short representations of the DNA bases where each base is represented by a 7-bits long pseudorandom sequence. 5... DNA bases where each base is represented by 7-bits long pseudorandom sequences. 4 Table 2: Long representations of the DNA bases with 255-bits maximum

  17. Autoclave sterilization produces acrylamide in rodent diets: implications for toxicity testing.

    PubMed

    Twaddle, Nathan C; Churchwell, Mona I; McDaniel, L Patrice; Doerge, Daniel R

    2004-06-30

    Acrylamide (AA) is a neurotoxic and carcinogenic contaminant that is formed during the cooking of starchy foods. Assessment of human risks from toxicants is routinely performed using laboratory rodents, and such testing requires careful control of unintended exposures, particularly through the diet. This study describes an analytical method based on liquid chromatography with electrospray tandem mass spectrometry that was used to measure endogenous AA in rodent diets and to survey a number of commercial products for contamination. Method sensitivity permitted accurate quantification of endogenous levels of AA in raw diets below 20 ppb. Autoclaving a standard rodent diet (NIH-31) increased the AA content 14-fold, from 17 to 240 ppb. A nutritionally equivalent diet that was sterilized by irradiation was found to contain approximately 10 ppb of AA (NIH-31IR). A toxicokinetic study of AA and its epoxide metabolite, glycidamide, was performed by switching mice from NIH-31IR to the autoclaved diet for a 30 min feeding period (average AA dose administered was 4.5 microg/kg of body weight). The concentrations of AA and glycidamide were measured in serum collected at various times. The elimination half-lives and the areas under the respective concentration-time curves were similar for AA and glycidamide. Mice maintained on autoclaved NIH-31 diet, but otherwise untreated, showed elevated steady state levels of a glycidamide-derived DNA adduct in liver relative to mice maintained on the irradiated diet. This study demonstrates that a heat sterilization procedure used in laboratory animal husbandry (i.e., autoclaving) can lead to the formation of significant levels of AA in basal diets used for toxicity testing. AA in rodent diets is bioavailable, is distributed to tissues, and is metabolically activated to a genotoxic metabolite, which produces quantifiable cumulative DNA damage. Although the contribution of endogenous AA to the incidence of tumors in multiple organs of rodents otherwise untreated in chronic carcinogenicity bioassays (i.e., control groups) is not known, the reduction of endogenous AA through the use of a suitable irradiated diet was deemed to be critical for ongoing studies of AA carcinogenicity and neurotoxicity.

  18. DNA Methylation and Hydroxymethylation Levels in Relation to Two Weight Loss Strategies: Energy-Restricted Diet or Bariatric Surgery.

    PubMed

    Nicoletti, Carolina Ferreira; Nonino, Carla Barbosa; de Oliveira, Bruno Affonso Parenti; Pinhel, Marcela Augusta de Souza; Mansego, Maria Luisa; Milagro, Fermin Ignacio; Zulet, Maria Angeles; Martinez, José Alfredo

    2016-03-01

    Weight loss can be influenced by genetic factors and epigenetic mechanisms that participate in the regulation of body weight. This study aimed to investigate whether the weight loss induced by two different obesity treatments (energy restriction or bariatric surgery) may affect global DNA methylation (LINE-1) and hydroxymethylation profile, as well as the methylation patterns in inflammatory genes. This study encompassed women from three differents groups: 1. control group (n = 9), normal weight individuals; 2. energy restriction group (n = 22), obese patients following an energy-restricted Mediterranean-based dietary treatment (RESMENA); and 3. bariatric surgery group (n = 14), obese patients underwent a hypocaloric diet followed by bariatric surgery. Anthropometric measurements and 12-h fasting blood samples were collected before the interventions and after 6 months. Lipid and glucose biomarkers, global hydroxymethylation (by ELISA), LINE-1, SERPINE-1, and IL-6 (by MS-HRM) methylation levels were assessed in all participants. Baseline LINE-1 methylation was associated with serum glucose levels whereas baseline hydroxymethylation was associated with BMI, waist circumference, total cholesterol, and triglycerides. LINE-1 and SERPINE-1 methylation levels did not change after weight loss, whereas IL-6 methylation increased after energy restriction and decreased in the bariatric surgery group. An association between SERPINE-1 methylation and weight loss responses was found. Global DNA methylation and hydroxymethylation might be biomarkers for obesity and associated comorbidities. Depending on the obesity treatment (diet or surgery), the DNA methylation patterns behave differently. Baseline SERPINE-1 methylation may be a predictor of weight loss values after bariatric surgery.

  19. Adipose Stem Cell-Based Therapeutic Targeting of Residual Androgens in African Americans With Bone-Metastatic Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    survival rate than CA males [3-7]. Socioeconomic and environmental factors, such as diet , access to care, and screening, have been cited as factors...cDNA clone coding for 3α-hydroxysteroid dehydrogenase (3α-HSD) was obtained from Origene. The 3α-HSD, also known as aldo- keto reductase family 1 member...growth of established human prostate LNCaP tumors in nude mice fed a low-fat diet . J Natl Cancer Inst 87: 1456–1462 17. Aronson WJ et al. (1999

  20. GLUT-1 deficiency without epilepsy--an exceptional case.

    PubMed

    Overweg-Plandsoen, W C G; Groener, J E M; Wang, D; Onkenhout, W; Brouwer, O F; Bakker, H D; De Vivo, D C

    2003-01-01

    The GLUT-1 deficiency is a metabolic disorder caused by a defect in glucose transport across the blood-brain barrier as a result of a defect in the glucose-transport protein. Patients present with epileptic seizures, delayed development, ataxia and hypotonia, and in many cases acquired microcephaly. In most patients, treatment with a ketogenic diet proved to be successful in controlling the epilepsy. We report a 9-year-old boy with retardation and ataxia, but without epilepsy, caused by GLUT-1 deficiency, proven biochemically and by DNA analysis. Treatment with a medium-chain triglyceride ketogenic diet had a beneficial effect.

  1. Redefining the impact of nutrition on breast cancer incidence: is epigenetics involved?

    PubMed Central

    Teegarden, Dorothy; Romieu, Isabelle; Lelièvre, Sophie A.

    2014-01-01

    Breast cancer incidence is rising worldwide with an increase in aggressive neoplasias in young women. Possible factors involved include lifestyle changes, notably diet that is known to make an impact on gene transcription. However, among dietary factors, there is sufficient support for only greater body weight and alcohol consumption whereas numerous studies revealing an impact of specific diets and nutrients on breast cancer risk show conflicting results. Also, little information is available from middle- and low-income countries. The diversity of gene expression profiles found in breast cancers indicates that transcription control is critical for the outcome of the disease. This suggests the need for studies on nutrients that affect epigenetic mechanisms of transcription, such as DNA methylation and post-translational modifications of histones. In the present review, a new examination of the relationship between diet and breast cancer based on transcription control is proposed in light of epidemiological, animal and clinical studies. The mechanisms underlying the impact of diets on breast cancer development and factors that impede reaching clear conclusions are discussed. Understanding the interaction between nutrition and epigenetics (gene expression control via chromatin structure) is critical in light of the influence of diet during early stages of mammary gland development on breast cancer risk, suggesting a persistent effect on gene expression as shown by the influence of certain nutrients on DNA methylation. Successful development of breast cancer prevention strategies will require appropriate models, identification of biological markers for rapid assessment of preventive interventions, and coordinated worldwide research to discern the effects of diet. PMID:22853843

  2. Influence of Phytase Transgenic Corn on the Intestinal Microflora and the Fate of Transgenic DNA and Protein in Digesta and Tissues of Broilers

    PubMed Central

    Li, Sufen; Li, Ang; Zhang, Liyang; Liu, Zhenhua; Luo, Xugang

    2015-01-01

    An experiment was conducted to investigate the effect of phytase transgenic corn (PTC) on intestinal microflora, and the fate of transgenic DNA and protein in the digesta and tissues of broilers. A total of 160 1-day-old Arbor Acres commercial male broilers were randomly assigned to 20 cages (8 chicks per cage) with 10 cages (replicates) for each treatment. Birds were fed with a diet containing either PTC (54.0% during 1–21 days and 61.0% during 22–42 days) or non-transgenic isogenic control corn (CC) for a duration of 42 days. There were no significant differences (P>0.05) between birds fed with the PTC diets and those fed with the CC diets in the quantities of aerobic bacteria, anaerobic bacteria, colibacillus and lactobacilli, or microbial diversities in the contents of ileum and cecum. Transgenic phyA2 DNA was not detected, but phyA2 protein was detected in the digesta of duodenum and jejunum of broilers fed with the PTC diets. Both transgenic phyA2 DNA and protein fragments were not found in the digesta of the ileum and rectum, heart, liver, kidney, and breast or thigh muscles of broilers fed with the PTC diets. It was concluded that PTC had no adverse effect on the quantity and diversity of gut microorganisms; Transgenic phyA2 DNA or protein was rapidly degraded in the intestinal tract and was not transferred to the tissues of broilers. PMID:26599444

  3. Reproductive biology and feeding habits of the prickly dogfish Oxynotus bruniensis.

    PubMed

    Finucci, B; Bustamante, C; Jones, E G; Dunn, M R

    2016-11-01

    The reproductive biology and diet of prickly dogfish Oxynotus bruniensis, a deep-sea elasmobranch, endemic to the outer continental and insular shelves of southern Australia and New Zealand, and caught as by-catch in demersal fisheries, are described from specimens caught in New Zealand waters. A total of 53 specimens were obtained from research surveys and commercial fisheries, including juveniles and adults ranging in size from 33·5 to 75·6 cm total length (L T ). Estimated size-at-maturity was 54·7 cm L T in males and 64·0 cm L T in females. Three gravid females (65·0, 67·5 and 71·2 cm L T ) were observed, all with eight embryos. Size-at-birth was estimated to be 25-27 cm L T . Vitellogenesis was not concurrent with embryo development. Analysis of diet from stomach contents, including DNA identification of prey using the mitochondrial genes cox1 and nadh2, revealed that O. bruniensis preys exclusively on the egg capsules of holocephalans, potentially making it the only known elasmobranch with a diet reliant solely upon other chondrichthyans. Based on spatial overlap with deep-sea fisheries, a highly specialized diet, and reproductive characteristics representative of a low productivity fish, the commercial fisheries by-catch of O. bruniensis may put this species at relatively high risk of overfishing. © 2016 The Fisheries Society of the British Isles.

  4. [Protein-losing enteropathy with systemic lupus erythematosus effectively treated with octreotide and medium chain triglyceride diet: A case report].

    PubMed

    Kubo, Makoto; Uchida, Kousuke; Nakashima, Tadaaki; Oda, Seiko; Nakamura, Tomomi; Hashimoto, Shinichi; Watada, Toshiko; Nakamura, Hiroshi; Araki, Jun; Matsuzaki, Masunori; Yano, Masafumi

    2015-01-01

    In January 2009, a 62-year-old man presented with diarrhea, leg edema, and thrombopenia and was admitted to our hospital. The past medical history revealed Sjögren's syndrome and autoimmune hepatitis for which he had been administered prednisolone. On admission, a laboratory examination revealed massive hypoalbuminemia and high levels of C-reactive protein and platelet-associated IgG. Anti-double stranded DNA and anti-Sm antibodies were negative. Analysis of the bone marrow aspirate and Tc-99m albumin scintigraphy findings suggested autoimmune thrombocytopenic purpura (AITP) and protein-losing enteropathy (PLE), respectively. We diagnosed him as SLE, because past immunoserological testing had showed positivity for anti-double stranded DNA antibody and LE cells. Methylprednisolone pulse therapy and intravenous immunoglobulin therapy were ineffective. Rituximab was ineffective against PLE but was effective against AITP. Cyclosporine and Cyclophosphamide were ineffective against PLE. Subcutaneous injection of 200-μg octreotide daily and a medium chain triglyceride (MCT) diet was effective against PLE, and the patient's condition dramatically improved. The effectiveness of octreotide treatment and an MCT diet in the treatment of PLE with SLE is discussed.

  5. Towards a dietary prevention of hereditary breast cancer.

    PubMed

    Kotsopoulos, Joanne; Narod, Steven A

    2005-03-01

    Inheritance of a deleterious mutation in BRCA1 or BRCA2 confers a high lifetime risk of developing breast cancer. Variation in penetrance between individuals suggests that factors other than the gene mutation itself may influence the risk of cancer in susceptible women. Several risk factors have been identified which implicate estrogen-induced growth stimulation as a probable contributor to breast cancer pre-disposition. The protein products of both of these genes appear to help preserve genomic integrity via their participation in the DNA damage response and repair pathways. To date, the evidence for a cancer-protective role of dietary nutrients, for the most part those with antioxidant properties, has been based on women without any known genetic pre-disposition and it is important to identify and evaluate dietary factors which may modify the risk of cancer in BRCA carriers. Here we propose that diet modification may modulate the risk of hereditary breast cancer by decreasing DNA damage (possibly linked to estrogen exposure) or by enhancing DNA repair. The prevention of hereditary breast cancer through diet is an attractive complement to current management strategies and deserves exploration.

  6. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform.

    PubMed

    Kim, Junhyung; An, Jae-Uk; Kim, Woohyun; Lee, Soomin; Cho, Seongbeom

    2017-01-01

    Recent advances in next-generation sequencing technologies have enabled comprehensive analysis of the gut microbiota, which is closely linked to the health of the host. Consequently, several studies have explored the factors affecting gut microbiota composition. In recent years, increasing number of dog owners are feeding their pets a natural diet i.e., one consisting of bones, raw meat (such as chicken and beef), and vegetables, instead of commercial feed. However, the effect of these diets on the microbiota of dogs ( Canis lupus familiaris ) is unclear. Six dogs fed a natural diet and five dogs fed a commercial feed were selected; dog fecal metagenomic DNA samples were analyzed using the Illumina MiSeq platform. Pronounced differences in alpha and beta diversities, and taxonomic composition of the core gut microbiota were observed between the two groups. According to alpha diversity, the number of operational taxonomic units, the richness estimates, and diversity indices of microbiota were significantly higher ( p  < 0.05) in the natural diet group than in the commercial feed group. Based on beta diversity, most samples clustered together according to the diet type ( p  = 0.004). Additionally, the core microbiota between the two groups was different at the phylum, family, and species levels. Marked differences in the taxonomic composition of the core microbiota of the two groups were observed at the species level; Clostridium perfringens ( p  = 0.017) and Fusobacterium varium ( p  = 0.030) were more abundant in the natural diet group. The gut microbiota of dogs is significantly influenced by diet type (i.e., natural diet and commercial feed). Specifically, dogs fed a natural diet have more diverse and abundant microbial composition in the gut microbiota than dogs fed a commercial feed. In addition, this study suggests that in dogs fed a natural diet, the potential risk of opportunistic infection could be higher, than in dogs fed a commercial feed. The type of diet might therefore play a key role in animal health by affecting the gut microbiota. This study could be the basis for future gut microbiota research in dogs.

  7. High-Resolution Coproecology: Using Coprolites to Reconstruct the Habits and Habitats of New Zealand’s Extinct Upland Moa (Megalapteryx didinus)

    PubMed Central

    Wood, Jamie R.; Wilmshurst, Janet M.; Wagstaff, Steven J.; Worthy, Trevor H.; Rawlence, Nicolas J.; Cooper, Alan

    2012-01-01

    Knowledge about the diet and ecology of extinct herbivores has important implications for understanding the evolution of plant defence structures, establishing the influences of herbivory on past plant community structure and composition, and identifying pollination and seed dispersal syndromes. The flightless ratite moa (Aves: Dinornithiformes) were New Zealand’s largest herbivores prior to their extinction soon after initial human settlement. Here we contribute to the knowledge of moa diet and ecology by reporting the results of a multidisciplinary study of 35 coprolites from a subalpine cave (Euphrates Cave) on the South Island of New Zealand. Ancient DNA analysis and radiocarbon dating revealed the coprolites were deposited by the extinct upland moa (Megalapteryx didinus), and span from at least 6,368±31 until 694±30 14C years BP; the approximate time of their extinction. Using pollen, plant macrofossil, and ancient DNA analyses, we identified at least 67 plant taxa from the coprolites, including the first evidence that moa fed on the nectar-rich flowers of New Zealand flax (Phormium) and tree fuchsia (Fuchsia excorticata). The plant assemblage from the coprolites reflects a highly-generalist feeding ecology for upland moa, including browsing and grazing across the full range of locally available habitats (spanning southern beech (Nothofagus) forest to tussock (Chionochloa) grassland). Intact seeds in the coprolites indicate that upland moa may have been important dispersal agents for several plant taxa. Plant taxa with putative anti-browse adaptations were also identified in the coprolites. Clusters of coprolites (based on pollen assemblages, moa haplotypes, and radiocarbon dates), probably reflect specimens deposited at the same time by individual birds, and reveal the necessity of suitably large sample sizes in coprolite studies to overcome potential biases in diet interpretation. PMID:22768206

  8. Health status and potential uptake of transgenic DNA by Japanese quail fed diets containing genetically modified plant ingredients over 10 generations.

    PubMed

    Korwin-Kossakowska, A; Sartowska, K; Tomczyk, G; Prusak, B; Sender, G

    2016-06-01

    The hypothesis assumes that feed containing GMOs affects animal health and results in the transgene product accumulating in the body. Therefore, the objective of the study was to evaluate the impact of genetically modified (GM) ingredients used in poultry diets on aspects of bird health status and accumulation of transgenic DNA in eggs, breast muscle and internal organs. A total of 10 generations of Japanese quail were fed three types of diets: group A - containing GM soya (Roundup Ready) and non-GM maize, group B - containing GM maize (MON810) and non-GM soya, and group C - containing non-GM soya and maize. Bird performance traits were monitored throughout the trial. In 17-week-old animals of each generation, health examination took place on birds from each group including post-mortem necropsy and histological organ evaluation. For the purpose of transgenic DNA detection, samples of selected important tissues were taken. A molecular screening method of PCR amplification was used. The analysis of the sectional examination of birds used in the current experiment did not indicate the existence of the pathological changes caused by pathogens, nutritional factors or of environmental nature. The histopathological changes occurred in all three dietary groups and there were no statistically significant differences between the groups. There was no transgene amplification - neither CaMV35S promoter sequence nor nos terminator sequence, in the samples derived from breast muscle, selected tissues and germinal discs (eggs). According to the obtained results, it was concluded that there was no negative effect of the use of GM soya or maize with regard to bird health status or to the presence of transgenic DNA in the final consumable product.

  9. Low folate and selenium in the mouse maternal diet alters liver gene expression patterns in the offspring after weaning.

    PubMed

    Barnett, Matthew P G; Bermingham, Emma N; Young, Wayne; Bassett, Shalome A; Hesketh, John E; Maciel-Dominguez, Anabel; McNabb, Warren C; Roy, Nicole C

    2015-05-08

    During pregnancy, selenium (Se) and folate requirements increase, with deficiencies linked to neural tube defects (folate) and DNA oxidation (Se). This study investigated the effect of a high-fat diet either supplemented with (diet H), or marginally deficient in (diet L), Se and folate. Pregnant female mice and their male offspring were assigned to one of four treatments: diet H during gestation, lactation and post-weaning; diet L during gestation, lactation and post-weaning; diet H during gestation and lactation but diet L fed to offspring post-weaning; or diet L during gestation and lactation followed by diet H fed to offspring post-weaning. Microarray and pathway analyses were performed using RNA from colon and liver of 12-week-old male offspring. Gene set enrichment analysis of liver gene expression showed that diet L affected several pathways including regulation of translation (protein biosynthesis), methyl group metabolism, and fatty acid metabolism; this effect was stronger when the diet was fed to mothers, rather than to offspring. No significant differences in individual gene expression were observed in colon but there were significant differences in cell cycle control pathways. In conclusion, a maternal low Se/folate diet during gestation and lactation has more effects on gene expression in offspring than the same diet fed to offspring post-weaning; low Se and folate in utero and during lactation thus has persistent metabolic effects in the offspring.

  10. Using faecal DNA to determine consumption by kangaroos of plants considered palatable to sheep.

    PubMed

    Ho, K W; Krebs, G L; McCafferty, P; van Wyngaarden, S P; Addison, J

    2010-02-01

    Disagreement exists within the scientific community with regards to the level of competition for feed between sheep and kangaroos in the Australian rangelands. The greatest challenge to solving this debate is finding effective means of determining the composition of the diets of these potential grazing competitors. An option is to adopt a non-invasive approach that combines faecal collection and molecular techniques that focus on faecal DNA as the primary source of dietary information. As proof-of-concept, we show that a DNA reference data bank on plant species can be established. This DNA reference data bank was then used as a library to identify plant species in kangaroo faeces collected in the southern rangelands of Western Australia. To enhance the method development and to begin the investigation of competitive grazing between sheep and kangaroos, 16 plant species known to be palatable to sheep were initially targeted for collection. To ensure that only plant sequences were studied, PCR amplification was performed using a universal primer pair previously shown to be specific to the chloroplast transfer RNA leucine (trnL) UAA gene intron. Overall, genus-specific, single and differently sized amplicons were reliably and reproducibly generated; enabling the differentiation of reference plants by PCR product length heterogeneity. However, there were a few plants that could not be clearly differentiated on the basis of size alone. This prompted the adoption of a post-PCR step that enabled further differentiation according to base sequence variation. Restriction endonucleases make sequence-specific cleavages on DNA to produce discrete and reproducible fragments having unique sizes and base compositions. Their availability, affordability and simplicity-of-use put restriction enzyme sequence (RES) profiling as a logical post-PCR step for confirming plant species identity. We demonstrate that PCR-RES profiling of plant and faecal matter is useful for the identification of plants included in the diet of kangaroos. The limitations, potential and the opportunities created for researchers interested in investigating the diet of competing herbivores in the rangelands are discussed.

  11. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets.

    PubMed

    Bermingham, Emma N; Bassett, Shalome A; Young, Wayne; Roy, Nicole C; McNabb, Warren C; Cooney, Janine M; Brewster, Di T; Laing, William A; Barnett, Matthew P G

    2013-03-05

    Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health.

  12. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets

    PubMed Central

    2013-01-01

    Background Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Methods Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Results Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Conclusions Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health. PMID:23497688

  13. Effect of DNA Extraction Methods on the Apparent Structure of Yak Rumen Microbial Communities as Revealed by 16S rDNA Sequencing.

    PubMed

    Chen, Ya-Bing; Lan, Dao-Liang; Tang, Cheng; Yang, Xiao-Nong; Li, Jian

    2015-01-01

    To more efficiently identify the microbial community of the yak rumen, the standardization of DNA extraction is key to ensure fidelity while studying environmental microbial communities. In this study, we systematically compared the efficiency of several extraction methods based on DNA yield, purity, and 16S rDNA sequencing to determine the optimal DNA extraction methods whose DNA products reflect complete bacterial communities. The results indicate that method 6 (hexadecyltrimethylammomium bromide-lysozyme-physical lysis by bead beating) is recommended for the DNA isolation of the rumen microbial community due to its high yield, operational taxonomic unit, bacterial diversity, and excellent cell-breaking capability. The results also indicate that the bead-beating step is necessary to effectively break down the cell walls of all of the microbes, especially Gram-positive bacteria. Another aim of this study was to preliminarily analyze the bacterial community via 16S rDNA sequencing. The microbial community spanned approximately 21 phyla, 35 classes, 75 families, and 112 genera. A comparative analysis showed some variations in the microbial community between yaks and cattle that may be attributed to diet and environmental differences. Interestingly, numerous uncultured or unclassified bacteria were found in yak rumen, suggesting that further research is required to determine the specific functional and ecological roles of these bacteria in yak rumen. In summary, the investigation of the optimal DNA extraction methods and the preliminary evaluation of the bacterial community composition of yak rumen support further identification of the specificity of the rumen microbial community in yak and the discovery of distinct gene resources.

  14. How microbial ancient DNA, found in association with human remains, can be interpreted.

    PubMed Central

    Rollo, F; Marota, I

    1999-01-01

    The analysis of the DNA of ancient micro-organisms in archaeological and palaeontological human remains can contribute to the understanding of issues as different as the spreading of a new disease, a mummification process or the effect of diets on historical human populations. The quest for this type of DNA, however, can represent a particularly demanding task. This is mainly due to the abundance and diffusion of bacteria, fungi, yeasts, algae and protozoans in the most diverse environments of the present-day biosphere and the resulting difficulty in distinguishing between ancient and modern DNA. Nevertheless, at least under some special circumstances, by using rigorous protocols, which include an archaeometric survey of the specimens and evaluation of the palaeoecological consistency of the results of DNA sequence analysis, glimpses of the composition of the original microbial flora (e.g. colonic flora) can be caught in ancient human remains. Potentials and pitfalls of this research field are illustrated by the results of research works performed on prehistoric, pre-Columbian and Renaissance human mummies. PMID:10091251

  15. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial.

    PubMed

    Perfilyev, Alexander; Dahlman, Ingrid; Gillberg, Linn; Rosqvist, Fredrik; Iggman, David; Volkov, Petr; Nilsson, Emma; Risérus, Ulf; Ling, Charlotte

    2017-04-01

    Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses. Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial. Design: We studied the effects of 7 wk of excessive SFA ( n = 17) or PUFA ( n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue. Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase ( FTO ), interleukin 6 ( IL6 ), insulin receptor ( INSR ), neuronal growth regulator 1 ( NEGR1 ), and proopiomelanocortin ( POMC )] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing ( ADIPOQ )] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 ( ACOX1 ) and FAT atypical cadherin 1 ( FAT1 )], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 ( FABP1 ), fatty acid binding protein 2 ( FABP2 ), melanocortin 2 receptor ( MC2R ), MC3R , PPARG coactivator 1 α ( PPARGC1A ), and tumor necrosis factor ( TNF ), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA methylation of 12 CpG sites that was annotated to 9 genes [e.g., mitogen-activated protein kinase 7 ( MAPK7 ), melanin concentrating hormone receptor 1 ( MCHR1 ), and splicing factor SWAP homolog ( SFRS8 )] was associated with the degree of weight increase in response to extra energy intake. Conclusions: SFA overfeeding and PUFA overfeeding induce distinct epigenetic changes in human adipose tissue. In addition, we present data that suggest that baseline DNA methylation can predict weight increase in response to overfeeding in humans. This trial was registered at clinicaltrials.gov as NCT01427140. © 2017 American Society for Nutrition.

  16. Bacteria and archaea paleomicrobiology of the dental calculus: a review.

    PubMed

    Huynh, H T T; Verneau, J; Levasseur, A; Drancourt, M; Aboudharam, G

    2016-06-01

    Dental calculus, a material observed in the majority of adults worldwide, emerged as a source for correlating paleomicrobiology with human health and diet. This mini review of 48 articles on the paleomicrobiology of dental calculus over 7550 years discloses a secular core microbiota comprising nine bacterial phyla - Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, TM7, Synergistetes, Chloroflexi, Fusobacteria, Spirochetes - and one archaeal phylum Euryarchaeota; and some accessory microbiota that appear and disappear according to time frame. The diet residues and oral microbes, including bacteria, archaea, viruses and fungi, consisting of harmless organisms and pathogens associated with local and systemic infections have been found trapped in ancient dental calculus by morphological approaches, immunolabeling techniques, isotope analyses, fluorescent in situ hybridization, DNA-based approaches, and protein-based approaches. These observations led to correlation of paleomicrobiology, particularly Streptococcus mutans and archaea, with past human health and diet. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Renal and Glycemic Effects of High-Dose Chromium Picolinate in db/db Mice: Assessment of DNA Damage

    PubMed Central

    Mozaffari, Mahmood S.; Baban, Babak; Abdelsayed, Rafik; Liu, Jun Yao; Wimborne, Hereward; Rodriguez, Nancy; Abebe, Worku

    2011-01-01

    This study examined renal and glycemic effects of chromium picolinate (Cr(pic)3) supplementation in the context of its purported potential for DNA damage. In preventional protocol, male obese diabetic db/db mice were fed diets either lacking or containing 5, 10 or 100 mg/kg chromium as Cr(pic)3 from 6 to 24 weeks of age; male lean nondiabetic db/m mice served as controls. Untreated db/db mice displayed increased plasma glucose and insulin, hemoglobin A1c, renal tissue advanced glycation end (AGE) products, albuminuria, glomerular mesangial expansion, urinary 8-hydroxydeoxyguanosine (8-OHdG, an index of oxidative DNA damage) and renal tissue immunostaining for γH2AX (a marker of double-strand DNA breaks) compared to db/m controls. Creatinine clearance was lower while blood pressure was similar between untreated db/db mice and their db/m controls. High Cr(pic)3 intake (i.e., 100 mg/kg diet) mildly improved glycemic status and albuminuria without affecting blood pressure or creatinine clearance. Treatment with Cr(pic)3 did not increase DNA damage despite marked renal accumulation of chromium. In interventional protocol, effects of diets containing 0, 100 and 250 mg/kg supplemental chromium, from 12 to 24 weeks of age, were examined in db/db mice. The results generally revealed similar effects to those of the 100 mg/kg diet of the preventional protocol. In conclusion, the severely hyperglycemic db/db mouse displays renal structural and functional abnormalities in association with DNA damage. High-dose Cr(pic)3 treatment mildly improves glycemic control and it causes moderate reduction in albuminuria, without affecting histopathological appearance of the kidney and increasing the risk for DNA damage. PMID:21959055

  18. Renal and glycemic effects of high-dose chromium picolinate in db/db mice: assessment of DNA damage.

    PubMed

    Mozaffari, Mahmood S; Baban, Babak; Abdelsayed, Rafik; Liu, Jun Yao; Wimborne, Hereward; Rodriguez, Nancy; Abebe, Worku

    2012-08-01

    This study examined renal and glycemic effects of chromium picolinate [Cr(pic)3] supplementation in the context of its purported potential for DNA damage. In preventional protocol, male obese diabetic db/db mice were fed diets either lacking or containing 5, 10 or 100 mg/kg chromium as Cr(pic)3 from 6 to 24 weeks of age; male lean nondiabetic db/m mice served as controls. Untreated db/db mice displayed increased plasma glucose and insulin, hemoglobin A1c, renal tissue advanced glycation end products, albuminuria, glomerular mesangial expansion, urinary 8-hydroxydeoxyguanosine (an index of oxidative DNA damage) and renal tissue immunostaining for γH2AX (a marker of double-strand DNA breaks) compared to db/m controls. Creatinine clearance was lower in untreated db/db mice than their db/m controls, while blood pressure was similar. High Cr(pic)3 intake (i.e., 100-mg/kg diet) mildly improved glycemic status and albuminuria without affecting blood pressure or creatinine clearance. Treatment with Cr(pic)3 did not increase DNA damage despite marked renal accumulation of chromium. In interventional protocol, effects of diets containing 0, 100 and 250 mg/kg supplemental chromium, from 12 to 24 weeks of age, were examined in db/db mice. The results generally revealed similar effects to those of the 100-mg/kg diet of the preventional protocol. In conclusion, the severely hyperglycemic db/db mouse displays renal structural and functional abnormalities in association with DNA damage. High-dose Cr(pic)3 treatment mildly improves glycemic control, and it causes moderate reduction in albuminuria, without affecting the histopathological appearance of the kidney and increasing the risk for DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  20. Vitamin E Modifies High-Fat Diet-Induced Increase of DNA Strand Breaks, and Changes in Expression and DNA Methylation of Dnmt1 and MLH1 in C57BL/6J Male Mice.

    PubMed

    Remely, Marlene; Ferk, Franziska; Sterneder, Sonja; Setayesh, Tahereh; Kepcija, Tatjana; Roth, Sylvia; Noorizadeh, Rahil; Greunz, Martina; Rebhan, Irene; Wagner, Karl-Heinz; Knasmüller, Siegfried; Haslberger, Alexander

    2017-06-14

    Obesity is associated with low-grade inflammation, increased ROS production and DNA damage. Supplementation with antioxidants might ameliorate DNA damage and support epigenetic regulation of DNA repair. C57BL/6J male mice were fed a high-fat (HFD) or a control diet (CD) with and without vitamin E supplementation (4.5 mg/kg body weight (b.w.)) for four months. DNA damage, DNA promoter methylation and gene expression of Dnmt1 and a DNA repair gene ( MLH1 ) were assayed in liver and colon. The HFD resulted in organ specific changes in DNA damage, the epigenetically important Dnmt1 gene, and the DNA repair gene MLH1 . Vitamin E reduced DNA damage and showed organ-specific effects on MLH1 and Dnmt1 gene expression and methylation. These results suggest that interventions with antioxidants and epigenetic active food ingredients should be developed as an effective prevention for obesity-and oxidative stress-induced health risks.

  1. Microbiological profile of chicken carcasses: A comparative analysis using shotgun metagenomic sequencing

    PubMed Central

    Cesare, Alessandra De; Palma, Federica; Lucchi, Alex; Pasquali, Frederique; Manfreda, Gerardo

    2018-01-01

    In the last few years metagenomic and 16S rRNA sequencing have completly changed the microbiological investigations of food products. In this preliminary study, the microbiological profile of chicken carcasses collected from animals fed with different diets were tested by using shotgun metagenomic sequencing. A total of 15 carcasses have been collected at the slaughetrhouse at the end of the refrigeration tunnel from chickens reared for 35 days and fed with a control diet (n=5), a diet supplemented with 1500 FTU/kg of commercial phytase (n=5) and a diet supplemented with 1500 FTU/kg of commercial phytase and 3g/kg of inositol (n=5). Ten grams of neck and breast skin were obtained from each carcass and submited to total DNA extraction by using the DNeasy Blood & Tissue Kit (Qiagen). Sequencing libraries have been prepared by using the Nextera XT DNA Library Preparation Kit (Illumina) and sequenced in a HiScanSQ (Illumina) at 100 bp in paired ends. A number of sequences ranging between 5 and 9 million was obtained for each sample. Sequence analysis showed that Proteobacteria and Firmicutes represented more than 98% of whole bacterial populations associated to carcass skin in all groups but their abundances were different between groups. Moraxellaceae and other degradative bacteria showed a significantly higher abundance in the control compared to the treated groups. Furthermore, Clostridium perfringens showed a relative frequency of abundance significantly higher in the group fed with phytase and Salmonella enterica in the group fed with phytase plus inositol. The results of this preliminary study showed that metagenome sequencing is suitable to investigate and monitor carcass microbiota in order to detect specific pathogenic and/or degradative populations. PMID:29732327

  2. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice.

    PubMed

    McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C

    2011-07-01

    DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (p<0.05). Blood-derived DNA methylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Nutrigenetics and personalized nutrition: are we ready for DNA-based dietary advice?

    PubMed

    Grimaldi, Keith A

    2014-05-01

    Common genetic variation affects individual nutrient requirements and the use of DNA-based dietary advice, derived from nutrigenetics, has been growing. The growth is about to accelerate as the cost of genotyping continues to fall and research results from major nutrigenetics projects are published. There is still some skepticism; some barriers remain including some commercial tests, which make exaggerated, incorrect claims. There is a need for more public resources dedicated to unbiased, objective review and dissemination of nutrigenetics information; however, nutrigenetics evidence should be assessed in the context of standard nutritional evidence and should not require higher standards. This article argues that we are ready for some DNA-based dietary advice in general nutrition and it can be beneficial. Examples of the scientific validity and health utility of gene-diet interactions will be given and the development of guidelines for assessment and validation of benefits will be discussed.

  4. Analysis of DNA Sequences by an Optical Time-Integrating Correlator: Proposal

    DTIC Science & Technology

    1991-11-01

    OF THE PROBLEM AND CURRENT TECHNOLOGY 2 3.0 TIME-INTEGRATING CORRELATOR 2 4.0 REPRESENTATIONS OF THE DNA BASES 8 5.0 DNA ANALYSIS STRATEGY 8 6.0... DNA bases where each base is represented by a 7-bits long pseudorandom sequence. 9 Figure 5: The flow of data in a DNA analysis system based on an...logarithmic scale and a linear scale. 15 x LIST OF TABLES PAGE Table 1: Short representations of the DNA bases where each base is represented by 7-bits

  5. Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid.

    PubMed

    Altobelli, Gioia; Bogdarina, Irina G; Stupka, Elia; Clark, Adrian J L; Langley-Evans, Simon

    2013-01-01

    A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction. On day one postnatally, there were 618 differentially expressed genes and 1183 differentially methylated regions (FDR 5%). The functional analysis of differentially expressed genes indicated a significant effect on DNA repair/cycle/maintenance functions and of lipid, amino acid metabolism and circadian functions. Enrichment for known biological functions was found to be associated with differentially methylated regions. Moreover, these epigenetically altered regions overlapped genetic loci associated with metabolic and cardiovascular diseases. Both expression changes and DNA methylation changes were largely reversed by supplementing the protein restricted diet with folic acid. Although the epigenetic and gene expression signatures appeared to underpin largely different biological processes, the gene expression profile of DNA methyl transferases was altered, providing a potential link between the two molecular signatures. The data showed that maternal protein restriction is associated with widespread differential gene expression and DNA methylation across the genome, and that folic acid is able to reset both molecular signatures.

  6. Buccal Swabbing as a Noninvasive Method To Determine Bacterial, Archaeal, and Eukaryotic Microbial Community Structures in the Rumen

    PubMed Central

    Kirk, Michelle R.; Jonker, Arjan; McCulloch, Alan

    2015-01-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. PMID:26276109

  7. Different ratios of docosahexaenoic and eicosapentaenoic acids do not alter growth, nucleic acid and fatty acids of juvenile cobia (Rachycentron canadum).

    PubMed

    Xu, Youqing; Ding, Zhaokun; Zhang, Haizhu; Liu, Liang; Wang, Shuqi; Gorge, John

    2009-12-01

    An experiment was performed to study the effect of different ratios of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the growth, nucleic acid and fatty acids of cobia (Rachycentron canadum) juveniles. The juveniles were fed for 8 weeks using seven treatment diets (D-1-D-7) with the same amount of DHA and EPA (1.50 +/- 0.1% of dried diet), but varying ratios of DHA to EPA (0.90, 1.10, 1.30, 1.50, 1.70, 1.90, 2.10, respectively) and a control diet (D-0, DHA + EPA = 0.8% of dried diet, DHA/EPA = 1.30). At the end of the experiment, the mean body weight (BW) of juveniles fed D-0-D-7 increased significantly (from 6.86 +/- 1.64 in the week 0 to 58.52 +/- 16.45 g at the end of week 8, P < 0.05). The mean RNA amount and RNA/DNA ratio in the muscle (from 39.62 +/- 1.30 microg mg(-1) and 2.29 +/- 0.11 in the week 0 to 272.55 +/- 10.70 microg mg(-1) and 14.54 +/- 1.75 at the end of week 8, respectively) and the mean weight in the liver (from 117.70 +/- 11.15 microg mg(-1) and 3.14 +/- 0.25 in the week 0 to 793.07 +/- 13.38 microg mg(-1) and 13.16 +/- 0.76 at the end of week 8, respectively) of cobia juveniles fed D-0-D-7 were significantly higher at the end of 8-week experiment than initially (P < 0.05). The RNA/DNA ratio in the muscle and liver of cobia juveniles increased with their growth and appeared an obvious positive relationship, especially in the muscle, based on regression analysis. The mean lipid content increased significantly in the liver (from 29.82 +/- 0.99 to 37.47 +/- 3.25% totally) and muscle (from 6.74 +/- 0.25 to 10.63 +/- 0.23% totally) of cobia juveniles (P < 0.05). However, no significant difference was found on the lipid contents of juveniles fed different diets for 8 weeks (P > 0.05). In the muscle and liver of juveniles, EPA decreased with its reduction in the diet; DHA, DHA/EPA ratio and poly unsaturated fatty acids (PUFAs) generally increased with their increment in the diet. The conclusion was drawn that the growth, nucleic acid and fatty acids of cobia juveniles were not significantly affected by different DHA/EPA ratios in our experiments.

  8. A methionine-free diet associated with nitrosourea treatment down-regulates methylguanine-DNA methyl transferase activity in patients with metastatic cancer.

    PubMed

    Thivat, Emilie; Durando, Xavier; Demidem, Aïcha; Farges, Marie-Chantal; Rapp, Maryse; Cellarier, Eric; Guenin, Samuel; D'Incan, Michel; Vasson, Marie-Paule; Chollet, Philippe

    2007-01-01

    Methionine (MET) depletion used in association with chemotherapy improves the therapeutic index in animal models. This potentiating effect may be due to tumor cell sensitization to chloroethylnitrosoureas through their MET dependency and the down-regulation of O6- methylguanine-DNA methyltransferase (MGMT). Our purpose was to evaluate the impact of the association of a dietary MET restriction with nitrosourea treatment on MGMT activity in peripheral blood mononuclear cells (PBMCs). Six patients with metastatic cancer (melanoma and glioma) received 4 cycles of a MET-free diet with cystemustine (60 mg/m2). MGMT activity in PBMCs decreased by an average of 13% from 553+/-90 fnol/mg before the diet to 413+/-59 fmol/mg after the diet + chemotherapy period (p=0.029). The decrease of MGMT activity was not affected by the duration of the MET-free diet period but seems to be correlated to the plasma MET depletion induced by the MET-free diet.

  9. obitools: a unix-inspired software package for DNA metabarcoding.

    PubMed

    Boyer, Frédéric; Mercier, Céline; Bonin, Aurélie; Le Bras, Yvan; Taberlet, Pierre; Coissac, Eric

    2016-01-01

    DNA metabarcoding offers new perspectives in biodiversity research. This recently developed approach to ecosystem study relies heavily on the use of next-generation sequencing (NGS) and thus calls upon the ability to deal with huge sequence data sets. The obitools package satisfies this requirement thanks to a set of programs specifically designed for analysing NGS data in a DNA metabarcoding context. Their capacity to filter and edit sequences while taking into account taxonomic annotation helps to set up tailor-made analysis pipelines for a broad range of DNA metabarcoding applications, including biodiversity surveys or diet analyses. The obitools package is distributed as an open source software available on the following website: http://metabarcoding.org/obitools. A Galaxy wrapper is available on the GenOuest core facility toolshed: http://toolshed.genouest.org. © 2015 John Wiley & Sons Ltd.

  10. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population.

    PubMed

    Ramadass, Balamurugan; Rani, B Sandya; Pugazhendhi, Srinivasan; John, K R; Ramakrishna, Balakrishnan S

    2017-02-01

    The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle.

  11. Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population

    PubMed Central

    Ramadass, Balamurugan; Rani, B. Sandya; Pugazhendhi, Srinivasan; John, K.R.; Ramakrishna, Balakrishnan S.

    2017-01-01

    Background & objectives: The relevance of the gut microbiota to human health is increasingly appreciated. The objective of this study was to compare the gut microbiota of a group of adult tribals with that of healthy adult villagers in Tamil Nadu, India. Methods: Faeces were collected from 10 healthy tribal adults (TAs) in the Jawadhi hills and from 10 healthy villagers [rural adults (RAs)] in Vellore district, Tamil Nadu. DNA was extracted, and 456 bp segments comprising hypervariable regions 3 and 4 of the 16S rRNA gene were amplified, barcoded and 454 sequenced. Results: Totally 227,710 good-quality reads were analyzed. TAs consumed a millets-based diet, ate pork every day, and did not consume milk or milk products. RAs consumed a rice-based diet with meat intake once a week. In both groups, Firmicutes was the most abundant phylum, followed by Proteobacteria, Bacteroidetes and Actinobacteria. The median Firmicutes-to-Bacteroidetes ratio was 34.0 in TA and 92.9 in RA groups. Actinobacteria were significantly low in TA, possibly due to non-consumption of milk. Clostridium constituted the most abundant genus in both groups, but was significantly more abundant in TAs than RAs, while Streptococcus was significantly more abundant in RA (P<0.05). Analyses of genetic distance revealed that the microbiota were distinctly different between TA and RA, and principal component analysis using 550 distinct taxonomically identifiable sequences revealed a clear separation of microbiota composition in the two groups. Phylogenetic analysis of major microbiota indicated clustering of microbial groups at different major branch points for TAs and RAs. Interpretation & conclusions: Phylum Firmicutes and genus Clostridium constituted the bulk of the faecal microbiota, while significant differences in composition between the groups were probably due to differences in diet and lifestyle. PMID:28639601

  12. Effect of increasing energy and protein intake on mammary development in heifer calves.

    PubMed

    Brown, E G; Vandehaar, M J; Daniels, K M; Liesman, J S; Chapin, L T; Forrest, J W; Akers, R M; Pearson, R E; Nielsen, M S Weber

    2005-02-01

    The objective of this study was to determine if increased energy and protein intake from 2 to 14 wk of age would affect mammary development in heifer calves. At 2 wk of age, Holstein heifer calves were assigned to 1 of 4 treatments in a 2 x 2 factorial arrangement with 2 levels of protein and energy intake (moderate, M; high, H) in period 1 (2 to 8 wk of age) and 2 levels of protein and energy intake (low, L; high, H) in period 2 (8 to 14 wk of age), so that mean initial body weights were approximately equal for all 4 treatments (ML, MH, HL, and HH). The M diet in period 1 consisted of a standard milk replacer (21.3% CP, 21.3% fat) fed at 1.1% of BW on a DM basis and a 16.5% CP grain mix fed at restricted intake to promote 400 g of daily gain, whereas the L diet in period 2 consisted only of the grain mix. The H diet in period 1 consisted of a high-protein milk replacer (30.3% CP, 15.9% fat) fed at 2.0% of body weight on a DM basis and a 21.3% CP grain mix available ad libitum. In period 2, the H diet consisted of just the 21.3% grain mix. Calves were gradually weaned from milk replacer by 7 wk and slaughtered at 8 (n = 11) or 14 wk of age (n = 41). Parenchyma from the distal region, midgland, and proximal region relative to the teat from one half of the udder was collected, fixed, and embedded in paraffin. The other half of the gland was used to determine parenchymal mass, protein, fat, DNA, RNA, and extraparenchymal mass. Total parenchymal tissue, parenchymal DNA, parenchymal RNA, and concentrations of DNA and RNA were higher for calves on the H diet during period 1, but were not affected by diet during period 2. Parenchymal fat percentage was increased by the H diet during period 2. The H diet increased extraparenchymal fat during both periods. The area of parenchyma occupied by epithelium was not affected by treatment, but at the end of period 2, the percentage of proliferating epithelial cells as indicated by Ki67, an marker of cell proliferation, expression was greater for calves on the M diet in period 1 compared with calves on the H diet in period 1. Diets did not influence parenchymal protein percentage or the ratio of RNA to DNA. Higher energy and protein intake from 2 to 8 wk of age increased parenchymal mass and parenchymal DNA and RNA in mammary glands of heifer calves without increasing deposition of parenchymal fat. Diet also influenced histological development of mammary parenchyma and subsequent proliferation of ductal epithelial cells. Implications of these effects for future milk production potential are unknown.

  13. Interactive effects of food quality, temperature and rearing time on condition of juvenile black bream Acanthopagrus butcheri.

    PubMed

    Walther, B D; Elsdon, T S; Gillanders, B M

    2010-06-01

    A laboratory experiment was conducted to determine the interactive effects of temperature and diet on condition indices of juvenile black bream Acanthopagrus butcheri, reared for time periods ranging from 2 to 42 days. After fish were reared for varying periods, growth, morphometric (Fulton's K) and biochemical [RNA:DNA (R:D) ratios] indices were measured. Fulton's K responded primarily to temperature, with progressive decrease in condition over time for fish reared at high temperatures. In contrast, R:D ratios were primarily affected by diet composition, with the highest values observed for fish reared on fish-based diets as opposed to vegetable-based diets. Significant effects of rearing time were also observed for Fulton's K and R:D ratios, as were some interactive treatment effects. In addition, Fulton's K and R:D ratios were not significantly correlated, perhaps due to the different periods of time integrated by each index or their relative sensitivity to lipid and protein deposition. These results highlight the complex responses of these condition indices to environmental variables and nutritional status.

  14. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    USDA-ARS?s Scientific Manuscript database

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  15. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    PubMed

    Xu, Zhi; Huo, Xinying; Ye, Hua; Tang, Chuanning; Nandakumar, Vijayalakshmi; Lou, Feng; Zhang, Dandan; Dong, Haichao; Sun, Hong; Jiang, Shouwen; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; He, Yan; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Gu, Dongying; Zhang, Xiaojing; Wu, Xiaomin; Wei, Xiaowei; Hong, Lingzhi; Zhang, Yangmei; Yang, Jinsong; Gong, Yonglin; Tang, Cuiju; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Chen, Jinfei

    2014-01-01

    Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  16. DNA Metabarcoding Reveals Diet Overlap between the Endangered Walia Ibex and Domestic Goats - Implications for Conservation.

    PubMed

    Gebremedhin, Berihun; Flagstad, Øystein; Bekele, Afework; Chala, Desalegn; Bakkestuen, Vegar; Boessenkool, Sanne; Popp, Magnus; Gussarova, Galina; Schrøder-Nielsen, Audun; Nemomissa, Sileshi; Brochmann, Christian; Stenseth, Nils Chr; Epp, Laura S

    2016-01-01

    Human population expansion and associated degradation of the habitat of many wildlife species cause loss of biodiversity and species extinctions. The small Simen Mountains National Park in Ethiopia is one of the last strongholds for the preservation of a number of afro-alpine mammals, plants and birds, and it is home to the rare endemic Walia ibex, Capra walie. The narrow distribution range of this species as well as potential competition for resources with livestock, especially with domestic goat, Capra hircus, may compromise its future survival. Based on a curated afro-alpine taxonomic reference library constructed for plant taxon identification, we investigated the diet of the Walia ibex and addressed the dietary overlap with domestic goat using DNA metabarcoding of faecal samples. Faeces of both species were collected from different localities in the National Park. We show that both species are browsers, with forbs, shrubs and trees comprising the largest proportion of their diet, supplemented by grasses. There was a considerable overlap in dietary preferences. Several of the preferred diet items of the Walia ibex (Alchemilla sp., Hypericum revolutum, Erica arborea and Rumex sp.) were also among the most preferred diet items of the domestic goat. These results indicate that there is potential for competition between the two species, especially during the dry season, when resources are limited. Our findings, in combination with the expected increase in domestic herbivores, suggest that management plans should consider the potential threat posed by domestic goats to ensure future survival of the endangered Walia ibex.

  17. DNA Metabarcoding Reveals Diet Overlap between the Endangered Walia Ibex and Domestic Goats - Implications for Conservation

    PubMed Central

    Gebremedhin, Berihun; Flagstad, Øystein; Bekele, Afework; Chala, Desalegn; Bakkestuen, Vegar; Boessenkool, Sanne; Popp, Magnus; Gussarova, Galina; Schrøder-Nielsen, Audun; Nemomissa, Sileshi; Brochmann, Christian; Stenseth, Nils Chr.

    2016-01-01

    Human population expansion and associated degradation of the habitat of many wildlife species cause loss of biodiversity and species extinctions. The small Simen Mountains National Park in Ethiopia is one of the last strongholds for the preservation of a number of afro-alpine mammals, plants and birds, and it is home to the rare endemic Walia ibex, Capra walie. The narrow distribution range of this species as well as potential competition for resources with livestock, especially with domestic goat, Capra hircus, may compromise its future survival. Based on a curated afro-alpine taxonomic reference library constructed for plant taxon identification, we investigated the diet of the Walia ibex and addressed the dietary overlap with domestic goat using DNA metabarcoding of faecal samples. Faeces of both species were collected from different localities in the National Park. We show that both species are browsers, with forbs, shrubs and trees comprising the largest proportion of their diet, supplemented by grasses. There was a considerable overlap in dietary preferences. Several of the preferred diet items of the Walia ibex (Alchemilla sp., Hypericum revolutum, Erica arborea and Rumex sp.) were also among the most preferred diet items of the domestic goat. These results indicate that there is potential for competition between the two species, especially during the dry season, when resources are limited. Our findings, in combination with the expected increase in domestic herbivores, suggest that management plans should consider the potential threat posed by domestic goats to ensure future survival of the endangered Walia ibex. PMID:27416020

  18. Interactive Effects of Indigestible Carbohydrates, Protein Type, and Protein Level on Biomarkers of Large Intestine Health in Rats

    PubMed Central

    Taciak, Marcin; Barszcz, Marcin; Tuśnio, Anna; Pastuszewska, Barbara

    2015-01-01

    The effects of indigestible carbohydrates, protein type, and protein level on large intestine health were examined in rats. For 21 days, 12 groups of six 12-week-old male Wistar rats were fed diets with casein (CAS), or potato protein concentrate (PPC), providing 14% (lower protein level; LP), or 20% (higher protein level; HP) protein, and containing cellulose, resistant potato starch, or pectin. Fermentation end-products, pH, and β-glucuronidase levels in cecal digesta, and ammonia levels in colonic digesta were determined. Cecal digesta, tissue weights, cecal and colon morphology, and colonocyte DNA damage were also analyzed. Digesta pH was lower, whereas relative mass of cecal tissue and digesta were higher in rats fed pectin diets than in those fed cellulose. Cecal parameters were greater in rats fed PPC and HP diets than in those fed CAS and LP diets, respectively. Short-chain fatty acid (SCFA) concentrations were unaffected by protein or carbohydrate type. Total SCFA, acetic acid, and propionic acid concentrations were greater in rats fed LP diets than in those fed HP. Cecal pool of isobutyric and isovaleric acids was greater in rats fed PPC than in those fed CAS diets. PPC diets decreased phenol concentration and increased ammonia concentration in cecal and colonic digesta, respectively. Cecal crypt depth was greater in rats fed PPC and HP diets, and was unaffected by carbohydrates; whereas colonic crypt depth was greater in rats fed cellulose. Myenteron thickness in the cecum was unaffected by nutrition, but was greater in the colon of rats fed cellulose. Colonocyte DNA damage was greater in rats fed LP diets than in those fed HP diets, and was unaffected by carbohydrate or protein type. It was found that nutritional factors decreasing cecal digesta weight contribute to greater phenol production, increased DNA damage, and reduced ammonia concentration in the colon. PMID:26536028

  19. Epigenetic dysregulation of the dopamine system in diet-induced obesity.

    PubMed

    Vucetic, Zivjena; Carlin, Jesse Lea; Totoki, Kathy; Reyes, Teresa M

    2012-03-01

    Chronic intake of high-fat (HF) diet is known to alter brain neurotransmitter systems that participate in the central regulation of food intake. Dopamine (DA) system changes in response to HF diet have been observed in the hypothalamus, important in the homeostatic control of food intake, as well as within the central reward circuitry [ventral tegmental area (VTA), nucleus accumbens (NAc), and pre-frontal cortex (PFC)], critical for coding the rewarding properties of palatable food and important in hedonically driven feeding behavior. Using a mouse model of diet-induced obesity (DIO), significant alterations in the expression of DA-related genes were documented in adult animals, and the general pattern of gene expression changes was opposite within the hypothalamus versus the reward circuitry (increased vs. decreased, respectively). Differential DNA methylation was identified within the promoter regions of tyrosine hydroxylase (TH) and dopamine transporter (DAT), and the pattern of this response was consistent with the pattern of gene expression. Behaviors consistent with increased hypothalamic DA and decreased reward circuitry DA were observed. These data identify differential DNA methylation as an epigenetic mechanism linking the chronic intake of HF diet with altered DA-related gene expression, and this response varies by brain region and DNA sequence. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  20. Spirulina improves antioxidant status by reducing oxidative stress in rabbits fed a high-cholesterol diet.

    PubMed

    Kim, Mi Yeon; Cheong, Sun Hee; Lee, Jeung Hee; Kim, Min Ji; Sok, Dai-Eun; Kim, Mee Ree

    2010-04-01

    The beneficial effect of Spirulina (Spirulina platensis) on tissue lipid peroxidation and oxidative DNA damage was tested in the hypercholesterolemic New Zealand White rabbit model. After hypercholesterolemia was induced by feeding a high cholesterol (0.5%) diet (HCD) for 4 weeks, then HCD supplemented with 1% or 5% Spirulina (SP1 or SP5, respectively) was provided for an additional 8 weeks. Spirulina supplementation significantly reduced the increased lipid peroxidation level in HCD-fed rabbits, and levels recovered to control values. Oxidative stress biomarkers such as glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase were significantly improved in the liver and red blood cells of rabbits fed SP1. Furthermore, SP5 induced antioxidant enzyme activity by 3.1-fold for glutathione, 2.5-fold for glutathione peroxidase, 2.7-fold for glutathione reductase, and 2.3-fold for glutathione S-transferase in liver, compared to the HCD group. DNA damage in lymphocytes was significantly reduced in both the SP1 and SP5 groups, based on the comet assay. Findings from the present study suggest that dietary supplementation with Spirulina may be useful to protect the cells from lipid peroxidation and oxidative DNA damage.

  1. Benzo(a)pyrene (B(a)P) metabolism and in vitro formation of B(a)P-DNA adducts by hepatic microsomes from rats fed diets containing corn and menhaden oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharwadkar, S.; Bellow, J.; Ramanathan, R.

