Science.gov

Sample records for dna-binding transcription factors

  1. Effects of nucleoside analog incorporation on DNA binding to the DNA binding domain of the GATA-1 erythroid transcription factor.

    PubMed

    Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I

    1999-02-01

    We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site.

  2. Effects of nucleoside analog incorporation on DNA binding to the DNA binding domain of the GATA-1 erythroid transcription factor.

    PubMed

    Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I

    1999-02-01

    We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site. PMID:10037146

  3. Survey of variation in human transcription factors reveals prevalent DNA binding changes

    PubMed Central

    Barrera, Luis A.; Rogers, Julia M.; Gisselbrecht, Stephen S.; Rossin, Elizabeth J.; Woodard, Jaie; Mariani, Luca; Kock, Kian Hong; Inukai, Sachi; Siggers, Trevor; Shokri, Leila; Gordân, Raluca; Sahni, Nidhi; Cotsapas, Chris; Hao, Tong; Yi, Song; Kellis, Manolis; Daly, Mark J.; Vidal, Marc; Hill, David E.; Bulyk, Martha L.

    2016-01-01

    Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA-binding activity and used universal protein binding microarrays to assay sequence-specific DNA-binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA-binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA-binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA-binding activities, which may contribute to phenotypic variation. PMID:27013732

  4. DNA-binding specificity changes in the evolution of forkhead transcription factors.

    PubMed

    Nakagawa, So; Gisselbrecht, Stephen S; Rogers, Julia M; Hartl, Daniel L; Bulyk, Martha L

    2013-07-23

    The evolution of transcriptional regulatory networks entails the expansion and diversification of transcription factor (TF) families. The forkhead family of TFs, defined by a highly conserved winged helix DNA-binding domain (DBD), has diverged into dozens of subfamilies in animals, fungi, and related protists. We have used a combination of maximum-likelihood phylogenetic inference and independent, comprehensive functional assays of DNA-binding capacity to explore the evolution of DNA-binding specificity within the forkhead family. We present converging evidence that similar alternative sequence preferences have arisen repeatedly and independently in the course of forkhead evolution. The vast majority of DNA-binding specificity changes we observed are not explained by alterations in the known DNA-contacting amino acid residues conferring specificity for canonical forkhead binding sites. Intriguingly, we have found forkhead DBDs that retain the ability to bind very specifically to two completely distinct DNA sequence motifs. We propose an alternate specificity-determining mechanism whereby conformational rearrangements of the DBD broaden the spectrum of sequence motifs that a TF can recognize. DNA-binding bispecificity suggests a previously undescribed source of modularity and flexibility in gene regulation and may play an important role in the evolution of transcriptional regulatory networks.

  5. Systematic Determination of Transcription Factor DNA-Binding Specificities in Yeast.

    PubMed

    Peña-Castillo, Lourdes; Badis, Gwenael

    2016-01-01

    Understanding how genes are regulated, decoding their "regulome", is one of the main challenges of the post-genomic era. Here, we describe the in vitro method we used to associate cis-regulatory sites with cognate trans-regulators by characterizing the DNA-binding specificity of the vast majority of yeast transcription factors using Protein Binding Microarrays. This approach can be implemented to any given organism.

  6. Quantification of transcription factor-DNA binding affinity in a living cell.

    PubMed

    Belikov, Sergey; Berg, Otto G; Wrange, Örjan

    2016-04-20

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [(3)H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element.

  7. 14-3-3 Protein Masks the DNA Binding Interface of Forkhead Transcription Factor FOXO4*

    PubMed Central

    Silhan, Jan; Vacha, Petr; Strnadova, Pavla; Vecer, Jaroslav; Herman, Petr; Sulc, Miroslav; Teisinger, Jan; Obsilova, Veronika; Obsil, Tomas

    2009-01-01

    The role of 14-3-3 proteins in the regulation of FOXO forkhead transcription factors is at least 2-fold. First, the 14-3-3 binding inhibits the interaction between the FOXO and the target DNA. Second, the 14-3-3 proteins prevent nuclear reimport of FOXO factors by masking their nuclear localization signal. The exact mechanisms of these processes are still unclear, mainly due to the lack of structural data. In this work, we used fluorescence spectroscopy to investigate the mechanism of the 14-3-3 protein-dependent inhibition of FOXO4 DNA-binding properties. Time-resolved fluorescence measurements revealed that the 14-3-3 binding affects fluorescence properties of 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid moiety attached at four sites within the forkhead domain of FOXO4 that represent important parts of the DNA binding interface. Observed changes in 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid fluorescence strongly suggest physical contacts between the 14-3-3 protein and labeled parts of the FOXO4 DNA binding interface. The 14-3-3 protein binding, however, does not cause any dramatic conformational change of FOXO4 as documented by the results of tryptophan fluorescence experiments. To build a realistic model of the FOXO4·14-3-3 complex, we measured six distances between 14-3-3 and FOXO4 using Förster resonance energy transfer time-resolved fluorescence experiments. The model of the complex suggests that the forkhead domain of FOXO4 is docked within the central channel of the 14-3-3 protein dimer, consistent with our hypothesis that 14-3-3 masks the DNA binding interface of FOXO4. PMID:19416966

  8. The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments

    PubMed Central

    Rodríguez, Jéssica; Mosquera, Jesús; Couceiro, Jose R.; Vázquez, M. Eugenio; Mascareñas, José L.

    2015-01-01

    We report the development of chimeric DNA binding peptides comprising a DNA binding fragment of natural transcription factors (the basic region of a bZIP protein or a monomeric zinc finger module) and an AT-Hook peptide motif. The resulting peptide conjugates display high DNA affinity and excellent sequence selectivity. Furthermore, the AT-Hook motif also favors the cell internalization of the conjugates. PMID:26290687

  9. Eukaryotic damaged DNA-binding proteins: DNA repair proteins or transcription factors?

    SciTech Connect

    Protic, M.

    1994-12-31

    Recognition and removal of structural defects in the genome, caused by diverse physical and chemical agents, are among the most important cell functions. Proteins that recognize and bind to modified DNA, and thereby initiate damage-induced recovery processes, have been identified in prokaryotic and eukaryotic cells. Damaged DNA-binding (DDB) proteins from prokaryotes are either DNA repair enzymes or noncatalytic subunits of larger DNA repair complexes that participate in excision repair, or in recombinational repair and SOS-mutagenesis. Although the methods employed may not have allowed detection of all eukaryotic DDB proteins and identification of their functions, it appears that during evolution cells have developed a wide array of DDB proteins that can discriminate among the diversity of DNA conformations found in the eukaryotic nucleus, as well as a gene-sharing feature found in DDB proteins that also act as transcription factors.

  10. Structural and dynamic studies of the transcription factor ERG reveal DNA binding is allosterically autoinhibited

    PubMed Central

    Regan, Michael C.; Horanyi, Peter S.; Pryor, Edward E.; Sarver, Jessica L.; Cafiso, David S.; Bushweller, John H.

    2013-01-01

    The Ets-Related Gene (ERG) belongs to the Ets family of transcription factors and is critically important for maintenance of the hematopoietic stem cell population. A chromosomal translocation observed in the majority of human prostate cancers leads to the aberrant overexpression of ERG. We have identified regions flanking the ERG Ets domain responsible for autoinhibition of DNA binding and solved crystal structures of uninhibited, autoinhibited, and DNA-bound ERG. NMR-based measurements of backbone dynamics show that uninhibited ERG undergoes substantial dynamics on the millisecond-to-microsecond timescale but autoinhibited and DNA-bound ERG do not. We propose a mechanism whereby the allosteric basis of ERG autoinhibition is mediated predominantly by the regulation of Ets-domain dynamics with only modest structural changes. PMID:23898196

  11. Gene regulation knowledge commons: community action takes care of DNA binding transcription factors

    PubMed Central

    Tripathi, Sushil; Vercruysse, Steven; Chawla, Konika; Christie, Karen R.; Blake, Judith A.; Huntley, Rachael P.; Orchard, Sandra; Hermjakob, Henning; Thommesen, Liv; Lægreid, Astrid; Kuiper, Martin

    2016-01-01

    A large gap remains between the amount of knowledge in scientific literature and the fraction that gets curated into standardized databases, despite many curation initiatives. Yet the availability of comprehensive knowledge in databases is crucial for exploiting existing background knowledge, both for designing follow-up experiments and for interpreting new experimental data. Structured resources also underpin the computational integration and modeling of regulatory pathways, which further aids our understanding of regulatory dynamics. We argue how cooperation between the scientific community and professional curators can increase the capacity of capturing precise knowledge from literature. We demonstrate this with a project in which we mobilize biological domain experts who curate large amounts of DNA binding transcription factors, and show that they, although new to the field of curation, can make valuable contributions by harvesting reported knowledge from scientific papers. Such community curation can enhance the scientific epistemic process. Database URL: http://www.tfcheckpoint.org PMID:27270715

  12. Compound hierarchical correlated beta mixture with an application to cluster mouse transcription factor DNA binding data.

    PubMed

    Dai, Hongying; Charnigo, Richard

    2015-10-01

    Modeling correlation structures is a challenge in bioinformatics, especially when dealing with high throughput genomic data. A compound hierarchical correlated beta mixture (CBM) with an exchangeable correlation structure is proposed to cluster genetic vectors into mixture components. The correlation coefficient, [Formula: see text], is homogenous within a mixture component and heterogeneous between mixture components. A random CBM with [Formula: see text] brings more flexibility in explaining correlation variations among genetic variables. Expectation-Maximization (EM) algorithm and Stochastic Expectation-Maximization (SEM) algorithm are used to estimate parameters of CBM. The number of mixture components can be determined using model selection criteria such as AIC, BIC and ICL-BIC. Extensive simulation studies were conducted to compare EM, SEM and model selection criteria. Simulation results suggest that CBM outperforms the traditional beta mixture model with lower estimation bias and higher classification accuracy. The proposed method is applied to cluster transcription factor-DNA binding probability in mouse genome data generated by Lahdesmaki and others (2008, Probabilistic inference of transcription factor binding from multiple data sources. PLoS One, 3: , e1820). The results reveal distinct clusters of transcription factors when binding to promoter regions of genes in JAK-STAT, MAPK and other two pathways.

  13. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.

    PubMed

    Kazemian, Majid; Pham, Hannah; Wolfe, Scot A; Brodsky, Michael H; Sinha, Saurabh

    2013-09-01

    Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action. PMID:23847101

  14. Structural insights into the DNA-binding specificity of E2F family transcription factors

    PubMed Central

    Morgunova, Ekaterina; Yin, Yimeng; Jolma, Arttu; Dave, Kashyap; Schmierer, Bernhard; Popov, Alexander; Eremina, Nadejda; Nilsson, Lennart; Taipale, Jussi

    2015-01-01

    The mammalian cell cycle is controlled by the E2F family of transcription factors. Typical E2Fs bind to DNA as heterodimers with the related dimerization partner (DP) proteins, whereas the atypical E2Fs, E2F7 and E2F8 contain two DNA-binding domains (DBDs) and act as repressors. To understand the mechanism of repression, we have resolved the structure of E2F8 in complex with DNA at atomic resolution. We find that the first and second DBDs of E2F8 resemble the DBDs of typical E2F and DP proteins, respectively. Using molecular dynamics simulations, biochemical affinity measurements and chromatin immunoprecipitation, we further show that both atypical and typical E2Fs bind to similar DNA sequences in vitro and in vivo. Our results represent the first crystal structure of an E2F protein with two DBDs, and reveal the mechanism by which atypical E2Fs can repress canonical E2F target genes and exert their negative influence on cell cycle progression. PMID:26632596

  15. Analysis of the DNA-binding and dimerization activities of Neurospora crassa transcription factor NUC-1.

    PubMed

    Peleg, Y; Metzenberg, R L

    1994-12-01

    NUC-1, a positive regulatory protein of Neurospora crassa, controls the expression of several unlinked target genes involved in phosphorus acquisition. The carboxy-terminal end of the NUC-1 protein has sequence similarity to the helix-loop-helix family of transcription factors. Bacterially expressed and in vitro-synthesized proteins, which consist of the carboxy-terminal portion of NUC-1, bind specifically to upstream sequences of two of its target genes, pho2+ and pho-4+. These upstream sequences contain the core sequence, CACGTG, a target for many helix-loop-helix proteins. A large loop region (47 amino acids) separates the helix I and helix II domains. Mutations and deletion within the loop region did not interfere with the in vitro or in vivo functions of the protein. Immediately carboxy-proximal to the helix II domain, the NUC-1 protein contains an atypical zipper domain which is essential for function. This domain consists of a heptad repeat of alanine and methionine rather than leucine residues. Analysis of mutant NUC-1 proteins suggests that the helix II and the zipper domains are essential for the protein dimerization, whereas the basic and the helix I domains are involved in DNA binding. The helix I domain, even though likely to participate in dimer formation while NUC-1 is bound to DNA, is not essential for in vitro dimerization.

  16. Genomic repertoires of DNA-binding transcription factors across the tree of life

    PubMed Central

    Charoensawan, Varodom; Wilson, Derek; Teichmann, Sarah A.

    2010-01-01

    Sequence-specific transcription factors (TFs) are important to genetic regulation in all organisms because they recognize and directly bind to regulatory regions on DNA. Here, we survey and summarize the TF resources available. We outline the organisms for which TF annotation is provided, and discuss the criteria and methods used to annotate TFs by different databases. By using genomic TF repertoires from ∼700 genomes across the tree of life, covering Bacteria, Archaea and Eukaryota, we review TF abundance with respect to the number of genes, as well as their structural complexity in diverse lineages. While typical eukaryotic TFs are longer than the average eukaryotic proteins, the inverse is true for prokaryotes. Only in eukaryotes does the same family of DNA-binding domain (DBD) occur multiple times within one polypeptide chain. This potentially increases the length and diversity of DNA-recognition sequence by reusing DBDs from the same family. We examined the increase in TF abundance with the number of genes in genomes, using the largest set of prokaryotic and eukaryotic genomes to date. As pointed out before, prokaryotic TFs increase faster than linearly. We further observe a similar relationship in eukaryotic genomes with a slower increase in TFs. PMID:20675356

  17. DNA-binding motif and target genes of the imprinted transcription factor PEG3

    PubMed Central

    Thiaville, Michelle M.; Huang, Jennifer M.; Kim, Hana; Ekram, Muhammad B.; Roh, Tae-Young; Kim, Joomyeong

    2012-01-01

    The Peg3 gene is expressed only from the paternally inherited allele located on proximal mouse chromosome 7. The PEG3 protein encoded by this imprinted gene is predicted to bind DNA based on its multiple zinc finger motifs and nuclear localization. In the current study, we demonstrated PEG3’s DNA-binding ability by characterizing its binding motif and target genes. We successfully identified target regions bound by PEG3 from mouse brain extracts using chromatin immunoprecipitation analysis. PEG3 was demonstrated to bind these candidate regions through the consensus DNA-binding motif AGTnnCnnnTGGCT. In vitro promoter assays established that PEG3 controls the expression of a given gene through this motif. Consistent with these observations, the transcriptional levels of a subset of the target genes are also affected in a mutant mouse model with reduced levels of PEG3 protein. Overall, these results confirm PEG3 as a DNA-binding protein controlling specific target genes that are involved in distinct cellular functions. PMID:23078764

  18. Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev

    PubMed Central

    Cooper, Christopher D. O.; Newman, Joseph A.; Aitkenhead, Hazel; Allerston, Charles K.; Gileadi, Opher

    2015-01-01

    Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40–200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors. PMID:25866208

  19. Effect of DNA Binding on Geminate CO Recombination Kinetics in CO-sensing Transcription Factor CooA*

    PubMed Central

    Benabbas, Abdelkrim; Karunakaran, Venugopal; Youn, Hwan; Poulos, Thomas L.; Champion, Paul M.

    2012-01-01

    Carbon monoxide oxidation activator (CooA) proteins are heme-based CO-sensing transcription factors. Here we study the ultrafast dynamics of geminate CO rebinding in two CooA homologues, Rhodospirillum rubrum (RrCooA) and Carboxydothermus hydrogenoformans (ChCooA). The effects of DNA binding and the truncation of the DNA-binding domain on the CO geminate recombination kinetics were specifically investigated. The CO rebinding kinetics in these CooA complexes take place on ultrafast time scales but remain non-exponential over many decades in time. We show that this non-exponential kinetic response is due to a quenched enthalpic barrier distribution resulting from a distribution of heme geometries that is frozen or slowly evolving on the time scale of CO rebinding. We also show that, upon CO binding, the distal pocket of the heme in the CooA proteins relaxes to form a very efficient hydrophobic trap for CO. DNA binding further tightens the narrow distal pocket and slightly weakens the iron-proximal histidine bond. Comparison of the CO rebinding kinetics of RrCooA, truncated RrCooA, and DNA-bound RrCooA proteins reveals that the uncomplexed and inherently flexible DNA-binding domain adds additional structural heterogeneity to the heme doming coordinate. When CooA forms a complex with DNA, the flexibility of the DNA-binding domain decreases, and the distribution of the conformations available in the heme domain becomes restricted. The kinetic studies also offer insights into how the architecture of the heme environment can tune entropic barriers in order to control the geminate recombination of CO in heme proteins, whereas spin selection rules play a minor or non-existent role. PMID:22544803

  20. A graphene oxide (GO)-based molecular beacon for DNA-binding transcription factor detection.

    PubMed

    Liu, Jing-Jing; Song, Xiao-Rong; Wang, Yi-Wei; Chen, Guo-Nan; Yang, Huang-Hao

    2012-06-21

    A GO-based molecular beacon assay was developed for rapid, sensitive and cost-efficient detection of transcription factor proteins. Furthermore, this assay can be employed for screening inhibitors of transcription factor proteins.

  1. Escherichia coli antitoxin MazE as transcription factor: insights into MazE-DNA binding

    PubMed Central

    Zorzini, Valentina; Buts, Lieven; Schrank, Evelyne; Sterckx, Yann G.J.; Respondek, Michal; Engelberg-Kulka, Hanna; Loris, Remy; Zangger, Klaus; van Nuland, Nico A.J.

    2015-01-01

    Toxin-antitoxin (TA) modules are pairs of genes essential for bacterial regulation upon environmental stresses. The mazEF module encodes the MazF toxin and its cognate MazE antitoxin. The highly dynamic MazE possesses an N-terminal DNA binding domain through which it can negatively regulate its own promoter. Despite being one of the first TA systems studied, transcriptional regulation of Escherichia coli mazEF remains poorly understood. This paper presents the solution structure of C-terminal truncated E. coli MazE and a MazE-DNA model with a DNA palindrome sequence ∼10 bp upstream of the mazEF promoter. The work has led to a transcription regulator-DNA model, which has remained elusive thus far in the E. coli toxin–antitoxin family. Multiple complementary techniques including NMR, SAXS and ITC show that the long intrinsically disordered C-termini in MazE, required for MazF neutralization, does not affect the interactions between the antitoxin and its operator. Rather, the MazE C-terminus plays an important role in the MazF binding, which was found to increase the MazE affinity for the palindromic single site operator. PMID:25564525

  2. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  3. Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy.

    PubMed

    Papadopoulos, Dimitrios K; Krmpot, Aleksandar J; Nikolić, Stanko N; Krautz, Robert; Terenius, Lars; Tomancak, Pavel; Rigler, Rudolf; Gehring, Walter J; Vukojević, Vladana

    2015-11-01

    Hox genes encode transcription factors that control the formation of body structures, segment-specifically along the anterior-posterior axis of metazoans. Hox transcription factors bind nuclear DNA pervasively and regulate a plethora of target genes, deploying various molecular mechanisms that depend on the developmental and cellular context. To analyze quantitatively the dynamics of their DNA-binding behavior we have used confocal laser scanning microscopy (CLSM), single-point fluorescence correlation spectroscopy (FCS), fluorescence cross-correlation spectroscopy (FCCS) and bimolecular fluorescence complementation (BiFC). We show that the Hox transcription factor Sex combs reduced (Scr) forms dimers that strongly associate with its specific fork head binding site (fkh250) in live salivary gland cell nuclei. In contrast, dimers of a constitutively inactive, phospho-mimicking variant of Scr show weak, non-specific DNA-binding. Our studies reveal that nuclear dynamics of Scr is complex, exhibiting a changing landscape of interactions that is difficult to characterize by probing one point at a time. Therefore, we also provide mechanistic evidence using massively parallel FCS (mpFCS). We found that Scr dimers are predominantly formed on the DNA and are equally abundant at the chromosomes and an introduced multimeric fkh250 binding-site, indicating different mobilities, presumably reflecting transient binding with different affinities on the DNA. Our proof-of-principle results emphasize the advantages of mpFCS for quantitative characterization of fast dynamic processes in live cells.

  4. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer.

    PubMed Central

    Kimmerly, W; Buchman, A; Kornberg, R; Rine, J

    1988-01-01

    The HMR E silencer is required for SIR-dependent transcriptional repression of the silent mating-type locus, HMR. The silencer also behaves as an origin of replication (ARS element) and allows plasmids to replicate autonomously in yeast. The replication and segregation properties of these plasmids are also dependent on the four SIR genes. We have previously characterized two DNA-binding factors in yeast extracts that recognize specific sequences at the HMR E silencer. These proteins, called ABFI (ARS-Binding Factor) and GRFI (General Regulatory Factor), are not encoded by any of the SIR genes. To investigate the biological roles of these factors, single-base-pair mutations were constructed in both binding sites at the HMR E silencer that were no longer recognized by the corresponding proteins in vitro. Our results indicate that the GRFI-binding site is required for the efficient segregation of plasmids replicated by the HMR E silencer. SIR-dependent transcriptional repression requires either an intact ABFI-binding site or GRFI-binding site, although the GRFI-binding site appears to be more important. A double-mutant silencer that binds neither ABFI nor GRFI does not mediate transcriptional repression of HMR. The replacement of HMR E with a chromosomal origin of replication (ARS1) allows partial SIR-dependent transcriptional repression of HMR, indicating a role for replication in silencer function. Together, these results suggest that the SIR proteins influence the properties of the HMR E silencer through interactions with other DNA-binding proteins. Images PMID:3046937

  5. Elongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein.

    PubMed Central

    Reines, D; Mote, J

    1993-01-01

    In eukaryotes the genetic material is contained within a coiled, protein-coated structure known as chromatin. RNA polymerases must recognize specific nucleoprotein assemblies and maintain contact with the underlying DNA duplex for many thousands of base pairs. Template-bound lac operon repressor from Escherichia coli arrests RNA polymerase II in vitro and in vivo [Kuhn, A., Bartsch, I. & Grummt, I. (1990) Nature (London) 344, 559-562; Deuschele, U., Hipskind, R. A. & Bujard, H. (1990) Science 248, 480-483]. We show that in a reconstituted transcription system, elongation factor SII enables RNA polymerase II to proceed through this blockage at high efficiency. lac repressor-arrested elongation complexes display an SII-activated transcript cleavage reaction, an activity associated with transcriptional read-through of a previously characterized region of bent DNA. This demonstrates factor-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein. Nascent transcript cleavage may be a general mechanism by which RNA polymerase II can bypass many transcriptional impediments. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8446609

  6. Differential sensitivity to methylated DNA by ETS-family transcription factors is intrinsically encoded in their DNA-binding domains

    PubMed Central

    Stephens, Dominique C.; Poon, Gregory M. K.

    2016-01-01

    Transactivation by the ETS family of transcription factors, whose members share structurally conserved DNA-binding domains, is variably sensitive to methylation of their target genes. The mechanism by which DNA methylation controls ETS proteins remains poorly understood. Uncertainly also pervades the effects of hemi-methylated DNA, which occurs following DNA replication and in response to hypomethylating agents, on site recognition by ETS proteins. To address these questions, we measured the affinities of two sequence-divergent ETS homologs, PU.1 and Ets-1, to DNA sites harboring a hemi- and fully methylated CpG dinucleotide. While the two proteins bound unmethylated DNA with indistinguishable affinity, their affinities to methylated DNA are markedly heterogeneous and exhibit major energetic coupling between the two CpG methylcytosines. Analysis of simulated DNA and existing co-crystal structures revealed that hemi-methylation induced non-local backbone and groove geometries that were not conserved in the fully methylated state. Indirect readout of these perturbations was differentially achieved by the two ETS homologs, with the distinctive interfacial hydration in PU.1/DNA binding moderating the inhibitory effects of DNA methylation on binding. This data established a biophysical basis for the pioneering properties associated with PU.1, which robustly bound fully methylated DNA, but not Ets-1, which was substantially inhibited. PMID:27270080

  7. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays

    PubMed Central

    Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk

    2013-01-01

    WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197

  8. Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors.

    PubMed

    He, Gaofei; Tolic, Ana; Bashkin, James K; Poon, Gregory M K

    2015-04-30

    The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs.

  9. Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors.

    PubMed

    He, Gaofei; Tolic, Ana; Bashkin, James K; Poon, Gregory M K

    2015-04-30

    The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs. PMID:25824951

  10. Regulation of the HMOX1 gene by the transcription factor AP-2δ with unique DNA binding site.

    PubMed

    Sun, Liyun; Zhao, Yuxia; Gu, Shaohua; Mao, Yumin; Ji, Chaoneng; Xin, Xiujuan

    2014-07-01

    AP-2 transcription factors are important sequence-specific DNA-binding regulators that are expressed in the neural crest and other tissues during mammalian development. The human AP-2 family of transcription factors consists of five members, AP-2α, -β, -γ, -δ and -ε, which have an important role in the regulation of gene expression during development and in the differentiation of multiple organs and tissues. The present study aimed to investigate the mechanism by which AP-2δ mediates heme oxygenase-1 (HMOX1) gene expression. It was identified that the human AP-2δ protein exhibited weak binding to a suboptimal AP-2 sequence, 5'-GCCN3GGC-3', to which all other AP-2 proteins bind in vitro, providing the first example of DNA target specificity amongst the AP-2 family. AP-2δ protein bound to an optimized AP-2 consensus DNA sequence, 5'-GCCTGAGGC-3', in vitro and transactivated gene expression in eukaryotic cells. The transactivation domain of Ap-2δ differs notably from those in the other AP-2 proteins as it lacks the PY motif (XPPXY) and several other conserved residues that are important for the transcriptional activity of AP-2 proteins, yet it functions as an equally strong activator. PMID:24789576

  11. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family.

    PubMed

    Dai, Qi; Ren, Aiming; Westholm, Jakub O; Duan, Hong; Patel, Dinshaw J; Lai, Eric C

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain ("BEN-solo" factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  12. Common and distinct DNA-binding and regulatory activities of the BEN-solo transcription factor family

    PubMed Central

    Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Duan, Hong; Patel, Dinshaw J.

    2015-01-01

    Recently, the BEN (BANP, E5R, and NAC1) domain was recognized as a new class of conserved DNA-binding domain. The fly genome encodes three proteins that bear only a single BEN domain (“BEN-solo” factors); namely, Insensitive (Insv), Bsg25A (Elba1), and CG9883 (Elba2). Insv homodimers preferentially bind CCAATTGG palindromes throughout the genome to mediate transcriptional repression, whereas Bsg25A and Elba2 heterotrimerize with their obligate adaptor, Elba3 (i.e., the ELBA complex), to recognize a CCAATAAG motif in the Fab-7 insulator. While these data suggest distinct DNA-binding properties of BEN-solo proteins, we performed reporter assays that indicate that both Bsg25A and Elba2 can individually recognize Insv consensus sites efficiently. We confirmed this by solving the structure of Bsg25A complexed to the Insv site, which showed that key aspects of the BEN:DNA recognition strategy are similar between these proteins. We next show that both Insv and ELBA proteins are competent to mediate transcriptional repression via Insv consensus sequences but that the ELBA complex appears to be selective for the ELBA site. Reciprocally, genome-wide analysis reveals that Insv exhibits significant cobinding to class I insulator elements, indicating that it may also contribute to insulator function. Indeed, we observed abundant Insv binding within the Hox complexes with substantial overlaps with class I insulators, many of which bear Insv consensus sites. Moreover, Insv coimmunoprecipitates with the class I insulator factor CP190. Finally, we observed that Insv harbors exclusive activity among fly BEN-solo factors with respect to regulation of Notch-mediated cell fate choices in the peripheral nervous system. This in vivo activity is recapitulated by BEND6, a mammalian BEN-solo factor that conserves the Notch corepressor function of Insv but not its capacity to bind Insv consensus sites. Altogether, our data define an array of common and distinct biochemical and functional

  13. Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev: DETERMINANTS OF DNA BINDING AND REDOX REGULATION BY DISULFIDE BOND FORMATION.

    PubMed

    Cooper, Christopher D O; Newman, Joseph A; Aitkenhead, Hazel; Allerston, Charles K; Gileadi, Opher

    2015-05-29

    Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40-200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors.

  14. POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1.

    PubMed

    Lee, Dong-Kee; Suh, Dongchul; Edenberg, Howard J; Hur, Man-Wook

    2002-07-26

    The POZ domain is a protein-protein interaction motif that is found in many transcription factors, which are important for development, oncogenesis, apoptosis, and transcription repression. We cloned the POZ domain transcription factor, FBI-1, that recognizes the cis-element (bp -38 to -22) located just upstream of the core Sp1 binding sites (bp -22 to +22) of the ADH5/FDH minimal promoter (bp -38 to +61) in vitro and in vivo, as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ADH5/FDH minimal promoter is potently repressed by the FBI-1. Glutathione S-transferase fusion protein pull-down showed that the POZ domains of FBI-1, Plzf, and Bcl-6 directly interact with the zinc finger DNA binding domain of Sp1. DNase I footprinting assays showed that the interaction prevents binding of Sp1 to the GC boxes of the ADH5/FDH promoter. Gal4-POZ domain fusions targeted proximal to the GC boxes repress transcription of the Gal4 upstream activator sequence-Sp1-adenovirus major late promoter. Our data suggest that POZ domain represses transcription by interacting with Sp1 zinc fingers and by interfering with the DNA binding activity of Sp1.

  15. Repression of CIITA by the Epstein-Barr virus transcription factor Zta is independent of its dimerization and DNA binding.

    PubMed

    Balan, Nicolae; Osborn, Kay; Sinclair, Alison J

    2016-03-01

    Repression of the cellular CIITA gene is part of the immune evasion strategy of the γherpes virus Epstein-Barr virus (EBV) during its lytic replication cycle in B-cells. In part, this is mediated through downregulation of MHC class II gene expression via the targeted repression of CIITA, the cellular master regulator of MHC class II gene expression. This repression is achieved through a reduction in CIITA promoter activity, initiated by the EBV transcription and replication factor, Zta (BZLF1, EB1, ZEBRA). Zta is the earliest gene expressed during the lytic replication cycle. Zta interacts with sequence-specific elements in promoters, enhancers and the replication origin (ZREs), and also modulates gene expression through interaction with cellular transcription factors and co-activators. Here, we explore the requirements for Zta-mediated repression of the CIITA promoter. We find that repression by Zta is specific for the CIITA promoter and can be achieved in the absence of other EBV genes. Surprisingly, we find that the dimerization region of Zta is not required to mediate repression. This contrasts with an obligate requirement of this region to correctly orientate the DNA contact regions of Zta to mediate activation of gene expression through ZREs. Additional support for the model that Zta represses the CIITA promoter without direct DNA binding comes from promoter mapping that shows that repression does not require the presence of a ZRE in the CIITA promoter. PMID:26653871

  16. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology.

    PubMed Central

    Katsani, K R; Hajibagheri, M A; Verrijzer, C P

    1999-01-01

    The POZ domain is a conserved protein-protein interaction motif present in a variety of transcription factors involved in development, chromatin remodelling and human cancers. Here, we study the role of the POZ domain of the GAGA transcription factor in promoter recognition. Natural target promoters for GAGA typically contain multiple GAGA-binding elements. Our results show that the POZ domain mediates strong co-operative binding to multiple sites but inhibits binding to single sites. Protein cross-linking and gel filtration chromatography experiments established that the POZ domain is required for GAGA oligomerization into higher order complexes. Thus, GAGA oligomerization increases binding specificity by selecting only promoters with multiple sites. Electron microscopy revealed that GAGA binds to multiple sites as a large oligomer and induces bending of the promoter DNA. Our results indicate a novel mode of DNA binding by GAGA, in which a large GAGA complex binds multiple GAGA elements that are spread out over a region of a few hundred base pairs. We suggest a model in which the promoter DNA is wrapped around a GAGA multimer in a conformation that may exclude normal nucleosome formation. PMID:9927429

  17. Interactions between the R2R3-MYB transcription factor, AtMYB61, and target DNA binding sites.

    PubMed

    Prouse, Michael B; Campbell, Malcolm M

    2013-01-01

    Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing). The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators. PMID:23741471

  18. Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes

    PubMed Central

    Pujato, Mario; Kieken, Fabien; Skiles, Amanda A.; Tapinos, Nikos; Fiser, Andras

    2014-01-01

    Proper cell functioning depends on the precise spatio-temporal expression of its genetic material. Gene expression is controlled to a great extent by sequence-specific transcription factors (TFs). Our current knowledge on where and how TFs bind and associate to regulate gene expression is incomplete. A structure-based computational algorithm (TF2DNA) is developed to identify binding specificities of TFs. The method constructs homology models of TFs bound to DNA and assesses the relative binding affinity for all possible DNA sequences using a knowledge-based potential, after optimization in a molecular mechanics force field. TF2DNA predictions were benchmarked against experimentally determined binding motifs. Success rates range from 45% to 81% and primarily depend on the sequence identity of aligned target sequences and template structures, TF2DNA was used to predict 1321 motifs for 1825 putative human TF proteins, facilitating the reconstruction of most of the human gene regulatory network. As an illustration, the predicted DNA binding site for the poorly characterized T-cell leukemia homeobox 3 (TLX3) TF was confirmed with gel shift assay experiments. TLX3 motif searches in human promoter regions identified a group of genes enriched in functions relating to hematopoiesis, tissue morphology, endocrine system and connective tissue development and function. PMID:25428367

  19. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites

    PubMed Central

    Anderson, Dave W; McKeown, Alesia N; Thornton, Joseph W

    2015-01-01

    Complexes of specifically interacting molecules, such as transcription factor proteins (TFs) and the DNA response elements (REs) they recognize, control most biological processes, but little is known concerning the functional and evolutionary effects of epistatic interactions across molecular interfaces. We experimentally characterized all combinations of genotypes in the joint protein-DNA sequence space defined by an historical transition in TF-RE specificity that occurred some 500 million years ago in the DNA-binding domain of an ancient steroid hormone receptor. We found that rampant epistasis within and between the two molecules was essential to specific TF-RE recognition and to the evolution of a novel TF-RE complex with unique derived specificity. Permissive and restrictive epistatic mutations across the TF-RE interface opened and closed potential evolutionary paths accessible by the other, making the evolution of each molecule contingent on its partner's history and allowing a molecular complex with novel specificity to evolve. DOI: http://dx.doi.org/10.7554/eLife.07864.001 PMID:26076233

  20. Rhodopsin targeted transcriptional silencing by DNA-binding

    PubMed Central

    Botta, Salvatore; Marrocco, Elena; de Prisco, Nicola; Curion, Fabiola; Renda, Mario; Sofia, Martina; Lupo, Mariangela; Carissimo, Annamaria; Bacci, Maria Laura; Gesualdo, Carlo; Rossi, Settimio; Simonelli, Francesca; Surace, Enrico Maria

    2016-01-01

    Transcription factors (TFs) operate by the combined activity of their DNA-binding domains (DBDs) and effector domains (EDs) enabling the coordination of gene expression on a genomic scale. Here we show that in vivo delivery of an engineered DNA-binding protein uncoupled from the repressor domain can produce efficient and gene-specific transcriptional silencing. To interfere with RHODOPSIN (RHO) gain-of-function mutations we engineered the ZF6-DNA-binding protein (ZF6-DB) that targets 20 base pairs (bp) of a RHOcis-regulatory element (CRE) and demonstrate Rho specific transcriptional silencing upon adeno-associated viral (AAV) vector-mediated expression in photoreceptors. The data show that the 20 bp-long genomic DNA sequence is necessary for RHO expression and that photoreceptor delivery of the corresponding cognate synthetic trans-acting factor ZF6-DB without the intrinsic transcriptional repression properties of the canonical ED blocks Rho expression with negligible genome-wide transcript perturbations. The data support DNA-binding-mediated silencing as a novel mode to treat gain-of-function mutations. DOI: http://dx.doi.org/10.7554/eLife.12242.001 PMID:26974343

  1. NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1.

    PubMed Central

    Schmiedeskamp, M.; Rajagopal, P.; Klevit, R. E.

    1997-01-01

    Mutagenesis studies have revealed that the minimal DNA-binding domain of the yeast transcription factor ADR1 consists of two Cys2-His2 zinc fingers plus an additional 20 residues proximal and N-terminal to the fingers. We have assigned NMR 1H, 15N, and 13C chemical shifts for the entire minimal DNA-binding domain of ADR1 both free and bound to specific DNA. 1H chemical shift values suggest little structural difference between the zinc fingers in this construct and in single-finger constructs, and 13C alpha chemical shift index analysis indicates little change in finger structure upon DNA binding. 1H chemical shift perturbations upon DNA binding are observed, however, and these are mapped to define the protein-DNA interface. The two zinc fingers appear to bind DNA with different orientations, as the entire helix of finger 1 is perturbed, while only the extreme N-terminus of the finger 2 helix is affected. Furthermore, residues N-terminal to the first finger undergo large chemical shift changes upon DNA binding suggesting a role at the protein-DNA interface. A striking correspondence is observed between the protein-DNA interface mapped by chemical shift changes and that previously mapped by mutagenesis. PMID:9300483

  2. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding

    PubMed Central

    Gutsche, Nora; Zachgo, Sabine

    2016-01-01

    The Arabidopsis TGA transcription factor (TF) PERIANTHIA (PAN) regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG), which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly conserved

  3. The N-Terminus of the Floral Arabidopsis TGA Transcription Factor PERIANTHIA Mediates Redox-Sensitive DNA-Binding.

    PubMed

    Gutsche, Nora; Zachgo, Sabine

    2016-01-01

    The Arabidopsis TGA transcription factor (TF) PERIANTHIA (PAN) regulates the formation of the floral organ primordia as revealed by the pan mutant forming an abnormal pentamerous arrangement of the outer three floral whorls. The Arabidopsis TGA bZIP TF family comprises 10 members, of which PAN and TGA9/10 control flower developmental processes and TGA1/2/5/6 participate in stress-responses. For the TGA1 protein it was shown that several cysteines can be redox-dependently modified. TGA proteins interact in the nucleus with land plant-specific glutaredoxins, which may alter their activities posttranslationally. Here, we investigated the DNA-binding of PAN to the AAGAAT motif under different redox-conditions. The AAGAAT motif is localized in the second intron of the floral homeotic regulator AGAMOUS (AG), which controls stamen and carpel development as well as floral determinacy. Whereas PAN protein binds to this regulatory cis-element under reducing conditions, the interaction is strongly reduced under oxidizing conditions in EMSA studies. The redox-sensitive DNA-binding is mediated via a special PAN N-terminus, which is not present in other Arabidopsis TGA TFs and comprises five cysteines. Two N-terminal PAN cysteines, Cys68 and Cys87, were shown to form a disulfide bridge and Cys340, localized in a C-terminal putative transactivation domain, can be S-glutathionylated. Comparative land plant analyses revealed that the AAGAAT motif exists in asterid and rosid plant species. TGA TFs with N-terminal extensions of variable length were identified in all analyzed seed plants. However, a PAN-like N-terminus exists only in the rosids and exclusively Brassicaceae homologs comprise four to five of the PAN N-terminal cysteines. Redox-dependent modifications of TGA cysteines are known to regulate the activity of stress-related TGA TFs. Here, we show that the N-terminal PAN cysteines participate in a redox-dependent control of the PAN interaction with a highly conserved

  4. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3.

    PubMed Central

    Wang, X W; Forrester, K; Yeh, H; Feitelson, M A; Gu, J R; Harris, C C

    1994-01-01

    Chronic active hepatitis caused by infection with hepatitis B virus, a DNA virus, is a major risk factor for human hepatocellular carcinoma. Since the oncogenicity of several DNA viruses is dependent on the interaction of their viral oncoproteins with cellular tumor-suppressor gene products, we investigated the interaction between hepatitis B virus X protein (HBX) and human wild-type p53 protein. HBX complexes with the wild-type p53 protein and inhibits its sequence-specific DNA binding in vitro. HBX expression also inhibits p53-mediated transcriptional activation in vivo and the in vitro association of p53 and ERCC3, a general transcription factor involved in nucleotide excision repair. Therefore, HBX may affect a wide range of p53 functions and contribute to the molecular pathogenesis of human hepatocellular carcinoma. Images PMID:8134379

  5. Multiple forms of the human gene-specific transcription factor USF. II. DNA binding properties and transcriptional activity of the purified HeLa USF.

    PubMed

    Sawadogo, M

    1988-08-25

    The gene-specific upstream stimulatory transcription factor (USF) is required for maximal expression of the adenovirus major late promoter in vivo as well as in vitro. We have examined the DNA binding and transcriptional properties of USF purified to near-homogeneity from HeLa cell nuclei (Sawadogo, M., Van Dyke, M. W., Gregor, P. D., and Roeder, R. G. (1988) J. Biol. Chem. 263, 11985-11993). The 44-and 43,000-dalton forms of USF displayed identical affinities for the major late promoter upstream sequence. Specific binding parameters were greatly influenced by neighboring sequences, but not by the topological state of the DNA. The dissociation rate was highly dependent upon the concentration of competitor DNA, indicating that USF can efficiently transfer from one binding site to another by passing through a doubly bound intermediate state (direct transfer mechanism). Transcription stimulation by purified USF showed titration curves identical to those observed with cruder preparations of the transcription factor. However, the overall stimulation observed at saturating USF concentration was significantly lower with the purified protein. By contrast, interaction with TATA box-binding RNA polymerase II transcription factor D was observed with both USF-containing fractions. This could suggest the existence of two different mechanisms for upstream sequence-dependent transcription stimulation, where one critical component (or some necessary modification of the upstream factor itself) may be missing in reactions reconstituted with purified USF.

  6. Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida.

    PubMed Central

    Solano, R; Nieto, C; Avila, J; Cañas, L; Diaz, I; Paz-Ares, J

    1995-01-01

    The MYB.Ph3 protein recognized two DNA sequences that resemble the two known types of MYB DNA binding site: consensus I (MBSI), aaaAaaC(G/C)-GTTA, and consensus II (MBSII), aaaAGTTAGTTA. Optimal MBSI was recognized by animal c-MYB and not by Am305 from Antirrhinum, whereas MBSII showed the reverse behaviour. Different constraints on MYB.Ph3 binding to the two classes of sequences were demonstrated. DNA binding studies with mutated MBSI and MBSII and hydroxyl radical footprinting analysis, pointed to the N-terminal MYB repeat (R2) as the most involved in determining the dual DNA binding specificity of MYB.Ph3 and supported the idea that binding to MBSI and MBSII does not involve alternative orientations of the two repeats of MYB.Ph3. Minimal promoters containing either MBSI and MBSII were activated to the same extent by MYB.Ph3 in yeast, indicating that both types of binding site can be functionally equivalent. MYB.Ph3 binding sites are present in the promoter of flavonoid biosynthetic genes, such as the Petunia chsJ gene, which was transcriptionally activated by MYB.Ph3 in tobacco protoplasts. MYB.Ph3 was immunolocalized in the epidermal cell layer of petals, where flavonoid biosynthetic genes are actively expressed. This strongly suggests a role for MYB.Ph3 in the regulation of flavonoid biosynthesis. Images PMID:7737128

  7. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex.

    PubMed

    Siggers, Trevor; Duyzend, Michael H; Reddy, Jessica; Khan, Sidra; Bulyk, Martha L

    2011-12-06

    Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a model system, we examined how targeting and transcriptional control of the sulfur metabolism genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding affinities and cofactor recruitment to >1300 genomic binding site sequences. We report that genes responding to the TF Cbf1 and cofactor Met28 contain a novel 'recruitment motif' (RYAAT), adjacent to Cbf1 binding sites, which enhances the binding of a Met4-Met28-Cbf1 regulatory complex, and that abrogation of this motif significantly reduces gene induction under low-sulfur conditions. Furthermore, we show that correct recognition of this composite motif requires both non-DNA-binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes. Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result from cofactors that lack intrinsic DNA-binding specificity.

  8. Equal impact of diffusion and DNA binding rates on the potential spatial distribution of nuclear factor κB transcription factor inside the nucleus.

    PubMed

    Sycheva, A M; Kel, A; Nikolaev, E N; Moshkovskii, S A

    2014-06-01

    There are two physical processes that influence the spatial distribution of transcription factor molecules entering the nucleus of a eukaryotic cell, the binding to genomic DNA and the diffusion throughout the nuclear volume. Comparison of the DNA-protein association rate constant and the protein diffusion constant may determine which one is the limiting factor. If the process is diffusion-limited, transcription factor molecules are captured by DNA before their even distribution in the nuclear volume. Otherwise, if the reaction rate is limiting, these molecules diffuse evenly and then find their binding sites. Using well-studied human NF-κB dimer as an example, we calculated its diffusion constant using the Debye-Smoluchowski equation. The value of diffusion constant was about 10(-15) cm(3)/s, and it was comparable to the NF-κB association rate constant for DNA binding known from previous studies. Thus, both diffusion and DNA binding play an equally important role in NF-κB spatial distribution. The importance of genome 3D-structure in gene expression regulation and possible dependence of gene expression on the local concentration of open chromatin can be hypothesized from our theoretical estimate.

  9. A single residue substitution causes a switch from the dual DNA binding specificity of plant transcription factor MYB.Ph3 to the animal c-MYB specificity.

    PubMed

    Solano, R; Fuertes, A; Sánchez-Pulido, L; Valencia, A; Paz-Ares, J

    1997-01-31

    Transcription factor MYB.Ph3 from Petunia binds to two types of sequences, MBSI and MBSII, whereas murine c-MYB only binds to MBSI, and Am305 from Antirrhinum only binds to MBSII. DNA binding studies with hybrids of these proteins pointed to the N-terminal repeat (R2) as the most involved in determining binding to MBSI and/or MBSII, although some influence of the C-terminal repeat (R3) was also evident. Furthermore, a single residue substitution (Leu71 --> Glu) in MYB.Ph3 changed its specificity to that of c-MYB, and c-MYB with the reciprocal substitution (Glu132 --> Leu) essentially gained the MYB.Ph3 specificity. Molecular modeling and DNA binding studies with site-specific MYB.Ph3 mutants strongly supported the notion that the drastic changes in DNA binding specificity caused by the Leu --> Glu substitution reflect the fact that certain residues influence this property both directly, through base contacts, and indirectly, through interactions with other base-contacting residues, and that a single residue may establish alternative base contacts in different targets. Additionally, differential effects of mutations at non-base-contacting residues in MYB.Ph3 and c-MYB were observed, reflecting the importance of protein context on DNA binding properties of MYB proteins.

  10. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains

    PubMed Central

    Balaji, S.; Babu, M. Madan; Iyer, Lakshminarayan M.; Aravind, L.

    2005-01-01

    The comparative genomics of apicomplexans, such as the malarial parasite Plasmodium, the cattle parasite Theileria and the emerging human parasite Cryptosporidium, have suggested an unexpected paucity of specific transcription factors (TFs) with DNA binding domains that are closely related to those found in the major families of TFs from other eukaryotes. This apparent lack of specific TFs is paradoxical, given that the apicomplexans show a complex developmental cycle in one or more hosts and a reproducible pattern of differential gene expression in course of this cycle. Using sensitive sequence profile searches, we show that the apicomplexans possess a lineage-specific expansion of a novel family of proteins with a version of the AP2 (Apetala2)-integrase DNA binding domain, which is present in numerous plant TFs. About 20–27 members of this apicomplexan AP2 (ApiAP2) family are encoded in different apicomplexan genomes, with each protein containing one to four copies of the AP2 DNA binding domain. Using gene expression data from Plasmodium falciparum, we show that guilds of ApiAP2 genes are expressed in different stages of intraerythrocytic development. By analogy to the plant AP2 proteins and based on the expression patterns, we predict that the ApiAP2 proteins are likely to function as previously unknown specific TFs in the apicomplexans and regulate the progression of their developmental cycle. In addition to the ApiAP2 family, we also identified two other novel families of AP2 DNA binding domains in bacteria and transposons. Using structure similarity searches, we also identified divergent versions of the AP2-integrase DNA binding domain fold in the DNA binding region of the PI-SceI homing endonuclease and the C-terminal domain of the pleckstrin homology (PH) domain-like modules of eukaryotes. Integrating these findings, we present a reconstruction of the evolutionary scenario of the AP2-integrase DNA binding domain fold, which suggests that it underwent

  11. DNA-binding activity of the transcription factor upstream stimulatory factor 1 (USF-1) is regulated by cyclin-dependent phosphorylation.

    PubMed Central

    Cheung, E; Mayr, P; Coda-Zabetta, F; Woodman, P G; Boam, D S

    1999-01-01

    The ubiquitous transcription factor upstream stimulatory factor (USF) 1 is a member of the bzHLH (leucine zipper-basic-helix-loop-helix) family, which is structurally related to the Myc family of proteins. It plays a role in the regulation of many genes, including the cyclin B1 gene, which is active during the G2/M and M phases of the cell cycle and may also play a role in the regulation of cellular proliferation. We show that the affinity of recombinant USF-1 for DNA is greatly increased by treatment with active cyclin A2-p34(cdc2) or cyclin B1-p34(cdc2) complexes and that its interaction with DNA is dependent on p34(cdc2)-mediated phosphorylation. We have localized the phosphorylation site(s) to a region that lies outside the minimal DNA-binding domain but overlaps with the previously identified USF-specific region. Deletion studies of USF-1 suggest that amino acids 143-197 regulate DNA-binding activity in a phosphorylation-dependent manner. PMID:10548544

  12. Transcriptional Regulation in Mammalian Cells by Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Mitchell, Pamela J.; Tjian, Robert

    1989-07-01

    The cloning of genes encoding mammalian DNA binding transcription factors for RNA polymerase II has provided the opportunity to analyze the structure and function of these proteins. This review summarizes recent studies that define structural domains for DNA binding and transcriptional activation functions in sequence-specific transcription factors. The mechanisms by which these factors may activate transcriptional initiation and by which they may be regulated to achieve differential gene expression are also discussed.

  13. Analysis of the DNA-Binding Activities of the Arabidopsis R2R3-MYB Transcription Factor Family by One-Hybrid Experiments in Yeast

    PubMed Central

    Kelemen, Zsolt; Sebastian, Alvaro; Xu, Wenjia; Grain, Damaris; Salsac, Fabien; Avon, Alexandra; Berger, Nathalie; Tran, Joseph; Dubreucq, Bertrand; Lurin, Claire; Lepiniec, Loïc; Contreras-Moreira, Bruno; Dubos, Christian

    2015-01-01

    The control of growth and development of all living organisms is a complex and dynamic process that requires the harmonious expression of numerous genes. Gene expression is mainly controlled by the activity of sequence-specific DNA binding proteins called transcription factors (TFs). Amongst the various classes of eukaryotic TFs, the MYB superfamily is one of the largest and most diverse, and it has considerably expanded in the plant kingdom. R2R3-MYBs have been extensively studied over the last 15 years. However, DNA-binding specificity has been characterized for only a small subset of these proteins. Therefore, one of the remaining challenges is the exhaustive characterization of the DNA-binding specificity of all R2R3-MYB proteins. In this study, we have developed a library of Arabidopsis thaliana R2R3-MYB open reading frames, whose DNA-binding activities were assayed in vivo (yeast one-hybrid experiments) with a pool of selected cis-regulatory elements. Altogether 1904 interactions were assayed leading to the discovery of specific patterns of interactions between the various R2R3-MYB subgroups and their DNA target sequences and to the identification of key features that govern these interactions. The present work provides a comprehensive in vivo analysis of R2R3-MYB binding activities that should help in predicting new DNA motifs and identifying new putative target genes for each member of this very large family of TFs. In a broader perspective, the generated data will help to better understand how TF interact with their target DNA sequences. PMID:26484765

  14. The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein.

    PubMed Central

    Krapp, A; Knöfler, M; Frutiger, S; Hughes, G J; Hagenbüchle, O; Wellauer, P K

    1996-01-01

    We report the isolation of cDNA for the p48 DNA-binding subunit of the heterooligomeric transcription factor PTF1. A sequence analysis of the cDNA demonstrates that p48 is a new member of the family of basic helix-loop-helix (bHLH) transcription factors. The p48 bHLH domain shows striking amino acid sequence similarity with the bHLH domain of proteins that act as developmental regulators, including the twist gene product, myogenic factors and proteins involved in hematopoietic differentiation. We show that reduced p48 synthesis correlates with a diminished expression of genes encoding exocrine pancreas-specific functions. The synthesis of p48 mRNAs, and therefore also the protein, is restricted to cells of the exocrine pancreas in the adult and to the pancreatic primordium in the embryo. Thus the pancreas-specific DNA-binding activity of PTF1 originates from the synthesis of at least one cell-specific component rather than from a cell-specific assembly of more widely distributed proteins. Images PMID:8861960

  15. The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain : the 'double wing' motif.

    SciTech Connect

    Li, N.; Sickmier, E. A.; Zhang, R.; Joachimiak, A.; White, S. W.; Biosciences Division; St. Jude Children's Research Hospital; Univ. of Tennessee Health Science Center; Corixa Inc.

    2002-01-01

    MotA is a transcription factor from bacteriophage T4 that helps adapt the host Escherichia coli transcription apparatus to T4 middle promoters. We have determined the crystal structure of the C-terminal DNA-binding domain of MotA (MotCF) to 1.6 A resolution using multiwavelength, anomalous diffraction methods. The structure reveals a novel DNA-binding alpha/beta motif that contains an exposed beta-sheet surface that mediates interactions with the DNA. Independent biochemical experiments have shown that MotCF binds to one surface of a single turn of DNA through interactions in adjacent major and minor grooves. We present a model of the interaction in which beta-ribbons at opposite corners of the six-stranded beta-sheet penetrate the DNA grooves, and call the motif a 'double wing' to emphasize similarities to the 'winged-helix' motif. The model is consistent with data on how MotA functions at middle promoters, and provides an explanation for why MotA can form non-specific multimers on DNA.

  16. Protein kinase-A dependent phosphorylation of transcription enhancer factor-1 represses its DNA-binding activity but enhances its gene activation ability

    PubMed Central

    Gupta, Mahesh P.; Kogut, Paul; Gupta, Madhu

    2000-01-01

    The cAMP-dependent signaling pathway has been implicated in cardiac cell growth/differentiation and muscle gene transcription. Previously, we have identified a cAMP-inducible E-box/M-CAT hybrid motif in the cardiac α-myosin heavy chain (α-MHC) gene promoter. The two factors, TEF-1 and Max, that bind to this motif are found to physically associate with each other and exert a positive cooperative effect for gene regulation. Here we show that TEF-1, but not Max, is a substrate for protein kinase-A (PK-A)-dependent phosphorylation. TEF-1 is phosphorylated by PK-A at residue serine-102. This post-translational modification of TEF-1 repressed its DNA-binding activity, but not its ability to interact with the Max protein. Replacement of serine-102 in TEF-1 by a neutral or a charged amino acid did not abolish its DNA-binding ability, suggesting that changing a charge at the 102 amino-acid position of TEF-1 was not sufficient to inhibit its DNA-binding activity. We also show that PK-A response of the α-MHC gene is stimulated by the presence of wild-type TEF-1 but not by mutant TEF-1 having serine-102 replaced by alanine, suggesting that phosphorylation at this residue accounts for the cAMP/PK-A response of the gene. Thus, these data demonstrate that TEF-1 is a direct target of cAMP/PK-A signaling in cardiac myocytes. PMID:10931933

  17. Identification of Position-Specific Correlations between DNA-Binding Domains and Their Binding Sites. Application to the MerR Family of Transcription Factors

    PubMed Central

    Mironov, Andrey A.; Rakhmaininova, Alexandra B.; Gelfand, Mikhail S.

    2016-01-01

    The large and increasing volume of genomic data analyzed by comparative methods provides information about transcription factors and their binding sites that, in turn, enables statistical analysis of correlations between factors and sites, uncovering mechanisms and evolution of specific protein-DNA recognition. Here we present an online tool, Prot-DNA-Korr, designed to identify and analyze crucial protein-DNA pairs of positions in a family of transcription factors. Correlations are identified by analysis of mutual information between columns of protein and DNA alignments. The algorithm reduces the effects of common phylogenetic history and of abundance of closely related proteins and binding sites. We apply it to five closely related subfamilies of the MerR family of bacterial transcription factors that regulate heavy metal resistance systems. We validate the approach using known 3D structures of MerR-family proteins in complexes with their cognate DNA binding sites and demonstrate that a significant fraction of correlated positions indeed form specific side-chain-to-base contacts. The joint distribution of amino acids and nucleotides hence may be used to predict changes of specificity for point mutations in transcription factors. PMID:27690309

  18. Genome-Wide Mapping of the Binding Sites and Structural Analysis of Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 2 Reveal that It Is a DNA-Binding Transcription Factor

    PubMed Central

    Hu, Haidai; Dong, Jiazhen; Liang, Deguang; Gao, Zengqiang; Bai, Lei; Sun, Rui; Hu, Hao; Zhang, Heng

    2015-01-01

    ABSTRACT The oncogenic herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is known to encode four viral interferon regulatory factors (vIRF1 to -4) to subvert the host antiviral immune response, but their detailed DNA-binding profiles as transcription factors in the host remain uncharacterized. Here, we first performed genome-wide vIRF2-binding site mapping in the human genome using chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq). vIRF2 was capable of binding to the promoter regions of 100 putative target genes. Importantly, we confirmed that vIRF2 can specifically interact with the promoters of the genes encoding PIK3C3, HMGCR, and HMGCL, which are associated with autophagosome formation or tumor progression and metastasis, and regulate their transcription in vivo. The crystal structure of the vIRF2 DNA-binding domain (DBD) (referred to here as vIRF2DBD) showed variable loop conformations and positive-charge distributions different from those of vIRF1 and cellular IRFs that are associated with DNA-binding specificities. Structure-based mutagenesis revealed that Arg82 and Arg85 are required for the in vitro DNA-binding activity of vIRF2DBD and can abolish the transcription regulation function of vIRF2 on the promoter reporter activity of PIK3C3, HMGCR, and HMGCL. Collectively, our study provided unique insights into the DNA-binding potency of vIRF2 and suggested that vIRF2 could act as a transcription factor of its target genes in the host antiviral immune response. IMPORTANCE The oncogenic herpesvirus KSHV is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV has developed a unique mechanism to subvert the host antiviral immune responses by encoding four homologues of cellular interferon regulatory factors (vIRF1 to -4). However, none of their DNA-binding profiles in the human genome have been characterized until now, and the structural basis for their diverse

  19. Synergy of aromatic residues and phosphoserines within the intrinsically disordered DNA-binding inhibitory elements of the Ets-1 transcription factor.