    1986-03-01

    Dietary unsaturated fat is required for maximum induction of hepatic mixed function oxidases responsible for activating carcinogens which may bind covalently to DNA. The aim of this study was to assess the influence of dietary fat type on in vitro B(a)P metabolism and B(a)P-DNA adduct formation. Male rats were starved 2 days and refed diet devoid of fat, or containing 20% corn oil (CO) or 20% menhaden oil (MO) for 4 days. Both dietary fats increased Vmax for B(a)P hydroxylation without affecting Km. Phenobarbital (PB) administration increased Vmax in all animals but Km was increased only in rats fed themore » fat diets. PB resulted in decreased B(a)P metabolism when conducted at 15 =M only in rats fed the two fat diets even in the presence of increased cytochrome P-450 (P-450). This effect was due to a decrease in B(a)P metabolism at low substrate concentrations in PB treated fat-fed animals. Binding of B(a)P to calf-thymus DNA was increased in animals fed both fats which was enhanced further by PB only in rats fed the CO and MO diets. When the data are calculated as B(a)P metabolized per unit of P-450, PB seems to induce a P-450 in fat-fed animals having lower affinity and capacity for B(a)P metabolism and activation.« less

  2. High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding.

    PubMed

    McInnes, Julie C; Alderman, Rachael; Lea, Mary-Anne; Raymond, Ben; Deagle, Bruce E; Phillips, Richard A; Stanworth, Andrew; Thompson, David R; Catry, Paulo; Weimerskirch, Henri; Suazo, Cristián G; Gras, Michaël; Jarman, Simon N

    2017-09-01

    Gelatinous zooplankton are a large component of the animal biomass in all marine environments, but are considered to be uncommon in the diet of most marine top predators. However, the diets of key predator groups like seabirds have conventionally been assessed from stomach content analyses, which cannot detect most gelatinous prey. As marine top predators are used to identify changes in the overall species composition of marine ecosystems, such biases in dietary assessment may impact our detection of important ecosystem regime shifts. We investigated albatross diet using DNA metabarcoding of scats to assess the prevalence of gelatinous zooplankton consumption by two albatross species, one of which is used as an indicator species for ecosystem monitoring. Black-browed and Campbell albatross scats were collected from eight breeding colonies covering the circumpolar range of these birds over two consecutive breeding seasons. Fish was the main dietary item at most sites; however, cnidarian DNA, primarily from scyphozoan jellyfish, was present in 42% of samples overall and up to 80% of samples at some sites. Jellyfish was detected during all breeding stages and consumed by adults and chicks. Trawl fishery catches of jellyfish near the Falkland Islands indicate a similar frequency of jellyfish occurrence in albatross diets in years of high and low jellyfish availability, suggesting jellyfish consumption may be selective rather than opportunistic. Warmer oceans and overfishing of finfish are predicted to favour jellyfish population increases, and we demonstrate here that dietary DNA metabarcoding enables measurements of the contribution of gelatinous zooplankton to the diet of marine predators. © 2017 John Wiley & Sons Ltd.

  3. Effect of an Internet-based, personalized nutrition randomized trial on dietary changes associated with the Mediterranean diet: the Food4Me Study.

    PubMed

    Livingstone, Katherine M; Celis-Morales, Carlos; Navas-Carretero, Santiago; San-Cristobal, Rodrigo; Macready, Anna L; Fallaize, Rosalind; Forster, Hannah; Woolhead, Clara; O'Donovan, Clare B; Marsaux, Cyril Fm; Kolossa, Silvia; Tsirigoti, Lydia; Lambrinou, Christina P; Moschonis, George; Godlewska, Magdalena; Surwiłło, Agnieszka; Drevon, Christian A; Manios, Yannis; Traczyk, Iwona; Gibney, Eileen R; Brennan, Lorraine; Walsh, Marianne C; Lovegrove, Julie A; Saris, Wim H; Daniel, Hannelore; Gibney, Mike; Martinez, J Alfredo; Mathers, John C

    2016-08-01

    Little is known about the efficacy of personalized nutrition (PN) interventions for improving consumption of a Mediterranean diet (MedDiet). The objective was to evaluate the effect of a PN intervention on dietary changes associated with the MedDiet. Participants (n = 1607) were recruited into a 6-mo, Internet-based, PN randomized controlled trial (Food4Me) designed to evaluate the effect of PN on dietary change. Participants were randomly assigned to receive conventional dietary advice [control; level 0 (L0)] or PN advice on the basis of current diet [level 1 (L1)], diet and phenotype [level 2 (L2)], or diet, phenotype, and genotype [level 3 (L3)]. Dietary intakes from food-frequency questionnaires at baseline and at 6 mo were converted to a MedDiet score. Linear regression compared participant characteristics between high (>5) and low (≤5) MedDiet scores. Differences in MedDiet scores between treatment arms at month 6 were evaluated by using contrast analyses. At baseline, high MedDiet scorers had a 0.5 lower body mass index (in kg/m(2); P = 0.007) and a 0.03 higher physical activity level (P = 0.003) than did low scorers. MedDiet scores at month 6 were greater in individuals randomly assigned to receive PN (L1, L2, and L3) than in controls (PN compared with controls: 5.20 ± 0.05 and 5.48 ± 0.07, respectively; P = 0.002). There was no significant difference in MedDiet scores at month 6 between PN advice on the basis of L1 compared with L2 and L3. However, differences in MedDiet scores at month 6 were greater in L3 than in L2 (L3 compared with L2: 5.63 ± 0.10 and 5.38 ± 0.10, respectively; P = 0.029). Higher MedDiet scores at baseline were associated with healthier lifestyles and lower adiposity. After the intervention, MedDiet scores were greater in individuals randomly assigned to receive PN than in controls, with the addition of DNA-based dietary advice resulting in the largest differences in MedDiet scores. Although differences were significant, their clinical relevance is modest. This trial was registered at clinicaltrials.gov as NCT01530139. © 2016 American Society for Nutrition.

  4. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods

    PubMed Central

    2010-01-01

    Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602

  5. Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations

    PubMed Central

    Wankhade, Umesh D.; Zhong, Ying; Kang, Ping; Alfaro, Maria; Chintapalli, Sree V.; Thakali, Keshari M.

    2017-01-01

    Objective Non-alcoholic fatty liver disease (NAFLD) is an important co-morbidity associated with obesity and a precursor to steatohepatitis. However, the contributions of gestational and early life influences on development of NAFLD and NASH remain poorly appreciated. Methods Two independent studies were performed to examine whether maternal over-nutrition via exposure to high fat diet (HFD) leads to exacerbated hepatic responses to post-natal HFD and methionine choline deficient (MCD) diets in the offspring. Offspring of both control diet- and HFD-fed dams were weaned onto control and HFD, creating four groups. Results When compared to their control diet-fed littermates, offspring of HF-dams weaned onto HFD gained greater body weight; had increased relative liver weight and showed hepatic steatosis and inflammation. Similarly, this group revealed significantly greater immune response and pro-fibrogenic gene expression via RNA-seq. In parallel, 7–8 week old offspring were challenged with either control or MCD diets for 3 weeks. Responses to MCD diets were also exacerbated due to maternal HFD as seen by gene expression of classical pro-fibrogenic genes. Quantitative genome-scale DNA methylation analysis of over 1 million CpGs showed persistent epigenetic changes in key genes in tissue development and metabolism (Fgf21, Ppargc1β) with maternal HFD and in cell adhesion and communication (VWF, Ephb2) in the combination of maternal HFD and offspring MCD diets. Maternal HFD also influenced gut microbiome profiles in offspring leading to a decrease in α-diversity. Linear regression analysis revealed association between serum ALT levels and Coprococcus, Coriobacteriacae, Helicobacterioceae and Allobaculum. Conclusion Our findings indicate that maternal HFD detrimentally alters epigenetic and gut microbiome pathways to favor development of fatty liver disease and its progressive sequelae. PMID:28414763

  6. Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations.

    PubMed

    Wankhade, Umesh D; Zhong, Ying; Kang, Ping; Alfaro, Maria; Chintapalli, Sree V; Thakali, Keshari M; Shankar, Kartik

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is an important co-morbidity associated with obesity and a precursor to steatohepatitis. However, the contributions of gestational and early life influences on development of NAFLD and NASH remain poorly appreciated. Two independent studies were performed to examine whether maternal over-nutrition via exposure to high fat diet (HFD) leads to exacerbated hepatic responses to post-natal HFD and methionine choline deficient (MCD) diets in the offspring. Offspring of both control diet- and HFD-fed dams were weaned onto control and HFD, creating four groups. When compared to their control diet-fed littermates, offspring of HF-dams weaned onto HFD gained greater body weight; had increased relative liver weight and showed hepatic steatosis and inflammation. Similarly, this group revealed significantly greater immune response and pro-fibrogenic gene expression via RNA-seq. In parallel, 7-8 week old offspring were challenged with either control or MCD diets for 3 weeks. Responses to MCD diets were also exacerbated due to maternal HFD as seen by gene expression of classical pro-fibrogenic genes. Quantitative genome-scale DNA methylation analysis of over 1 million CpGs showed persistent epigenetic changes in key genes in tissue development and metabolism (Fgf21, Ppargc1β) with maternal HFD and in cell adhesion and communication (VWF, Ephb2) in the combination of maternal HFD and offspring MCD diets. Maternal HFD also influenced gut microbiome profiles in offspring leading to a decrease in α-diversity. Linear regression analysis revealed association between serum ALT levels and Coprococcus, Coriobacteriacae, Helicobacterioceae and Allobaculum. Our findings indicate that maternal HFD detrimentally alters epigenetic and gut microbiome pathways to favor development of fatty liver disease and its progressive sequelae.

  7. Monitoring carcinogen actions on DNA by 32P-postlabeling.

    PubMed

    Randerath, K; Randerath, E

    1990-01-01

    Among several recently developed analytical methods, 32P-postlabeling analysis is a highly sensitive method for the detection and measurement of covalent carcinogen-DNA adducts and other DNA modifications. Since the method does not require radioactive carcinogens, it is suitable for DNA of humans exposed to environmental or occupational genotoxicants. The basic procedure entails the enzymatic incorporation of 32P-label into monomeric or dimeric hydrolysis products of DNA, followed by chromatographic mapping and autoradiography of the 32P-labeled digestion products and quantitation by scintillation spectrometry. Microgram amounts of DNA are analyzed; thus the assay is well suited for limited amounts of cells or tissue. Various versions of the assay afford different sensitivities of adduct detection. Under optimal conditions, one aromatic or bulky/hydrophobic adduct in 10(8)-10(10) nucleotides can be detected and measured (corresponding to 0.3-30 amol adduct/microgram DNA or 0.1-10 nmol adduct/mol DNA-P). The assay has been successfully applied to a variety of mutagenic (genotoxic) as well as non-mutagenic carcinogens. In humans, the 32P-postlabeling assay has been applied to DNA specimens from cigarette smokers, iron foundry workers, and coke oven workers. Estimation of total aromatic adduct levels in exposed individuals gave values of 1 adduct in 10(6)-10(8) DNA nucleotides. These values are similar to the total levels of persistent adducts in tissues of animals after exposure to initiating or carcinogenic doses of authentic aromatic genotoxicants. Among the non-mutagenic carcinogens investigated are estrogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), choline-devoid diet, carbon tetrachloride, and peroxisome proliferators. In addition, age-dependent DNA modifications (I-compounds) are being detected by 32P-postlabeling in animals that have not been knowingly exposed to mutagens/carcinogens. I-compound profiles and levels are dependent on species, tissue, sex, and diet. Reduced levels of I-compounds have been consistently noted in the target organ of carcinogen-exposed animals and in resulting neoplasms, suggesting that I-compound loss may play a role in carcinogenesis.

  8. Evaluation of methodologies for assessing the overall diet: dietary quality scores and dietary pattern analysis.

    PubMed

    Ocké, Marga C

    2013-05-01

    This paper aims to describe different approaches for studying the overall diet with advantages and limitations. Studies of the overall diet have emerged because the relationship between dietary intake and health is very complex with all kinds of interactions. These cannot be captured well by studying single dietary components. Three main approaches to study the overall diet can be distinguished. The first method is researcher-defined scores or indices of diet quality. These are usually based on guidelines for a healthy diet or on diets known to be healthy. The second approach, using principal component or cluster analysis, is driven by the underlying dietary data. In principal component analysis, scales are derived based on the underlying relationships between food groups, whereas in cluster analysis, subgroups of the population are created with people that cluster together based on their dietary intake. A third approach includes methods that are driven by a combination of biological pathways and the underlying dietary data. Reduced rank regression defines linear combinations of food intakes that maximally explain nutrient intakes or intermediate markers of disease. Decision tree analysis identifies subgroups of a population whose members share dietary characteristics that influence (intermediate markers of) disease. It is concluded that all approaches have advantages and limitations and essentially answer different questions. The third approach is still more in an exploration phase, but seems to have great potential with complementary value. More insight into the utility of conducting studies on the overall diet can be gained if more attention is given to methodological issues.

  9. Different Roles of 8‐Hydroxyguanine Formation and 2‐Thiobarbituric Acid‐reacting Substance Generation in the Early Phase of Liver Carcinogenesis Induced by a Choline‐deficient, l‐Amino Acid‐defined Diet in Rats

    PubMed Central

    Nakae, Dai; Mizumoto, Yasushi; Yoshiji, Hitoshi; Andoh, Nobuaki; Horiguchi, Kohsuke; Shiraiwa, Kazumi; Kobayashi, Eisaku; Endoh, Takehiro; Shimoji, Naoshi; Tamura, Kazutoshi; Tsujiuchi, Toshifumi; Denda, Ayumi

    1994-01-01

    The present study was performed to assess the roles of hepatocellular oxidative damage to DNA and constituents other than DNA in rat liver carcinogenesis caused by a choline‐deficient, l‐amino acid‐defined (CDAA) diet by examining the effects of the antioxidant N, N′‐diphenyl‐p‐phenylenediamine (DPPD). The parameters used for cellular oxidative damage were the level of 8‐hydroxyguanine (8‐OHGua) for DNA and that of 2‐thiobarbituric acid‐reacting substance (TBARS) for constituents other than DNA. A total of 40 male Fischer 344 rats, 6 weeks old, were fed the CDAA diet for 12 weeks with or without DPPD (0.05, 0.10 or 0.20%) or butylated hydroxytoluene (BHT, 0.25%). In the livers of the rats, the numbers and sizes of glutathione S‐transferasc (EC 2.5.1.18) placental form (GSTP)‐ and/or γ‐glutamyltransferase (GGT, EC 2.3.2.2)‐positive lesions and levels of 8‐OHGua and TBARS were determined. The GSTP‐positive lesions of 0.08 mm2 or larger were all stained positively for GGT as well in cross‐sectional area, whereas the smaller lesions were generally negative for GGT. DPPD and BHT reduced the size of the GSTP‐positive lesions without affecting their total numbers. At the same time, they reduced TBARS generation without affecting 8‐OHGua formation in DNA. The present results indicate that oxidative DNA damage (represented by 8‐OHGua formation) and damage to constituents other than DNA (represented by TBARS generation) may play different roles in rat liver carcinogenesis caused by the CDAA diet; the former appears to be involved in the induction of phenotypically altered hepatocyte populations while the latter may be related to the growth of such populations. PMID:8014108

  10. Effects of aging and walnut diet on DNA methylation and expression of immediate-early genes in critical brain regions

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence indicates a direct link between age-associated changes in epigenetic mechanisms and onset of neurodegenerative diseases, and that these genomic modulations are directly affected by the diet. Diets deficient in folate, choline and methionine, or the trace elements zinc and selenium,...

  11. High doses of alcohol during pregnancy cause DNA damages in osteoblasts of newborns rats.

    PubMed

    Carvalho, Isabel Chaves Silva; Dutra, Tamires Pereira; Andrade, Dennia Perez De; Balducci, Ivan; Pacheco-Soares, Cristina; Rocha, Rosilene Fernandes da

    2016-02-01

    Alcohol exerts teratogenic effects and its consumption during pregnancy can cause deficit of bone development. The aim of the current study was to evaluate the genotoxic effects of prenatal exposure to ethanol on newborn rat osteoblasts. Wistar rats were initially divided into two groups: Ethanol group which received Ethanol 20% V/V in liquid diet and solid diet ad libitum, and Control group, which received solid diet and water ad libitum. Each group received a specific diet for 8 weeks before breeding and throughout three weeks of gestation and the treatment was finished on the day the pups were killed. On the fifth day of life, the pups from each group were killed for removal of the calvaria and isolation of osteogenic cells by sequential enzymatic digestion. The cells were cultured for a maximum period of 14 days. The detection of genotoxic effects of alcohol was investigated by the comet and the micronucleus assay. Micronucleus and comet assay showed significant increases in DNA damage at 7 days in Ethanol group (p = 0.0302, p = 0.0446, respectively). However, at 14 days both assay showed no significant difference between the groups (p = 0.6194, p = 0.8326, respectively). Our results showed that prenatal exposure to ethanol induced DNA damage in osteoblasts, as shown by micronucleus formation and higher percentage of DNA in the comet tail. It can be concluded that prenatal exposure to ethanol damages osteoblast DNA in newborns exposed to high doses of ethanol during pregnancy, suggesting that prenatal ethanol consumption has a direct effect on fetal osteoblasts. © 2015 Wiley Periodicals, Inc.

  12. Subtle Decreases in DNA Methylation and Gene Expression at the Mouse Igf2 Locus Following Prenatal Alcohol Exposure: Effects of a Methyl-Supplemented Diet

    PubMed Central

    Downing, Chris; Johnson, Thomas E; Larson, Colin; Leakey, Tatiana I; Siegfried, Rachel N; Rafferty, Tonya M; Cooney, Craig A

    2010-01-01

    C57BL/6J (B6) mice are susceptible to in utero growth retardation and a number of morphological malformations following prenatal alcohol exposure, while DBA/2J (D2) mice are relatively resistant. We have previously shown that genomic imprinting may play a role in differential sensitivity between B6 and D2 (Downing and Gilliam 1999). The best characterized mechanism mediating genomic imprinting is differential DNA methylation. In the present study we examined DNA methylation and gene expression, in both embryonic and placental tissue, at the mouse Igf2 locus following in utero ethanol exposure. We also examined the effects of a methyl-supplemented diet on methylation and ethanol teratogenesis. In embryos from susceptible B6 mice, we found small decreases in DNA methylation at four CpG sites in one of the differentially methylated regions of the Igf2 locus; only one of the four sites showed a statistically significant decrease. We observed no significant decreases in methylation in placentae. All Igf2 transcripts showed approximately 1.5 fold decreases following intrauterine alcohol exposure. Placing dams on a methyl-supplemented diet before pregnancy and throughout gestation brought methylation back up to control levels. Methyl-supplementation also resulted in lower prenatal mortality, greater prenatal growth, and decreased digit malformations; it dramatically reduced vertebral malformations. Thus, while prenatal alcohol had only small effects on DNA methylation at the Igf2 locus, placing dams on a methyl-supplemented diet partially ameliorated ethanol teratogenesis. PMID:20705422

  13. Editorial overview: Molecular and genetic bases of disease: the double life of DNA.

    PubMed

    McMurray, Cynthia T; Vijg, Jan

    2014-06-01

    This issue of Current Opinions focuses on the dual role of DNA in life and death. In ancient Roman religion and myth, Janus is the god who looks both to the past and to the future. He guides the beginnings of life, its progression from one condition to another, and he foresees distant events. The analogy to DNA could not be stronger. Closely interacting with the environment, our basic genetics provides the origin of life, guides the quality of health with age, predicts disease, and ultimately foresees our end. A shared and deep interest with the origin of life has long prompted our desire to define aging, and, ultimately, to understand whether it can be reversed. In this special issue, the authors collectively review concepts of normative aging, DNA instability, DNA repair, the genetic contribution of age and diet to disease, and how the basic molecular transactions of DNA guide both the transitions to life as well as the transitions to death. Published by Elsevier Ltd.

  14. High folate gestational and post-weaning diets alter hypothalamic feeding pathways by DNA methylation in Wistar rat offspring.

    PubMed

    Cho, Clara E; Sánchez-Hernández, Diana; Reza-López, Sandra A; Huot, Pedro S P; Kim, Young-In; Anderson, G Harvey

    2013-07-01

    Excess vitamins, especially folate, are consumed during pregnancy but later-life effects on the offspring are unknown. High multivitamin (10-fold AIN-93G, HV) gestational diets increase characteristics of metabolic syndrome in Wistar rat offspring. We hypothesized that folate, the vitamin active in DNA methylation, accounts for these effects through epigenetic modification of food intake regulatory genes. Male offspring of dams fed 10-fold folate (HFol) diet during pregnancy and weaned to recommended vitamin (RV) or HFol diets were compared with those born to RV dams and weaned to RV diet for 29 weeks. Food intake and body weight were highest in offspring of HFol dams fed the RV diet. In contrast, the HFol pup diet in offspring of HFol dams reduced food intake (7%, p = 0.02), body weight (9%, p = 0.03) and glucose response to a glucose load (21%, p = 0.02), and improved glucose response to an insulin load (20%, p = 0.009). HFol alone in either gestational or pup diet modified gene expression of feeding-related neuropeptides. Hypomethylation of the pro-opiomelanocortin (POMC) promoter occurred with the HFol pup diet. POMC-specific methylation was positively associated with glucose response to a glucose load (r = 0.7, p = 0.03). In conclusion, the obesogenic phenotype of offspring from dams fed the HFol gestational diet can be corrected by feeding them a HFol diet. Our work is novel in showing post-weaning epigenetic plasticity of the hypothalamus and that in utero programming by vitamin gestational diets can be modified by vitamin content of the pup diet.

  15. Time-course microarrays reveal early activation of the immune transcriptome in a choline-deficient mouse model of liver injury.

    PubMed

    Mitsumoto, Koji; Watanabe, Rina; Nakao, Katsuki; Yonenaka, Hisaki; Hashimoto, Takao; Kato, Norihisa; Kumrungsee, Thanutchaporn; Yanaka, Noriyuki

    2017-09-01

    Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Rapid quantification and sex determination of forensic evidence materials.

    PubMed

    Andréasson, Hanna; Allen, Marie

    2003-11-01

    DNA quantification of forensic evidence is very valuable for an optimal use of the available biological material. Moreover, sex determination is of great importance as additional information in criminal investigations as well as in identification of missing persons, no suspect cases, and ancient DNA studies. While routine forensic DNA analysis based on short tandem repeat markers includes a marker for sex determination, analysis of samples containing scarce amounts of DNA is often based on mitochondrial DNA, and sex determination is not performed. In order to allow quantification and simultaneous sex determination on minute amounts of DNA, an assay based on real-time PCR analysis of a marker within the human amelogenin gene has been developed. The sex determination is based on melting curve analysis, while an externally standardized kinetic analysis allows quantification of the nuclear DNA copy number in the sample. This real-time DNA quantification assay has proven to be highly sensitive, enabling quantification of single DNA copies. Although certain limitations were apparent, the system is a rapid, cost-effective, and flexible assay for analysis of forensic casework samples.

  17. Maternal nutrition during pregnancy is associated with differential expression of imprinted genes and DNA methyltranfereases in muscle of beef cattle offspring.

    PubMed

    Wang, X; Lan, X; Radunz, A E; Khatib, H

    2015-01-01

    Maternal diet during pregnancy is a major determinant of the fetal developmental competence and may induce long-lasting epigenetic changes to the offspring. Imprinted genes have important roles in fetal programming, growth, and development. There are, however, limited data available on the influence of maternal diet on the expression of imprinted genes in beef cattle. Therefore, the objective of this study was to analyze the impact of maternal diet during pregnancy on the expression of 5 imprinted genes and 3 DNA methyltransferase genes in longissimus dorsi muscle from Angus calves. A total of 36 Angus-cross cows were inseminated to a single sire and on Day 135 of gestation they were randomly assigned to either low-starch (haylage) or high-starch (corn silage) diets. Diets were initially formulated to provide isocaloric and isonitrogenous intake. The H19, MEG8, IGF2R, and DNMT3a genes showed differential expression in longissimus dorsi muscle in calves between the diet groups. Given that high-starch diet is a source of energy for muscle growth and feed conversion efficiency in postnatal development, the mechanisms by which this diet affected expression of imprinted genes should be further explored.

  18. Buccal swabbing as a noninvasive method to determine bacterial, archaeal, and eukaryotic microbial community structures in the rumen.

    PubMed

    Kittelmann, Sandra; Kirk, Michelle R; Jonker, Arjan; McCulloch, Alan; Janssen, Peter H

    2015-11-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Commercial rodent diets differentially regulate autoimmune glomerulonephritis, epigenetics and microbiota in MRL/lpr mice

    PubMed Central

    Edwards, Michael R; Dai, Rujuan; Heid, Bettina; Cecere, Thomas E; Khan, Deena; Mu, Qinghui; Cowan, Catharine; Luo, Xin M; Ahmed, S Ansar

    2017-01-01

    Abstract The course and severity of lupus in spontaneous murine lupus models varies among laboratories, which may be due to variations in diet, housing and/or local environmental conditions. In this study, we investigated the influence of common rodent diets while keeping other factors constant. Female lupus-prone MRL/lpr (MRL/MpJ-Faslpr/J) mice were subjected to the same housing conditions and given one of the three diets: Teklad 7013 containing isoflavone-rich soy and alfalfa, Harlan 2018 isoflavone-rich soy-based diet or Research Diets Inc. D11112226 (RD) purified-ingredients diet containing casein and no phytoestrogens. While the total caloric intake was similar among all three treatment groups, mice fed on the 2018 diet developed higher levels of proteinuria and mice fed on either 7013 or 2018 developed higher levels of glomerular immune complex deposition. Remarkably, mice fed the RD diet had markedly decreased proteinuria with diminished C3, total IgG, IgG1 and IgG3 immune complex deposition, along with reduced CD11b+ cellular infiltration into the glomeruli. The type of diet intake also influenced cytokine production, fecal microbiota (increased Lachnospiraceae in mice fed on 2018), altered microRNAs (miRNAs; higher levels of lupus-associated miR-148a and miR-183 in mice fed on 7013 and/or 2018) and altered DNA methylation. This is the first study to comprehensively compare the cellular, molecular and epigenetic effects of these commercial diets in murine lupus. PMID:28637300

  20. Review article: dietary fibre-microbiota interactions.

    PubMed

    Simpson, H L; Campbell, B J

    2015-07-01

    Application of modern rapid DNA sequencing technology has transformed our understanding of the gut microbiota. Diet, in particular plant-based fibre, appears critical in influencing the composition and metabolic activity of the microbiome, determining levels of short-chain fatty acids (SCFAs) important for intestinal health. To assess current epidemiological, experimental and clinical evidence of how long-term and short-term alterations in dietary fibre intake impact on the microbiome and metabolome. A Medline search including items 'intestinal microbiota', 'nutrition', 'diet', 'dietary fibre', 'SCFAs' and 'prebiotic effect' was performed. Studies found evidence of fibre-influenced differences in the microbiome and metabolome as a consequence of habitual diet, and of long-term or short-term intervention (in both animals and humans). Agrarian diets high in fruit/legume fibre are associated with greater microbial diversity and a predominance of Prevotella over Bacteroides. 'Western'-style diets, high in fat/sugar, low in fibre, decrease beneficial Firmicutes that metabolise dietary plant-derived polysaccharides to SCFAs and increase mucosa-associated Proteobacteria (including enteric pathogens). Short-term diets can also have major effects, particularly those exclusively animal-based, and those high-protein, low-fermentable carbohydrate/fibre 'weight-loss' diets, increasing the abundance of Bacteroides and lowering Firmicutes, with long-term adherence to such diets likely increasing risk of colonic disease. Interventions to prevent intestinal inflammation may be achieved with fermentable prebiotic fibres that enhance beneficial Bifidobacteria or with soluble fibres that block bacterial-epithelial adherence (contrabiotics). These mechanisms may explain many of the differences in microbiota associated with long-term ingestion of a diet rich in fruit and vegetable fibre. © 2015 The Authors. Alimentary Pharmacology & Therapeutics published by John Wiley & Sons Ltd.

  1. Temperature and diet effects on omnivorous fish performance: Implications for the latitudinal diversity gradient in herbivorous fishes

    USGS Publications Warehouse

    Behrens, M.D.; Lafferty, K.D.

    2007-01-01

    Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.

  2. The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification

    USGS Publications Warehouse

    Murphy, M.A.; Kendall, K.C.; Robinson, A.; Waits, L.P.

    2007-01-01

    To establish longevity of faecal DNA samples under varying summer field conditions, we collected 53 faeces from captive brown bears (Ursus arctos) on a restricted vegetation diet. Each faeces was divided, and one half was placed on a warm, dry field site while the other half was placed on a cool, wet field site on Moscow Mountain, Idaho, USA. Temperature, relative humidity, and dew point data were collected on each site, and faeces were sampled for DNA extraction at <1, 3, 6, 14, 30, 45, and 60 days. Faecal DNA sample viability was assessed by attempting PCR amplification of a mitochondrial DNA (mtDNA) locus (???150 bp) and a nuclear DNA (nDNA) microsatellite locus (180-200 bp). Time in the field, temperature, and dew point impacted mtDNA and nDNA amplification success with the greatest drop in success rates occurring between 1 and 3 days. In addition, genotyping errors significantly increased over time at both field sites. Based on these results, we recommend collecting samples at frequent transect intervals and focusing sampling efforts during drier portions of the year when possible. ?? 2007 Springer Science+Business Media, Inc.

  3. Dependence of RNA:DNA ratios and Fulton’s K condition indices on environmental characteristics of plaice and dab nursery grounds

    NASA Astrophysics Data System (ADS)

    De Raedemaecker, F.; Brophy, D.; O'Connor, I.; O'Neill, B.

    2012-02-01

    This field study showed a lack of a correlation between a morphometric (Fulton's K) and biochemical (RNA:DNA ratio) condition index in juvenile plaice ( Pleuronectes platessa) and dab ( Limanda limanda) studied to assess habitat quality in four sandy beach nursery grounds in Galway Bay, Ireland. Based on monthly surveys from June to September in 2008 and 2009, fish growth, indicated by RNA:DNA ratios and Fulton's K, displayed considerable spatio-temporal variability. Site-related patterns in Fulton's K for plaice and dab were consistent between years whereas RNA:DNA ratios displayed annual and interspecific variability among nursery habitats. This indicates a higher sensitivity of RNA:DNA ratios to short-term environmental fluctuations which is not apparent in Fulton's K measurements of juvenile flatfish. Generalized Additive Modelling (GAM) revealed non-linear relationships between the condition indices and (biotic and abiotic) habitat characteristics as well as diet features, derived from gut content analyses. Density of predators, sediment grain size and salinity were the most important predictors of both condition indices. Temperature also affected condition indices in dab whereas plaice condition indices varied with depth. Diet features did not contribute to the explained variability in the models predicting RNA:DNA ratios whereas certain prey groups significantly improved the explained variability in the models predicting Fulton's K of plaice and dab. The value of both indices for assessing fish condition and habitat quality in field studies is discussed. These findings aid understanding of the biological and physical mechanisms promoting fast growth and high survival which will help to identify high quality nursery areas for juvenile plaice and dab.

  4. Emerging Concepts on the Role of Epigenetics in the Relationships between Nutrition and Health.

    PubMed

    Stover, P J; James, W P T; Krook, A; Garza, C

    2018-04-29

    Understanding the physiological and metabolic underpinnings that confer individual differences in responses to diet and diet-related chronic disease is essential to advance the field of nutrition. This includes elucidating the differences in gene expression that are mediated through programming of the genome through epigenetic chromatin modifications. Epigenetic landscapes are influenced by age, genetics, toxins and other environmental factors, including dietary exposures and nutritional status. Epigenetic modifications influence transcription and genome stability, are established during development with life-long consequences. They can be inherited from one-generation to the next. The covalent modifications of chromatin, which include methylation and acetylation, on DNA nucleotide bases, histone proteins and RNA are derived from intermediates of one-carbon metabolism and central metabolism. They influence key physiological processes throughout life, and together with inherited DNA primary sequence, contribute to responsiveness to environmental stresses, diet, and risk for age-related chronic disease. Revealing diet-epigenetic relationships has the potential to transform nutrition science by increasing our fundamental understanding of: 1) the role of nutrients in biological systems, 2) the resilience of living organisms in responding to environmental perturbations, and 3) the development of dietary patterns that program physiology for life-long health. Epigenetics may also enable the classification of individuals with chronic disease for specific dietary management and/or for efficacious diet-pharmaceutical combination therapies. These new emerging concepts at the interface of nutrition and epigenetics were discussed, and future research needs identified by leading experts at the 26th Marabou Symposium entitled "Nutrition, Epigenetics, Genetics: Impact on Health and Disease". This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. The early infant gut microbiome varies in association with a maternal high-fat diet.

    PubMed

    Chu, Derrick M; Antony, Kathleen M; Ma, Jun; Prince, Amanda L; Showalter, Lori; Moller, Michelle; Aagaard, Kjersti M

    2016-08-09

    Emerging evidence suggests that the in utero environment is not sterile as once presumed. Work in the mouse demonstrated transmission of commensal bacteria from mother to fetus during gestation, though it is unclear what modulates this process. We have previously shown in the nonhuman primate that, independent of obesity, a maternal high-fat diet during gestation and lactation persistently shapes the juvenile gut microbiome. We therefore sought to interrogate in a population-based human longitudinal cohort whether a maternal high-fat diet similarly alters the neonatal and infant gut microbiome in early life. A representative cohort was prospectively enrolled either in the early third trimester or intrapartum (n = 163), with a subset consented to longitudinal sampling through the postpartum interval (n = 81). Multiple body site samples, including stool and meconium, were collected from neonates at delivery and by 6 weeks of age. A rapid dietary questionnaire was administered to estimate intake of fat, added sugars, and fiber over the past month (National Health and Examination Survey). DNA was extracted from each infant meconium/stool sample (MoBio) and subjected to 16S rRNA gene sequencing and analysis. On average, the maternal dietary intake of fat ranged from 14.0 to 55.2 %, with an average intake of 33.1 % (σ = 6.1 %). Mothers whose diets significantly differed from the mean (±1 standard deviation) were separated into two distinct groups, a control group (n = 13, μ = 24.4 %) and a high-fat group (n = 13, μ = 43.1 %). Principal coordinate analysis revealed that the microbiome of the neonatal stool at birth (meconium) clustered differently by virtue of maternal gestational diet (PERMANOVA p = 0.001). LEfSe feature selection identified several taxa that discriminated the groups, with a notable relative depletion of Bacteroides in the neonates exposed to a maternal high-fat gestational diet (Student's t-test, p < 0.05) that persisted to 6 weeks of age. Similar to the primate, independent of maternal body mass index, a maternal high-fat diet is associated with distinct changes in the neonatal gut microbiome at birth which persist through 4-6 weeks of age. Our findings underscore the importance of counseling pregnant mothers on macronutrient consumption during pregnancy and lactation.

  6. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles.

    PubMed

    Dominguez-Salas, Paula; Moore, Sophie E; Baker, Maria S; Bergen, Andrew W; Cox, Sharon E; Dyer, Roger A; Fulford, Anthony J; Guan, Yongtao; Laritsky, Eleonora; Silver, Matt J; Swan, Gary E; Zeisel, Steven H; Innis, Sheila M; Waterland, Robert A; Prentice, Andrew M; Hennig, Branwen J

    2014-04-29

    In experimental animals, maternal diet during the periconceptional period influences the establishment of DNA methylation at metastable epialleles in the offspring, with permanent phenotypic consequences. Pronounced naturally occurring seasonal differences in the diet of rural Gambian women allowed us to test this in humans. We show that significant seasonal variations in methyl-donor nutrient intake of mothers around the time of conception influence 13 relevant plasma biomarkers. The level of several of these maternal biomarkers predicts increased/decreased methylation at metastable epialleles in DNA extracted from lymphocytes and hair follicles in infants postnatally. Our results demonstrate that maternal nutritional status during early pregnancy causes persistent and systemic epigenetic changes at human metastable epialleles.

  7. Dangers resulting from DNA profiling of biological materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) with regard to forensic genetic analysis.

    PubMed

    Jacewicz, R; Lewandowski, K; Rupa-Matysek, J; Jędrzejczyk, M; Berent, J

    The study documents the risk that comes with DNA analysis of materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in forensic genetics. DNA chimerism was studied in 30 patients after allo-HSCT, based on techniques applied in contemporary forensic genetics, i.e. real-time PCR and multiplex PCR-STR with the use of autosomal DNA as well as Y-DNA markers. The results revealed that the DNA profile of the recipient's blood was identical with the donor's in the majority of cases. Therefore, blood analysis can lead to false conclusions in personal identification as well as kinship analysis. An investigation of buccal swabs revealed a mixture of DNA in the majority of recipients. Consequently, personal identification on the basis of stain analysis of the same origin may be impossible. The safest (but not ideal) material turned out to be the hair root. Its analysis based on autosomal DNA revealed 100% of the recipient's profile. However, an analysis based on Y-chromosome markers performed in female allo-HSCT recipients with male donors demonstrated the presence of donor DNA in hair cells - similarly to the blood and buccal swabs. In the light of potential risks arising from DNA profiling of biological materials derived from persons after allotransplantation in judicial aspects, certain procedures were proposed to eliminate such dangers. The basic procedures include abandoning the approach based exclusively on blood collection, both for kinship analysis and personal identification; asking persons who are to be tested about their history of allo-HSCT before sample collection and profile entry in the DNA database, and verification of DNA profiling based on hair follicles in uncertain cases.

  8. Markers of oxidative DNA damage in human interventions with fruit and berries.

    PubMed

    Freese, Riitta

    2006-01-01

    Diets rich in fruit and vegetables are associated with a decreased risk of several cancers via numerous possible mechanisms. For example, phytochemicals may decrease oxidative DNA damage and enhance DNA repair. Markers of oxidative DNA damage in human dietary intervention trials used most frequently include oxidized nucleosides such as 7-hydro-8-oxo-2'-deoxyguanosine, which can be analyzed from isolated DNA or urine. Single-cell gel electrophoresis has been widely used to measure baseline or H2O2-induced DNA strand breaks or sites of modified bases sensitive to repair enzymes recognizing oxidized purines or pyrimidines. Recently, markers of DNA repair also have been used. Few controlled human dietary interventions have investigated the specific effects of fruit or berries. There are indications that kiwifruit can decrease H2O2 sensitivity of lymphocyte DNA ex vivo and enhance DNA repair. Carefully controlled studies with flavonoid-rich fruit or berry juices found only few significant differences; less rigorously controlled studies gave more optimistic results. Data on the effects of fruit and berries on DNA damage in humans are scarce and inconclusive; adequately controlled studies with validated markers are needed. Because levels of DNA damage are usually low in young healthy volunteers, groups with an enhanced risk of DNA damage should be studied.

  9. Novel LC-ESI/MS/MSn Method for the Characterization and Quantification of 2′-Deoxyguanosine Adducts of the Dietary Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by 2-D Linear Quadrupole Ion Trap Mass Spectrometry

    PubMed Central

    Goodenough, Angela K.; Schut, Herman A. J.; Turesky, Robert J.

    2008-01-01

    An accurate and sensitive liquid chromatography-electrospray ionization/multi-stage mass spectrometry (LC-ESI/MS/MSn) technique has been developed for the characterization and quantification of 2′-deoxyguanosine (dG) adducts of the dietary mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). PhIP is an animal and potential human carcinogen that occurs in grilled meats. Following enzymatic digestion and adduct enrichment by solid-phase extraction (SPE), PhIP—DNA adducts were analyzed by MS/MS and MSn scan modes on a 2-D linear quadrupole ion trap mass spectrometer (QIT/MS). The major DNA adduct, N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP), was detected in calf thymus (CT) DNA modified in vitro with a bioactivated form of PhIP and in the colon and liver of rats given PhIP as part of the diet. The lower limit of detection (LOD) was 1 adduct per 108 DNA bases, and the limit of quantification (LOQ) was 3 adducts per 108 DNA bases in both MS/MS and MS3 scan modes, using 27 μg of DNA for analysis. Measurements were based on isotope dilution with the internal standard, N-(deoxyguanosin-8-yl)-2-amino-1-(trideutero)methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-[2H3C]-PhIP). The selected reaction monitoring (SRM) scan mode in MS/MS was employed to monitor the loss of deoxyribose (dR) from the protonated molecules of the adducts ([M + H - 116]+). The consecutive reaction monitoring (CRM) scan modes in MS3 and MS4 were used to measure and further characterize product ions of the aglycone ion (BH2+) (Guanyl-PhIP). The MS3 scan mode was effective in eliminating isobaric interferences observed in the MS/MS scan mode and resulted in an improved signal-to-noise (S/N) ratio. Moreover, the product ion spectra obtained by the MSn scan modes provided rich structural information about the adduct and were used to corroborate the identity of dG-C8-PhIP. In addition, an isomeric dG-PhIP adduct was detected in vivo. This LCESI/MS/MSn method is the first reported application on the use of the MS3 scan mode for the analysis of DNA adducts in vivo. PMID:17305409

  10. Investigating the effects of dietary folic acid on sperm count, DNA damage and mutation in Balb/c mice.

    PubMed

    Swayne, Breanne G; Kawata, Alice; Behan, Nathalie A; Williams, Andrew; Wade, Mike G; Macfarlane, Amanda J; Yauk, Carole L

    2012-09-01

    To date, fewer than 50 mutagens have been studied for their ability to cause heritable mutations. The majority of those studied are classical mutagens like radiation and anti-cancer drugs. Very little is known about the dietary variables influencing germline mutation rates. Folate is essential for DNA synthesis and methylation and can impact chromatin structure. We therefore determined the effects of folic acid-deficient (0mg/kg), control (2mg/kg) and supplemented (6mg/kg) diets in early development and during lactation or post-weaning on mutation rates and chromatin quality in sperm of adult male Balb/c mice. The sperm chromatin structure assay and mutation frequencies at expanded simple tandem repeats (ESTRs) were used to evaluate germline DNA integrity. Treatment of a subset of mice fed the control diet with the mutagen ethylnitrosourea (ENU) at 8 weeks of age was included as a positive control. ENU treated mice exhibited decreased cauda sperm counts, increased DNA fragmentation and increased ESTR mutation frequencies relative to non-ENU treated mice fed the control diet. Male mice weaned to the folic acid deficient diet had decreased cauda sperm numbers, increased DNA fragmentation index, and increased ESTR mutation frequency. Folic acid deficiency in early development did not lead to changes in sperm counts or chromatin integrity in adult mice. Folic acid supplementation in early development or post-weaning did not affect germ cell measures. Therefore, adequate folic acid intake in adulthood is important for preventing chromatin damage and mutation in the male germline. Folic acid supplementation at the level achieved in this study does not improve nor is it detrimental to male germline chromatin integrity. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. Does the impact of a plant-based diet during pregnancy on birth weight differ by ethnicity? A dietary pattern analysis from a prospective Canadian birth cohort alliance

    PubMed Central

    de Souza, Russell J; Shaikh, Mateen; Desai, Dipika; Lefebvre, Diana L; Gupta, Milan; Wilson, Julie; Wahi, Gita; Subbarao, Padmaja; Becker, Allan B; Mandhane, Piush; Turvey, Stuart E; Beyene, Joseph; Atkinson, Stephanie; Morrison, Katherine M; McDonald, Sarah; Teo, Koon K; Sears, Malcolm R; Anand, Sonia S

    2017-01-01

    Objective Birth weight is an indicator of newborn health and a strong predictor of health outcomes in later life. Significant variation in diet during pregnancy between ethnic groups in high-income countries provides an ideal opportunity to investigate the influence of maternal diet on birth weight. Setting Four multiethnic birth cohorts based in Canada (the NutriGen Alliance). Participants 3997 full-term mother–infant pairs of diverse ethnic groups who had principal component analysis-derived diet pattern scores—plant-based, Western and health-conscious—and birth weight data. Results No associations were identified between the Western and health-conscious diet patterns and birth weight; however, the plant-based dietary pattern was inversely associated with birth weight (β=−67.6 g per 1-unit increase; P<0.001), and an interaction with non-white ethnicity and birth weight was observed. Ethnically stratified analyses demonstrated that among white Europeans, maternal consumption of a plant-based diet associated with lower birth weight (β=−65.9 g per 1-unit increase; P<0.001), increased risk of small-for-gestational age (SGA; OR=1.46; 95% CI 1.08 to 1.54;P=0.005) and reduced risk of large-for-gestational age (LGA; OR=0.71; 95% CI 0.53 to 0.95;P=0.02). Among South Asians, maternal consumption of a plant-based diet associated with a higher birth weight (β=+40.5 g per 1-unit increase; P=0.01), partially explained by cooked vegetable consumption. Conclusions Maternal consumption of a plant-based diet during pregnancy is associated with birth weight. Among white Europeans, a plant-based diet is associated with lower birth weight, reduced odds of an infant born LGA and increased odds of SGA, whereas among South Asians living in Canada, a plant-based diet is associated with increased birth weight. PMID:29138203

  12. White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats.

    PubMed

    Frigolet, Maria E; Torres, Nimbe; Uribe-Figueroa, Laura; Rangel, Claudia; Jimenez-Sanchez, Gerardo; Tovar, Armando R

    2011-02-01

    Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish

    PubMed Central

    Sousa, Lara L.; Xavier, Raquel; Costa, Vânia; Humphries, Nicolas E.; Trueman, Clive; Rosa, Rui; Sims, David W.; Queiroz, Nuno

    2016-01-01

    The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions. PMID:27373803

  14. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish.

    PubMed

    Sousa, Lara L; Xavier, Raquel; Costa, Vânia; Humphries, Nicolas E; Trueman, Clive; Rosa, Rui; Sims, David W; Queiroz, Nuno

    2016-07-04

    The ocean sunfish (Mola mola) is the world's heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries' bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.

  15. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish

    NASA Astrophysics Data System (ADS)

    Sousa, Lara L.; Xavier, Raquel; Costa, Vânia; Humphries, Nicolas E.; Trueman, Clive; Rosa, Rui; Sims, David W.; Queiroz, Nuno

    2016-07-01

    The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.

  16. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures

    PubMed Central

    Michl, Stéphanie Céline; Ratten, Jenni-Marie; Beyer, Matt; Hasler, Mario; LaRoche, Julie; Schulz, Carsten

    2017-01-01

    Plant-derived protein sources are the most relevant substitutes for fishmeal in aquafeeds. Nevertheless, the effects of plant based diets on the intestinal microbiome especially of juvenile Rainbow trout (Oncorhynchus mykiss) are yet to be fully investigated. The present study demonstrates, based on 16S rDNA bacterial community profiling, that the intestinal microbiome of juvenile Rainbow trout is strongly affected by dietary plant protein inclusion levels. After first feeding of juveniles with either 0%, 50% or 97% of total dietary protein content derived from plants, statistically significant differences of the bacterial gut community for the three diet-types were detected, both at phylum and order level. The microbiome of juvenile fish consisted mainly of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria, and thus fits the salmonid core microbiome suggested in previous studies. Dietary plant proteins significantly enhanced the relative abundance of the orders Lactobacillales, Bacillales and Pseudomonadales. Animal proteins in contrast significantly promoted Bacteroidales, Clostridiales, Vibrionales, Fusobacteriales and Alteromonadales. The overall alpha diversity significantly decreased with increasing plant protein inclusion levels and with age of experimental animals. In order to investigate permanent effects of the first feeding diet-type on the early development of the microbiome, a diet change was included in the study after 54 days, but no such effects could be detected. Instead, the microbiome of juvenile trout fry was highly dependent on the actual diet fed at the time of sampling. PMID:28498878

  17. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures.

    PubMed

    Michl, Stéphanie Céline; Ratten, Jenni-Marie; Beyer, Matt; Hasler, Mario; LaRoche, Julie; Schulz, Carsten

    2017-01-01

    Plant-derived protein sources are the most relevant substitutes for fishmeal in aquafeeds. Nevertheless, the effects of plant based diets on the intestinal microbiome especially of juvenile Rainbow trout (Oncorhynchus mykiss) are yet to be fully investigated. The present study demonstrates, based on 16S rDNA bacterial community profiling, that the intestinal microbiome of juvenile Rainbow trout is strongly affected by dietary plant protein inclusion levels. After first feeding of juveniles with either 0%, 50% or 97% of total dietary protein content derived from plants, statistically significant differences of the bacterial gut community for the three diet-types were detected, both at phylum and order level. The microbiome of juvenile fish consisted mainly of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria, and thus fits the salmonid core microbiome suggested in previous studies. Dietary plant proteins significantly enhanced the relative abundance of the orders Lactobacillales, Bacillales and Pseudomonadales. Animal proteins in contrast significantly promoted Bacteroidales, Clostridiales, Vibrionales, Fusobacteriales and Alteromonadales. The overall alpha diversity significantly decreased with increasing plant protein inclusion levels and with age of experimental animals. In order to investigate permanent effects of the first feeding diet-type on the early development of the microbiome, a diet change was included in the study after 54 days, but no such effects could be detected. Instead, the microbiome of juvenile trout fry was highly dependent on the actual diet fed at the time of sampling.

  18. The hepatic Igf2/H19 locus is not altered in 1-day old pups born to obese-prone Sprague-Dawley rats fed a low protein diet containing adequate folic acid

    USDA-ARS?s Scientific Manuscript database

    Gong et al. (Epigenetics, 2010) found, using diets low in folic acid, that compared to an 18% protein diet a 9% protein diet fed to pregnant Sprague-Dawley rats resulted in increased Igf2 and H19 gene expression in the liver of day 0 male offspring. In addition DNA methylation in the Imprinting Cont...

  19. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    PubMed

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  20. DNA adductomics to study the genotoxic effects of red meat consumption with and without added animal fat in rats.

    PubMed

    Hemeryck, Lieselot Y; Van Hecke, Thomas; Vossen, Els; De Smet, Stefaan; Vanhaecke, Lynn

    2017-09-01

    Digestion of red and processed meat has been linked to the formation of genotoxic N-nitroso compounds (NOCs) and lipid peroxidation products (LPOs) in the gut. In this study, rats were fed a meat based diet to compare the possible genotoxic effects of red vs. white meat, and the interfering role of dietary fat. To this purpose, liver, duodenum and colon DNA adductomes were analyzed with UHPLC-HRMS. The results demonstrate that the consumed meat type alters the DNA adductome; the levels of 22 different DNA adduct types significantly increased upon the consumption of beef (compared to chicken) and/or lard supplemented beef or chicken. Furthermore, the chemical constitution of the retrieved DNA adducts hint at a direct link with an increase in NOCs and LPOs upon red (and processed) meat digestion, supporting the current hypotheses on the causal link between red and processed meat consumption and the development of colorectal cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. An image based vibration sensor for soft tissue modal analysis in a Digital Image Elasto Tomography (DIET) system.

    PubMed

    Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E

    2010-01-01

    Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.

  2. Analysis of DNA Sequences by an Optical ime-Integrating Correlator: Proposal

    DTIC Science & Technology

    1991-11-01

    CURRENT TECHNOLOGY 2 3.0 TIME-INTEGRATING CORRELATOR 2 4.0 REPRESENTATIONS OF THE DNA BASES 8 5.0 DNA ANALYSIS STRATEGY 8 6.0 STRATEGY FOR COARSE...1)-correlation peak formed by the AxB term and (2)-pedestal formed by the A + B terms. 7 Figure 4: Short representations of the DNA bases where each...linear scale. 15 x LIST OF TABLES PAGE Table 1: Short representations of the DNA bases where each base is represented by 7-bits long pseudorandom

  3. Detection and monitoring of anaerobic rumen fungi using an ARISA method.

    PubMed

    Denman, S E; Nicholson, M J; Brookman, J L; Theodorou, M K; McSweeney, C S

    2008-12-01

    To develop an automated ribosomal intergenic spacer region analysis (ARISA) method for the detection of anaerobic rumen fungi and also to demonstrate utility of the technique to monitor colonization and persistence of fungi, and diet-induced changes in community structure. The method could discriminate between three genera of anaerobic rumen fungal isolates, representing Orpinomyces, Piromyces and Neocallimastix species. Changes in anaerobic fungal composition were observed between animals fed a high-fibre diet compared with a grain-based diet. ARISA analysis of rumen samples from animals on grain showed a decrease in fungal diversity with a dominance of Orpinomyces and Piromyces spp. Clustering analysis of ARISA profile patterns grouped animals based on diet. A single strain of Orpinomyces was dosed into a cow and was detectable within the rumen fungal population for several weeks afterwards. The ARISA technique was capable of discriminating between pure cultures at the genus level. Diet composition has a significant influence on the diversity of anaerobic fungi in the rumen and the method can be used to monitor introduced strains. Through the use of ARISA analysis, a better understanding of the effect of diets on rumen anaerobic fungi populations is provided.

  4. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il; Guillemin, Claire; Neeman-azulay, Meytal

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSDmore » or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper supplementation. • Global DNA hypomethylation was resolved both by Tempol and by copper supplementation. • Placental oxidative stress parameters coincides previous findings in the fetal liver.« less

  5. Effects of immobilisation and caloric restriction on antioxidant parameters and T-cell apoptosis in healthy young men

    NASA Astrophysics Data System (ADS)

    Ellinger, S.; Arendt, B. M.; Boese, A.; Juschus, M.; Schaefer, S.; Stoffel-Wagner, B.; Goerlich, R.

    Background: Astronauts are exposed to oxidative stress due to radiation and microgravity, which might impair immune functions. Effects of hypocaloric nutrition as often observed in astronauts on oxidative stress and immune functions are not clear. We investigated, if microgravity, simulated by 6 Head-down tilt (HDT) and caloric restriction (-25%, fat reduced) with adequate supply of micronutrients affect DNA-damage in peripheral leukocytes, antioxidant parameters in plasma, and T-cell apoptosis. Material & Methods: 10 healthy male non-smokers were subjected to 4 different interventions (normocaloric diet or caloric restriction (CR) in upright position (UP) or HDT) for 14 days each (cross-over). DNA-damage in peripheral leukocytes (Comet Assay), trolox equivalent antioxidant capacity (TEAC) and uric acid in plasma were measured before, after 5, 10, and 13 days of intervention, and after 2 days recovery. T-cell apoptosis (Annexin V binding test) was assessed before and after intervention. Results: Preliminary results show that only endogenous, but not ex vivo H2O2-induced DNA strand breaks were reduced by CR compared to normocaloric diet. In upright position, endogenous DNA strand breaks decreased continuously during CR, reaching significance after recovery. During HDT, caloric restriction seems to counteract a temporary increase in DNA strand breaks observed in subjects receiving normocaloric diet. TEAC was reduced during HDT compared to UP in subjects under caloric restriction. An increase in plasma uric acid related to intervention occurred only after 5 days HDT in CR vs. normocaloric diet. T-cell apoptosis was not affected by any kind of intervention. Conclusion: Neither HDT nor CR with sufficient supply of micronutrients seem to induce oxidative stress or T-cell apoptosis in healthy young men. In contrast, CR might prevent endogenous DNA-damage in peripheral leukocytes. As DNA-damage is a risk factor for carcinogenesis, protective effects of energy reduction are worth being investigated in future studies. Acknowledgement: This work was supported by the European Space Agency (AO-LS-2000-BR-SHORT-007) and the German Federal Ministry of Education and Research (BMBF) (55 WB 0155).

  6. Metabolomics Analysis of Effects of Commercial Soy-based Protein Products in Red Drum (Sciaenops ocellatus).

    PubMed

    Casu, Fabio; Watson, Aaron M; Yost, Justin; Leffler, John W; Gaylord, Thomas Gibson; Barrows, Frederic T; Sandifer, Paul A; Denson, Michael R; Bearden, Daniel W

    2017-07-07

    We investigated the metabolic effects of four different commercial soy-based protein products on red drum fish (Sciaenops ocellatus) using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics along with unsupervised principal component analysis (PCA) to evaluate metabolic profiles in liver, muscle, and plasma tissues. Specifically, during a 12 week feeding trial, juvenile red drum maintained in an indoor recirculating aquaculture system were fed four different commercially available soy formulations, containing the same amount of crude protein, and two reference diets as performance controls: a 60% soybean meal diet that had been used in a previous trial in our lab and a natural diet. Red drum liver, muscle, and plasma tissues were sampled at multiple time points to provide a more accurate snapshot of specific metabolic states during the grow-out. PCA score plots derived from NMR spectroscopy data sets showed significant differences between fish fed the natural diet and the soy-based diets, in both liver and muscle tissues. While red drum tolerated the inclusion of soy with good feed conversion ratios, a comparison to fish fed the natural diet revealed that the soy-fed fish in this study displayed a distinct metabolic signature characterized by increased protein and lipid catabolism, suggesting an energetic imbalance. Furthermore, among the soy-based formulations, one diet showed a more pronounced catabolic signature.

  7. Dietary folate deficiency in pseudopregnant mice has no effect on homeobox A10 promoter methylation or expression.

    PubMed

    Long, Chunlan; He, Junlin; Liu, Xueqing; Chen, Xuemei; Gao, Rufei; Wang, Yingxiong; Ding, Yubin

    2012-12-01

    During the reproductive cycle, a number of genes controlling endometrial changes are regulated by DNA methylation, a common epigenetic modification. Because dietary folate affects DNA methylation, we determined whether a folate-deficient diet (FDD) alters DNA methylation in endometria of pseudopregnant mice, focusing on the homeobox A10 (Hoxa10) promoter. Mice were given an FDD or control diet for 40 to 45 days and examined on day 5 of pseudopregnancy. Compared to control mice, FDD mice had lower folate levels in liver and serum (P = .004). However, the FDD did not significantly affect DNA methylation within the cytosine-guanine dinucleotide (CpG)-rich Hoxa10 promoter, even when specific CpG sites were examined (P > .05). In endometrial tissue sections, the localization of anti-Hoxa10 staining was unchanged in FDD mice. Therefore, folate deficiency did not significantly affect promoter methylation or expression of Hoxa10.

  8. Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles.

    PubMed

    Alfaro-Núñez, Alonzo; Frost Bertelsen, Mads; Bojesen, Anders Miki; Rasmussen, Isabel; Zepeda-Mendoza, Lisandra; Tange Olsen, Morten; Gilbert, Marcus Thomas Pius

    2014-10-25

    Fibropapillomatosis (FP) is a neoplastic disease characterized by cutaneous tumours that has been documented to infect all sea turtle species. Chelonid fibropapilloma-associated herpesvirus (CFPHV) is believed to be the aetiological agent of FP, based principally on consistent PCR-based detection of herpesvirus DNA sequences from FP tumours. We used a recently described PCR-based assay that targets 3 conserved CFPHV genes, to survey 208 green turtles (Chelonia mydas). This included both FP tumour exhibiting and clinically healthy individuals. An additional 129 globally distributed clinically healthy individual sea turtles; representing four other species were also screened. CFPHV DNA sequences were obtained from 37/37 (100%) FP exhibiting green turtles, and 45/300 (15%) clinically healthy animals spanning all five species. Although the frequency of infected individuals per turtle population varied considerably, most global populations contained at least one CFPHV positive individual, with the exception of various turtle species from the Arabian Gulf, Northern Indian Ocean and Puerto Rico. Haplotype analysis of the different gene markers clustered the CFPHV DNA sequences for two of the markers (UL18 and UL22) in turtles from Turks and Caicos separate to all others, regardless of host species or geographic origin. Presence of CFPHV DNA within globally distributed samples for all five species of sea turtle was confirmed. While 100% of the FP exhibiting green turtles yielded CFPHV sequences, surprisingly, so did 15% of the clinically healthy turtles. We hypothesize that turtle populations with zero (0%) CFPHV frequency may be attributed to possible environmental differences, diet and/or genetic resistance in these individuals. Our results provide first data on the prevalence of CFPHV among seemingly healthy turtles; a factor that may not be directly correlated to the disease incidence, but may suggest of a long-term co-evolutionary latent infection interaction between CFPHV and its turtle-host across species. Finally, computational analysis of amino acid variants within the Turks and Caicos samples suggest potential functional importance in a substitution for marker UL18 that encodes the major capsid protein gene, which potentially could explain differences in pathogenicity. Nevertheless, such a theory remains to be validated by further research.

  9. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi.

    PubMed

    Auchtung, Thomas A; Fofanova, Tatiana Y; Stewart, Christopher J; Nash, Andrea K; Wong, Matthew C; Gesell, Jonathan R; Auchtung, Jennifer M; Ajami, Nadim J; Petrosino, Joseph F

    2018-01-01

    A wide diversity of fungi have been detected in the human gastrointestinal (GI) tract with the potential to provide or influence important functions. However, many of the fungi most commonly detected in stool samples are also present in food or the oral cavity. Therefore, to recognize which gut fungi are likely to have a sustained influence on human health, there is a need to separate transient members of the GI tract from true colonizers. To identify colonizing fungi, the eukaryotic rRNA operon's second internal transcribed spacer (ITS2) was sequenced from the stool, saliva, and food of healthy adults following consumption of different controlled diets. Unlike most bacterial 16S rRNA genes, the only fungal ITS2 operational taxonomic units (OTUs) detected in stool DNA across multiple diets were also present in saliva and/or food. Additional analyses, including culture-based approaches and sequencing of the 18S rRNA gene, ITS2 cDNA, and DNA extracted using alternative methods, failed to detect additional fungi. Two abundant fungi, Saccharomyces cerevisiae and Candida albicans, were examined further in healthy volunteers. Saccharomyces became undetectable in stool when a S. cerevisiae-free diet was consumed, and the levels of C. albicans in stool were dramatically reduced by more frequent cleaning of teeth. Extremely low fungal abundance, the inability of fungi to grow under conditions mimicking the distal gut, and evidence from analysis of other public datasets further support the hypothesis that fungi do not routinely colonize the GI tracts of healthy adults. IMPORTANCE We sought to identify the fungi that colonize healthy GI tracts and that have a sustained influence on the diverse functions of the gut microbiome. Instead, we found that all fungi in the stool of healthy volunteers could be explained by their presence in oral and dietary sources and that our results, together with those from other analyses, support the model that there is little or no gastrointestinal colonization by fungi. This may be due to Westernization, primate evolution, fungal ecology, and/or the strong defenses of a healthy immune system. Importantly, fungal colonization of the GI tract may often be indicative of disease. As fungi can cause serious infections in immunocompromised individuals and are found at increased abundance in multiple disorders of the GI tract, understanding normal fungal colonization is essential for proper treatment and prevention of fungal pathogenesis.

  10. Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study.

    PubMed

    Hibert, Fabrice; Taberlet, Pierre; Chave, Jérôme; Scotti-Saintagne, Caroline; Sabatier, Daniel; Richard-Hansen, Cécile

    2013-01-01

    Characterizing the trophic relationships between large herbivores and the outstanding plant diversity in rainforest is a major challenge because of their elusiveness. This is crucial to understand the role of these herbivores in the functioning of the rainforest ecosystems. We tested a non-invasive approach based on the high-throughput sequencing of environmental samples using small plant plastid sequences (the trnL P6 loop) and ribosomal ITS1 primers, referred to as DNA metabarcoding, to investigate the diet of the largest neotropical herbivore, the lowland tapir. Sequencing was performed on plant DNA extracted from tapir faeces collected at the Nouragues station, a protected area of French Guiana. In spite of a limited sampling, our approach reliably provided information about the lowland tapir's diet at this site. Indeed, 95.1% and 74.4% of the plant families and genera identified thanks to the trnL P6 loop, respectively, matched with taxa already known to be consumed by tapirs. With this approach we were able to show that two families and eight new genera are also consumed by the lowland tapir. The taxonomic resolution of this method is limited to the plant family and genera. Complementary barcodes, such as a small portion of ITS1, can be used to efficiently narrow identifications down to the species in some problematic families. We will discuss the remaining limitations of this approach and how useful it is at this stage to unravel the diet of elusive rainforest herbivores and better understand their role as engineers of the ecosystem.

  11. Unveiling the Diet of Elusive Rainforest Herbivores in Next Generation Sequencing Era? The Tapir as a Case Study

    PubMed Central

    Hibert, Fabrice; Taberlet, Pierre; Chave, Jérôme; Scotti-Saintagne, Caroline; Sabatier, Daniel; Richard-Hansen, Cécile

    2013-01-01

    Characterizing the trophic relationships between large herbivores and the outstanding plant diversity in rainforest is a major challenge because of their elusiveness. This is crucial to understand the role of these herbivores in the functioning of the rainforest ecosystems. We tested a non-invasive approach based on the high-throughput sequencing of environmental samples using small plant plastid sequences (the trnL P6 loop) and ribosomal ITS1 primers, referred to as DNA metabarcoding, to investigate the diet of the largest neotropical herbivore, the lowland tapir. Sequencing was performed on plant DNA extracted from tapir faeces collected at the Nouragues station, a protected area of French Guiana. In spite of a limited sampling, our approach reliably provided information about the lowland tapir's diet at this site. Indeed, 95.1% and 74.4% of the plant families and genera identified thanks to the trnL P6 loop, respectively, matched with taxa already known to be consumed by tapirs. With this approach we were able to show that two families and eight new genera are also consumed by the lowland tapir. The taxonomic resolution of this method is limited to the plant family and genera. Complementary barcodes, such as a small portion of ITS1, can be used to efficiently narrow identifications down to the species in some problematic families. We will discuss the remaining limitations of this approach and how useful it is at this stage to unravel the diet of elusive rainforest herbivores and better understand their role as engineers of the ecosystem. PMID:23560107

  12. Increasing vitamin A in post-weaning diets reduces food intake and body weight and modifies gene expression in brains of male rats born to dams fed a high multivitamin diet.

    PubMed

    Sánchez-Hernández, Diana; Cho, Clara E; Kubant, Ruslan; Reza-López, Sandra A; Poon, Abraham N; Wang, Jingzhou; Huot, Pedro S P; Smith, Christopher E; Anderson, G Harvey

    2014-10-01

    High multivitamin gestational diets (HV, 10-fold AIN-93G levels) increase body weight (BW) and food intake (FI) in rat offspring weaned to a recommended multivitamin (RV), but not to a HV diet. We hypothesized that high vitamin A (HA) alone, similar to HV, in post-weaning diets would prevent these effects of the HV maternal diet consistent with gene expression in FI and reward pathways. Male offspring from dams fed HV diets were weaned to a high vitamin A (HA, 10-fold AIN-93G levels), HV or RV diet for 29 weeks. BW, FI, expression of genes involved in regulation of FI and reward and global and gene-specific DNA methylation of pro-opiomelanocortin (POMC) in the hypothalamus were measured. Both HV and HA diets slowed post-weaning weight gain and modified gene expression in offspring compared to offspring fed an RV post-weaning diet. Hypothalamic POMC expression in HA offspring was not different from either HV or RV, and dopamine receptor 1 was 30% (P<.05) higher in HA vs. HV, but not different from RV group. Hippocampal expression of serotonin receptor 1A (40%, P<.01), dopamine receptor 2 (40%, P<.05) and dopamine receptor 5 (70%, P<.0001) was greater in HA vs. RV fed pups and is 40% (P<.01), 50% (P<.05) and 40% (P<.0001) in HA vs. HV pups, respectively. POMC DNA methylation was lower in HA vs. RV offspring (P<.05). We conclude that high vitamin A in post-weaning diets reduces post-weaning weight gain and FI and modifies gene expression in FI and reward pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Diet-Induced Obesity Does Not Alter Tigecycline Treatment Efficacy in Murine Lyme Disease.

    PubMed

    Pětrošová, Helena; Eshghi, Azad; Anjum, Zoha; Zlotnikov, Nataliya; Cameron, Caroline E; Moriarty, Tara J

    2017-01-01

    Obese individuals more frequently suffer from infections, as a result of increased susceptibility to a number of bacterial pathogens. Furthermore, obesity can alter antibiotic treatment efficacy due to changes in drug pharmacokinetics which can result in under-dosing. However, studies on the treatment of bacterial infections in the context of obesity are scarce. To address this research gap, we assessed efficacy of antibiotic treatment in diet-induced obese mice infected with the Lyme disease pathogen, Borrelia burgdorferi . Diet-induced obese C3H/HeN mice and normal-weight controls were infected with B. burgdorferi , and treated during the acute phase of infection with two doses of tigecycline, adjusted to the weights of diet-induced obese and normal-weight mice. Antibiotic treatment efficacy was assessed 1 month after the treatment by cultivating bacteria from tissues, measuring severity of Lyme carditis, and quantifying bacterial DNA clearance in ten tissues. In addition, B. burgdorferi -specific IgG production was monitored throughout the experiment. Tigecycline treatment was ineffective in reducing B. burgdorferi DNA copies in brain. However, diet-induced obesity did not affect antibiotic-dependent bacterial DNA clearance in any tissues, regardless of the tigecycline dose used for treatment. Production of B. burgdorferi -specific IgGs was delayed and attenuated in mock-treated diet-induced obese mice compared to mock-treated normal-weight animals, but did not differ among experimental groups following antibiotic treatment. No carditis or cultivatable B. burgdorferi were detected in any antibiotic-treated group. In conclusion, obesity was associated with attenuated and delayed humoral immune responses to B. burgdorferi , but did not affect efficacy of antibiotic treatment.

  14. A ranking index for quality assessment of forensic DNA profiles forensic DNA profiles

    PubMed Central

    2010-01-01

    Background Assessment of DNA profile quality is vital in forensic DNA analysis, both in order to determine the evidentiary value of DNA results and to compare the performance of different DNA analysis protocols. Generally the quality assessment is performed through manual examination of the DNA profiles based on empirical knowledge, or by comparing the intensities (allelic peak heights) of the capillary electrophoresis electropherograms. Results We recently developed a ranking index for unbiased and quantitative quality assessment of forensic DNA profiles, the forensic DNA profile index (FI) (Hedman et al. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles, Biotechniques 47 (2009) 951-958). FI uses electropherogram data to combine the intensities of the allelic peaks with the balances within and between loci, using Principal Components Analysis. Here we present the construction of FI. We explain the mathematical and statistical methodologies used and present details about the applied data reduction method. Thereby we show how to adapt the ranking index for any Short Tandem Repeat-based forensic DNA typing system through validation against a manual grading scale and calibration against a specific set of DNA profiles. Conclusions The developed tool provides unbiased quality assessment of forensic DNA profiles. It can be applied for any DNA profiling system based on Short Tandem Repeat markers. Apart from crime related DNA analysis, FI can therefore be used as a quality tool in paternal or familial testing as well as in disaster victim identification. PMID:21062433

  15. Pretreatment dietary intake is associated with tumor suppressor DNA methylation in head and neck squamous cell carcinomas

    PubMed Central

    Colacino, Justin A.; Arthur, Anna E.; Dolinoy, Dana C.; Sartor, Maureen A.; Duffy, Sonia A.; Chepeha, Douglas B.; Bradford, Carol R.; Walline, Heather M.; McHugh, Jonathan B.; D'Silva, Nisha; Carey, Thomas E.; Wolf, Gregory T.; Taylor, Jeremy M.G.; Peterson, Karen E.; Rozek, Laura S.

    2012-01-01

    Diet is associated with cancer prognosis, including head and neck cancer (HNC), and has been hypothesized to influence epigenetic state by determining the availability of functional groups involved in the modification of DNA and histone proteins. The goal of this study was to describe the association between pretreatment diet and HNC tumor DNA methylation. Information on usual pretreatment food and nutrient intake was estimated via food frequency questionnaire (FFQ) on 49 HNC cases. Tumor DNA methylation patterns were assessed using the Illumina Goldengate Methylation Cancer Panel. First, a methylation score, the sum of individual hypermethylated tumor suppressor associated CpG sites, was calculated and associated with dietary intake of micronutrients involved in one-carbon metabolism and antioxidant activity, and food groups abundant in these nutrients. Second, gene specific analyses using linear modeling with empirical Bayesian variance estimation were conducted to identify if methylation at individual CpG sites was associated with diet. All models were controlled for age, sex, smoking, alcohol and HPV status. Individuals reporting in the highest quartile of folate, vitamin B12 and vitamin A intake, compared with those in the lowest quartile, showed significantly less tumor suppressor gene methylation, as did patients reporting the highest cruciferous vegetable intake. Gene specific analyses identified differential associations between DNA methylation and vitamin B12 and vitamin A intake when stratifying by HPV status. These preliminary results suggest that intake of folate, vitamin A and vitamin B12 may be associated with the tumor DNA methylation profile in HNC and enhance tumor suppression. PMID:22722388

  16. Dietary protein quality and quantity affect lactational responses to corn distillers grains: a meta-analysis.

    PubMed

    Hollmann, M; Allen, M S; Beede, D K

    2011-04-01

    Diet fermentability influences lactational responses to feeding corn distillers grains (CDG) to dairy cows. However, some measures of diet fermentability are inherently related to the concentration and characteristics of corn-based ingredients in the ration. Corn-based feeds have poor protein quality, unable to meet the essential AA requirements of lactating cows. We conducted a meta-analysis of treatment means (n=44) from the scientific literature to evaluate responses in milk yield (MY) and milk true protein concentration and yield to dietary CDG. The test variable was the difference in response between the CDG diet mean and the control diet mean (0% CDG) within experiment. Fixed variables were CDG concentration of the diet [% of dietary dry matter (DM)] and crude protein (CP) concentration and fractions of CP based on origin (corn-based versus non-corn-based feeds) of control and CDG diets. Diets with CDG ranged from 4 to 42% CDG, DM basis. Non-corn-based dietary CP averaged 6.3±3.32% of total DM. Milk yield and milk true protein yield responses to added CDG were maximized when approximately 8.5% of the total dietary DM was non-corn-based CP. Milk yield response peaked for higher-producing cows (>30.0 kg MY/cow per day) at 4.3% dietary corn-based CP, but decreased linearly for lower-producing cows (<30.0 kg MY/cow per day) as corn-based dietary CP increased. Milk true protein yield response decreased as corn-based dietary CP concentration increased but milk true protein concentration response was not decreased when CDG diets had more than 6.5% dietary non-corn-based CP. Overall, 8.5% dietary non-corn-based CP was necessary in lactation diets to maximize lactational responses to dietary CDG. The necessity of dietary non-corn-based CP to maximize milk and milk protein yields limits the amount of dietary corn-based CP, including that from CDG, which can be included in rations without overfeeding N. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Fillet quality and processing attributes of postsmolt Atlantic salmon, Salmo salar, fed a fishmeal-free diet and a fishmeal-based diet in recirculation aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Many studies have evaluated the adequacy of alternate ingredient diets for Atlantic salmon, Salmo salar, mainly with focus on fish performance and health; however, comprehensive analysis of fillet quality is lacking, particularly for salmon fed these diets in recirculation aquaculture systems (RAS)....

  18. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis

    PubMed Central

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611

  19. Diet may influence the oral microbiome composition in cats.

    PubMed

    Adler, Christina J; Malik, Richard; Browne, Gina V; Norris, Jacqueline M

    2016-06-09

    Periodontal disease is highly prevalent amongst domestic cats, causing pain, gingival bleeding, reduced food intake, loss of teeth and possibly impacts on overall systemic health. Diet has been suggested to play a role in the development of periodontal disease in cats. There is a complete lack of information about how diet (composition and texture) affects the feline oral microbiome, the composition of which may influence oral health and the development of periodontal disease. We undertook a pilot study to assess if lifelong feeding of dry extruded kibble or wet (canned and/or fresh meat combinations) diets to cats (n = 10) with variable oral health affected the microbiome. Oral microbiome composition was assessed by amplifying the V1-V3 region of the 16S gene from supragingival dental plaque DNA extracts. These amplicons were sequenced using Illumina technology. This deep sequencing revealed the feline oral microbiome to be diverse, containing 411 bacterial species from 14 phyla. We found that diet had a significant influence on the overall diversity and abundance of specific bacteria in the oral environment. Cats fed a dry diet exclusively had higher bacterial diversity in their oral microbiome than wet-food diet cats (p < 0.001). Amongst this higher diversity, cats on dry-food diets had a higher abundance of Porphyromonas spp. (p < 0.01) and Treponema spp. (p < 0.01). While we observed differences in the oral microbiome between cats on the two diets assessed, the relationship between these differences and gingival health was unclear. Our preliminary results indicate that further analysis of the influence of dietary constituents and texture on the feline oral microbiome is required to reveal the relationship between diet, the oral microbiome and gingival health in cats.

  20. QTL analysis of dietary obesity in C57BL/6byj X 129P3/J F2 mice: diet- and sex-dependent effects.

    PubMed

    Lin, Cailu; Theodorides, Maria L; McDaniel, Amanda H; Tordoff, Michael G; Zhang, Qinmin; Li, Xia; Bosak, Natalia; Bachmanov, Alexander A; Reed, Danielle R

    2013-01-01

    Obesity is a heritable trait caused by complex interactions between genes and environment, including diet. Gene-by-diet interactions are difficult to study in humans because the human diet is hard to control. Here, we used mice to study dietary obesity genes, by four methods. First, we bred 213 F2 mice from strains that are susceptible [C57BL/6ByJ (B6)] or resistant [129P3/J (129)] to dietary obesity. Percent body fat was assessed after mice ate low-energy diet and again after the same mice ate high-energy diet for 8 weeks. Linkage analyses identified QTLs associated with dietary obesity. Three methods were used to filter candidate genes within the QTL regions: (a) association mapping was conducted using >40 strains; (b) differential gene expression and (c) comparison of genomic DNA sequence, using two strains closely related to the progenitor strains from Experiment 1. The QTL effects depended on whether the mice were male or female or which diet they were recently fed. After feeding a low-energy diet, percent body fat was linked to chr 7 (LOD=3.42). After feeding a high-energy diet, percent body fat was linked to chr 9 (Obq5; LOD=3.88), chr 12 (Obq34; LOD=3.88), and chr 17 (LOD=4.56). The Chr 7 and 12 QTLs were sex dependent and all QTL were diet-dependent. The combination of filtering methods highlighted seven candidate genes within the QTL locus boundaries: Crx, Dmpk, Ahr, Mrpl28, Glo1, Tubb5, and Mut. However, these filtering methods have limitations so gene identification will require alternative strategies, such as the construction of congenics with very small donor regions.

  1. Analysis of infant isolates of Bifidobacterium breve by comparative genome hybridization indicates the existence of new subspecies with marked infant specificity.

    PubMed

    Boesten, Rolf; Schuren, Frank; Wind, Richèle D; Knol, Jan; de Vos, Willem M

    2011-09-01

    A total of 20 Bifidobacterium strains were isolated from fecal samples of 4 breast- and bottle-fed infants and all were characterized as Bifidobacterium breve based on 16S rRNA gene sequence and metabolic analysis. These isolates were further characterized and compared to the type strains of B. breve and 7 other Bifidobacterium spp. by comparative genome hybridization. For this purpose, we constructed and used a DNA-based microarray containing over 2000 randomly cloned DNA fragments from B. breve type strain LMG13208. This molecular analysis revealed a high degree of genomic variation between the isolated strains and allowed the vast majority to be grouped into 4 clusters. One cluster contained a single isolate that was virtually indistinguishable from the B. breve type strain. The 3 other clusters included 19 B. breve strains that differed considerably from all type strains. Remarkably, each of the 4 clusters included strains that were isolated from a single infant, indicating that a niche adaptation may contribute to variation within the B. breve species. Based on genomic hybridization data, the new B. breve isolates were estimated to contain approximately 60-90% of the genes of the B. breve type strain, attesting to the existence of various subspecies within the species B. breve. Further bioinformatic analysis identified several hundred diagnostic clones specific to the genomic clustering of the B. breve isolates. Molecular analysis of representatives of these revealed that annotated genes from the conserved B. breve core encoded mainly housekeeping functions, while the strain-specific genes were predicted to code for functions related to life style, such as carbohydrate metabolism and transport. This is compatible with genetic adaptation of the strains to their niche, a combination of infants and diet. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal.

    PubMed

    O'Brien, J; Renwick, A G; Constable, A; Dybing, E; Müller, D J G; Schlatter, J; Slob, W; Tueting, W; van Benthem, J; Williams, G M; Wolfreys, A

    2006-10-01

    The present paper examines the particular difficulties presented by low levels of food-borne DNA-reactive genotoxic carcinogens, some of which may be difficult to eliminate completely from the diet, and proposes a structured approach for the evaluation of such compounds. While the ALARA approach is widely applicable to all substances in food that are both carcinogenic and genotoxic, it does not take carcinogenic potency into account and, therefore, does not permit prioritisation based on potential risk or concern. In the absence of carcinogenicity dose-response data, an assessment based on comparison with an appropriate threshold of toxicological concern may be possible. When carcinogenicity data from animal bioassays are available, a useful analysis is achieved by the calculation of margins of exposure (MOEs), which can be used to compare animal potency data with human exposure scenarios. Two reference points on the dose-response relationship that can be used for MOE calculation were examined; the T25 value, which is derived from linear extrapolation, and the BMDL10, which is derived from mathematical modelling of the dose-response data. The above approaches were applied to selected food-borne genotoxic carcinogens. The proposed approach is applicable to all substances in food that are DNA-reactive genotoxic carcinogens and enables the formulation of appropriate semi-quantitative advice to risk managers.

  3. Effect of bovine somatotropin and rumen-undegradable protein on mammary growth of prepubertal dairy heifers and subsequent milk production.

    PubMed

    Capuco, A V; Dahl, G E; Wood, D L; Moallem, U; Erdman, R E

    2004-11-01

    Rapid body growth during the prepubertal period may be associated with reductions in mammary parenchymal growth and subsequent milk yield. The objective of this study was to test effects of dietary rumen-undegradable protein (RUP) and administration of recombinant bovine somatotropin (bST) during the prepubertal period on mammary growth and milk yield of dairy heifers. Seventy-two Holstein heifers were used in the experiment. At 90 d of age, 8 heifers were slaughtered before initiation of treatment. Remaining heifers were assigned randomly to 1 of 4 treatments. Treatments consisted of a control diet (5.9% RUP, 14.9% CP, DM basis) or RUP-supplemented diet (control diet plus 2% added RUP) with or without 0.1 mg of bST/kg of BW per day applied in a 2 x 2 factorial design. A total of 6 heifers per treatment (3 each at 5 and 10 mo of age) were slaughtered for mammary tissue analysis. Remaining heifers were bred to evaluate impact of treatment on subsequent milk yield and composition. Mammary parenchymal growth was not affected by RUP or bST treatment. Total parenchymal mass increased from 16 to 364 g, and parenchymal DNA from 58 to 1022 mg from 3 to 10 mo of age, respectively. Furthermore, number of mammary epithelial cells likely was not affected by diet or bST because the epithelial cell proliferation index, assessed by Ki-67 labeling, was not affected by treatment, nor was total parenchymal DNA and lipid content. Neither deleterious effects of increased rates of gain nor positive effects of bST were evident in prepubertal mammary growth. Subsequent milk production and composition was not different among treatments.

  4. Physiological effects of diet mixing on consumer fitness: a meta-analysis.

    PubMed

    Lefcheck, Jonathan S; Whalen, Matthew A; Davenport, Theresa M; Stone, Joshua P; Duffy, J Emmett

    2013-03-01

    The degree of dietary generalism among consumers has important consequences for population, community, and ecosystem processes, yet the effects on consumer fitness of mixing food types have not been examined comprehensively. We conducted a meta-analysis of 161 peer-reviewed studies reporting 493 experimental manipulations of prey diversity to test whether diet mixing enhances consumer fitness based on the intrinsic nutritional quality of foods and consumer physiology. Averaged across studies, mixed diets conferred significantly higher fitness than the average of single-species diets, but not the best single prey species. More than half of individual experiments, however, showed maximal growth and reproduction on mixed diets, consistent with the predicted benefits of a balanced diet. Mixed diets including chemically defended prey were no better than the average prey type, opposing the prediction that a diverse diet dilutes toxins. Finally, mixed-model analysis showed that the effect of diet mixing was stronger for herbivores than for higher trophic levels. The generally weak evidence for the nutritional benefits of diet mixing in these primarily laboratory experiments suggests that diet generalism is not strongly favored by the inherent physiological benefits of mixing food types, but is more likely driven by ecological and environmental influences on consumer foraging.

  5. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture.

    PubMed

    Hafla, A N; Soder, K J; Brito, A F; Rubano, M D; Dell, C J

    2014-12-01

    A 4-unit dual-flow continuous-culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane (CH4) output. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement using 7 d for diet adaptation and 3 d for sample collection. Experimental diets were (1) 55.5 g of herbage dry matter (DM) + 4.5 g of SB DM, (2) 56.0 g of herbage DM + 4.0 g of BG DM, (3) 55.5 g of haylage DM + 4.5 g of SB DM, and (4) 56.0 g of haylage DM + 4.0 g of BG DM. Forages were fed at 0730, 1030, 1400, and 1900 h, whereas SB and BG were fed at 0730 and 1400 h. Gas samples for CH₄ analysis were collected at 0725, 0900, 1000, 1355, 1530, and 1630 h on d 8, 9, and 10. Fluid samples were taken once daily on d 8, 9, and 10 for pH measurements and for ammonia-N and VFA analysis and analyzed for DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber for determination of nutrient digestibilities and estimation of bacterial protein synthesis. Orthogonal contrasts were used to compare the effect of forage source (haylage vs. herbage), supplement (BG vs. SB), and the forage × supplement interaction. Apparent and true DM and organic matter digestibilities as well as apparent crude protein digestibility were not affected by forage source. However, true DM digestibility was greatest for diets supplemented with SB. Apparent neutral and acid detergent fiber digestibilities of herbage-based diets were higher than haylage-based diets but fiber digestibility was not affected by supplement. Diets supplemented with SB had higher mean and minimum pH than BG; however, maximum pH was not affected by diet. Supplementation with BG produced a greater concentration of total VFA compared with diets supplemented with SB. Haylage-based diets produced greater CH4 output compared with herbage-based diets but supplementation did not affect CH4 output. Efficiency of bacterial protein synthesis was greater for herbage-based diets compared with haylage-based diets, with no effect of supplementation. Overall, supplementation with SB marginally increased true DM digestibility of herbage- and haylage-based diets but did not affect fiber and crude protein digestibilities, CH4 output, and bacterial efficiency, compared with BG. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Effect of diet and absence of protozoa on the rumen microbial community and on the representativeness of bacterial fractions used in the determination of microbial protein synthesis.

    PubMed

    Belanche, A; de la Fuente, G; Pinloche, E; Newbold, C J; Balcells, J

    2012-11-01

    Accurate estimates of microbial synthesis in the rumen are vital to optimize ruminant nutrition. Liquid- (LAB) and solid-associated bacterial fractions (SAB) harvested from the rumen are generally considered as microbial references when microbial yield is calculated; however, factors that determine their composition are not completely understood. The aim of this study was to evaluate the effect of diet and absence or presence of rumen protozoa on the rumen microbial community. It was hypothesized that these treatments could modify the composition and representativeness of LAB and SAB. Twenty twin lambs (Ovis aries) were used; one-half of the twins were kept protozoa-free, and each respective twin sibling was faunated. At 6 mo of age, 5 animals from each group were randomly allocated to the experimental diets consisting of either alfalfa hay as the sole diet, or 50:50 mixed with ground barley grain. After 15 d of adaptation to the diet, animals were euthanized, rumen and abomasum contents were sampled, and LAB and SAB isolated. The presence of protozoa buffered the effect of diet on the rumen bacterial population. Faunated animals fed alfalfa hay had a greater abundance of F. succinogenes, anaerobic fungi and methanogens, as well as an enhanced rumen bacterial diversity. Cellulolytic bacteria were more abundant in SAB, whereas the abomasal abundance of most of the microorganisms studied was closer to those values observed in LAB. Rumen and abomasal samples showed similar bacterial DNA concentrations, but the fungal and protozoal DNA concentration in the abomasum was only 69% and 13% of that observed in the rumen, respectively, suggesting fungal and protozoal sequestration in the rumen or possible preferential degradation of fungal and protozoal DNA in the abomasum, or both. In conclusion, absence of protozoa and type of diet extensively modified the chemical composition of LAB and SAB as a consequence of changes in the microbial composition of these fractions.

  7. Methyl donor-deficient diet during development can affect fear and anxiety in adulthood in C57BL/6J mice.

    PubMed

    Ishii, Daisuke; Matsuzawa, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Sutoh, Chihiro; Shimizu, Eiji

    2014-01-01

    DNA methylation is one of the essential factors in the control of gene expression. Folic acid, methionine and choline (methyl donors)--all nutrients related to one-carbon metabolism--are known as important mediators of DNA methylation. A previous study has shown that long-term administration of a diet lacking in methyl donors caused global DNA hypermethylation in the brain (Pogribny et al., 2008). However, no study has investigated the effects of a diet lacking in methyl donors during the developmental period on emotional behaviors such as fear and anxiety-like behavior in association with gene expressions in the brain. In addition, it has not been elucidated whether a diet supplemented with methyl donors later in life can reverse these changes. Therefore, we examined the effects of methyl donor deficiency during the developmental period on fear memory acquisition/extinction and anxiety-like behavior, and the relevant gene expressions in the hippocampus in juvenile (6-wk) and adult (12-wk) mice. We found that juvenile mice fed a methyl-donor-deficient diet had impaired fear memory acquisition along with decreases in the gene expressions of Dnmt3a and Dnmt3b. In addition, reduced anxiety-like behavior with decreased gene expressions of Grin2b and Gabar2 was observed in both the methyl-donor-deficient group and the body-weight-matched food-restriction group. After being fed a diet supplemented with methyl donors ad libitum, adult mice reversed the alteration of gene expression of Dnmt3a, Dnmt3b, Grin2b and Gabar2, but anxiety-like behavior became elevated. In addition, impaired fear-memory formation was observed in the adult mice fed the methyl-donor-deficient diet during the developmental period. Our study suggested that developmental alterations in the one-carbon metabolic pathway in the brain could have effects on emotional behavior and memory formation that last into adulthood.

  8. Methyl Donor-Deficient Diet during Development Can Affect Fear and Anxiety in Adulthood in C57BL/6J Mice

    PubMed Central

    Ishii, Daisuke; Matsuzawa, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Sutoh, Chihiro; Shimizu, Eiji

    2014-01-01

    DNA methylation is one of the essential factors in the control of gene expression. Folic acid, methionine and choline (methyl donors)–all nutrients related to one-carbon metabolism–are known as important mediators of DNA methylation. A previous study has shown that long-term administration of a diet lacking in methyl donors caused global DNA hypermethylation in the brain (Pogribny et al., 2008). However, no study has investigated the effects of a diet lacking in methyl donors during the developmental period on emotional behaviors such as fear and anxiety-like behavior in association with gene expressions in the brain. In addition, it has not been elucidated whether a diet supplemented with methyl donors later in life can reverse these changes. Therefore, we examined the effects of methyl donor deficiency during the developmental period on fear memory acquisition/extinction and anxiety-like behavior, and the relevant gene expressions in the hippocampus in juvenile (6-wk) and adult (12-wk) mice. We found that juvenile mice fed a methyl-donor-deficient diet had impaired fear memory acquisition along with decreases in the gene expressions of Dnmt3a and Dnmt3b. In addition, reduced anxiety-like behavior with decreased gene expressions of Grin2b and Gabar2 was observed in both the methyl-donor-deficient group and the body-weight-matched food-restriction group. After being fed a diet supplemented with methyl donors ad libitum, adult mice reversed the alteration of gene expression of Dnmt3a, Dnmt3b, Grin2b and Gabar2, but anxiety-like behavior became elevated. In addition, impaired fear-memory formation was observed in the adult mice fed the methyl-donor-deficient diet during the developmental period. Our study suggested that developmental alterations in the one-carbon metabolic pathway in the brain could have effects on emotional behavior and memory formation that last into adulthood. PMID:25144567

  9. Commentary: 'Unhealthy diet,' nutrient status, and ADHD symptoms: a confounding role for environmental nitrous oxide exposure - reflections on Rijlaarsdam et al. (2016).

    PubMed

    Fluegge, Keith

    2017-01-01

    Rijlaarsdam et al. (2016) recently published their findings utilizing a longitudinal design showing that prenatal 'unhealthy diet' was positively associated with IGF2 DNA methylation at birth across both youth cohorts. However, only in the EOP youth was prenatal 'unhealthy diet' positively associated with ADHD symptoms presumably through IGF2 DNA hypermethylation. Rijlaarsdam et al.'s () choice to assess high fat and sugar diet with the Food Frequency Questionnaire (FFQ) may offer some indication as to prenatal nutrient status, as the foods identified by the FFQ in their study are relatively low in free choline. It has been shown that gestational choline deficiency in rats leads to hypermethylation of IGF2. Consistent with the literature describing an association between air pollution and cognitive neurodevelopmental impairment, the author of this commentary has previously proposed through empirical investigation that chronic environmental exposure to the trace levels of the pervasive air pollutant, nitrous oxide (N 2 O), may facilitate core features of neurodevelopmental disorders, like ADHD. Impaired acetylcholine synthesis in rats exposed to N 2 O has been shown, with a 53% reduction in [1-2H2,2-2H2] choline. Low-dose N 2 O exposure is also thought to stimulate central release of opioid peptides, like dynorphin, which play a role in significantly increasing food intake behavior and/or modulating sucrose intake. Taken altogether, these studies present a strong confounder to the interpretation made by Rijlaarsdam et al. () that prenatal 'unhealthy diet' may play a role in the onset of ADHD symptoms in youth with EOP conduct problems through induction of IGF2 DNA hypermethylation. While the 'unhealthy diet' may represent possible maternal nutrient deficiencies during gestation, it is also possible that exposure to air pollutants, particularly N 2 O, may not only directly reduce fetal cholinergic status thereby enhancing IGF2 DNA hypermethylation but may also significantly modulate maternal food intake behaviors (i.e. sucrose). © 2016 Association for Child and Adolescent Mental Health.

  10. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less

  11. Phylum Level Change in the Cecal and Fecal Gut Communities of Rats Fed Diets Containing Different Fermentable Substrates Supports a Role for Nitrogen as a Factor Contributing to Community Structure

    PubMed Central

    Kalmokoff, Martin; Franklin, Jeff; Petronella, Nicholas; Green, Judy; Brooks, Stephen P.J.

    2015-01-01

    Fermentation differs between the proximal and distal gut but little is known regarding how the bacterial communities differ or how they are influenced by diet. In order to investigate this, we compared community diversity in the cecum and feces of rats by 16S rRNA gene content and DNA shot gun metagenomics after feeding purified diets containing different fermentable substrates. Gut community composition was dependent on the source of fermentable substrate included in the diet. Cecal communities were dominated by Firmicutes, and contained a higher abundance of Lachnospiraceae compared to feces. In feces, community structure was shifted by varying degrees depending on diet towards the Bacteroidetes, although this change was not always evident from 16S rRNA gene data. Multi-dimensional scaling analysis (PCoA) comparing cecal and fecal metagenomes grouped by location within the gut rather than by diet, suggesting that factors in addition to substrate were important for community change in the distal gut. Differentially abundant genes in each environment supported this shift away from the Firmicutes in the cecum (e.g., motility) towards the Bacteroidetes in feces (e.g., Bacteroidales transposons). We suggest that this phylum level change reflects a shift to ammonia as the primary source of nitrogen used to support continued microbial growth in the distal gut. PMID:25954902

  12. Phylum level change in the cecal and fecal gut communities of rats fed diets containing different fermentable substrates supports a role for nitrogen as a factor contributing to community structure.

    PubMed

    Kalmokoff, Martin; Franklin, Jeff; Petronella, Nicholas; Green, Judy; Brooks, Stephen P J

    2015-05-06

    Fermentation differs between the proximal and distal gut but little is known regarding how the bacterial communities differ or how they are influenced by diet. In order to investigate this, we compared community diversity in the cecum and feces of rats by 16S rRNA gene content and DNA shot gun metagenomics after feeding purified diets containing different fermentable substrates. Gut community composition was dependent on the source of fermentable substrate included in the diet. Cecal communities were dominated by Firmicutes, and contained a higher abundance of Lachnospiraceae compared to feces. In feces, community structure was shifted by varying degrees depending on diet towards the Bacteroidetes, although this change was not always evident from 16S rRNA gene data. Multi-dimensional scaling analysis (PCoA) comparing cecal and fecal metagenomes grouped by location within the gut rather than by diet, suggesting that factors in addition to substrate were important for community change in the distal gut. Differentially abundant genes in each environment supported this shift away from the Firmicutes in the cecum (e.g., motility) towards the Bacteroidetes in feces (e.g., Bacteroidales transposons). We suggest that this phylum level change reflects a shift to ammonia as the primary source of nitrogen used to support continued microbial growth in the distal gut.

  13. Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets.

    PubMed

    Wise, M G; Siragusa, G R

    2007-04-01

    To explore the effect of drug-free poultry production on the intestinal microflora of broiler chickens, the bacterial community of this environment was quantitatively profiled in both conventionally reared birds and birds reared without antibiotic growth promotants (AGPs) on a vegetable-based diet. Quantitative, real-time PCR with group-specific 16S rDNA primer sets was used to enumerate the abundance of the following chicken gastrointestinal (GI) tract phylogenetic groups: the Clostridium leptum-Faecalibacterium prausnitzii subgroup (Clostridium genus cluster IV), the Clostridium coccoides - Eubacterium rectale subgroup (Clostridium cluster XIVa and XIVb), the Bacteroides group (including Prevotella and Porphyromonas), Bifidobacterium spp., the Enterobacteriaceae, the Lactobacillus group (including the genera Leuconostoc, Pediococcus, Aerococcus and Weissella), the Clostridium perfringens subgroup (Clostridium cluster I), Enterococcus spp., Veillonella spp., Atopobium spp., Campylobacter spp. and the domain Bacteria. A species-specific 5'-nuclease (Taqman) assay was also employed to specifically assess Cl. perfringens abundance. Ten birds were sampled from each of two commercial chicken houses, one in which feed was supplemented with AGPs and exogenous animal protein, and the other vegetable-based and drug-free, at 7, 14 and 21 days of age. The ileal community was dominated by two large populations, the lactobacilli and the Enterobacteriaceae, with those taxa much more numerous in drug-free vegetable-based diet fed birds than those conventionally reared at the 7- and 14-day time periods. The progressive changes in microflora in both the conventional and drug-free caeca were similar to each other, with the Enterobacteriaceae sequences dominating at day 7, but being replaced by obligate anaerobe signature sequences by day 14. Of note was the finding that all the day 14 and day 21 replicate caecal samples from the drug-free house were positive for Campylobacter spp. averaging >10(8) 16S rDNA gene copies per gram wet weight. Quantitative, real-time PCR indicates that the effects of drug-free rearing on the chicken GI tract microbial community are most pronounced in the ileal region, but AGPs may be important in controlling Campylobacter colonization of the caecum. A quantitative taxonomic understanding of the shifting microbial ecology of the broiler chicken gut microbiota is important in the light of AGP withdrawal. AGP withdrawal has occurred in response to concerns over the transfer of antimicrobial-resistant bacteria to humans via the food production chain.

  14. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis

    PubMed Central

    Down, Thomas A.; Rakyan, Vardhman K.; Turner, Daniel J.; Flicek, Paul; Li, Heng; Kulesha, Eugene; Gräf, Stefan; Johnson, Nathan; Herrero, Javier; Tomazou, Eleni M.; Thorne, Natalie P.; Bäckdahl, Liselotte; Herberth, Marlis; Howe, Kevin L.; Jackson, David K.; Miretti, Marcos M.; Marioni, John C.; Birney, Ewan; Hubbard, Tim J. P.; Durbin, Richard; Tavaré, Simon; Beck, Stephan

    2009-01-01

    DNA methylation is an indispensible epigenetic modification of mammalian genomes. Consequently there is great interest in strategies for genome-wide/whole-genome DNA methylation analysis, and immunoprecipitation-based methods have proven to be a powerful option. Such methods are rapidly shifting the bottleneck from data generation to data analysis, necessitating the development of better analytical tools. Until now, a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling has been the inability to estimate absolute methylation levels. Here we report the development of a novel cross-platform algorithm – Bayesian Tool for Methylation Analysis (Batman) – for analyzing Methylated DNA Immunoprecipitation (MeDIP) profiles generated using arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). The latter is an approach we have developed to elucidate the first high-resolution whole-genome DNA methylation profile (DNA methylome) of any mammalian genome. MeDIP-seq/MeDIP-chip combined with Batman represent robust, quantitative, and cost-effective functional genomic strategies for elucidating the function of DNA methylation. PMID:18612301

  15. Does the impact of a plant-based diet during pregnancy on birth weight differ by ethnicity? A dietary pattern analysis from a prospective Canadian birth cohort alliance.

    PubMed

    Zulyniak, Michael A; de Souza, Russell J; Shaikh, Mateen; Desai, Dipika; Lefebvre, Diana L; Gupta, Milan; Wilson, Julie; Wahi, Gita; Subbarao, Padmaja; Becker, Allan B; Mandhane, Piush; Turvey, Stuart E; Beyene, Joseph; Atkinson, Stephanie; Morrison, Katherine M; McDonald, Sarah; Teo, Koon K; Sears, Malcolm R; Anand, Sonia S

    2017-11-14

    Birth weight is an indicator of newborn health and a strong predictor of health outcomes in later life. Significant variation in diet during pregnancy between ethnic groups in high-income countries provides an ideal opportunity to investigate the influence of maternal diet on birth weight. Four multiethnic birth cohorts based in Canada (the NutriGen Alliance). 3997 full-term mother-infant pairs of diverse ethnic groups who had principal component analysis-derived diet pattern scores-plant-based, Western and health-conscious-and birth weight data. No associations were identified between the Western and health-conscious diet patterns and birth weight; however, the plant-based dietary pattern was inversely associated with birth weight (β=-67.6 g per 1-unit increase; P<0.001), and an interaction with non-white ethnicity and birth weight was observed. Ethnically stratified analyses demonstrated that among white Europeans, maternal consumption of a plant-based diet associated with lower birth weight (β=-65.9 g per 1-unit increase; P<0.001), increased risk of small-for-gestational age (SGA; OR=1.46; 95% CI 1.08 to 1.54;P=0.005) and reduced risk of large-for-gestational age (LGA; OR=0.71; 95% CI 0.53 to 0.95;P=0.02). Among South Asians, maternal consumption of a plant-based diet associated with a higher birth weight (β=+40.5 g per 1-unit increase; P=0.01), partially explained by cooked vegetable consumption. Maternal consumption of a plant-based diet during pregnancy is associated with birth weight. Among white Europeans, a plant-based diet is associated with lower birth weight, reduced odds of an infant born LGA and increased odds of SGA, whereas among South Asians living in Canada, a plant-based diet is associated with increased birth weight. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Awareness and Perception of Plant-Based Diets for the Treatment and Management of Type 2 Diabetes in a Community Education Clinic: A Pilot Study

    PubMed Central

    Lee, Vincent; McKay, Taylor; Ardern, Chris I.

    2015-01-01

    Objective. To assess awareness, barriers, and promoters of plant-based diet use for management of type 2 diabetes (T2D) for the development of an appropriate educational program. Design. Cross-sectional study of patients and healthcare providers. Setting. Regional Diabetes Education Centre in ON, Canada. Participants. n = 98 patients attending the Diabetes Education Centre and n = 25 healthcare providers. Variables Measures. Patient questionnaires addressed demographics, health history, and eating patterns, as well as current knowledge, confidence levels, barriers to, promoters of, and interests in plant-based diets. Staff questionnaires addressed attitudes and current practice with respect to plant-based diets. Analysis. Mean values, frequency counts, and logistic regression (alpha = 0.05). Results. Few respondents (9%) currently followed a plant-based diet, but 66% indicated willingness to follow one for 3 weeks. Family eating preferences and meal planning skills were common barriers to diet change. 72% of healthcare providers reported knowledge of plant-based diets for diabetes management but low levels of practice. Conclusions and Implications. Patient awareness of the benefits of a plant-based diet for the management of diabetes remains suboptimal and may be influenced by perception of diabetes educators and clinicians. Given the reported willingness to try (but low current use of) plant-based diets, educational interventions targeting patient and provider level knowledge are warranted. PMID:25802755

  17. Carnitine palmitoyltransferase II deficiency

    PubMed Central

    Roe, C R.; Yang, B-Z; Brunengraber, H; Roe, D S.; Wallace, M; Garritson, B K.

    2008-01-01

    Background: Carnitine palmitoyltransferase II (CPT II) deficiency is an important cause of recurrent rhabdomyolysis in children and adults. Current treatment includes dietary fat restriction, with increased carbohydrate intake and exercise restriction to avoid muscle pain and rhabdomyolysis. Methods: CPT II enzyme assay, DNA mutation analysis, quantitative analysis of acylcarnitines in blood and cultured fibroblasts, urinary organic acids, the standardized 36-item Short-Form Health Status survey (SF-36) version 2, and bioelectric impedance for body fat composition. Diet treatment with triheptanoin at 30% to 35% of total daily caloric intake was used for all patients. Results: Seven patients with CPT II deficiency were studied from 7 to 61 months on the triheptanoin (anaplerotic) diet. Five had previous episodes of rhabdomyolysis requiring hospitalizations and muscle pain on exertion prior to the diet (two younger patients had not had rhabdomyolysis). While on the diet, only two patients experienced mild muscle pain with exercise. During short periods of noncompliance, two patients experienced rhabdomyolysis with exercise. None experienced rhabdomyolysis or hospitalizations while on the diet. All patients returned to normal physical activities including strenuous sports. Exercise restriction was eliminated. Previously abnormal SF-36 physical composite scores returned to normal levels that persisted for the duration of the therapy in all five symptomatic patients. Conclusions: The triheptanoin diet seems to be an effective therapy for adult-onset carnitine palmitoyltransferase II deficiency. GLOSSARY ALT = alanine aminotransferase; AST = aspartate aminotransferase; ATP = adenosine triphosphate; BHP = β-hydroxypentanoate; BKP = β-ketopentanoate; BKP-CoA = β-ketopentanoyl–coenzyme A; BUN = blood urea nitrogen; CAC = citric acid cycle; CoA = coenzyme A; CPK = creatine phosphokinase; CPT II = carnitine palmitoyltransferase II; LDL = low-density lipoprotein; MCT = medium-chain triglyceride; PCS = physical composite score; SF-36 = 36-item Short-Form Health Status survey. PMID:18645163

  18. Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice.

    PubMed

    Kiilerich, Pia; Myrmel, Lene Secher; Fjære, Even; Hao, Qin; Hugenholtz, Floor; Sonne, Si Brask; Derrien, Muriel; Pedersen, Lone Møller; Petersen, Rasmus Koefoed; Mortensen, Alicja; Licht, Tine Rask; Rømer, Maria Unni; Vogel, Ulla Birgitte; Waagbø, Linn Jeanette; Giallourou, Natasa; Feng, Qiang; Xiao, Liang; Liu, Chuan; Liaset, Bjørn; Kleerebezem, Michiel; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2016-06-01

    Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio. Copyright © 2016 the American Physiological Society.

  19. Functional Characteristics of the Flying Squirrel's Cecal Microbiota under a Leaf-Based Diet, Based on Multiple Meta-Omic Profiling

    PubMed Central

    Lu, Hsiao-Pei; Liu, Po-Yu; Wang, Yu-bin; Hsieh, Ji-Fan; Ho, Han-Chen; Huang, Shiao-Wei; Lin, Chung-Yen; Hsieh, Chih-hao; Yu, Hon-Tsen

    2018-01-01

    Mammalian herbivores rely on microbial activities in an expanded gut chamber to convert plant biomass into absorbable nutrients. Distinct from ruminants, small herbivores typically have a simple stomach but an enlarged cecum to harbor symbiotic microbes; however, knowledge of this specialized gut structure and characteristics of its microbial contents is limited. Here, we used leaf-eating flying squirrels as a model to explore functional characteristics of the cecal microbiota adapted to a high-fiber, toxin-rich diet. Specifically, environmental conditions across gut regions were evaluated by measuring mass, pH, feed particle size, and metabolomes. Then, parallel metagenomes and metatranscriptomes were used to detect microbial functions corresponding to the cecal environment. Based on metabolomic profiles, >600 phytochemical compounds were detected, although many were present only in the foregut and probably degraded or transformed by gut microbes in the hindgut. Based on metagenomic (DNA) and metatranscriptomic (RNA) profiles, taxonomic compositions of the cecal microbiota were dominated by bacteria of the Firmicutes taxa; they contained major gene functions related to degradation and fermentation of leaf-derived compounds. Based on functional compositions, genes related to multidrug exporters were rich in microbial genomes, whereas genes involved in nutrient importers were rich in microbial transcriptomes. In addition, genes encoding chemotaxis-associated components and glycoside hydrolases specific for plant beta-glycosidic linkages were abundant in both DNA and RNA. This exploratory study provides findings which may help to form molecular-based hypotheses regarding functional contributions of symbiotic gut microbiota in small herbivores with folivorous dietary habits. PMID:29354108

  20. In vitro characteristics of an Atlantic salmon (Salmo salar L.) hind gut microbial community in relation to different dietary treatments.

    PubMed

    Zarkasi, Kamarul Zaman; Taylor, Richard S; Glencross, Brett D; Abell, Guy C J; Tamplin, Mark L; Bowman, John P

    2017-10-01

    In this study, microbial community dynamics were assessed within a simple in vitro model system in order to understand those changes influenced by diet. The abundance and diversity of bacteria were monitored within different treatment slurries inoculated with salmon faecal samples in order to mimic the effects of dietary variables. A total of five complete diets and two ingredients (plant meal) were tested. The total viable counts (TVCs) and sequencing data revealed that there was very clear separation between the complete diets and the plant meal treatments, suggesting a dynamic response by the allochthonous bacteria to the treatments. Automated ribosomal intergenic spacer analysis (ARISA) results showed that different diet formulations produced different patterns of fragments, with no separation between the complete diets. However, plant-based protein ingredients were clearly separated from the other treatments. 16S rRNA Illumina-based sequencing analysis showed that members of the genera Aliivibrio, Vibrio and Photobacterium became predominant for all complete diets treatments. The plant-based protein ingredient treatments only sustained weak growth of the genus Sphingomonas. In vitro based testing of diets could be a useful strategy to determine the potential impact of either complete feeds or ingredients on major fish gastrointestinal tract microbiome members. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice.

    PubMed

    Wang, Sen; Huang, Xu-Feng; Zhang, Peng; Wang, Hongqin; Zhang, Qingsheng; Yu, Shijia; Yu, Yinghua

    2016-10-01

    High-fat (HF) diet modulates gut microbiota and increases plasma concentration of lipopolysaccharide (LPS) which is associated with obesity and its related low-grade inflammation and cognitive decline. Rhein is the main ingredient of the rhubarb plant which has been used as an anti-inflammatory agent for several millennia. However, the potential effects of rhein against HF diet-induced obesity and its associated alteration of gut microbiota, inflammation and cognitive decline have not been studied. In this study, C57BL/6J male mice were fed an HF diet for 8 weeks to induce obesity, and then treated with oral rhein (120 mg/kg body weight/day in HF diet) for a further 6 weeks. Chronic rhein treatment prevented the HF diet-induced recognition memory impairment assessed by the novel object recognition test, neuroinflammation and brain-derived neurotrophic factor (BDNF) deficits in the perirhinal cortex. Furthermore, rhein inhibited the HF diet-induced increased plasma LPS level and the proinflammatory macrophage accumulation in the colon and alteration of microbiota, including decreasing Bacteroides-Prevotella spp. and Desulfovibrios spp. DNA and increasing Bifidobacterium spp. and Lactobacillus spp. DNA. Moreover, rhein also reduced body weight and improved glucose tolerance in HF diet-induced obese mice. In conclusion, rhein improved recognition memory and prevented obesity in mice on a chronic HF diet. These beneficial effects occur via the modulation of microbiota, hypoendotoxinemia, inhibition of macrophage accumulation, anti-neuroinflammation and the improvement of BDNF expression. Therefore, supplementation with rhein-enriched food or herbal medicine could be beneficial as a preventive strategy for chronic HF diet-induced cognitive decline, microbiota alteration and neuroinflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Dietary lipids differentially modulate the initiation of experimental breast carcinogenesis through their influence on hepatic xenobiotic metabolism and DNA damage in the mammary gland.

    PubMed

    Manzanares, Miguel Ángel; de Miguel, Cristina; Ruiz de Villa, M Carme; Santella, Regina M; Escrich, Eduard; Solanas, Montserrat

    2017-05-01

    Breast cancer is the most common malignancy among women worldwide. In addition to reproductive factors, environmental factors such as nutrition and xenobiotic exposure have a role in the etiology of this malignancy. A stimulating and a potentially protective effect on experimental breast cancer has been previously described for high corn oil and high extra-virgin olive oil diets, respectively. This work investigates the effect of these lipids on the metabolism of 7,12-dimethylbenz(a)anthracene (DMBA), a polycyclic aromatic hydrocarbon that can initiate carcinogenesis and its consequences in an experimental rat breast cancer model. The PUFA n-6-enriched diet increased expression of Phase I enzymes prior to DMBA administration and raised the activity of CYP1s in the hours immediately after induction, while reducing the activity of Phase II enzymes, mainly NQO1. The levels of reactive metabolites measured in plasma by GC-MS and DMBA-DNA adducts in the mammary gland of the animals fed the high corn oil diet were also higher than in the other groups. On the other hand, the high extra-virgin olive oil diet and the control low-fat diet exhibited better coordinated Phase I and Phase II activity, with a lower production of reactive metabolites and less DNA damage in the mammary gland. The concordance between these effects and the different efficacy of the carcinogenesis process due to the dietary treatment suggest that lipids may differently modify mammary gland susceptibility or resistance to cancer initiation over the exposure to environmental carcinogens. Dietary lipids influence the initiation of DMBA-induced mammary cancer through the modulation of liver xenobiotic metabolism, formation of reactive metabolites and subsequent DNA damage in the target tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet.

    PubMed

    Leffa, Daniela Dimer; da Silva, Juliana; Daumann, Francine; Dajori, Ana Luiza Formentin; Longaretti, Luiza Martins; Damiani, Adriani Paganini; de Lira, Fabio; Campos, Fernanda; Ferraz, Alexandre de Barros Falcão; Côrrea, Dione Silva; de Andrade, Vanessa Moraes

    2014-12-01

    Acerola contains high levels of vitamin C and rutin and shows the corresponding antioxidant properties. Oxidative stress on the other hand is an important factor in the development of obesity. In this study, we investigated the biochemical and antigenotoxic effects of acerola juice in different stages of maturity (unripe, ripe and industrial) and its main pharmacologically active components vitamin C and rutin, when given as food supplements to obese mice. Initial HPLC analyses confirmed that all types of acerola juice contained high levels of vitamin C and rutin. DPPH tests quantified the antioxidant properties of these juices and revealed higher antioxidant potentials compared to pure vitamin C and rutin. In an animal test series, groups of male mice were fed on a standard (STA) or a cafeteria (CAF) diet for 13 weeks. The latter consisted of a variety of supermarket products, rich in sugar and fat. This CAF diet increased the feed efficiency, but also induced glucose intolerance and DNA damage, which was established by comet assays and micronucleus tests. Subsequently, CAF mice were given additional diet supplements (acerola juice, vitamin C or rutin) for one month and the effects on bone marrow, peripheral blood, liver, kidney, and brain were examined. The results indicated that food supplementation with ripe or industrial acerola juice led to a partial reversal of the diet-induced DNA damage in the blood, kidney, liver and bone marrow. For unripe acerola juice food supplementation, beneficial effects were observed in blood, kidney and bone marrow. Food supplementation with vitamin C led to decreased DNA damage in kidney and liver, whereas rutin supplementation led to decreased DNA damage in all tissue samples observed. These results suggest that acerola juice helps to reduce oxidative stress and may decrease genotoxicity under obesogenic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Increased expression of cyclooxygenase-2 protein during rat hepatocarcinogenesis caused by a choline-deficient, L-amino acid-defined diet and chemopreventive efficacy of a specific inhibitor, nimesulide.