    PubMed

    Desjardins, Geneviève; Meeker, Charles A; Bhachech, Niraja; Currie, Simon L; Okon, Mark; Graves, Barbara J; McIntosh, Lawrence P

    2014-07-29

    The E26 transformation-specific (Ets-1) transcription factor is autoinhibited by a conformationally disordered serine-rich region (SRR) that transiently interacts with its DNA-binding ETS domain. In response to calcium signaling, autoinhibition is reinforced by calmodulin-dependent kinase II phosphorylation of serines within the SRR. Using mutagenesis and quantitative DNA-binding measurements, we demonstrate that phosphorylation-enhanced autoinhibition requires the presence of phenylalanine or tyrosine (ϕ) residues adjacent to the SRR phosphoacceptor serines. The introduction of additional phosphorylated Ser-ϕ-Asp, but not Ser-Ala-Asp, repeats within the SRR dramatically reinforces autoinhibition. NMR spectroscopic studies of phosphorylated and mutated SRR variants, both within their native context and as separate trans-acting peptides, confirmed that the aromatic residues and phosphoserines contribute to the formation of a dynamic complex with the ETS domain. Complementary NMR studies also identified the SRR-interacting surface of the ETS domain, which encompasses its positively charged DNA-recognition interface and an adjacent region of neutral polar and nonpolar residues. Collectively, these studies highlight the role of aromatic residues and their synergy with phosphoserines in an intrinsically disordered regulatory sequence that integrates cellular signaling and gene expression.

  20. Statistics of protein-DNA binding and the total number of binding sites for a transcription factor in the mammalian genome

    PubMed Central

    2010-01-01

    Background Transcription factor (TF)-DNA binding loci are explored by analyzing massive datasets generated with application of Chromatin Immuno-Precipitation (ChIP)-based high-throughput sequencing technologies. These datasets suffer from a bias in the information about binding loci availability, sample incompleteness and diverse sources of technical and biological noises. Therefore adequate mathematical models of ChIP-based high-throughput assay(s) and statistical tools are required for a robust identification of specific and reliable TF binding sites (TFBS), a precise characterization of TFBS avidity distribution and a plausible estimation the total number of specific TFBS for a given TF in the genome for a given cell type. Results We developed an exploratory mixture probabilistic model for a specific and non-specific transcription factor-DNA (TF-DNA) binding. Within ChiP-seq data sets, the statistics of specific and non-specific DNA-protein binding is defined by a mixture of sample size-dependent skewed functions described by Kolmogorov-Waring (K-W) function (Kuznetsov, 2003) and exponential function, respectively. Using available Chip-seq data for eleven TFs, essential for self-maintenance and differentiation of mouse embryonic stem cells (SC) (Nanog, Oct4, sox2, KLf4, STAT3, E2F1, Tcfcp211, ZFX, n-Myc, c-Myc and Essrb) reported in Chen et al (2008), we estimated (i) the specificity and the sensitivity of the ChiP-seq binding assays and (ii) the number of specific but not identified in the current experiments binding sites (BSs) in the genome of mouse embryonic stem cells. Motif finding analysis applied to the identified c-Myc TFBSs supports our results and allowed us to predict many novel c-Myc target genes. Conclusion We provide a novel methodology of estimating the specificity and the sensitivity of TF-DNA binding in massively paralleled ChIP sequencing (ChIP-seq) binding assay. Goodness-of fit analysis of K-W functions suggests that a large fraction of low

  1. DNA binding and transcriptional repression by DAX-1 blocks steroidogenesis.

    PubMed

    Zazopoulos, E; Lalli, E; Stocco, D M; Sassone-Corsi, P

    1997-11-20

    Mutations in the DAX-1 gene are responsible for congenital X-linked adrenal hypoplasia, a disease that is associated with hypogonadotropic hypogonadism. DAX-1 expression is tissue-specific and is finely regulated throughout development, suggesting that it has a role in both adrenal and gonadal function. DAX-1 is an unusual member of the nuclear-receptor superfamily of transcription factors which contains no canonical zinc-finger or any other known DNA-binding motif. Binding sites for DAX-1 are found in the promoters of the dax-1 and StAR (for steroidogenic acute regulatory protein) genes. Here we show that DAX-1 binds DNA and acts as a powerful transcriptional repressor of StAR gene expression, leading to a drastic decrease in steroid production. We provide in vitro and in vivo evidence that DAX-1 binds to DNA hairpin structures. Our results establish DAX-1 as the first member of the nuclear receptor superfamily with novel DNA-binding features and reveal that it has regulatory properties critical to the understanding of its physiological functions. PMID:9384387

  2. Structure of Bacterial Transcription Factor SpoIIID and Evidence for a Novel Mode of DNA Binding

    PubMed Central

    Chen, Bin; Himes, Paul; Liu, Yu; Zhang, Yang; Lu, Zhenwei; Liu, Aizhuo

    2014-01-01

    SpoIIID is evolutionarily conserved in endospore-forming bacteria, and it activates or represses many genes during sporulation of Bacillus subtilis. An SpoIIID monomer binds DNA with high affinity and moderate sequence specificity. In addition to a predicted helix-turn-helix motif, SpoIIID has a C-terminal basic region that contributes to DNA binding. The nuclear magnetic resonance (NMR) solution structure of SpoIIID in complex with DNA revealed that SpoIIID does indeed have a helix-turn-helix domain and that it has a novel C-terminal helical extension. Residues in both of these regions interact with DNA, based on the NMR data and on the effects on DNA binding in vitro of SpoIIID with single-alanine substitutions. These data, as well as sequence conservation in SpoIIID binding sites, were used for information-driven docking to model the SpoIIID-DNA complex. The modeling resulted in a single cluster of models in which the recognition helix of the helix-turn-helix domain interacts with the major groove of DNA, as expected. Interestingly, the C-terminal extension, which includes two helices connected by a kink, interacts with the adjacent minor groove of DNA in the models. This predicted novel mode of binding is proposed to explain how a monomer of SpoIIID achieves high-affinity DNA binding. Since SpoIIID is conserved only in endospore-forming bacteria, which include important pathogenic Bacilli and Clostridia, whose ability to sporulate contributes to their environmental persistence, the interaction of the C-terminal extension of SpoIIID with DNA is a potential target for development of sporulation inhibitors. PMID:24584501

  3. Budesonide epimer R or dexamethasone selectively inhibit platelet-activating factor-induced or interleukin 1β-induced DNA binding activity of cis-acting transcription factors and cyclooxygenase-2 gene expression in human epidermal keratinocytes

    PubMed Central

    Lukiw, Walter J.; Pelaez, Ricardo Palacios; Martinez, Jorge; Bazan, Nicolas G.

    1998-01-01

    To further understand the molecular mechanism of glucocorticoid action on gene expression, DNA-binding activities of the cis-acting transcription factors activator protein 1 (AP1), AP2, Egr1 (zif268), NF-κB, the signal transducers and activators of transcription proteins gamma interferon activation site (GAS), Sis-inducible element, and the TATA binding protein transcription factor II D (TFIID) were examined in human epidermal keratinocytes. The cytokine interleukin 1β (IL-1β) and platelet-activating factor (PAF), both potent mediators of inflammation, were used as triggers for gene expression. Budesonide epimer R (BUDeR) and dexamethasone (DEX) were studied as potential antagonists. BUDeR or DEX before IL-1β- or PAF-mediated gene induction elicited strong inhibition of AP1-, GAS-, and in particular NF-κB-DNA binding (P < 0.001, ANOVA). Only small effects were noted on AP2, Egr1 (zif268), and Sis-inducible element-DNA binding (P > 0.05). No significant effect was noted on the basal transcription factor TFIID recognition of TATA-containing core promoter sequences (P > 0.68). To test the hypothesis that changing cis-acting transcription factor binding activity may be involved in inflammatory-response related gene transcription, RNA message abundance for human cyclooxygenase (COX)-1 and -2 (E.C.1.14.99.1) was assessed in parallel by using reverse transcription–PCR. Although the COX-1 gene was found to be expressed at constitutively low levels, the TATA-containing COX-2 gene, which contains AP1-like, GAS, and NF-κB DNA-binding sites in its immediate promoter, was found to be strongly induced by IL-1β or PAF (P < 0.001). BUDeR and DEX both suppressed COX-2 RNA message generation; however, no correlation was associated with TFIID–DNA binding. These results suggest that on stimulation by mediators of inflammation, although the basal transcription machinery remains intact, modulation of cis-activating transcription factor AP1, GAS, and NF-κB-DNA binding by the

  4. Structure of the DNA-binding and RNA polymerase-binding region of transcription antitermination factor λQ

    PubMed Central

    Vorobiev, Sergey M.; Gensler, Yocheved; Vahedian-Movahed, Hanif; Seetharaman, Jayaraman; Su, Min; Huang, Janet Y.; Xiao, Rong; Kornhaber, Gregory; Montelione, Gaetano T.; Tong, Liang; Ebright, Richard H.; Nickels, Bryce E.

    2014-01-01

    SUMMARY The bacteriophage λ Q protein is a transcription antitermination factor that controls expression of the phage late genes as a stable component of the transcription elongation complex. To join the elongation complex, λQ binds a specific DNA sequence element and interacts with RNA polymerase that is paused during early elongation. λQ’s interaction with the paused early elongation complex involves interactions between λQ and two regions of RNA polymerase: region 4 of the σ70 subunit and the flap domain of the β subunit. We present the 2.1 Å resolution crystal structure of a portion of λQ containing determinants for interaction with DNA, interaction with region 4 of σ70, and interaction with the β flap. The structure provides a framework for interpreting prior genetic and biochemical analysis and sets the stage for future structural studies to elucidate the mechanism by which λQ alters the functional properties of the transcription elongation complex. PMID:24440517

  5. Histidine switch controlling pH-dependent protein folding and DNA binding in a transcription factor at the core of synthetic network devices.

    PubMed

    Deochand, D K; Perera, I C; Crochet, R B; Gilbert, N C; Newcomer, M E; Grove, A

    2016-07-19

    Therapeutic strategies have been reported that depend on synthetic network devices in which a urate-sensing transcriptional regulator detects pathological levels of urate and triggers production or release of urate oxidase. The transcription factor involved, HucR, is a member of the multiple antibiotic resistance (MarR) protein family. We show that protonation of stacked histidine residues at the pivot point of long helices that form the scaffold of the dimer interface leads to reversible formation of a molten globule state and significantly attenuated DNA binding at physiological temperatures. We also show that binding of urate to symmetrical sites in each protein lobe is communicated via the dimer interface. This is the first demonstration of regulation of a MarR family transcription factor by pH-dependent interconversion between a molten globule and a compact folded state. Our data further suggest that HucR may be utilized in synthetic devices that depend on detection of pH changes. PMID:27282811

  6. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    NASA Astrophysics Data System (ADS)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  7. Mechanistic heterogeneity in site recognition by the structurally homologous DNA-binding domains of the ETS family transcription factors Ets-1 and PU.1.

    PubMed

    Wang, Shuo; Linde, Miles H; Munde, Manoj; Carvalho, Victor D; Wilson, W David; Poon, Gregory M K

    2014-08-01

    ETS family transcription factors regulate diverse genes through binding at cognate DNA sites that overlap substantially in sequence. The DNA-binding domains of ETS proteins (ETS domains) are highly conserved structurally yet share limited amino acid homology. To define the mechanistic implications of sequence diversity within the ETS family, we characterized the thermodynamics and kinetics of DNA site recognition by the ETS domains of Ets-1 and PU.1, which represent the extremes in amino acid divergence among ETS proteins. Even though the two ETS domains bind their optimal sites with similar affinities under physiologic conditions, their nature of site recognition differs strikingly in terms of the role of hydration and counter ion release. The data suggest two distinct mechanisms wherein Ets-1 follows a "dry" mechanism that rapidly parses sites through electrostatic interactions and direct protein-DNA contacts, whereas PU.1 utilizes hydration to interrogate sequence-specific sites and form a long-lived complex relative to the Ets-1 counterpart. The kinetic persistence of the high affinity PU.1 · DNA complex may be relevant to an emerging role of PU.1, but not Ets-1, as a pioneer transcription factor in vivo. In addition, PU.1 activity is critical to the development and function of macrophages and lymphocytes, which present osmotically variable environments, and hydration-dependent specificity may represent an important regulatory mechanism in vivo, a hypothesis that finds support in gene expression profiles of primary murine macrophages.

  8. Redox-mediated Mechanisms Regulate DNA Binding Activity of the G-group of Basic Region Leucine Zipper (bZIP) Transcription Factors in Arabidopsis*

    PubMed Central

    Shaikhali, Jehad; Norén, Louise; de Dios Barajas-López, Juan; Srivastava, Vaibhav; König, Janine; Sauer, Uwe H.; Wingsle, Gunnar; Dietz, Karl-Josef; Strand, Åsa

    2012-01-01

    Plant genes that contain the G-box in their promoters are responsive to a variety of environmental stimuli. Bioinformatics analysis of transcriptome data revealed that the G-box element is significantly enriched in promoters of high light-responsive genes. From nuclear extracts of high light-treated Arabidopsis plants, we identified the AtbZIP16 transcription factor as a component binding to the G-box-containing promoter fragment of light-harvesting chlorophyll a/b-binding protein2.4 (LHCB2.4). AtbZIP16 belongs to the G-group of Arabidopsis basic region leucine zipper (bZIP) type transcription factors. Although AtbZIP16 and its close homologues AtbZIP68 and AtGBF1 bind the G-box, they do not bind the mutated half-sites of the G-box palindrome. In addition, AtbZIP16 interacts with AtbZIP68 and AtGBF1 in the yeast two-hybrid system. A conserved Cys residue was shown to be necessary for redox regulation and enhancement of DNA binding activity in all three proteins. Furthermore, transgenic Arabidopsis lines overexpressing the wild type version of bZIP16 and T-DNA insertion mutants for bZIP68 and GBF1 demonstrated impaired regulation of LHCB2.4 expression. Finally, overexpression lines for the mutated Cys variant of bZIP16 provided support for the biological significance of Cys330 in redox regulation of gene expression. Thus, our results suggest that environmentally induced changes in the redox state regulate the activity of members of the G-group of bZIP transcription factors. PMID:22718771

  9. The Transcription Factor AmrZ Utilizes Multiple DNA Binding Modes to Recognize Activator and Repressor Sequences of Pseudomonas aeruginosa Virulence Genes

    PubMed Central

    Pryor, Edward E.; Waligora, Elizabeth A.; Xu, Binjie; Dellos-Nolan, Sheri; Wozniak, Daniel J.; Hollis, Thomas

    2012-01-01

    AmrZ, a member of the Ribbon-Helix-Helix family of DNA binding proteins, functions as both a transcriptional activator and repressor of multiple genes encoding Pseudomonas aeruginosa virulence factors. The expression of these virulence factors leads to chronic and sustained infections associated with worsening prognosis. In this study, we present the X-ray crystal structure of AmrZ in complex with DNA containing the repressor site, amrZ1. Binding of AmrZ to this site leads to auto-repression. AmrZ binds this DNA sequence as a dimer-of-dimers, and makes specific base contacts to two half sites, separated by a five base pair linker region. Analysis of the linker region shows a narrowing of the minor groove, causing significant distortions. AmrZ binding assays utilizing sequences containing variations in this linker region reveals that secondary structure of the DNA, conferred by the sequence of this region, is an important determinant in binding affinity. The results from these experiments allow for the creation of a model where both intrinsic structure of the DNA and specific nucleotide recognition are absolutely necessary for binding of the protein. We also examined AmrZ binding to the algD promoter, which results in activation of the alginate exopolysaccharide biosynthetic operon, and found the protein utilizes different interactions with this site. Finally, we tested the in vivo effects of this differential binding by switching the AmrZ binding site at algD, where it acts as an activator, for a repressor binding sequence and show that differences in binding alone do not affect transcriptional regulation. PMID:22511872

  10. Probing the electrostatics and pharmacologic modulation of sequence-specific binding by the DNA-binding domain of the ETS-family transcription factor PU.1: a binding affinity and kinetics investigation

    PubMed Central

    Munde, Manoj; Poon, Gregory M. K.; Wilson, W. David

    2013-01-01

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally-conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤105 M−1 s−1), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt-dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>107 M−1 s−1). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes. PMID:23416556

  11. Glutamate-induced octamer DNA binding and transcriptional control in cultured radial glia cells.

    PubMed

    López-Bayghen, Esther; Cruz-Solís, Irma; Corona, Matilde; López-Colomé, Ana María; Ortega, Arturo

    2006-08-01

    Glutamate, the main excitatory neurotransmitter in the vertebrate brain, is critically involved in gene expression regulation in neurons and in glia cells. Neuron-glia interactions provide the framework for synaptic plasticity. Retinal and cerebellar radial glia cells surround glutamatergic excitatory synapses and sense synaptic activity through glutamate receptors expressed in their membranes. Several glutamate-dependent membrane to nuclei signaling cascades have been described in these cells. Octamer DNA binding factors, namely Oct-1 and Oct-2 recognize similar DNA sequences on regulatory regions, but their final transcriptional effect depends on several factors. By these means, different responses can be achieved in different cell types. Here, we describe a comparison between the glutamate-induced DNA binding of octamer factors and their functional activities in two important types of radial glia, retinal Müller and cerebellar Bergmann glial cells. While Oct-1 is expressed in both cell types and in both glutamate treatments results in an increase in Oct-1 DNA binding, this complex is capable of transactivating a reporter gene only in Müller glia cells. In contrast, Oct-2 expression is restricted to Bergmann glia cells in which glutamate treatment results in an augmentation of Oct-2 DNA binding complexes and the repression of kainate binding protein gene transcription. Our present findings demonstrate a differential role for Oct-1 and Oct-2 transcription factors in glial glutamate signaling, and further strengthen the notion of an important role for glial cells in glutamatergic transactions in the central nervous system.

  12. Transcriptional activation is a conserved feature of the early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-complexity activation domain.

    PubMed

    Hamm, Danielle C; Bondra, Eliana R; Harrison, Melissa M

    2015-02-01

    Delayed transcriptional activation of the zygotic genome is a nearly universal phenomenon in metazoans. Immediately following fertilization, development is controlled by maternally deposited products, and it is not until later stages that widespread activation of the zygotic genome occurs. Although the mechanisms driving this genome activation are currently unknown, the transcriptional activator Zelda (ZLD) has been shown to be instrumental in driving this process in Drosophila melanogaster. Here we define functional domains of ZLD required for both DNA binding and transcriptional activation. We show that the C-terminal cluster of four zinc fingers mediates binding to TAGteam DNA elements in the promoters of early expressed genes. All four zinc fingers are required for this activity, and splice isoforms lacking three of the four zinc fingers fail to activate transcription. These truncated splice isoforms dominantly suppress activation by the full-length, embryonically expressed isoform. We map the transcriptional activation domain of ZLD to a central region characterized by low complexity. Despite relatively little sequence conservation within this domain, ZLD orthologs from Drosophila virilis, Anopheles gambiae, and Nasonia vitripennis activate transcription in D. melanogaster cells. Transcriptional activation by these ZLD orthologs suggests that ZLD functions through conserved interactions with a protein cofactor(s). We have identified distinct DNA-binding and activation domains within the critical transcription factor ZLD that controls the initial activation of the zygotic genome.

  13. Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors.

    PubMed Central

    Grotewold, E; Athma, P; Peterson, T

    1991-01-01

    The Zea mays P gene has been postulated to regulate the biosynthetic pathway of a flavonoid-derived pigment in certain floral tissues [Styles, E. D. & Ceska, O. (1977) Can. J. Genet. Cytol. 19, 289-302]. We have characterized two P transcripts that are alternatively spliced at their 3' ends. One message of 1802 nucleotides encodes a 43.7-kDa protein with an N-terminal region showing approximately 40% homology to the DNA-binding domain of several members of the myb family of protooncogene proteins. A second message of 945 nucleotides encodes a 17.3-kDa protein that contains most of the myb-homologous domain but differs from the first protein at the C terminus. The deduced P-encoded proteins show an even higher homology (70%) in the myb-homologous domain to the maize regulatory gene C1. Additionally, the P and C1 genes are structurally similar in the sizes and positions of the first and second exons and first intron. We show that P is required for accumulation in the pericarp of transcripts of two genes (A1 and C2) encoding enzymes for flavonoid biosynthesis--genes also regulated by C1 in the aleurone. Images PMID:2052542

  14. Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator

    SciTech Connect

    Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.; Llinás, Manuel

    2010-11-05

    Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened or eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.

  15. Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation.

    PubMed Central

    Gille, J; Swerlick, R A; Caughman, S W

    1997-01-01

    The endothelial cell-specific mitogen vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) represents a central regulator of cutaneous angiogenesis. Increased VPF/VEGF expression has recently been reported in psoriatic skin and healing wounds, both conditions in which transforming growth factor-alpha (TGF alpha) and its ligand, the epidermal growth factor receptor, are markedly up-regulated. Since TGF alpha strongly induces VPF/VEGF synthesis in keratinocytes, TGF alpha-mediated VPF/VEGF expression is likely to play a significant role in the initiation and maintenance of increased vascular hyperpermeability and hyperproliferation in skin biology. The objectives of the present studies were to determine the molecular mechanisms responsible for TGF alpha-induced transcriptional activation of the VPF/VEGF gene. We have identified a GC-rich TGF alpha-responsive region between -88 bp and -65 bp of the VPF/VEGF promoter that is necessary for constitutive and TGF alpha-inducible transcriptional activation. In electrophoretic mobility shift assays, this region binds Sp1-dependent protein complexes constitutively and an additional TGF alpha-inducible protein complex that is distinct from Sp1 protein. Both AP-2 and Egr-1 transcription factors were detected as components of the TGF alpha-inducible protein complex in supershift EMSA studies. In co-transfection studies, an AP-2 but not an Egr-1 expression vector activated VPF/VEGF transcription, thus indicating that AP-2 protein is functionally important in TGF alpha-induced VPF/VEGF gene expression. By clarifying regulatory mechanisms that are critical for angiogenic processes in the skin, these studies may form the basis for new therapeutic strategies to modulate VPF/VEGF expression in cutaneous inflammation and wound healing. PMID:9049304

  16. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    PubMed

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  17. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress.

    PubMed Central

    Sarge, K D; Murphy, S P; Morimoto, R I

    1993-01-01

    The existence of multiple heat shock factor (HSF) genes in higher eukaryotes has promoted questions regarding the functions of these HSF family members, especially with respect to the stress response. To address these questions, we have used polyclonal antisera raised against mouse HSF1 and HSF2 to examine the biochemical, physical, and functional properties of these two factors in unstressed and heat-shocked mouse and human cells. We have identified HSF1 as the mediator of stress-induced heat shock gene transcription. HSF1 displays stress-induced DNA-binding activity, oligomerization, and nuclear localization, while HSF2 does not. Also, HSF1 undergoes phosphorylation in cells exposed to heat or cadmium sulfate but not in cells treated with the amino acid analog L-azetidine-2-carboxylic acid, indicating that phosphorylation of HSF1 is not essential for its activation. Interestingly, HSF1 and HSF2 overexpressed in transfected 3T3 cells both display constitutive DNA-binding activity, oligomerization, and transcriptional activity. These results demonstrate that HSF1 can be activated in the absence of physiological stress and also provide support for a model of regulation of HSF1 and HSF2 activity by a titratable negative regulatory factor. Images PMID:8441385

  18. Deciphering the Combinatorial DNA-binding Code of the CCAAT-binding Complex and the Iron-regulatory Basic Region Leucine Zipper (bZIP) Transcription Factor HapX*

    PubMed Central

    Hortschansky, Peter; Ando, Eriko; Tuppatsch, Katja; Arikawa, Hisashi; Kobayashi, Tetsuo; Kato, Masashi; Haas, Hubertus; Brakhage, Axel A.

    2015-01-01

    The heterotrimeric CCAAT-binding complex (CBC) is evolutionarily conserved in eukaryotic organisms, including fungi, plants, and mammals. The CBC consists of three subunits, which are named in the filamentous fungus Aspergillus nidulans HapB, HapC, and HapE. HapX, a fourth CBC subunit, was identified exclusively in fungi, except for Saccharomyces cerevisiae and the closely related Saccharomycotina species. The CBC-HapX complex acts as the master regulator of iron homeostasis. HapX belongs to the class of basic region leucine zipper transcription factors. We demonstrated that the CBC and HapX bind cooperatively to bipartite DNA motifs with a general HapX/CBC/DNA 2:1:1 stoichiometry in a class of genes that are repressed by HapX-CBC in A. nidulans during iron limitation. This combinatorial binding mode requires protein-protein interaction between the N-terminal domain of HapE and the N-terminal CBC binding domain of HapX as well as sequence-specific DNA binding of both the CBC and HapX. Initial binding of the CBC to CCAAT boxes is mandatory for DNA recognition of HapX. HapX specifically targets the minimal motif 5′-GAT-3′, which is located at a distance of 11–12 bp downstream of the respective CCAAT box. Single nucleotide substitutions at the 5′- and 3′-end of the GAT motif as well as different spacing between the CBC and HapX DNA-binding sites revealed a remarkable promiscuous DNA-recognition mode of HapX. This flexible DNA-binding code may have evolved as a mechanism for fine-tuning the transcriptional activity of CBC-HapX at distinct target promoters. PMID:25589790

  19. Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involving in mitochondrial biogenesis

    SciTech Connect

    Tiranti, V.; Rossi, G.; DiDonato, S.

    1995-01-20

    By using a PCR-based screening of a somatic cell hybrid panel and FISH, we have assigned the loci of mitochondrial single-stranded DNA-binding protein (SSBP), mitochondrial transcription factor A (TCF6), and mitochondrial endonuclease G (ENDOG) genes to human chromosomes 7q34, 10q21, and 9q34.1, respectively. The products of these three genes are involved in fundamental aspects of mitochondrial biogenesis, such as replication and transcription of the mitochondrial genome. The chromosomal localization of these genes is important to testing whether the corresponding proteins may play a role in the etiopathogenesis of human disorders associated with qualitative or quantitative abnormalities of mitochondrial DNA. 20 refs., 1 fig., 2 tabs.

  20. ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium

    PubMed Central

    2014-01-01

    Background The CRP-family transcription factor NtcA, universally found in cyanobacteria, was initially discovered as a regulator operating N control. It responds to the N regime signaled by the internal 2-oxoglutarate levels, an indicator of the C to N balance of the cells. Canonical NtcA-activated promoters bear an NtcA-consensus binding site (GTAN8TAC) centered at about 41.5 nucleotides upstream from the transcription start point. In strains of the Anabaena/Nostoc genera NtcA is pivotal for the differentiation of heterocysts in response to N stress. Results In this study, we have used chromatin immunoprecipitation followed by high-throughput sequencing to identify the whole catalog of NtcA-binding sites in cells of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 three hours after the withdrawal of combined N. NtcA has been found to bind to 2,424 DNA regions in the genome of Anabaena, which have been ascribed to 2,153 genes. Interestingly, only a small proportion of those genes are involved in N assimilation and metabolism, and 65% of the binding regions were located intragenically. Conclusions The distribution of NtcA-binding sites identified here reveals the largest bacterial regulon described to date. Our results show that NtcA has a much wider role in the physiology of the cell than it has been previously thought, acting both as a global transcriptional regulator and possibly also as a factor influencing the superstructure of the chromosome (and plasmids). PMID:24417914

  1. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF.

    PubMed Central

    Scharf, K D; Rose, S; Zott, W; Schöffl, F; Nover, L; Schöff, F

    1990-01-01

    Heat stress (hs) treatment of cell cultures of Lycopersicon peruvianum (Lp, tomato) results in activation of preformed transcription factor(s) (HSF) binding to the heat stress consensus element (HSE). Using appropriate synthetic HSE oligonucleotides, three types of clones with potential HSE binding domains were isolated from a tomato lambda gt11 expression library by DNA-ligand screening. One of the potential HSF genes is constitutively expressed, the other two are hs-induced. Sequence comparison defines a single domain of approximately 90 amino acid residues common to all three genes and to the HSE--binding domain of the yeast HSF. The domain is flanked by proline residues and characterized by two long overlapping repeats. We speculate that the derived consensus sequence is also representative for other eukaryotic HSF and that the existence of several different HSF is not unique to plants. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2148291

  2. [Leu5]enkephalin-encoding sequences are targets for a specific DNA-binding factor.

    PubMed Central

    Bakalkin, G; Telkov, M; Yakovleva, T; Terenius, L

    1995-01-01

    A DNA-binding factor with high affinity and specificity for the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes has been characterized. The factor has the highest affinity for the [Leu5]-enkephalin-encoding sequence in the dynorphin B-encoding region of the prodynorphin gene, has relatively high affinity for other [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes, but has no apparent affinity for similar DNA sequences coding for [Met5]-enkephalin in the prodynorphin or proopiomelanocortin genes. The factor has been named [Leu5]enkephalin-encoding sequence DNA-binding factor (LEF). LEF has a nuclear localization and is composed of three subunits of about 60, 70, and 95 kDa, respectively. The highest levels were observed in rat testis, cerebellum, and spleen and were generally higher in late embryonal compared to newborn or adult animals. LEF activity was also recorded in human clonal tumor cell lines. LEF inhibited the transcription of reporter genes in artificial gene constructs where a [Leu5]enkephalin-encoding DNA fragment had been inserted between the transcription initiation site and the coding region of the reporter genes. These observations suggest that the [Leu5]enkephalin-encoding sequences in the prodynorphin and proenkephalin genes also have regulatory functions realized through interaction with a specific DNA-binding factor. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7568065

  3. Crystal structure of the DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast

    PubMed Central

    Montano, Sherwin P.; Coté, Marie L.; Fingerman, Ian; Pierce, Michael; Vershon, Andrew K.; Georgiadis, Millie M.

    2002-01-01

    Ndt80 is a transcriptional activator required for meiosis in the yeast Saccharomyces cerevisiae. Here, we report the crystal structure at 2.3 Å resolution of the DNA-binding domain of Ndt80 experimentally phased by using the anomalous and isomorphous signal from a single ordered Se atom per molecule of 272-aa residues. The structure reveals a single ≈32-kDa domain with a distinct fold comprising a β-sandwich core elaborated with seven additional β-sheets and three short α-helices. Inspired by the structure, we have performed a mutational analysis and defined a DNA-binding motif in this domain. The DNA-binding domain of Ndt80 is homologous to a number of proteins from higher eukaryotes, and the residues that we have shown are required for DNA binding by Ndt80 are highly conserved among this group of proteins. These results suggest that Ndt80 is the defining member of a previously uncharacterized family of transcription factors, including the human protein (C11orf9), which has been shown to be highly expressed in invasive or metastatic tumor cells. PMID:12384578

  4. The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors

    PubMed Central

    Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Serganov, Artem A.; Patel, Dinshaw J.; Lai, Eric C.

    2013-01-01

    We recently reported that Drosophila Insensitive (Insv) promotes sensory organ development and has activity as a nuclear corepressor for the Notch transcription factor Suppressor of Hairless [Su(H)]. Insv lacks domains of known biochemical function but contains a single BEN domain (i.e., a “BEN-solo” protein). Our chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) analysis confirmed binding of Insensitive to Su(H) target genes in the Enhancer of split gene complex [E(spl)-C]; however, de novo motif analysis revealed a novel site strongly enriched in Insv peaks (TCYAATHRGAA). We validate binding of endogenous Insv to genomic regions bearing such sites, whose associated genes are enriched for neural functions and are functionally repressed by Insv. Unexpectedly, we found that the Insv BEN domain binds specifically to this sequence motif and that Insv directly regulates transcription via this motif. We determined the crystal structure of the BEN–DNA target complex, revealing homodimeric binding of the BEN domain and extensive nucleotide contacts via α helices and a C-terminal loop. Point mutations in key DNA-contacting residues severely impair DNA binding in vitro and capacity for transcriptional regulation in vivo. We further demonstrate DNA-binding and repression activities by the mammalian neural BEN-solo protein BEND5. Altogether, we define novel DNA-binding activity in a conserved family of transcriptional repressors, opening a molecular window on this extensive gene family. PMID:23468431

  5. Distinct DNA binding sites contribute to the TCF transcriptional switch in C. elegans and Drosophila.

    PubMed

    Bhambhani, Chandan; Ravindranath, Aditi J; Mentink, Remco A; Chang, Mikyung V; Betist, Marco C; Yang, Yaxuan X; Koushika, Sandhya P; Korswagen, Hendrik C; Cadigan, Ken M

    2014-02-01

    Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation. PMID:24516405

  6. Distinct DNA Binding Sites Contribute to the TCF Transcriptional Switch in C. elegans and Drosophila

    PubMed Central

    Bhambhani, Chandan; Ravindranath, Aditi J.; Mentink, Remco A.; Chang, Mikyung V.; Betist, Marco C.; Yang, Yaxuan X.; Koushika, Sandhya P.; Korswagen, Hendrik C.; Cadigan, Ken M.

    2014-01-01

    Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation. PMID:24516405

  7. Distinct DNA binding sites contribute to the TCF transcriptional switch in C. elegans and Drosophila.

    PubMed

    Bhambhani, Chandan; Ravindranath, Aditi J; Mentink, Remco A; Chang, Mikyung V; Betist, Marco C; Yang, Yaxuan X; Koushika, Sandhya P; Korswagen, Hendrik C; Cadigan, Ken M

    2014-02-01

    Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs) are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF) and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG) domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF) also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.

  8. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis.

    PubMed

    Liu, Q; Kasuga, M; Sakuma, Y; Abe, H; Miura, S; Yamaguchi-Shinozaki, K; Shinozaki, K

    1998-08-01

    Plant growth is greatly affected by drought and low temperature. Expression of a number of genes is induced by both drought and low temperature, although these stresses are quite different. Previous experiments have established that a cis-acting element named DRE (for dehydration-responsive element) plays an important role in both dehydration- and low-temperature-induced gene expression in Arabidopsis. Two cDNA clones that encode DRE binding proteins, DREB1A and DREB2A, were isolated by using the yeast one-hybrid screening technique. The two cDNA libraries were prepared from dehydrated and cold-treated rosette plants, respectively. The deduced amino acid sequences of DREB1A and DREB2A showed no significant sequence similarity, except in the conserved DNA binding domains found in the EREBP and APETALA2 proteins that function in ethylene-responsive expression and floral morphogenesis, respectively. Both the DREB1A and DREB2A proteins specifically bound to the DRE sequence in vitro and activated the transcription of the b-glucuronidase reporter gene driven by the DRE sequence in Arabidopsis leaf protoplasts. Expression of the DREB1A gene and its two homologs was induced by low-temperature stress, whereas expression of the DREB2A gene and its single homolog was induced by dehydration. Overexpression of the DREB1A cDNA in transgenic Arabidopsis plants not only induced strong expression of the target genes under unstressed conditions but also caused dwarfed phenotypes in the transgenic plants. These transgenic plants also revealed freezing and dehydration tolerance. In contrast, overexpression of the DREB2A cDNA induced weak expression of the target genes under unstressed conditions and caused growth retardation of the transgenic plants. These results indicate that two independent families of DREB proteins, DREB1 and DREB2, function as trans-acting factors in two separate signal transduction pathways under low-temperature and dehydration conditions, respectively. PMID

  9. Conserved cis-regulatory elements for DNA-binding-with-one-finger and homeo-domain-leucine-zipper transcription factors regulate companion cell-specific expression of the Arabidopsis thaliana SUCROSE TRANSPORTER 2 gene.

    PubMed

    Schneidereit, Alexander; Imlau, Astrid; Sauer, Norbert

    2008-09-01

    The transition from young carbon-importing sink leaves of higher plants to mature carbon-exporting source leaves is paralleled by a complete reversal of phloem function. While sink-leaf phloem mediates the influx of reduced carbon from older source leaves and the release of this imported carbon to the sink-leaf mesophyll, source-leaf phloem catalyzes the uptake of photoassimilates into companion cells (CCs) and sieve elements (SEs) and the net carbon export from the leaf. Phloem loading in source leaves with sucrose, the main or exclusive transport form for fixed carbon in most higher plants, is catalyzed by plasma membrane-localized sucrose transporters. Consistent with the described physiological switch from sink to source, the promoter of the Arabidopsis AtSUC2 gene is active only in source-leaf CCs of Arabidopsis or of transgenic tobacco (Nicotiana tabacum). For the identification of regulatory elements involved in this companion cell-specific and source-specific gene expression, we performed detailed analyses of the AtSUC2 promoter by truncation and mutagenesis. A 126-bp promoter fragment was identified, which seems to contain these fragments and which drives AtSUC2-typical expression when combined with a 35S minimal promoter. Within this fragment, linker-scanning analyses revealed two cis-regulatory elements that were further characterized as putative binding sites for transcription factors of the DNA-binding-with-one-finger or the homeo-domain-leucine-zipper families. Similar or identical binding sites are found in other genes and in different plant species, suggesting an ancient regulatory mechanism for this important physiological switch. PMID:18551303

  10. Extensive DNA-binding specificity divergence of a conserved transcription regulator

    PubMed Central

    Baker, Christopher R.; Tuch, Brian B.; Johnson, Alexander D.

    2011-01-01

    The DNA sequence recognized by a transcription regulator can be conserved across large evolutionary distances. For example, it is known that many homologous regulators in yeasts and mammals can recognize the same (or closely related) DNA sequences. In contrast to this paradigm, we describe a case in which the DNA-binding specificity of a transcription regulator has changed so extensively (and over a much smaller evolutionary distance) that its cis-regulatory sequence appears unrelated in different species. Bioinformatic, genetic, and biochemical approaches were used to document and analyze a major change in the DNA-binding specificity of Matα1, a regulator of cell-type specification in ascomycete fungi. Despite this change, Matα1 controls the same core set of genes in the hemiascomycetes because its DNA recognition site has evolved with it, preserving the protein-DNA interaction but significantly changing its molecular details. Matα1 and its recognition sequence diverged most dramatically in the common ancestor of the CTG-clade (Candida albicans, Candida lusitaniae, and related species), apparently without the aid of a gene duplication event. Our findings suggest that DNA-binding specificity divergence between orthologous transcription regulators may be more prevalent than previously thought and that seemingly unrelated cis-regulatory sequences can nonetheless be homologous. These findings have important implications for understanding transcriptional network evolution and for the bioinformatic analysis of regulatory circuits. PMID:21498688

  11. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding

    PubMed Central

    van Steensel, Bas; Delrow, Jeffrey; Bussemaker, Harmen J.

    2003-01-01

    The association of sequence-specific DNA-binding factors with their cognate target sequences in vivo depends on the local molecular context, yet this context is poorly understood. To address this issue, we have performed genomewide mapping of in vivo target genes of Drosophila GAGA factor (GAF). The resulting list of ≈250 target genes indicates that GAF regulates many cellular pathways. We applied unbiased motif-based regression analysis to identify the sequence context that determines GAF binding. Our results confirm that GAF selectively associates with (GA)n repeat elements in vivo. GAF binding occurs in upstream regulatory regions, but less in downstream regions. Surprisingly, GAF binds abundantly to introns but is virtually absent from exons, even though the density of (GA)n is roughly the same. Intron binding occurs equally frequently in last introns compared with first introns, suggesting that GAF may not only regulate transcription initiation, but possibly also elongation. We provide evidence for cooperative binding of GAF to closely spaced (GA)n elements and explain the lack of GAF binding to exons by the absence of such closely spaced GA repeats. Our approach for revealing determinants of context-dependent DNA binding will be applicable to many other transcription factors. PMID:12601174

  12. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    PubMed

    Zhao, Cui; Zhang, Chen; Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01). The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01). The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle. PMID:27414795

  13. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus

    PubMed Central

    Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01). The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01). The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle. PMID:27414795

  14. Cloning of two sea urchin DNA-binding proteins involved in mitochondrial DNA replication and transcription.

    PubMed

    Loguercio Polosa, Paola; Megli, Fiammetta; Di Ponzio, Barbara; Gadaleta, Maria Nicola; Cantatore, Palmiro; Roberti, Marina

    2002-03-01

    The cloning of the cDNA for two mitochondrial proteins involved in sea urchin mtDNA replication and transcription is reported here. The cDNA for the mitochondrial D-loop binding protein (mtDBP) from the sea urchin Strongylocentrotus purpuratus has been cloned by a polymerase chain reaction-based approach. The protein displays a very high similarity with the Paracentrotus lividus homologue as it contains also the two leucine zipper-like domains which are thought to be involved in intramolecular interactions needed to expose the two DNA binding domains in the correct position for contacting DNA. The cDNA for the mitochondrial single-stranded DNA-binding protein (mtSSB) from P. lividus has been also cloned by a similar approach. The precursor protein is 146 amino acids long with a presequence of 16 residues. The deduced amino acid sequence shows the highest homology with the Xenopus laevis protein and the lowest with the Drosophila mtSSB. The computer modeling of the tertiary structure of P. lividus mtSSB shows a structure very similar to that experimentally determined for human mtSSB, with the conservation of the main residues involved in protein tetramerization and in DNA binding.

  15. Characterization of transcriptional activation and DNA-binding functions in the hinge region of the vitamin D receptor.

    PubMed

    Shaffer, Paul L; McDonnell, Donald P; Gewirth, Daniel T

    2005-02-22

    The vitamin D receptor (VDR) is a ligand-responsive transcription factor that forms active, heterodimeric complexes with the 9-cis retinoic acid receptor (RXR) on vitamin D response elements (VDREs). Both proteins consist of an N-terminal DNA-binding domain, a C-terminal ligand-binding domain, and an intervening hinge region. The length requirements of the hinge for both transcriptional regulation and DNA binding have not been studied to date for any member of the steroid hormone superfamily. We have generated a series of internal deletion mutants of the VDR hinge and found that deletion of as few as five amino acids from the C-terminus of the hinge significantly reduces transcriptional activation in vivo. Replacing deleted residues in the C-terminus of the hinge with alanines restored activity, indicating that this section of the hinge acts as a sequence-independent spacer. The hinge region of VDR forms a long helix, and the geometric consequences of this structure may explain the requirement of the hinge region for transcriptional activity. Interestingly, all of the deletion mutants, even those that do not activate transcription, bind VDREs with equal and high affinity, indicating that the defect in these mutants is not their ability to bind VDREs. In contrast to VDR, constructs of RXR containing deletions of up to 14 amino acids in the hinge region exhibit near wild-type transcriptional activity. The ability to delete more of the RXR hinge may be related to the additional plasticity required by its role as the common heterodimer partner for nuclear receptors on differing DNA elements.

  16. Modulation of Promoter Occupancy by Cooperative DNA Binding and Activation-Domain Function is a Major Determinant of Transcriptional Regulation by Activators in vivo

    NASA Astrophysics Data System (ADS)

    Tanaka, Masafumi

    1996-04-01

    Binding of transcriptional activators to a promoter is a prerequisite process in transcriptional activation. It is well established that the efficiency of activator binding to a promoter is determined by the affinity of direct interactions between the DNA-binding domain of an activator and its specific target sequences. However, I describe here that activator binding to a promoter is augmented in vivo by the effects of two other determinants that have not been generally appreciated: (i) the number of activator binding sites present in a promoter and (ii) the potency of activation domains of activators. Multiple sites within a promoter can cooperatively recruit cognate factors regardless of whether they contain an effective activation domain. This cooperativity can result in the synergistic activation of transcription. The second effect is the enhancement of activator binding to a promoter by the presence of activation domains. In this case, activation domains are not simply tethered to the promoter by the DNA-binding domain but instead assist the DNA-binding domain being tethered onto the promoter. This effect of activation domains on DNA binding is instrumental in determining how potent activators can induce steep transcriptional increases at low concentrations.

  17. A rat brain mRNA encoding a transcriptional activator homologous to the DNA binding domain of retroviral integrases.

    PubMed Central

    Duilio, A; Zambrano, N; Mogavero, A R; Ammendola, R; Cimino, F; Russo, T

    1991-01-01

    We have isolated a rat cDNA, named FE65, hybridizing to an mRNA of about 2,300 nucleotides present in rat brain, undetectable in rat liver and very poorly represented in other tissues. An mRNA of the same size is present in human neuroblastoma cells and is absent from other human cell lines. The FE65 cDNA contains an open reading frame (ORF) coding for a polypeptide of 499 amino acids in which 143 residues can be aligned with the DNA binding domain of the integrases encoded by mammalian immunodeficiency viruses. The remaining part of the FE65 ORF is not homologous with the correspondent regions of the integrases; the first 206 residues of the FE65 ORF show numerous negative charges and a short sequence not dispensable for the function of the transactivating acidic domain of the jun family transcriptional factors. A plasmid which expresses FE65 amino acids 1-232 fused to the yeast GAL4 DNA binding domain was co-transfected with a plasmid containing five GAL4 binding sites upstream of a minimal Adenovirus promoter controlling the expression of the CAT gene. This experiment showed that the fused protein GAL4-FE65 is able to obtain a 30-40 fold increase of the CAT gene expression compared to the expression observed in the presence of the GAL4 DNA binding domain alone. Two types of FE65 mRNA are present in rat brain, differing only for six nucleotides. We demonstrate that this is the consequence of a neuron-specific alternative splicing of a six-nucleotide miniexon, which is also present in the human genome, in an intron/exon context very similar to that of the rat FE65 gene. Images PMID:1923810

  18. AmrZ Beta-Sheet Residues Are Essential for DNA Binding and Transcriptional Control of Pseudomonas aeruginosa Virulence Genes ▿ †

    PubMed Central

    Waligora, Elizabeth A.; Ramsey, Deborah M.; Pryor, Edward E.; Lu, Haiping; Hollis, Thomas; Sloan, Gina P.; Deora, Rajendar; Wozniak, Daniel J.

    2010-01-01

    AmrZ is a putative ribbon-helix-helix (RHH) transcriptional regulator. RHH proteins utilize residues within the β-sheet for DNA binding, while the α-helices promote oligomerization. AmrZ is of interest due to its dual roles as a transcriptional activator and as a repressor, regulating genes encoding virulence factors associated with both chronic and acute Pseudomonas aeruginosa infection. In this study, cross-linking revealed that AmrZ forms oligomers in solution but that the amino terminus, containing an unordered region and a β-sheet, were not required for oligomerization. The first 12 unordered residues (extended amino terminus) contributed minimally to DNA binding. Mutagenesis of the AmrZ β-sheet demonstrated that residues 18, 20, and 22 were essential for DNA binding at both activation and repressor sites, suggesting that AmrZ utilizes a similar mechanism for binding to these sites. Mice infected with amrZ mutants exhibited reduced bacterial burden, morbidity, and mortality. Direct in vivo competition assays showed a 5-fold competitive advantage for the wild type over an isogenic amrZ mutant. Finally, the reduced infection phenotype of the amrZ-null strain was similar to that of a strain expressing a DNA-binding-deficient AmrZ variant, indicating that DNA binding and transcriptional regulation by AmrZ is responsible for the in vivo virulence defect. These recent infection data, along with previously identified AmrZ-regulated virulence factors, suggest the necessity of AmrZ transcriptional regulation for optimal virulence during acute infection. PMID:20709902

  19. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for DNA binding and multimerization.

    PubMed Central

    Kullik, I; Stevens, J; Toledano, M B; Storz, G

    1995-01-01

    OxyR is a LysR-type transcriptional regulator which negatively regulates its own expression and positively regulates the expression of proteins important for the defense against hydrogen peroxide in Escherichia coli and Salmonella typhimurium. Using random mutagenesis, we isolated six nonrepressing OxyR mutants that were impaired in DNA binding. Five of the mutations causing the DNA binding defect mapped near the N-terminal helix-turn-helix motif conserved among the LysR family members, confirming that this region is a DNA binding domain in OxyR. The sixth nonrepressing mutant (with E-225 changed to K [E225K]) was found to be predominantly dimeric, in contrast to the tetrameric wild-type protein, suggesting that a C-terminal region defined by the E225K mutation is involved in multimerization. PMID:7868603

  20. DNA-binding specificity and in vivo targets of Caenorhabditis elegans nuclear factor I

    PubMed Central

    Whittle, Christina M.; Lazakovitch, Elena; Gronostajski, Richard M.; Lieb, Jason D.

    2009-01-01

    The conserved nuclear factor I (NFI) family of transcription factors is unique to animals and essential for mammalian development. The Caenorhabditis elegans genome encodes a single NFI family member, whereas vertebrate genomes encode 4 distinct NFI protein subtypes (A, B, C, and X). NFI-1-deficient worms exhibit abnormalities, including reduced lifespan, defects in movement and pharyngeal pumping, and delayed egg-laying. To explore the functional basis of these phenotypes, we sought to comprehensively identify NFI-1-bound loci in C. elegans. We first established NFI-1 DNA-binding specificity using an in vitro DNA-selection strategy. Analysis yielded a consensus motif of TTGGCA(N)3TGCCAA, which occurs 586 times in the genome, a 100-fold higher frequency than expected. We next asked which sites were occupied by NFI-1 in vivo by performing chromatin immunoprecipitation of NFI-1 followed by microarray hybridization. Only 55 genomic locations were identified, an unexpectedly small target set. In vivo NFI-1 binding sites tend to be upstream of genes involved in core cellular processes, such as chromatin remodeling, mRNA splicing, and translation. Remarkably, 59 out of 70 (84%) of the C. briggsae orthologs of the identified targets contain conserved NFI binding sites in their promoters. These experiments provide a foundation for understanding how NFI-1 is recruited to unexpectedly few in vivo sites to perform its developmental functions, despite a vast over-representation of its binding motif. PMID:19584245

  1. Identification and characterization of specific DNA-binding complexes containing members of the Myc/Max/Mad network of transcriptional regulators.

    PubMed

    Sommer, A; Bousset, K; Kremmer, E; Austen, M; Lüscher, B

    1998-03-20

    In the past, eukaryotic cell-derived complexes of the Myc/Max/Mad network of transcriptional regulators have largely been refractory to DNA binding studies. We have developed electrophoretic mobility shift assay conditions to measure specific DNA binding of Myc/Max/Mad network complexes using a COS7 cell-based overexpression system. With the established protocol, we have measured on- and off-rates of c-Myc/Max, Max/Max, and Mad1/Max complexes and determined relative affinities. All three complexes appeared to bind with comparable affinity to a Myc E-box sequence. Furthermore, our data derived from competition experiments suggested that the Mad3/Max and Mad4/Max complexes also possess comparable DNA binding affinities. The conditions established for COS7 cell-overexpressed proteins were then used to identify c-Myc/Max, Max/Max, and Mnt/Max complexes in HL-60 cells. However, no Mad1/Max could be detected, despite the induction of Mad1 expression during differentiation. Whereas the DNA binding activity of c-Myc/Max complexes was down-regulated, Max/Max binding increased, and Mnt/Max binding remained unchanged. In addition, we have also tested for upstream stimulatory factor (USF) binding and observed that, in agreement with published data, USF comprises a major Myc E-box-binding factor that is more abundant than any of the Myc/Max/Mad network complexes. Similar to the Mnt/Max complex, the binding activity of USF remained constant during HL-60 differentiation. Our findings establish conditions for the analysis of DNA binding of Myc/Max/Mad complexes and indicate posttranslational regulation of the Max/Max complex.

  2. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation.

    PubMed

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  3. Novel FOXC2 Mutation in Hereditary Distichiasis Impairs DNA-Binding Activity and Transcriptional Activation

    PubMed Central

    Zhang, Leilei; He, Jie; Han, Bing; Lu, Linna; Fan, Jiayan; Zhang, He; Ge, Shengfang; Zhou, Yixiong; Jia, Renbing; Fan, Xianqun

    2016-01-01

    Distichiasis presents as double rows of eyelashes arising from aberrant differentiation of the meibomian glands of the eyelids, and it may be sporadic or hereditary. FOXC2 gene mutations in hereditary distichiasis are rarely reported. Here, we examined two generations of a Chinese family with hereditary distichiasis but without lymphedema or other features of LD syndrome. The FOXC2 gene was amplified and sequenced in all family members. Subcellular localization and luciferase assays were performed to assess the activity of the mutant FOXC2 protein. Clinical examinations showed distichiasis, lower eyelid ectropion, congenital ptosis and photophobia in all affected individuals. Sequence analysis revealed a novel frameshift mutation, c.964_965insG, in the coding region of the FOXC2 gene. This mutation caused protein truncation due to the presence of a premature stop codon. A fluorescence assay showed that this mutation did not change the nuclear localization of the protein. However, it impaired DNA-binding activity and decreased transcriptional activation. This is the first report of a FOXC2 mutation in hereditary distichiasis in the Chinese population. The findings of our study expand the FOXC2 mutation spectrum and contribute to the understanding of the genotype-phenotype correlation of this disease. PMID:27570485

  4. A soluble factor secreted by an HIV-1-resistant cell line blocks transcription through inactivating the DNA-binding capacity of the NF-kappa B p65/p50 dimer.

    PubMed

    Lesner, Adam; Li, Yuchang; Nitkiewicz, Jadwiga; Li, Guanhua; Kartvelishvili, Alex; Kartvelishvili, Magdalena; Simm, Malgorzata

    2005-08-15

    The identity and activity of several anti-HIV soluble factor(s) secreted by CD8 and CD4 T lymphocytes have been determined; however, some of them still await definition. We have established an HIV-1-resistant, transformed CD4 T cell line that secretes HIV-1 resistance protein(s). Our studies indicate that this protein(s), called HIV-1 resistance factor (HRF), inhibits transcription of the virus by interfering with the activity of NF-kappaB. In the present report we identified the site at which HRF exerts this inhibition by evaluating a set of discrete events in NF-kappaB action. We tested the kappaB oligonucleotide binding activity in nuclei of resistant cells, nuclear translocation and binding to the HIV-1 long terminal repeat of p65 and p50 proteins from susceptible cells after exposure to HRF, and the binding of recombinant p50 to the kappaB oligonucleotide in vitro as affected by prior or simultaneous exposure to HRF. The results of this experimental schema indicate that HRF interacts with p50 after it enters the nucleus, but before its binding to DNA and that this interaction impedes the formation of an NF-kappaB-DNA complex required for the promotion of transcription. These findings suggest that HRF mediates a novel innate immune response to virus infection. PMID:16081828

  5. Applying DNA affinity chromatography to specifically screen for sucrose-related DNA-binding transcriptional regulators of Xanthomonas campestris.

    PubMed

    Leßmeier, Lennart; Alkhateeb, Rabeaa S; Schulte, Fabian; Steffens, Tim; Loka, Tobias Pascal; Pühler, Alfred; Niehaus, Karsten; Vorhölter, Frank-Jörg

    2016-08-20

    At a molecular level, the regulation of many important cellular processes is still obscure in xanthomonads, a bacterial group of outstanding relevance as world-wide plant pathogens and important for biotechnology as producers of the polysaccharide xanthan. Transcriptome analysis indicated a sucrose-dependent regulation of 18 genes in Xanthomonas campestris pv. campestris (Xcc) B100. The expression of 12 of these genes was clearly increased in the presence of sucrose. Only part of these genes was obviously involved in sucrose utilization. To identify regulatory proteins involved in transcriptional regulation, a DNA fragment-specific pull-down approach was established for Xcc. Putative promoter regions were identified and used to isolate DNA-binding proteins, which were separated by SDS PAGE and identified by MALDI-TOF mass spectrometry. This led to the identification of four transcriptional regulators, among them the global transcriptional regulator Clp and a previously identified regulator of sucrose utilization, SuxR, plus a third DNA-binding transcriptional regulator encoded by xcc-b100_2861 and recently shown to interact with a cyclic di-GMP-binding protein. The fourth regulatory protein was encoded by xcc-b100_2791. These results indicate DNA fragment-specific pull-down experiments as promising approaches to screen for specific DNA-binding regulatory proteins in Xcc. PMID:27060555

  6. Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1alpha/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol.

    PubMed

    Hur, Eunseon; Kim, Hong-Hee; Choi, Su Mi; Kim, Jin Hee; Yim, Sujin; Kwon, Ho Jeong; Choi, Youngyeon; Kim, Dae Kyong; Lee, Mi-Ock; Park, Hyunsung

    2002-11-01

    Under low oxygen tension, cells increase the transcription of specific genes involved in angiogenesis, erythropoiesis, and glycolysis. Hypoxia-induced gene expression depends primarily on stabilization of the alpha subunit of hypoxia-inducible factor-1 (HIF-1alpha), which acts as a heterodimeric trans-activator with the nuclear protein known as the aryl hydrocarbon receptor nuclear translocator (Arnt). The resulting heterodimer (HIF-1alpha/Arnt) interacts specifically with the hypoxia-responsive element (HRE), thereby increasing transcription of the genes under HRE control. Our results indicate that the 90-kDa heat-shock protein (Hsp90) inhibitor radicicol reduces the hypoxia-induced expression of both endogenous vascular endothelial growth factor (VEGF) and HRE-driven reporter plasmids. Radicicol treatment (0.5 microg/ml) does not significantly change the stability of the HIF-1alpha protein and does not inhibit the nuclear localization of HIF-1alpha. However, this dose of radicicol significantly reduces HRE binding by the HIF-1alpha/Arnt heterodimer. Our results, the first to show that radicicol specifically inhibits the interaction between the HIF-1alpha/Arnt heterodimer and HRE, suggest that Hsp90 modulates the conformation of the HIF-1alpha/Arnt heterodimer, making it suitable for interaction with HRE. Furthermore, we demonstrate that radicicol reduces hypoxia-induced VEGF expression to decrease hypoxia-induced angiogenesis.

  7. Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.

    PubMed

    Polstein, Lauren R; Perez-Pinera, Pablo; Kocak, D Dewran; Vockley, Christopher M; Bledsoe, Peggy; Song, Lingyun; Safi, Alexias; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2015-08-01

    Genome engineering technologies based on the CRISPR/Cas9 and TALE systems are enabling new approaches in science and biotechnology. However, the specificity of these tools in complex genomes and the role of chromatin structure in determining DNA binding are not well understood. We analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators in human cells using ChIP-seq to assess DNA-binding specificity and RNA-seq to measure the specificity of perturbing the transcriptome. Additionally, DNase-seq was used to assess genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these transcription factors are highly specific in both DNA binding and gene regulation and are able to open targeted regions of closed chromatin independent of gene activation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function.

  8. Missense mutations that cause Van der Woude syndrome and popliteal pterygium syndrome affect the DNA-binding and transcriptional activation functions of IRF6.