    PubMed

    Denda, Ayumi; Kitayama, Wakashi; Murata, Akiko; Kishida, Hideki; Sasaki, Yasutaka; Kusuoka, Osamu; Tsujiuchi, Toshifumi; Tsutsumi, Masahiro; Nakae, Dai; Takagi, Hidetoshi; Konishi, Yoichi

    2002-02-01

    Expression of cyclooxygenase (COX)-2 protein during rat hepatocarcinogenesis associated with fatty change, fibrosis, cirrhosis and oxidative DNA damage, caused by a choline-deficient, L-amino acid-defined (CDAA) diet were investigated in F344 male rats, along with the chemopreventive efficacy of the specific COX-2 inhibitor, nimesulide (NIM). Nimesulide, which was administered in the diet at concentrations of 200, 400, 600 and 800 p.p.m. for 12 weeks, decreased the number and size of preneoplastic enzyme-altered liver foci, levels of oxidative DNA damage, and the grade and incidence of fibrosis in a dose-dependent manner. A preliminary long-term study of 65 weeks also revealed that 800 p.p.m. NIM decreased the multiplicity of neoplastic nodules and hepatocellular carcinomas and prevented the development of cirrhosis. Western blot analysis revealed that COX-2 protein was barely expressed in control livers and increased approximately 2.9-fold in the livers of rats fed on a CDAA diet for 12 weeks and approximately 4.5-5.4-fold in tumors, with a diameter larger than 5 mm, at 80 weeks. Immunohistochemically, COX-2 protein was positive in sinusoidal and stromal cells in fibrotic septa, which were identified by immunoelectron microscopy as Kupffer cells, macrophages, either activated Ito cells or fibroblasts, after exposure to the CDAA diet for 12 weeks, whereas it was only occasionally weakly positive in sinusoidal, probably Kupffer, cells in control livers. In neoplastic nodules in rats fed on a CDAA diet for 30 and 80 weeks, sinusoidal cells and cells with relatively large round nuclei and scanty cytoplasm were strongly positive for COX-2 protein, with the neoplastic hepatocytes in the minority of the nodules, but not the cancer cells, being moderately positive. These results clearly indicate that rat hepatocarcinogenesis, along with fatty change, fibrosis and cirrhosis, is associated with increased expression of COX-2 protein, and point to the chemopreventive efficacy of a selective COX-2 inhibitor against, at least, the early stages of hepatocarcinogenesis.

  5. A Targeted Q-PCR-Based Method for Point Mutation Testing by Analyzing Circulating DNA for Cancer Management Care.

    PubMed

    Thierry, Alain R

    2016-01-01

    Circulating cell-free DNA (cfDNA) is a valuable source of tumor material available with a simple blood sampling enabling a noninvasive quantitative and qualitative analysis of the tumor genome. cfDNA is released by tumor cells and exhibits the genetic and epigenetic alterations of the tumor of origin. Circulating cell-free DNA (cfDNA) analysis constitutes a hopeful approach to provide a noninvasive tumor molecular test for cancer patients. Based upon basic research on the origin and structure of cfDNA, new information on circulating cell-free DNA (cfDNA) structure, and specific determination of cfDNA fragmentation and size, we revisited Q-PCR-based method and recently developed a the allele-specific-Q-PCR-based method with blocker (termed as Intplex) which is the first multiplexed test for cfDNA. This technique, named Intplex(®) and based on a refined Q-PCR method, derived from critical observations made on the specific structure and size of cfDNA. It enables the simultaneous determination of five parameters: the cfDNA total concentration, the presence of a previously known point mutation, the mutant (tumor) cfDNA concentration (ctDNA), the proportion of mutant cfDNA, and the cfDNA fragmentation index. Intplex(®) has enabled the first clinical validation of ctDNA analysis in oncology by detecting KRAS and BRAF point mutations in mCRC patients and has demonstrated that a blood test could replace tumor section analysis for the detection of KRAS and BRAF mutations. The Intplex(®) test can be adapted to all mutations, genes, or cancers and enables rapid, highly sensitive, cost-effective, and repetitive analysis. As regards to the determination of mutations on cfDNA Intplex(®) is limited to the mutational status of known hotspot mutation; it is a "targeted approach." However, it offers the opportunity in detecting quantitatively and dynamically mutation and could constitute a noninvasive attractive tool potentially allowing diagnosis, prognosis, theranostics, therapeutic monitoring, and follow-up of cancer patients expanding the scope of personalized cancer medicine.

  6. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease.

    PubMed

    Medici, Valentina; Shibata, Noreene M; Kharbanda, Kusum K; Islam, Mohammad S; Keen, Carl L; Kim, Kyoungmi; Tillman, Brittany; French, Samuel W; Halsted, Charles H; LaSalle, Janine M

    2014-02-01

    Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P<0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline.

  7. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease

    PubMed Central

    Medici, Valentina; Shibata, Noreene M; Kharbanda, Kusum K; Islam, Mohammad S; Keen, Carl L; Kim, Kyoungmi; Tillman, Brittany; French, Samuel W; Halsted, Charles H; LaSalle, Janine M

    2014-01-01

    Maternal diet can affect fetal gene expression through epigenetic mechanisms. Wilson disease (WD), which is caused by autosomal recessive mutations in ATP7B encoding a biliary copper transporter, is characterized by excessive hepatic copper accumulation, but variability in disease severity. We tested the hypothesis that gestational supply of dietary methyl groups modifies fetal DNA methylation and expression of genes involved in methionine and lipid metabolism that are impaired prior to hepatic steatosis in the toxic milk (tx-j) mouse model of WD. Female C3H control and tx-j mice were fed control (choline 8 mmol/Kg of diet) or choline-supplemented (choline 36 mmol/Kg of diet) diets for 2 weeks throughout mating and pregnancy to gestation day 17. A second group of C3H females, half of which were used to cross foster tx-j pups, received the same diet treatments that extended during lactation to 21 d postpartum. Compared with C3H, fetal tx-j livers had significantly lower copper concentrations and significantly lower transcript levels of Cyclin D1 and genes related to methionine and lipid metabolism. Maternal choline supplementation prevented the transcriptional deficits in fetal tx-j liver for multiple genes related to cell growth and metabolism. Global DNA methylation was increased by 17% in tx-j fetal livers after maternal choline treatment (P < 0.05). Maternal dietary choline rescued the lower body weight of 21 d tx-j mice. Our results suggest that WD pathogenesis is modified by maternal in utero factors, including dietary choline. PMID:24220304

  8. Mitochondrial-nuclear genome interactions in nonalcoholic fatty liver disease in mice

    PubMed Central

    Betancourt, Angela M.; King, Adrienne L.; Fetterman, Jessica L.; Millender-Swain, Telisha; Finley, Rachel D.; Oliva, Claudia R.; Crowe, David Ralph; Ballinger, Scott W.; Bailey, Shannon M.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation, and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. Herein, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, Mitochondrial-Nuclear eXchange (MNX) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared to wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation, and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD. PMID:24758559

  9. Mitochondrial-nuclear genome interactions in non-alcoholic fatty liver disease in mice.

    PubMed

    Betancourt, Angela M; King, Adrienne L; Fetterman, Jessica L; Millender-Swain, Telisha; Finley, Rachel D; Oliva, Claudia R; Crowe, David R; Ballinger, Scott W; Bailey, Shannon M

    2014-07-15

    NAFLD (non-alcoholic fatty liver disease) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. In the present study, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, MNX (mitochondrial-nuclear exchange) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared with wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR (respiratory control ratio) when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD.

  10. Metabolic effects of dietary sugar beet pulp or wheat bran in growing female pigs.

    PubMed

    Weber, T E; Kerr, B J

    2012-02-01

    An experiment was conducted to determine the effects of feeding a moderate level of 2 different fiber sources on energy metabolites; mitochondrial biogenesis in the intestine, liver, and muscle; and the expression of some genes that regulate energy metabolism in intestine, liver, muscle, and adipose tissue. Female pigs (n = 36; BW = 15.0 ± 0.7 kg) were fed diets containing no added fiber, 12.5% sugar beet pulp (SBP), or 12.5% wheat bran (WB) for 24 d. Blood samples were collected on d 7 and 24 for cholesterol, glucose, NEFA, and triglyceride analyses. At completion of the experiment, ileum, colon, subcutaneous adipose, and LM samples were obtained from a subset (n = 6) of pigs fed each diet for analysis of tissue mitochondrial DNA (mtDNA) content and mRNA abundance by quantitative real-time reverse-transcription PCR. Glycogen and triglyceride content of liver and LM were determined, and colon content VFA was also determined. The addition of SBP or WB to the diet had no effect (P > 0.55) on ADG, ADFI, or G:F. Serum NEFA and triglycerides were increased (P < 0.05) in pigs fed SBP compared with pigs fed the control diet or WB on d 7, and NEFA remained increased (P < 0.05) on d 24 in pigs fed SBP. Dietary fiber had no effect (P > 0.24) on glycogen and triglyceride content of liver or LM, but colonic acetate concentrations were increased (P < 0.05) in pigs fed either SBP or WB. Pigs fed WB had an increased (P < 0.05) mtDNA content in ileum tissue and increased (P < 0.05) citrate synthase mRNA in colon tissue. In the liver, feeding either SBP or WB led to a decrease (P < 0.05) in mtDNA content, whereas feeding WB decreased (P < 0.05) mtDNA abundance in the LM, and feeding either SBP or WB decreased (P < 0.05) expression of citrate synthase mRNA. Quantitative reverse-transcription PCR revealed that feeding WB increased (P < 0.05) proliferating cell nuclear antigen mRNA abundance in the ileum and colon. Feeding WB increased (P < 0.05) mRNA abundance of a regulator of mitochondrial biogenesis, PPAR coactivator 1 α, in ileum tissue, and increased (P < 0.05) mRNA abundance of another mediator of mitochondrial biogensis, sirtuin 1, in colon tissue. Colonic mRNA expression of fasting-induced adipose factor was increased (P < 0.05) in pigs fed either SBP or WB, and adipose triglyceride lipase mRNA abundance was increased (P < 0.05) in adipose tissue of pigs fed SBP. These data indicate that increasing dietary fiber can increase the capacity of the intestine for oxidative metabolism and induce a repartitioning of energy metabolites depending on fiber source.

  11. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice

    PubMed Central

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-01-01

    Background and Design: Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. Methods and Results: The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Conclusion: Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity. PMID:23446660

  12. Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets

    Treesearch

    Todd J. Brinkman; Michael K. Schwartz; David K. Person; Kristine L. Pilgrim; Kris J. Hundertmark

    2009-01-01

    Non-invasive wildlife research using DNA from feces has become increasingly popular. Recent studies have attempted to solve problems associated with recovering DNA from feces by investigating the influence of factors such as season, diet, collection method, preservation method, extraction protocol, and time. To our knowledge, studies of this nature have not addressed...

  13. Confined cattle feeding trail to validate fecal DNA metabarcoding to inform rangeland free-roaming diet applications

    USDA-ARS?s Scientific Manuscript database

    Diet composition of free roaming livestock and wildlife in extensive rangelands are difficult to quantify. Recent technological advances now allow us to reconstruct plant species-specific dietary protein composition using fecal samples. However, it has been suggested that validation of the method i...

  14. Designing Dietary Recommendations Using System Level Interactomics Analysis and Network-Based Inference

    PubMed Central

    Zheng, Tingting; Ni, Yueqiong; Li, Jun; Chow, Billy K. C.; Panagiotou, Gianni

    2017-01-01

    Background: A range of computational methods that rely on the analysis of genome-wide expression datasets have been developed and successfully used for drug repositioning. The success of these methods is based on the hypothesis that introducing a factor (in this case, a drug molecule) that could reverse the disease gene expression signature will lead to a therapeutic effect. However, it has also been shown that globally reversing the disease expression signature is not a prerequisite for drug activity. On the other hand, the basic idea of significant anti-correlation in expression profiles could have great value for establishing diet-disease associations and could provide new insights into the role of dietary interventions in disease. Methods: We performed an integrated analysis of publicly available gene expression profiles for foods, diseases and drugs, by calculating pairwise similarity scores for diet and disease gene expression signatures and characterizing their topological features in protein-protein interaction networks. Results: We identified 485 diet-disease pairs where diet could positively influence disease development and 472 pairs where specific diets should be avoided in a disease state. Multiple evidence suggests that orange, whey and coconut fat could be beneficial for psoriasis, lung adenocarcinoma and macular degeneration, respectively. On the other hand, fructose-rich diet should be restricted in patients with chronic intermittent hypoxia and ovarian cancer. Since humans normally do not consume foods in isolation, we also applied different algorithms to predict synergism; as a result, 58 food pairs were predicted. Interestingly, the diets identified as anti-correlated with diseases showed a topological proximity to the disease proteins similar to that of the corresponding drugs. Conclusions: In conclusion, we provide a computational framework for establishing diet-disease associations and additional information on the role of diet in disease development. Due to the complexity of analyzing the food composition and eating patterns of individuals our in silico analysis, using large-scale gene expression datasets and network-based topological features, may serve as a proof-of-concept in nutritional systems biology for identifying diet-disease relationships and subsequently designing dietary recommendations. PMID:29033850

  15. DNA damage in children and adolescents with cardiovascular disease risk factors.

    PubMed

    Kliemann, Mariele; Prá, Daniel; Müller, Luiza L; Hermes, Liziane; Horta, Jorge A; Reckziegel, Miriam B; Burgos, Miria S; Maluf, Sharbel W; Franke, Silvia I R; Silva, Juliana da

    2012-09-01

    The risk of developing cardiovascular disease (CVD) is related to lifestyle (e.g. diet, physical activity and smoking) as well as to genetic factors. This study aimed at evaluating the association between CVD risk factors and DNA damage levels in children and adolescents. Anthropometry, diet and serum CVD risk factors were evaluated by standard procedures. DNA damage levels were accessed by the comet assay (Single cell gel electrophoresis; SCGE) and cytokinesis-blocked micronucleus (CBMN) assays in leukocytes. A total of 34 children and adolescents selected from a population sample were divided into three groups according to their level of CVD risk. Moderate and high CVD risk subjects showed significantly higher body fat and serum CVD risk markers than low risk subjects (P<0.05). High risk subjects also showed a significant increase in DNA damage, which was higher than that provided by low and moderate risk subjects according to SCGE, but not according to the CBMN assay. Vitamin C intake was inversely correlated with DNA damage by SCGE, and micronucleus (MN) was inversely correlated with folate intake. The present results indicate an increase in DNA damage that may be a consequence of oxidative stress in young individuals with risk factors for CVD, indicating that the DNA damage level can aid in evaluating the risk of CVD.

  16. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    EPA Science Inventory

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  17. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods.

    PubMed

    Broderick, Nichole A; Raffa, Kenneth F; Goodman, Robert M; Handelsman, Jo

    2004-01-01

    Little is known about bacteria associated with Lepidoptera, the large group of mostly phytophagous insects comprising the moths and butterflies. We inventoried the larval midgut bacteria of a polyphagous foliivore, the gypsy moth (Lymantria dispar L.), whose gut is highly alkaline, by using traditional culturing and culture-independent methods. We also examined the effects of diet on microbial composition. Analysis of individual third-instar larvae revealed a high degree of similarity of microbial composition among insects fed on the same diet. DNA sequence analysis indicated that most of the PCR-amplified 16S rRNA genes belong to the gamma-Proteobacteria and low G+C gram-positive divisions and that the cultured members represented more than half of the phylotypes identified. Less frequently detected taxa included members of the alpha-Proteobacterium, Actinobacterium, and Cytophaga/Flexibacter/Bacteroides divisions. The 16S rRNA gene sequences from 7 of the 15 cultured organisms and 8 of the 9 sequences identified by PCR amplification diverged from previously reported bacterial sequences. The microbial composition of midguts differed substantially among larvae feeding on a sterilized artificial diet, aspen, larch, white oak, or willow. 16S rRNA analysis of cultured isolates indicated that an Enterococcus species and culture-independent analysis indicated that an Entbacter sp. were both present in all larvae, regardless of the feeding substrate; the sequences of these two phylotypes varied less than 1% among individual insects. These results provide the first comprehensive description of the microbial diversity of a lepidopteran midgut and demonstrate that the plant species in the diet influences the composition of the gut bacterial community.

  18. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    PubMed

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  19. Evaluation of artificial diets for Attacus atlas (Lepidoptera: Saturniidae) in Yogyakarta Special Region, Indonesia.

    PubMed

    Sukirno, Sukirno; Situmorang, J; Sumarmi, S; Soesilohadi, R C Hidayat; Pratiwi, R; Sukirno, Sukirno; Situmorang, J; Sumarmi, S; Soesilohadi, R C Hidayat; Pratiwi, R

    2013-12-01

    The objective of this research was to evaluate artificial diets that can be used to successfully culture the atlas silk moth, Attacus atlas L. (Lepidoptera: Saturniidae) indoors. Four plant species were evaluated as the basic component of each diet, barringtonia (Barringtonia asiatica), cheesewood (Nauclea orientalis), soursop (Annona muricata), and mahogany (Swietenia mahagoni). Evaluation of the nutritional value of each diet was determined by an analysis of the hemolymph proteins of sixth instars using the Folin-Ciocalteu assay. Survivorship, cocoon quality, and hemolymph protein content of larvae fed the barringtonia diet were higher than those of larvae fed mahogany-, cheesewood-, and soursop-based artificial diets. The average adult emergence of those fed the barringtonia-based diet was 74.5%. The weights of the cocoon in this treatment with the pupa and the empty cocoons were 7.0 and 1.1 g, respectively. Hemolymph of the larvae fed the barringtonia-based artificial diet had the highest concentration of protein with an average of 28.06 mg/ml. The atlas moth reared on the barringtonia-based artificial diet was comparable with those reared only on barringtonia leaves. However, the weight of empty cocoons, adult wingspan, and amount of hemolymph protein were lower than in those reared on barringtonia leaves only. This may suggest that the artificial barringtonia-based diet requires additional protein for maximum efficiency.

  20. Effects of SCFA on the DNA methylation pattern of adiponectin and resistin in high-fat-diet-induced obese male mice.

    PubMed

    Lu, Yuanyuan; Fan, Chaonan; Liang, Aimin; Fan, Xiuqin; Wang, Rui; Li, Ping; Qi, Kemin

    2018-06-21

    Specific adipokines, such as adiponectin and resistin, are secreted from adipose tissue and are associated with the development of obesity. Supplementation of dietary SCFA can prevent and reverse high-fat-diet (HFD)-induced obesity. However, it is not clear whether SCFA ameliorate abnormal expression of adiponectin and resistin in the obese state. The aim of this study was to investigate the effects of SCFA on adiponectin and resistin's expressions in diet-induced obese mice, as well as the potential mechanisms associated with DNA methylation. C57BL/6J male mice were fed for 16 weeks with five types of HFD (34·9 % fat by wt., 60 % kJ) - a control HFD and four HFD with acetate (HFD-A), propionate (HFD-P), butyrate (HFD-B) and their admixture (HFD-SCFA). Meanwhile, a low-fat diet (4·3 % fat by wt., 10 % kJ) was used as the control group. The reduced mRNA levels of adiponectin and resistin in the adipose tissue of the HFD-fed mice were significantly reversed by dietary supplementation of acetate, propionate, butyrate or their admixture to the HFD. Moreover, the expressional changes of adiponectin and resistin induced by SCFA were associated with alterations in DNA methylation at their promoters, which was mediated by reducing the expressions of enzyme-catalysed DNA methyltransferase (DNMT1, 3a, 3b) and the methyl-CpG-binding domain protein 2 (MBD2) and suppressing the binding of these enzymes to the promoters of adiponectin and resistin. Our results indicate that SCFA may correct aberrant expressions of adiponectin and resistin in obesity by epigenetic regulation.

  1. Identification of metabolically active bacteria in the gut of the generalist Spodoptera littoralis via DNA stable isotope probing using 13C-glucose.

    PubMed

    Shao, Yongqi; Arias-Cordero, Erika M; Boland, Wilhelm

    2013-11-13

    Guts of most insects are inhabited by complex communities of symbiotic nonpathogenic bacteria. Within such microbial communities it is possible to identify commensal or mutualistic bacteria species. The latter ones, have been observed to serve multiple functions to the insect, i.e. helping in insect reproduction(1), boosting the immune response(2), pheromone production(3), as well as nutrition, including the synthesis of essential amino acids(4,) among others.     Due to the importance of these associations, many efforts have been made to characterize the communities down to the individual members. However, most of these efforts were either based on cultivation methods or relied on the generation of 16S rRNA gene fragments which were sequenced for final identification. Unfortunately, these approaches only identified the bacterial species present in the gut and provided no information on the metabolic activity of the microorganisms. To characterize the metabolically active bacterial species in the gut of an insect, we used stable isotope probing (SIP) in vivo employing (13)C-glucose as a universal substrate. This is a promising culture-free technique that allows the linkage of microbial phylogenies to their particular metabolic activity. This is possible by tracking stable, isotope labeled atoms from substrates into microbial biomarkers, such as DNA and RNA(5). The incorporation of (13)C isotopes into DNA increases the density of the labeled DNA compared to the unlabeled ((12)C) one. In the end, the (13)C-labeled DNA or RNA is separated by density-gradient ultracentrifugation from the (12)C-unlabeled similar one(6). Subsequent molecular analysis of the separated nucleic acid isotopomers provides the connection between metabolic activity and identity of the species. Here, we present the protocol used to characterize the metabolically active bacteria in the gut of a generalist insect (our model system), Spodoptera littoralis (Lepidoptera, Noctuidae). The phylogenetic analysis of the DNA was done using pyrosequencing, which allowed high resolution and precision in the identification of insect gut bacterial community. As main substrate, (13)C-labeled glucose was used in the experiments. The substrate was fed to the insects using an artificial diet.

  2. Analysis of Total Food Intake and Composition of Individual's Diet Based on the U.S. Department of Agriculture's 1994-96, 1998 Continuing Survey of Food Intakes by Individuals (CSFII) (2005, Final Report)

    EPA Science Inventory

    EPA released the final report, Analysis of Total Food Intake and Composition of Individual’s Diet Based on USDA’s 1994-1996, 98 Continuing Survey of Food Intakes by Individuals (CSFII). The consumption of food by the general population is a significant route of potential ...

  3. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells.

    PubMed

    Arpón, A; Riezu-Boj, J I; Milagro, F I; Marti, A; Razquin, C; Martínez-González, M A; Corella, D; Estruch, R; Casas, R; Fitó, M; Ros, E; Salas-Salvadó, J; Martínez, J A

    2016-08-01

    Epigenetic processes, including DNA methylation, might be modulated by environmental factors such as the diet, which in turn have been associated with the onset of several diseases such as obesity or cardiovascular events. Meanwhile, Mediterranean diet (MedDiet) has demonstrated favourable effects on cardiovascular risk, blood pressure, inflammation and other complications related to excessive adiposity. Some of these effects could be mediated by epigenetic modifications. Therefore, the objective of this study was to investigate whether the adherence to MedDiet is associated with changes in the methylation status from peripheral blood cells. A subset of 36 individuals was selected within the Prevención con Dieta Mediterránea (PREDIMED)-Navarra study, a randomised, controlled, parallel trial with three groups of intervention in high cardiovascular risk volunteers, two with a MedDiet and one low-fat control group. Changes in methylation between baseline and 5 years were studied. DNA methylation arrays were analysed by several robust statistical tests and functional classifications. Eight genes related to inflammation and immunocompetence (EEF2, COL18A1, IL4I1, LEPR, PLAGL1, IFRD1, MAPKAPK2, PPARGC1B) were finally selected as changes in their methylation levels correlated with adherence to MedDiet and because they presented sensitivity related to a high variability in methylation changes. Additionally, EEF2 methylation levels positively correlated with concentrations of TNF-α and CRP. This report is apparently the first showing that adherence to MedDiet is associated with the methylation of the reported genes related to inflammation with a potential regulatory impact.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Jack A.; Quinn, Robert A.; Debelius, Justine

    Rapid advances in DNA sequencing, metabolomics, proteomics and computation dramatically increase accessibility of microbiome studies and identify links between the microbiome and disease. Microbial time-series and multiple molecular perspectives enable Microbiome-Wide Association Studies (MWAS), analogous to Genome-Wide Association Studies (GWAS). Rapid research advances point towards actionable results, although approved clinical tests based on MWAS are still in the future. Appreciating the complexity of interactions between diet, chemistry, health and the microbiome, and determining the frequency of observations needed to capture and integrate this dynamic interface, is paramount for addressing the need for personalized and precision microbiome-based diagnostics and therapies.

  5. Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring.

    PubMed

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Wang, Zhixin; Qi, Cuijuan; Wang, Tong

    2015-10-01

    Substantial evidence demonstrated that maternal dietary nutrients can significantly determine the susceptibility to developing metabolic disorders in the offspring. Therefore, we aimed to investigate the later-life effects of maternal and postweaning diets interaction on epigenetic modification of the central nervous system in the offspring. We examined the effects of dams fed a high-fat, high-sucrose (FS) diet during pregnancy and lactation and weaned to FS diet continuously until 32 weeks of age. Then, DNA methylation and gene expressions of hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were determined in the offspring. Offspring of FS diet had heavier body weight, impaired glucose tolerance, decreased insulin sensitivity and higher serum leptin level at 32-week age (p < 0.05). The expression of POMC and MC4R genes were significantly increased in offspring exposed to FS diet during gestation, lactation and into 32-week age (p < 0.05). Consistently, hypomethylation of POMC promoter in the hypothalamus occurred in the FS diet offspring (p < 0.05), compared with the C group. However, no methylation was detected of MC4R promoter in both the two groups. Furthermore, POMC-specific methylation (%) was negatively associated with glucose response to a glucose load (r = -0.273, p = 0.039). Maternal and post-weaning high-fat diet predisposes the offspring for obesity, glucose intolerance and insulin resistance in later life. Our findings can advance our thinking around the DNA methylation status of the promoter of the POMC and MC4R genes between long-term high-fat, high-sucrose diet and glucose homeostasis in mouse.

  6. Mitochondrial DNA diagnosis for taeniasis and cysticercosis.

    PubMed

    Yamasaki, Hiroshi; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Sato, Marcello Otake; Ito, Akira

    2006-01-01

    Molecular diagnosis for taeniasis and cysticercosis in humans on the basis of mitochondrial DNA analysis was reviewed. Development and application of three different methods, including restriction fragment length polymorphism analysis, base excision sequence scanning thymine-base analysis and multiplex PCR, were described. Moreover, molecular diagnosis of cysticerci found in specimens submitted for histopathology and the molecular detection of taeniasis using copro-DNA were discussed.

  7. Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease.

    PubMed

    Mohan, Mahesh; Chow, Cheryl-Emiliane T; Ryan, Caitlin N; Chan, Luisa S; Dufour, Jason; Aye, Pyone P; Blanchard, James; Moehs, Charles P; Sestak, Karol

    2016-10-28

    The composition of the gut microbiome reflects the overall health status of the host. In this study, stool samples representing the gut microbiomes from 6 gluten-sensitive (GS) captive juvenile rhesus macaques were compared with those from 6 healthy, age- and diet-matched peers. A total of 48 samples representing both groups were studied using V4 16S rRNA gene DNA analysis. Samples from GS macaques were further characterized based on type of diet administered: conventional monkey chow, i.e., wheat gluten-containing diet (GD), gluten-free diet (GFD), barley gluten-derived diet (BOMI) and reduced gluten barley-derived diet (RGB). It was hypothesized that the GD diet would lower the gut microbial diversity in GS macaques. This is the first report illustrating the reduction of gut microbial alpha-diversity ( p < 0.05) following the consumption of dietary gluten in GS macaques. Selected bacterial families (e.g., Streptococcaceae and Lactobacillaceae ) were enriched in GS macaques while Coriobacteriaceae was enriched in healthy animals. Within several weeks after the replacement of the GD by the GFD diet, the composition (beta-diversity) of gut microbiome in GS macaques started to change ( p = 0.011) towards that of a normal macaque. Significance for alpha-diversity however, was not reached by the day 70 when the feeding experiment ended. Several inflammation-associated microRNAs (miR-203, -204, -23a, -23b and -29b) were upregulated ( p < 0.05) in jejunum of 4 biopsied GS macaques fed GD with predicted binding sites on 16S ribosomal RNA of Lactobacillus reuteri (accession number: NR_025911), Prevotella stercorea (NR_041364) and Streptococcus luteciae (AJ297218) that were overrepresented in feces. Additionally, claudin-1, a validated tight junction protein target of miR-29b was significantly downregulated in jejunal epithelium of GS macaques. Taken together, we predict that with the introduction of effective treatments in future studies the diversity of gut microbiomes in GS macaques will approach those of healthy individuals. Further studies are needed to elucidate the regulatory pathways of inflammatory miRNAs in intestinal mucosa of GS macaques and to correlate their expression with gut dysbiosis.

  8. Alterations in benzo(A)pyrene metabolism and in vivo binding to hepatic DNA in rats red diets containing menhaden oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, A.E.; Dharwadkar, S.

    1987-01-01

    Polyunsaturated fatty acids of the omega-6 type have been shown to support the mixed function oxidases (MFO) responsible for carcinogen activation and to promote tumorigenesis in laboratory animals. The omega-3 fatty acids contained in menhaden oil (MO) have been shown to enhance MFO activity and increase the binding of Benzo(a)pyrene (B(a)P) metabolites to calf thymus DNA in an in vitro microsomal system. Rats fed two levels of MO (0.5% and 20%) for 11 days received a single i.p. dose of (/sup 3/H)B(a)P (5 m Ci/kg) dissolved in DMSO. At selected time intervals thereafter rats were killed, blood withdrawn, livers removedmore » and DNA extracted. Hepatic microsomes were recovered from control rats on each diet at the time of B(a)P administration to assess MFO activities. Binding of B(a)P to DNA was higher in rats fed the 20% MO diet suggesting an increased rate of B(a)P activation. Blood levels of B(a)P were elevated at 16 and 24 hours post B(a)P, however no differences in urine concentrations were observed. Elevations in concentration of cytochrome P-450, ethoxycoumarin dealkylase, and glutathione S-transferase suggest that omega-3 fatty acids of menhaden fish oil support MFO related reactions not unlike the omega-6 fatty acids.« less

  9. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning; Reisner, Walter

    2013-03-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with embedded pore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a pore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can optically detect successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule. Furthermore, electrical measurements through the nanopore are performed, indicating that DNA sensing is feasible using the nanochannel-nanopore device.

  10. The effects of plant extracts on microbial community structure in a rumen-simulating continuous-culture system as revealed by molecular profiling.

    PubMed

    Ferme, D; Banjac, M; Calsamiglia, S; Busquet, M; Kamel, C; Avgustin, G

    2004-01-01

    An in vitro study in dual-flow continuous-culture fermentors was conducted with two different concentrations of monensin, cinnamaldehyde or garlic extract added to 1:1 forage-to-concentrate diet in order to determine their effects on selected rumen bacterial populations. Samples were subjected to total DNA extraction, restriction analysis of PCR amplified parts of 16S rRNA genes (ARDRA) and subsequent analysis of the restriction profiles by lab-on-chip technology with the Agilent's Bioanalyser 2100. Eub338-BacPre primer pair was used to select for the bacteria from the genera Bacteroides, Porphyromonas and Prevotella, especially the latter representing the dominant Gram-negative bacterial population in the rumen. Preliminary results of HaeIII restriction analysis show that the effects of monensin, cinnamaldehyde and garlic extract on the BacPre targeted ruminal bacteria are somewhat different in regard to targeted populations and to the nature of the effect. Garlic extract was found to trigger the most intensive changes in the structure of the BacPre targeted population. Comparison of the in silico restriction analysis of BacPre sequences deposited in different DNA databanks and of the results of performed amplified ribosomal DNA restriction analysis showed differences between the predicted and obtained HaeIII restriction profiles, and suggested the presence of novel, still unknown Prevotella populations in studied samples.

  11. Development of an optical biosensor based on surface-enhanced Raman scattering for DNA analysis

    NASA Astrophysics Data System (ADS)

    Yigit, Tugce; Akdogan, Ebru; Karagoz, Isık. Didem; Kahraman, Mehmet

    2016-03-01

    Rapid, accurate and sensitive DNA analysis is critically important for the diagnostic of genetic diseases. The most common method preferred in practice is fluorescence based microarrays to analyze the DNA. However, there exist some disadvantages related to the above-mentioned method such as the overlapping of the fluorescence emission wavelengths that can diminish in the performance of multiplexing, needed to obtain fluorescence spectra from each dye and photo degradation. In this study, a novel SERS based DNA analysis approach, which is Raman active dye-free and independent of SERS substrate properties, is developed. First, the single strand DNA probe is attached to the SERS substrate and half of the complimentary DNA is attached to gold nanoparticles, as well. We hypothesize that in the presence of target DNA, the complimentary DNA coupled colloids will bind to the SERS substrate surface via hybridization of single strand target DNA. To test this hypothesis, we used UV/Vis spectroscopy, atomic for microscopy (AFM) and dynamic light scattering (DLS). DNA analysis is demonstrated by a peak shift of the certain peak of the small molecules attached to the SERS substrate surface instead of SERS spectrum obtained in the presence of target DNA from the Raman reporter molecules. The degree of peak shifting will be used for the quantification of the target DNA in the sample. Plasmonic properties of SERS substrates and reproducibility issues will not be considerable due to the use of peak shifting instead of peak intensity for the qualitative analysis.

  12. Characteristics of the Japanese Diet Described in Epidemiologic Publications: A Qualitative Systematic Review.

    PubMed

    Suzuki, Nozomu; Goto, Yoshihito; Ota, Haruka; Kito, Kumiko; Mano, Fumika; Joo, Erina; Ikeda, Kaori; Inagaki, Nobuya; Nakayama, Takeo

    2018-01-01

    International interest in the Japanese diet has grown in recent years. The aim of this systematic review was to evaluate and organize the Japanese diet and dietary characteristics from an epidemiological perspective, mainly focusing on the nutritional and dietary elements. PubMed, Web of Science, Japan Medical Abstracts Society, JDream III, and CiNii databases were searched. The eligibility criteria included research with an epidemiological study design that was either cross-sectional, cohort, or case-control-based that defined the dietary patterns of the Japanese diet using dietary pattern analysis. A total of 39 research articles that described the Japanese diet were included. The data that were extracted included the following: implementing country, location, study design, participant characteristics, key outcomes, methods used in the analysis of dietary patterns, and descriptions of the Japanese diet. As a result of the systematic review analyzing the descriptions of the Japanese diet from 39 selected articles, we were able to aggregate the descriptions into 16 categories from 33 factors. After performing a content analysis using a further aggregation of categories, we found that the top three applicable categories were soybeans/soybean-derived products, seafood, and vegetables; these were followed by rice and miso soup. The Japanese dietary content was found to be diverse based on an examination of epidemiological studies; however, we were able to aggregate the content into 16 categories. The Japanese diet is considered to be a dietary pattern that contains a combination of factors: the dietary staple, side dishes, and soup.

  13. [Protein -based diet with respect to the principles of rational nutrition. Menus analysis].

    PubMed

    Szczuko, Małgorzata; Pieszak, Natalia; Jamioł -Milc, Dominika; Stachowska, Ewa

    A diet high in protein and low in carbohydrates has four phases, first of them being the attack phase, which eliminates carbohydrates to the highest extent. In subsequent phases the consumption of carbohydrates is gradually allowed but their ratio is limited. The aim of performed studies was to analyze the metabolic effects of protein -based diet. The hypothesis – the analysis based on the composition of the diets should draw the attention to health risks being not only related to too high consumption of protein. In the study, 40 diets were composed according to the objectives of high protein diet – 10 diets for each of the four phases. Next, the diets were introduced into dietetic program Dietician 2 recommended by the National Food and Nutrition Institute in Poland, and the amounts of nutrients supplied with the diets were calculated. Those amounts were compared to the currently recommended dietary allowances in Poland. Based on too high consumption of some nutrients and the deficiency of others in the diets, the highest detrimental effect was determined for the first two phases of the diet. In all four phases of the diet, too high consumption of protein, UFA and cholesterol was determined, which amounted to 148.8–160.5 g/day, 12.5–16.2 g/day and 467.7–488.7 mg/day, respectively. Simultaneously, too low average consumption was noted in case of energy (1131–1690 kcal), carbohydrates (58.2–149.4 g) and dietary fiber (3.3–28.7 g) in all phases of the diet. Additionally, the deficiency in vitamin E (2.69–7.21 mg) was observed in the first three phases of the diet, and thiamin in the first two phases (0.72–1.02 mg). The most deficient phase of the diet was the first phase – the attack phase, where the deficiency also concerned folacin (154.4 mg/day), vitamin C (6.14 mg), potassium (2947.7 mg), iron (7.19 mg), copper (0.59 mg) and magnesium (294.8 mg). The main causes of body mass reduction in high protein diet are caloric restrictions in all diet phases. The analyses of diets compositions determined the potential negative effect of using this diet in case of people with predisposition to kidney diseases, gout, cardiovascular diseases, anemia and erythropoiesis disorders. The most detrimental was the first phase of the diet, which entirely eliminates carbohydrate products.

  14. Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes.

    PubMed

    Ranković, Slavica; Popović, Tamara; Martačić, Jasmina Debeljak; Petrović, Snježana; Tomić, Mirko; Ignjatović, Đurđica; Tovilović-Kovačević, Gordana; Glibetić, Maria

    2017-05-19

    Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Gender related variations in FA composition of rat liver PL were observed, and results have shown that those initial differences could be significantly modulated by the type of diet. Furthermore, the modulatory effects of milk- and fish-based diets on liver phospholipids FA profiles appeared to be sex-specific.

  15. Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenolic compounds

    USDA-ARS?s Scientific Manuscript database

    DNA methylation is an epigenetic mechanism that can inhibit gene transcription. The aim of this study was to assess changes induced by an obesogenic diet in the methylation profile of genes involved in adipose tissue triacylglycerol metabolism, and to determine whether this methylation pattern can b...

  16. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging

    USDA-ARS?s Scientific Manuscript database

    Experimental studies demonstrated that maternal environmental factors including diet during early embryonic development can influence the phenotype of offspring as well as the risk of disease development at the later life. DNA methylation, an epigenetic phenomenon, has been suggested as a mechanism ...

  17. Mitochondrial sequence analysis for forensic identification using pyrosequencing technology.

    PubMed

    Andréasson, H; Asp, A; Alderborn, A; Gyllensten, U; Allen, M

    2002-01-01

    Over recent years, requests for mtDNA analysis in the field of forensic medicine have notably increased, and the results of such analyses have proved to be very useful in forensic cases where nuclear DNA analysis cannot be performed. Traditionally, mtDNA has been analyzed by DNA sequencing of the two hypervariable regions, HVI and HVII, in the D-loop. DNA sequence analysis using the conventional Sanger sequencing is very robust but time consuming and labor intensive. By contrast, mtDNA analysis based on the pyrosequencing technology provides fast and accurate results from the human mtDNA present in many types of evidence materials in forensic casework. The assay has been developed to determine polymorphic sites in the mitochondrial D-loop as well as the coding region to further increase the discrimination power of mtDNA analysis. The pyrosequencing technology for analysis of mtDNA polymorphisms has been tested with regard to sensitivity, reproducibility, and success rate when applied to control samples and actual casework materials. The results show that the method is very accurate and sensitive; the results are easily interpreted and provide a high success rate on casework samples. The panel of pyrosequencing reactions for the mtDNA polymorphisms were chosen to result in an optimal discrimination power in relation to the number of bases determined.

  18. The in vivo antioxidant action and the reduction of oxidative stress by boysenberry extract is dependent on base diet constituents in rats.

    PubMed

    Barnett, Laura E; Broomfield, Anne M; Hendriks, Wouter H; Hunt, Martin B; McGhie, Tony K

    2007-06-01

    Dietary antioxidants are often defined by in vitro measures of antioxidant activity. Such measures are valid indicators of the antioxidant potential, but provide little evidence of activity as a dietary antioxidant. This study was undertaken to assess the in vivo antioxidant efficacy of a berry fruit extract by measuring biomarkers of oxidative damage to protein (carbonyls), lipids (malondialdehyde), and DNA (8-oxo-2'-deoxyguanosine urinary excretion) and plasma antioxidant status (antioxidant capacity, vitamin E) in rats when fed basal diets containing fish and soybean oils, which are likely to generate different levels of oxidative stress. Boysenberry (Rubus loganbaccus x baileyanus Britt) extract was used as the dietary antioxidant. The basal diets (chow, synthetic/soybean oil, or synthetic/fish oil) had significant effects on the biomarkers of oxidative damage and antioxidant status, with rats fed the synthetic/fish oil diet having the lowest levels of oxidative damage and the highest antioxidant status. When boysenberry extract was added to the diet, there was little change in 8-oxo-2'-deoxyguanosine excretion in urine, oxidative damage to proteins decreased, and plasma malondialdehyde either increased or decreased depending on the basal diet. This study showed that boysenberry extract functioned as an in vivo antioxidant and raised the antioxidant status of plasma while decreasing some biomarkers of oxidative damage, but the effect was highly modified by basal diet. Our results are further evidence of complex interactions among dietary antioxidants, background nutritional status as determined by diet, and the biochemical nature of the compartments in which antioxidants function.

  19. Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat.

    PubMed

    Brevik, Asgeir; Joshi, Amit D; Corral, Román; Onland-Moret, N Charlotte; Siegmund, Kimberly D; Le Marchand, Loïc; Baron, John A; Martinez, Maria Elena; Haile, Robert W; Ahnen, Dennis J; Sandler, Robert S; Lance, Peter; Stern, Mariana C

    2010-12-01

    A diet high in red meat is an established colorectal cancer (CRC) risk factor. Carcinogens generated during meat cooking have been implicated as causal agents and can induce oxidative DNA damage, which elicits repair by the base excision repair (BER) pathway. Using a family-based study, we investigated the role of polymorphisms in 4 BER genes (APEX1 Gln51His, Asp148Glu; OGG1 Ser236Cys; PARP Val742Ala; and XRCC1 Arg194Trp, Arg280His, Arg399Gln) as potential CRC risk factors and modifiers of the association between diets high in red meat or poultry and CRC risk. We tested for gene-environment interactions using case-only analyses (n = 577) and compared statistically significant results with those obtained using case-unaffected sibling comparisons (n = 307 sibships). Carriers of the APEX1 codon 51 Gln/His genotype had a reduced CRC risk compared with carriers of the Gln/Gln genotype (odds ratio (OR) = 0.15, 95% CI = 0.03-0.69, P = 0.015). The association between higher red meat intake (>3 servings per week) and CRC was modified by the PARP Val762Ala single-nucleotide polymorphisms (SNP; case-only interaction P = 0.026). This SNP also modified the association between higher intake of high-temperature cooked red meat (case-only interaction P = 0.0009). We report evidence that the BER pathway PARP gene modifies the association of diets high in red meat cooked at high temperatures with risk of CRC. Our findings suggest a contribution to colorectal carcinogenesis of free radical damage as one of the possible harmful effects of a diet high in red meat. ©2010 AACR.

  20. Polymorphisms in base excision repair genes as colorectal cancer risk factors and modifiers of the effect of diets high in red meat

    PubMed Central

    Brevik, Asgeir; Joshi, Amit D.; Corral, Román; Onland-Moret, N. Charlotte; Siegmund, Kimberly D.; Le Marchand, Loïc; Baron, John A.; Martinez, Maria Elena; Haile, Robert W.; Ahnen, Dennis J.; Sandler, Robert S.; Lance, Peter; Stern, Mariana C.

    2010-01-01

    Background A diet high in red meat is an established colorectal cancer (CRC) risk factor. Carcinogens generated during meat cooking have been implicated as causal agents, and can induce oxidative DNA damage, which elicits repair by the base excision repair (BER) pathway. Methods Using a family-based study we investigated the role of polymorphisms in four BER genes (APEX1 Gln51His, Asp148Glu; OGG1 Ser236Cys; PARP Val742Ala; XRCC1 Arg194Trp, Arg280His, Arg399Gln) as potential CRC risk factors and modifiers of the association between high-red meat or poultry diets and CRC risk. We tested for gene-environment interactions using case-only analyses (N = 577) and compared statistically significant results to those obtained using case-unaffected sibling comparisons (N = 307 sibships). Results Carriers of the APEX1 codon 51 Gln/His genotype had a reduced CRC risk compared to carriers of the Gln/Gln genotype (OR 0.15, 95% CI 0.03-0.69, p = 0.015). The association between higher red meat intake (>3 servings/week) and CRC was modified by the PARP Val762Ala SNP (case-only interaction p = 0.026). This SNP also modified the association between higher intake of high-temperature cooked red meat (case-only interaction p = 0.0009). Conclusions We report evidence that the BER pathway PARP gene modifies the association of diets high in red meat cooked at high temperatures with risk of CRC. Impact Our findings suggest a contribution to colorectal carcinogenesis of free radical damage as one of the possible harmful effects of a high-red meat diet. PMID:21037106

  1. Metabarcoding avian diets at airports: implications for birdstrike hazard management planning

    PubMed Central

    2013-01-01

    Background Wildlife collisions with aircraft cost the airline industry billions of dollars per annum and represent a public safety risk. Clearly, adapting aerodrome habitats to become less attractive to hazardous wildlife will reduce the incidence of collisions. Formulating effective habitat management strategies relies on accurate species identification of high-risk species. This can be successfully achieved for all strikes either through morphology and/or DNA-based identifications. Beyond species identification, dietary analysis of birdstrike gut contents can provide valuable intelligence for airport hazard management practices in regards to what food is attracting which species to aerodromes. Here, we present birdstrike identification and dietary data from Perth Airport, Western Australia, an aerodrome that saw approximately 140,000 aircraft movements in 2012. Next-generation high throughput DNA sequencing was employed to investigate 77 carcasses from 16 bird species collected over a 12-month period. Five DNA markers, which broadly characterize vertebrates, invertebrates and plants, were used to target three animal mitochondrial genes (12S rRNA, 16S rRNA, and COI) and a plastid gene (trnL) from DNA extracted from birdstrike carcass gastrointestinal tracts. Results Over 151,000 DNA sequences were generated, filtered and analyzed by a fusion-tag amplicon sequencing approach. Across the 77 carcasses, the most commonly identified vertebrate was Mus musculus (house mouse). Acrididae (grasshoppers) was the most common invertebrate family identified, and Poaceae (grasses) the most commonly identified plant family. The DNA-based dietary data has the potential to provide some key insights into feeding ecologies within and around the aerodrome. Conclusions The data generated here, together with the methodological approach, will greatly assist in the development of hazard management plans and, in combination with existing observational studies, provide an improved way to monitor the effectiveness of mitigation strategies (for example, netting of water, grass type, insecticides and so on) at aerodromes. It is hoped that with the insights provided by dietary data, airports will be able to allocate financial resources to the areas that will achieve the best outcomes for birdstrike reduction. PMID:24330620

  2. Metabarcoding avian diets at airports: implications for birdstrike hazard management planning.

    PubMed

    Coghlan, Megan L; White, Nicole E; Murray, Dáithí C; Houston, Jayne; Rutherford, William; Bellgard, Matthew I; Haile, James; Bunce, Michael

    2013-12-11

    Wildlife collisions with aircraft cost the airline industry billions of dollars per annum and represent a public safety risk. Clearly, adapting aerodrome habitats to become less attractive to hazardous wildlife will reduce the incidence of collisions. Formulating effective habitat management strategies relies on accurate species identification of high-risk species. This can be successfully achieved for all strikes either through morphology and/or DNA-based identifications. Beyond species identification, dietary analysis of birdstrike gut contents can provide valuable intelligence for airport hazard management practices in regards to what food is attracting which species to aerodromes. Here, we present birdstrike identification and dietary data from Perth Airport, Western Australia, an aerodrome that saw approximately 140,000 aircraft movements in 2012. Next-generation high throughput DNA sequencing was employed to investigate 77 carcasses from 16 bird species collected over a 12-month period. Five DNA markers, which broadly characterize vertebrates, invertebrates and plants, were used to target three animal mitochondrial genes (12S rRNA, 16S rRNA, and COI) and a plastid gene (trnL) from DNA extracted from birdstrike carcass gastrointestinal tracts. Over 151,000 DNA sequences were generated, filtered and analyzed by a fusion-tag amplicon sequencing approach. Across the 77 carcasses, the most commonly identified vertebrate was Mus musculus (house mouse). Acrididae (grasshoppers) was the most common invertebrate family identified, and Poaceae (grasses) the most commonly identified plant family. The DNA-based dietary data has the potential to provide some key insights into feeding ecologies within and around the aerodrome. The data generated here, together with the methodological approach, will greatly assist in the development of hazard management plans and, in combination with existing observational studies, provide an improved way to monitor the effectiveness of mitigation strategies (for example, netting of water, grass type, insecticides and so on) at aerodromes. It is hoped that with the insights provided by dietary data, airports will be able to allocate financial resources to the areas that will achieve the best outcomes for birdstrike reduction.

  3. Comparisons of non-Gaussian statistical models in DNA methylation analysis.

    PubMed

    Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-06-16

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.

  4. Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis

    PubMed Central

    Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-01-01

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687

  5. Using DNA metabarcoding for simultaneous inference of common vampire bat diet and population structure.

    PubMed

    Bohmann, Kristine; Gopalakrishnan, Shyam; Nielsen, Martin; Nielsen, Luisa Dos Santos Bay; Jones, Gareth; Streicker, Daniel G; Gilbert, M Thomas P

    2018-04-19

    Metabarcoding diet analysis has become a valuable tool in animal ecology; however, co-amplified predator sequences are not generally used for anything other than to validate predator identity. Exemplified by the common vampire bat, we demonstrate the use of metabarcoding to infer predator population structure alongside diet assessments. Growing populations of common vampire bats impact human, livestock and wildlife health in Latin America through transmission of pathogens, such as lethal rabies viruses. Techniques to determine large-scale variation in vampire bat diet and bat population structure would empower locality- and species-specific projections of disease transmission risks. However, previously used methods are not cost-effective and efficient for large-scale applications. Using bloodmeal and faecal samples from common vampire bats from coastal, Andean and Amazonian regions of Peru, we showcase metabarcoding as a scalable tool to assess vampire bat population structure and feeding preferences. Dietary metabarcoding was highly effective, detecting vertebrate prey in 93.2% of the samples. Bats predominantly preyed on domestic animals, but fed on tapirs at one Amazonian site. In addition, we identified arthropods in 9.3% of samples, likely reflecting consumption of ectoparasites. Using the same data, we document mitochondrial geographic population structure in the common vampire bat in Peru. Such simultaneous inference of vampire bat diet and population structure can enable new insights into the interplay between vampire bat ecology and disease transmission risks. Importantly, the methodology can be incorporated into metabarcoding diet studies of other animals to couple information on diet and population structure. © 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  6. FABP4 is a leading candidate gene associated with residual feed intake in growing Holstein calves.

    PubMed

    Cohen-Zinder, Miri; Asher, Aviv; Lipkin, Ehud; Feingersch, Roi; Agmon, Rotem; Karasik, David; Brosh, Arieh; Shabtay, Ariel

    2016-05-01

    Ecological and economic concerns drive the need to improve feed utilization by domestic animals. Residual feed intake (RFI) is one of the most acceptable measures for feed efficiency (FE). However, phenotyping RFI-related traits is complex and expensive and requires special equipment. Advances in marker technology allow the development of various DNA-based selection tools. To assimilate these technologies for the benefit of RFI-based selection, reliable phenotypic measures are prerequisite. In the current study, we identified single nucleotide polymorphisms (SNPs) associated with RFI phenotypic consistency across different ages and diets (named RFI 1-3), using DNA samples of high or low RFI ranked Holstein calves. Using targeted sequencing of chromosomal regions associated with FE- and RFI-related traits, we identified 48 top SNPs significantly associated with at least one of three defined RFIs. Eleven of these SNPs were harbored by the fatty acid binding protein 4 (FABP4). While 10 significant SNPs found in FABP4 were common for RFI 1 and RFI 3, one SNP (FABP4_5; A

  7. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets

    PubMed Central

    Karweina, Diana; Kreuzer-Redmer, Susanne; Müller, Uwe; Franken, Tobias; Pieper, Robert; Baron, Udo; Olek, Sven; Zentek, Jürgen; Brockmann, Gudrun A.

    2015-01-01

    High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn), 164 (NZn) or 2,425 (HZn) mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035); the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007). In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017). The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099). The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors. PMID:26599865

  8. Association between plant-based diets and plasma lipids: a systematic review and meta-analysis.

    PubMed

    Yokoyama, Yoko; Levin, Susan M; Barnard, Neal D

    2017-09-01

    Although a recent meta-analysis of randomized controlled trials showed that adoption of a vegetarian diet reduces plasma lipids, the association between vegetarian diets and long-term effects on plasma lipids has not been subjected to meta-analysis. The aim was to conduct a systematic review and meta-analysis of observational studies and clinical trials that have examined associations between plant-based diets and plasma lipids. MEDLINE, Web of Science, and the Cochrane Central Register of Controlled Trials were searched for articles published in English until June 2015. The literature was searched for controlled trials and observational studies that investigated the effects of at least 4 weeks of a vegetarian diet on plasma lipids. Two reviewers independently extracted the study methodology and sample size, the baseline characteristics of the study population, and the concentrations and variance measures of plasma lipids. Mean differences in concentrations of plasma lipids between vegetarian and comparison diet groups were calculated. Data were pooled using a random-effects model. Of the 8385 studies identified, 30 observational studies and 19 clinical trials met the inclusion criteria (N = 1484; mean age, 48.6 years). Consumption of vegetarian diets was associated with lower mean concentrations of total cholesterol (-29.2 and -12.5 mg/dL, P < 0.001), low-density lipoprotein cholesterol (-22.9 and -12.2 mg/dL, P < 0.001), and high-density lipoprotein cholesterol (-3.6 and -3.4 mg/dL, P < 0.001), compared with consumption of omnivorous diets in observational studies and clinical trials, respectively. Triglyceride differences were -6.5 (P = 0.092) in observational studies and 5.8 mg/dL (P = 0.090) in intervention trials. Plant-based diets are associated with decreased total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol, but not with decreased triglycerides. PROSPERO number CRD42015023783. Available at: https://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015023783. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute.

  9. Association between plant-based diets and plasma lipids: a systematic review and meta-analysis

    PubMed Central

    Yokoyama, Yoko; Levin, Susan M; Barnard, Neal D

    2017-01-01

    Abstract Context Although a recent meta-analysis of randomized controlled trials showed that adoption of a vegetarian diet reduces plasma lipids, the association between vegetarian diets and long-term effects on plasma lipids has not been subjected to meta-analysis. Objective The aim was to conduct a systematic review and meta-analysis of observational studies and clinical trials that have examined associations between plant-based diets and plasma lipids. Data Sources MEDLINE, Web of Science, and the Cochrane Central Register of Controlled Trials were searched for articles published in English until June 2015. Study Selection The literature was searched for controlled trials and observational studies that investigated the effects of at least 4 weeks of a vegetarian diet on plasma lipids. Data Extraction Two reviewers independently extracted the study methodology and sample size, the baseline characteristics of the study population, and the concentrations and variance measures of plasma lipids. Mean differences in concentrations of plasma lipids between vegetarian and comparison diet groups were calculated. Data were pooled using a random-effects model. Results Of the 8385 studies identified, 30 observational studies and 19 clinical trials met the inclusion criteria (N = 1484; mean age, 48.6 years). Consumption of vegetarian diets was associated with lower mean concentrations of total cholesterol (−29.2 and −12.5 mg/dL, P < 0.001), low-density lipoprotein cholesterol (−22.9 and −12.2 mg/dL, P < 0.001), and high-density lipoprotein cholesterol (−3.6 and −3.4 mg/dL, P < 0.001), compared with consumption of omnivorous diets in observational studies and clinical trials, respectively. Triglyceride differences were −6.5 (P = 0.092) in observational studies and 5.8 mg/dL (P = 0.090) in intervention trials. Conclusions Plant-based diets are associated with decreased total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol, but not with decreased triglycerides. Systematic Review Registration PROSPERO number CRD42015023783. Available at: https://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015023783. PMID:28938794

  10. Inferring pterosaur diets through quantitative 3D textural analysis of tooth microwear in extant analogues

    NASA Astrophysics Data System (ADS)

    Bestwick, Jordan; Unwin, David; Butler, Richard; Henderson, Don; Purnell, Mark

    2017-04-01

    Pterosaurs (Pterosauria) were a successful group of Mesozoic flying reptiles. For 150 million years they were integral components of terrestrial and coastal ecosystems, yet their feeding ecology remains poorly constrained. Postulated pterosaur diets include insectivory, piscivory and/or carnivory, but many dietary hypotheses are speculative and/or based on little evidence, highlighting the need for alternative approaches to provide robust data. One method involves quantitative analysis of the micron-scale 3D textures of worn pterosaur tooth surfaces - dental microwear texture analysis. Microwear is produced as scratches and chips generated by food items create characteristic tooth surface textures. Microwear analysis has never been applied to pterosaurs, but we might expect microwear textures to differ between pterosaurs with different diets. An important step in investigating pterosaur microwear is to examine microwear from extant organisms with known diets to provide a comparative data set. This has been achieved through analysis of non-occlusal microwear textures in extant bats, crocodilians and monitor lizards, clades within which species exhibit insectivorous, piscivorous and carnivorous diets. The results - the first test of the hypothesis that non-occlusal microwear textures in these extant clades vary with diet - provide the context for the first robust quantitative tests of pterosaur diets.

  11. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning; Reisner, Walter

    2012-02-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We will discuss our recent progress on device fabrication and characterization. In particular, we demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the embedded pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule.