    PubMed

    Little, Hayley J; Rorick, Nicholas K; Su, Ling-I; Baldock, Clair; Malhotra, Saimon; Jowitt, Tom; Gakhar, Lokesh; Subramanian, Ramaswamy; Schutte, Brian C; Dixon, Michael J; Shore, Paul

    2009-02-01

    Cleft lip and cleft palate (CLP) are common disorders that occur either as part of a syndrome, where structures other than the lip and palate are affected, or in the absence of other anomalies. Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant disorders characterized by combinations of cleft lip, CLP, lip pits, skin-folds, syndactyly and oral adhesions which arise as the result of mutations in interferon regulatory factor 6 (IRF6). IRF6 belongs to a family of transcription factors that share a highly conserved N-terminal, DNA-binding domain and a less well-conserved protein-binding domain. To date, mutation analyses have suggested a broad genotype-phenotype correlation in which missense and nonsense mutations occurring throughout IRF6 may cause VWS; in contrast, PPS-causing mutations are highly associated with the DNA-binding domain, and appear to preferentially affect residues that are predicted to interact directly with the DNA. Nevertheless, this genotype-phenotype correlation is based on the analysis of structural models rather than on the investigation of the DNA-binding properties of IRF6. Moreover, the effects of mutations in the protein interaction domain have not been analysed. In the current investigation, we have determined the sequence to which IRF6 binds and used this sequence to analyse the effect of VWS- and PPS-associated mutations in the DNA-binding domain of IRF6. In addition, we have demonstrated that IRF6 functions as a co-operative transcriptional activator and that mutations in the protein interaction domain of IRF6 disrupt this activity. PMID:19036739

  9. A Novel DNA Binding Mechanism for maf Basic Region-Leucine Zipper Factors Inferred from a MafA-DNA Complex Structure and Binding Specificities

    SciTech Connect

    Lu, Xun; Guanga, Gerald P; Wan, Cheng; Rose, Robert B

    2012-11-13

    MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G–5C–4 and central C0/G0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.

  10. Transcriptional activation and repression by cellular DNA-binding protein C/EBP.

    PubMed Central

    Pei, D Q; Shih, C H

    1990-01-01

    A putative transcription factor, C/EBP, isolated from rat liver nuclei, has been shown to bind to at least two different sequence motifs: the CCAAT promoter domain and a core sequence [GTGG(T/A)(T/A)(T/A)G] common to many viral enhancers, including simian virus 40 and human hepatitis B virus. It has been proposed that C/EBP might function as a positive transcription factor by facilitating the communication between promoter and enhancer elements through its dual binding activities to DNA. Surprisingly, results from three different approaches suggest that C/EBP functions as a transcriptional repressor to hepatitis B virus and simian virus 40. Further investigation indicated that C/EBP can function as both a transcriptional activator and a repressor, depending on the reporter gene system. Images PMID:2157040

  11. The Drosophila tissue-specific factor Grainyhead contains novel DNA-binding and dimerization domains which are conserved in the human protein CP2.

    PubMed Central

    Uv, A E; Thompson, C R; Bray, S J

    1994-01-01

    We have mapped the regions in the Drosophila melanogaster tissue-specific transcription factor Grainyhead that are required for DNA binding and dimerization. These functional domains correspond to regions conserved between Grainyhead and the vertebrate transcription factor CP2, which we show has similar activities. The identified DNA-binding domain is large (263 amino acids) but contains a smaller core that is able to interact with DNA at approximately 400-fold lower affinity. The major dimerization domain is located in a separate region of the protein and is required to stabilize the interactions with DNA. Our data also suggest that Grainyhead activity can be modulated by an N-terminal inhibitory domain. Images PMID:8196641

  12. Nature of DNA binding and RNA polymerase interaction of the Bordetella pertussis BvgA transcriptional activator at the fha promoter.

    PubMed Central

    Boucher, P E; Murakami, K; Ishihama, A; Stibitz, S

    1997-01-01

    The expression of virulence factor genes in Bordetella pertussis is mediated by the BvgA-BvgS two-component signal transduction system. The response regulator, BvgA, acts directly as a transcriptional activator at the loci encoding pertussis toxin (ptx) and filamentous hemagglutinin (fha). Previous studies have demonstrated that these two loci are differentially regulated by BvgA. As an initial step in gaining insight into the mechanism underlying this differential regulation, we initiated DNA binding and in vitro transcription analyses to examine the activities of BvgA and RNA polymerase (RNAP) purified from both B. pertussis and Escherichia coli at the fha promoter. We discovered that unphosphorylated BvgA binds to a single region (-100 to -70, relative to the start of transcription), whereas phosphorylated BvgA binds both this region and another, farther downstream, that extends to the -35 nucleotide. In the absence of BvgA, RNAP binds a region farther upstream than expected (-104 to -35). However, occupation of both sites by BvgA phosphate repositions RNAP to the site used in vivo. The binding of BvgA phosphate to the downstream site correlates with in vitro transcriptional activity at the fha promoter. As the DNA binding and transcription activities of the E. coli-derived RNAP are similar to those observed for the B. pertussis enzyme, we employed several mutant E. coli proteins in in vitro transcription analyses. We observed that polymerases carrying either a deletion of the C-terminal domain of the alpha subunit or substitution of alanine at either of two critical residues within this domain were severely impaired in the ability to mediate BvgA-activated transcription at fha. PMID:9045838

  13. Disarming bacterial virulence through chemical inhibition of the DNA binding domain of an AraC-like transcriptional activator protein.

    PubMed

    Yang, Ji; Hocking, Dianna M; Cheng, Catherine; Dogovski, Con; Perugini, Matthew A; Holien, Jessica K; Parker, Michael W; Hartland, Elizabeth L; Tauschek, Marija; Robins-Browne, Roy M

    2013-10-25

    The misuse of antibiotics during past decades has led to pervasive antibiotic resistance in bacteria. Hence, there is an urgent need for the development of new and alternative approaches to combat bacterial infections. In most bacterial pathogens the expression of virulence is tightly regulated at the transcriptional level. Therefore, targeting pathogens with drugs that interfere with virulence gene expression offers an effective alternative to conventional antimicrobial chemotherapy. Many Gram-negative intestinal pathogens produce AraC-like proteins that control the expression of genes required for infection. In this study we investigated the prototypical AraC-like virulence regulator, RegA, from the mouse attaching and effacing pathogen, Citrobacter rodentium, as a potential drug target. By screening a small molecule chemical library and chemical optimization, we identified two compounds that specifically inhibited the ability of RegA to activate its target promoters and thus reduced expression of a number of proteins required for virulence. Biophysical, biochemical, genetic, and computational analyses indicated that the more potent of these two compounds, which we named regacin, disrupts the DNA binding capacity of RegA by interacting with amino acid residues within a conserved region of the DNA binding domain. Oral administration of regacin to mice, commencing 15 min before or 12 h after oral inoculation with C. rodentium, caused highly significant attenuation of intestinal colonization by the mouse pathogen comparable to that of an isogenic regA-deletion mutant. These findings demonstrate that chemical inhibition of the DNA binding domains of transcriptional regulators is a viable strategy for the development of antimicrobial agents that target bacterial pathogens.

  14. Disarming Bacterial Virulence through Chemical Inhibition of the DNA Binding Domain of an AraC-like Transcriptional Activator Protein*

    PubMed Central

    Yang, Ji; Hocking, Dianna M.; Cheng, Catherine; Dogovski, Con; Perugini, Matthew A.; Holien, Jessica K.; Parker, Michael W.; Hartland, Elizabeth L.; Tauschek, Marija; Robins-Browne, Roy M.

    2013-01-01

    The misuse of antibiotics during past decades has led to pervasive antibiotic resistance in bacteria. Hence, there is an urgent need for the development of new and alternative approaches to combat bacterial infections. In most bacterial pathogens the expression of virulence is tightly regulated at the transcriptional level. Therefore, targeting pathogens with drugs that interfere with virulence gene expression offers an effective alternative to conventional antimicrobial chemotherapy. Many Gram-negative intestinal pathogens produce AraC-like proteins that control the expression of genes required for infection. In this study we investigated the prototypical AraC-like virulence regulator, RegA, from the mouse attaching and effacing pathogen, Citrobacter rodentium, as a potential drug target. By screening a small molecule chemical library and chemical optimization, we identified two compounds that specifically inhibited the ability of RegA to activate its target promoters and thus reduced expression of a number of proteins required for virulence. Biophysical, biochemical, genetic, and computational analyses indicated that the more potent of these two compounds, which we named regacin, disrupts the DNA binding capacity of RegA by interacting with amino acid residues within a conserved region of the DNA binding domain. Oral administration of regacin to mice, commencing 15 min before or 12 h after oral inoculation with C. rodentium, caused highly significant attenuation of intestinal colonization by the mouse pathogen comparable to that of an isogenic regA-deletion mutant. These findings demonstrate that chemical inhibition of the DNA binding domains of transcriptional regulators is a viable strategy for the development of antimicrobial agents that target bacterial pathogens. PMID:24019519

  15. A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis.

    PubMed

    Giuntoli, Beatrice; Lee, Seung Cho; Licausi, Francesco; Kosmacz, Monika; Oosumi, Teruko; van Dongen, Joost T; Bailey-Serres, Julia; Perata, Pierdomenico

    2014-09-01

    Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII) transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule-insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1), as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein-protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves) revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop regulating the oxygen

  16. Biochemical and genetic characterization of a yeast TFIID mutant that alters transcription in vivo and DNA binding in vitro.

    PubMed Central

    Arndt, K M; Ricupero, S L; Eisenmann, D M; Winston, F

    1992-01-01

    A mutation in the gene that encodes Saccharomyces cerevisiae TFIID (SPT15), which was isolated in a selection for mutations that alter transcription in vivo, changes a single amino acid in a highly conserved region of the second direct repeat in TFIID. Among eight independent spt15 mutations, seven cause this same amino acid change, Leu-205 to Phe. The mutant TFIID protein (L205F) binds with greater affinity than that of wild-type TFIID to at least two nonconsensus TATA sites in vitro, showing that the mutant protein has altered DNA binding specificity. Site-directed mutations that change Leu-205 to five different amino acids cause five different phenotypes, demonstrating the importance of this amino acid in vivo. Virtually identical phenotypes were observed when the same amino acid changes were made at the analogous position, Leu-114, in the first repeat of TFIID. Analysis of these mutations and additional mutations in the most conserved regions of the repeats, in conjunction with our DNA binding results, suggests that these regions of the repeats play equivalent roles in TFIID function, possibly in TATA box recognition. Images PMID:1569955

  17. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain.

    PubMed Central

    Tornow, J; Zeng, X; Gao, W; Santangelo, G M

    1993-01-01

    In Saccharomyces cerevisiae, efficient expression of glycolytic and translational component genes requires two DNA binding proteins, RAP1 (which binds to UASRPG) and GCR1 (which binds to the CT box). We generated deletions in GCR1 to test the validity of several different models for GCR1 function. We report here that the C-terminal half of GCR1, which includes the domain required for DNA binding to the CT box in vitro, can be removed without affecting GCR1-dependent transcription of either the glycolytic gene ADH1 or the translational component genes TEF1 and TEF2. We have also identified an activation domain within a segment of the GCR1 protein (the N-terminal third) that is essential for in vivo function. RAP1 and GCR1 can be co-immunoprecipitated from whole cell extracts, suggesting that they form a complex in vivo. The data are most consistent with a model in which GCR1 is attracted to DNA through contact with RAP1. Images PMID:8508768

  18. Protein–DNA binding dynamics predict transcriptional response to nutrients in archaea

    PubMed Central

    Todor, Horia; Sharma, Kriti; Pittman, Adrianne M. C.; Schmid, Amy K.

    2013-01-01

    Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators. PMID:23892291

  19. Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.

    PubMed

    Todor, Horia; Sharma, Kriti; Pittman, Adrianne M C; Schmid, Amy K

    2013-10-01

    Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.

  20. The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding

    PubMed Central

    Andersen, Kristian G.; Hebenstreit, Daniel; Teichmann, Sarah A.; Betz, Alexander G.

    2015-01-01

    The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3’s function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression. PMID:26107960

  1. Steric mechanism of auto-inhibitory regulation of specific and non-specific DNA binding by the ETS transcriptional repressor ETV6.

    PubMed

    De, Soumya; Chan, Anson C K; Coyne, H Jerome; Bhachech, Niraja; Hermsdorf, Ulrike; Okon, Mark; Murphy, Michael E P; Graves, Barbara J; McIntosh, Lawrence P

    2014-04-01

    DNA binding by the ETS transcriptional repressor ETV6 (or TEL) is auto-inhibited ~50-fold due to an α-helix that sterically blocks its ETS domain binding interface. Using NMR spectroscopy, we demonstrate that this marginally stable helix is unfolded, and not displaced to a non-inhibitory position, when ETV6 is bound to DNA containing a consensus (5')GGAA(3') recognition site. Although significantly lower in affinity, binding to non-specific DNA is auto-inhibited ~5-fold and is also accompanied by helix unfolding. Based on NMR chemical shift perturbations, both specific and non-specific DNA are bound via the same canonical ETS domain interface. However, spectral perturbations are smaller for the non-specific complex, suggesting weaker and less well-defined interactions than in the specific complex. In parallel, the crystal structure of ETV6 bound to a specific DNA duplex was determined. The structure of this complex reveals that a non-conserved histidine residue in the ETS domain recognition helix helps establish the specificity of ETV6 for DNA-binding sites containing (5')GGAA(3')versus(5')GGAT(3'). These studies provide a unified steric mechanism for attenuating ETV6 binding to both specific and non-specific DNA and expand the repertoire of characterized auto-inhibitory strategies utilized to regulate ETS factors.

  2. Dynamic phosphorylation of RelA on Ser42 and Ser45 in response to TNFα stimulation regulates DNA binding and transcription

    PubMed Central

    Lanucara, Francesco; Lam, Connie; Mann, Jelena; Monie, Tom P.; Colombo, Stefano A. P.; Holman, Stephen W.; Boyd, James; Dange, Manohar C.; Mann, Derek A.; White, Michael R. H.

    2016-01-01

    The NF-κB signalling module controls transcription through a network of protein kinases such as the IKKs, as well as inhibitory proteins (IκBs) and transcription factors including RelA/p65. Phosphorylation of the NF-κB subunits is critical for dictating system dynamics. Using both non-targeted discovery and quantitative selected reaction monitoring-targeted proteomics, we show that the cytokine TNFα induces dynamic multisite phosphorylation of RelA at a number of previously unidentified residues. Putative roles for many of these phosphorylation sites on RelA were predicted by modelling of various crystal structures. Stoichiometry of phosphorylation determination of Ser45 and Ser42 revealed preferential early phosphorylation of Ser45 in response to TNFα. Quantitative analyses subsequently confirmed differential roles for pSer42 and pSer45 in promoter-specific DNA binding and a role for both of these phosphosites in regulating transcription from the IL-6 promoter. These temporal dynamics suggest that RelA-mediated transcription is likely to be controlled by functionally distinct NF-κB proteoforms carrying different combinations of modifications, rather than a simple ‘one modification, one effect’ system. PMID:27466442

  3. Solvent-exposed serines in the Gal4 DNA-binding domain are required for promoter occupancy and transcriptional activation in vivo.

    PubMed

    Jeličić, Branka; Nemet, Josipa; Traven, Ana; Sopta, Mary

    2014-03-01

    The yeast transcriptional activator Gal4 has long been the prototype for studies of eukaryotic transcription. Gal4 is phosphorylated in the DNA-binding domain (DBD); however, the molecular details and functional significance of this remain unknown. We mutagenized seven potential phosphoserines that lie on the solvent-exposed face of the DBD structure and assessed them for transcriptional activity and DNA binding in vivo. Serine to alanine mutants at positions 22, 47, and 85 show the greatest reduction in promoter occupancy and transcriptional activity at the MEL1 promoter containing a single UASGAL . Substitutions with the phosphomimetic aspartate restored DNA-binding and transcriptional activity at serines 22 and 85, suggesting that they are potential sites of Gal4 phosphorylation in vivo. In contrast, the serine to alanine mutants, except serine 22, were fully proficient for binding to the GAL1-10 promoter, containing multiple UASGAL sites, although they had a reduced ability to activate transcription. Collectively, these data show that at the GAL1-10 promoter, functions of the DBD in transcriptional activation can be uncoupled from roles in promoter binding. We suggest that the serines in the DBD mediate protein-protein contacts with the transcription machinery, leading to stabilization of Gal4 at promoters.

  4. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions.

    PubMed

    Brown, Maxwell W; Kim, Yoori; Williams, Gregory M; Huck, John D; Surtees, Jennifer A; Finkelstein, Ilya J

    2016-01-01

    DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2-Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2-Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2-Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2-Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2-Msh3 and Msh2-Msh6 navigate on a crowded genome and suggest how Msh2-Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin. PMID:26837705

  5. Dynamic DNA binding licenses a repair factor to bypass roadblocks in search of DNA lesions

    PubMed Central

    Brown, Maxwell W.; Kim, Yoori; Williams, Gregory M.; Huck, John D.; Surtees, Jennifer A.; Finkelstein, Ilya J.

    2016-01-01

    DNA-binding proteins search for specific targets via facilitated diffusion along a crowded genome. However, little is known about how crowded DNA modulates facilitated diffusion and target recognition. Here we use DNA curtains and single-molecule fluorescence imaging to investigate how Msh2–Msh3, a eukaryotic mismatch repair complex, navigates on crowded DNA. Msh2–Msh3 hops over nucleosomes and other protein roadblocks, but maintains sufficient contact with DNA to recognize a single lesion. In contrast, Msh2–Msh6 slides without hopping and is largely blocked by protein roadblocks. Remarkably, the Msh3-specific mispair-binding domain (MBD) licences a chimeric Msh2–Msh6(3MBD) to bypass nucleosomes. Our studies contrast how Msh2–Msh3 and Msh2–Msh6 navigate on a crowded genome and suggest how Msh2–Msh3 locates DNA lesions outside of replication-coupled repair. These results also provide insights into how DNA repair factors search for DNA lesions in the context of chromatin. PMID:26837705

  6. HTLV-1 Tax Protein Stimulation of DNA Binding of bZIP Proteins by Enhancing Dimerization

    NASA Astrophysics Data System (ADS)

    Wagner, Susanne; Green, Michael R.

    1993-10-01

    The Tax protein of human T cell leukemia virus type-1 (HTLV-I) transcriptionally activates the HTLV-I promoter. This activation requires binding sites for activating transcription factor (ATF) proteins, a family of cellular proteins that contain basic region-leucine zipper (bZIP) DNA binding domains. Data are presented showing that Tax increases the in vitro DNA binding activity of multiple ATF proteins. Tax also stimulated DNA binding by other bZIP proteins, but did not affect DNA binding proteins that lack a bZIP domain. The increase in DNA binding occurred because Tax promotes dimerization of the bZIP domain in the absence of DNA, and the elevated concentration of the bZIP homodimer then facilitates the DNA binding reaction. These results help explain how Tax activates viral transcription and transforms cells.

  7. Transcriptional regulation of NADP-dependent malate dehydrogenase: comparative genetics and identification of DNA-binding proteins.

    PubMed

    Hameister, Steffen; Becker, Beril; Holtgrefe, Simone; Strodtkötter, Inga; Linke, Vera; Backhausen, Jan E; Scheibe, Renate

    2007-10-01

    The transcriptional regulation of NADP-malate dehydrogenase (NADP-MDH) was analyzed in Arabidopsis ecotypes and other Brassicaceae. The amount of transcript increased twofold after transfer into low temperature (12 degrees C) or high light (750 microE) in all species. Analysis of the genomic DNA reveals that the NADP-MDH gene (At5g58330 in A. thaliana) in Brassicaceae is located between two other genes (At5g58320 and At5g58340 in Arabidopsis), both encoded on the opposite DNA strand. No promoter elements were identified in 5' direction of the NADP-MDH gene, and the expression of NADP-MDH was not affected in knock-out plants carrying a DNA insert in the 5' region. A yeast-one hybrid approach yielded only three DNA-binding proteins for the 500-bp fragment located upstream of the ATG sequence, but 34 proteins for its coding region. However, in Chlamydomonas and in some Poaceae, which do not possess any genes within the 1200 bp upstream region, typical promoter elements were identified. Alignments of genomic DNA reveal that, in contrast to Poaceae, the introns are highly conserved within Brassicaceae. We conclude that in Brassicaceae the majority of regulatory elements are located within the coding region. The NADP-MDH gene of both families evolved from a common precursor, similar to the gene in Chlamydomonas. Changes in the selection pressure allowed the insertion of At5g58340 into the promoter region of a common ancestor. When the demand for transcriptional regulation increased, At5g58340 disappeared in Poaceae, and a promoter developed in the 5' region. In contrast, Brassicaceae maintained At5g58340 and shifted all regulatory elements into the coding region of NADP-MDH.

  8. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators.

    PubMed

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei; Mijakovic, Ivan

    2015-09-01

    Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types of residue, i.e. serine, threonine, tyrosine and cysteine, is also quite common. The phosphorylation of the ester type (phospho-serine/threonine/tyrosine) is more stable than the aspartate phosphorylation of TCSs. The kinases which catalyse these phosphorylation events (Hanks-type serine/threonine protein kinases and bacterial protein tyrosine kinases) are also much more promiscuous than the TCS kinases, i.e. each of them can phosphorylate several substrate proteins. As a consequence, the dynamics and topology of the signal transduction networks depending on these kinases differ significantly from the TCSs. Here, we present an overview of different classes of bacterial TR phosphorylated and regulated by serine/threonine and tyrosine kinases. Particular attention is given to examples when serine/threonine and tyrosine kinases interact with TCSs, phosphorylating either the histidine kinases or the response regulators. We argue that these promiscuous kinases connect several signal transduction pathways and serve the role of signal integration. PMID:26220449

  9. High-resolution detection of DNA binding sites of the global transcriptional regulator GlxR in Corynebacterium glutamicum.

    PubMed

    Jungwirth, Britta; Sala, Claudia; Kohl, Thomas A; Uplekar, Swapna; Baumbach, Jan; Cole, Stewart T; Pühler, Alfred; Tauch, Andreas

    2013-01-01

    The transcriptional regulator GlxR has been characterized as a global hub within the gene-regulatory network of Corynebacterium glutamicum. Chromatin immunoprecipitation with a specific anti-GlxR antibody and subsequent high-throughput sequencing (ChIP-seq) was applied to C. glutamicum to get new in vivo insights into the gene composition of the GlxR regulon. In a comparative approach, C. glutamicum cells were grown with either glucose or acetate as the sole carbon source prior to immunoprecipitation. High-throughput sequencing resulted in 69 million reads and 2.6 Gb of genomic information. After mapping of these data on the genome sequence of C. glutamicum, 107 enriched DNA fragments were detected from cells grown with glucose as carbon source. GlxR binding sites were identified in the sequence of 79 enriched DNA fragments, of which 21 sites were not previously reported. Electrophoretic mobility shift assays with 40-mer oligomers covering the GlxR binding sites were performed for validation of the in vivo results. The detection of new binding sites confirmed the role of GlxR as a regulator of carbon source metabolism and energy conversion, but additionally revealed binding of GlxR in front of the 6C non-coding RNA gene and to non-canonical DNA binding sites within protein-coding regions. The present study underlines the dynamics within the GlxR regulon by identifying in vivo targets during growth on glucose and contributes to the expansion of knowledge of this important transcriptional regulator.

  10. T(lys), a newly identified Sulfolobus spindle-shaped virus 1 transcript expressed in the lysogenic state, encodes a DNA-binding protein interacting at the promoters of the early genes.

    PubMed

    Fusco, Salvatore; She, Qunxin; Bartolucci, Simonetta; Contursi, Patrizia

    2013-05-01

    While studying the gene expression of the Sulfolobus spindle-shaped virus 1 (SSV1) in Sulfolobus solfataricus lysogenic cells, a novel viral transcript (T(lys)) was identified. Transcriptional analysis revealed that T(lys) is expressed only in the absence of UV irradiation and is downregulated during the growth of the lysogenic host. The correponding gene f55 lies between two transcriptional units (T6 and T(ind)) that are upregulated upon UV irradiation. The open reading frame f55 encodes a 6.3-kDa protein which shows sequence identity with negative regulators that fold into the ribbon-helix-helix DNA-binding motif. DNA-binding assays demonstrated that the recombinant F55, purified from Escherichia coli, is indeed a putative transcription factor able to recognize site specifically target sequences in the promoters of the early induced T5, T6, and T(ind) transcripts, as well as of its own promoter. Binding sites of F55 are included within a tandem-repeated sequence overlapping the transcription start sites and/or the B recognition element of the pertinent genes. The strongest binding was observed with the promoters of T5 and T6, and an apparent cooperativity in binding was observed with the T(ind) promoter. Taking together the transcriptional analysis data and the biochemical evidences, we surmise that the protein F55 is involved in the regulation of the lysogenic state of SSV1. PMID:23514883

  11. Tlys, a Newly Identified Sulfolobus Spindle-Shaped Virus 1 Transcript Expressed in the Lysogenic State, Encodes a DNA-Binding Protein Interacting at the Promoters of the Early Genes

    PubMed Central

    Fusco, Salvatore; She, Qunxin; Bartolucci, Simonetta

    2013-01-01

    While studying the gene expression of the Sulfolobus spindle-shaped virus 1 (SSV1) in Sulfolobus solfataricus lysogenic cells, a novel viral transcript (Tlys) was identified. Transcriptional analysis revealed that Tlys is expressed only in the absence of UV irradiation and is downregulated during the growth of the lysogenic host. The correponding gene f55 lies between two transcriptional units (T6 and Tind) that are upregulated upon UV irradiation. The open reading frame f55 encodes a 6.3-kDa protein which shows sequence identity with negative regulators that fold into the ribbon-helix-helix DNA-binding motif. DNA-binding assays demonstrated that the recombinant F55, purified from Escherichia coli, is indeed a putative transcription factor able to recognize site specifically target sequences in the promoters of the early induced T5, T6, and Tind transcripts, as well as of its own promoter. Binding sites of F55 are included within a tandem-repeated sequence overlapping the transcription start sites and/or the B recognition element of the pertinent genes. The strongest binding was observed with the promoters of T5 and T6, and an apparent cooperativity in binding was observed with the Tind promoter. Taking together the transcriptional analysis data and the biochemical evidences, we surmise that the protein F55 is involved in the regulation of the lysogenic state of SSV1. PMID:23514883

  12. Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA

    PubMed Central

    Beyer, Matthew D.; Clay, Emily; Hiam, Kamir J.; McMurry, Jonathan L.; Xie, Ying

    2016-01-01

    One of the first steps towards elucidating the biological function of a putative transcriptional regulator is to ascertain its preferred DNA-binding sequences. This may be rapidly and effectively achieved through the application of a combinatorial approach, one involving very large numbers of randomized oligonucleotides and reiterative selection and amplification steps to enrich for high-affinity nucleic acid-binding sequences. Previously, we had developed the novel combinatorial approach Restriction Endonuclease Protection, Selection and Amplification (REPSA), which relies not on the physical separation of ligand-nucleic acid complexes but instead selects on the basis of ligand-dependent inhibition of enzymatic template inactivation, specifically cleavage by type IIS restriction endonucleases. Thus, no prior knowledge of the ligand is required for REPSA, making it more amenable for discovery purposes. Here we describe using REPSA, massively parallel sequencing, and bioinformatics to identify the preferred DNA-binding sites for the transcriptional regulator SbtR, encoded by the TTHA0167 gene from the model extreme thermophile Thermus thermophilus HB8. From the resulting position weight matrix, we can identify multiple operons potentially regulated by SbtR and postulate a biological role for this protein in regulating extracellular transport processes. Our study provides a proof-of-concept for the application of REPSA for the identification of preferred DNA-binding sites for orphan transcriptional regulators and a first step towards determining their possible biological roles. PMID:27428627

  13. Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA.

    PubMed

    Van Dyke, Michael W; Beyer, Matthew D; Clay, Emily; Hiam, Kamir J; McMurry, Jonathan L; Xie, Ying

    2016-01-01

    One of the first steps towards elucidating the biological function of a putative transcriptional regulator is to ascertain its preferred DNA-binding sequences. This may be rapidly and effectively achieved through the application of a combinatorial approach, one involving very large numbers of randomized oligonucleotides and reiterative selection and amplification steps to enrich for high-affinity nucleic acid-binding sequences. Previously, we had developed the novel combinatorial approach Restriction Endonuclease Protection, Selection and Amplification (REPSA), which relies not on the physical separation of ligand-nucleic acid complexes but instead selects on the basis of ligand-dependent inhibition of enzymatic template inactivation, specifically cleavage by type IIS restriction endonucleases. Thus, no prior knowledge of the ligand is required for REPSA, making it more amenable for discovery purposes. Here we describe using REPSA, massively parallel sequencing, and bioinformatics to identify the preferred DNA-binding sites for the transcriptional regulator SbtR, encoded by the TTHA0167 gene from the model extreme thermophile Thermus thermophilus HB8. From the resulting position weight matrix, we can identify multiple operons potentially regulated by SbtR and postulate a biological role for this protein in regulating extracellular transport processes. Our study provides a proof-of-concept for the application of REPSA for the identification of preferred DNA-binding sites for orphan transcriptional regulators and a first step towards determining their possible biological roles. PMID:27428627

  14. Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex.

    PubMed

    Pan, S; Sehnke, P C; Ferl, R J; Gurley, W B

    1999-08-01

    The 14-3-3 family of multifunctional proteins is highly conserved among animals, plants, and yeast. Several studies have shown that these proteins are associated with a G-box DNA binding complex and are present in the nucleus in several plant and animal species. In this study, 14-3-3 proteins are shown to bind the TATA box binding protein (TBP), transcription factor IIB (TFIIB), and the human TBP-associated factor hTAF(II)32 in vitro but not hTAF(II)55. The interactions with TBP and TFIIB were highly specific, requiring amino acid residues in the box 1 domain of the 14-3-3 protein. These interactions do not require formation of the 14-3-3 dimer and are not dependent on known 14-3-3 recognition motifs containing phosphoserine. The 14-3-3-TFIIB interaction appears to occur within the same domain of TFIIB that binds the human herpes simplex virus transcriptional activator VP16, because VP16 and 14-3-3 were able to compete for interaction with TFIIB in vitro. In a plant transient expression system, 14-3-3 was able to activate GAL4-dependent beta-glucuronidase reporter gene expression at low levels when translationally fused with the GAL4 DNA binding domain. The in vitro binding with general transcription factors TBP and TFIIB together with its nuclear location provide evidence supporting a role for 14-3-3 proteins as transcriptional activators or coactivators when part of a DNA binding complex. PMID:10449590

  15. Anacardic acid inhibits estrogen receptor alpha-DNA binding and reduces target gene transcription and breast cancer cell proliferation

    PubMed Central

    Schultz, David J.; Wickramasinghe, Nalinie S.; Ivanova, Margarita M.; Isaacs, Susan M.; Dougherty, Susan M.; Imbert-Fernandez, Yoannis; Cunningham, Albert R.; Chen, Chunyuan; Klinge, Carolyn M.

    2010-01-01

    Anacardic acid (2-hydroxy-6-alkylbenzoic acid) is a dietary and medicinal phytochemical with established anticancer activity in cell and animal models. The mechanisms by which anacardic acid inhibits cancer cell proliferation remain undefined. Anacardic acid 24:1ω5 (AnAc 24:1ω5) was purified from geranium (Pelargonium × hortorum) and shown to inhibit the proliferation of estrogen receptor α (ERα)-positive MCF-7 and endocrine-resistant LCC9 and LY2 breast cancer cells with greater efficacy than ERα-negative primary human breast epithelial cells, MCF-10A normal breast epithelial cells, and MDA-MB-231 basal-like breast cancer cells. AnAc 24:1ω5 inhibited cell cycle progression and induced apoptosis in a cell-specific manner. AnAc 24:1ω5 inhibited estradiol (E2)-induced estrogen response element (ERE) reporter activity and transcription of the endogenous E2-target genes: pS2, cyclin D1, and cathepsin D in MCF-7 cells. AnAc 24:1ω5 did not compete with E2 for ERα or ERβ binding, nor did AnAc 24:1ω5 reduce ERα or ERβ steady state protein levels in MCF-7 cells; rather, AnAc 24:1ω5 inhibited ER-ERE binding in vitro. Virtual Screening with the molecular docking software Surflex evaluated AnAc 24:1ω5 interaction with ERα ligand binding and DNA binding domains (LBD and DBD) in conjunction with experimental validation. Molecular modeling revealed AnAc 24:1ω5 interaction with the ERα DBD but not the LBD. Chromatin immunoprecipitation (ChIP) experiments revealed that AnAc 24:1ω5 inhibited E2-ERα interaction with the endogenous pS2 gene promoter region containing an ERE. These data indicate that AnAc 24:1ω5 inhibits cell proliferation, cell cycle progression and apoptosis in an ER-dependent manner by reducing ER-DNA interaction and inhibiting ER-mediated transcriptional responses. PMID:20197399

  16. Yin Yang 1: a multifaceted protein beyond a transcription factor.

    PubMed

    Deng, Zhiyong; Cao, Paul; Wan, Mei Mei; Sui, Guangchao

    2010-01-01

    As a transcription factor, Yin Yang 1 (YY1) regulates the transcription of a dazzling list of genes and the number of its targets still mounts. Recent studies revealed that YY1 possesses functions independent of its DNA binding activity and its regulatory role in tumorigenesis has started to emerge.

  17. Visually Relating Gene Expression and in vivo DNA Binding Data

    SciTech Connect

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  18. Mechanism for attenuation of DNA binding by MarR family transcriptional regulators by small molecule ligands.

    PubMed

    Perera, Inoka C; Lee, Yong-Hwan; Wilkinson, Steven P; Grove, Anne

    2009-07-31

    Members of the multiple antibiotic resistance regulator (MarR) family control gene expression in a variety of metabolic processes in bacteria and archaea. Hypothetical uricase regulator (HucR), which belongs to the ligand-responsive branch of the MarR family, regulates uricase expression in Deinococcus radiodurans by binding a shared promoter region between uricase and HucR genes. We show here that HucR responds only to urate and, to a lesser extent, to xanthine by attenuated DNA binding, compared to other intermediates of purine degradation. Using molecular-dynamics-guided mutational analysis, we identified the ligand-binding site in HucR. Electrophoretic mobility shift assays and intrinsic Trp fluorescence have identified W20 from the N-terminal helix and R80 from helix 3, which serves as a scaffold for the DNA recognition helix, as being essential for ligand binding. Using structural data combined with in silico and in vitro analyses, we propose a mechanism for the attenuation of DNA binding in which a conformational change initiated by charge repulsion due to a bound ligand propagates to DNA recognition helices. This mechanism may apply generally to MarR homologs that bind anionic phenolic ligands. PMID:19501097

  19. Transcription initiation at the TATA-less spliced leader RNA gene promoter requires at least two DNA-binding proteins and a tripartite architecture that includes an initiator element.

    PubMed

    Luo, H; Gilinger, G; Mukherjee, D; Bellofatto, V

    1999-11-01

    Eukaryotic transcriptional regulatory signals, defined as core and activator promoter elements, have yet to be identified in the earliest diverging group of eukaryotes, the primitive protozoans, which include the Trypanosomatidae family of parasites. The divergence within this family is highlighted by the apparent absence of the "universal" transcription factor TATA-binding protein. To understand gene expression in these protists, we have investigated spliced leader RNA gene transcription. The RNA product of this gene provides an m(7)G cap and a 39-nucleotide leader sequence to all cellular mRNAs via a trans-splicing reaction. Regulation of spliced leader RNA synthesis is controlled by a tripartite promoter located exclusively upstream from the transcription start site. Proteins PBP-1 and PBP-2 bind to two of the three promoter elements in the trypanosomatid Leptomonas seymouri. They represent the first trypanosome transcription factors with typical double-stranded DNA binding site recognition. These proteins ensure efficient transcription. However, accurate initiation is determined an initiator element with a a loose consensus of CYAC/AYR (+1), which differs from that found in metazoan initiator elements as well as from that identified in one of the earliest diverging protozoans, Trichomonas vaginalis. Trypanosomes may utilize initiator element-protein interactions, and not TATA sequence-TATA-binding protein interactions, to direct proper transcription initiation by RNA polymerase II.

  20. PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription.

    PubMed

    Lee, C; Bae, K; Edery, I

    1999-08-01

    The Drosophila CLOCK (dCLOCK) and CYCLE (CYC) (also referred to as dBMAL1) proteins are members of the basic helix-loop-helix PAS (PER-ARNT-SIM) superfamily of transcription factors and are required for high-level expression of the circadian clock genes period (per) and timeless (tim). Several lines of evidence indicate that PER, TIM, or a PER-TIM heterodimer somehow inhibit the transcriptional activity of a putative dCLOCK-CYC complex, generating a negative-feedback loop that is a core element of the Drosophila circadian oscillator. In this report we show that PER and/or TIM inhibits the binding of a dCLOCK-CYC heterodimer to an E-box-containing DNA fragment that is present in the 5' nontranscribed region of per and acts as a circadian enhancer element. Surprisingly, inhibition of this DNA binding activity by PER, TIM, or both is not accompanied by disruption of the association between dCLOCK and CYC. The results suggest that the interaction of PER, TIM, or both with the dCLOCK-CYC heterodimer induces a conformational change or masks protein regions in the heterodimer, leading to a reduction in DNA binding activity. Together with other findings, our results strongly suggest that daily cycles in the association of PER and TIM with the dCLOCK-CYC complex probably contribute to rhythmic expression of per and tim.

  1. Affinity Purification of Sequence-Specific DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Kadonaga, James T.; Tjian, Robert

    1986-08-01

    We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed through the DNA-Sepharose resin. The desired sequence-specific DNA binding protein is purified because it preferentially binds to the recognition sites in the affinity resin rather than to the nonspecific competitor DNA in solution. For example, a protein fraction that is enriched for transcription factor Sp1 can be further purified 500- to 1000-fold by two sequential affinity chromatography steps to give Sp1 of an estimated 90% homogeneity with 30% yield. In addition, the use of tandem affinity columns containing different protein binding sites allows the simultaneous purification of multiple DNA binding proteins from the same extract. This method provides a means for the purification of rare sequence-specific DNA binding proteins, such as Sp1 and CAAT-binding transcription factor.

  2. Inhibitor of DNA Binding 1 Is Induced during Kidney Ischemia-Reperfusion and Is Critical for the Induction of Hypoxia-Inducible Factor-1α

    PubMed Central

    Wen, Dan; Zou, Yan-Fang; Gao, Yao-Hui; Zhao, Qian; Xie, Yin-Yin; Shen, Ping-Yan; Xu, Yao-Wen; Xu, Jing; Chen, Yong-Xi; Feng, Xiao-Bei; Shi, Hao; Zhang, Wen

    2016-01-01

    In this study, rat models of acute kidney injury (AKI) induced by renal ischemia-reperfusion (I/R) and HK-2 cell models of hypoxia-reoxygenation (H/R) were established to investigate the expression of inhibitor of DNA binding 1 (ID1) in AKI, and the regulation relationship between ID1 and hypoxia-inducible factor 1 alpha (HIF-1α). Through western blot, quantitative real-time PCR, immunohistochemistry, and other experiment methods, the induction of ID1 after renal I/R in vivo was observed, which was expressed mainly in renal tubular epithelial cells (TECs). ID1 expression was upregulated in in vitro H/R models at both the protein and mRNA levels. Via RNAi, it was found that ID1 induction was inhibited with silencing of HIF-1α. Moreover, the suppression of ID1 mRNA expression could lead to decreased expression and transcription of HIF-1α during hypoxia and reoxygenation. In addition, it was demonstrated that both ID1 and HIF-1α can regulate the transcription of twist. This study demonstrated that ID1 is induced in renal TECs during I/R and can regulate the transcription and expression of HIF-1α. PMID:27127787

  3. Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa.

    PubMed Central

    Robertson, E S; Grossman, S; Johannsen, E; Miller, C; Lin, J; Tomkinson, B; Kieff, E

    1995-01-01

    The Epstein-Barr virus (EBV) nuclear protein 3C (EBNA 3C) is essential for EBV-mediated transformation of primary B lymphocytes, is turned on by EBNA 2, and regulates transcription of some of the viral and cellular genes which are regulated by EBNA 2. EBNA 2 is targeted to response elements by binding to the DNA sequence-specific, transcriptional repressor protein J kappa. We now show that EBNA 3C also binds to J kappa. EBNA 3C causes J kappa to not bind DNA or EBNA 2. J kappa DNA binding activity in EBV-transformed lymphoblastoid cells is consequently reduced. More than 10% of the EBNA 3C coimmunoprecipitated with J kappa from extracts of non-EBV-infected B lymphoblasts that had been stably converted to EBNA 3C expression. EBNA 3C in nuclear extracts from these cells (or in vitro-translated EBNA 3C) prevented J kappa from interacting with a high-affinity DNA binding site. Under conditions of transient overexpression in B lymphoblasts, EBNA 2 and EBNA 3C associated with J kappa and less EBNA 2 associated with J kappa when EBNA 3C was coexpressed in the same cell. EBNA 3C had no effect on the activity of a -512/+40 LMP1 promoter-CAT reporter construct that has two upstream J kappa sites, but it did inhibit EBNA 2 transactivation of this promoter. These data are compatible with a role for EBNA 3C as a "feedback" down modulator of EBNA 2-mediated transactivation. EBNA 3C could, in theory, also activate transcription by inhibiting the interaction of the J kappa repressor with its cognate DNA. The interaction of two viral transcriptional regulators with the same cell protein may reflect an unusually high level of complexity or stringency in target gene regulation. PMID:7707539

  4. Embryonic neural inducing factor churchill is not a DNA-binding zinc finger protein: solution structure reveals a solvent-exposed beta-sheet and zinc binuclear cluster.

    PubMed

    Lee, Brian M; Buck-Koehntop, Bethany A; Martinez-Yamout, Maria A; Dyson, H Jane; Wright, Peter E

    2007-08-31

    Churchill is a zinc-containing protein that is involved in neural induction during embryogenesis. At the time of its discovery, it was thought on the basis of sequence alignment to contain two zinc fingers of the C4 type. Further, binding of an N-terminal GST-Churchill fusion protein to a particular DNA sequence was demonstrated by immunoprecipitation selection assay, suggesting that Churchill may function as a transcriptional regulator by sequence-specific DNA binding. We show by NMR solution structure determination that, far from containing canonical C4 zinc fingers, the protein contains three bound zinc ions in novel coordination sites, including an unusual binuclear zinc cluster. The secondary structure of Churchill is also unusual, consisting of a highly solvent-exposed single-layer beta-sheet. Hydrogen-deuterium exchange and backbone relaxation measurements reveal that Churchill is unusually dynamic on a number of time scales, with the exception of regions surrounding the zinc coordinating sites, which serve to stabilize the otherwise unstructured N terminus and the single-layer beta-sheet. No binding of Churchill to the previously identified DNA sequence could be detected, and extensive searches using DNA sequence selection techniques could find no other DNA sequence that was bound by Churchill. Since the N-terminal amino acids of Churchill form part of the zinc-binding motif, the addition of a fusion protein at the N terminus causes loss of zinc and unfolding of Churchill. This observation most likely explains the published DNA-binding results, which would arise due to non-specific interaction of the unfolded protein in the immunoprecipitation selection assay. Since Churchill does not appear to bind DNA, we suggest that it may function in embryogenesis as a protein-interaction factor.

  5. In vitro transcription directed from the somatostatin promoter is dependent upon a purified 43-kDa DNA-binding protein.

    PubMed Central

    Andrisani, O M; Zhu, Z N; Pot, D A; Dixon, J E

    1989-01-01

    In vitro transcription analyses were used to establish the biological function of a 43-kDa affinity-purified DNA-binding protein. The 43-kDa affinity-purified protein protects the region from position -59 to position -35 of the somatostatin promoter from DNase I digestion. This region of the somatostatin promoter harbors the TGACGTCA motif, also found and required for function in a number of other cAMP-responsive and adenovirus E1A-inducible promoters. Efficient and authentic transcription in vitro directed from the somatostatin promoter requires the TGACGTCA promoter element. In vitro transcription assays performed in the presence of somatostatin (positions -60 to -29), enkephalin (positions -105 to -71), and adenovirus type 5 E3 gene (positions -72 to -42) competitor fragments, harboring similar TGACGTCA motifs, selectively inhibit transcription directed from the somatostatin promoter, suggesting that the TGACGTCA element is the site of interaction of a somatostatin gene transactivator. Furthermore, extracts depleted of the TGACGTCA-binding activities by affinity chromatography utilizing a biotinylated oligonucleotide-avidin resin, are incapable of directing transcription from the somatostatin but not from the adenovirus major late promoter. Addition of the purified 43-kDa protein to the affinity-depleted extract restores transcription from the somatostatin promoter. These results are consistent with the 43-kDa protein being a trans-activator of the somatostatin gene. Images PMID:2564679

  6. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks.

    PubMed

    Mahfouz, Magdy M; Li, Lixin; Shamimuzzaman, Md; Wibowo, Anjar; Fang, Xiaoyun; Zhu, Jian-Kang

    2011-02-01

    Site-specific and rare cutting nucleases are valuable tools for genome engineering. The generation of double-strand DNA breaks (DSBs) promotes homologous recombination in eukaryotes and can facilitate gene targeting, additions, deletions, and inactivation. Zinc finger nucleases have been used to generate DSBs and subsequently, for genome editing but with low efficiency and reproducibility. The transcription activator-like family of type III effectors (TALEs) contains a central domain of tandem repeats that could be engineered to bind specific DNA targets. Here, we report the generation of a Hax3-based hybrid TALE nuclease with a user-selected DNA binding specificity. We show that the engineered TALE nuclease can bind to its target sequence in vitro and that the homodimeric TALE nuclease can cleave double-stranded DNA in vitro if the DNA binding sites have the proper spacing and orientation. Transient expression assays in tobacco leaves suggest that the hybrid nuclease creates DSB in its target sequence, which is subsequently repaired by nonhomologous end-joining repair. Taken together, our data show the feasibility of engineering TALE-based hybrid nucleases capable of generating site-specific DSBs and the great potential for site-specific genome modification in plants and eukaryotes in general.

  7. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    SciTech Connect

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  8. Protein−DNA binding in the absence of specific base-pair recognition

    PubMed Central

    Afek, Ariel; Schipper, Joshua L.; Horton, John; Gordân, Raluca; Lukatsky, David B.

    2014-01-01

    Until now, it has been reasonably assumed that specific base-pair recognition is the only mechanism controlling the specificity of transcription factor (TF)−DNA binding. Contrary to this assumption, here we show that nonspecific DNA sequences possessing certain repeat symmetries, when present outside of specific TF binding sites (TFBSs), statistically control TF−DNA binding preferences. We used high-throughput protein−DNA binding assays to measure the binding levels and free energies of binding for several human TFs to tens of thousands of short DNA sequences with varying repeat symmetries. Based on statistical mechanics modeling, we identify a new protein−DNA binding mechanism induced by DNA sequence symmetry in the absence of specific base-pair recognition, and experimentally demonstrate that this mechanism indeed governs protein−DNA binding preferences. PMID:25313048

  9. DNA binding of the cell cycle transcriptional regulator GcrA depends on N6-adenosine methylation in Caulobacter crescentus and other Alphaproteobacteria.

    PubMed

    Fioravanti, Antonella; Fumeaux, Coralie; Mohapatra, Saswat S; Bompard, Coralie; Brilli, Matteo; Frandi, Antonio; Castric, Vincent; Villeret, Vincent; Viollier, Patrick H; Biondi, Emanuele G

    2013-05-01

    Several regulators are involved in the control of cell cycle progression in the bacterial model system Caulobacter crescentus, which divides asymmetrically into a vegetative G1-phase (swarmer) cell and a replicative S-phase (stalked) cell. Here we report a novel functional interaction between the enigmatic cell cycle regulator GcrA and the N6-adenosine methyltransferase CcrM, both highly conserved proteins among Alphaproteobacteria, that are activated early and at the end of S-phase, respectively. As no direct biochemical and regulatory relationship between GcrA and CcrM were known, we used a combination of ChIP (chromatin-immunoprecipitation), biochemical and biophysical experimentation, and genetics to show that GcrA is a dimeric DNA-binding protein that preferentially targets promoters harbouring CcrM methylation sites. After tracing CcrM-dependent N6-methyl-adenosine promoter marks at a genome-wide scale, we show that these marks recruit GcrA in vitro and in vivo. Moreover, we found that, in the presence of a methylated target, GcrA recruits the RNA polymerase to the promoter, consistent with its role in transcriptional activation. Since methylation-dependent DNA binding is also observed with GcrA orthologs from other Alphaproteobacteria, we conclude that GcrA is the founding member of a new and conserved class of transcriptional regulators that function as molecular effectors of a methylation-dependent (non-heritable) epigenetic switch that regulates gene expression during the cell cycle.

  10. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  11. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    SciTech Connect

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.

    2013-11-20

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures of IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.

  12. Quantification of Cooperativity in Heterodimer-DNA Binding Improves the Accuracy of Binding Specificity Models*

    PubMed Central

    Isakova, Alina; Berset, Yves; Hatzimanikatis, Vassily; Deplancke, Bart

    2016-01-01

    Many transcription factors (TFs) have the ability to cooperate on DNA elements as heterodimers. Despite the significance of TF heterodimerization for gene regulation, a quantitative understanding of cooperativity between various TF dimer partners and its impact on heterodimer DNA binding specificity models is still lacking. Here, we used a novel integrative approach, combining microfluidics-steered measurements of dimer-DNA assembly with mechanistic modeling of the implicated protein-protein-DNA interactions to quantitatively interrogate the cooperative DNA binding behavior of the adipogenic peroxisome proliferator-activated receptor γ (PPARγ):retinoid X receptor α (RXRα) heterodimer. Using the high throughput MITOMI (mechanically induced trapping of molecular interactions) platform, we derived equilibrium DNA binding data for PPARγ, RXRα, as well as the PPARγ:RXRα heterodimer to more than 300 target DNA sites and variants thereof. We then quantified cooperativity underlying heterodimer-DNA binding and derived an integrative heterodimer DNA binding constant. Using this cooperativity-inclusive constant, we were able to build a heterodimer-DNA binding specificity model that has superior predictive power than the one based on a regular one-site equilibrium. Our data further revealed that individual nucleotide substitutions within the target site affect the extent of cooperativity in PPARγ:RXRα-DNA binding. Our study therefore emphasizes the importance of assessing cooperativity when generating DNA binding specificity models for heterodimers. PMID:26912662

  13. A DNA-binding protein factor recognizes two binding domains within the octopine synthase enhancer element.

    PubMed Central

    Tokuhisa, J G; Singh, K; Dennis, E S; Peacock, W J

    1990-01-01

    A protein that binds to the enhancing element of the octopine synthase gene has been identified in nuclear extracts from maize cell suspension cultures. Two protein-DNA complexes are distinguishable by electrophoretic mobility in gel retardation assays. Footprint analyses of these low and high molecular weight complexes show, respectively, half and complete protection of the ocs-element DNA from cleavage by methidiumpropyl-EDTA.FE(II). Two lines of evidence indicate that the element has two recognition sites, each of which can bind identical protein units. Elements that are mutated in one or the other half and form only the low molecular weight complex interfere with the formation of both the low and high molecular weight complexes by the wild-type element. Protein isolated from a complex with only one binding site occupied can bind to the wild-type ocs-element and generate complexes with protein occupying one or both binding sites. Occupation of both sites of the ocs-element is a prerequisite for transcriptional enhancement. PMID:2152113

  14. Bacillus subtilis GabR, a protein with DNA-binding and aminotransferase domains, is a PLP-dependent transcriptional regulator.

    PubMed

    Belitsky, Boris R

    2004-07-16

    Bacillus subtilis GabR is a member of a poorly characterized but widespread family of chimeric bacterial proteins that have apparent DNA binding and aminotransferase domains. GabR positively regulates expression of the gabTD operon responsible for utilization of gamma-aminobutyric acid (GABA) and represses the divergently transcribed gabR gene. Purified GabR bound specifically to the DNA region overlapping the -35 region of the gabT promoter and the -10 and +1 regions of the gabR promoter. Two 6 bp direct repeats located at the ends of this region appeared to be essential for GabR binding. In transcription reactions in vitro, GabR alone repressed expression from the gabR promoter but activated expression from the gabT promoter only in the presence of GABA and pyridoxal 5'-phosphate, an essential cofactor of aminotransferases. A similar requirement for pyridoxal 5'-phosphate and GABA for GabR-mediated transcription activation was shown in vivo. In vitro this requirement could be partially satisfied with pyridoxamine 5'-phosphate and succinic semialdehyde, the products of a GABA-dependent aminotransferase half-reaction. We hypothesize that the GabR-catalyzed aminotransferase-like reaction between GABA and pyridoxal 5'-phosphate is essential for GabR action as a transcriptional activator.

  15. A designed DNA binding motif that recognizes extended sites and spans two adjacent major grooves†

    PubMed Central

    Rodríguez, Jéssica; Mosquera, Jesús; García-Fandiño, Rebeca; Vázquez, M. Eugenio; Mascareñas, José L.

    2016-01-01

    We report the rational design of a DNA-binding peptide construct composed of the DNA-contacting regions of two transcription factors (GCN4 and GAGA) linked through an AT-hook DNA anchor. The resulting chimera, which represents a new, non-natural DNA binding motif, binds with high affinity and selectivity to a long composite sequence of 13 base pairs (TCAT-AATT-GAGAG). PMID:27252825

  16. A Key Evolutionary Mutation Enhances DNA Binding of the FOXP2 Forkhead Domain.

    PubMed

    Morris, Gavin; Fanucchi, Sylvia

    2016-04-01

    Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members.

  17. A DNA-binding factor, ArfA, interacts with the bldH promoter and affects undecylprodigiosin production in Streptomyces lividans.

    PubMed

    Xu, Delin; Kim, Tae-Jong; Park, Zee-Yong; Lee, Sung-Kwon; Yang, Seung Hwan; Kwon, Hyung-Jin; Suh, Joo-Won

    2009-02-01

    The fact that adpA promoter activity is enhanced by S-adenosylmethionine without the involvement of the A-factor/ArpA regulatory cascade suggests the existence of additional transcriptional regulators for adpA expression in Streptomyces griseus. In this study, an additional adpA promoter regulatory protein, named ArfA, that is conserved among many bacteria was identified using DNA affinity purification from the cell extracts of Streptomyces lividans. The interactions of ArfA with the adpA promoter from S. griseus and with the bldH promoter from S. lividans were specific and both adpA and bldH promoters required ArfA for the wild-type level of their expressions in S. lividans. bldH of S. lividans is a homolog of adpA of S. lividans. ArfA-deletion mutant had only 70% of the normal undecylprodigiosin production. This result was confirmed by reduced redD promoter activity in the ArfA-deletion mutant. These results suggest that ArfA is a new type of DNA-binding regulator.

  18. Coding limits on the number of transcription factors

    PubMed Central

    Itzkovitz, Shalev; Tlusty, Tsvi; Alon, Uri

    2006-01-01

    Background Transcription factor proteins bind specific DNA sequences to control the expression of genes. They contain DNA binding domains which belong to several super-families, each with a specific mechanism of DNA binding. The total number of transcription factors encoded in a genome increases with the number of genes in the genome. Here, we examined the number of transcription factors from each super-family in diverse organisms. Results We find that the number of transcription factors from most super-families appears to be bounded. For example, the number of winged helix factors does not generally exceed 300, even in very large genomes. The magnitude of the maximal number of transcription factors from each super-family seems to correlate with the number of DNA bases effectively recognized by the binding mechanism of that super-family. Coding theory predicts that such upper bounds on the number of transcription factors should exist, in order to minimize cross-binding errors between transcription factors. This theory further predicts that factors with similar binding sequences should tend to have similar biological effect, so that errors based on mis-recognition are minimal. We present evidence that transcription factors with similar binding sequences tend to regulate genes with similar biological functions, supporting this prediction. Conclusion The present study suggests limits on the transcription factor repertoire of cells, and suggests coding constraints that might apply more generally to the mapping between binding sites and biological function. PMID:16984633

  19. virG, an Agrobacterium tumefaciens transcriptional activator, initiates translation at a UUG codon and is a sequence-specific DNA-binding protein.

    PubMed Central

    Pazour, G J; Das, A

    1990-01-01

    The Agrobacterium tumefaciens Ti plasmid virG locus, in conjunction with virA and acetosyringone, activates transcription of the virulence (vir) genes. Insertional and deoxyoligonucleotide-directed mutagenesis studies showed that both octopine and nopaline Ti plasmid virG genes initiate translation at a UUG codon. VirG protein initiated at this UUG codon was found to be 241 amino acid residues in length and had an apparent molecular mass of 27.1 kilodaltons. A Salmonella typhimurium trp-virG transcriptional fusion was constructed to overproduce VirG. Agrobacterium cells containing this gene fusion showed a large increase in virG activity in the presence of virA and acetosyringone. Since the trp promoter is not under virA-virG control, this result indicates that modification of VirG is necessary for its full activity. VirG overproduced in Escherichia coli was purified from inclusion bodies. It was found to be a DNA-binding protein that preferentially bound DNA fragments containing the 5' nontranscribed regions of the virA, -B, -C, -D, and -G operons. Significant specific binding to the 5' nontranscribed region sequences of virE was not detected. DNase I footprinting of the upstream regions of virC-virD and virG showed that VirG binds to sequences around the vir box region. Images FIG. 1 FIG. 2 FIG. 3 PMID:2307647

  20. THAP5 is a DNA binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    PubMed Central

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-01

    THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death. PMID:21110952

  1. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma.