  12. Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice.

    PubMed

    Llewellyn, Sean R; Britton, Graham J; Contijoch, Eduardo J; Vennaro, Olivia H; Mortha, Arthur; Colombel, Jean-Frederic; Grinspan, Ari; Clemente, Jose C; Merad, Miriam; Faith, Jeremiah J

    2018-03-01

    It is not clear how the complex interactions between diet and the intestinal microbiota affect development of mucosal inflammation or inflammatory bowel disease. We investigated interactions between dietary ingredients, nutrients, and the microbiota in specific pathogen-free (SPF) and germ-free (GF) mice given more than 40 unique diets; we quantified individual and synergistic effects of dietary macronutrients and the microbiota on intestinal health and development of colitis. C56BL/6J SPF and GF mice were placed on custom diets containing different concentrations and sources of protein, fat, digestible carbohydrates, and indigestible carbohydrates (fiber). After 1 week, SPF and GF mice were given dextran sulfate sodium (DSS) to induce colitis. Disease severity was determined based on the percent weight change from baseline, and modeled as a function of the concentration of each macronutrient in the diet. In unchallenged mice, we measured intestinal permeability by feeding mice labeled dextran and measuring levels in blood. Feces were collected and microbiota were analyzed by 16S rDNA sequencing. We collected colons from mice and performed transcriptome analyses. Fecal microbiota varied with diet; the concentration of protein and fiber had the strongest effect on colitis development. Among 9 fiber sources tested, psyllium, pectin, and cellulose fiber reduced the severity of colitis in SPF mice, whereas methylcellulose increased severity. Increasing dietary protein increased the density of the fecal microbiota and the severity of colitis in SPF mice, but not in GF mice or mice given antibiotics. Psyllium fiber reduced the severity of colitis through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary casein protein and psyllium fiber in parallel accounted for most variation in gut microbial density and intestinal permeability in unchallenged mice, as well as the severity of DSS-induced colitis; changes in 1 ingredient could be offset by changes in another. In an analysis of the effects of different dietary components and the gut microbiota on mice with and without DSS-induced colitis, we found complex mixtures of nutrients affect intestinal permeability, gut microbial density, and development of intestinal inflammation. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Influence of GSTM1 null and low repair XPC PAT+ on anti-B[a]PDE-DNA adduct in mononuclear white blood cells of subjects low exposed to PAHs through smoking and diet.

    PubMed

    Pavanello, Sofia; Pulliero, Alessandra; Clonfero, Erminio

    2008-02-01

    The influence of low-activity NER genotypes (XPC PAT-/+, XPA-A23G, XPD Asp312Asn, XPD Lys751Gln) and GSTM1 (active or null) was evaluated on anti-benzo[a]pyrene diol epoxide-(B[a]PDE)-DNA adduct formed in the lymphocyte plus monocyte fraction (LMF). The sample population consisted of 291 healthy subjects with low exposure to polycyclic aromatic hydrocarbons (PAHs) (B[a]P) through their smoking (n=126 smokers) or dietary habits (n=165 non-smokers with high (>or=52 times/year) consumption of charcoaled meat or pizza). The bulky anti-B[a]PDE-DNA adduct levels were detected by HPLC/fluorescence analysis and genotypes by PCR. Anti-B[a]PDE-DNA was present (>or=0.5 adducts/10(8) nucleotides) in 163 (56%) subjects (median (range) 0.77 (0.125-32.0) adducts/10(8) nucleotides), with smokers showing a significantly higher adduct level than non-smokers with high consumption of PAH-rich meals (P<0.01). Our exposed-sample population with unfavourable XPC PAT+/- or +/+ and GSTM1 null genotypes has the significantly highest adduct level (P<0.01). Taking into account tobacco smoke and diet as sources of exposure to B[a]P, low-activity XPC PAT+ shows a major role in smokers (P<0.05) and GSTM1 null in non-smokers with frequent consumption of PAH-rich meals (P<0.01). The modulation of anti-B[a]PDE-DNA adduct in the LMF by GSTM1 null and low-activity XPC PAT+ polymorphisms may be considered as potential genetic susceptibility factors that can modify individual responses to low PAH (B[a]P) genotoxic exposure, with the consequent risk of cancer in the general population.

  14. Application of forensic DNA testing in the legal system.

    PubMed

    Primorac, D; Schanfield, M S

    2000-03-01

    DNA technology has taken an irreplaceable position in the field of the forensic sciences. Since 1985, when Peter Gill and Alex Jeffreys first applied DNA technology to forensic problems, to the present, more than 50,000 cases worldwide have been solved through the use of DNA based technology. Although the development of DNA typing in forensic science has been extremely rapid, today we are witnessing a new era of DNA technology including automation and miniaturization. In forensic science, DNA analysis has become "the new form of scientific evidence" and has come under public scrutiny and the demand to show competence. More and more courts admit the DNA based evidence. We believe that in the near future this technology will be generally accepted in the legal system. There are two main applications of DNA analysis in forensic medicine: criminal investigation and paternity testing. In this article we present background information on DNA, human genetics, and the application of DNA analysis to legal problems, as well as the commonly applied respective mathematics.

  15. Choline, Other Methyl-Donors and Epigenetics

    PubMed Central

    Zeisel, Steven H.

    2017-01-01

    Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases. PMID:28468239

  16. Choline, Other Methyl-Donors and Epigenetics.

    PubMed

    Zeisel, Steven

    2017-04-29

    Choline dietary intake varies such that many people do not achieve adequate intakes. Diet intake of choline can modulate methylation because, via betaine homocysteine methyltransferase (BHMT), this nutrient (and its metabolite, betaine) regulate the concentrations of S-adenosylhomocysteine and S-adenosylmethionine. Some of the epigenetic mechanisms that modify gene expression without modifying the genetic code depend on the methylation of DNA or of histones; and diet availability of choline and other methyl-group donors influences both of these methylations. Examples of methyl-donor mediated epigenetic effects include the changes in coat color and body weight in offspring when pregnant agouti mice are fed high choline, high methyl diets; the changes in tail kinking in offspring when pregnant Axin(Fu) mice are fed high choline, high methyl diets; the changes in Cdkn3 methylation and altered brain development that occurs in offspring when pregnant rodents are fed low choline diets. When choline metabolism is disrupted by deleting the gene Bhmt, DNA methylation is affected (especially in a region of chromosome 13), expression of specific genes is suppressed, and liver cancers develop. Better understanding of how nutrients such as choline and methyl-donors influence epigenetic programs has importance for our understanding of not only developmental abnormalities but also for understanding the origins of chronic diseases.

  17. Dietary omega-3 polyunsaturated fatty acids induce plasminogen activator activity and DNA damage in rabbit spermatozoa.

    PubMed

    Kokoli, A N; Lavrentiadou, S N; Zervos, I A; Tsantarliotou, M P; Georgiadis, M P; Nikolaidis, E A; Botsoglou, N; Boscos, C M; Taitzoglou, I A

    2017-12-01

    The aim of this study was to determine the effect(s) of dietary omega-3 polyunsaturated fatty acids (ω-3 PUFA) on rabbit semen. Adult rabbit bucks were assigned to two groups that were given two diets, a standard diet (control) and a diet supplemented with ω-3 PUFA. Sperm samples were collected from all bucks with the use of an artificial vagina in 20-day intervals, for a total period of 120 days. The enrichment of membranes in ω-3 PUFA was manifested by the elevation of the 22:5 ω-3 (docosapentaenoic acid [DPA]) levels within 40 days. This increase in DPA content did not affect semen characteristics (i.e., concentration, motility and viability). However, it was associated with the induction of lipid peroxidation in spermatozoa, as determined on the basis of the malondialdehyde content. Lipid peroxidation was associated with DNA fragmentation in ω-3 PUFA-enriched spermatozoa and a concomitant increase in plasminogen activator (PA) activity. The effects of ω-3 PUFA on sperm cells were evident within 40 days of ω-3 PUFA dietary intake and exhibited peack values on day 120. Our findings suggest that an ω-3 PUFA-rich diet may not affect semen characteristics; however, it may have a negative impact on the oxidative status and DNA integrity of the spermatozoa, which was associated with an induction of PAs activity. © 2017 Blackwell Verlag GmbH.

  18. Effects of poly-β-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its gastrointestinal tract microbial community.

    PubMed

    Najdegerami, Ebrahim H; Tran, Tiet Ngoc; Defoirdt, Tom; Marzorati, Massimo; Sorgeloos, Patrick; Boon, Nico; Bossier, Peter

    2012-01-01

    Poly-β-hydroxybutyrate (PHB) is a natural polymer that can be depolymerized into water-soluble short-chain fatty acid monomers. These monomers can act as microbial control agents. In this study, the effects of partially replacing the diet of Siberian sturgeon fingerlings with 2% and 5% PHB were investigated. Replacing 2% of the diet with PHB improved weight gain, specific growth rate (SGR) and survival in the sturgeon fingerlings during the 10-week experimental period. Community-level physiological profiling and PCR-denaturing gradient gel electrophoresis (PCR-DGGE) were used to analyze the microbial community diversity and community organization in the sturgeon gastrointestinal tract. DGGE analysis revealed that PHB affected the intestinal microbial species richness and diversity. The highest species richness was observed with 2% PHB. DNA sequencing of the dominant bands in 2% and 5% PHB treatments revealed that PHB stimulated bacteria belonging to the genera Bacillus and Ruminococcaceae. Principal component analysis, Lorenz curves and the Shannon index of Biolog Ecoplate data revealed that aerobic metabolic potential of the bacterial community was different in the PHB-treated fishes as compared with the control situation. Overall, our results indicate that PHB act as microbial control agents and replacement of 2% of Siberian sturgeon fingerling diet with PHB has beneficial effects.

  19. Specificity and Catalytic Mechanism in Family 5 Uracil DNA Glycosylase*

    PubMed Central

    Xia, Bo; Liu, Yinling; Li, Wei; Brice, Allyn R.; Dominy, Brian N.; Cao, Weiguo

    2014-01-01

    UDGb belongs to family 5 of the uracil DNA glycosylase (UDG) superfamily. Here, we report that family 5 UDGb from Thermus thermophilus HB8 is not only a uracil DNA glycosyase acting on G/U, T/U, C/U, and A/U base pairs, but also a hypoxanthine DNA glycosylase acting on G/I, T/I, and A/I base pairs and a xanthine DNA glycosylase acting on all double-stranded and single-stranded xanthine-containing DNA. Analysis of potentials of mean force indicates that the tendency of hypoxanthine base flipping follows the order of G/I > T/I, A/I > C/I, matching the trend of hypoxanthine DNA glycosylase activity observed in vitro. Genetic analysis indicates that family 5 UDGb can also act as an enzyme to remove uracil incorporated into DNA through the existence of dUTP in the nucleotide pool. Mutational analysis coupled with molecular modeling and molecular dynamics analysis reveals that although hydrogen bonding to O2 of uracil underlies the UDG activity in a dissociative fashion, Tth UDGb relies on multiple catalytic residues to facilitate its excision of hypoxanthine and xanthine. This study underscores the structural and functional diversity in the UDG superfamily. PMID:24838246

  20. High dietary intake of sodium selenite does not affect gene mutation frequency in rat colon and liver.

    PubMed

    Zeng, Huawei; Uthus, Eric O; Ross, Sharon A; Davis, Cindy D

    2009-10-01

    Our previous studies have shown that selenium (Se) is protective against dimethylhydrazine (DMH)-induced preneoplastic colon cancer lesions, and protection against DNA damage has been hypothesized to be one mechanism for the anticancer effect of Se. The present study was designed to determine whether dietary selenite affects somatic mutation frequency in vivo. We used the Big Blue transgenic model to evaluate the in vivo mutation frequency of the cII gene in rats fed either a Se-deficient (0 microg Se/g diet) or Se-supplemented diet (0.2 or 2 microg Se/g diet; n = 3 rats/diet in experiment 1 and n = 5 rats/group in experiment 2) and injected with DMH (25 mg/kg body weight, i.p.). There were no significant differences in body weight between the Se-deficient and Se-supplemented (0.2 or 2 microg Se/g diet) rats, but the activities of liver glutathione peroxidase and thioredoxin reductase and concentration of liver Se were significantly lower (p < 0.0001) in Se-deficient rats compared to rats supplemented with Se. We found no effect of dietary Se on liver 8-hydroxy-2'-deoxyguanosine. Gene mutation frequency was significantly lower in liver (p < 0.001) than that of colon regardless of dietary Se. However, there were no differences in gene mutation frequency in DNA from colon mucosa or liver from rats fed the Se-deficient diet compared to those fed the Se-supplemented (0.2 or 2 microg Se/g diet) diet. Although gene mutations have been implicated in the etiology of cancer, our data suggest that decreasing gene mutation is not likely a key mechanism through which dietary selenite exerts its anticancer action against DMH-induced preneoplastic colon cancer lesions in a Big Blue transgenic rat model.

  1. The interaction between air pollution and diet does not influence the DNA damage in lymphocytes of pregnant women.

    PubMed

    Kalemba-Drożdż, Małgorzata

    2015-01-01

    The aim of the study was to evaluate the risk of DNA damage in lymphocytes of pregnant women with respect to hormonal and nutritional status and to air pollution in Lesser Poland. The study was performed on 39 healthy pregnant women. The oxidative DNA damage, alkali-labile sites and uracil in DNA of lymphocytes were measured by using the comet assay. The concentration of 17beta-estradiol, progesterone, DHEA, cholesterol, vitamin B12 and folates were determined. Dietary data were assembled from food diaries. Voivodeship Inspectorate for Environmental Protection in Krakow using automatic pollution monitoring system provided the air pollution information, such as concentrations of PM10, PM2.5, NO, NO2, SO2, CO and O3. Many statistical correlations between DNA damage and air pollutants concentration were found however their biological meaning is still to be explained. It should be taken under consideration, that the protective effect of air pollutants is a result of hormesis, as the measured amounts of air pollutants during the study did not exceed the admissible levels. There was found no diet-and air pollution interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Detection of dopamine in dopaminergic cell using nanoparticles-based barcode DNA analysis.

    PubMed

    An, Jeung Hee; Kim, Tae-Hyung; Oh, Byung-Keun; Choi, Jeong Woo

    2012-01-01

    Nanotechnology-based bio-barcode-amplification analysis may be an innovative approach to dopamine detection. In this study, we evaluated the efficacy of this bio-barcode DNA method in detecting dopamine from dopaminergic cells. Herein, a combination DNA barcode and bead-based immunoassay for neurotransmitter detection with PCR-like sensitivity is described. This method relies on magnetic nanoparticles with antibodies and nanoparticles that are encoded with DNA, and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated in order to remove the conjugated barcode DNA. The DNA barcodes were then identified via PCR analysis. The dopamine concentration in dopaminergic cells can be readily and rapidly detected via the bio-barcode assay method. The bio-barcode assay method is, therefore, a rapid and high-throughput screening tool for the detection of neurotransmitters such as dopamine.

  3. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi

    PubMed Central

    Fofanova, Tatiana Y.; Stewart, Christopher J.; Nash, Andrea K.; Wong, Matthew C.; Gesell, Jonathan R.; Auchtung, Jennifer M.; Ajami, Nadim J.; Petrosino, Joseph F.

    2018-01-01

    ABSTRACT A wide diversity of fungi have been detected in the human gastrointestinal (GI) tract with the potential to provide or influence important functions. However, many of the fungi most commonly detected in stool samples are also present in food or the oral cavity. Therefore, to recognize which gut fungi are likely to have a sustained influence on human health, there is a need to separate transient members of the GI tract from true colonizers. To identify colonizing fungi, the eukaryotic rRNA operon’s second internal transcribed spacer (ITS2) was sequenced from the stool, saliva, and food of healthy adults following consumption of different controlled diets. Unlike most bacterial 16S rRNA genes, the only fungal ITS2 operational taxonomic units (OTUs) detected in stool DNA across multiple diets were also present in saliva and/or food. Additional analyses, including culture-based approaches and sequencing of the 18S rRNA gene, ITS2 cDNA, and DNA extracted using alternative methods, failed to detect additional fungi. Two abundant fungi, Saccharomyces cerevisiae and Candida albicans, were examined further in healthy volunteers. Saccharomyces became undetectable in stool when a S. cerevisiae-free diet was consumed, and the levels of C. albicans in stool were dramatically reduced by more frequent cleaning of teeth. Extremely low fungal abundance, the inability of fungi to grow under conditions mimicking the distal gut, and evidence from analysis of other public datasets further support the hypothesis that fungi do not routinely colonize the GI tracts of healthy adults. IMPORTANCE We sought to identify the fungi that colonize healthy GI tracts and that have a sustained influence on the diverse functions of the gut microbiome. Instead, we found that all fungi in the stool of healthy volunteers could be explained by their presence in oral and dietary sources and that our results, together with those from other analyses, support the model that there is little or no gastrointestinal colonization by fungi. This may be due to Westernization, primate evolution, fungal ecology, and/or the strong defenses of a healthy immune system. Importantly, fungal colonization of the GI tract may often be indicative of disease. As fungi can cause serious infections in immunocompromised individuals and are found at increased abundance in multiple disorders of the GI tract, understanding normal fungal colonization is essential for proper treatment and prevention of fungal pathogenesis. PMID:29600282

  4. Employees' Expectations of Internet-Based, Workplace Interventions Promoting the Mediterranean Diet: A Qualitative Study.

    PubMed

    Papadaki, Angeliki; Thanasoulias, Andreas; Pound, Rachael; Sebire, Simon J; Jago, Russell

    Explore employees' perceptions of ability to follow the Mediterranean diet (MedDiet), preferences for setting goals if asked to follow the MedDiet, and expectations of an Internet-based, workplace MedDiet intervention. Seven focus groups to guide intervention development. Four workplaces (business/professional services, government branches) in Southwest England. Employees (n = 29, 51.7% women), ages 24-58 years. Ability to follow the MedDiet; preferences for goal-setting if asked to follow the MedDiet; intervention content. Data were analyzed with the use of thematic analysis. Participants perceived that adhering to some MedDiet recommendations would be challenging and highlighted cost, taste, and cooking skills as adherence barriers. Behavior change preferences included a tailored approach to goal-setting, reviewing goal progress via a website/smartphone app, and receiving expert feedback via an app/website/text/face-to-face session. Desirable features of an Internet-based MedDiet application included recipes, interactivity, nutritional information, shopping tips, cost-saving information, and a companion smartphone app. Engaging in social support was deemed important to facilitate adherence. An Internet-based, workplace MedDiet intervention should address adherence barriers, utilize a tailored approach to setting and reviewing goals, and activate social support to facilitate adherence. These findings provide insights to planning to promote the MedDiet in non-Mediterranean regions. Copyright © 2016 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  5. Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis.

    PubMed

    Bienvenue, Joan M; Duncalf, Natalie; Marchiarullo, Daniel; Ferrance, Jerome P; Landers, James P

    2006-03-01

    The current backlog of casework is among the most significant challenges facing crime laboratories at this time. While the development of next-generation microchip-based technology for expedited forensic casework analysis offers one solution to this problem, this will require the adaptation of manual, large-volume, benchtop chemistry to small volume microfluidic devices. Analysis of evidentiary materials from rape kits where semen or sperm cells are commonly found represents a unique set of challenges for on-chip cell lysis and DNA extraction that must be addressed for successful application. The work presented here details the development of a microdevice capable of DNA extraction directly from sperm cells for application to the analysis of sexual assault evidence. A variety of chemical lysing agents are assessed for inclusion in the extraction protocol and a method for DNA purification from sperm cells is described. Suitability of the extracted DNA for short tandem repeat (STR) analysis is assessed and genetic profiles shown. Finally, on-chip cell lysis methods are evaluated, with results from fluorescence visualization of cell rupture and DNA extraction from an integrated cell lysis and purification with subsequent STR amplification presented. A method for on-chip cell lysis and DNA purification is described, with considerations toward inclusion in an integrated microdevice capable of both differential cell sorting and DNA extraction. The results of this work demonstrate the feasibility of incorporating microchip-based cell lysis and DNA extraction into forensic casework analysis.

  6. Evaluation of the antimutagenic activity and mode of action of carrageenan fiber in cultured meristematic cells of Allium cepa.

    PubMed

    Nantes, C I; Pesarini, J R; Mauro, M O; Monreal, A C D; Ramires, A D; Oliveira, R J

    2014-11-12

    In this study, we evaluated the mutagenic and antimutagenic activities of carrageenan, a sulfated polysaccharide, and described its mode of action by using an Allium cepa assay. The results indicate that carrageenan is not mutagenic, rather it has significant chemopreventive potential that is mediated by both demutagenic and bio-antimutagenic activities. This compound can adsorb agents that are toxic to DNA and inactivate them. Additionally, carrageenan can modulate enzymes of the DNA repair system. The percentage of damage reduction ranged from 62.54 to 96.66%, reflecting the compound's high efficiency in preventing the type of mutagenic damage that may be associated with tumor development. Based on these findings and information available in the literature, we conclude that carrageenan is an important fiber that should be considered as a possible base for functional foods and/or diets with potential anticancer activity.

  7. Long-term oral exposure to safe dose of bisphenol A in association with high-fat diet stimulate the prostatic lesions in a rodent model for prostate cancer.

    PubMed

    Facina, Camila H; Campos, Silvana G P; Gonçalves, Bianca F; Góes, Rejane M; Vilamaior, Patricia S L; Taboga, Sebastião R

    2018-02-01

    Studies have shown that exposure to environmental chemicals known as endocrine disruptors can cause permanent changes in genital organs, such as the prostate. Among these environmental chemicals stands out bisphenol A (BPA). Another factor associated with prostate changes is the consumption of a high-fat diet. Although the relationship between the consumption of a high-fat diet and an increased risk of prostate cancer is well established, the mechanisms that lead to the establishment of this disease are not completely understood, nor the simultaneous action of BPA and high-fat diet. Adult gerbils (100 days old) were divided in four groups (n = 6 per group): Control (C): animals that received a control diet and filtered water; Diet (D): animals that received a high-fat diet and filtered water; BPA: animals that received a control diet and BPA - 50 µg kg -1 day -1 in drinking water; BPA + Diet (BPA + D): animals that received a high-fat diet + BPA - 50 µg kg -1 day -1 in drinking water. After the experimental period (6 months), the dorsolateral and ventral prostate lobes were removed, and analyzed by several methods. Histological analysis indicated premalignant and malignant lesions in both prostatic lobes. However, animals of the D, BPA, and BPA + D groups showed a higher incidence and larger number of prostatic lesions; inflammatory foci were also common. Markers to assess prostate lesions, such as increased activation of the DNA repair system (PCNA-positive cells), androgen receptor (AR), and number of basal cells, confirmed the histology. However, serum levels of testosterone did not change under the experimental conditions. The results indicated that the methodology used was effective in generating metabolic changes, which directly compromised prostatic homeostasis. Diet and BPA appear to modulate the activation of the AR pathway and thereby optimize tumor establishment in the gerbil prostate. © 2017 Wiley Periodicals, Inc.

  8. QTL Analysis of Dietary Obesity in C57BL/6byj X 129P3/J F2 Mice: Diet- and Sex-Dependent Effects

    PubMed Central

    Lin, Cailu; Theodorides, Maria L.; McDaniel, Amanda H.; Tordoff, Michael G.; Zhang, Qinmin; Li, Xia; Bosak, Natalia; Bachmanov, Alexander A.; Reed, Danielle R.

    2013-01-01

    Obesity is a heritable trait caused by complex interactions between genes and environment, including diet. Gene-by-diet interactions are difficult to study in humans because the human diet is hard to control. Here, we used mice to study dietary obesity genes, by four methods. First, we bred 213 F2 mice from strains that are susceptible [C57BL/6ByJ (B6)] or resistant [129P3/J (129)] to dietary obesity. Percent body fat was assessed after mice ate low-energy diet and again after the same mice ate high-energy diet for 8 weeks. Linkage analyses identified QTLs associated with dietary obesity. Three methods were used to filter candidate genes within the QTL regions: (a) association mapping was conducted using >40 strains; (b) differential gene expression and (c) comparison of genomic DNA sequence, using two strains closely related to the progenitor strains from Experiment 1. The QTL effects depended on whether the mice were male or female or which diet they were recently fed. After feeding a low-energy diet, percent body fat was linked to chr 7 (LOD = 3.42). After feeding a high-energy diet, percent body fat was linked to chr 9 (Obq5; LOD = 3.88), chr 12 (Obq34; LOD = 3.88), and chr 17 (LOD = 4.56). The Chr 7 and 12 QTLs were sex dependent and all QTL were diet-dependent. The combination of filtering methods highlighted seven candidate genes within the QTL locus boundaries: Crx, Dmpk, Ahr, Mrpl28, Glo1, Tubb5, and Mut. However, these filtering methods have limitations so gene identification will require alternative strategies, such as the construction of congenics with very small donor regions. PMID:23922663

  9. Combined effects of caffeine and zinc in the maternal diet on fetal brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamoto, T.; Gottschalk, S.B.; Yazdani, M.

    1991-03-15

    The authors have reported that caffeine (C) intake during the lactational period by dams decreases the Zn content of the brain in their offspring. The objective of the present study is to determine how C plus Zn supplementation to the maternal diet during gestation affects the fetal brains. Timed-pregnant rats at day 3 of gestation were randomly divided into 4 groups (G). G1 was fed a 20% protein diet as a control, G2 was fed a diet supplemented with Zn, G3 was fed a diet with C and G4 was fed a diet with C and Zn. At day 22more » of gestation, fetuses were taken out surgically. Fetal brains were removed. Their weights, DNA, Zn, protein, cholesterol, caffeine concentration, and alkaline phosphatase activity were determined. Body and brain weights and cholesterol contents in G4 were greater than in G1, whereas Zn concentration and alkaline phosphatase activity were less. Zn concentration and Zn/DNA in G2 were greater than in G1. Cholesterol content in G4 was higher than in G3. Although mean caffeine concentration in brain and plasma in G4 was greater than in G3, there was no statistical significance between the G due to the wide fluctuation among the pups. It is concluded that supplementation of C and Zn in the maternal diet during gestation could influence fetal brain composition differently than C supplementation alone. Supplementation of Zn alone showed minor effects.« less

  10. Intrauterine Growth Retardation Increases the Susceptibility of Pigs to High-Fat Diet-Induced Mitochondrial Dysfunction in Skeletal Muscle

    PubMed Central

    Liu, Jingbo; Chen, Daiwen; Yao, Ying; Yu, Bing; Mao, Xiangbing; He, Jun; Huang, Zhiqing; Zheng, Ping

    2012-01-01

    It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. PMID:22523560

  11. Importance of phenols structure on their activity as antinitrosating agents: A kinetic study

    PubMed Central

    Pessêgo, Márcia; Rosa da Costa, Ana M; Moreira, José A.

    2011-01-01

    Objective: Nitrosative deamination of DNA bases induced by reaction with reactive nitrogen species (RNS) has been pointed out as a probable cause of mutagenesis. (Poly)phenols, present in many food items from the Mediterranean diet, are believed to possess antinitrosating properties due to their RNS scavenging ability, which seems to be related to their structure. It has been suggested that phenolic compounds will react with the above-mentioned species more rapidly than most amino compounds, thus preventing direct nitrosation of the DNA bases and their transnitrosation from endogenous N-nitroso compounds, or most likely from the transient N-nitrosocompounds formed in vivo. Materials and Methods: In order to prove that assumption, a kinetic study of the nitroso group transfer from a N-methyl-N-nitrosobenzenesulfonamide (N-methyl-N-nitroso-4-methylbenzenesulfonamide, MeNMBS) to the DNA bases bearing an amine group and to a series of phenols was carried out. In the transnitrosation of phenols, the formation of nitrosophenol was monitored by Ultraviolet (UV) / Visible spectroscopy, and in the reactions of the DNA bases, the consumption of MeNMBS was followed by high performance liquid chromatography (HPLC). Results: The results obtained point to the transnitrosation of DNA bases being negligible, as well as that of phenols bearing electron-withdrawing groups. Phenols with methoxy substituents in positions 2, 4, and / or 6, although they seemed to react, did not afford the expected product. Phenols with electron-releasing substituents, unless these blocked the oxygen atom, reacted with our model compound at an appreciable rate. O-nitrosation of the phenolate ion followed by rearrangement of the C-nitrosophenol seemed to be involved. Conclusion: This study provided evidence that the above compounds might actually act as antinitrosating agents in vivo. PMID:21430963

  12. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    PubMed

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P < 0.05). Interestingly, the DNA methylation of the BDNF exon IX was significantly increased in the ZD group, compared with the ZA and PF groups, whereas the expression of the BDNF mRNA was decreased. In addition, the DNMT1 mRNA expression was significantly upregulated and DNMT3A was downregulated in the ZD group, but not in the ZA and PF groups. The learning and memory damage in offspring may be a result of the epigenetic changes of the BDNF genes in response to the zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  13. DETECTION OF DNA DAMAGE USING MELTING ANALYSIS TECHNIQUES

    EPA Science Inventory

    A rapid and simple fluorescence screening assay for UV radiation-, chemical-, and enzyme-induced DNA damage is reported. This assay is based on a melting/annealing analysis technique and has been used with both calf thymus DNA and plasmid DNA (puc 19 plasmid from E. coli). DN...

  14. Relationship between oxidative damage and colon carcinogenesis in irradiated rats: influence of dietary countermeasures

    NASA Astrophysics Data System (ADS)

    Turner, Nancy; Sanders, Lisa; Wu, Guoyao; Davidson, Laurie; Ford, John; Braby, Leslie; Carroll, Raymond; Chapkin, Robert; Lupton, Joanne

    Galactic cosmic radiation not only kills colon epithelial cells, it also generates a cellular environment that can lead to oxidative DNA damage. We previously demonstrated that a diet containing fish oil and pectin protects against initiation of colon cancer by enhancing apoptotic removal of cells with oxidative DNA adducts (8-OHdG), and that apoptosis was highly correlated with colon cancer suppression. We hypothesized this diet combination will mitigate the oxidative damage occurring from radiation and thus reduce colon cancer. The experiment tested the effect of radiation (± 1 Gy, 1 GeV/n Fe ions) on redox balance, apoptosis, and 8-OHdG levels at initiation and colon tumor incidence. Diets contained fish oil or corn oil, and cellulose or pectin (2x2 factorial design). Rats received the diets 3 wk before irradiation (half of the rats), followed by azoxymethane (AOM) injections 10 and 17 d later (all rats). Just prior to AOM injection, irradiated fish oil/pectin rats had a more reduced redox state in colonocytes (lower GSSG, P < 0.05; higher GSH/GSSG ratio), which was not observed in irradiated corn oil/cellulose rats. A shift to a more oxidative state (lower GSH and GSH/GSSG ratio, P < 0.05) occurred between 6 and 12 h after AOM in the fish oil/pectin irradiated rats. Changes in redox balance likely contributed to lower 8-OHdG levels in colonocytes from rats consuming the fish oil diets. Dietary pectin enhanced (P < 0.04) apoptosis induction 12 h after AOM injection in irradiated rats. Similar to the 8-OHdG results, colon tumor incidence was 42% higher (P < 0.05) in rats fed corn oil vs fish oil diets. In summary, fish oil/pectin diets created a more reduced colon environment in irradiated rats that was evident 10 d after irradiation. The ensuing oxidative shift in those rats after AOM injection may have enhanced apoptosis; effectively eliminating more DNA damaged cells. Thus, inclusion of fish oil and pectin in diets for long-duration space flights should help suppress the elevation in colon cancer risk caused by galactic cosmic radiation. Funded by NSBRI (NASA NCC 9-58), NIH CA90301, NIEHS P-30-ES09106.

  15. In depth analysis of the quenching of three fluorene-phenylene-based cationic conjugated polyelectrolytes by DNA and DNA bases.

    PubMed

    Davies, Matthew L; Douglas, Peter; Burrows, Hugh D; Martincigh, Bice; Miguel, Maria da Graça; Scherf, Ullrich; Mallavia, Ricardo; Douglas, Alastair

    2014-01-16

    The interaction of three cationic poly {9,9-bis[N,N-(trimethylammonium)hexyl]fluorene-co-1,4-phenylene} polymers with average chain lengths of ∼6, 12, and 100 repeat units (PFP-NR36(I),12(Br),100(Br)) with both double and single stranded, short and long, DNA and DNA bases have been studied by steady state and time-resolved fluorescence techniques. Fluorescence of PFP-NR3 polymers is quenched with high efficiency by DNA (both double and single stranded) and DNA bases. The resulting quenching plots are sigmoidal and are not accurately described by using a Stern-Volmer quenching mechanism. Here, the quenching mechanism is well modeled in terms of an equilibrium in which a PFP-NR3/DNA aggregate complex is formed which brings polymer chains into close enough proximity to allow interchain excitation energy migration and quenching at aggregate or DNA base traps. Such an analysis gives equilibrium constants of 8.4 × 10(6) (±1.2 × 10(6)) M(-1) for short-dsDNA and 8.6 × 10(6) (±1.7 × 10(6)) M(-1) for short-ssDNA with PFP-NR36(I).

  16. Detecting and Estimating Contamination of Human DNA Samples in Sequencing and Array-Based Genotype Data

    PubMed Central

    Jun, Goo; Flickinger, Matthew; Hetrick, Kurt N.; Romm, Jane M.; Doheny, Kimberly F.; Abecasis, Gonçalo R.; Boehnke, Michael; Kang, Hyun Min

    2012-01-01

    DNA sample contamination is a serious problem in DNA sequencing studies and may result in systematic genotype misclassification and false positive associations. Although methods exist to detect and filter out cross-species contamination, few methods to detect within-species sample contamination are available. In this paper, we describe methods to identify within-species DNA sample contamination based on (1) a combination of sequencing reads and array-based genotype data, (2) sequence reads alone, and (3) array-based genotype data alone. Analysis of sequencing reads allows contamination detection after sequence data is generated but prior to variant calling; analysis of array-based genotype data allows contamination detection prior to generation of costly sequence data. Through a combination of analysis of in silico and experimentally contaminated samples, we show that our methods can reliably detect and estimate levels of contamination as low as 1%. We evaluate the impact of DNA contamination on genotype accuracy and propose effective strategies to screen for and prevent DNA contamination in sequencing studies. PMID:23103226

  17. Heritage strain and diet of wild young of year and yearling lake trout in the main basin of Lake Huron

    USGS Publications Warehouse

    Roseman, E.F.; Stott, W.; O'Brien, T. P.; Riley, S.C.; Schaeffer, J.S.

    2009-01-01

    Restoration of lake trout Salvelinus namaycush stocks in Lake Huron is a fish community objective developed to promote sustainable fish communities in the lake. Between 1985 and 2004, 12.65 million lake trout were stocked into Lake Huron representing eight different genetic strains. Collections of bona fide wild fish in USGS surveys have increased in recent years and this study examined the ancestry and diet of fish collected between 2004 and 2006 to explore the ecological role they occupy in Lake Huron. Analysis of microsatellite DNA revealed that both pure strain and inter-strain hybrids were observed, and the majority of fish were classified as Seneca Lake strain or Seneca Lake hybrids. Diets of 50 wild age-0 lake trout were examined. Mysis, chironomids, and zooplankton were common prey items of wild age-0 lake trout. These results indicate that stocked fish are successfully reproducing in Lake Huron indicating a level of restoration success. However, continued changes to the benthic macroinvertebrate community, particularly declines of Mysis, may limit growth and survival of wild fish and hinder restoration efforts.

  18. DNA microarray technology in nutraceutical and food safety.

    PubMed

    Liu-Stratton, Yiwen; Roy, Sashwati; Sen, Chandan K

    2004-04-15

    The quality and quantity of diet is a key determinant of health and disease. Molecular diagnostics may play a key role in food safety related to genetically modified foods, food-borne pathogens and novel nutraceuticals. Functional outcomes in biology are determined, for the most part, by net balance between sets of genes related to the specific outcome in question. The DNA microarray technology offers a new dimension of strength in molecular diagnostics by permitting the simultaneous analysis of large sets of genes. Automation of assay and novel bioinformatics tools make DNA microarrays a robust technology for diagnostics. Since its development a few years ago, this technology has been used for the applications of toxicogenomics, pharmacogenomics, cell biology, and clinical investigations addressing the prevention and intervention of diseases. Optimization of this technology to specifically address food safety is a vast resource that remains to be mined. Efforts to develop diagnostic custom arrays and simplified bioinformatics tools for field use are warranted.

  19. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities.

    PubMed

    Martínez, M E; Ranilla, M J; Tejido, M L; Saro, C; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of dietary characteristics on microbial populations and bacterial diversity. The purpose of the study was to assess how closely fermenters can mimic the differences between diets found in vivo. The 4 experimental diets contained forage to concentrate (F:C) ratios of 70:30 (high forage; HF) or 30:70 (high concentrate; HC) with either alfalfa hay (A) or grass hay (G) as the forage. Total bacterial numbers were greater in the rumen of sheep fed HF diets compared with those fed HC diets, whereas the opposite was found in fermenters. The numbers of cellulolytic bacteria were not affected by F:C ratio in any fermentation system, but cellulolytic numbers were 2.7 and 1.8 times greater in sheep than in fermenters for HF and HC diets, respectively. Neither total bacterial nor cellulolytic numbers were affected by the type of forage in sheep or fermenters. Decreasing F:C ratio increased total protozoa and Entodiniae numbers in sheep by about 29 and 25%, respectively, but it had no effect in fermenters. Isotrichidae and Ophryoscolecinae numbers in sheep were not affected by changing F:C ratio, but both disappeared completely from fermenters fed HC diets. Total protozoa and Entodiniae numbers were greater in sheep fed A diets than in those fed G diets, whereas the opposite was found in fermenters. Results indicate that under the conditions of the present study, protozoa population in Rusitec fermenters was not representative of that in the rumen of sheep fed the same diets. In addition, protozoa numbers in fermenters were 121 and 226 times lower than those in the sheep rumen for HF and HC diets, respectively. The automated ribosomal intergenic spacer analysis of the 16S ribosomal DNA was used to analyze the diversity of liquid- and solid-associated bacteria in both systems. A total of 170 peaks were detected in the automated ribosomal intergenic spacer analysis electropherograms of bacterial pellets across the full set of 64 samples, from which 160 were detected in at least 1 individual from each system (sheep or fermenter). Diversity of liquid-associated bacterial pellets was greater with G diets in fermenters but seemed to be unaffected by diet in sheep. Bacterial diversity in solid-associated bacteria pellets was greater for G diets compared with A diets in sheep and fermenters. Different conditions in the fermenters compared with sheep rumen might have caused a selection of some bacterial strains. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Methyl-donor deficiency in adolescence affects memory and epigenetic status in the mouse hippocampus.

    PubMed

    Tomizawa, H; Matsuzawa, D; Ishii, D; Matsuda, S; Kawai, K; Mashimo, Y; Sutoh, C; Shimizu, E

    2015-03-01

    DNA methylation is one of the essential factors in the control of gene expression. Alteration of the DNA methylation pattern has been linked to various neurological, behavioral and neurocognitive dysfunctions. Recent studies have pointed out the importance of epigenetics in brain development and functions including learning and memory. Nutrients related to one-carbon metabolism are known to play important roles in the maintenance of genomic DNA methylation. Previous studies have shown that the long-term administration of a diet lacking essential one-carbon nutrients such as methionine, choline and folic acid (methyl donors) caused global DNA hypermethylation in the brain. Therefore, the long-term feeding of a methyl-donor-deficient diet may cause abnormal brain development including learning and memory. To confirm this hypothesis, 3-week-old mice were maintained on a folate-, methionine- and choline-deficient (FMCD) or control (CON) diet for 3 weeks. We found that the methyl-donor deficiency impaired both novel object recognition and fear extinction after 3 weeks of treatment. The FMCD group showed spontaneous recovery of fear that differed from that in CON. In addition, we found decreased Gria1 gene expression and specific CpG hypermethylation of the Gria1 promoter region in the FMCD hippocampus. Our data suggest that a chronic dietary lack of methyl donors in the developmental period affects learning, memory and gene expressions in the hippocampus. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. Distance measures and optimization spaces in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; Rode, Karyn D.; Budge, Suzanne M.; Thiemann, Gregory W.

    2015-01-01

    Quantitative fatty acid signature analysis has become an important method of diet estimation in ecology, especially marine ecology. Controlled feeding trials to validate the method and estimate the calibration coefficients necessary to account for differential metabolism of individual fatty acids have been conducted with several species from diverse taxa. However, research into potential refinements of the estimation method has been limited. We compared the performance of the original method of estimating diet composition with that of five variants based on different combinations of distance measures and calibration-coefficient transformations between prey and predator fatty acid signature spaces. Fatty acid signatures of pseudopredators were constructed using known diet mixtures of two prey data sets previously used to estimate the diets of polar bears Ursus maritimus and gray seals Halichoerus grypus, and their diets were then estimated using all six variants. In addition, previously published diets of Chukchi Sea polar bears were re-estimated using all six methods. Our findings reveal that the selection of an estimation method can meaningfully influence estimates of diet composition. Among the pseudopredator results, which allowed evaluation of bias and precision, differences in estimator performance were rarely large, and no one estimator was universally preferred, although estimators based on the Aitchison distance measure tended to have modestly superior properties compared to estimators based on the Kullback-Leibler distance measure. However, greater differences were observed among estimated polar bear diets, most likely due to differential estimator sensitivity to assumption violations. Our results, particularly the polar bear example, suggest that additional research into estimator performance and model diagnostics is warranted.

  2. Hepatic DNA adduct dosimetry in rats fed tamoxifen: a comparison of methods.

    PubMed

    Schild, Laura J; Phillips, David H; Osborne, Martin R; Hewer, Alan; Beland, Frederick A; Churchwell, Mona I; Brown, Karen; Gaskell, Margaret; Wright, Elizabeth; Poirier, Miriam C

    2005-03-01

    Liver homogenates from rats fed tamoxifen (TAM) in the diet were shared among four different laboratories. TAM-DNA adducts were assayed by high pressure liquid chromatography-electrospray tandem mass spectrometry (HPLC-ES-MS/MS), TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), and (32)P-postlabeling with either thin layer ((32)P-P-TLC) or liquid chromatography ((32)P-P-HPLC) separation. In the first study, rats were fed a diet containing 500 p.p.m. TAM for 2 months, and the values for measurements of the (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-N(2)-TAM) adduct in replicate rat livers varied by 3.5-fold when quantified using 'in house' TAM-DNA standards, or other approaches where appropriate. In the second study, rats were fed 0, 50, 250 or 500 p.p.m. TAM for 2 months, and TAM-DNA values were quantified using both 'in house' approaches as well as a newly synthesized [N-methyl-(3)H]TAM-DNA standard that was shared among all the participating groups. In the second study, the total TAM-DNA adduct values varied by 2-fold, while values for the dG-N(2)-TAM varied by 2.5-fold. Ratios of dG-N(2)-TAM:(E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-N(2)-N-desmethyl-TAM) in the second study were approximately 1:1 over the range of doses examined. The study demonstrated a remarkably good agreement for TAM-DNA adduct measurements among the diverse methods employed.

  3. Molecular Evidence of Chlamydia-Like Organisms in the Feces of Myotis daubentonii Bats.

    PubMed

    Hokynar, K; Vesterinen, E J; Lilley, T M; Pulliainen, A T; Korhonen, S J; Paavonen, J; Puolakkainen, M

    2017-01-15

    Chlamydia-like organisms (CLOs) are recently identified members of the Chlamydiales order. CLOs share intracellular lifestyles and biphasic developmental cycles, and they have been detected in environmental samples as well as in various hosts such as amoebae and arthropods. In this study, we screened bat feces for the presence of CLOs by molecular analysis. Using pan-Chlamydiales PCR targeting the 16S rRNA gene, Chlamydiales DNA was detected in 54% of the specimens. PCR amplification, sequencing, and phylogenetic analysis of the 16S rRNA and 23S rRNA genes were used to classify positive specimens and infer their phylogenetic relationships. Most sequences matched best with Rhabdochlamydia species or uncultured Chlamydia sequences identified in ticks. Another set of sequences matched best with sequences of the Chlamydia genus or uncultured Chlamydiales from snakes. To gain evidence of whether CLOs in bat feces are merely diet borne, we analyzed insects trapped from the same location where the bats foraged. Interestingly, the CLO sequences resembling Rhabdochlamydia spp. were detected in insect material as well, but the other set of CLO sequences was not, suggesting that this set might not originate from prey. Thus, bats represent another potential host for Chlamydiales and could harbor novel, previously unidentified members of this order. Several pathogenic viruses are known to colonize bats, and recent analyses indicate that bats are also reservoir hosts for bacterial genera. Chlamydia-like organisms (CLOs) have been detected in several animal species. CLOs have high 16S rRNA sequence similarity to Chlamydiaceae and exhibit similar intracellular lifestyles and biphasic developmental cycles. Our study describes the frequent occurrence of CLO DNA in bat feces, suggesting an expanding host species spectrum for the Chlamydiales As bats can acquire various infectious agents through their diet, prey insects were also studied. We identified CLO sequences in bats that matched best with sequences in prey insects but also CLO sequences not detected in prey insects. This suggests that a portion of CLO DNA present in bat feces is not prey borne. Furthermore, some sequences from bat droppings not originating from their diet might well represent novel, previously unidentified members of the Chlamydiales order. Copyright © 2016 American Society for Microbiology.

  4. A streamlined method for analysing genome-wide DNA methylation patterns from low amounts of FFPE DNA.

    PubMed

    Ludgate, Jackie L; Wright, James; Stockwell, Peter A; Morison, Ian M; Eccles, Michael R; Chatterjee, Aniruddha

    2017-08-31

    Formalin fixed paraffin embedded (FFPE) tumor samples are a major source of DNA from patients in cancer research. However, FFPE is a challenging material to work with due to macromolecular fragmentation and nucleic acid crosslinking. FFPE tissue particularly possesses challenges for methylation analysis and for preparing sequencing-based libraries relying on bisulfite conversion. Successful bisulfite conversion is a key requirement for sequencing-based methylation analysis. Here we describe a complete and streamlined workflow for preparing next generation sequencing libraries for methylation analysis from FFPE tissues. This includes, counting cells from FFPE blocks and extracting DNA from FFPE slides, testing bisulfite conversion efficiency with a polymerase chain reaction (PCR) based test, preparing reduced representation bisulfite sequencing libraries and massively parallel sequencing. The main features and advantages of this protocol are: An optimized method for extracting good quality DNA from FFPE tissues. An efficient bisulfite conversion and next generation sequencing library preparation protocol that uses 50 ng DNA from FFPE tissue. Incorporation of a PCR-based test to assess bisulfite conversion efficiency prior to sequencing. We provide a complete workflow and an integrated protocol for performing DNA methylation analysis at the genome-scale and we believe this will facilitate clinical epigenetic research that involves the use of FFPE tissue.

  5. Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes

    USDA-ARS?s Scientific Manuscript database

    Developmental epigenetic changes, such as DNA methylation, have been recognized as potential pathogenic factors in inflammatory bowel diseases, the hallmark of which is an exaggerated immune response against luminal microbes. A methyl-donor (MD) diet can modify DNA methylation at select murine genom...

  6. Diet-influenced chromatin modification and expression of chemopreventive genes by the soy peptide, lunasin

    USDA-ARS?s Scientific Manuscript database

    Epigenetic silencing of tumor suppressors and pro-apoptosis genes in cancer cells, unlike genetic mutations, can potentially be reversed by the use of DNA demethylating agents (to remove methylation marks on the DNA) and HDAC inhibitors (to increase histone acetylation). It is now well established t...

  7. New insights into the diets of harbor seals in the Salish Sea revealed by quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; Lance, Monique M.; Elliott, Elizabeth W.; Jeffries, Steven J.; Acevedo-Gutiérrez, Alejandro; Kennish, John M.

    2013-01-01

    Harbor seals (Phoca vitulina) are an abundant predator along the west coast of North America, and there is considerable interest in their diet composition, especially in regard to predation on valued fish stocks. Available information on harbor seal diets, primarily derived from scat analysis, suggests that adult salmon (Oncorhynchus spp.), Pacific Herring (Clupea pallasii), and gadids predominate. Because diet assessments based on scat analysis may be biased, we investigated diet composition through quantitative analysis of fatty acid signatures. Blubber samples from 49 harbor seals captured in western North America from haul-outs within the area of the San Juan Islands and southern Strait of Georgia in the Salish Sea were analyzed for fatty acid composition, along with 269 fish and squid specimens representing 27 potential prey classes. Diet estimates varied spatially, demographically, and among individual harbor seals. Findings confirmed the prevalence of previously identified prey species in harbor seal diets, but other species also contributed significantly. In particular, Black (Sebastes melanops) and Yellowtail (S. flavidus) Rockfish were estimated to compose up to 50% of some individual seal diets. Specialization and high predation rates on Black and Yellowtail Rockfish by a subset of harbor seals may play a role in the population dynamics of these regional rockfish stocks that is greater than previously realized.

  8. Alcohol-induced one-carbon metabolism impairment promotes dysfunction of DNA base excision repair in adult brain.

    PubMed

    Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I

    2012-12-21

    The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.

  9. Nanofluidic Device with Embedded Nanopore

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning; Reisner, Walter

    2014-03-01

    Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.

  10. Maternal Methyl Donor Supplementation during Gestation Counteracts the Bisphenol A-Induced Impairment of Intestinal Morphology, Disaccharidase Activity, and Nutrient Transporters Gene Expression in Newborn and Weaning Pigs

    PubMed Central

    Liu, Hong; Wang, Jun; Mou, Daolin; Che, Lianqiang; Fang, Zhengfeng; Feng, Bin; Lin, Yan; Xu, Shengyu; Li, Jian; Wu, De

    2017-01-01

    This study was conducted to explore whether exposure to bisphenol A (BPA) during pregnancy could change intestinal digestion and absorption function in offspring using pigs as a model, and whether methyl donor (MET) could counteract the BPA-induced impacts. Fifty Landrace × Yorkshire sows were divided into four dietary groups throughout gestation: control diet (CON); control diet supplemented with BPA (50 mg/kg); control diet supplemented with MET (3 g/kg betaine, 400 mg/kg choline, 150 μg/kg vitamin B12, and 15 mg/kg folic acid); and control diet with BPA and MET supplementation (BPA + MET). Intestine samples were collected from pigs’ offspring at birth and weaning. Maternal BPA exposure during pregnancy significantly reduced the ratio of jejunum villus height to crypt depth, decreased the jejunum sucrase activity, down-regulated the mRNA expression of jejunum peptide transporter 1 (Pept1) and DNA methyl transferase 3a (DNMT3a), and decreased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05). Maternal MET supplementation significantly raised the ratio of villus height to crypt depth in jejunum and ileum, improved the jejunum lactase activity, up-regulated the mRNA expression of jejunum Pept1, lactase (LCT), DNMT1, DNMT3a, and methylenetetrahydrofolate reductase (MTHFR), and increased the DNA methylation level of jejunum Pept1 in offspring (p < 0.05). However, the ratio of jejunum villus height to crypt depth was higher in BPA + MET treatment compared with CON and BPA treatment (p < 0.05). Meanwhile, there was no difference in the jejunum sucrase activity, the mRNA expression of jejunum Pept1 and DNMT3a, and the DNA methylation level of jejunum Pept1 between CON and BPA + MET treatment. These results indicated that maternal exposure to BPA during gestation might suppress offspring’s intestinal digestion and absorption function, whereas supplementation of MET could counteract these damages, which might be associated with DNA methylation. PMID:28445388

  11. Cocoa husks in diets of Italian heavy pigs.

    PubMed

    Magistrelli, D; Malagutti, L; Galassi, G; Rosi, F

    2012-12-01

    The aim of the present study was to evaluate the effect of cocoa husks feeding on liver composition of the Italian heavy pig. Cocoa husks are by-products derived from chocolate production and have a high content of proteins, lipids, and NDF. Cocoa husks are also rich in antioxidants, polyphenols in particular. Eight finishing pigs were divided into 2 groups: control group fed a traditional diet, based on cereals, and treatment group fed a diet obtained by substitution of 10% of the control diet with coarsely ground cocoa husks. The trial was conducted during the hot season and lasted 6 wk, at the end of which all the pigs were slaughtered. Cocoa husks diet reduced dry matter intake (P < 0.01) and energy intake (P < 0.01) but neither body weight nor backfat thickness was affected by cocoa husks diet. Treatment did not influence carcass weight and hot dressing percentage but reduced liver weight (P < 0.05), liver dry matter percentage (P < 0.01), DNA (P = 0.01), and glycogen content (P = 0.01). By contrast, cocoa husks increased liver ether extract (P = 0.05) without affecting cholesterol content. Liver weight loss, reduction of protein synthesis, and a shift toward glycogen use instead of fat oxidation are considered metabolic strategies to reduce heat production under hot conditions. It is possible, therefore, that cocoa husks feeding promoted the process of acclimation because pigs needed less feeding to reach similar body and carcass weight as control pigs.

  12. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet‐induced obese mice

    PubMed Central

    Takahashi, Yumiko; Sakurai, Mutsumi; Akimoto, Yukari; Tsushida, Tojiro; Oike, Hideaki; Ippoushi, Katsunari

    2015-01-01

    Scope To examine the effect of dietary quercetin on the function of epididymal adipose tissue (EAT) in Western diet‐induced obese mice. Methods and results C57BL/6J mice were fed a control diet; a Western diet high in fat, cholesterol, and sucrose; or the same Western diet containing 0.05% quercetin for 18 weeks. Supplementation with quercetin suppressed the increase in the number of macrophages, the decrease in the ratio of CD4+ to CD8+ T cells in EAT, and the elevation of plasma leptin and tumor necrosis factor α levels in mice fed the Western diet. Comprehensive gene expression analysis revealed that quercetin suppressed gene expression associated with the accumulation and activation of immune cells, including macrophages and lymphocytes in EAT. It also improved the expression of the oxidative stress‐sensitive transcription factor NFκB, NADPH oxidases, and antioxidant enzymes. Quercetin markedly increased gene expression associated with mitochondrial oxidative phosphorylation and mitochondrial DNA content. Conclusion Quercetin most likely universally suppresses the accumulation and activation of immune cells, including antiinflammatory cells, whereas it specifically increased gene expression associated with mitochondrial oxidative phosphorylation. Suppression of oxidative stress and NFκB activity likely contributed to the prevention of the accumulation and activation of immune cells and resulting chronic inflammation. PMID:26499876

  13. Characterization of faecal microbial communities of dairy cows fed diets containing ensiled Moringa oleifera fodder

    PubMed Central

    Sun, Jiajie; Zeng, Bin; Chen, Zujing; Yan, Shijuan; Huang, Wenjie; Sun, Baoli; He, Qian; Chen, Xiaoyang; Chen, Ting; Jiang, Qingyan; Xi, Qianyun; Zhang, Yongliang

    2017-01-01

    Moringa oleifera (M. oleifera) is a remarkable species with high nutritional value and good biomass production, which can be used as livestock fodder. In this study, we examined changes in the faecal microbiota of thirty dairy cows in response to alternative M. oleifera diets and their effects on nutrient digestion, milk traits and the faecal concentrations of short-chain fatty acids. No differences in milk yield and constituents were found between the control and the M. oleifera alternative groups. Cows fed M. oleifera silage had lower dry matter digestibility, as well as the propionate and isovalerate concentrations in M. oleifera treated group. Using 16S rDNA gene sequencing, 1,299,556 paired-end reads were obtained. Clustering analysis revealed 13 phyla and 93 genera across all samples. Firmicutes and Bacteroidetes were the co-dominant phyla. Ten taxa displayed a significant difference in response to the high M. oleifera diet. In addition, strong correlations between Akkermansia and Prevotella with milk yield and protein indicated that some bacterial groups could be used to improve milk traits. Our results provided an insight into the microbiome-associated responses to M. oleifera in livestock diets, and could aid the development of novel applications of M. oleifera. PMID:28134261

  14. Evaluation by latent class analysis of a magnetic capture based DNA extraction followed by real-time qPCR as a new diagnostic method for detection of Echinococcus multilocularis in definitive hosts.

    PubMed

    Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke

    2016-10-30

    A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. DNA Fingerprint Analysis of Three Short Tandem Repeat (STR) Loci for Biochemistry and Forensic Science Laboratory Courses

    ERIC Educational Resources Information Center

    McNamara-Schroeder, Kathleen; Olonan, Cheryl; Chu, Simon; Montoya, Maria C.; Alviri, Mahta; Ginty, Shannon; Love, John J.

    2006-01-01

    We have devised and implemented a DNA fingerprinting module for an upper division undergraduate laboratory based on the amplification and analysis of three of the 13 short tandem repeat loci that are required by the Federal Bureau of Investigation Combined DNA Index System (FBI CODIS) data base. Students first collect human epithelial (cheek)…

  16. A safflower oil based high-fat/high-sucrose diet modulates the gut microbiota and liver phospholipid profiles associated with early glucose intolerance in the absence of tissue inflammation.