    PubMed Central

    Bailly, R A; Bosselut, R; Zucman, J; Cormier, F; Delattre, O; Roussel, M; Thomas, G; Ghysdael, J

    1994-01-01

    The 5' half of the EWS gene has recently been described to be fused to the 3' regions of genes encoding the DNA-binding domain of several transcriptional regulators, including ATF1, FLI-1, and ERG, in several human tumors. The most frequent occurrence of this situation results from the t(11;22)(q24;q12) chromosome translocation specific for Ewing sarcoma (ES) and related tumors which joins EWS sequences to the 3' half of FLI-1, which encodes a member of the Ets family of transcriptional regulators. We show here that this chimeric gene encodes an EWS-FLI-1 nuclear protein which binds DNA with the same sequence specificity as the wild-type parental FLI-1 protein. We further show that EWS-FLI-1 is an efficient sequence-specific transcriptional activator of model promoters containing FLI-1 (Ets)-binding sites, a property which is strictly dependent on the presence of its EWS domain. Comparison of the properties of the N-terminal activation domain of FLI-1 to those of the EWS domain of the fusion protein indicates that EWS-FLI-1 has altered transcriptional activation properties compared with FLI-1. These results suggest that EWS-FLI-1 contributes to the transformed phenotype of ES tumor cells by inducing the deregulated and/or unscheduled activation of genes normally responsive to FLI-1 or to other close members of the Ets family. ES and related tumors are characterized by an elevated level of c-myc expression. We show that EWS-FLI-1 is a transactivator of the c-myc promoter, suggesting that upregulation of c-myc expression is under control of EWS-FLI-1. Images PMID:8164678

  2. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    ERIC Educational Resources Information Center

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  3. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  4. Isolation and DNA-binding characteristics of a protein involved in transcription activation of two divergently transcribed, essential yeast genes.

    PubMed Central

    Halfter, H; Müller, U; Winnacker, E L; Gallwitz, D

    1989-01-01

    We have identified a protein, BAF1, which has two oppositely oriented, partially overlapping binding sites within a symmetrical sequence located midway between and upstream of the divergently transcribed YPT1 and TUB2 genes of the yeast Saccharomyces cerevisiae. The 120 kd BAF1 protein was purified to near homogeneity and used to delineate the two binding sites and to identify apparent protein contact sites by the missing contact technique, methylation interference and by site-directed mutagenesis. The BAF1-recognition sequence contains a conserved TCN7ACG element recently identified at autonomously replicating sequences (ARS) and in the 5' and 3' flanking region of other yeast genes. The symmetrical sequence of the YPT1/TUB2 intergene region seems not to be involved in DNA replication but activates transcription in an orientation-independent fashion. Images PMID:2684633

  5. The Lon protease from the haloalkaliphilic archaeon Natrialba magadii is transcriptionally linked to a cluster of putative membrane proteases and displays DNA-binding activity.

    PubMed

    Sastre, Diego E; Paggi, Roberto A; De Castro, Rosana E

    2011-05-20

    The ATP-dependent Lon protease is universally distributed in bacteria, eukaryotic organelles and archaea. In comparison with bacterial and eukaryal Lon proteases, the biology of the archaeal Lon has been studied to a limited extent. In this study, the gene encoding the Lon protease of the alkaliphilic haloarchaeon Natrialba magadii (Nmlon) was cloned and sequenced, and the genetic organization of Nmlon was examined at the transcriptional level. Nmlon encodes a 84 kDa polypeptide with a pI of 4.42 which contains the ATPase, protease and membrane targeting domains of the archaeal-type LonB proteases. Nmlon is part of an operon that encodes membrane proteases and it is transcribed as a polycistronic mRNA in N. magadii cells at different growth stages. Accordingly, NmLon was detected in cell membranes of N. magadii throughout growth by Western blot analysis using specific anti-NmLon antibodies. Interestingly, in electrophoretic mobility shift assays, purified NmLon bound double stranded as well as single stranded DNA in the presence of elevated salt concentrations. This finding shows that DNA-binding is conserved in the LonA and LonB subfamilies and suggests that Lon-DNA interaction may be relevant for its function in haloarchaea.

  6. Inhibitor of differentiation 4 (ID4) acts as an inhibitor of ID-1, -2 and -3 and promotes basic helix loop helix (bHLH) E47 DNA binding and transcriptional activity.

    PubMed

    Sharma, Pankaj; Chinaranagari, Swathi; Chaudhary, Jaideep

    2015-05-01

    The four known ID proteins (ID1-4, Inhibitor of Differentiation) share a homologous helix loop helix (HLH) domain and act as dominant negative regulators of basic-HLH transcription factors. ID proteins also interact with many non-bHLH proteins in complex networks. The expression of ID proteins is increasingly observed in many cancers. Whereas ID-1, ID-2 and ID-3, are generally considered as tumor promoters, ID4 on the contrary has emerged as a tumor suppressor. In this study we demonstrate that ID4 heterodimerizes with ID-1, -2 and -3 and promote bHLH DNA binding, essentially acting as an inhibitor of inhibitors of differentiation proteins. Interaction of ID4 was observed with ID1, ID2 and ID3 that was dependent on intact HLH domain of ID4. Interaction with bHLH protein E47 required almost 3 fold higher concentration of ID4 as compared to ID1. Furthermore, inhibition of E47 DNA binding by ID1 was restored by ID4 in an EMSA binding assay. ID4 and ID1 were also colocalized in prostate cancer cell line LNCaP. The alpha helix forming alanine stretch N-terminal, unique to HLH ID4 domain was required for optimum interaction. Ectopic expression of ID4 in DU145 prostate cancer line promoted E47 dependent expression of CDKNI p21. Thus counteracting the biological activities of ID-1, -2 and -3 by forming inactive heterodimers appears to be a novel mechanism of action of ID4. These results could have far reaching consequences in developing strategies to target ID proteins for cancer therapy and understanding biologically relevant ID-interactions.

  7. Inhibitor of Differentiation 4 (ID4) Acts as an Inhibitor of ID-1, -2 and -3 and Promotes basic Helix Loop Helix (bHLH) E47 DNA Binding and Transcriptional Activity

    PubMed Central

    Sharma, Pankaj; Chinaranagari, Swathi; Chaudhary, Jaideep

    2015-01-01

    The four known ID proteins (ID1-4, Inhibitor of Differentiation) share a homologous helix loop helix (HLH) domain and act as dominant negative regulators of basic-HLH transcription factors. ID proteins also interact with many non-bHLH proteins in complex networks. The expression of ID proteins is increasingly observed in many cancers. Whereas ID-1, ID-2 and ID-3, are generally considered as tumor promoters, ID4 on the contrary has emerged as a tumor suppressor. In this study we demonstrate that ID4 heterodimerizes with ID-1, -2 and -3 and promote bHLH DNA binding, essentially acting as an inhibitor of inhibitors of differentiation proteins. Interaction of ID4 was observed with ID1, ID2 and ID3 that was dependent on intact HLH domain of ID4. Interaction with bHLH protein E47 required almost 3 fold higher concentration of ID4 as compared to ID1. Furthermore, inhibition of E47 DNA binding by ID1 was restored by ID4 in an EMSA binding assay. ID4 and ID1 were also colocalized in prostate cancer cell line LNCaP. The alpha helix forming alanine stretch N-terminal, unique to HLH ID4 domain was required for optimum interaction. Ectopic expression of ID4 in DU145 prostate cancer line promoted E47 dependent expression of CDKNI p21. Thus counteracting the biological activities of ID-1, -2 and -3 by forming inactive heterodimers appears to be a novel mechanism of action of ID4. These results could have far reaching consequences in developing strategies to target ID proteins for cancer therapy and understanding biologically relevant ID- interactions. PMID:25778840

  8. The Methanosarcina acetivorans thioredoxin system activates DNA binding of the redox-sensitive transcriptional regulator MsvR

    PubMed Central

    Sheehan, Ryan; McCarver, Addison C.; Isom, Catherine E.; Karr, Elizabeth A.; Lessner, Daniel J.

    2015-01-01

    The production of biogas (methane) by anaerobic digestion is an important facet to renewable energy, but is subject to instability due to the sensitivity of strictly anaerobic methanogenic archaea (methanogens) to environmental perturbations, such as oxygen. An understanding of the oxidant-sensing mechanisms used by methanogens may lead to the development of more oxidant tolerant (i.e. stable) methanogen strains. MsvR is a redox-sensitive transcriptional regulator that is found exclusively in methanogens. We show here that oxidation of MsvR from Methanosarcina acetivorans (MaMsvR) with hydrogen peroxide oxidizes cysteine thiols, which inactivates MaMsvR binding to its own promoter (PmsvR). Incubation of oxidized MaMsvR with the M. acetivorans thioredoxin system (NADPH, MaTrxR, and MaTrx7) results in reduction of the cysteines back to thiols and activation of PmsvR binding. These data confirm that cysteines are critical for the thiol-disulfide regulation of PmsvR binding by MaMsvR and support a role for the M. acetivorans thioredoxin system in the in vivo activation of MaMsvR. The results support the feasibility of using MaMsvR and PmsvR, along with the Methanosarcina genetic system, to design methanogen strains with oxidant-regulated gene expression systems, which may aid in stabilizing anaerobic digestion. PMID:25791378

  9. Multiple DNA-binding factors interact with overlapping specificities at the aryl hydrocarbon response element of the cytochrome P450IA1 gene.

    PubMed Central

    Saatcioglu, F; Perry, D J; Pasco, D S; Fagan, J B

    1990-01-01

    to lack nuclear Ah receptor, expressed normal levels of XF1 and XF2, suggesting that the former factor is genetically distinct from the latter two; and (v) a divalent metal ion, probably Zn2+, is known to be an essential cofactor for the Ah receptor but was not required for the DNA-binding activities of XF1 and XF2. Together, these findings indicate that the Ah receptor is distinct from XF1 and XF2, while the latter two activities may be related. Because the DNA-binding domains of these three factors overlap substantially, their binding to XREs is probably mutually exclusive, which suggests that the interplay of these factors at Ah response elements may be important to the regulation of CYP1A1 gene transcription. The results of preliminary transfection experiments with constructs harboring XREs upstream of the chloramphenicol acetyltransferase gene driven by a minimal simian virus 40 promoter are presented that are consistent with this hypothesis. Images PMID:2174107

  10. Transcriptional Repressor TrmBL2 from Thermococcus kodakarensis Forms Filamentous Nucleoprotein Structures and Competes with Histones for DNA Binding in a Salt- and DNA Supercoiling-dependent Manner*

    PubMed Central

    Efremov, Artem K.; Qu, Yuanyuan; Maruyama, Hugo; Lim, Ci J.; Takeyasu, Kunio; Yan, Jie

    2015-01-01

    Architectural DNA proteins play important roles in the chromosomal DNA organization and global gene regulation in living cells. However, physiological functions of some DNA-binding proteins from archaea remain unclear. Recently, several abundant DNA-architectural proteins including histones, Alba, and TrmBL2 have been identified in model euryarchaeon Thermococcus kodakarensis. Although histones and Alba proteins have been previously characterized, the DNA binding properties of TrmBL2 and its interplay with the other major architectural proteins in the chromosomal DNA organization and gene transcription regulation remain largely unexplored. Here, we report single-DNA studies showing that at low ionic strength (<300 mm KCl), TrmBL2 binds to DNA largely in non-sequence-specific manner with positive cooperativity, resulting in formation of stiff nucleoprotein filamentous patches, whereas at high ionic strength (>300 mm KCl) TrmBL2 switches to more sequence-specific interaction, suggesting the presence of high affinity TrmBL2-filament nucleation sites. Furthermore, in vitro assays indicate the existence of DNA binding competition between TrmBL2 and archaeal histones B from T. kodakarensis, which can be strongly modulated by DNA supercoiling and ionic strength of surrounding solution. Overall, these results advance our understanding of TrmBL2 DNA binding properties and provide important insights into potential functions of architectural proteins in nucleoid organization and gene regulation in T. kodakarensis. PMID:25931116

  11. WRKY transcription factors.

    PubMed

    Rushton, Paul J; Somssich, Imre E; Ringler, Patricia; Shen, Qingxi J

    2010-05-01

    WRKY transcription factors are one of the largest families of transcriptional regulators in plants and form integral parts of signalling webs that modulate many plant processes. Here, we review recent significant progress in WRKY transcription factor research. New findings illustrate that WRKY proteins often act as repressors as well as activators, and that members of the family play roles in both the repression and de-repression of important plant processes. Furthermore, it is becoming clear that a single WRKY transcription factor might be involved in regulating several seemingly disparate processes. Mechanisms of signalling and transcriptional regulation are being dissected, uncovering WRKY protein functions via interactions with a diverse array of protein partners, including MAP kinases, MAP kinase kinases, 14-3-3 proteins, calmodulin, histone deacetylases, resistance proteins and other WRKY transcription factors. WRKY genes exhibit extensive autoregulation and cross-regulation that facilitates transcriptional reprogramming in a dynamic web with built-in redundancy.

  12. Mapping functional regions of transcription factor TFIIIA.

    PubMed Central

    Vrana, K E; Churchill, M E; Tullius, T D; Brown, D D

    1988-01-01

    Functional deletion mutants of the trans-acting factor TFIIIA, truncated at both ends of the molecule, have been expressed by in vitro transcription of a cDNA clone and subsequent cell-free translation of the synthetic mRNAs. A region of TFIIIA 19 amino acids or less, near the carboxyl terminus, is critical for maximal transcription and lies outside the DNA-binding domain. The elongated protein can be aligned over the internal control region (ICR) of the Xenopus 5S RNA gene with its carboxyl terminus oriented toward the 5' end of the gene and its amino terminus oriented toward the 3' end of the gene. The nine "zinc fingers" and the linkers that separate them comprise 80% of the protein mass and correspond to the DNA-binding domain of TFIIIA. The zinc fingers near the amino terminus of the protein contribute more to the overall binding energy of the protein to the ICR than do the zinc fingers near the carboxyl end. The most striking feature of TFIIIA is its modular structure. This is demonstrated by the fact that each zinc finger binds to just one of three short nucleotide sequences within the ICR. Images PMID:2837652

  13. Mapping functional regions of transcription factor TFIIIA.

    PubMed

    Vrana, K E; Churchill, M E; Tullius, T D; Brown, D D

    1988-04-01

    Functional deletion mutants of the trans-acting factor TFIIIA, truncated at both ends of the molecule, have been expressed by in vitro transcription of a cDNA clone and subsequent cell-free translation of the synthetic mRNAs. A region of TFIIIA 19 amino acids or less, near the carboxyl terminus, is critical for maximal transcription and lies outside the DNA-binding domain. The elongated protein can be aligned over the internal control region (ICR) of the Xenopus 5S RNA gene with its carboxyl terminus oriented toward the 5' end of the gene and its amino terminus oriented toward the 3' end of the gene. The nine "zinc fingers" and the linkers that separate them comprise 80% of the protein mass and correspond to the DNA-binding domain of TFIIIA. The zinc fingers near the amino terminus of the protein contribute more to the overall binding energy of the protein to the ICR than do the zinc fingers near the carboxyl end. The most striking feature of TFIIIA is its modular structure. This is demonstrated by the fact that each zinc finger binds to just one of three short nucleotide sequences within the ICR.

  14. Transcriptional activity of Sp1 is regulated by molecular interactions between the zinc finger DNA binding domain and the inhibitory domain with corepressors, and this interaction is modulated by MEK.

    PubMed

    Lee, Jung-Ahn; Suh, Dong-Chul; Kang, Jae-Eun; Kim, Myung-Hwa; Park, Hyejin; Lee, Min-Nyung; Kim, Jung-Min; Jeon, Bu-Nam; Roh, Hee-Eun; Yu, Mi-Young; Choi, Kang-Yell; Kim, Kyu Yeun; Hur, Man-Wook

    2005-07-29

    Sp1 activates the transcription of many cellular and viral genes with the GC-box in either the proximal promoter or the enhancer. Sp1 is composed of several functional domains, such as the inhibitory domain (ID), two serine/threonine-rich domains, two glutamine-rich domains, three C2H2-type zinc finger DNA binding domains (ZFDBD), and a C-terminal D domain. The ZDDBD is the most highly conserved domain among the Sp-family transcription factors and plays a critical role in GC-box recognition. In this study, we investigated the protein-protein interactions occurring at the Sp1ZFDBD and the Sp1ID, and the molecular mechanisms controlling the interaction. Our results found that Sp1ZFDBD and Sp1ID repressed transcription once they were targeted to the proximal promoter of the pGal4 UAS reporter fusion gene system, suggesting molecular interaction with the repressor molecules. Indeed, mammalian two-hybrid assays, GST fusion protein pull-down assays, and co-immunoprecipitation assays showed that Sp1ZFDBD and Sp1ID are able to interact with corepressor proteins such as SMRT, NcoR, and BCoR. The molecular interactions appear to be regulated by MAP kinase/Erk kinase kinase (MEK). The molecular interactions between Sp1ID and the corepressor might explain the role of Sp1 as a repressor under certain circumstances. The siRNA-induced degradation of the corepressors resulted in an up-regulation of Sp1-dependent transcription. The cellular context of the corepressors and the regulation of molecular interaction between corepressors and Sp1ZFDBD or Sp1ID might be important in controlling Sp1 activity. PMID:15878880

  15. Transcriptional activation of p21(WAF¹/CIP¹) is mediated by increased DNA binding activity and increased interaction between p53 and Sp1 via phosphorylation during replicative senescence of human embryonic fibroblasts.

    PubMed

    Kim, Hyun-Seok; Heo, Jee-In; Park, Seong-Hoon; Shin, Jong-Yeon; Kang, Hong-Jun; Kim, Min-Ju; Kim, Sung Chan; Kim, Jaebong; Park, Jae-Bong; Lee, Jae-Yong

    2014-01-01

    Although p21(WAF1/CIP1) is known to be elevated during replicative senescence of human embryonic fibroblasts (HEFs), the mechanism for p21 up-regulation has not been elucidated clearly. In order to explore the mechanism, we analyzed expression of p21 mRNA and protein and luciferase activity of full-length p21 promoter. The result demonstrated that p21 up-regulation was accomplished largely at transcription level. The promoter assay using serially-deleted p21 promoter constructs revealed that p53 binding site was the most important site and Sp1 binding sites were necessary but not sufficient for transcriptional activation of p21. In addition, p53 protein was shown to interact with Sp1 protein. The interaction was increased in aged fibroblasts and was regulated by phosphorylation of p53 and Sp1. DNA binding activity of p53 was significantly elevated in aged fibroblasts but that of Sp1 was not. DNA binding activities of p53 and Sp1 were also regulated by phosphorylation. Phosphorylation of p53 at serine-15 and of Sp1 at serines appears to be involved. Taken together, the result demonstrated that p21 transcription during replicative senescence of HEFs is up-regulated by increase in DNA binding activity and interaction between p53 and Sp1 via phosphorylation.

  16. TFCat: the curated catalog of mouse and human transcription factors

    PubMed Central

    Fulton, Debra L; Sundararajan, Saravanan; Badis, Gwenael; Hughes, Timothy R; Wasserman, Wyeth W; Roach, Jared C; Sladek, Rob

    2009-01-01

    Unravelling regulatory programs governed by transcription factors (TFs) is fundamental to understanding biological systems. TFCat is a catalog of mouse and human TFs based on a reliable core collection of annotations obtained by expert review of the scientific literature. The collection, including proven and homology-based candidate TFs, is annotated within a function-based taxonomy and DNA-binding proteins are organized within a classification system. All data and user-feedback mechanisms are available at the TFCat portal . PMID:19284633

  17. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor.

    PubMed

    Sayou, Camille; Nanao, Max H; Jamin, Marc; Posé, David; Thévenon, Emmanuel; Grégoire, Laura; Tichtinsky, Gabrielle; Denay, Grégoire; Ott, Felix; Peirats Llobet, Marta; Schmid, Markus; Dumas, Renaud; Parcy, François

    2016-04-21

    Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF.

  18. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor

    PubMed Central

    Sayou, Camille; Nanao, Max H.; Jamin, Marc; Posé, David; Thévenon, Emmanuel; Grégoire, Laura; Tichtinsky, Gabrielle; Denay, Grégoire; Ott, Felix; Peirats Llobet, Marta; Schmid, Markus; Dumas, Renaud; Parcy, François

    2016-01-01

    Deciphering the mechanisms directing transcription factors (TFs) to specific genome regions is essential to understand and predict transcriptional regulation. TFs recognize short DNA motifs primarily through their DNA-binding domain. Some TFs also possess an oligomerization domain suspected to potentiate DNA binding but for which the genome-wide influence remains poorly understood. Here we focus on the LEAFY transcription factor, a master regulator of flower development in angiosperms. We have determined the crystal structure of its conserved amino-terminal domain, revealing an unanticipated Sterile Alpha Motif oligomerization domain. We show that this domain is essential to LEAFY floral function. Moreover, combined biochemical and genome-wide assays suggest that oligomerization is required for LEAFY to access regions with low-affinity binding sites or closed chromatin. This finding shows that domains that do not directly contact DNA can nevertheless have a profound impact on the DNA binding landscape of a TF. PMID:27097556

  19. Hypoxia-inducible factor 1 mediates hypoxia-induced cardiomyocyte lipid accumulation by reducing the DNA binding activity of peroxisome proliferator-activated receptor {alpha}/retinoid X receptor

    SciTech Connect

    Belanger, Adam J.; Luo Zhengyu; Vincent, Karen A.; Akita, Geoffrey Y.; Cheng, Seng H.; Gregory, Richard J.; Jiang Canwen

    2007-12-21

    In response to cellular hypoxia, cardiomyocytes adapt to consume less oxygen by shifting ATP production from mitochondrial fatty acid {beta}-oxidation to glycolysis. The transcriptional activation of glucose transporters and glycolytic enzymes by hypoxia is mediated by hypoxia-inducible factor 1 (HIF-1). In this study, we examined whether HIF-1 was involved in the suppression of mitochondrial fatty acid {beta}-oxidation in hypoxic cardiomyocytes. We showed that either hypoxia or adenovirus-mediated expression of a constitutively stable hybrid form (HIF-1{alpha}/VP16) suppressed mitochondrial fatty acid metabolism, as indicated by an accumulation of intracellular neutral lipid. Both treatments also reduced the mRNA levels of muscle carnitine palmitoyltransferase I which catalyzes the rate-limiting step in the mitochondrial import of fatty acids for {beta}-oxidation. Furthermore, adenovirus-mediated expression of HIF-1{alpha}/VP16 in cardiomyocytes under normoxic conditions also mimicked the reduction in the DNA binding activity of peroxisome proliferator-activated receptor {alpha} (PPAR{alpha})/retinoid X receptor (RXR), in the presence or absence of a PPAR{alpha} ligand. These results suggest that HIF-1 may be involved in hypoxia-induced suppression of fatty acid metabolism in cardiomyocytes by reducing the DNA binding activity of PPAR{alpha}/RXR.

  20. Phosphorylation Regulates Functions of ZEB1 Transcription Factor.

    PubMed

    Llorens, M Candelaria; Lorenzatti, Guadalupe; Cavallo, Natalia L; Vaglienti, Maria V; Perrone, Ana P; Carenbauer, Anne L; Darling, Douglas S; Cabanillas, Ana M

    2016-10-01

    ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc. PMID:26868487

  1. Phosphorylation Regulates Functions of ZEB1 Transcription Factor.

    PubMed

    Llorens, M Candelaria; Lorenzatti, Guadalupe; Cavallo, Natalia L; Vaglienti, Maria V; Perrone, Ana P; Carenbauer, Anne L; Darling, Douglas S; Cabanillas, Ana M

    2016-10-01

    ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc.

  2. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme.

    PubMed Central

    Xanthoudakis, S; Miao, G; Wang, F; Pan, Y C; Curran, T

    1992-01-01

    The DNA binding activity of Fos and Jun is regulated in vitro by a post-translational mechanism involving reduction-oxidation. Redox regulation occurs through a conserved cysteine residue located in the DNA binding domain of Fos and Jun. Reduction of this residue by chemical reducing agents or by a ubiquitous nuclear redox factor (Ref-1) recently purified from Hela cells, stimulates AP-1 DNA binding activity in vitro, whereas oxidation or chemical modification of the cysteine has an inhibitory effect on DNA binding activity. Here we demonstrate that the protein product of the ref-1 gene stimulates the DNA binding activity of Fos-Jun heterodimers, Jun-Jun homodimers and Hela cell AP-1 proteins as well as that of several other transcription factors including NF-kappa B, Myb and members of the ATF/CREB family. Furthermore, immunodepletion analysis indicates that Ref-1 is the major AP-1 redox activity in Hela nuclear extracts. Interestingly, Ref-1 is a bifunctional protein; it also possesses an apurinic/apyrimidinic (AP) endonuclease DNA repair activity. However, the redox and DNA repair activities of Ref-1 can, in part, be distinguished biochemically. This study suggests a novel link between transcription factor regulation, oxidative signalling and DNA repair processes in higher eukaryotes. Images PMID:1380454

  3. In silico Analysis of Transcription Factor Repertoire and Prediction of Stress Responsive Transcription Factors in Soybean

    PubMed Central

    Mochida, Keiichi; Yoshida, Takuhiro; Sakurai, Tetsuya; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2009-01-01

    Sequence-specific DNA-binding transcription factors (TFs) are often termed as ‘master regulators’ which bind to DNA and either activate or repress gene transcription. We have computationally analysed the soybean genome sequence data and constructed a proper set of TFs based on the Hidden Markov Model profiles of DNA-binding domain families. Within the soybean genome, we identified 4342 loci encoding 5035 TF models which grouped into 61 families. We constructed a database named SoybeanTFDB (http://soybeantfdb.psc.riken.jp) containing the full compilation of soybean TFs and significant information such as: functional motifs, full-length cDNAs, domain alignments, promoter regions, genomic organization and putative regulatory functions based on annotations of gene ontology (GO) inferred by comparative analysis with Arabidopsis. With particular interest in abiotic stress signalling, we analysed the promoter regions for all of the TF encoding genes as a means to identify abiotic stress responsive cis-elements as well as all types of cis-motifs provided by the PLACE database. SoybeanTFDB enables scientists to easily access cis-element and GO annotations to aid in the prediction of TF function and selection of TFs with functions of interest. This study provides a basic framework and an important user-friendly public information resource which enables analyses of transcriptional regulation in soybean. PMID:19884168

  4. Energy transfer analysis of Fos-Jun dimerization and DNA binding.

    PubMed Central

    Patel, L R; Curran, T; Kerppola, T K

    1994-01-01

    The protooncogenes fos and jun encode proteins that bind to DNA as dimeric complexes and regulate gene expression. Protein dimerization is mediated by a leucine zipper and results in juxtaposition of regions of each protein rich in basic amino acids that comprise a bimolecular DNA binding domain. We have developed an approach based on resonance energy transfer for the quantitative analysis of dimerization and DNA binding by Fos and Jun in solution. Fos-(118-211) and Jun-(225-334) polypeptides were labeled with either 5-iodoacetamidofluorescein or rhodamine X iodoacetamide on unique cysteine residues located in their DNA binding domains. Formation of heterodimeric complexes between the labeled proteins allowed resonance energy transfer between the donor fluorescein and the acceptor rhodamine fluorophores. DNA binding induced a conformational transition that increased the efficiency of resonance energy transfer. This increase was consistent with a 3-A reduction in the distance between the fluorophores. Using this assay, we determined the affinity of the Fos-Jun interaction and examined the kinetics of dimerization and DNA binding as well as the rate of subunit exchange. Dimerization and DNA binding by Fos and Jun were rapid, with half-times of < 10 s. In the absence of DNA, Fos and Jun subunits exchanged rapidly, with a half-time of < 10 s. In contrast, in the presence of DNA, the complex was extremely stable. Thus, leucine zipper-containing transcription factors may exchange subunits readily when free in solution, but not when bound to DNA. Images PMID:8041795

  5. Chemical Shift Assignments of Mouse HOXD13 DNA Binding Domain Bound to Duplex DNA

    PubMed Central

    Turner, Matthew; Zhang, Yonghong; Carlson, Hanqian L.; Stadler, H. Scott; Ames, James B.

    2014-01-01

    The homeobox gene (Hoxd13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of proteins that control embryonic morphogenesis. We report NMR chemical shift assignments of mouse Hoxd13 DNA binding domain bound to an 11-residue DNA duplex (BMRB no. 25133). PMID:25491407

  6. Exploiting anthracene photodimerization within peptides: light induced sequence-selective DNA binding.

    PubMed

    Bullen, Gemma A; Tucker, James H R; Peacock, Anna F A

    2015-05-11

    The unprecedented use of anthracene photodimerization within a protein or peptide system is explored through its incorporation into a DNA-binding peptide, derived from the GCN4 transcription factor. This study demonstrates an effective and dynamic interplay between a photoreaction and a peptide-DNA assembly, with each process able to exert control over the other.

  7. Controlled transcriptional regulation in eukaryotes by a novel transcription factor derived from Escherichia coli purine repressor.

    PubMed

    Yeon, Eun-Hee; Noh, Ju-Young; Kim, Jong-Min; Lee, Min-Young; Yoon, Sarah; Park, Sang-Kyu; Choi, Kang-Yell; Kim, Kyung-Sup

    2004-06-25

    Unlike the DNA-binding domains (DBD) of most eukaryotic transcription factors, Escherichia coli LacI family transcription factors are unable to bind to specific target DNA sequences without a cofactor-binding domain. In the present study, we reconstructed a novel DBD designated as PurHG, which binds constitutively to a 16bp purine repressor operator, by fusion of the purine repressor (PurR) DBD (residues 1-57) and the GAL4 dimerization domain (DD, residues 42-148). Binding of PurHG to DNA requires the dimerization and a hinge helix of PurR DBD. When the PurHG was expressed as a fusion protein in a form of a transcription activator (PurAD) or an artificial nuclear receptor (PurAPR or PurAER) responding to ligand, such as RU486 or beta-estradiol, it could regulate the expression of the reporter genes in NIH3T3 cells. The prerequisite region of the GAL4 DD for DNA-binding was amino acid residues from 42 to 98 in the form of PurAD, while the amino acid residues from 42 to 75 were sufficient for ligand-dependent regulation in the form of PurAPR. These results suggest that the dimerization function of the progesterone ligand-binding domain could be substituted for region 76-98 of the GAL4 DD. In summary, the fusion of the PurR DBD and the GAL4 DD generates fully active DNA-binding protein, PurHG, in vitro and in vivo, and these results provide the direct evidence of structural predictions that the proximate positioning of PurR hinge helical regions is critical for DNA-binding.