    PubMed

    Danneskiold-Samsøe, Niels Banhos; Andersen, Daniel; Radulescu, Ilinca Daria; Normann-Hansen, Ann; Brejnrod, Asker; Kragh, Marie; Madsen, Tobias; Nielsen, Christian; Josefsen, Knud; Fretté, Xavier; Fjaere, Even; Madsen, Lise; Hellgren, Lars I; Brix, Susanne; Kristiansen, Karsten

    2017-05-01

    Omega-6 (n-6) PUFA-rich diets are generally considered obesogenic in rodents. Here, we examined how long-term intake of a high-fat/high-sucrose (HF/HS) diet based on safflower oil affected metabolism, inflammation, and gut microbiota composition. We fed male C57BL/6J mice a HF/HS diet based on safflower oil-rich in n-6 PUFAs-or a low-fat/low-sucrose diet for 40 wk. Compared to the low-fat/low-sucrose diet, intake of the safflower-based HF/HS diet only led to moderate weight gain, while glucose intolerance developed at week 5 prior to signs of inflammation, but concurrent with increased levels of linoleic acid and arachidonic acid in hepatic phospholipids. Intake of the HF/HS diet resulted in early changes in the gut microbiota, including an increased abundance of Blautia, while late changes coincided with altered inflammatory profiles and increased fasting plasma insulin. Analysis of immune cells in visceral fat and liver revealed no differences between diets before week 40, where the number of immune cells decreased in the liver of HF/HS-fed mice. We suggest that a diet-dependent increase in the n-6 to omega-3 (n-3) PUFA ratio in hepatic phospholipids together with gut microbiota changes contributed to early development of glucose intolerance without signs of inflammation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity.

    PubMed

    Evans, Christian C; LePard, Kathy J; Kwak, Jeff W; Stancukas, Mary C; Laskowski, Samantha; Dougherty, Joseph; Moulton, Laura; Glawe, Adam; Wang, Yunwei; Leone, Vanessa; Antonopoulos, Dionysios A; Smith, Dan; Chang, Eugene B; Ciancio, Mae J

    2014-01-01

    Diet-induced obesity (DIO) is a significant health concern which has been linked to structural and functional changes in the gut microbiota. Exercise (Ex) is effective in preventing obesity, but whether Ex alters the gut microbiota during development with high fat (HF) feeding is unknown. Determine the effects of voluntary Ex on the gastrointestinal microbiota in LF-fed mice and in HF-DIO. Male C57BL/6 littermates (5 weeks) were distributed equally into 4 groups: low fat (LF) sedentary (Sed) LF/Sed, LF/Ex, HF/Sed and HF/Ex. Mice were individually housed and LF/Ex and HF/Ex cages were equipped with a wheel and odometer to record Ex. Fecal samples were collected at baseline, 6 weeks and 12 weeks and used for bacterial DNA isolation. DNA was subjected both to quantitative PCR using primers specific to the 16S rRNA encoding genes for Bacteroidetes and Firmicutes and to sequencing for lower taxonomic identification using the Illumina MiSeq platform. Data were analyzed using a one or two-way ANOVA or Pearson correlation. HF diet resulted in significantly greater body weight and adiposity as well as decreased glucose tolerance that were prevented by voluntary Ex (p<0.05). Visualization of Unifrac distance data with principal coordinates analysis indicated clustering by both diet and Ex at week 12. Sequencing demonstrated Ex-induced changes in the percentage of major bacterial phyla at 12 weeks. A correlation between total Ex distance and the ΔCt Bacteroidetes: ΔCt Firmicutes ratio from qPCR demonstrated a significant inverse correlation (r2 = 0.35, p = 0.043). Ex induces a unique shift in the gut microbiota that is different from dietary effects. Microbiota changes may play a role in Ex prevention of HF-DIO.

  18. Exercise Prevents Weight Gain and Alters the Gut Microbiota in a Mouse Model of High Fat Diet-Induced Obesity

    PubMed Central

    Evans, Christian C.; LePard, Kathy J.; Kwak, Jeff W.; Stancukas, Mary C.; Laskowski, Samantha; Dougherty, Joseph; Moulton, Laura; Glawe, Adam; Wang, Yunwei; Leone, Vanessa; Antonopoulos, Dionysios A.; Smith, Dan; Chang, Eugene B.; Ciancio, Mae J.

    2014-01-01

    Background Diet-induced obesity (DIO) is a significant health concern which has been linked to structural and functional changes in the gut microbiota. Exercise (Ex) is effective in preventing obesity, but whether Ex alters the gut microbiota during development with high fat (HF) feeding is unknown. Objective Determine the effects of voluntary Ex on the gastrointestinal microbiota in LF-fed mice and in HF-DIO. Methods Male C57BL/6 littermates (5 weeks) were distributed equally into 4 groups: low fat (LF) sedentary (Sed) LF/Sed, LF/Ex, HF/Sed and HF/Ex. Mice were individually housed and LF/Ex and HF/Ex cages were equipped with a wheel and odometer to record Ex. Fecal samples were collected at baseline, 6 weeks and 12 weeks and used for bacterial DNA isolation. DNA was subjected both to quantitative PCR using primers specific to the 16S rRNA encoding genes for Bacteroidetes and Firmicutes and to sequencing for lower taxonomic identification using the Illumina MiSeq platform. Data were analyzed using a one or two-way ANOVA or Pearson correlation. Results HF diet resulted in significantly greater body weight and adiposity as well as decreased glucose tolerance that were prevented by voluntary Ex (p<0.05). Visualization of Unifrac distance data with principal coordinates analysis indicated clustering by both diet and Ex at week 12. Sequencing demonstrated Ex-induced changes in the percentage of major bacterial phyla at 12 weeks. A correlation between total Ex distance and the ΔCt Bacteroidetes: ΔCt Firmicutes ratio from qPCR demonstrated a significant inverse correlation (r2 = 0.35, p = 0.043). Conclusion Ex induces a unique shift in the gut microbiota that is different from dietary effects. Microbiota changes may play a role in Ex prevention of HF-DIO. PMID:24670791

  19. Dietary flavonoid derivatives enhance chemotherapeutic effect by inhibiting the DNA damage response pathway.

    PubMed

    Kuo, Ching-Ying; Zupkó, István; Chang, Fang-Rong; Hunyadi, Attila; Wu, Chin-Chung; Weng, Teng-Song; Wang, Hui-Chun

    2016-11-15

    Flavonoids are the most common group of polyphenolic compounds and abundant in dietary fruits and vegetables. Diet high in vegetables or dietary flavonoid supplements is associated with reduced mortality rate for patients with breast cancer. Many studies have been proposed for mechanisms linking flavonoids to improving chemotherapy efficacy in many types of cancers, but data on this issue is still limited. Herein, we report on a new mechanism through which dietary flavonoids inhibit DNA damage checkpoints and repair pathways. We found that dietary flavonoids could inhibit Chk1 phosphorylation and decrease clonogenic cell growth once breast cancer cells receive ultraviolet irradiation, cisplatin, or etoposide treatment. Since the ATR-Chk1 pathway mainly involves response to DNA replication stress, we propose that flavonoid derivatives reduce the side effect of chemotherapy by improving the sensitivity of cycling cells. Therefore, we propose that increasing intake of common dietary flavonoids is beneficial to breast cancer patients who are receiving DNA-damaging chemotherapy, such as cisplatin or etoposide-based therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effect of vitamin E (Tri E®) on antioxidant enzymes and DNA damage in rats following eight weeks exercise

    PubMed Central

    2011-01-01

    Background Exercise is beneficial to health, but during exercise the body generates reactive oxygen species (ROS) which are known to result in oxidative stress. The present study analysed the effects of vitamin E (Tri E®) on antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (Cat) activity and DNA damage in rats undergoing eight weeks exercise. Methods Twenty four Sprague-Dawley rats (weighing 320-370 gm) were divided into four groups; a control group of sedentary rats which were given a normal diet, second group of sedentary rats with oral supplementation of 30 mg/kg/d of Tri E®, third group comprised of exercised rats on a normal diet, and the fourth group of exercised rats with oral supplementation of 30 mg/kg/d of Tri E®. The exercising rats were trained on a treadmill for 30 minutes per day for 8 weeks. Blood samples were taken before and after 8 weeks of the study to determine SOD, GPx, Cat activities and DNA damage. Results SOD activity decreased significantly in all the groups compared to baseline, however both exercised groups showed significant reduction in SOD activity as compared to the sedentary groups. Sedentary control groups showed significantly higher GPx and Cat activity compared to baseline and exercised groups. The supplemented groups, both exercised and non exercised groups, showed significant decrease in Cat activity as compared to their control groups with normal diet. DNA damage was significantly higher in exercising rats as compared to sedentary control. However in exercising groups, the DNA damage in supplemented group is significantly lower as compared to the non-supplemented group. Conclusions In conclusion, antioxidant enzymes activity were generally reduced in rats supplemented with Tri E® probably due to its synergistic anti-oxidative defence, as evidenced by the decrease in DNA damage in Tri E® supplemented exercise group. PMID:21513540

  1. Effect of vitamin E (Tri E®) on antioxidant enzymes and DNA damage in rats following eight weeks exercise.

    PubMed

    Abd Hamid, Noor Aini; Hasrul, Mohd A; Ruzanna, Rusdiah J; Ibrahim, Ibrahim A; Baruah, Prasamit S; Mazlan, Musalmah; Yusof, Yasmin Anum Mohd; Ngah, Wan Zurinah Wan

    2011-04-23

    Exercise is beneficial to health, but during exercise the body generates reactive oxygen species (ROS) which are known to result in oxidative stress. The present study analysed the effects of vitamin E (Tri E®) on antioxidant enzymes; superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (Cat) activity and DNA damage in rats undergoing eight weeks exercise. Twenty four Sprague-Dawley rats (weighing 320-370 gm) were divided into four groups; a control group of sedentary rats which were given a normal diet, second group of sedentary rats with oral supplementation of 30 mg/kg/d of Tri E®, third group comprised of exercised rats on a normal diet, and the fourth group of exercised rats with oral supplementation of 30 mg/kg/d of Tri E®. The exercising rats were trained on a treadmill for 30 minutes per day for 8 weeks. Blood samples were taken before and after 8 weeks of the study to determine SOD, GPx, Cat activities and DNA damage. SOD activity decreased significantly in all the groups compared to baseline, however both exercised groups showed significant reduction in SOD activity as compared to the sedentary groups. Sedentary control groups showed significantly higher GPx and Cat activity compared to baseline and exercised groups. The supplemented groups, both exercised and non exercised groups, showed significant decrease in Cat activity as compared to their control groups with normal diet. DNA damage was significantly higher in exercising rats as compared to sedentary control. However in exercising groups, the DNA damage in supplemented group is significantly lower as compared to the non-supplemented group. In conclusion, antioxidant enzymes activity were generally reduced in rats supplemented with Tri E® probably due to its synergistic anti-oxidative defence, as evidenced by the decrease in DNA damage in Tri E® supplemented exercise group.

  2. [Fabrications of a poly (methyl methacrylate) (PMMA) microfluidic chip-based DNA analysis device].

    PubMed

    Du, Xiao-Guang

    2009-12-01

    A DNA analysis device based on poly(methyl methacrylate) (PMMA) microfluidic chips was developed. A PMMA chip with cross microchannels was fabricated by a simple hot embossing. Microchannels were modified with a static adsorptive coating method using 2% hydroxyethyl cellulose. A high-voltage power unit, variable in the range 0-1 800 V, was used for on-chip DNA sample injection and gel electrophoretic separation. High speed, high resolution DNA analysis was obtained with the home-built PMMA chip in a sieving matrix containing 2% hydroxyethyl cellulose with a blue intercalating dye, TO-PRO-3 (TP3), by using diode laser induced fluorescence detection based on optical fibers with a 670 nm long-pass filter. The DNA analysis device was applied for the separation of phiX-174/HaeIII DNA digest sample with 11 fragments ranging from 72 to 1 353 bp. A separation efficiency of 1.14 x 10(6) plates/m was obtained for the 603 bp fragments, while the R of 271/281 bp fragments was 1.2. The device was characterized by simple design, low cost for fabrication and operation, reusable PMMA chips, and good reproducibility. A portable microfluidic device for DNA analysis can be developed for clinical diagnosis and disease screening.

  3. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid–binding protein 2 reduce plasma triglyceride–rich lipoproteins

    USDA-ARS?s Scientific Manuscript database

    The Thr54 allele of the fatty acid binding protein 2 (FABP2) DNA polymorphism is associated with increased triglyceride-rich lipoproteins and insulin resistance. We investigated whether the triglyceride-rich lipoprotein response to diets of varied fat content is affected by the fatty acid binding pr...

  4. Effects of Maternal Chromium Restriction on the Long-Term Programming in MAPK Signaling Pathway of Lipid Metabolism in Mice

    PubMed Central

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2016-01-01

    It is now broadly accepted that the nutritional environment in early life is a key factor in susceptibility to metabolic diseases. In this study, we evaluated the effects of maternal chromium restriction in vivo on the modulation of lipid metabolism and the mechanisms involved in this process. Sixteen pregnant C57BL mice were randomly divided into two dietary treatments: a control (C) diet group and a low chromium (L) diet group. The diet treatment was maintained through gestation and lactation period. After weaning, some of the pups continued with either the control diet or low chromium diet (CC or LL), whereas other pups switched to another diet (CL or LC). At 32 weeks of age, serum lipid metabolism, proinflammatory indexes, oxidative stress and anti-oxidant markers, and DNA methylation status in adipose tissue were measured. The results indicated that the maternal low chromium diet increased body weight, fat pad weight, serum triglyceride (TG), low-density lipoprotein cholesterol (LDL), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and oxidized glutathione (GSSG). There was a decrease in serum reduced/oxidized glutathione (GSH/GSSG) ratio at 32 weeks of age in female offspring. From adipose tissue, we identified 1214 individual hypomethylated CpG sites and 411 individual hypermethylated CpG sites in the LC group when compared to the CC group. Pathway analysis of the differential methylation genes revealed a significant increase in hypomethylated genes in the mitogen-activated protein kinase (MAPK) signaling pathway in the LC group. Our study highlights the importance of the MAPK signaling pathway in epigenetic changes involved in the lipid metabolism of the offspring from chromium-restricted dams. PMID:27517955

  5. Effects of Maternal Chromium Restriction on the Long-Term Programming in MAPK Signaling Pathway of Lipid Metabolism in Mice.

    PubMed

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2016-08-10

    It is now broadly accepted that the nutritional environment in early life is a key factor in susceptibility to metabolic diseases. In this study, we evaluated the effects of maternal chromium restriction in vivo on the modulation of lipid metabolism and the mechanisms involved in this process. Sixteen pregnant C57BL mice were randomly divided into two dietary treatments: a control (C) diet group and a low chromium (L) diet group. The diet treatment was maintained through gestation and lactation period. After weaning, some of the pups continued with either the control diet or low chromium diet (CC or LL), whereas other pups switched to another diet (CL or LC). At 32 weeks of age, serum lipid metabolism, proinflammatory indexes, oxidative stress and anti-oxidant markers, and DNA methylation status in adipose tissue were measured. The results indicated that the maternal low chromium diet increased body weight, fat pad weight, serum triglyceride (TG), low-density lipoprotein cholesterol (LDL), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), and oxidized glutathione (GSSG). There was a decrease in serum reduced/oxidized glutathione (GSH/GSSG) ratio at 32 weeks of age in female offspring. From adipose tissue, we identified 1214 individual hypomethylated CpG sites and 411 individual hypermethylated CpG sites in the LC group when compared to the CC group. Pathway analysis of the differential methylation genes revealed a significant increase in hypomethylated genes in the mitogen-activated protein kinase (MAPK) signaling pathway in the LC group. Our study highlights the importance of the MAPK signaling pathway in epigenetic changes involved in the lipid metabolism of the offspring from chromium-restricted dams.

  6. Longitudinal effects of developmental bisphenol A and variable diet exposures on epigenetic drift in mice.

    PubMed

    Kochmanski, Joseph; Marchlewicz, Elizabeth H; Savidge, Matthew; Montrose, Luke; Faulk, Christopher; Dolinoy, Dana C

    2017-03-01

    Environmental factors, including exogenous exposures and nutritional status, can affect DNA methylation across the epigenome, but effects of exposures on age-dependent epigenetic drift remain unclear. Here, we tested the hypothesis that early-life exposure to bisphenol A (BPA) and/or variable diet results in altered epigenetic drift, as measured longitudinally via target loci methylation in paired mouse tail tissue (3 wks/10 mos old). Methylation was quantified at two repetitive elements (LINE-1, IAP), two imprinted genes (Igf2, H19), and one non-imprinted gene (Esr1) in isogenic mice developmentally exposed to Control, Control+BPA (50μg/kg diet), Mediterranean, Western, Mediterranean+BPA, or Western+BPA diets. Across age, methylation levels significantly (p<0.050) decreased at LINE-1, IAP, and H19, and increased at Esr1. Igf2 demonstrated Western-specific changes in early-life methylation (p=0.027), and IAP showed marginal negative modification of drift in Western (p=0.058) and Western+BPA (p=0.051). Thus, DNA methylation drifts across age, and developmental nutritional exposures can alter age-related methylation patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effects of puffer (Sphoeroides rubripes) supplementation on disruption of antioxidant defense systems in ethanol-treated rats.

    PubMed

    Joo, Jong-Chan; Park, Jae-Hee; Kim, Rae-Young; Jeon, Kyoung-Im; Lee, Hyun-Jung; Seo, Bo-Young; Park, Eunju

    2011-01-01

    We investigated the effects of puffer (Sphoeroides rubripes) supplementation on antioxidant metabolism in ethanol-treated rats. Sprague-Dawley rats were randomly assigned into 4 groups of 7 rats each and fed (1) an AIN-93G diet (NC), (2) 25% ethanol (E), (3) 25% ethanol and an AIN-93G diet containing 1% puffer flesh (E+F), or (4) 25% ethanol and an AIN-93G diet containing 1% puffer skin (E+S) for 5 wk. At the end of the experimental period, the rats were sacrificed and their blood and organs were collected. To evaluate the effect of puffer supplementation, lipid-soluble antioxidant vitamin and conjugated diene (CD) levels, DNA damage, and mRNA expression of heme oxygenase-1 (HO-1) were assessed. Animals that were fed ethanol showed reduced plasma levels of lipid-soluble antioxidant vitamin and significantly increased levels of lipid peroxides, DNA damage, and HO-1 expression. Dietary supplementation with puffer conferred an antioxidant effect by significantly increasing the levels of γ-tocopherol, a lipid-soluble antioxidant vitamin, and by significantly decreasing the plasma levels of CD, DNA damage, and HO-1 expression. These results suggest that consumption of puffer improves the antioxidant status of ethanol-treated rats.

  8. Additional deleterious effects of alcohol consumption on sperm parameters and DNA integrity in diabetic mice.

    PubMed

    Pourentezari, M; Talebi, A R; Mangoli, E; Anvari, M; Rahimipour, M

    2016-06-01

    The aim of this study was to survey the impact of alcohol consumption on sperm parameters and DNA integrity in experimentally induced diabetic mice. A total of 32 adult male mice were divided into four groups: mice of group 1 served as control fed on basal diet, group 2 received streptozotocin (STZ) (200 mg kg(-1) , single dose, intraperitoneal) and basal diet, group 3 received alcohol (10 mg kg(-1) , water soluble) and basal diet, and group 4 received STZ and alcohol for 35 days. The cauda epididymidis of each mouse was dissected and placed in 1 ml of pre-warm Ham's F10 culture medium for 30 min. The swim-out spermatozoa were analysed for count, motility, morphology and viability. Sperm chromatin quality was evaluated with aniline blue, toluidine blue, acridine orange and chromomycin A3 staining. The results showed that all sperm parameters had significant differences (P < 0.05), also when sperm chromatin was assessed with cytochemical tests. There were significant differences (P < 0.001) between the groups. According to our results, alcohol and diabetes can cause abnormalities in sperm parameters and chromatin quality. In addition, alcohol consumption in diabetic mice can intensify sperm chromatin/DNA damage. © 2015 Blackwell Verlag GmbH.

  9. Post-Miocene expansion, colonization, and host switching drove speciation among extant nematodes of the archaic genus Trichinella

    PubMed Central

    Zarlenga, D. S.; Rosenthal, B. M.; La Rosa, G.; Pozio, E.; Hoberg, E. P.

    2006-01-01

    Parasitic nematodes of the genus Trichinella cause significant food-borne illness and occupy a unique evolutionary position at the base of the phylum Nematoda, unlike the free-living nematode Caenorhabditis elegans. Although the forthcoming genome sequence of Trichinella spiralis can provide invaluable comparative information about nematode biology, a basic framework for understanding the history of the genus Trichinella is needed to maximize its utility. We therefore developed the first robust and comprehensive analysis of the phylogeny and biogeographic history of Trichinella using the variation in three genes (nuclear small-subunit rDNA, and second internal transcribed spacer, mitochondrial large-subunit rDNA, and cytochrome oxidase I DNA) from all 11 recognized taxa. We conclude that (i) although Trichinellidae may have diverged from their closest extant relatives during the Paleozoic, all contemporary species of Trichinella diversified within the last 20 million years through geographic colonization and pervasive host switching among foraging guilds of obligate carnivores; (ii) mammalian carnivores disseminated encapsulated forms from Eurasia to Africa during the late Miocene and Pliocene, and to the Nearctic across the Bering Land Bridge during the Pliocene and Pleistocene, when crown species ultimately diversified; (iii) the greatest risk to human health is posed by those species retaining an ancestral capacity to parasitize a wide range of hosts; and (iv) early hominids may have first acquired Trichinella on the African savannah several million years before swine domestication as their diets shifted from herbivory to facultative carnivory. PMID:16651518

  10. Evaluation of toxic effects of a diet containing fish contaminated with methylmercury in rats mimicking the exposure in the Amazon riverside population.

    PubMed

    Grotto, Denise; Valentini, Juliana; Serpeloni, Juliana Mara; Monteiro, Patrícia Alves Ponte; Latorraca, Elder Francisco; de Oliveira, Ricardo Santos; Antunes, Lusânia Maria Greggi; Garcia, Solange Cristina; Barbosa, Fernando

    2011-11-01

    This study was designed to evaluate the effects of a diet rich in fish contaminated with MeHg, mimicking the typical diet of the Amazon riverside population, in rats. Animals were randomly assigned to one of three groups with eight rats in each group: Group I-control, received commercial ration; Group II-received a diet rich in uncontaminated fish; Group III-received a diet rich in fish contaminated with MeHg. Treatment time was 12 weeks. Oxidative stress markers were evaluated, as well as the effects of this diet on DNA stability, systolic blood pressure (SBP), nitric oxide (NO) levels and histological damage in different tissues. There was a significant increase in SBP values in rats fed with MeHg-contaminated fish diet after the 10th week of the treatment. As far as oxidative stress biomarkers are concerned, no differences were observed in reduced glutathione and protein carbonyl levels, glutathione peroxidase, catalase, superoxide dismutase or δ-aminolevulinate dehydratase activities between the groups of animals receiving contaminated and uncontaminated fish diets. On the other hand, malondialdehyde levels increased significantly in rats fed with contaminated fish. NO levels were similar in all groups. DNA migration showed augmented in rats exposed to contaminated fish and histopathological analyses showed weak but significant leukocyte infiltration. Thus, we conclude that the MeHg-contaminated fish diet induced a slight lipid peroxidation and genotoxicity. However, these effects seem to be much less pronounced than when rats are exposed to aqueous solution containing CH3HgCl. Our findings support the contention that the chemical form of MeHg in fish or fish nutrients such as polyunsaturated fatty acids, Se or vitamin E could minimize the toxic effects of MeHg exposure in fish-eating communities. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Vitamin and mineral supplement users. Do they have healthy or unhealthy dietary behaviours?

    PubMed

    van der Horst, Klazine; Siegrist, Michael

    2011-12-01

    It is unknown whether people use vitamin and mineral supplements (VMS) to compensate for unhealthy diets, or people whom already have a healthy diet use VMS. Therefore, this study aimed to examine correlates of VMS use and whether VMS users can be categorised into specific clusters based on dietary lifestyle variables. The data used came from the Swiss Food Panel questionnaire for 2010. The sample consisted of 6189 respondents, mean age was 54 years and 47.6% were males. Data was analysed with logistic regression analysis and hierarchical cluster analysis. The results revealed that for VMS use, gender, age, education, chronic illness, health consciousness, benefits of fortification, convenience food and sugar-sweetened beverage consumption were of importance. Cluster analysis revealed three clusters (1) healthy diet, (2) unhealthy diet and (3) modest diet. Compared to non-users a higher percentage of VMS users was categorised in the healthy cluster and a lower percentage in the unhealthy cluster. More VMS-users were categorised as having an unhealthy diet (31.4%) than having a healthy diet (20.6%). The results suggest that both hypotheses-VMS are used by people with unhealthy diets and by people who least need them-hold true meaning. Copyright © 2011. Published by Elsevier Ltd.

  12. High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis.

    PubMed

    Garg, A

    1998-03-01

    The most recent position statement on nutrition from the American Diabetes Association recommends an individualized approach to nutrition that is based on the nutritional assessment and desired outcomes of each patient and that takes into consideration patient preferences and control of hyperglycemia and dyslipidemia. To achieve these nutritional goals, either low-saturated-fat, high-carbohydrate diets or high-monounsaturated-fat diets can be advised. A meta-analysis of various studies comparing these two approaches to diet therapy in patients with type 2 diabetes revealed that high-monounsaturated-fat diets improve lipoprotein profiles as well as glycemic control. High-monounsaturated-fat diets reduce fasting plasma triacylglycerol and VLDL-cholesterol concentrations by 19% and 22%, respectively, and cause a modest increase in HDL-cholesterol concentrations without adversely affecting LDL-cholesterol concentrations. Furthermore, there is no evidence that high-monounsaturated-fat diets induce weight gain in patients with diabetes mellitus provided that energy intake is controlled. Therefore, a diet rich in cis-monounsaturated fat can be advantageous for both patients with type 1 or type 2 diabetes who are trying to maintain or lose weight.

  13. Adolescents’ Food Choice and the Place of Plant-Based Foods

    PubMed Central

    Ensaff, Hannah; Coan, Susan; Sahota, Pinki; Braybrook, Debbie; Akter, Humaira; McLeod, Helen

    2015-01-01

    A diet dominated by plant foods, with limited amounts of refined processed foods and animal products conveys substantial health benefits. This study sought to explore adolescents’ attitudes and perceptions towards plant-based foods. Semi-structured focus group interviews were conducted with adolescents (age 14–15 years) (n = 29) attending an inner city school in Yorkshire, UK. Using a grounded theory methodology, data analysis provided four main categories and related concepts revolving around adolescents’ perspectives on plant-based foods: food choice parameters; perceived drivers and benefits of plant-based foods; environmental food cues; barriers to plant-based food choice. In the emergent grounded theory, a clear disconnect between plant-based foods and the parameters that adolescents use to make food choices, is highlighted. Further, key barriers to adolescents adopting a plant-based diet are differentiated and considered with respect to practice and policy. The analysis offers a framework to remodel and re-present plant-based foods. In this way, it is proposed that a closer connection is possible, with consequent shifts in adolescents’ dietary behaviour towards a more plant-based diet and associated health benefits. PMID:26066012

  14. Adolescents' Food Choice and the Place of Plant-Based Foods.

    PubMed

    Ensaff, Hannah; Coan, Susan; Sahota, Pinki; Braybrook, Debbie; Akter, Humaira; McLeod, Helen

    2015-06-09

    A diet dominated by plant foods, with limited amounts of refined processed foods and animal products conveys substantial health benefits. This study sought to explore adolescents' attitudes and perceptions towards plant-based foods. Semi-structured focus group interviews were conducted with adolescents (age 14-15 years) (n = 29) attending an inner city school in Yorkshire, UK. Using a grounded theory methodology, data analysis provided four main categories and related concepts revolving around adolescents' perspectives on plant-based foods: food choice parameters; perceived drivers and benefits of plant-based foods; environmental food cues; barriers to plant-based food choice. In the emergent grounded theory, a clear disconnect between plant-based foods and the parameters that adolescents use to make food choices, is highlighted. Further, key barriers to adolescents adopting a plant-based diet are differentiated and considered with respect to practice and policy. The analysis offers a framework to remodel and re-present plant-based foods. In this way, it is proposed that a closer connection is possible, with consequent shifts in adolescents' dietary behaviour towards a more plant-based diet and associated health benefits.

  15. Assessment of DNA Contamination in RNA Samples Based on Ribosomal DNA

    PubMed Central

    Hashemipetroudi, Seyyed Hamidreza; Nematzadeh, Ghorbanali; Ahmadian, Gholamreza; Yamchi, Ahad; Kuhlmann, Markus

    2018-01-01

    One method extensively used for the quantification of gene expression changes and transcript abundances is reverse-transcription quantitative real-time PCR (RT-qPCR). It provides accurate, sensitive, reliable, and reproducible results. Several factors can affect the sensitivity and specificity of RT-qPCR. Residual genomic DNA (gDNA) contaminating RNA samples is one of them. In gene expression analysis, non-specific amplification due to gDNA contamination will overestimate the abundance of transcript levels and can affect the RT-qPCR results. Generally, gDNA is detected by qRT-PCR using primer pairs annealing to intergenic regions or an intron of the gene of interest. Unfortunately, intron/exon annotations are not yet known for all genes from vertebrate, bacteria, protist, fungi, plant, and invertebrate metazoan species. Here we present a protocol for detection of gDNA contamination in RNA samples by using ribosomal DNA (rDNA)-based primers. The method is based on the unique features of rDNA: their multigene nature, highly conserved sequences, and high frequency in the genome. Also as a case study, a unique set of primers were designed based on the conserved region of ribosomal DNA (rDNA) in the Poaceae family. The universality of these primer pairs was tested by melt curve analysis and agarose gel electrophoresis. Although our method explains how rDNA-based primers can be applied for the gDNA contamination assay in the Poaceae family, it could be easily used to other prokaryote and eukaryote species PMID:29443017

  16. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuehai; Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000; Lu, Huixia

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • The spleen weights and glomerular areas were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE{sup −/−} mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE{sup −/−}) mice is a classic model of atherosclerosis. We have found that ApoE{sup −/−} mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared withmore » C57B6/L (B6) mice. However, whether ApoE{sup −/−} mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE{sup −/−}, Fas{sup −/−} and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas{sup −/−} mice, a model of systemic lupus erythematosus (SLE), ApoE{sup −/−} mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE{sup −/−} mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE{sup −/−} mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta.« less

  17. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation

    PubMed Central

    Fitzgibbons, Timothy P.; Kogan, Sophia; Aouadi, Myriam; Hendricks, Greg M.; Straubhaar, Juerg

    2011-01-01

    Thoracic perivascular adipose tissue (PVAT) is a unique adipose depot that likely influences vascular function and susceptibility to pathogenesis in obesity and the metabolic syndrome. Surprisingly, PVAT has been reported to share characteristics of both brown and white adipose, but a detailed direct comparison to interscapular brown adipose tissue (BAT) has not been performed. Here we show by full genome DNA microarray analysis that global gene expression profiles of PVAT are virtually identical to BAT, with equally high expression of Ucp-1, Cidea, and other genes known to be uniquely or very highly expressed in BAT. PVAT and BAT also displayed nearly identical phenotypes upon immunohistochemical analysis, and electron microscopy confirmed that PVAT contained multilocular lipid droplets and abundant mitochondria. Compared with white adipose tissue (WAT), PVAT and BAT from C57BL6/J mice fed a high-fat diet for 13 wk had markedly lower expression of immune cell-enriched mRNAs, suggesting resistance to obesity-induced inflammation. Indeed, staining of BAT and PVAT for macrophage markers (F4/80 and CD68) in obese mice showed virtually no macrophage infiltration, and FACS analysis of BAT confirmed the presence of very few CD11b+/CD11c+ macrophages in BAT (1.0%) compared with WAT (31%). In summary, murine PVAT from the thoracic aorta is virtually identical to interscapular BAT, is resistant to diet-induced macrophage infiltration, and thus may play an important role in protecting the vascular bed from inflammatory stress. PMID:21765057

  18. Lipid overloading during liver regeneration causes delayed hepatocyte DNA replication by increasing ER stress in mice with simple hepatic steatosis.

    PubMed

    Hamano, Mina; Ezaki, Hisao; Kiso, Shinichi; Furuta, Kunimaro; Egawa, Mayumi; Kizu, Takashi; Chatani, Norihiro; Kamada, Yoshihiro; Yoshida, Yuichi; Takehara, Tetsuo

    2014-02-01

    Impaired fatty liver regeneration has already been reported in many genetic modification models. However, in diet-induced simple hepatic steatosis, which showed similar phenotype with clinical pathology, whether liver regeneration is impaired or not remains unclear. In this study, we evaluated liver regeneration in mice with diet-induced simple hepatic steatosis, and focused on excess lipid accumulation occurring during liver regeneration. Mice were fed high fat diet (HFD) or control diet for 9-10 weeks. We analyzed intrahepatic lipid accumulation, DNA replication, and various signaling pathways including cell proliferation and ER stress during liver regeneration after partial hepatectomy. In addition, some of mice were pretreated with tauroursodeoxycholic acid (TUDCA), a chemical chaperone which alleviates ER stress, and then we estimated TUDCA effects on liver regeneration. The peak of hepatocyte BrdU incorporation, the expression of proliferation cell nuclear antigen (PCNA) protein, and the expressions of cell cycle-related genes were observed in delayed time in HFD mice. The expression of phosphorylated Erk1/2 was also delayed in HFD mice. The amounts of liver triglyceride were at least twofold higher in HFD mice at each time point. Intrahepatic palmitic acid was increased especially in HFD mice. ER stress induced during liver regeneration was significantly higher in HFD mice. In HFD mice, pretreatment with TUDCA reduced ER stress and resulted in improvement of delayed liver regeneration. In simple hepatic steatosis, lipid overloading occurring during liver regeneration might be caused ER stress and results in delayed hepatocyte DNA replication.

  19. Resveratrol improves high-fat diet induced insulin resistance by rebalancing subsarcolemmal mitochondrial oxidation and antioxidantion.

    PubMed

    Haohao, Zhang; Guijun, Qin; Juan, Zheng; Wen, Kong; Lulu, Chen

    2015-03-01

    Although resveratrol (RES) is thought to be a key regulator of insulin sensitivity in rodents, the exact mechanism underlying this effect remains unclear. Therefore, we sought to investigate how RES affects skeletal muscle oxidative and antioxidant levels of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations in high-fat diet (HFD)-induced insulin resistance (IR) rats. Systemic and skeletal muscle insulin sensitivity together with expressions of several genes related to mitochondrial biogenesis and skeletal muscle SIRT1, SIRT3 protein levels were studied in rats fed a normal diet, a HFD, and a HFD with intervention of RES for 8 weeks. Oxidative stress levels and antioxidant enzyme activities were assessed in SS and IMF mitochondria. HFD fed rats exhibited obvious systemic and skeletal muscle IR as well as decreased SIRT1 and SIRT3 expressions, mitochondrial DNA (mtDNA), and mitochondrial biogenesis (p < 0.05). Both SS and IMF mitochondria demonstrated elevated reactive oxygen species (ROS) and malondialdehyde (MDA) levels. In addition, SS mitochondrial antioxidant enzyme activities were significantly lower, while IMF mitochondrial antioxidant enzyme activities were higher (p < 0.05). By contrast, RES treatment protected rats against diet induced IR, increased SIRT1 and SIRT3 expressions, mtDNA, and mitochondrial biogenesis (p < 0.05). Moreover, the activities of SS and IMF mitochondrial antioxidant enzymes were increased, which reverted the increased SS mitochondrial oxidative stress levels (p < 0.05). This study suggests that RES ameliorates insulin sensitivity consistent with improved SIRT3 expressions and rebalance between SS mitochondrial oxidative stress and antioxidant competence in HFD rats.

  20. Paternal and maternal alcohol consumption: effects on offspring in two strains of rats.

    PubMed

    Abel, E L

    1989-08-01

    Long-Evans and Sprague-Dawley male rats were given liquid alcohol diets containing 35%, 17.5%, or 0% ethanol-derived calories (EDC). The latter two groups were pair fed to the higher alcohol diet group. A fourth group received lab chow and water ad libitum to assess the role of paternal undernutrition associated with alcohol consumption. After three or four weeks of diet consumption, these males were bred to females of the same strain. Pregnant females were divided into similarly treated alcohol groups and were fed these diets beginning on gestation Day 8, thus creating a factorial study with strain, paternal, and maternal alcohol consumption as main factors. Paternal alcohol consumption was associated with decreased litter size, decreased testosterone levels, and a strain-related effect on offspring activity. Offspring activity decreased for those sired by 35% and 17.5% EDC Long-Evans fathers. Activity also decreased for offspring sired by 17.5% EDC Sprague-Dawley fathers but increased for those sired by 35% EDC fathers. Paternal alcohol consumption did not affect postnatal mortality or passive avoidance learning of offspring. Maternal alcohol consumption was associated with lower birth weights, lower offspring weights at weaning, increased postnatal mortality, and poorer passive avoidance learning. However, offspring activity was not affected. In a separate study, levels of alcohol in the testes were found to be somewhat, but not significantly, lower than blood alcohol levels. DNA taken from sperm of Long-Evans males consuming alcohol, migrated farther under pulsed field electrophoresis than DNA from control fathers, suggestive of an alcohol-related effect on sperm DNA.

  1. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice.

    PubMed

    Wang, Bo; Majumder, Sarmila; Nuovo, Gerard; Kutay, Huban; Volinia, Stefano; Patel, Tushar; Schmittgen, Thomas D; Croce, Carlo; Ghoshal, Kalpana; Jacob, Samson T

    2009-10-01

    MicroRNAs (miRs) are conserved, small (20-25 nucleotide) noncoding RNAs that negatively regulate expression of messenger RNAs (mRNAs) at the posttranscriptional level. Aberrant expression of certain microRNAs plays a causal role in tumorigenesis. Here, we report identification of hepatic microRNAs that are dysregulated at early stages of feeding C57BL/6 mice choline-deficient and amino acid-defined (CDAA) diet that is known to promote nonalcoholic steatohepatitis (NASH)-induced hepatocarcinogenesis after 84 weeks. Microarray analysis identified 30 hepatic microRNAs that are significantly (P < or = 0.01) altered in mice fed CDAA diet for 6, 18, 32, and 65 weeks compared with those fed choline-sufficient and amino acid-defined (CSAA) diet. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis demonstrated up-regulation of oncogenic miR-155, miR-221/222, and miR-21 and down-regulation of the most abundant liver-specific miR-122 at early stages of hepatocarcinogenesis. Western blot analysis showed reduced expression of hepatic phosphatase and tensin homolog (PTEN) and CCAAT/enhancer binding protein beta (C/EBPbeta), respective targets of miR-21 and miR-155, in these mice at early stages. DNA binding activity of nuclear factor kappa B (NF-kappaB) that transactivates miR-155 gene was significantly (P = 0.002) elevated in the liver nuclear extract of mice fed CDAA diet. Furthermore, the expression of miR-155, as measured by in situ hybridization and real-time RT-PCR, correlated with diet-induced histopathological changes in the liver. Ectopic expression of miR-155 promoted growth of hepatocellular carcinoma (HCC) cells, whereas its depletion inhibited cell growth. Notably, miR-155 was significantly (P = 0.0004) up-regulated in primary human HCCs with a concomitant decrease (P = 0.02) in C/EBPbeta level compared with matching liver tissues. Temporal changes in microRNA profile occur at early stages of CDAA diet-induced hepatocarcinogenesis. Reciprocal regulation of specific oncomirs and their tumor suppressor targets implicate their role in NASH-induced hepatocarcinogenesis and suggest their use in the diagnosis, prognosis, and therapy of liver cancer.

  2. A comparison of faecal microbial populations of South African Windsnyer-type indigenous pigs (SAWIPs) and Large White × Landrace (LW × LR) crosses fed diets containing ensiled maize cobs.

    PubMed

    Kanengoni, Arnold T; Chimonyo, Michael; Tasara, Taurai; Cormican, Paul; Chapwanya, Aspinas; Ndimba, Bongani K; Dzama, Kennedy

    2015-07-01

    Faecal microbial communities in South African Windsnyer-type indigenous pigs (SAWIPs) and Large White × Landrace (LW × LR) crosses were investigated using high-throughput sequencing of the 16S rDNA genes. The faecal microbial communities in LW × LR crosses and SAWIPs fed control (CON) and high maize cob (HMC) diets were evaluated through parallel sequencing of 16S rDNA genes. Butrivibrio, Faecalibacterium and Desulfovibrio, although present in LW × LR pigs, were absent from the SAWIP microbial community. Bacteroides, Succiniclasticum, Peptococcus and Akkermansia were found in SAWIPs but not in LW × LR crosses. The ratios of Bacteroidia to Clostridia on the CON and HMC diets were similar (0.37 versus 0.39) in SAWIPs but different (0.24 versus 0.1) in LW × LR crosses. The faecal microbial profiles determined were different between the LW × LR and SAWIP breeds but not between pigs fed the CON and HMC diets. The composition of faecal bacterial communities in SAWIPs was determined for the first time. The differences in microbial communities detected may explain the enhanced ability of SAWIPs to digest fibrous diets compared with the LW × LR crosses. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Increased serum and testicular androgen levels in F1 rats with lifetime exposure to soy isoflavones.

    PubMed

    McVey, Mark J; Cooke, Gerard M; Curran, Ivan H A

    2004-07-01

    The consequences of dietary soy isoflavones on serum and testicular androgen levels were examined in F1 male rats from a multigeneration study investigating the effects of diets varying in isoflavone content. Rats were fed either a soy-free casein based diet (AIN93G) or a diet in which alcohol-washed soy protein replaced casein as the protein source and to which increasing amounts of Novasoy, a commercially available isoflavone supplement were added. Analysis of these diets showed that the isoflavone content in each diet was 0 (diet 1; casein based control), 31.7 (diet 2; alcohol-washed soy-based diet control), 36.1 (diet 3), 74.5 (diet 4), 235.6 (diet 5) and 1046.6 (diet 6) mg total isoflavones/kg pelleted diet. The levels of isoflavones in diet 1 would represent a daily intake level of 0 mg isoflavones, diets 2 and 3 estimate a low soy-containing human diet (e.g. North American), diet 4 would correspond to Asian diets (e.g. Japanese) or adult humans taking isoflavone supplements, diet 5 approximates the isoflavone intake by babies fed soy based infant formula and diet 6 approximates fivefold the intake levels by babies or 10-fold the intake levels of adults consuming high isoflavone containing diets. Serum testosterone (T) from F1 male rats sacrificed on postnatal days (PND) 28, 70, 120, 240 and 360 were low at PND 28 (0.4 ng/ml), increased approximately five to sixfold at PND 70 (2.5-3.0 ng/ml) and thereafter declined to a steady state level of approximately 1 ng/ml by PND 120. However, rats on diets 5 and 6 demonstrated altered serum testosterone profiles such that at days 120, testosterone levels remained significantly elevated at approximately 3 ng/ml (P < 0.05). Serum dihydrotestosterone levels exhibited similar profiles and the levels in PND 120 rats on diet 5 or 6 were also significantly elevated (two to threefold, P < 0.05). The intra-testicular testosterone concentration in rats on diet 5 was also elevated at PND 120 compared with diet 1 (P < 0.05). These findings show that F1 male rats continuously exposed to a mixture of dietary soy isoflavones from conception onwards exhibit altered serum and testicular androgen profiles.

  4. Direct Detection and Sequencing of Damaged DNA Bases

    PubMed Central

    2011-01-01

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications. PMID:22185597

  5. Direct detection and sequencing of damaged DNA bases.

    PubMed

    Clark, Tyson A; Spittle, Kristi E; Turner, Stephen W; Korlach, Jonas

    2011-12-20

    Products of various forms of DNA damage have been implicated in a variety of important biological processes, such as aging, neurodegenerative diseases, and cancer. Therefore, there exists great interest to develop methods for interrogating damaged DNA in the context of sequencing. Here, we demonstrate that single-molecule, real-time (SMRT®) DNA sequencing can directly detect damaged DNA bases in the DNA template - as a by-product of the sequencing method - through an analysis of the DNA polymerase kinetics that are altered by the presence of a modified base. We demonstrate the sequencing of several DNA templates containing products of DNA damage, including 8-oxoguanine, 8-oxoadenine, O6-methylguanine, 1-methyladenine, O4-methylthymine, 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxymethyluracil, or thymine dimers, and show that these base modifications can be readily detected with single-modification resolution and DNA strand specificity. We characterize the distinct kinetic signatures generated by these DNA base modifications.

  6. Garlic and associated allyl sulfur components inhibit N-methyl-N-nitrosourea induced rat mammary carcinogenesis.

    PubMed

    Schaffer, E M; Liu, J Z; Green, J; Dangler, C A; Milner, J A

    1996-04-19

    Our previous studies demonstrated that dietary garlic powder supplementation inhibits N-nitrosamine induced DNA alkylation in liver and mammary tissue. The present studies compared the impact of dietary supplementation with garlic powder or two garlic constituents, water-soluble S-allyl cysteine (SAC) and oil-soluble diallyl disulfide (DADS), on the incidence of mammary tumorigenesis induced by N-methyl-N-nitrosourea (MNU). Female Sprague-Dawley rats were fed semi-purified casein based diets with or without supplements of garlic powder(20g/kg), SAC (57 micromol/kg) or DADS (57 micromol/kg) for 2 weeks prior to treatment with MNU (15 mg/kg body wt). Garlic powder, SAC and DADS supplementation significantly delayed the onset of mammary tumors compared to rats receiving the unsupplemented diet. Tumor incidence 23 weeks after MNU treatment was reduced by 76, 41 and 53% in rats fed garlic, SAC and DADS, respectively, compared to controls (P<0.05). Total tumor number was reduced 81, 35 and 65% by these supplements, respectively (P<0.05). In a separate study the quantity of mammary DNA alkylation occurring 3 h after MNU treatment was reduced in rats fed garlic, SAC or DADS (P<0.05). Specifically, O(6)-methylguanine adducts were reduced by 27, 18 and 23% in rats fed supplemental garlic, SAC and DADS, respectively, compared to controls. N(7)-Methylguanine adducts decreased by 48, 22 and 21% respectively, compared to rats fed the control diet. These studies demonstrate that garlic and associated allyl sulfur components, SAC and DADS, are effective inhibitors of MNU-induced mammary carcinogenesis.

  7. Impact of a folic acid-enriched diet on urinary tract function in mice treated with testosterone and estradiol

    PubMed Central

    Keil, Kimberly P.; Abler, Lisa L.; Altmann, Helene M.; Wang, Zunyi; Wang, Peiqing; Ricke, William A.; Bjorling, Dale E.

    2015-01-01

    Aging men are susceptible to developing lower urinary tract symptoms, but the underlying etiology is unknown and the influence of dietary and environmental factors on them is unclear. We tested whether a folic acid-enriched diet changed urinary tract physiology and biology in control male mice and male mice with urinary dysfunction induced by exogenous testosterone and estradiol (T+E2), which mimics changing hormone levels in aging humans. T+E2 treatment increased mouse urine output, time between voiding events, and bladder capacity and compliance. Consumption of a folic acid-enriched diet moderated these changes without decreasing prostate wet weight or threshold voiding pressure. One potential mechanism for these changes involves water balance. T+E2 treatment increases plasma concentrations of anti-diuretic hormone, which is offset at least in part by a folic acid-enriched diet. Another potential mechanism involves neural control of micturition. The folic acid-enriched diet, fed to T+E2-treated mice, increased voiding frequency in response to intravesicular capsaicin infusion and increased mRNA abundance of the capsaicin-sensitive cation channel transient receptor potential vanilloid subfamily member 1 (Trpv1) in L6 and S1 dorsal root ganglia (DRG) neurons. T+E2 treatment and a folic acid-enriched diet also modified DNA methylation, which is capable of altering gene expression. We found the enriched diet increased global DNA methylation in dorsal and ventral prostate and L6 and S1 DRG. Our results are consistent with folic acid acting to slow or reverse T+E2-mediated alteration in urinary function in part by normalizing water balance and enhancing or preserving afferent neuronal function. PMID:25855514

  8. Maternal Diets Trigger Sex-Specific Divergent Trajectories of Gene Expression and Epigenetic Systems in Mouse Placenta

    PubMed Central

    Gabory, Anne; Ferry, Laure; Fajardy, Isabelle; Jouneau, Luc; Gothié, Jean-David; Vigé, Alexandre; Fleur, Cécile; Mayeur, Sylvain; Gallou-Kabani, Catherine; Gross, Marie-Sylvie; Attig, Linda; Vambergue, Anne; Lesage, Jean; Reusens, Brigitte; Vieau, Didier; Remacle, Claude; Jais, Jean-Philippe; Junien, Claudine

    2012-01-01

    Males and females responses to gestational overnutrition set the stage for subsequent sex-specific differences in adult onset non communicable diseases. Placenta, as a widely recognized programming agent, contibutes to the underlying processes. According to our previous findings, a high-fat diet during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes. We further investigated the impact of diet and sex on placental histology, transcriptomic and epigenetic signatures in mice. Both basal gene expression and response to maternal high-fat diet were sexually dimorphic in whole placentas. Numerous genes showed sexually dimorphic expression, but only 11 genes regardless of the diet. In line with the key role of genes belonging to the sex chromosomes, 3 of these genes were Y-specific and 3 were X-specific. Amongst all the genes that were differentially expressed under a high-fat diet, only 16 genes were consistently affected in both males and females. The differences were not only quantitative but remarkably qualitative. The biological functions and networks of genes dysregulated differed markedly between the sexes. Seven genes of the epigenetic machinery were dysregulated, due to effects of diet, sex or both, including the Y- and X-linked histone demethylase paralogues Kdm5c and Kdm5d, which could mark differently male and female epigenomes. The DNA methyltransferase cofactor Dnmt3l gene expression was affected, reminiscent of our previous observation of changes in global DNA methylation. Overall, this striking sexual dimorphism of programming trajectories impose a considerable revision of the current dietary interventions protocols. PMID:23144842

  9. Effect of high-fat diet and growth stage on the diversity and composition of intestinal microbiota in healthy bovine livestock.

    PubMed

    Jiao, Shengyin; Cao, Hui; Dai, Yue; Wu, Junhui; Lv, Jia; Du, Renjia; Han, Bei

    2017-11-01

    This study aimed to investigate the composition of bacteria in the bovine rectum and their functions during growth, in relation to different diets. Fecal samples were collected from 6-, 12-, 18- and 24-month cattle fed high-fat diet, and healthy female parents fed regular diet. Total DNA was amplified (V3-V4 of 16S rRNA) and submitted to barcode-DNA pyrosequencing. Intestinal microbiota profiles and functions were then analyzed. A total of 114 512 operational taxonomic units were detected from the 1 802 243 sequences obtained. In 6-month-old and female parent groups, the top three abundant phyla were Bacteroidetes (37.6%, 32.2%), Firmicutes (34.4%, 48.2%) and Proteobacteria (9.1%, 6.3%); in the 12-, 18- and 24-month groups, they were Proteobacteria (45.5%, 47.1%, 38.8%), Firmicutes (27.4%, 22.2%, 20.1%) and Bacteroidetes (14.9%, 19.4%, 17.7%), respectively. Paludibacter and Desulfopila in abundance showed negative (P < 0.001) and positive (P < 0.05) correlation, respectively, to cattle weight gain through metagenomic functional prediction of methane, cysteine and methionine metabolism. Meanwhile, cofactor/vitamin and amino acid metabolic processes were significantly higher in bacteria from the regular diet group than high-fat diet groups, with markedly lower cellular processes and signaling, and reduced glycan biosynthesis and metabolism (P < 0.01). The 6-month cattle and female parents shared similar intestinal bacteria; the community structure of fecal microbiota was significantly affected by high-fat diet in older cattle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. The Effect of Cancer Chemopreventive Agents on DNA Adduct Formation by the Dietary Prostate Carcinogen PhIP

    DTIC Science & Technology

    2001-04-01

    involved in prostate cancer etiology. 12 References: De Stefani, E., Fierro, L., Barrios , E., and Ronco, A. (1995) Tobacco, alcohol, diet and risk of...OF DNA IN SQUAMOUS CELL CARCINOMA OF THE LUNG. Iny, Jing Xu: Univ. of North Carolina at Greensboro, Cell. & Molec. Chandrika J Piyathilake, Olga Henao

  11. QFASAR: Quantitative fatty acid signature analysis with R

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.

    2017-01-01

    Knowledge of predator diets provides essential insights into their ecology, yet diet estimation is challenging and remains an active area of research.Quantitative fatty acid signature analysis (QFASA) is a popular method of estimating diet composition that continues to be investigated and extended. However, software to implement QFASA has only recently become publicly available.I summarize a new R package, qfasar, for diet estimation using QFASA methods. The package also provides functionality to evaluate and potentially improve the performance of a library of prey signature data, compute goodness-of-fit diagnostics, and support simulation-based research. Several procedures in the package have not previously been published.qfasar makes traditional and recently published QFASA diet estimation methods accessible to ecologists for the first time. Use of the package is illustrated with signature data from Chukchi Sea polar bears and potential prey species.

  12. High-performance liquid chromatography/electrospray mass spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA adduct.

    PubMed

    Leclercq, L; Laurent, C; De Pauw, E

    1997-05-15

    A method was developed for the analysis of 7-(2-hydroxyethyl)guanine (7HEG), the major DNA adduct formed after exposure to ethylene oxide (EO). The method is based on DNA neutral thermal hydrolysis, adduct micro-concentration, and final characterization and quantification by HPLC coupled to single-ion monitoring electrospray mass spectrometry (HPLC/SIR-ESMS). The method was found to be selective, sensitive, and easy to handle with no need for enzymatic digestion or previous sample derivatization. Detection limit was found to be close to 1 fmol of adduct injected (10(-10) M), thus allowing the detection of approximately three modified bases on 10(8) intact nucleotides in blood sample analysis. Quantification results are shown for 7HEG after calf thymus DNA and blood exposure to various doses of EO, in both cases obtaining clear dose-response relationships.

  13. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori.

    PubMed

    Yu, Quan-You; Lu, Cheng; Li, Wen-Le; Xiang, Zhong-Huai; Zhang, Ze

    2009-11-24

    Carboxylesterase is a multifunctional superfamily and ubiquitous in all living organisms, including animals, plants, insects, and microbes. It plays important roles in xenobiotic detoxification, and pheromone degradation, neurogenesis and regulating development. Previous studies mainly used Dipteran Drosophila and mosquitoes as model organisms to investigate the roles of the insect COEs in insecticide resistance. However, genome-wide characterization of COEs in phytophagous insects and comparative analysis remain to be performed. Based on the newly assembled genome sequence, 76 putative COEs were identified in Bombyx mori. Relative to other Dipteran and Hymenopteran insects, alpha-esterases were significantly expanded in the silkworm. Genomics analysis suggested that BmCOEs showed chromosome preferable distribution and 55% of which were tandem arranged. Sixty-one BmCOEs were transcribed based on cDNA/ESTs and microarray data. Generally, most of the COEs showed tissue specific expressions and expression level between male and female did not display obvious differences. Three main patterns could be classified, i.e. midgut-, head and integument-, and silk gland-specific expressions. Midgut is the first barrier of xenobiotics peroral toxicity, in which COEs may be involved in eliminating secondary metabolites of mulberry leaves and contaminants of insecticides in diet. For head and integument-class, most of the members were homologous to odorant-degrading enzyme (ODE) and antennal esterase. RT-PCR verified that the ODE-like esterases were also highly expressed in larvae antenna and maxilla, and thus they may play important roles in degradation of plant volatiles or other xenobiotics. B. mori has the largest number of insect COE genes characterized to date. Comparative genomic analysis suggested that the gene expansion mainly occurred in silkworm alpha-esterases. Expression evidence indicated that the expanded genes were specifically expressed in midgut, integument and head, implying that these genes may have important roles in detoxifying secondary metabolites of mulberry leaves, contaminants in diet, and odorants. Our results provide some new insights into functions and evolutionary characteristics of COEs in phytophagous insects.

  14. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori

    PubMed Central

    2009-01-01

    Background Carboxylesterase is a multifunctional superfamily and ubiquitous in all living organisms, including animals, plants, insects, and microbes. It plays important roles in xenobiotic detoxification, and pheromone degradation, neurogenesis and regulating development. Previous studies mainly used Dipteran Drosophila and mosquitoes as model organisms to investigate the roles of the insect COEs in insecticide resistance. However, genome-wide characterization of COEs in phytophagous insects and comparative analysis remain to be performed. Results Based on the newly assembled genome sequence, 76 putative COEs were identified in Bombyx mori. Relative to other Dipteran and Hymenopteran insects, alpha-esterases were significantly expanded in the silkworm. Genomics analysis suggested that BmCOEs showed chromosome preferable distribution and 55% of which were tandem arranged. Sixty-one BmCOEs were transcribed based on cDNA/ESTs and microarray data. Generally, most of the COEs showed tissue specific expressions and expression level between male and female did not display obvious differences. Three main patterns could be classified, i.e. midgut-, head and integument-, and silk gland-specific expressions. Midgut is the first barrier of xenobiotics peroral toxicity, in which COEs may be involved in eliminating secondary metabolites of mulberry leaves and contaminants of insecticides in diet. For head and integument-class, most of the members were homologous to odorant-degrading enzyme (ODE) and antennal esterase. RT-PCR verified that the ODE-like esterases were also highly expressed in larvae antenna and maxilla, and thus they may play important roles in degradation of plant volatiles or other xenobiotics. Conclusion B. mori has the largest number of insect COE genes characterized to date. Comparative genomic analysis suggested that the gene expansion mainly occurred in silkworm alpha-esterases. Expression evidence indicated that the expanded genes were specifically expressed in midgut, integument and head, implying that these genes may have important roles in detoxifying secondary metabolites of mulberry leaves, contaminants in diet, and odorants. Our results provide some new insights into functions and evolutionary characteristics of COEs in phytophagous insects. PMID:19930670

  15. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation.

    PubMed

    Ly, Lundi; Chan, Donovan; Aarabi, Mahmoud; Landry, Mylène; Behan, Nathalie A; MacFarlane, Amanda J; Trasler, Jacquetta

    2017-07-01

    Do paternal exposures to folic acid deficient (FD), and/or folic acid supplemented (FS) diets, throughout germ cell development adversely affect male germ cells and consequently offspring health outcomes? Male mice exposed over their lifetimes to both FD and FS diets showed decreased sperm counts and altered imprinted gene methylation with evidence of transmission of adverse effects to the offspring, including increased postnatal-preweaning mortality and variability in imprinted gene methylation. There is increasing evidence that disruptions in male germ cell epigenetic reprogramming are associated with offspring abnormalities and intergenerational disease. The fetal period is the critical time of DNA methylation pattern acquisition for developing male germ cells and an adequate supply of methyl donors is required. In addition, DNA methylation patterns continue to be remodeled during postnatal spermatogenesis. Previous studies have shown that lifetime (prenatal and postnatal) folic acid deficiency can alter the sperm epigenome and increase the incidence of fetal morphological abnormalities. Female BALB/c mice (F0) were placed on one of four amino-acid defined diets for 4 weeks before pregnancy and throughout pregnancy and lactation: folic acid control (Ctrl; 2 mg/kg), 7-fold folic acid deficient (7FD; 0.3 mg/kg), 10-fold high FS (10FS, 20 mg/kg) or 20-fold high FS (20FS, 40 mg/kg) diets. F1 males were weaned to their respective prenatal diets to allow for diet exposure during all windows of germline epigenetic reprogramming: the erasure, re-establishment and maintenance phases. F0 females were mated with chow-fed males to produce F1 litters whose germ cells were exposed to the diets throughout embryonic development. F1 males were subsequently mated with chow-fed female mice. Two F2 litters, unexposed to the experimental diets, were generated from each F1 male; one litter was collected at embryonic day (E)18.5 and one delivered and followed postnatally. DNA methylation at a global level and at the differentially methylated regions of imprinted genes (H19, Imprinted Maternally Expressed Transcript (Non-Protein Coding)-H19, Small Nuclear Ribonucleoprotein Polypeptide N-Snrpn, KCNQ1 Opposite Strand/Antisense Transcript 1 (Non-Protein Coding)-Kcnq1ot1, Paternally Expressed Gene 1-Peg1 and Paternally Expressed Gene 3-Peg3) was assessed by luminometric methylation analysis and bisulfite pyrosequencing, respectively, in F1 sperm, F2 E18.5 placenta and F2 E18.5 brain cortex. F1 males exhibited lower sperm counts following lifetime exposure to both folic acid deficiency and the highest dose of folic acid supplementation (20FS), (both P < 0.05). Post-implantation losses were increased amongst F2 E18.5 day litters from 20FS exposed F1 males (P < 0.05). F2 litters derived from both 7FD and 20FS exposed F1 males had significantly higher postnatal-preweaning pup death (both P < 0.05). Sperm from 10FS exposed males had increased variance in methylation across imprinted gene H19, P < 0.05; increased variance at a few sites within H19 was also found for the 7FD and 20FS groups (P < 0.05). While the 20FS diet resulted in inter-individual alterations in methylation across the imprinted genes Snrpn and Peg3 in F2 E18.5 placenta, ≥50% of individual sites tested in Peg1 and/or Peg3 were affected in the 7FD and 10FS groups. Inter-individual alterations in Peg1 methylation were found in F2 E18.5 day 10FS group brain cortex (P < 0.05). Not applicable. The cause of the increase in postnatal-preweaning mortality was not investigated post-mortem. Further studies are required to understand the mechanisms underlying the adverse effects of folic acid deficiency and supplementation on developing male germ cells. Genome-wide DNA and histone methylome studies as well as gene expression studies are required to better understand the links between folic acid exposures, an altered germ cell epigenome and offspring outcomes. The findings of this study provide further support for paternally transmitted environmental effects. The results indicate that both folic acid deficiency and high dose supplementation can be detrimental to germ cell development and reproductive fitness, in part by altering DNA methylation in sperm. This study was supported by a grant to J.M.T. from the Canadian Institutes of Health Research (CIHR #89944). The authors declare they have no conflicts of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features.

    PubMed

    Saberioon, Mohammadmehdi; Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry

    2018-03-29

    The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout ( Oncorhynchus mykiss ) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k -Nearest neighbours ( k -NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k -NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.

  17. Comparison of automated ribosomal intergenic spacer analysis (ARISA) and denaturing gradient gel electrophoresis (DGGE) techniques for analysing the influence of diet on ruminal bacterial diversity.

    PubMed

    Saro, Cristina; Molina-Alcaide, Eduarda; Abecia, Leticia; Ranilla, María José; Carro, María Dolores

    2018-04-01

    The objective of this study was to compare the automated ribosomal intergenic spacer analysis (ARISA) and the denaturing gradient gel electrophoresis (DGGE) techniques for analysing the effects of diet on diversity in bacterial pellets isolated from the liquid (liquid-associated bacteria (LAB)) and solid (solid-associated bacteria (SAB)) phase of the rumen. The four experimental diets contained forage to concentrate ratios of 70:30 or 30:70 and had either alfalfa hay or grass hay as forage. Four rumen-fistulated animals (two sheep and two goats) received the diets in a Latin square design. Bacterial pellets (LAB and SAB) were isolated at 2 h post-feeding for DNA extraction and analysed by ARISA and DGGE. The number of peaks in individual samples ranged from 48 to 99 for LAB and from 41 to 95 for SAB with ARISA, and values of DGGE-bands ranged from 27 to 50 for LAB and from 18 to 45 for SAB. The LAB samples from high concentrate-fed animals tended (p < 0.10) to show greater peak numbers and Shannon index values than those isolated from high forage-fed animals with ARISA, but no differences were identified with DGGE. The SAB samples from high concentrate-fed animals had lower (p < 0.05) peak numbers and Shannon index values than those from animals fed high-forage diets with ARISA, but only a trend was noticed for these parameters with DGGE (p < 0.10). The ARISA detected that animals fed alfalfa hay diets showed lower (p < 0.05) SAB diversity than those fed grass hay diets, but no differences were observed with DGGE. No effect of forage type on LAB diversity was detected by any technique. In this study, ARISA detected some changes in ruminal bacterial communities that were not detected by DGGE, and therefore ARISA was considered more appropriate for assessing bacterial diversity of ruminal bacterial pellets. The results highlight the impact of the fingerprinting technique used to draw conclusions on dietary factors affecting bacterial diversity in ruminal bacterial pellets.

  18. Effects of the Ser326Cys Polymorphism in the DNA Repair OGG1 Gene on Cancer, Cardiovascular, and All-Cause Mortality in the PREDIMED Study: Modulation by Diet.

    PubMed

    Corella, Dolores; Ramírez-Sabio, Judith B; Coltell, Oscar; Ortega-Azorín, Carolina; Estruch, Ramón; Martínez-González, Miguel A; Salas-Salvadó, Jordi; Sorlí, José V; Castañer, Olga; Arós, Fernando; Garcia-Corte, Franscisco J; Serra-Majem, Lluís; Gómez-Gracia, Enrique; Fiol, Miquel; Pintó, Xavier; Saez, Guillermo T; Toledo, Estefanía; Basora, Josep; Fitó, Montserrat; Cofán, Montserrat; Ros, Emilio; Ordovas, Jose M

    2018-04-01

    Oxidatively induced DNA damage, an important factor in cancer etiology, is repaired by oxyguanine glycosylase 1 (OGG1). The lower repair capacity genotype (homozygote Cys326Cys) in the OGG1-rs1052133 (Ser326Cys) polymorphism has been associated with cancer risk. However, no information is available in relation to cancer mortality, other causes of death, and modulation by diet. Our aim was to evaluate the association of the OGG1-rs1052133 with total, cancer, and cardiovascular disease (CVD) mortality and to analyze its modulation by the Mediterranean diet, focusing especially on total vegetable intake as one of the main characteristics of this diet. Secondary analysis in the PREDIMED (Prevención con Dieta Mediterránea) trial is a randomized, controlled trial conducted in Spain from 2003 to 2010. Study participants (n=7,170) were at high risk for CVD and were aged 55 to 80 years. Participants were randomly allocated to two groups with a Mediterranean diet intervention or a control diet. Vegetable intake was measured at baseline. Main outcomes were all-cause, cancer, and CVD mortality after a median follow-up of 4.8 years. Multivariable-adjusted Cox regression models were fitted. Three hundred eighteen deaths were detected (cancer, n=127; CVD, n=81; and other, n=110). Cys326Cys individuals (prevalence 4.2%) presented higher total mortality rates than Ser326-carriers (P=0.009). The multivariable-adjusted hazard ratio for Cys326Cys vs Ser326-carriers was 1.69 (95% CI 1.09 to 2.62; P=0.018). This association was greater for CVD mortality (P=0.001). No relationship was detected for cancer mortality in the whole population (hazard ratio 1.07; 95% CI 0.47 to 2.45; P=0.867), but a significant age interaction (P=0.048) was observed, as Cys326Cys was associated with cancer mortality in participants <66.5 years (P=0.029). Recessive effects limited our ability to investigate Cys326Cys×diet interactions for cancer mortality. No statistically significant interactions for total or CVD mortality were found for the Mediterranean diet intervention. However, significant protective interactions for CVD mortality were found for vegetable intake (hazard ratio interaction per standard deviation 0.42; 95% CI 0.18 to 0.98; P=0.046). In this population, the Cys326Cys-OGG1 genotype was associated with all-cause mortality, mainly CVD instead of cancer mortality. Additional studies are needed to provide further evidence on its dietary modulation. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  19. A meta-analysis of feed digestion in dairy cows. 1. The effects of forage and concentrate factors on total diet digestibility.

    PubMed

    Nousiainen, J; Rinne, M; Huhtanen, P

    2009-10-01

    A meta-analysis based on published experiments with lactating dairy cows was conducted to study the effects of dietary forage and concentrate factors on apparent total diet digestibility. A data set was collected that included a total of 497 dietary treatment means from 92 studies. The diets were based on grass silage or on legume or whole-crop cereal silages partly or completely substituted for grass silage. The silages were supplemented with concentrates given at a flat rate within a dietary comparison. For the statistical evaluation, the data were divided into 5 subsets to quantify silage (digestibility, 42 diets in 17 studies; fermentation characteristics, 108 diets in 39 studies) and concentrate (amount of supplementation, 142 diets in 59 studies; concentration of crude protein, 215 diets in 82 studies; carbohydrate composition, 66 diets in 23 studies) factors on total diet digestibility. The diet digestibility of dairy cows was determined by total fecal collection or by using acid-insoluble ash as an internal marker. Diet organic matter digestibility (OMD) at a maintenance level of feeding (OMD(m)) was estimated using sheep in vivo or corresponding in vitro digestibility values for the forage and reported ingredient and chemical composition values, with tabulated digestibility coefficients for the concentrate components of the diet. A mixed model regression analysis was used to detect the responses of different dietary factors on apparent total diet digestibility. Improved silage OMD(m) resulting from earlier harvest was translated into improved production-level OMD in cows (OMD(p)). The effects of silage fermentation characteristics on OMD(p) were quantitatively small, although sometimes significant. Concentrate supplementation improved total diet OMD(m), but this was not realized in lactating dairy cows because of linearly decreased neutral detergent fiber (NDF) digestibility as concentrate intake increased. Increasing the concentrate crude protein amount quadratically improved OMD(p) in cows, with the response being mostly due to improved NDF digestibility. Replacement of starchy concentrates with fibrous by-products slightly decreased OMD(p) but tended to improve NDF digestibility. The true digestibility of cell solubles (OM - NDF) estimated by the Lucas test both from all data and from the data subsets was not significantly different from 1.00, suggesting that responses in OMD(p) of dairy cows are mediated through changes in the concentration and digestibility of NDF.

  20. Effects of feeding diets naturally contaminated with Fusarium mycotoxins on protein metabolism in late gestation and lactation of first-parity sows.

    PubMed

    Díaz-Llano, G; Smith, T K; Boermans, H J; Caballero-Cortes, C; Friendship, R

    2010-03-01

    A study was conducted to assess the effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins to sows on the capacity for protein synthesis in skeletal muscle, the protein content per cellular unit, and the efficacy of a polymeric glucomannan adsorbent (GMA) to prevent these effects in late gestation and in lactation. Thirty-two Yorkshire sows were assigned to 4 treatment groups (8 per treatment) from 91 +/- 3 d of gestation up to weaning on d 21 after farrowing. Diets included 1) control, 2) contaminated grains, and 3) contaminated grains + 0.2% GMA. A fourth treatment of feeding sows the control diet at a restricted feed allowance was also included. The variables measured include ADFI, average daily BW change, serum total protein, urea, and ammonia, and skeletal muscle DNA, RNA, and protein. To assess the capacity for protein synthesis, ratios of RNA:DNA, and RNA:protein were compared among dietary treatments. To assess the degree of muscle protein mobilization in gestation and lactation, ratios of protein:DNA were compared among dietary treatments. Muscle samples were obtained from the triceps brachii. Blood and muscle samples were obtained 3 times: the first was obtained 1 d before the sows began to receive the experimental diets (90 +/- 3 d of gestation), a second sample was obtained 14 d later (104 +/- 3 d of gestation), and the third sample was obtained 10 d after farrowing. Serum ammonia concentrations were similar in sows fed the contaminated feed and sows fed the restricted feed compared with controls, but serum ammonia concentrations were greater in sows fed contaminated feed (P = 0.02) and restricted-fed sows (P = 0.008) compared with sows fed the contaminated grains plus GMA on 104 +/- 3 d of gestation. There were no reductions in the capacity for protein synthesis caused by mycotoxins or restricted feeding compared with controls. A reduction in ADFI (P = 0.003) was observed in sows fed the 2 contaminated diets in lactation. Muscle protein mobilization was not affected by diet, but a reduction (P = 0.04) in the content of protein per cellular unit was observed in lactation compared with gestation. Reduction in protein:DNA could be caused by the catabolic state in lactation, which was augmented by a low ADFI. The rate of muscle mobilization could be the result of the indirect effect of the reduction in ADFI in lactation rather than a direct effect of Fusarium mycotoxins in the capacity for protein synthesis.

  1. Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chyme.

    PubMed

    Belanche, A; Abecia, L; Holtrop, G; Guada, J A; Castrillo, C; de la Fuente, G; Balcells, J

    2011-12-01

    The aim of this study was to investigate the effect of presence or absence of protozoa on rumen fermentation and efficiency of microbial protein synthesis under different diets. Of 20 twin paired lambs, 1 lamb of each pair was isolated from the ewe within 24 h after birth and reared in a protozoa-free environment (n = 10), whereas their respective twin-siblings remained with the ewe (faunated, n = 10). When lambs reached 6 mo of age, 5 animals of each group were randomly allocated to 1 of 2 experimental diets consisting of either alfalfa hay as the sole diet, or 50:50 mixed with ground barley grain according to a 2 × 2 factorial arrangement of treatments. After 15 d of adaptation to the diet, the animals were euthanized and total rumen and abomasal contents were sampled to estimate rumen microbial synthesis using C(31) alkane as flow marker. Different ((15)N and purine bases) and a novel (recombinant DNA sequences) microbial markers, combined with several microbial reference extracts (rumen protozoa, liquid and solid associated bacteria) were evaluated. Absence of rumen protozoa modified the rumen fermentation pattern and decreased total tract OM and NDF digestibility in 2.0 and 5.1 percentage points, respectively. The effect of defaunation on microbial N flow was weak, however, and was dependent on the microbial marker and microbial reference extract considered. Faunated lambs fed with mixed diet showed the greatest rumen protozoal concentration and the least efficient microbial protein synthesis (29% less than the other treatments), whereas protozoa-free lambs fed with mixed diet presented the smallest ammonia concentration and 34% greater efficiency of N utilization than the other treatments. Although (15)N gave the most precise estimates of microbial synthesis, the use of recombinant DNA sequences represents an alternative that allows separate quantification of the bacteria and protozoa contributions. This marker showed that presence of protozoa decrease the bacterial-N flow through the abomasum by 33%, whereas the protozoa-N contribution to the microbial N flow increased from 1.9 to 14.1% when barley grain was added to the alfalfa hay. Absolute data related to intestinal flow must be treated with caution because the limitations of the sampling and maker system employed.

  2. Response to Heethoff, Norton, and Raspotnig: Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog and Erratum.

    PubMed

    McGugan, Jenna R; Byrd, Gary D; Roland, Alexandre B; Caty, Stephanie N; Kabir, Nisha; Tapia, Elicio E; Trauger, Sunia A; Coloma, Luis A; O'Connell, Lauren A

    2016-08-01

    Our recent publication titled "Ant and Mite Diversity Drives Toxin Variation in the Little Devil Poison Frog" aimed to describe how variation in diet contributes to population differences in toxin profiles of poison frogs. Some poison frogs (Family Dendrobatidae) sequester alkaloid toxins from their arthropod diet, which is composed mainly of ants and mites. Our publication demonstrated that arthropods from the stomach contents of three different frog populations were diverse in both chemistry and species composition. To make progress towards understanding this trophic relationship, our main goal was to identify alkaloids that are found in either ants or mites. With the remaining samples that were not used for chemical analysis, we attempted to identify the arthropods using DNA barcoding of cytochrome oxidase 1 (CO1). The critique of Heethoff, Norton, and Raspotnig refers to the genetic analysis of a small number of mites. Here, we respond to the general argument of the critique as well as other minor issues detailed by Heethoff, Norton, and Raspotnig.

  3. [Analysis of the fatty acid profile of vegetarian and non-vegetarian diet in the context of some diet-related diseases prevention].

    PubMed

    Kornek, Agata; Kucharska, Alicja; Kamela, Katarzyna

    2016-01-01

    Research increasingly provide evidence that vegetarian diet can have a positive impact on health. The aim of this study was to analyze the fatty acid profile of vegetarian and non-vegetarian diet and prove which of them is more optimal in the context of some diet-related diseases prevention. The study involved 83 women (47 vegetarians and 36 non-vegetarians). Estimates of the supply of individual fatty acids in the diet was based on analysis of 3-day dietary records (calculations in a computer program DIETA 5). Found: - in vegan diet significantly lower percentage of energy from SFA than in lactoovovegetarian diet and non-vegetarian diet (5,2% vs 11,2% i 11,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from PUFA than in non-vegetarian diet (9,2% i 7,8% vs 5,0%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from LA than in non-vegetarian diet (6,7% i 5,5% vs 3,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from ALA than in non-vegetarian diet (1,3% i 1,2% vs. 0,8%) - in vegan and lactoovovegetarian diet - significantly lower intake of EPA+DHA than in non-vegetarian diet (0 mg i 15 mg vs 76 mg), - only 25% of non-vegetarian diets fulfilled recommendations on the content of EPA + DHA Conclusions: Vegetarian, particularly vegan, nutrition may promote good balancing of the fatty acids in the diet, except for the long chain polyunsaturated omega-3, which are also deficient in the case of conventional diet.

  4. [Analysis of the fatty acid profile of vegetarian and non-vegetarian diet in the context of some diet-related diseases prevention].

    PubMed

    Kornek, Agata; Kucharska, Alicja; Kamela, Katarzyna

    Research increasingly provide evidence that vegetarian diet can have a positive impact on health. The aim of this study was to analyze the fatty acid profile of vegetarian and non-vegetarian diet and prove which of them is more optimal in the context of some diet-related diseases prevention. The study involved 83 women (47 vegetarians and 36 non-vegetarians). Estimates of the supply of individual fatty acids in the diet was based on analysis of 3-day dietary records (calculations in a computer program DIETA 5). Found: - in vegan diet significantly lower percentage of energy from SFA than in lactoovovegetarian diet and non-vegetarian diet (5,2% vs 11,2% i 11,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from PUFA than in non-vegetarian diet (9,2% i 7,8% vs 5,0%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from LA than in non-vegetarian diet (6,7% i 5,5% vs 3,9%), - in vegan and lactoovovegetarian diet - significantly higher percentage of energy from ALA than in non-vegetarian diet (1,3% i 1,2% vs. 0,8%) - in vegan and lactoovovegetarian diet - significantly lower intake of EPA+DHA than in non-vegetarian diet (0 mg i 15 mg vs 76 mg), - only 25% of non-vegetarian diets fulfilled recommendations on the content of EPA + DHA Conclusions: Vegetarian, particularly vegan, nutrition may promote good balancing of the fatty acids in the diet, except for the long chain polyunsaturated omega-3, which are also deficient in the case of conventional diet.

  5. Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast.

    PubMed

    AlZahal, Ousama; Li, Fuyong; Guan, Le Luo; Walker, Nicola D; McBride, Brian W

    2017-06-01

    The objective of the current study was to employ a DNA-based sequencing technology to study the effect of active dry yeast (ADY) supplementation, diet type, and sample location within the rumen on rumen bacterial community diversity and composition, and to use an RNA-based method to study the effect of ADY supplementation on rumen microbial metabolism during high-grain feeding (HG). Our previous report demonstrated that the supplementation of lactating dairy cows with ADY attenuated the effect of subacute ruminal acidosis. Therefore, we used samples from that study, where 16 multiparous, rumen-cannulated lactating Holstein cows were randomly assigned to 1 of 2 dietary treatments: ADY (Saccharomyces cerevisiae strain Y1242, 80 billion cfu/animal per day) or control (carrier only). Cows received a high-forage diet (77:23, forage:concentrate), then were abruptly switched to HG (49:51, forage:concentrate). Rumen bacterial community diversity and structure were highly influenced by diet and sampling location (fluid, solids, epimural). The transition to HG reduced bacterial diversity, but epimural bacteria maintained a greater diversity than fluid and solids. Analysis of molecular variance indicated a significant separation due to diet × sampling location, but not due to treatment. Across all samples, the analysis yielded 6,254 nonsingleton operational taxonomic units (OTU), which were classified into several phyla: mainly Firmicutes, Bacteroidetes, Fibrobacteres, Tenericutes, and Proteobacteria. High forage and solids were dominated by OTU from Fibrobacter, whereas HG and fluid were dominated by OTU from Prevotella. Epimural samples, however, were dominated in part by Campylobacter. Active dry yeast had no effect on bacterial community diversity or structure. The phylum SR1 was more abundant in all ADY samples regardless of diet or sampling location. Furthermore, on HG, OTU2 and OTU3 (both classified into Fibrobacter succinogenes) were more abundant with ADY in fluid and solids than control samples. This increase with ADY was paralleled by a reduction in prominent Prevotella OTU. Metatranscriptomic profiling of rumen microbiome conducted on random samples from the HG phase showed that ADY increased the abundance of the cellulase endo-β-1,4-glucanase and had a tendency to increase the hemicellulase α-glucuronidase. In conclusion, the shift from high forage to HG and sampling location had a more significant influence on ruminal bacterial community abundance and structure compared with ADY. However, evidence suggested that ADY can increase the abundance of some dominant anaerobic OTU belonging to F. succinogenes and phylum SR1. Further, microbial mRNA-based evidence suggested that ADY can increase the abundance of a specific microbial fibrolytic enzymes. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  6. A collaborative exercise on DNA methylation based body fluid typing.

    PubMed

    Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young

    2016-10-01

    A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns.

    PubMed

    Tost, Jörg

    2016-01-01

    DNA methylation is the most studied epigenetic modification, and altered DNA methylation patterns have been identified in cancer and more recently also in many other complex diseases. Furthermore, DNA methylation is influenced by a variety of environmental factors, and the analysis of DNA methylation patterns might allow deciphering previous exposure. Although a large number of techniques to study DNA methylation either genome-wide or at specific loci have been devised, they all are based on a limited number of principles for differentiating the methylation state, viz., methylation-specific/methylation-dependent restriction enzymes, antibodies or methyl-binding proteins, chemical-based enrichment, or bisulfite conversion. Second-generation sequencing has largely replaced microarrays as readout platform and is also becoming more popular for locus-specific DNA methylation analysis. In this chapter, the currently used methods for both genome-wide and locus-specific analysis of 5-methylcytosine and as its oxidative derivatives, such as 5-hydroxymethylcytosine, are reviewed in detail, and the advantages and limitations of each approach are discussed. Furthermore, emerging technologies avoiding PCR amplification and allowing a direct readout of DNA methylation are summarized, together with novel applications, such as the detection of DNA methylation in single cells or in circulating cell-free DNA.

  8. Differential Targeting of Unpaired Bases within Duplex DNA by the Natural Compound Clerocidin: A Valuable Tool to Dissect DNA Secondary Structure

    PubMed Central

    Nadai, Matteo; Palù, Giorgio; Palumbo, Manlio; Richter, Sara N.

    2012-01-01

    Non-canonical DNA structures have been postulated to mediate protein-nucleic acid interactions and to function as intermediates in the generation of frame-shift mutations when errors in DNA replication occur, which result in a variety of diseases and cancers. Compounds capable of binding to non-canonical DNA conformations may thus have significant diagnostic and therapeutic potential. Clerocidin is a natural diterpenoid which has been shown to selectively react with single-stranded bases without targeting the double helix. Here we performed a comprehensive analysis on several non-canonical DNA secondary structures, namely mismatches, nicks, bulges, hairpins, with sequence variations in both the single-stranded region and the double-stranded flanking segment. By analysis of clerocidin reactivity, we were able to identify the exposed reactive residues which provided information on both the secondary structure and the accessibility of the non-paired sites. Mismatches longer than 1 base were necessary to be reached by clerocidin reactive groups, while 1-base nicks were promptly targeted by clerocidin; in hairpins, clerocidin reactivity increased with the length of the hairpin loop, while, interestingly, reactivity towards bulges reached a maximum in 3-base-long bulges and declined in longer bulges. Electrophoretic mobility shift analysis demonstrated that bulges longer than 3 bases (i.e. 5- and 7-bases) folded or stacked on the duplex region therefore being less accessible by the compound. Clerocidin thus represents a new valuable diagnostic tool to dissect DNA secondary structures. PMID:23285245

  9. Differential targeting of unpaired bases within duplex DNA by the natural compound clerocidin: a valuable tool to dissect DNA secondary structure.

    PubMed

    Nadai, Matteo; Palù, Giorgio; Palumbo, Manlio; Richter, Sara N

    2012-01-01

    Non-canonical DNA structures have been postulated to mediate protein-nucleic acid interactions and to function as intermediates in the generation of frame-shift mutations when errors in DNA replication occur, which result in a variety of diseases and cancers. Compounds capable of binding to non-canonical DNA conformations may thus have significant diagnostic and therapeutic potential. Clerocidin is a natural diterpenoid which has been shown to selectively react with single-stranded bases without targeting the double helix. Here we performed a comprehensive analysis on several non-canonical DNA secondary structures, namely mismatches, nicks, bulges, hairpins, with sequence variations in both the single-stranded region and the double-stranded flanking segment. By analysis of clerocidin reactivity, we were able to identify the exposed reactive residues which provided information on both the secondary structure and the accessibility of the non-paired sites. Mismatches longer than 1 base were necessary to be reached by clerocidin reactive groups, while 1-base nicks were promptly targeted by clerocidin; in hairpins, clerocidin reactivity increased with the length of the hairpin loop, while, interestingly, reactivity towards bulges reached a maximum in 3-base-long bulges and declined in longer bulges. Electrophoretic mobility shift analysis demonstrated that bulges longer than 3 bases (i.e. 5- and 7-bases) folded or stacked on the duplex region therefore being less accessible by the compound. Clerocidin thus represents a new valuable diagnostic tool to dissect DNA secondary structures.

  10. [Detection of genetically modified soy (Roundup-Ready) in processed food products].

    PubMed

    Hagen, M; Beneke, B

    2000-01-01

    In this study, the application of a qualitative and a quantitative method of analysis to detect genetically modified RR-Soy (Roundup-Ready Soy) in processed foods is described. A total of 179 various products containing soy such as baby food and diet products, soy drinks and desserts, tofu and tofu products, soy based meat substitutes, soy protein, breads, flour, granules, cereals, noodles, soy bean sprouts, fats and oils as well as condiments were investigated following the pattern of the section 35 LMBG-method L 23.01.22-1. The DNA was extracted from the samples and analysed using a soybean specific lectin gene PCR as well as a PCR, specific for the genetic modification. Additional, by means of PCR in combination with fluorescence-detection (TaqMan 5'-Nuclease Assay), suspicious samples were subjected to a real-time quantification of the percentage of genetically modified RR-Soy. The methods of analysis proved to be extremely sensitive and specific in regard to the food groups checked. The fats and oils, as well as the condiments were the exceptions in which amplifiable soy DNA could not be detected. The genetic modification of RR-Soy was detected in 34 samples. Eight of these samples contained more than 1% of RR-Soy. It is necessary to determine the percentage of transgenic soy in order to assess whether genetically modified ingredients were deliberately added, or whether they were caused by technically unavoidable contamination (for example during transportation and processing).

  11. Paleolithic nutrition improves plasma lipid concentrations of hypercholesterolemic adults to a greater extent than traditional heart-healthy dietary recommendations.

    PubMed

    Pastore, Robert L; Brooks, Judith T; Carbone, John W

    2015-06-01

    Recent research suggests that traditional grain-based heart-healthy diet recommendations, which replace dietary saturated fat with carbohydrate and reduce total fat intake, may result in unfavorable plasma lipid ratios, with reduced high-density lipoprotein (HDL) and an elevation of low-density lipoprotein (LDL) and triacylglycerols (TG). The current study tested the hypothesis that a grain-free Paleolithic diet would induce weight loss and improve plasma total cholesterol, HDL, LDL, and TG concentrations in nondiabetic adults with hyperlipidemia to a greater extent than a grain-based heart-healthy diet, based on the recommendations of the American Heart Association. Twenty volunteers (10 male and 10 female) aged 40 to 62 years were selected based on diagnosis of hypercholesterolemia. Volunteers were not taking any cholesterol-lowering medications and adhered to a traditional heart-healthy diet for 4 months, followed by a Paleolithic diet for 4 months. Regression analysis was used to determine whether change in body weight contributed to observed changes in plasma lipid concentrations. Differences in dietary intakes and plasma lipid measures were assessed using repeated-measures analysis of variance. Four months of Paleolithic nutrition significantly lowered (P < .001) mean total cholesterol, LDL, and TG and increased (P < .001) HDL, independent of changes in body weight, relative to both baseline and the traditional heart-healthy diet. Paleolithic nutrition offers promising potential for nutritional management of hyperlipidemia in adults whose lipid profiles have not improved after following more traditional heart-healthy dietary recommendations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Machine Learning–Based Differential Network Analysis: A Study of Stress-Responsive Transcriptomes in Arabidopsis[W

    PubMed Central

    Ma, Chuang; Xin, Mingming; Feldmann, Kenneth A.; Wang, Xiangfeng

    2014-01-01

    Machine learning (ML) is an intelligent data mining technique that builds a prediction model based on the learning of prior knowledge to recognize patterns in large-scale data sets. We present an ML-based methodology for transcriptome analysis via comparison of gene coexpression networks, implemented as an R package called machine learning–based differential network analysis (mlDNA) and apply this method to reanalyze a set of abiotic stress expression data in Arabidopsis thaliana. The mlDNA first used a ML-based filtering process to remove nonexpressed, constitutively expressed, or non-stress-responsive “noninformative” genes prior to network construction, through learning the patterns of 32 expression characteristics of known stress-related genes. The retained “informative” genes were subsequently analyzed by ML-based network comparison to predict candidate stress-related genes showing expression and network differences between control and stress networks, based on 33 network topological characteristics. Comparative evaluation of the network-centric and gene-centric analytic methods showed that mlDNA substantially outperformed traditional statistical testing–based differential expression analysis at identifying stress-related genes, with markedly improved prediction accuracy. To experimentally validate the mlDNA predictions, we selected 89 candidates out of the 1784 predicted salt stress–related genes with available SALK T-DNA mutagenesis lines for phenotypic screening and identified two previously unreported genes, mutants of which showed salt-sensitive phenotypes. PMID:24520154

  13. Brown adipose tissue (BAT) specific vaspin expression is increased after obesogenic diets and cold exposure and linked to acute changes in DNA-methylation.

    PubMed

    Weiner, Juliane; Rohde, Kerstin; Krause, Kerstin; Zieger, Konstanze; Klöting, Nora; Kralisch, Susan; Kovacs, Peter; Stumvoll, Michael; Blüher, Matthias; Böttcher, Yvonne; Heiker, John T

    2017-06-01

    Several studies have demonstrated anti-diabetic and anti-obesogenic properties of visceral adipose tissue-derived serine protease inhibitor (vaspin) and so evoked its potential use for treatment of obesity-related diseases. The aim of the study was to unravel physiological regulators of vaspin expression and secretion with a particular focus on its role in brown adipose tissue (BAT) biology. We analyzed the effects of obesogenic diets and cold exposure on vaspin expression in liver and white and brown adipose tissue (AT) and plasma levels. Vaspin expression was analyzed in isolated white and brown adipocytes during adipogenesis and in response to adrenergic stimuli. DNA-methylation within the vaspin promoter was analyzed to investigate acute epigenetic changes after cold-exposure in BAT. Our results demonstrate a strong induction of vaspin mRNA and protein expression specifically in BAT of both cold-exposed and high-fat (HF) or high-sugar (HS) fed mice. While obesogenic diets also upregulated hepatic vaspin mRNA levels, cold exposure tended to increase vaspin gene expression of inguinal white adipose tissue (iWAT) depots. Concomitantly, vaspin plasma levels were decreased upon obesogenic or thermogenic triggers. Vaspin expression was increased during adipogenesis but unaffected by sympathetic activation in brown adipocytes. Analysis of vaspin promoter methylation in AT revealed lowest methylation levels in BAT, which were acutely reduced after cold exposure. Our data demonstrate a novel BAT-specific regulation of vaspin gene expression upon physiological stimuli in vivo with acute epigenetic changes that may contribute to cold-induced expression in BAT. We conclude that these findings indicate functional relevance and potentially beneficial effects of vaspin in BAT function.

  14. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    PubMed

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. ©2015 American Association for Cancer Research.

  15. Effect of D-tagatose on liver weight and glycogen content of rats.

    PubMed

    Bär, A; Lina, B A; de Groot, D M; de Bie, B; Appel, M J

    1999-04-01

    D-tagatose is an incompletely absorbed ketohexose (stereoisomer of D-fructose) which has potential as an energy-reduced alternative sweetener. In an earlier 90-day toxicity study, rats fed diets with 10, 15 and 20% D-tagatose exhibited increased liver weights, but no histopathological alterations. To determine whether there might be any toxicological relevance to this effect, three studies were conducted in male, adult Sprague-Dawley rats. In the first study, four groups received Purina diet (group A), Purina diet with 20% D-tagatose (group B), SDS diet (group C), or SDS diet with 20% D-tagatose (group D). For groups A and B, the 28-day treatment period was followed by a 14-day recovery period (Purina diet). Food remained available to all animals until the time of sacrifice. Groups of 10 rats were killed on days 14 (groups A and B), 28 (groups A-D), and 42 (groups A and B). Body weights, as well as weights of wet and lyophilized livers, were determined. The lyophilized livers collected on day 28 from groups A and B were analyzed for protein, total lipid, glycogen, DNA, and residual moisture. By day 14, relative wet liver weights had increased by 23% in group B. On day 28, the increase was 38% in group B and 44% in group D. At the end of the recovery period, the increase had diminished to 14% in group B. On day 28, liver glycogen content (in %) was significantly increased, and liver protein, lipid, and DNA contents were significantly decreased in group B compared to group A. Total amounts per liver of protein, total lipid, glycogen, and DNA were significantly increased. In the second study, four groups of 20 rats each received SDS diet with 0, 5, 10, and 20% D-tagatose for 29-31 days. The food was available until the time of sacrifice. At termination, plasma was obtained from 10 rats/group for clinicochemical analyses. Five rats/group were subjected to whole-body perfusion, followed by processing of livers for qualitative and quantitative electron microscopic examination. Livers of 6 rats/group were analyzed for acyl-CoA oxidase and laurate 12-hydroxylase (cytochrome P450 4A1) activity, DNA synthesis (Ki-67 index), and number of nuclei per unit area of tissue. Liver weights were significantly increased in linear relation to the D-tagatose intake. Plasma transaminases (but not glutamyl transferase and alkaline phosphatase) were increased in the high-dose group. Except for glycogen accumulation, no ultrastructural changes were seen on electron microscopic examination of livers of the control and high-dose groups. Morphometric analysis confirmed the increase of glycogen and the absence of alterations of endoplasmatic reticulum, mitochondria, and Golgi apparatus. The Ki-67 index did not differ between the groups. A dose-related decrease of the number of nuclei per unit area signified some hepatocellular hypertrophy. Acyl-CoA oxidase and CYP4A1 activity were significantly increased in the mid- and high-dose groups, but these increases were small and not accompanied by electron-microscopic evidence of peroxisome proliferation. In the third study, four groups received SDS diet (groups A and C) or SDS diet with 5% D-tagatose (groups B and D). All animals were killed on day 28. Groups A and B were fasted for 24 h before sacrifice; groups C and D had food available until sacrifice. Liver weights and liver composition were measured as in Study 1. Relative wet and dry liver weights were increased in response to the treatment in rats killed under the fed condition, but not in rats killed under the fasted condition. The livers of the treated rats (group D) had an increased glycogen content in comparison to the controls (group C). Taken together, these results demonstrate that D-tagatose at dietary levels of 5-20% increases liver glycogen deposition and relative liver weights in nonfasting rats. In fasted rats the 5% dose level is the no-effect level. (ABSTRACT TRUNCATED)

  16. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy

    PubMed Central

    Barhoumi, Aoune; Halas, Naomi J.

    2013-01-01

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics. PMID:24427449

  17. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    PubMed

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  18. Diet and stable isotope analyses reveal the feeding ecology of the orangeback squid Sthenoteuthis pteropus (Steenstrup 1855) (Mollusca, Ommastrephidae) in the eastern tropical Atlantic.

    PubMed

    Merten, Véronique; Christiansen, Bernd; Javidpour, Jamileh; Piatkowski, Uwe; Puebla, Oscar; Gasca, Rebeca; Hoving, Henk-Jan T

    2017-01-01

    In the eastern tropical Atlantic, the orangeback flying squid Sthenoteuthis pteropus (Steenstrup 1855) (Cephalopoda, Ommastrephidae) is a dominant species of the epipelagic nekton community. This carnivore squid has a short lifespan and is one of the fastest-growing squids. In this study, we characterise the role of S. pteropus in the pelagic food web of the eastern tropical Atlantic by investigating its diet and the dynamics of its feeding habits throughout its ontogeny and migration. During three expeditions in the eastern tropical Atlantic in 2015, 129 specimens were caught by hand jigging. Stomach content analyses (via visual identification and DNA barcoding) were combined with stable isotope data (∂15N and ∂13C) of muscle tissue to describe diet, feeding habits and trophic ecology of S. pteropus. Additionally, stable isotope analyses of incremental samples along the squid's gladius-the chitinous spiniform structure supporting the muscles and organs-were carried out to explore possible diet shifts through ontogeny and migration. Our results show that S. pteropus preys mainly on myctophid fishes (e.g. Myctophum asperum, Myctophum nitidulum, Vinciguerria spp.), but also on other teleost species, cephalopods (e.g. Enoploteuthidae, Bolitinidae, Ommastrephidae), crustaceans and possibly on gelatinous zooplankton as well. The squid shows a highly opportunistic feeding behaviour that includes cannibalism. Our study indicates that the trophic position of S. pteropus may increase by approximately one trophic level from a mantle length of 15 cm to 47 cm. The reconstructed isotope-based feeding chronologies of the gladii revealed high intra- and inter-individual variability in the squid's trophic position and foraging area. These findings are not revealed by diet or muscle tissue stable isotope analysis. This suggests a variable and complex life history involving individual variation and migration. The role of S. pteropus in transferring energy and nutrients from lower to higher trophic levels may be underestimated and important for understanding how a changing ocean impacts food webs in the eastern Atlantic.

  19. Diet and stable isotope analyses reveal the feeding ecology of the orangeback squid Sthenoteuthis pteropus (Steenstrup 1855) (Mollusca, Ommastrephidae) in the eastern tropical Atlantic

    PubMed Central

    Christiansen, Bernd; Javidpour, Jamileh; Piatkowski, Uwe; Puebla, Oscar; Gasca, Rebeca; Hoving, Henk-Jan T.

    2017-01-01

    In the eastern tropical Atlantic, the orangeback flying squid Sthenoteuthis pteropus (Steenstrup 1855) (Cephalopoda, Ommastrephidae) is a dominant species of the epipelagic nekton community. This carnivore squid has a short lifespan and is one of the fastest-growing squids. In this study, we characterise the role of S. pteropus in the pelagic food web of the eastern tropical Atlantic by investigating its diet and the dynamics of its feeding habits throughout its ontogeny and migration. During three expeditions in the eastern tropical Atlantic in 2015, 129 specimens were caught by hand jigging. Stomach content analyses (via visual identification and DNA barcoding) were combined with stable isotope data (∂15N and ∂13C) of muscle tissue to describe diet, feeding habits and trophic ecology of S. pteropus. Additionally, stable isotope analyses of incremental samples along the squid’s gladius—the chitinous spiniform structure supporting the muscles and organs—were carried out to explore possible diet shifts through ontogeny and migration. Our results show that S. pteropus preys mainly on myctophid fishes (e.g. Myctophum asperum, Myctophum nitidulum, Vinciguerria spp.), but also on other teleost species, cephalopods (e.g. Enoploteuthidae, Bolitinidae, Ommastrephidae), crustaceans and possibly on gelatinous zooplankton as well. The squid shows a highly opportunistic feeding behaviour that includes cannibalism. Our study indicates that the trophic position of S. pteropus may increase by approximately one trophic level from a mantle length of 15 cm to 47 cm. The reconstructed isotope-based feeding chronologies of the gladii revealed high intra- and inter-individual variability in the squid’s trophic position and foraging area. These findings are not revealed by diet or muscle tissue stable isotope analysis. This suggests a variable and complex life history involving individual variation and migration. The role of S. pteropus in transferring energy and nutrients from lower to higher trophic levels may be underestimated and important for understanding how a changing ocean impacts food webs in the eastern Atlantic. PMID:29244845

  20. Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver.

    PubMed

    Odbayar, Tseye-Oidov; Kimura, Toshinori; Tsushida, Tojiro; Ide, Takashi

    2009-05-01

    The impact of quercetin on the mRNA expression of hepatic enzymes involved in drug metabolism was evaluated with a DNA microarray and real-time PCR. Male Sprague-Dawley rats were fed an experimental diet containing either 0, 2.5, 5, 10, or 20 g/kg of quercetin for 15 days. The DNA microarray analysis of the gene expression profile in pooled RNA samples from rats fed diets containing 0, 5, and 20 g/kg of quercetin revealed genes of some isoenzymes of glutathione transferase (Gst) and aldo-keto reductase (Akr) to be activated by this flavonoid. Real-time PCR conducted with RNA samples from individual rats fed varying amounts of quercetin together with the microarray analysis showed that quercetin caused marked dose-dependent increases in the mRNA expression of Gsta3, Gstp1, and Gstt3. Some moderate increases were also noted in the mRNA expression of isoenzymes belonging to the Gstm class. Quercetin also dose-dependently increased the mRNA expression of Akr1b8 and Akr7a3. However, it did not affect the parameters of the other Gst and Akr isoenzymes. It is apparent that quercetin increases the mRNA expression of Gst and Akr involved in drug metabolism in an isoenzyme-specific manner. Inasmuch as Gst and Akr isoenzymes up-regulated in their gene expression are involved in the prevention and attenuation of cancer development, this consequence may account for the chemopreventive propensity of quercetin.

  1. Traditional Lebanese recipes based on wild plants: an answer to diet simplification?

    PubMed

    Batal, Malek; Hunter, Elizabeth

    2007-06-01

    The challenge posed by the nutrition transition occurring throughout the world is enormous: rates of chronic disease, particularly overweight and obesity and cardiovascular disease, have reached alarming levels-often occurring in parallel with high levels of micronutrient deficiencies. Lebanon is no exception. And yet this Mediterranean country enjoys a rich biodiversity, with thousands of endemic species and an equally rich culinary history, largely based on its local biodiversity, including wild edible plants. To record traditional Lebanese recipes based on wild edible plants and to investigate their potential to contribute to a more diversified diet. A series of nine focus group meetings was conducted with key informants knowledgeable in wild edible plant identification, harvesting, and use. Common recipes based on wild edible plants were collected and standardized from rural communities where collection of wild edible plants is common. Nutrient analysis and food-composition analysis were performed, including comparisons with processed dishes that are increasingly common in the Lebanese diet, revealing that the wild edible plant-based dishes offered a healthier alternative. Since traditional recipes often use items from several food groups in one dish, they can be a good model for diet diversification. The promotion of the collection and use of wild edible plants and their derived products can lead to improved nutrition.

  2. Effects of concentrate proportion in the diet with or without Fusarium toxin-contaminated triticale on ruminal fermentation and the structural diversity of rumen microbial communities in vitro.

    PubMed

    Boguhn, Jeannette; Neumann, Dominik; Helm, André; Strobel, Egbert; Tebbe, Christoph C; Dänicke, Sven; Rodehutscorda, Markus

    2010-12-01

    The objective of this study was to investigate the effects of the concentrate proportion and Fusarium toxin-contaminated triticale (FCT) in the diet on nutrient degradation, microbial protein synthesis and structure of the microbial community, utilising a rumen simulation technique and single-strand conformation polymorphism (SSCP) profiles based on PCR-amplified small subunit ribosomal RNA genes. Four diets containing 60% or 30% concentrates on a dry matter basis with or without FCT were incubated. The fermentation of nutrients and microbial protein synthesis was measured. On the last day of incubation, microbial mass was obtained from the vessel liquid, DNA was extracted and PCR-primers targeting archaea, fibrobacter, clostridia, bifidobacteria, bacillii, fungi, and bacteria were applied to separately study the individual taxonomic groups with SSCP. The concentrate proportion affected the fermentation and the microbial community, but not the efficiency of microbial protein synthesis. Neither the fermentation of organic matter nor the synthesis and composition of microbial protein was affected by FCT. The fermentation of detergent fibre fractions was lower in diets containing FCT compared to diets with uncontaminated triticale. Except for the clostridia group, none of the microbial groups were affected by presence of FCT. In conclusion, our results give no indication that the supplementation of FCT up to a deoxynivalenol concentration in the diet of 5 mg per kg dry matter affects the fermentation of organic matter and microbial protein synthesis. These findings are independent of the concentrate level in the diets. A change in the microbial community composition of the genus Clostridia may be the reason for a reduction in the cellulolytic activity.

  3. DNA Extraction from Soils: Old Bias for New Microbial Diversity Analysis Methods

    PubMed Central

    Martin-Laurent, F.; Philippot, L.; Hallet, S.; Chaussod, R.; Germon, J. C.; Soulas, G.; Catroux, G.

    2001-01-01

    The impact of three different soil DNA extraction methods on bacterial diversity was evaluated using PCR-based 16S ribosomal DNA analysis. DNA extracted directly from three soils showing contrasting physicochemical properties was subjected to amplified ribosomal DNA restriction analysis and ribosomal intergenic spacer analysis (RISA). The obtained RISA patterns revealed clearly that both the phylotype abundance and the composition of the indigenous bacterial community are dependent on the DNA recovery method used. In addition, this effect was also shown in the context of an experimental study aiming to estimate the impact on soil biodiversity of the application of farmyard manure or sewage sludge onto a monoculture of maize for 15 years. PMID:11319122

  4. CONVERTING ISOTOPE RATIOS TO DIET COMPOSITION - THE USE OF MIXING MODELS

    EPA Science Inventory

    Investigations of wildlife foraging ecology with stable isotope analysis are increasing. Converting isotope values to proportions of different foods in a consumer's diet requires the use of mixing models. Simple mixing models based on mass balance equations have been used for d...

  5. Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures.

    PubMed

    Wang, Pengfei; Wu, Siyu; Tian, Cheng; Yu, Guimei; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2016-10-11

    Current tile-based DNA self-assembly produces simple repetitive or highly symmetric structures. In the case of 2D lattices, the unit cell often contains only one basic tile because the tiles often are symmetric (in terms of either the backbone or the sequence). In this work, we have applied retrosynthetic analysis to determine the minimal asymmetric units for complex DNA nanostructures. Such analysis guides us to break the intrinsic structural symmetries of the tiles to achieve high structural complexities. This strategy has led to the construction of several DNA nanostructures that are not accessible from conventional symmetric tile designs. Along with previous studies, herein we have established a set of four fundamental rules regarding tile-based assembly. Such rules could serve as guidelines for the design of DNA nanostructures.

  6. Importance of the efficiency of double-stranded DNA formation in cDNA synthesis for the imprecision of microarray expression analysis.

    PubMed

    Thormar, Hans G; Gudmundsson, Bjarki; Eiriksdottir, Freyja; Kil, Siyoen; Gunnarsson, Gudmundur H; Magnusson, Magnus Karl; Hsu, Jason C; Jonsson, Jon J

    2013-04-01

    The causes of imprecision in microarray expression analysis are poorly understood, limiting the use of this technology in molecular diagnostics. Two-dimensional strandness-dependent electrophoresis (2D-SDE) separates nucleic acid molecules on the basis of length and strandness, i.e., double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), and RNA·DNA hybrids. We used 2D-SDE to measure the efficiency of cDNA synthesis and its importance for the imprecision of an in vitro transcription-based microarray expression analysis. The relative amount of double-stranded cDNA formed in replicate experiments that used the same RNA sample template was highly variable, ranging between 0% and 72% of the total DNA. Microarray experiments showed an inverse relationship between the difference between sample pairs in probe variance and the relative amount of dsDNA. Approximately 15% of probes showed between-sample variation (P < 0.05) when the dsDNA percentage was between 12% and 35%. In contrast, only 3% of probes showed between-sample variation when the dsDNA percentage was 69% and 72%. Replication experiments of the 35% dsDNA and 72% dsDNA samples were used to separate sample variation from probe replication variation. The estimated SD of the sample-to-sample variation and of the probe replicates was lower in 72% dsDNA samples than in 35% dsDNA samples. Variation in the relative amount of double-stranded cDNA synthesized can be an important component of the imprecision in T7 RNA polymerase-based microarray expression analysis. © 2013 American Association for Clinical Chemistry

  7. Superimposed Code Theoretic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2008-01-01

    complements of one another and the DNA duplex formed is a Watson - Crick (WC) duplex. However, there are many instances when the formation of non-WC...that the user’s requirements for probe selection are met based on the Watson - Crick probe locality within a target. The second type, called...AFRL-RI-RS-TR-2007-288 Final Technical Report January 2008 SUPERIMPOSED CODE THEORETIC ANALYSIS OF DNA CODES AND DNA COMPUTING

  8. Direct infusion MS-based lipid profiling reveals the pharmacological effects of compound K-reinforced ginsenosides in high-fat diet induced obese mice.

    PubMed

    Shon, Jong Cheol; Shin, Hwa-Soo; Seo, Yong Ki; Yoon, Young-Ran; Shin, Heungsop; Liu, Kwang-Hyeon

    2015-03-25

    The serum lipid metabolites of lean and obese mice fed normal or high-fat diets were analyzed via direct infusion nanoelectrospray-ion trap mass spectrometry followed by multivariate analysis. In addition, lipidomic biomarkers responsible for the pharmacological effects of compound K-reinforced ginsenosides (CK), thus the CK fraction, were evaluated in mice fed high-fat diets. The obese and lean groups were clearly discriminated upon principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) score plot, and the major metabolites contributing to such discrimination were triglycerides (TGs), cholesteryl esters (CEs), phosphatidylcholines (PCs), and lysophosphatidylcholines (LPCs). TGs with high total carbon number (>50) and low total carbon number (<50) were negatively and positively associated with high-fat diet induced obesity in mice, respectively. When the CK fraction was fed to obese mice that consumed a high-fat diet, the levels of certain lipids including LPCs and CEs became similar to those of mice fed a normal diet. Such metabolic markers can be used to better understand obesity and related diseases induced by a hyperlipidic diet. Furthermore, changes in the levels of such metabolites can be employed to assess the risk of obesity and the therapeutic effects of obesity management.

  9. Genetic variant modifies the effect of N3 PUFAs on DNA methylation of IL6 in the Genetics of Lipid Lowering Drugs and Diet Network study

    USDA-ARS?s Scientific Manuscript database

    N3 polyunsaturated fatty acids (N3 PUFAs) ameliorate inflammation status with specific regulation on interleukin-6 (IL6) expression. However, the molecular mechanism for this regulation is unclear. Using both cell lines data from Encyclopedia of DNA Elements (ENCODE) consortium and population data f...

  10. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer.

    PubMed

    Cheng, Feifei; Su, Li; Qian, Cheng

    2016-07-26

    Tissue biopsy is the standard diagnostic procedure for cancers and also provides a material for genotyping, which can assist in the targeted therapies of cancers. However, tissue biopsy-based cancer diagnostic procedures have limitations in their assessment of cancer development, prognosis and genotyping, due to tumor heterogeneity and evolution. Circulating tumor DNA (ctDNA) is single- or double-stranded DNA released by the tumor cells into the blood and it thus harbors the mutations of the original tumor. In recent years, liquid biopsy based on ctDNA analysis has shed a new light on the molecular diagnosis and monitoring of cancer. Studies found that the screening of genetic mutations using ctDNA is highly sensitive and specific, suggesting that ctDNA analysis may significantly improve current systems of tumor diagnosis, even facilitating early-stage detection. Moreover, ctDNA analysis is capable of accurately determining the tumor progression, prognosis and assisting in targeted therapy. Therefore, using ctDNA as a liquid biopsy may herald a revolution for tumor management. Herein, we review the biology of ctDNA, its detection methods and potential applications in tumor diagnosis, treatment and prognosis.

  11. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer

    PubMed Central

    Cheng, Feifei; Su, Li; Qian, Cheng

    2016-01-01

    Tissue biopsy is the standard diagnostic procedure for cancers and also provides a material for genotyping, which can assist in the targeted therapies of cancers. However, tissue biopsy-based cancer diagnostic procedures have limitations in their assessment of cancer development, prognosis and genotyping, due to tumor heterogeneity and evolution. Circulating tumor DNA (ctDNA) is single- or double-stranded DNA released by the tumor cells into the blood and it thus harbors the mutations of the original tumor. In recent years, liquid biopsy based on ctDNA analysis has shed a new light on the molecular diagnosis and monitoring of cancer. Studies found that the screening of genetic mutations using ctDNA is highly sensitive and specific, suggesting that ctDNA analysis may significantly improve current systems of tumor diagnosis, even facilitating early-stage detection. Moreover, ctDNA analysis is capable of accurately determining the tumor progression, prognosis and assisting in targeted therapy. Therefore, using ctDNA as a liquid biopsy may herald a revolution for tumor management. Herein, we review the biology of ctDNA, its detection methods and potential applications in tumor diagnosis, treatment and prognosis. PMID:27223063

  12. Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases.

    PubMed

    Li, Cuiping; Wang, Hailin

    2015-08-07

    Oxidatively generated DNA damage is considered to be a significant contributing factor to cancer, aging, and age-related human diseases. It is important to detect oxidatively generated DNA damage to understand and clinically diagnosis diseases caused by oxidative damage. In this study, using selective enzymatic cleavage and quantum dot (QD) labeling, we developed a novel capillary electrophoresis-laser induced fluorescence method for the sensitive detection of oxidized DNA bases. First, oxidized DNA bases are recognized and removed by one DNA base excision repair glycosylase, leaving apurinic and apyrimidinic sites (AP sites) at the oxidized positions. The AP sites are further excised by the AP nicking activity of the chosen glycosylase, generating a nucleotide gap with 5'- and 3'- phosphate groups. After dephosphorylation with one alkaline phosphatase, a biotinylated ddNTP is introduced into the nucleotide space within the DNA strand by DNA polymerase I. The biotin-tagged DNA is further labeled with a QD-streptavidin conjugate via non-covalent interactions. The DNA-bound QD is well-separated from excess DNA-unbound QD by highly efficient capillary electrophoresis and is sensitively detected by online coupled laser-induced fluorescence analysis. Using this method, we can assess the trace levels of oxidized DNA bases induced by the Fenton reaction and UV irradiation. Interestingly, the use of the formamidopyrimidine glycosylase (FPG) protein and endonuclease VIII enables the detection of oxidized purine and pyrimidine bases, respectively. Using the synthesized standard DNA, the approach has low limits of detection of 1.1×10(-19)mol in mass and 2.9pM in concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Computational Study on Full-length Human Ku70 with Double Stranded DNA: Dynamics, Interactions and Functional Implications

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2009-01-01

    The Ku70/80 heterodimer is the first repair protein in the initial binding of double-strand break (DSB) ends following DNA damage, and is a component of nonhomologous end joining repair, the primary pathway for DSB repair in mammalian cells. In this study we constructed a full-length human Ku70 structure based on its crystal structure, and performed 20 ns conventional molecular dynamic (CMD) simulations on this protein and several other complexes with short DNA duplexes of different sequences. The trajectories of these simulations indicated that, without the topological support of Ku80, the residues in the bridge and C-terminal arm of Ku70 are more flexible than other experimentally identified domains. We studied the two missing loops in the crystal structure and predicted that they are also very flexible. Simulations revealed that they make an important contribution to the Ku70 interaction with DNA. Dislocation of the previously studied SAP domain was observed in several systems, implying its role in DNA binding. Targeted molecular dynamic (TMD) simulation was also performed for one system with a far-away 14bp DNA duplex. The TMD trajectory and energetic analysis disclosed detailed interactions of the DNA-binding residues during the DNA dislocation, and revealed a possible conformational transition for a DSB end when encountering Ku70 in solution. Compared to experimentally based analysis, this study identified more detailed interactions between DNA and Ku70. Free energy analysis indicated Ku70 alone is able to bind DNA with relatively high affinity, with consistent contributions from various domains of Ku70 in different systems. The functional implications of these domains in the processes of Ku heterodimerization and DNA damage recognition and repair can be characterized in detail based upon this analysis.

  14. Chromosome evolution in the Thermotogales: large-scale inversions and strain diversification of CRISPR sequences.

    PubMed

    DeBoy, Robert T; Mongodin, Emmanuel F; Emerson, Joanne B; Nelson, Karen E

    2006-04-01

    In the present study, the chromosomes of two members of the Thermotogales were compared. A whole-genome alignment of Thermotoga maritima MSB8 and Thermotoga neapolitana NS-E has revealed numerous large-scale DNA rearrangements, most of which are associated with CRISPR DNA repeats and/or tRNA genes. These DNA rearrangements do not include the putative origin of DNA replication but move within the same replichore, i.e., the same replicating half of the chromosome (delimited by the replication origin and terminus). Based on cumulative GC skew analysis, both the T. maritima and T. neapolitana lineages contain one or two major inverted DNA segments. Also, based on PCR amplification and sequence analysis of the DNA joints that are associated with the major rearrangements, the overall chromosome architecture was found to be conserved at most DNA joints for other strains of T. neapolitana. Taken together, the results from this analysis suggest that the observed chromosomal rearrangements in the Thermotogales likely occurred by successive inversions after their divergence from a common ancestor and before strain diversification. Finally, sequence analysis shows that size polymorphisms in the DNA joints associated with CRISPRs can be explained by expansion and possibly contraction of the DNA repeat and spacer unit, providing a tool for discerning the relatedness of strains from different geographic locations.

  15. Medium-chain TAG improve energy metabolism and mitochondrial biogenesis in the liver of intra-uterine growth-retarded and normal-birth-weight weanling piglets.

    PubMed

    Zhang, Hao; Li, Yue; Hou, Xiang; Zhang, Lili; Wang, Tian

    2016-05-01

    We previously reported that medium-chain TAG (MCT) could alleviate hepatic oxidative damage in weanling piglets with intra-uterine growth retardation (IUGR). There is a relationship between oxidative status and energy metabolism, a process involved in substrate availability and glucose flux. Therefore, the aim of this study was to investigate the effects of IUGR and MCT on hepatic energy metabolism and mitochondrial function in weanling piglets. Twenty-four IUGR piglets and twenty-four normal-birth-weight (NBW) piglets were fed a diet of either soyabean oil (SO) or MCT from 21 d of postnatal age to 49 d of postnatal age. Then, the piglets' biochemical parameters and gene expressions related to energy metabolism and mitochondrial function were determined (n 4). Compared with NBW, IUGR decreased the ATP contents and succinate oxidation rates in the liver of piglets, and reduced hepatic mitochondrial citrate synthase (CS) activity (P<0·05). IUGR piglets exhibited reductions in hepatic mitochondrial DNA (mtDNA) contents and gene expressions related to mitochondrial biogenesis compared with NBW piglets (P<0·05). The MCT diet increased plasma ghrelin concentration and hepatic CS and succinate dehydrogenase activities, but decreased hepatic pyruvate kinase activity compared with the SO diet (P<0·05). The MCT-fed piglets showed improved mtDNA contents and PPARγ coactivator-1α expression in the liver (P<0·05). The MCT diet alleviated decreased mRNA abundance of the hepatic PPARα induced by IUGR (P<0·05). It can therefore be postulated that MCT may have beneficial effects in improving energy metabolism and mitochondrial function in weanling piglets.

  16. Converting isotope ratios to diet composition - the use of mixing models - June 2010

    EPA Science Inventory

    One application of stable isotope analysis is to reconstruct diet composition based on isotopic mass balance. The isotopic value of a consumer’s tissue reflects the isotopic values of its food sources proportional to their dietary contributions. Isotopic mixing models are used ...

  17. Effects of maternal vitamin B6 deficiency and over-supplementation on DNA damage and oxidative stress in rat dams and their offspring.

    PubMed

    Almeida, Mara Ribeiro; Venâncio, Vinícius Paula; Aissa, Alexandre Ferro; Darin, Joana Darc Castania; Pires Bianchi, Maria Lourdes; Antunes, Lusânia Maria Greggi

    2015-06-01

    Vitamin B6 is a cofactor for more than 140 essential enzymes and plays an important role in maternal health and fetal development. The goal of this study was to investigate the effects of maternal vitamin B6 on DNA damage and oxidative stress status in rat dams and their offspring. Female Wistar rats were randomly assigned to three dietary groups fed a standard diet (control diet), a diet supplemented with 30 mg/kg of vitamin B6, or a deficient diet (0 mg/kg of vitamin B6) for 10 weeks before and during mating, pregnancy and lactation. The dams were euthanized at weaning, and their male pups were euthanized either 10 days or 100 days after birth. We found that maternal vitamin B6 deficiency increased the micronucleus frequency in peripheral blood and bone marrow cells and also increased the concentration of hepatic TBARS (thiobarbituric acid reactive substances) in newborn pups (10 days old). In conclusion, maternal 5- to 6-fold over-supplementation of vitamin B6 had no adverse effects, however its deficiency may induce chromosomal damage and hepatic lipid peroxidation in the offspring. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Diet and trophic ecology of the tiger shark (Galeocerdo cuvier) from South African waters

    PubMed Central

    Hussey, Nigel E.; Christiansen, Heather M.; Smale, Malcolm J.; Nkabi, Nomfundo; Cliff, Geremy; Wintner, Sabine P.

    2017-01-01

    Knowledge of the diet and trophic ecology of apex predators is key for the implementation of effective ecosystem as well as species-based management initiatives. Using a combination of stomach content data and stable isotope analysis (δ15N and δ13C) the current study provides information on size-based and sex-specific variations in diet, trophic position (TP) and foraging habitat of tiger sharks (Galeocerdo cuvier) caught in the KwaZulu-Natal Sharks Board bather protection program. This study presents the longest time-series and most detailed analysis of stomach content data for G. cuvier worldwide. Prey identified from 628 non-empty stomachs revealed a size-based shift in diet. Reptiles, birds, mysticetes, and large shark species increased in dietary importance with G. cuvier size, concomitant with a decrease in smaller prey such as batoids and teleosts. Seasonal and decadal shifts in diet driven primarily by changes in the importance of elasmobranchs and mammal (cetacean) prey were recorded for medium sized (150–220 cm) G. cuvier. Both stomach content and stable isotope analysis indicated that G. cuvier is a generalist feeder at the population level. Size-based δ13C profiles indicated a movement to offshore foraging habitats by larger G. cuvier. Calculated TP varied by method ranging from 4.0 to 5.0 (TPSCA for stomach contents) and from 3.6 to 4.5 (TPscaled and TPadditive for δ15N). Large (> 220 cm) G. cuvier did not feed at discrete trophic levels, but rather throughout the food web. These data provide key information on the ecological role of G. cuvier to improve the accuracy of regional food web modelling. This will enable a better understanding of the ecological impacts related to changes in the abundance of this predator. PMID:28594833

  19. Dietary patterns and colorectal cancer: results from a Canadian population-based study.

    PubMed

    Chen, Zhi; Wang, Peizhong Peter; Woodrow, Jennifer; Zhu, Yun; Roebothan, Barbara; Mclaughlin, John R; Parfrey, Patrick S

    2015-01-15

    The relationship between major dietary patterns and colorectal cancer (CRC) in other populations largely remains consistent across studies. The objective of the present study is to assess if dietary patterns are associated with the risk of CRC in the population of Newfoundland and Labrador (NL). Data from a population based case-control study in the province of NL were analyzed, including 506 CRC patients (306 men and 200 women) and 673 controls (400 men and 273 women), aged 20-74 years. Dietary habits were assessed by a 169-item food frequency questionnaire (FFQ). Logistic regression analyses were performed to investigate the association between dietary patterns and the CRC risk. Three major dietary patterns were derived using factor analysis, namely a Meat-diet pattern, a Plant-based diet pattern and a Sugary-diet pattern. In combination the three dietary patterns explained 74% of the total variance in food intake. Results suggest that the Meat-diet and the Sugary-diet increased the risk of CRC with corresponding odds ratios (ORs) of 1.84 (95% CI: 1.19-2.86) and 2.26 (95% CI: 1.39-3.66) for people in the highest intake quintile compared to those in the lowest. Whereas plant-based diet pattern decreases the risk of CRC with a corresponding OR of 0.55 (95% CI: 0.35-0.87). Even though odds ratios (ORs) were not always statistically significant, largely similar associations across three cancer sites were found: the proximal colon, the distal colon, and the rectum. The finding that Meat-diet/Sugary-diet patterns increased and Plant-based diet pattern decreased the risk of CRC would guide the promotion of healthy eating for primary prevention of CRC in this population.

  20. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-09-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology.

  1. A Thiazole Coumarin (TC) Turn-On Fluorescence Probe for AT-Base Pair Detection and Multipurpose Applications in Different Biological Systems

    PubMed Central

    Narayanaswamy, Nagarjun; Kumar, Manoj; Das, Sadhan; Sharma, Rahul; Samanta, Pralok K.; Pati, Swapan K.; Dhar, Suman K.; Kundu, Tapas K.; Govindaraju, T.

    2014-01-01

    Sequence-specific recognition of DNA by small turn-on fluorescence probes is a promising tool for bioimaging, bioanalytical and biomedical applications. Here, the authors report a novel cell-permeable and red fluorescent hemicyanine-based thiazole coumarin (TC) probe for DNA recognition, nuclear staining and cell cycle analysis. TC exhibited strong fluorescence enhancement in the presence of DNA containing AT-base pairs, but did not fluoresce with GC sequences, single-stranded DNA, RNA and proteins. The fluorescence staining of HeLa S3 and HEK 293 cells by TC followed by DNase and RNase digestion studies depicted the selective staining of DNA in the nucleus over the cytoplasmic region. Fluorescence-activated cell sorting (FACS) analysis by flow cytometry demonstrated the potential application of TC in cell cycle analysis in HEK 293 cells. Metaphase chromosome and malaria parasite DNA imaging studies further confirmed the in vivo diagnostic and therapeutic applications of probe TC. Probe TC may find multiple applications in fluorescence spectroscopy, diagnostics, bioimaging and molecular and cell biology. PMID:25252596

  2. Molecular dietary analysis of two sympatric felids in the Mountains of Southwest China biodiversity hotspot and conservation implications

    PubMed Central

    Xiong, Mengyin; Wang, Dajun; Bu, Hongliang; Shao, Xinning; Zhang, Dan; Li, Sheng; Wang, Rongjiang; Yao, Meng

    2017-01-01

    Dietary information is lacking in most of small to mid-sized carnivores due to their elusive predatory behaviour and versatile feeding habits. The leopard cat (LPC; Prionailurus bengalensis) and the Asiatic golden cat (AGC; Catopuma temminckii) are two important yet increasingly endangered carnivore species in the temperate mountain forest ecosystem in Southwest China, a global biodiversity hotspot and a significant reservoir of China’s endemic species. We investigated the vertebrate prey of the two sympatric felids using faecal DNA and a next-generation sequencing (NGS)/metabarcoding approach. Forty vertebrate prey taxa were identified from 93 LPC and 10 AGC faecal samples; 37 taxa were found in the LPC diet, and 20 were detected in the AGC diet. Prey included 27 mammalian taxa, 11 birds, one lizard and one fish, with 73% (29/40) of the taxa assigned to the species level. Rodents and pikas were the most dominant LPC prey categories, whereas rodents, pheasant, fowl and ungulates were the main AGC prey. We also analysed the seasonal and altitudinal variations in the LPC diet. Our results provide the most comprehensive dietary data for these felids and valuable information for their conservation planning. PMID:28195150

  3. DNA Methylation program in normal and alcohol-induced thinning cortex

    PubMed Central

    Öztürk, Nail Can; Resendiz, Marisol; Öztürk, Hakan; Zhou, Feng C.

    2017-01-01

    While cerebral underdevelopment is a hallmark of fetal alcohol spectrum disorders (FASD), the mechanism(s) guiding the broad cortical neurodevelopmental deficits are not clear. DNA methylation is known to regulate early development and tissue specification through gene regulation. Here, we examined DNA methylation in the onset of alcohol-induced cortical thinning in a mouse model of FASD. C57BL/6 (B6) mice were administered a 4% alcohol (v/v) liquid diet from embryonic (E) days 7–16, and their embryos were harvested at E17, along with isocaloric liquid diet and lab chow controls. Cortical neuroanatomy, neural phenotypes, and epigenetic markers of methylation were assessed using immunohistochemistry, Western blot, and methyl-DNA assays. We report that cortical thickness, neuroepithelial proliferation, and neuronal migration and maturity were found to be deterred by alcohol at E17. Simultaneously, DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxcylmethylcytosine (5hmC), which progresses as an intrinsic program guiding normal embryonic cortical development, was severely affected by in utero alcohol exposure. The intricate relationship between cortical thinning and this DNA methylation program disruption is detailed and illustrated. DNA methylation, dynamic across the multiple cortical layers during the late embryonic stage, is highly disrupted by fetal alcohol exposure; this disruption occurs in tandem with characteristic developmental abnormalities, ranging from structural to molecular. Finally, our findings point to a significant question for future exploration: whether epigenetics guides neurodevelopment or whether developmental conditions dictate epigenetic dynamics in the context of alcohol-induced cortical teratogenesis. PMID:28433420

  4. Hepatic rhythmicity of endoplasmic reticulum stress is disrupted in perinatal and adult mice models of high-fat diet-induced obesity.

    PubMed

    Soeda, Junpei; Cordero, Paul; Li, Jiawei; Mouralidarane, Angelina; Asilmaz, Esra; Ray, Shuvra; Nguyen, Vi; Carter, Rebeca; Novelli, Marco; Vinciguerra, Manlio; Poston, Lucilla; Taylor, Paul D; Oben, Jude A

    2017-06-01

    We investigated the regulation of hepatic ER stress in healthy liver and adult or perinatally programmed diet-induced non-alcoholic fatty liver disease (NAFLD). Female mice were fed either obesogenic or control diet before mating, during pregnancy and lactation. Post-weaning, offspring from each maternal group were divided into either obesogenic or control diet. At six months, offspring were sacrificed at 4-h intervals over 24 h. Offspring fed obesogenic diets developed NAFLD phenotype, and the combination of maternal and offspring obesogenic diets exacerbated this phenotype. UPR signalling pathways (IREα, PERK, ATF6) and their downstream regulators showed different basal rhythmicity, which was modified in offspring exposed to obesogenic diet and maternal programming. The double obesogenic hit increased liver apoptosis measured by TUNEL staining, active caspase-3 and phospho-JNK and GRP78 promoter methylation levels. This study demonstrates that hepatic UPR is rhythmically activated. The combination of maternal obesity (MO) and obesogenic diets in offspring triggered altered UPR rhythmicity, DNA methylation and cellular apoptosis.

  5. Assessment of a Nutritional Rehabilitation Model in Two Modern Broilers and Their Jungle Fowl Ancestor: A Model for Better Understanding Childhood Undernutrition

    PubMed Central

    Baxter, Mikayla F. A.; Latorre, Juan D.; Koltes, Dawn A.; Dridi, Sami; Greene, Elizabeth S.; Bickler, Stephen W.; Kim, Jae H.; Merino-Guzman, Ruben; Hernandez-Velasco, Xochitl; Anthony, Nicholas B.; Bottje, Walter G.; Hargis, Billy M.; Tellez, Guillermo

    2018-01-01

    This article is the first in a series of manuscripts to evaluate nutritional rehabilitation in chickens as a model to study interventions in children malnutrition (Part 1: Performance, Bone Mineralization, and Intestinal Morphometric Analysis). Inclusion of rye in poultry diets induces a nutritional deficit that leads to increased bacterial translocation, intestinal viscosity, and decreased bone mineralization. However, it is unclear the effect of diet on developmental stage or genetic strain. Therefore, the objective was to determine the effects of a rye diet during either the early or late phase of development on performance, bone mineralization, and intestinal morphology across three diverse genetic backgrounds. Modern 2015 (Cobb 500) broiler chicken, 1995 Cobb broiler chicken, and the Giant Jungle Fowl were randomly allocated into four different dietary treatments. Dietary treatments were (1) a control corn-based diet throughout the trial (corn–corn); (2) an early phase malnutrition diet where chicks received a rye-based diet for 10 days, and then switched to the control diet (rye–corn); (3) a malnutrition rye-diet that was fed throughout the trial (rye–rye); and (4) a late phase malnutrition diet where chicks received the control diet for 10 days, and then switched to the rye diet for the last phase (corn–rye). At 10 days of age, chicks were weighed and diets were switched in groups 2 and 4. At day 20 of age, all chickens were weighed and euthanized to collect bone and intestinal samples. Body weight, weight gain, and bone mineralization were different across diet, genetic line, age and all two- and three-way interactions (P < 0.05). Overall, Jungle Fowl were the most tolerant to a rye-based diet, and both the modern and 1995 broilers were significantly affected by the high rye-based diet. However, the 1995 broilers consuming the rye-based diet appeared to experience more permanent effects when compared with the modern broiler. The results of this study suggest that chickens have a great potential as a nutritional rehabilitation model in human trials. The 1995 broilers line was an intermediate genetic line between the fast growing modern line and the non-selected Jungle Fowl line, suggesting that it would be the most appropriate model to study for future studies. PMID:29629373

  6. Assessment of a Nutritional Rehabilitation Model in Two Modern Broilers and Their Jungle Fowl Ancestor: A Model for Better Understanding Childhood Undernutrition.

    PubMed

    Baxter, Mikayla F A; Latorre, Juan D; Koltes, Dawn A; Dridi, Sami; Greene, Elizabeth S; Bickler, Stephen W; Kim, Jae H; Merino-Guzman, Ruben; Hernandez-Velasco, Xochitl; Anthony, Nicholas B; Bottje, Walter G; Hargis, Billy M; Tellez, Guillermo

    2018-01-01

    This article is the first in a series of manuscripts to evaluate nutritional rehabilitation in chickens as a model to study interventions in children malnutrition (Part 1: Performance, Bone Mineralization, and Intestinal Morphometric Analysis). Inclusion of rye in poultry diets induces a nutritional deficit that leads to increased bacterial translocation, intestinal viscosity, and decreased bone mineralization. However, it is unclear the effect of diet on developmental stage or genetic strain. Therefore, the objective was to determine the effects of a rye diet during either the early or late phase of development on performance, bone mineralization, and intestinal morphology across three diverse genetic backgrounds. Modern 2015 (Cobb 500) broiler chicken, 1995 Cobb broiler chicken, and the Giant Jungle Fowl were randomly allocated into four different dietary treatments. Dietary treatments were (1) a control corn-based diet throughout the trial (corn-corn); (2) an early phase malnutrition diet where chicks received a rye-based diet for 10 days, and then switched to the control diet (rye-corn); (3) a malnutrition rye-diet that was fed throughout the trial (rye-rye); and (4) a late phase malnutrition diet where chicks received the control diet for 10 days, and then switched to the rye diet for the last phase (corn-rye). At 10 days of age, chicks were weighed and diets were switched in groups 2 and 4. At day 20 of age, all chickens were weighed and euthanized to collect bone and intestinal samples. Body weight, weight gain, and bone mineralization were different across diet, genetic line, age and all two- and three-way interactions ( P  < 0.05). Overall, Jungle Fowl were the most tolerant to a rye-based diet, and both the modern and 1995 broilers were significantly affected by the high rye-based diet. However, the 1995 broilers consuming the rye-based diet appeared to experience more permanent effects when compared with the modern broiler. The results of this study suggest that chickens have a great potential as a nutritional rehabilitation model in human trials. The 1995 broilers line was an intermediate genetic line between the fast growing modern line and the non-selected Jungle Fowl line, suggesting that it would be the most appropriate model to study for future studies.

  7. Pig Feeding under the Potato-green Forage Base System with or without Addition of Herbs versus a Concentrate Based System: Effect on Post-slaughter Performance and Pork Characteristics

    PubMed Central

    Turyk, Zofia; Osek, Maria; Olkowski, Bogusław; Janocha, Alina

    2014-01-01

    This study examined carcass and meat quality parameters in growing/finishing pigs fed unconventionally versus the concentrate-based system. Ninety-six, 12 wk old pigs (34±SD 0.3 kg) were randomly divided into three groups, assigned to one of the three dietary treatments: standard complete concentrate mixture, conventional (C diet); unconventional, steamed potato-green forage-concentrate based diet (U diet), and unconventional basal diet+herbage mix (UH diet). Pigs fed U diet showed lower dressing percentage, meatiness, loin eye area, and weight of pork neck (p≤0.05), but their carcasses were significantly (p≤0.05) longer and had increased backfat depth (p≤0.05). There was no impact of the diet on the meat content of dry matter, crude ash, acidity, and colour parameters of m. longissimus. Unconventional feeding significantly (p≤0.05) elevated water the holding capacity of m. longissimus and slightly improved the sensory attributes analysis of meat. The addition of herbs resulted in increased loin eye area (p≤0.05), decreased fat content (p≤0.05) in m. longissimus, and tended to improve some sensory attributes of meat. There were significant gender differences in response to all diets. There were significant diet×sex interactions for some measured variables, but there were no clearly identifiable trends with regard to any specific carcass or meat parameters. Feeding unconventional diet to pigs may offer better culinary attributes of the meat, and improve some technologically important characteristics of pig carcass, but may negatively affect some carcass or meat parameters. PMID:25050003

  8. The ability of human nuclear DNA to cause false positive low-abundance heteroplasmy calls varies across the mitochondrial genome.

    PubMed

    Albayrak, Levent; Khanipov, Kamil; Pimenova, Maria; Golovko, George; Rojas, Mark; Pavlidis, Ioannis; Chumakov, Sergei; Aguilar, Gerardo; Chávez, Arturo; Widger, William R; Fofanov, Yuriy

    2016-12-12

    Low-abundance mutations in mitochondrial populations (mutations with minor allele frequency ≤ 1%), are associated with cancer, aging, and neurodegenerative disorders. While recent progress in high-throughput sequencing technology has significantly improved the heteroplasmy identification process, the ability of this technology to detect low-abundance mutations can be affected by the presence of similar sequences originating from nuclear DNA (nDNA). To determine to what extent nDNA can cause false positive low-abundance heteroplasmy calls, we have identified mitochondrial locations of all subsequences that are common or similar (one mismatch allowed) between nDNA and mitochondrial DNA (mtDNA). Performed analysis revealed up to a 25-fold variation in the lengths of longest common and longest similar (one mismatch allowed) subsequences across the mitochondrial genome. The size of the longest subsequences shared between nDNA and mtDNA in several regions of the mitochondrial genome were found to be as low as 11 bases, which not only allows using these regions to design new, very specific PCR primers, but also supports the hypothesis of the non-random introduction of mtDNA into the human nuclear DNA. Analysis of the mitochondrial locations of the subsequences shared between nDNA and mtDNA suggested that even very short (36 bases) single-end sequencing reads can be used to identify low-abundance variation in 20.4% of the mitochondrial genome. For longer (76 and 150 bases) reads, the proportion of the mitochondrial genome where nDNA presence will not interfere found to be 44.5 and 67.9%, when low-abundance mutations at 100% of locations can be identified using 417 bases long single reads. This observation suggests that the analysis of low-abundance variations in mitochondria population can be extended to a variety of large data collections such as NCBI Sequence Read Archive, European Nucleotide Archive, The Cancer Genome Atlas, and International Cancer Genome Consortium.

  9. Benzo[a]pyrene (BP) DNA adduct formation in DNA repair–deficient p53 haploinsufficient [Xpa(−/−)p53(+/−)] and wild-type mice fed BP and BP plus chlorophyllin for 28 days

    PubMed Central

    Poirier, Miriam C.

    2012-01-01

    We have evaluated DNA damage (DNA adduct formation) after feeding benzo[a]pyrene (BP) to wild-type (WT) and cancer-susceptible Xpa(−/−)p53(+/−) mice deficient in nucleotide excision repair and haploinsufficient for the tumor suppressor p53. DNA damage was evaluated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC/ES-MS/MS), which measures r7,t8,t9-trihydroxy-c-10-(N 2-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG), and a chemiluminescence immunoassay (CIA), using anti-r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)–DNA antiserum, which measures both BPdG and the other stable BP-DNA adducts. When mice were fed 100 ppm BP for 28 days, BP-induced DNA damage measured in esophagus, liver and lung was typically higher in Xpa(−/−)p53(+/−) mice, compared with WT mice. This result is consistent with the previously observed tumor susceptibility of Xpa(−/−)p53(+/−) mice. BPdG, the major DNA adduct associated with tumorigenicity, was the primary DNA adduct formed in esophagus (a target tissue in the mouse), whereas total BP-DNA adducts predominated in higher levels in the liver (a non-target tissue in the mouse). In an attempt to lower BP-induced DNA damage, we fed the WT and Xpa(−/−)p53(+/−) mice 0.3% chlorophyllin (CHL) in the BP-containing diet for 28 days. The addition of CHL resulted in an increase of BP–DNA adducts in esophagus, liver and lung of WT mice, a lowering of BPdG in esophagi of WT mice and livers of Xpa(−/−)p53(+/−) mice and an increase of BPdG in livers of WT mice. Therefore, the addition of CHL to a BP-containing diet showed a lack of consistent chemoprotective effect, indicating that oral CHL administration may not reduce PAH–DNA adduct levels consistently in human organs. PMID:22828138

  10. Bisphenol A (BPA) the mighty and the mutagenic.

    PubMed

    Jalal, Nasir; Surendranath, Austin R; Pathak, Janak L; Yu, Shi; Chung, Chang Y

    2018-01-01

    Bisphenol A (BPA) is one of the most widely used synthetic compounds on the planet. Upon entering the diet, its highest concentration (1-104 ng/g of tissue) has been recorded in the placenta and fetus. This accumulation of BPA can have many health hazards ranging from the easy to repair single strand DNA breaks (SSBs) to error prone double strand DNA breaks (DSBs). Although the Human liver can efficiently metabolize BPA via glucuronidation and sulfation pathways, however the by-product Bisphenol -o- quinone has been shown to act as a DNA adduct. Low doses of BPA have also been shown to interact with various signaling pathways to disrupt normal downstream signaling. Analysis has been made on how BPA could interact with several signaling pathways such as NFκB, JNK, MAPK, ER and AR that eventually lead to disease morphology and even tumorigenesis. The role of low dose BPA is also discussed in dysregulating Ca 2+ homeostasis of the cell by inhibiting calcium channels such as SPCA1/2 to suggest a new direction for future research in the realms of BPA induced disease morphology and mutagenicity.

  11. mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences

    PubMed Central

    Lee, Hwan Young; Song, Injee; Ha, Eunho; Cho, Sung-Bae; Yang, Woo Ick; Shin, Kyoung-Jin

    2008-01-01

    Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at . PMID:19014619

  12. Market surveillance on non-halal additives incorporated in surimi based products using polymerase chain reaction (PCR)-southern hybridization analysis

    NASA Astrophysics Data System (ADS)

    Aravindran, S.; Sahilah, A. M.; Aminah, A.

    2014-09-01

    Halal surveillance on halal ingredients incorporated in surimi based products were studied using polymerase chain reaction (PCR)-southern hybridization on chip analysis. The primers used in this technique were targeted on mitochondria DNA (mtDNA) of cytochrome b (cyt b) gene sequence which able to differentiate 7 type (beef, chicken, duck, goat, buffalo, lamb and pork) of species on a single chip. 17 (n = 17*3) different brands of surimi-based product were purchased randomly from Selangor local market in January 2013. Of 17 brands, 3 (n = 3*3) brands were positive for chicken DNA, 1 (n = 1*3) brand was positive for goat DNA, and the remainder 13 brands (n = 13*3) have no DNA species detected. The sensitivity of PCR-southern hybridization primers to detect each meat species was 0.1 ng. In the present study, it is evidence that PCR-Southern Hybridization analysis offered a reliable result due to its highly specific and sensitive properties in detecting non-halal additive such as plasma protein incorporation in surimi-based product.

  13. Monetary Diet Cost, Diet Quality, and Parental Socioeconomic Status in Spanish Youth.

    PubMed

    Schröder, Helmut; Gomez, Santiago F; Ribas-Barba, Lourdes; Pérez-Rodrigo, Carmen; Bawaked, Rowaedh Ahmed; Fíto, Montserrat; Serra-Majem, Lluis

    2016-01-01

    Using a food-based analysis, healthy dietary patterns in adults are more expensive than less healthy ones; studies are needed in youth. Therefore, the objective of the present study was to determine relationships between monetary daily diet cost, diet quality, and parental socioeconomic status. Data were obtained from a representative national sample of 3534 children and young people in Spain, aged 2 to 24 years. Dietary assessment was performed with a 24-hour recall. Mediterranean diet adherence was measured by the KIDMED questionnaire. Average food cost was calculated from official Spanish government data. Monetary daily diet cost was expressed as euros per day (€/d) and euros per day standardized to a 1000kcal diet (€/1000kcal/d). Mean monetary daily diet cost was 3.16±1.57€/d (1.56±0.72€/1000kcal/d). Socioeconomic status was positively associated with monetary daily diet cost and diet quality measured by the KIDMED index (€/d and €/1000kcal/d, p<0.019). High Mediterranean diet adherence (KIDMED score 8-12) was 0.71 €/d (0.28€/1000kcal/d) more expensive than low compliance (KIDMED score 0-3). Analysis for nonlinear association between the KIDMED index and monetary daily diet cost per1000kcal showed no further cost increases beyond a KIDMED score of 8 (linear p<0.001; nonlinear p = 0.010). Higher monetary daily diet cost is associated with healthy eating in Spanish youth. Higher socioeconomic status is a determinant for higher monetary daily diet cost and quality.

  14. A church-based diet and physical activity intervention for rural, lower Mississippi Delta African American adults: Delta Body and Soul effectiveness study, 2010-2011.

    PubMed

    Tussing-Humphreys, Lisa; Thomson, Jessica L; Mayo, Tanyatta; Edmond, Emanuel

    2013-06-06

    Obesity, diabetes, and hypertension have reached epidemic levels in the largely rural Lower Mississippi Delta (LMD) region. We assessed the effectiveness of a 6-month, church-based diet and physical activity intervention, conducted during 2010 through 2011, for improving diet quality (measured by the Healthy Eating Index-2005) and increasing physical activity of African American adults in the LMD region. We used a quasi-experimental design in which 8 self-selected eligible churches were assigned to intervention or control. Assessments included dietary, physical activity, anthropometric, and clinical measures. Statistical tests for group comparisons included χ(2), Fisher's exact, and McNemar's tests for categorical variables, and mixed-model regression analysis for continuous variables and modeling intervention effects. Retention rates were 85% (176 of 208) for control and 84% (163 of 195) for intervention churches. Diet quality components, including total fruit, total vegetables, and total quality improved significantly in both control (mean [standard deviation], 0.3 [1.8], 0.2 [1.1], and 3.4 [9.6], respectively) and intervention (0.6 [1.7], 0.3 [1.2], and 3.2 [9.7], respectively) groups, while significant increases in aerobic (22%) and strength/flexibility (24%) physical activity indicators were apparent in the intervention group only. Regression analysis indicated that intervention participation level and vehicle ownership were significant positive predictors of change for several diet quality components. This church-based diet and physical activity intervention may be effective in improving diet quality and increasing physical activity of LMD African American adults. Components key to the success of such programs are participant engagement in educational sessions and vehicle access.

  15. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges.

    PubMed

    Deng, Ping; Swanson, Kelly S

    2015-01-01

    High-throughput DNA sequencing techniques allow for the identification and characterisation of microbes and their genes (microbiome). Using these new techniques, microbial populations in several niches of the human body, including the oral and nasal cavities, skin, urogenital tract and gastrointestinal tract, have been described recently. Very little data on the microbiome of companion animals exist, and most of the data have been derived from the analysis of the faeces of healthy laboratory animals. High-throughput assays provide opportunities to study the complex and dense populations of the gut microbiota, including bacteria, archaea, fungi, protozoa and viruses. Our laboratory and others have recently described the predominant microbial taxa and genes of healthy dogs and cats and how these respond to dietary interventions. In general, faecal microbial phylogeny (e.g. predominance of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria) and functional capacity (e.g. major functional groups related to carbohydrate, protein, DNA and vitamin metabolism; virulence factors; and cell wall and capsule) of the canine and feline gut are similar to those of the human gut. Initial sequencing projects have provided a glimpse of the microbial super-organism that exists within the canine and feline gut, but leaves much to be explored and discovered. As DNA provides information only about potential functions, studies that focus on the microbial transcriptome, metabolite profiles, and how microbiome changes affect host physiology and health are clearly required. Future studies must determine how diet composition, antibiotics and other drug therapies, breed and disease affect or are affected by the gut microbiome and how this information may be used to improve diets, identify disease biomarkers and develop targeted disease therapies.

  16. Expression profiling of colorectal cancer cells reveals inhibition of DNA replication licensing by extracellular calcium.

    PubMed

    Aggarwal, Abhishek; Schulz, Herbert; Manhardt, Teresa; Bilban, Martin; Thakker, Rajesh V; Kallay, Enikö

    2017-06-01

    Colorectal cancer is one of the most common cancers in industrialised societies. Epidemiological studies, animal experiments, and randomized clinical trials have shown that dietary factors can influence all stages of colorectal carcinogenesis, from initiation through promotion to progression. Calcium is one of the factors with a chemoprophylactic effect in colorectal cancer. The aim of this study was to understand the molecular mechanisms of the anti-tumorigenic effects of extracellular calcium ([Ca 2+ ] o ) in colon cancer cells. Gene expression microarray analysis of colon cancer cells treated for 1, 4, and 24h with 2mM [Ca 2+ ] o identified significant changes in expression of 1571 probe sets (ANOVA, p<10 -5 ). The main biological processes affected by [Ca 2+ ] o were DNA replication, cell division, and regulation of transcription. All factors involved in DNA replication-licensing were significantly downregulated by [Ca 2+ ] o . Furthermore, we show that the calcium-sensing receptor (CaSR), a G protein-coupled receptor is a mediator involved in this process. To test whether these results were physiologically relevant, we fed mice with a standard diet containing low (0.04%), intermediate (0.1%), or high (0.9%) levels of dietary calcium. The main molecules regulating replication licensing were inhibited also in vivo, in the colon of mice fed high calcium diet. We show that among the mechanisms behind the chemopreventive effect of [Ca 2+ ] o is inhibition of replication licensing, a process often deregulated in neoplastic transformation. Our data suggest that dietary calcium is effective in preventing replicative stress, one of the main drivers of cancer and this process is mediated by the calcium-sensing receptor. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus.

    PubMed

    Tran, Phu V; Kennedy, Bruce C; Lien, Yu-Chin; Simmons, Rebecca A; Georgieff, Michael K

    2015-02-15

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. Copyright © 2015 the American Physiological Society.

  18. Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus

    PubMed Central

    Kennedy, Bruce C.; Lien, Yu-Chin; Simmons, Rebecca A.; Georgieff, Michael K.

    2014-01-01

    Fetal and subsequent early postnatal iron deficiency causes persistent impairments in cognitive and affective behaviors despite prompt postnatal iron repletion. The long-term cognitive impacts are accompanied by persistent downregulation of brain-derived neurotrophic factor (BDNF), a factor critical for hippocampal plasticity across the life span. This study determined whether early-life iron deficiency epigenetically modifies the Bdnf locus and whether dietary choline supplementation during late gestation reverses these modifications. DNA methylation and histone modifications were assessed at the Bdnf-IV promoter in the hippocampus of rats [at postnatal day (PND) 65] that were iron-deficient (ID) during the fetal-neonatal period. Iron deficiency was induced in rat pups by providing pregnant and nursing dams an ID diet (4 mg/kg Fe) from gestational day (G) 2 through PND7, after which iron deficiency was treated with an iron-sufficient (IS) diet (200 mg/kg Fe). This paradigm resulted in about 60% hippocampal iron loss on PND15 with complete recovery by PND65. For choline supplementation, pregnant rat dams were given dietary choline (5 g/kg) from G11 through G18. DNA methylation was determined by quantitative sequencing of bisulfite-treated DNA, revealing a small alteration at the Bdnf-IV promoter. Chromatin immunoprecipitation analysis showed increased HDAC1 binding accompanied by reduced binding of RNA polymerase II and USF1 at the Bdnf-IV promoter in formerly ID rats. These changes were correlated with altered histone methylations. Prenatal choline supplementation reverses these epigenetic modifications. Collectively, the findings identify epigenetic modifications as a potential mechanism to explicate the long-term repression of Bdnf following fetal and early postnatal iron deficiency. PMID:25519736

  19. Characterization of the tunneling conductance across DNA bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zikic, Radomir; Krstic, Predrag S; Zhang, Xiaoguang

    2006-01-01

    Characterization of the electrical properties of the DNA bases, Adenine, Cytosine, Guanine and Thymine, besides building the basic knowledge on these fundamental constituents of a DNA, is a crucial step in developing a DNA sequencing technology. We present a first-principles study of the current-voltage characteristics of nucleotide-like molecules of the DNA bases, placed in a 1.5 nm gap formed between gold nanoelectrodes. The quantum transport calculations in the tunneling regime are shown to vary strongly with the electrode-molecule geometry and the choice of the DFT exchangecorrelation functionals. Analysis of the results in the zero-bias limit indicates that distinguishable current-voltage characteristicsmore » of different DNA bases are dominated by the geometrical conformations of the bases and nanoelectrodes.« less

  20. Characterization of the tunneling conductance across DNA bases.

    PubMed

    Zikic, Radomir; Krstić, Predrag S; Zhang, X-G; Fuentes-Cabrera, Miguel; Wells, Jack; Zhao, Xiongce

    2006-07-01

    Characterization of the electrical properties of the DNA bases (adenine, cytosine, guanine, and thymine), in addition to building the basic knowledge on these fundamental constituents of a DNA, is a crucial step in developing a DNA sequencing technology. We present a first-principles study of the current-voltage characteristics of nucleotidelike molecules of the DNA bases, placed in a 1.5 nm gap formed between gold nanoelectrodes. The quantum transport calculations in the tunneling regime are shown to vary strongly with the electrode-molecule geometry and the choice of the density-functional theory exchange-correlation functionals. Analysis of the results in the zero-bias limit indicates that distinguishable current-voltage characteristics of different DNA bases are dominated by the geometrical conformations of the bases and nanoelectrodes.

  1. DNA-based cryptographic methods for data hiding in DNA media.

    PubMed

    Marwan, Samiha; Shawish, Ahmed; Nagaty, Khaled

    2016-12-01

    Information security can be achieved using cryptography, steganography or a combination of them, where data is firstly encrypted using any of the available cryptography techniques and then hid into any hiding medium. Recently, the famous genomic DNA has been introduced as a hiding medium, known as DNA steganography, due to its notable ability to hide huge data sets with a high level of randomness and hence security. Despite the numerous cryptography techniques, to our knowledge only the vigenere cipher and the DNA-based playfair cipher have been combined with the DNA steganography, which keeps space for investigation of other techniques and coming up with new improvements. This paper presents a comprehensive analysis between the DNA-based playfair, vigenere, RSA and the AES ciphers, each combined with a DNA hiding technique. The conducted analysis reports the performance diversity of each combined technique in terms of security, speed, hiding capacity in addition to both key size and data size. Moreover, this paper proposes a modification of the current combined DNA-based playfair cipher technique, which makes it not only simple and fast but also provides a significantly higher hiding capacity and security. The conducted extensive experimental studies confirm such outstanding performance in comparison with all the discussed combined techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Exogenous and endogenous DNA modifications as monitored by 32P-postlabeling: relationships to cancer and aging.

    PubMed

    Randerath, K; Li, D; Nath, R; Randerath, E

    1992-01-01

    32P-postlabeling analysis, a highly sensitive method for the detection and measurement of covalent carcinogen-DNA adducts and other DNA modifications, does not require radioactive test substances and, therefore, can be applied to DNA of mammals, including humans exposed to low doses of environmental or occupational genotoxicants. The basic procedure entails the enzymatic incorporation of 32P-label into hydrolysis products of DNA, followed by chromatographic mapping and autoradiography of the 32P-labeled digestion products and quantitative scintillation spectrometry. Microgram amounts of DNA are analyzed: Thus the assay is suited for limited amounts of cells or tissues. Various versions of the assay afford different sensitivities of adduct detection. A single aromatic or bulky/hydrophobic adduct in 10(8)-10(10) nucleotides can be detected and measured (corresponding to 0.3-30 amol adduct/micrograms DNA or 0.1-10 nmol adduct/mol DNA-P). In animal models, the assay has been successfully applied to a variety of mutagenic (genotoxic) as well as nonmutagenic carcinogens. In humans, DNA specimens from cigarette smokers, iron foundry workers, and coke oven workers whose total aromatic adduct levels ranged from 1 adduct in 10(6)-10(8) DNA nucleotides have been examined by 32P-postlabeling. The assay also detects DNA modifications--Indigenous (I)-compounds--that increase with age in untreated animals. I-compound profiles and levels are highly species-, strain-, sex-, and tissue-specific, and also depend on diet composition. Caloric restriction, a highly efficient method for improving resistance to carcinogenesis and extending life span, increased rather than decreased I-compound levels in various tissues of male rats. Nonmutagenic hepatocarcinogens reduced levels of I-compounds in the target organ. Because of the specificity of this effect, reduction of I-compound levels appears to represent a novel biomarker for the action of nonmutagenic carcinogens. DNA from various hepatomas was found largely devoid of I-compounds. The results support a possible antineoplastic and antiaging role of these DNA modifications.

  3. Disturbance of DNA conformation by the binding of testosterone-based platinum drugs via groove-face and intercalative interactions: a molecular dynamics simulation study

    PubMed Central

    2013-01-01

    Background To explore novel platinum-based anticancer agents that are distinct from the structure and interaction mode of the traditional cisplatin by forming the bifunctional intrastrand 1,2 GpG adduct, the monofunctional platinum + DNA adducts with extensive non-covalent interactions had been studied. It was reported that the monofunctional testosterone-based platinum(II) agents present the high anticancer activity. Moreover, it was also found that the testosterone-based platinum agents could cause the DNA helix to undergo significant unwinding and bending over the non-testosterone-based platinum agents. However, the interaction mechanisms of these platinum agents with DNA at the atomic level are not yet clear so far. Results In the present work, we used molecular dynamics (MD) simulations and DNA conformational dynamics calculations to study the DNA distortion properties of the testosterone-based platinum + DNA, the improved testosterone-based platinum + DNA and the non-testosterone-based platinum + DNA adducts. The results show that the intercalative interaction of the improved flexible testosterone-based platinum agent with DNA molecule could cause larger DNA conformational distortion than the groove-face interaction of the rigid testosterone-based platinum agent with DNA molecule. Further investigations for the non-testosterone-based platinum agent reveal the occurrence of insignificant change of DNA conformation due to the absence of testosterone ligand in such agent. Based on the DNA dynamics analysis, the DNA base motions relating to DNA groove parameter changes and hydrogen bond destruction of DNA base pairs were also discussed in this work. Conclusions The flexible linker in the improved testosterone-based platinum agent causes an intercalative interaction with DNA in the improved testosterone-based platinum + DNA adduct, which is different from the groove-face interaction caused by a rigid linker in the testosterone-based platinum agent. The present investigations provide useful information of DNA conformation affected by a testosterone-based platinum complex at the atomic level. PMID:23517640

  4. In response to the December 2016 article entitled "Vegetarian diet and all-cause mortality: Evidence from a large population-based Australian cohort - the 45 and Up Study".

    PubMed

    Taylor, Nathan G A

    2017-07-01

    In response to the December 2016 article entitled "Vegetarian diet and all-cause mortality: Evidence from a large population-based Australian cohort - the 45 and Up Study". A brief analysis of the article with suggestions for interpretation and considerations for future research. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Conventional (MG-BR46 Conquista) and transgenic (BRS Valiosa RR) soybeans have no mutagenic effects and may protect against induced-DNA damage in vivo.

    PubMed

    Venâncio, Vinicius P; Silva, João Paulo L; Almeida, Alaor A; Brigagão, Maísa R P L; Azevedo, Luciana

    2012-01-01

    In the present study, we evaluated the pesticide and metal concentrations as well as the antimutagenic and mutagenic properties of commercial soybeans (Glycine max). Male Swiss mice were fed diets containing 1%, 10%, or 20% (w/w) transgenic soybeans (BRS Valiosa RR) or parental isogenic conventional soybeans (MG-BR46 Conquista). Cyclophosphamide (50 mg kg⁻¹ b.w.) was added in a single dose 24 h before euthanasia as an induction agent. There was no difference in the composition (ash, total fat, protein, moisture, and carbohydrates) of the diets containing the same soybean concentration. The results show that the commercially available Brazilian soybeans tested are free of organochlorine, organophosphate, and carbamate pesticides and contain acceptable heavy metal concentrations. Both cyclophosphamide and soybean treatments were not sufficient to cause detectable oxidative damage on liver by the levels of malondialdehyde and protein carbonyl. The transgenic soybeans are also nonmutagenic and have protective effects against DNA damage similar to those of conventional soybeans but to a lesser percentage (64%-101% for conventional and 23%-33% for transgenic diets).

  6. Triple-helix molecular switch-based aptasensors and DNA sensors.

    PubMed

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Clustering of Dietary Patterns, Lifestyles, and Overweight among Spanish Children and Adolescents in the ANIBES Study

    PubMed Central

    Pérez-Rodrigo, Carmen; Gil, Ángel; González-Gross, Marcela; Ortega, Rosa M.; Serra-Majem, Lluis; Varela-Moreiras, Gregorio; Aranceta-Bartrina, Javier

    2015-01-01

    Weight gain has been associated with behaviors related to diet, sedentary lifestyle, and physical activity. We investigated dietary patterns and possible meaningful clustering of physical activity, sedentary behavior, and sleep time in Spanish children and adolescents and whether the identified clusters could be associated with overweight. Analysis was based on a subsample (n = 415) of the cross-sectional ANIBES study in Spain. We performed exploratory factor analysis and subsequent cluster analysis of dietary patterns, physical activity, sedentary behaviors, and sleep time. Logistic regression analysis was used to explore the association between the cluster solutions and overweight. Factor analysis identified four dietary patterns, one reflecting a profile closer to the traditional Mediterranean diet. Dietary patterns, physical activity behaviors, sedentary behaviors and sleep time on weekdays in Spanish children and adolescents clustered into two different groups. A low physical activity-poorer diet lifestyle pattern, which included a higher proportion of girls, and a high physical activity, low sedentary behavior, longer sleep duration, healthier diet lifestyle pattern. Although increased risk of being overweight was not significant, the Prevalence Ratios (PRs) for the low physical activity-poorer diet lifestyle pattern were >1 in children and in adolescents. The healthier lifestyle pattern included lower proportions of children and adolescents from low socioeconomic status backgrounds. PMID:26729155

  8. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1.

    PubMed

    Kuznetsova, Alexandra A; Kuznetsov, Nikita A; Ishchenko, Alexander A; Saparbaev, Murat K; Fedorova, Olga S

    2014-10-01

    DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effects of potato fiber and potato-resistant starch on biomarkers of colonic health in rats fed diets containing red meat.

    PubMed

    Paturi, Gunaranjan; Nyanhanda, Tafadzwa; Butts, Christine A; Herath, Thanuja D; Monro, John A; Ansell, Juliet

    2012-10-01

    The effects of red meat consumption with and without fermentable carbohydrates on indices of large bowel health in rats were examined. Sprague-Dawley rats were fed cellulose, potato fiber, or potato-resistant starch diets containing 12% casein for 2 wk, then similar diets containing 25% cooked beef for 6 wk. After week 8, cecal and colonic microbiota composition, fermentation end-products, colon structure, and colonocyte DNA damage were analyzed. Rats fed potato fiber had lower Bacteroides-Prevotella-Porphyromonas group compared to other diet groups. Colonic Bifidobacterium spp. and/or Lactobacillus spp. were higher in potato fiber and potato-resistant starch diets than in the cellulose diet. Beneficial changes were observed in short-chain fatty acid concentrations (acetic, butyric, and propionic acids) in rats fed potato fiber compared with rats fed cellulose. Phenol and p-cresol concentrations were lower in the cecum and colon of rats fed potato fiber. An increase in goblet cells per crypt and longer crypts were found in the colon of rats fed potato fiber and potato-resistant starch diets. Fermentable carbohydrates had no effect on colonic DNA damage. Dietary combinations of red meat with potato fiber or potato-resistant starch have distinctive effects in the large bowel. Future studies are essential to examine the efficacy of different types of nondigestible carbohydrates in maintaining colonic health during long-term consumption of high-protein diets. Improved understanding of interactions between the food consumed and gut microbiota provides knowledge needed to make healthier food choices for large bowel health. The impact of red meat on large bowel health may be ameliorated by consuming with fermentable dietary fiber, a colonic energy source that produces less harmful by-products than the microbial breakdown of colonic protein for energy. Developing functional red meat products with fermentable dietary fiber could be one way to promote a healthy and balanced macronutrient diet. © 2012 The New Zealand Institute for Plant and Food-Research Limited Journal of Food Science © 2012 Institute of Food Technologists®

  10. Transcriptomic responses of the liver and adipose tissues to altered carbohydrate-fat ratio in diet: an isoenergetic study in young rats.

    PubMed

    Tanaka, Mitsuru; Yasuoka, Akihito; Shimizu, Manae; Saito, Yoshikazu; Kumakura, Kei; Asakura, Tomiko; Nagai, Toshitada

    2017-01-01

    To elucidate the effects of altered dietary carbohydrate and fat balance on liver and adipose tissue transcriptomes, 3-week-old rats were fed three kinds of diets: low-, moderate-, and high-fat diets (L, M, and H) containing a different ratio of carbohydrate-fat (C-F) (65:15, 60:20, and 35:45 in energy percent, respectively). The rats consumed the diets for 9 weeks and were subjected to biochemical and DNA microarray analyses. The rats in the H-group exhibited lower serum triacylglycerol (TG) levels but higher liver TG and cholesterol content than rats in the L-group. The analysis of differentially expressed genes (DEGs) between each group (L vs M, M vs H, and L vs H) in the liver revealed about 35% of L vs H DEGs that were regulated in the same way as M vs H DEGs, and most of the others were L- vs H-specific. Gene ontology analysis of these L vs H DEGs indicated that those related to fatty acid synthesis and circadian rhythm were enriched. Interestingly, about 30% of L vs M DEGs were regulated in a reverse way compared with L vs H and M vs H DEGs. These reversed liver DEGs included M-up/H-down genes ( Sds for gluconeogenesis from amino acids) and M-down/H-up genes ( Gpd2 for gluconeogenesis from glycerol, Agpat9 for TG synthesis, and Acot1 for beta-oxidation). We also analyzed L vs H DEGs in white (WAT) and brown (BAT) adipose tissues and found that both oxidation and synthesis of fatty acids were inhibited in these tissues. These results indicate that the alteration of dietary C-F balance differentially affects the transcriptomes of metabolizing and energy-storing tissues.

  11. Experimental mapping of DNA duplex shape enabled by global lineshape analyses of a nucleotide-independent nitroxide probe

    PubMed Central

    Ding, Yuan; Zhang, Xiaojun; Tham, Kenneth W.; Qin, Peter Z.

    2014-01-01

    Sequence-dependent variation in structure and dynamics of a DNA duplex, collectively referred to as ‘DNA shape’, critically impacts interactions between DNA and proteins. Here, a method based on the technique of site-directed spin labeling was developed to experimentally map shapes of two DNA duplexes that contain response elements of the p53 tumor suppressor. An R5a nitroxide spin label, which was covalently attached at a specific phosphate group, was scanned consecutively through the DNA duplex. X-band continuous-wave electron paramagnetic resonance spectroscopy was used to monitor rotational motions of R5a, which report on DNA structure and dynamics at the labeling site. An approach based on Pearson's coefficient analysis was developed to collectively examine the degree of similarity among the ensemble of R5a spectra. The resulting Pearson's coefficients were used to generate maps representing variation of R5a mobility along the DNA duplex. The R5a mobility maps were found to correlate with maps of certain DNA helical parameters, and were capable of revealing similarity and deviation in the shape of the two closely related DNA duplexes. Collectively, the R5a probe and the Pearson's coefficient-based lineshape analysis scheme yielded a generalizable method for examining sequence-dependent DNA shapes. PMID:25092920

  12. Epimural bacterial community structure in the rumen of Holstein cows with different responses to a long-term subacute ruminal acidosis diet challenge.

    PubMed

    Wetzels, S U; Mann, E; Pourazad, P; Qumar, M; Pinior, B; Metzler-Zebeli, B U; Wagner, M; Schmitz-Esser, S; Zebeli, Q

    2017-03-01

    Subacute ruminal acidosis (SARA) is a prevalent metabolic disorder in cattle, characterized by intermittent drops in ruminal pH. This study investigated the effect of a gradual adaptation and continuously induced long-term SARA challenge diet on the epimural bacterial community structure in the rumen of cows. Eight rumen-cannulated nonlactating Holstein cows were transitioned over 1 wk from a forage-based baseline feeding diet (grass silage-hay mix) to a SARA challenge diet, which they were fed for 4 wk. The SARA challenge diet consisted of 60% concentrates (dry matter basis) and 40% grass silage-hay mix. Rumen papillae biopsies were taken at the baseline, on the last day of the 1-wk adaptation, and on the last day of the 4-wk SARA challenge period; ruminal pH was measured using wireless sensors. We isolated DNA from papillae samples for 16S rRNA gene amplicon sequencing using Illumina MiSeq. Sequencing results of most abundant key phylotypes were confirmed by quantitative PCR. Although they were fed similar amounts of concentrate, cows responded differently in terms of ruminal pH during the SARA feeding challenge. Cows were therefore classified as responders (n = 4) and nonresponders (n = 4): only responders met the SARA criterion of a ruminal pH drop below 5.8 for longer than 330 min/d. Data showed that Proteobacteria, Firmicutes, and Bacteroidetes were the most abundant phyla, and at genus level, Campylobacter and Kingella showed highest relative abundance, at 15.5 and 7.8%, respectively. Diversity analyses revealed a significant increase of diversity after the 1-wk adaptation but a decrease of diversity and species richness after the 4-wk SARA feeding challenge, although without distinction between responders and nonresponders. At the level of the operational taxonomic unit, we detected diet-specific shifts in epimural community structure, but in the overall epimural bacterial community structure, we found no differences between responders and nonresponders. Correlation analysis revealed significant associations between grain intake and operational taxonomic unit abundance. The study revealed major shifts in the 3 dominating phyla and, most importantly, a loss of diversity in the epimural bacterial communities during a long-term SARA diet challenge, in which 60% concentrate supply for 4 wk was instrumental rather than the magnitude of the drop of ruminal pH below 5.8. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Sequencing of adenine in DNA by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2017-08-01

    The development of DNA sequencing technology utilizing the detection of a tunnel current is important for next-generation sequencer technologies based on single-molecule analysis technology. Using a scanning tunneling microscope, we previously reported that dI/dV measurements and dI/dV mapping revealed that the guanine base (purine base) of DNA adsorbed onto the Cu(111) surface has a characteristic peak at V s = -1.6 V. If, in addition to guanine, the other purine base of DNA, namely, adenine, can be distinguished, then by reading all the purine bases of each single strand of a DNA double helix, the entire base sequence of the original double helix can be determined due to the complementarity of the DNA base pair. Therefore, the ability to read adenine is important from the viewpoint of sequencing. Here, we report on the identification of adenine by STM topographic and spectroscopic measurements using a synthetic DNA oligomer and viral DNA.

  14. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    PubMed

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials.

  15. Comparative Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using Image-Based Features

    PubMed Central

    Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry

    2018-01-01

    The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k-Nearest neighbours (k-NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet’s effects on fish skin. PMID:29596375

  16. Microfluidic Gel Electrophoresis in the Undergraduate Laboratory Applied to Food Analysis

    ERIC Educational Resources Information Center

    Chao, Tzu-Chiao; Bhattacharya, Sanchari; Ros, Alexandra

    2012-01-01

    A microfluidics-based laboratory experiment for the analysis of DNA fragments in an analytical undergraduate course is presented. The experiment is set within the context of food species identification via amplified DNA fragments. The students are provided with berry samples from which they extract DNA and perform polymerase chain reaction (PCR)…

  17. Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats.

    PubMed

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2015-01-01

    The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat.

  18. Early discrimination of nasopharyngeal carcinoma based on tissue deoxyribose nucleic acid surface-enhanced Raman spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Qiu, Sufang; Li, Chao; Lin, Jinyong; Xu, Yuanji; Lu, Jun; Huang, Qingting; Zou, Changyan; Chen, Chao; Xiao, Nanyang; Lin, Duo; Chen, Rong; Pan, Jianji; Feng, Shangyuan

    2016-12-01

    Surface-enhanced Raman spectroscopy (SERS) was employed to detect deoxyribose nucleic acid (DNA) variations associated with the development of nasopharyngeal carcinoma (NPC). Significant SERS spectral differences between the DNA extracted from early NPC, advanced NPC, and normal nasopharyngeal tissue specimens were observed at 678, 729, 788, 1337, 1421, 1506, and 1573 cm-1, which reflects the genetic variations in NPC. Principal component analysis combined with discriminant function analysis for early NPC discrimination yielded a diagnostic accuracy of 86.8%, 92.3%, and 87.9% for early NPC, advanced NPC, and normal nasopharyngeal tissue DNA, respectively. In this exploratory study, we demonstrated the potential of SERS for early detection of NPC based on the DNA molecular study of biopsy tissues.

  19. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes.

    PubMed

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.

  20. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    PubMed Central

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096

Top