  8. Characterization of DNA Binding Property of the HIV-1 Host Factor and Tumor Suppressor Protein Integrase Interactor 1 (INI1/hSNF5)

    PubMed Central

    Das, Supratik; Thangamuniyandi, Muruganandan; Dasgupta, Saumya; Chongdar, Nipa; Kumar, Gopinatha Suresh; Basu, Gautam

    2013-01-01

    Integrase Interactor 1 (INI1/hSNF5) is a component of the hSWI/SNF chromatin remodeling complex. The INI1 gene is either deleted or mutated in rhabdoid cancers like ATRT (Atypical terratoid and rhabdoid tumor). INI1 is also a host factor for HIV-1 replication. INI1 binds DNA non-specifically. However, the mechanism of DNA binding and its biological role are unknown. From agarose gel retardation assay (AGRA), Ni-NTA pull-down and atomic force microscopy (AFM) studies we show that amino acids 105–183 of INI1 comprise the minimal DNA binding domain (DBD). The INI1 DBD is absent in plants and in yeast SNF5. It is present in Caenorhabditis elegans SNF5, Drosophila melanogaster homologue SNR1 and is a highly conserved domain in vertebrates. The DNA binding property of this domain in SNR1, that is only 58% identical to INI1/hSNF5, is conserved. Analytical ultracentrifugation studies of INI1 DBD and INI1 DBD:DNA complexes at different concentrations show that the DBD exists as a monomer at low protein concentration and two molecules of monomer binds one molecule of DNA. At high protein concentration, it exists as a dimer and binds two DNA molecules. Furthermore, isothermal calorimetry (ITC) experiments demonstrate that the DBD monomer binds DNA with a stoichiometry (N) of ∼0.5 and Kd  = 0.94 µM whereas the DBD dimer binds two DNA molecules sequentially with K’d1 = 222 µM and K’d2 = 1.16 µM. Monomeric DBD binding to DNA is enthalpy driven (ΔH = –29.9 KJ/mole). Dimeric DBD binding to DNA is sequential with the first binding event driven by positive entropy (ΔH’1 = 115.7 KJ/mole, TΔS’1 = 136.8 KJ/mole) and the second binding event driven by negative enthalpy (ΔH’2 = –106.3 KJ/mole, TΔS’2 = –75.7 KJ/mole). Our model for INI1 DBD binding to DNA provides new insights into the mechanism of DNA binding by INI1. PMID:23861745

  9. PCB-INDUCED CHANGES IN THE DNA BINDING OF SEVERAL TRANSCRIPTION FACTORS IN THE DEVELOPING CEREBELLUM.

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs) are a class of persistent chemical pollutants prevalent in the environment despite the ban of their use for decades. Disturbances in brain development and cognition are among the neurotoxic manifestations of PCBs. The cellular and molecular basis...

  10. Oct-2 DNA binding transcription factor: functional consequences of phosphorylation and glycosylation.

    PubMed

    Ahmad, Ishtiaq; Hoessli, Daniel C; Walker-Nasir, Evelyne; Rafik, Saleem M; Shakoori, Abdul R; Nasir-ud-Din

    2006-01-01

    Phosphorylation and O-GlcNAc modification often induce conformational changes and allow the protein to specifically interact with other proteins. Interplay of phosphorylation and O-GlcNAc modification at the same conserved site may result in the protein undergoing functional switches. We describe that at conserved Ser/Thr residues of human Oct-2, alternative phosphorylation and O-GlcNAc modification (Yin Yang sites) can be predicted by the YinOYang1.2 method. We propose here that alternative phosphorylation and O-GlcNAc modification at Ser191 in the N-terminal region, Ser271 and 274 in the linker region of two POU sub-domains and Thr301 and Ser323 in the POUh subdomain are involved in the differential binding behavior of Oct-2 to the octamer DNA motif. This implies that phosphorylation or O-GlcNAc modification of the same amino acid may result in a different binding capacity of the modified protein. In the C-terminal domain, Ser371, 389 and 394 are additional Yin Yang sites that could be involved in the modulation of Oct-2 binding properties.

  11. The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity.

    PubMed Central

    Zerial, M; Toschi, L; Ryseck, R P; Schuermann, M; Müller, R; Bravo, R

    1989-01-01

    We have identified a gene, fos B, encoding a nuclear protein of 338 amino acids presenting a 70% homology with c-fos, whose expression is activated during G0/G1 transition. Growth factor stimulation of quiescent cells leads to a rapid and transient accumulation of fos B mRNA, with kinetics similar to those of c-fos. The induction of fos B mRNA levels is in part due to a dramatic increase in the transcription of the gene. The half-life of fos B mRNA is in the order of 10-15 min. Both transcriptional activation and mRNA stability are substantially increased in the presence of protein synthesis inhibitors. Immunoprecipitation studies showed that fos B as c-fos protein, forms a complex in vitro with c-jun and jun B proteins in the absence of a target binding sequence. Gel retardation assays demonstrated that fos B protein positively influences the binding of c-jun and jun B proteins to an AP-1 binding consensus sequence, suggesting that fos B protein plays a role in control of gene expression. Images PMID:2498083

  12. Tumor necrosis factor alpha represses bone morphogenetic protein (BMP) signaling by interfering with the DNA binding of Smads through the activation of NF-kappaB.

    PubMed

    Yamazaki, Masato; Fukushima, Hidefumi; Shin, Masashi; Katagiri, Takenobu; Doi, Takahiro; Takahashi, Tetsu; Jimi, Eijiro

    2009-12-18

    Bone morphogenetic proteins (BMPs) induce not only bone formation in vivo but also osteoblast differentiation of mesenchymal cells in vitro. Tumor necrosis factor alpha (TNFalpha) inhibits both osteoblast differentiation and bone formation induced by BMPs. However, the molecular mechanisms of these inhibitions remain unknown. In this study, we found that TNFalpha inhibited the alkaline phosphatase activity and markedly reduced BMP2- and Smad-induced reporter activity in MC3T3-E1 cells. TNFalpha had no effect on the phosphorylation of Smad1, Smad5, and Smad8 or on the nuclear translocation of the Smad1-Smad4 complex. In p65-deficient mouse embryonic fibroblasts, overexpression of p65, a subunit of NF-kappaB, inhibited BMP2- and Smad-induced reporter activity in a dose-dependent manner. Furthermore, this p65-mediated inhibition of BMP2- and Smad-responsive promoter activity was restored after inhibition of NF-kappaB by the overexpression of the dominant negative IkappaBalpha. Although TNFalpha failed to affect receptor-dependent formation of the Smad1-Smad4 complex, p65 associated with the complex. Chromatin immunoprecipitation and electrophoresis mobility shift assays revealed that TNFalpha suppressed the DNA binding of Smad proteins to the target gene. Importantly, the specific NF-kappaB inhibitor, BAY11-7082, abolished these phenomena. These results suggest that TNFalpha inhibits BMP signaling by interfering with the DNA binding of Smads through the activation of NF-kappaB.

  13. Identification and characterisation of Dof transcription factors in the cucumber genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber is susceptible to many foliage diseases. Although candidate genes for resistances to several pathogens in cucumber have been reported, the underlying defence mechanisms remain unclear. The Dof (DNA-binding with one finger) proteins are a group of plant-specific transcription factors that ha...

  14. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  15. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  16. Increased stability and DNA site discrimination of "single chain" variants of the dimeric beta-barrel DNA binding domain of the human papillomavirus E2 transcriptional regulator.

    PubMed

    Dellarole, Mariano; Sánchez, Ignacio E; Freire, Eleonora; de Prat-Gay, Gonzalo

    2007-10-30

    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric beta-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  17. Increased Stability and DNA Site Discrimination of Single Chain Variants of the Dimeric beta-Barrel DNA Binding Domain of the Human Papillomavirus E2 Transcriptional Regulator

    SciTech Connect

    Dellarole,M.; Sanchez, I.; Freire, E.; de Prat-Gay, G.

    2007-01-01

    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric {beta}-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  18. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation

    SciTech Connect

    Sahijdak, W.M.; Yang, Chin-Rang; Zuckerman, J.S.; Meyers, M.; Boothman, D.A.

    1994-04-01

    We analyzed alterations in transcription factor binding to specific, known promoter DNA consensus sequences between irradiated and unirradiated radioresistant human melanoma (U1-Mel) cells. The goal of this study was to begin to investigate which transcription factors and DNA-binding sites are responsible for the induction of specific transcripts and proteins after ionizing radiation. Transcription factor binding was observed using DNA band-shift assays and oligonucleotide competition analyses. Confluence-arrested U1-Mel cells were irradiated (4.5 Gy) and harvested at 4 h. Double-stranded oligonucleotides containing known DNA-binding consensus sites for specific transcription factors were used. Increased DNA binding activity after ionizing radiation was noted with oligonucleotides containing the CREB, NF-kB and Sp1 consensus sites. No changes in protein binding to AP-1, AP-2, AP-3, or CTF/NF1, GRE or Oct-1 consensus sequences were noted. X-ray activation of select transcription factors, which bind certain consensus sites in promoters, may cause specific induction or repression of gene transcription. 22 refs., 2 figs.

  19. Sequence Discrimination by Alternatively Spliced Isoforms of a DNA Binding Zinc Finger Domain

    NASA Astrophysics Data System (ADS)

    Gogos, Joseph A.; Hsu, Tien; Bolton, Jesse; Kafatos, Fotis C.

    1992-09-01

    Two major developmentally regulated isoforms of the Drosophila chorion transcription factor CF2 differ by an extra zinc finger within the DNA binding domain. The preferred DNA binding sites were determined and are distinguished by an internal duplication of TAT in the site recognized by the isoform with the extra finger. The results are consistent with modular interactions between zinc fingers and trinucleotides and also suggest rules for recognition of AT-rich DNA sites by zinc finger proteins. The results show how modular finger interactions with trinucleotides can be used, in conjunction with alternative splicing, to alter the binding specificity and increase the spectrum of sites recognized by a DNA binding domain. Thus, CF2 may potentially regulate distinct sets of target genes during development.

  20. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    PubMed

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  1. Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors

    PubMed Central

    Iyer, Lakshminarayan M; Koonin, Eugene V; Aravind, L

    2002-01-01

    Background Viral DNA-binding proteins have served as good models to study the biochemistry of transcription regulation and chromatin dynamics. Computational analysis of viral DNA-binding regulatory proteins and identification of their previously undetected homologs encoded by cellular genomes might lead to a better understanding of their function and evolution in both viral and cellular systems. Results The phyletic range and the conserved DNA-binding domains of the viral regulatory proteins of the poxvirus D6R/N1R and baculoviral Bro protein families have not been previously defined. Using computational analysis, we show that the amino-terminal module of the D6R/N1R proteins defines a novel, conserved DNA-binding domain (the KilA-N domain) that is found in a wide range of proteins of large bacterial and eukaryotic DNA viruses. The KilA-N domain is suggested to be homologous to the fungal DNA-binding APSES domain. We provide evidence for the KilA-N and APSES domains sharing a common fold with the nucleic acid-binding modules of the LAGLIDADG nucleases and the amino-terminal domains of the tRNA endonuclease. The amino-terminal module of the Bro proteins is another, distinct DNA-binding domain (the Bro-N domain) that is present in proteins whose domain architectures parallel those of the KilA-N domain-containing proteins. A detailed analysis of the KilA-N and Bro-N domains and the associated domains points to extensive domain shuffling and lineage-specific gene family expansion within DNA virus genomes. Conclusions We define a large class of novel viral DNA-binding proteins and their cellular homologs and identify their domain architectures. On the basis of phyletic pattern analysis we present evidence for a probable viral origin of the fungus-specific cell-cycle regulatory transcription factors containing the APSES DNA-binding domain. We also demonstrate the extensive role of lineage-specific gene expansion and domain shuffling, within a limited set of approximately

  2. Recent advances in the structural molecular biology of Ets transcription factors: interactions, interfaces and inhibition.

    PubMed

    Cooper, Christopher D O; Newman, Joseph A; Gileadi, Opher

    2014-02-01

    The Ets family of eukaryotic transcription factors is based around the conserved Ets DNA-binding domain. Although their DNA-binding selectivity is biochemically and structurally well characterized, structures of homodimeric and ternary complexes point to Ets domains functioning as versatile protein-interaction modules. In the present paper, we review the progress made over the last decade to elucidate the structural mechanisms involved in modulation of DNA binding and protein partner selection during dimerization. We see that Ets domains, although conserved around a core architecture, have evolved to utilize a variety of interaction surfaces and binding mechanisms, reflecting Ets domains as dynamic interfaces for both DNA and protein interaction. Furthermore, we discuss recent advances in drug development for inhibition of Ets factors, and the roles structural biology can play in their future.

  3. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution.

    PubMed

    Weirauch, Matthew T; Hughes, T R

    2011-01-01

    Transcription factors (TFs) play key roles in the regulation of gene expression by binding in a sequence-specific manner to genomic DNA. In eukaryotes, DNA binding is achieved by a wide range of structural forms and motifs. TFs are typically classified by their DNA-binding domain (DBD) type. In this chapter, we catalogue and survey 91 different TF DBD types in metazoa, plants, fungi, and protists. We briefly discuss well-characterized TF families representing the major DBD superclasses. We also examine the species distributions and inferred evolutionary histories of the various families, and the potential roles played by TF family expansion and dimerization.

  4. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element.

    PubMed Central

    Ohme-Takagi, M; Shinshi, H

    1995-01-01

    We demonstrated that the GCC box, which is an 11-bp sequence (TAAGAGCCGCC) conserved in the 5' upstream region of ethylene-inducible pathogenesis-related protein genes in Nicotiana spp and in some other plants, is the sequence that is essential for ethylene responsiveness when incorporated into a heterologous promoter. Competitive gel retardation assays showed DNA binding activities to be specific to the GCC box sequence in tobacco nuclear extracts. Four different cDNAs encoding DNA binding proteins specific for the GCC box sequence were isolated, and their products were designated ethylene-responsive element binding proteins (EREBPs). The deduced amino acid sequences of EREBPs exhibited no homology with those of known DNA binding proteins or transcription factors; neither did the deduced proteins contain a basic leucine zipper or zinc finger motif. The DNA binding domain was identified within a region of 59 amino acid residues that was common to all four deduced EREBPs. Regions highly homologous to the DNA binding domain of EREBPs were found in proteins deduced from the cDNAs of various plants, suggesting that this domain is evolutionarily conserved in plants. RNA gel blot analysis revealed that accumulation of mRNAs for EREBPs was induced by ethylene, but individual EREBPs exhibited different patterns of expression. PMID:7756828

  5. Rb regulates C/EBPbeta-DNA-binding activity during 3T3-L1 adipogenesis.

    PubMed

    Cole, Kathryn A; Harmon, Anne W; Harp, Joyce B; Patel, Yashomati M

    2004-02-01

    Two pathways are initiated upon 3T3-L1 preadipocyte differentiation: the reentry of cells into the cell cycle and the initiation of a cascade of transcriptional events that "prime" the cell for differentiation. The "priming" event involves the synthesis of members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. However, the relationship between these two pathways is unknown. Here we report that in the 3T3-L1 preadipocytes induced to differentiate, cell cycle progression and the initiation of differentiation are linked by a cell cycle-dependent Rb-C/EBPbeta interaction. Cell cycle arrest in G1 by l-mimosine inhibited differentiation-induced C/EBPbeta-DNA-binding activity and Rb phosphorylation. However, cell cycle arrest after the G1/S transition by aphidicolin or nocodazole did not prevent C/EBPbeta-DNA-binding activity or Rb phosphorylation. Furthermore, hypophosphorylated Rb and C/EBPbeta coimmunoprecipitated, whereas phosphorylated Rb and C/EBPbeta did not. Electrophoretic mobility shift assays demonstrated that recombinant hypophosphorylated Rb decreased C/EBPbeta-DNA-binding activity and that Rb overexpression inhibited C/EBPbeta-induced transcriptional activation of a C/EBPalpha-promoter-luciferase reporter gene. We conclude that C/EBPbeta-DNA-binding activity is regulated by its interaction with hypophosphorylated Rb, thereby linking the progression of the cell cycle to the initiation of differentiation during 3T3-L1 adipogenesis. PMID:14576085

  6. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission.

    PubMed

    Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien

    2015-08-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis.

  7. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission1

    PubMed Central

    Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien

    2015-01-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis. PMID:26063506

  8. SoxD Transcription Factors: Multifaceted Players of Neural Development

    PubMed Central

    Ji, Eun Hye; Kim, Jaesang

    2016-01-01

    SoxD transcription factor subfamily includes three members, Sox5, Sox6, and Sox13. Like other Sox genes, they contain the High-Mobility-Group (HMG) box as the DNA binding domain but in addition feature the subgroup-specific leucine zipper motif. SoxD genes are expressed in diverse cell types in multiple organs during embryogenesis and in adulthood. Among the cells expressing them are those present in the developing nervous system including neural stem (or progenitor) cells as well as differentiating neurons and oligodendrocytes. SoxD transcription factors do not contain distinct activator or repressor domain, and they are believed to function in modulation of other transcription factors in promoter-specific manners. This brief review article will attempt to summarize the latest studies on the function of SoxD genes in embryogenesis with a particular emphasis on the regulation of neural development. PMID:27426080

  9. A human transcription factor in search mode

    PubMed Central

    Hauser, Kevin; Essuman, Bernard; He, Yiqing; Coutsias, Evangelos; Garcia-Diaz, Miguel; Simmerling, Carlos

    2016-01-01

    Transcription factors (TF) can change shape to bind and recognize DNA, shifting the energy landscape from a weak binding, rapid search mode to a higher affinity recognition mode. However, the mechanism(s) driving this conformational change remains unresolved and in most cases high-resolution structures of the non-specific complexes are unavailable. Here, we investigate the conformational switch of the human mitochondrial transcription termination factor MTERF1, which has a modular, superhelical topology complementary to DNA. Our goal was to characterize the details of the non-specific search mode to complement the crystal structure of the specific binding complex, providing a basis for understanding the recognition mechanism. In the specific complex, MTERF1 binds a significantly distorted and unwound DNA structure, exhibiting a protein conformation incompatible with binding to B-form DNA. In contrast, our simulations of apo MTERF1 revealed significant flexibility, sampling structures with superhelical pitch and radius complementary to the major groove of B-DNA. Docking these structures to B-DNA followed by unrestrained MD simulations led to a stable complex in which MTERF1 was observed to undergo spontaneous diffusion on the DNA. Overall, the data support an MTERF1-DNA binding and recognition mechanism driven by intrinsic dynamics of the MTERF1 superhelical topology. PMID:26673724

  10. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.

  11. Mammalian Argonaute-DNA binding?

    PubMed

    Smalheiser, Neil R; Gomes, Octavio L A

    2015-01-01

    When a field shares the consensus that a particular phenomenon does NOT occur, this may reflect extensive experimental investigations with negative outcomes, or may represent the "common sense" position based on current knowledge and established ways of thinking. The current consensus of the RNA field is that eukaryotic Argonaute (Ago) proteins employ RNA guides and target other RNAs. The alternative -- that eukaryotic Ago has biologically important interactions with DNA in vivo - has not been seriously considered, in part because the only role contemplated for DNA was as a guide strand, and in part because it did not seem plausible that any natural source of suitable DNAs exists in eukaryotic cells. However, eukaryotic Argonaute domains bind DNA in the test tube, and several articles report that small inhibitory double-stranded DNAs do have the ability to silence target RNAs in a sequence-dependent (though poorly characterized) manner. A search of the literature identified potential DNA binding partners for Ago, including (among others) single-stranded DNAs residing in extracellular vesicles, and cytoplasmic satellite-repeat DNA fragments that are associated with the plasma membrane and transcribed by Pol II. It is interesting to note that both cytoplasmic and extracellular vesicle DNA are expressed at greatly elevated levels in cancer cells relative to normal cells. In such a pathological scenario, if not under normal conditions, there may be appreciable binding of Ago to DNA despite its lower affinity compared to RNA. If so, DNA might displace Ago from binding to its normal partners (miRNAs, siRNAs and other short ncRNAs), disrupting tightly controlled post-transcriptional gene silencing processes that are vital to correct functioning of a normal cell. The possible contribution to cancer pathogenesis is a strong motivator for further investigation of Ago-DNA binding. More generally, this case underscores the need for better informatics tools to allow

  12. dimerization and DNA binding alter phosphorylation of Fos and Jun

    SciTech Connect

    Abate, C.; Baker, S.J.; Curran, T. ); Lees-Miller, S.P.; Anderson, C.W. ); Marshak, D.R. )

    1993-07-15

    Fos and Jun form dimeric complexes that bind to activator protein 1 (AP-1) DNA sequences and regulate gene expression. The levels of expression and activities of these proteins are regulated by a variety of extracellular stimuli. They are thought to function in nuclear signal transduction processes in many different cell types. The role of Fos and Jun in gene transcription is complex and may be regulated in several ways including association with different dimerization partners, interactions with other transcription factors, effects on DNA topology, and reduction/oxidation of a conserved cysteine residue in the DNA-binding domain. In addition, phosphorylation has been suggested to control the activity of Fos and Jun. Here the authors show that phosphorylation of Fos and Jun by several protein kinases is affected by dimerization and binding to DNA. Jun homodimers are phosphorylated efficiently by casein kinase II, whereas Fos-Jun heterodimers are not. DNA binding also reduces phosphorylation of Jun by casein kinase II, p34[sup cdc2] (cdc2) kinase, and protein kinase C. Phosphorylation of Fos by cAMP-dependent protein kinase and cdc2 is relatively insensitive to dimerization and DNA binding, whereas phosphorylation of Fos and Jun by DNA-dependent protein kinase is dramatically stimulated by binding to the AP-1 site. These results imply that different protein kinases can distinguish among Fos and Jun proteins in the form of monomers, homodimers, and heterodimers and between DNA-bound and non-DNA-bound proteins. Thus, potentially, these different states of Fos and Jun can be recognized and regulated independently by phosphorylation. 44 refs., 4 figs.

  13. Combining Microarray and Genomic Data to Predict DNA Binding Motifs

    SciTech Connect

    Mao, Linyong; Mackenzie, Ronald C.; Roh, J. H.; Eraso, Jesus M.; Kaplan, Samuel; Resat, Haluk

    2005-10-01

    The ability to detect regulatory elements within genome sequences is important in understanding how gene expression is controlled in biological systems. In this work, we combine microarray data analysis with genome sequence analysis to predict DNA sequences in the photosynthetic bacterium Rhodobacter sphaeroides that bind the regulators PrrA, PpsR and FnrL. These predictions were made by using hierarchical clustering to detect genes that share similar expression patterns. The DNA sequences upstream of these genes were then searched for possible transcription factor recognition motifs that may be involved in their co-regulation. The approach used promises to be widely applicable for the prediction of cis-acting DNA binding elements. Using this method we were independently able to detect and extend the previously described consensus sequences that have been suggested to bind FnrL and PpsR. In addition we have predicted sequences that may be recognized by the global regulator PrrA. Our results support the earlier suggestions that the DNA binding sequence of PrrA may have a variable sized gap between its conserved block elements. Using the predicted DNA binding sequences, we have performed a whole genome scale analysis to determine the relative importance of the interplay between these three regulators PpsR, FnrL and PrrA. Results of this analysis showed that, compared to the regulation by PpsR and FnrL, a much larger number of genes are candidates to be regulated by PrrA. Our study demonstrates by example that integration of multiple data types can be a powerful approach for inferring transcriptional regulatory patterns in microbial systems, and it allowed us to detect the photosynthesis related regulatory patterns in R. sphaeroides.

  14. DNA-binding site for two skeletal actin promoter factors is important for expression in muscle cells

    SciTech Connect

    Walsh, K.; Schimmel, P.

    1988-04-01

    Two nuclear factors bind to the same site in the chicken skeletal actin promoter. Mutations in the footprint sequence which eliminate detectable binding decrease expression in transfected skeletal muscle cells by a factor of 25 to 50 and do not elevate the flow expression in nonmuscle cells. These results show that the factor-binding site contributes to the activation of expression in muscle cells and that it alone does not contribute significantly to repress expression in nonmuscle cells.

  15. The 68-kilodalton E1 protein of bovine papillomavirus is a DNA binding phosphoprotein which associates with the E2 transcriptional activator in vitro.

    PubMed Central

    Blitz, I L; Laimins, L A

    1991-01-01

    The E1 open reading frame of bovine papillomavirus type 1 encodes factors necessary for extrachromosomal maintenance of the viral genome in transformed cells. To facilitate biochemical characterization of the gene products encoded by this open reading frame, we have expressed the full-length E1 protein in a baculovirus-insect cell system. This protein was found to be phosphorylated and localized to the nucleus of infected cells. The E1 protein alone has affinity for DNA but appears to lack specificity for viral sequences. In addition, we present evidence that the E1 protein interacts with the virally encoded transcriptional activator E2 in vitro. These results are consistent with a model in which the E1 protein, as part of a complex with E2, interacts with specific DNA sequences in the viral genome. Images PMID:1846189

  16. Using evolutionary and structural information to predict DNA-binding sites on DNA-binding proteins.

    PubMed

    Kuznetsov, Igor B; Gou, Zhenkun; Li, Run; Hwang, Seungwoo

    2006-07-01

    Proteins that interact with DNA are involved in a number of fundamental biological activities such as DNA replication, transcription, and repair. A reliable identification of DNA-binding sites in DNA-binding proteins is important for functional annotation, site-directed mutagenesis, and modeling protein-DNA interactions. We apply Support Vector Machine (SVM), a supervised pattern recognition method, to predict DNA-binding sites in DNA-binding proteins using the following features: amino acid sequence, profile of evolutionary conservation of sequence positions, and low-resolution structural information. We use a rigorous statistical approach to study the performance of predictors that utilize different combinations of features and how this performance is affected by structural and sequence properties of proteins. Our results indicate that an SVM predictor based on a properly scaled profile of evolutionary conservation in the form of a position specific scoring matrix (PSSM) significantly outperforms a PSSM-based neural network predictor. The highest accuracy is achieved by SVM predictor that combines the profile of evolutionary conservation with low-resolution structural information. Our results also show that knowledge-based predictors of DNA-binding sites perform significantly better on proteins from mainly-alpha structural class and that the performance of these predictors is significantly correlated with certain structural and sequence properties of proteins. These observations suggest that it may be possible to assign a reliability index to the overall accuracy of the prediction of DNA-binding sites in any given protein using its sequence and structural properties. A web-server implementation of the predictors is freely available online at http://lcg.rit.albany.edu/dp-bind/.

  17. Transcription factors as targets for DNA-interacting drugs.

    PubMed

    Gniazdowski, Marek; Denny, William A; Nelson, Stephanie M; Czyz, Malgorzata

    2003-06-01

    Gene expression, both tissue specific or inducible, is controlled at the level of transcription by various transcription factors interacting with specific sequences of DNA. Anticancer drugs and other potential therapeutic agents alter interactions of regulatory proteins with DNA by a variety of different mechanisms. The main ones, considered in the review, are: i) competition for the transcription factor DNA binding sequences by drugs that interact non-covalently with DNA (e.g. anthracyclines, acridines, actinomycin D, pyrrole antibiotics and their polyamide derivatives); ii) covalent modifications of DNA by alkylating agents (e.g. nitrogen mustards, cisplatin) that prevent transcription factors from recognizing their specific sequences, or that result in multiple "unnatural" binding sites in DNA which hijack the transcription factors, thus decreasing their availability in the nucleus; iii) competition with binding sites on the transcription factors by synthetic oligonucleotides or peptide nucleic acids in an antigene strategy. The latter compounds may also compete for binding sites on regulatory proteins, acting as decoys to lower their active concentration in the cell. In this review, we have summarized recent advances which have been made towards understanding the above mechanisms by which small molecules interfere with the function of transcription factors. PMID:12678680

  18. Binding of a sequence-specific single-stranded DNA-binding factor to the simian virus 40 core origin inverted repeat domain is cell cycle regulated.

    PubMed Central

    Carmichael, E P; Roome, J M; Wahl, A F

    1993-01-01

    The inverted repeat domain (IR domain) within the simian virus 40 origin of replication is the site of initial DNA melting prior to the onset of DNA synthesis. The domain had previously been shown to be bound by a cellular factor in response to DNA damage. We demonstrate that two distinct cellular components bind opposite strands of the IR domain. Replication protein A (RPA), previously identified as a single-stranded DNA binding protein required for origin-specific DNA replication in vitro, is shown to have a preference for the pyrimidine-rich strand. A newly described component, IR factor B (IRF-B), specifically recognizes the opposite strand. IRF-B binding activity in nuclear extract varies significantly with cell proliferation and the cell cycle, so that binding of IRF-B to the IR domain is negatively correlated with the onset of DNA synthesis. Loss of IRF-B binding from the nucleus also occurs in response to cellular DNA damage. UV cross-linking indicates that the core binding component of IRF-B is a protein of ca. 34 kDa. We propose that RPA and IRF-B bind opposite strands of the IR domain and together may function in the regulation of origin activation. Images PMID:8380226

  19. Specific and non-specific interactions of integration host factor with DNA: thermodynamic evidence for disruption of multiple IHF surface salt-bridges coupled to DNA binding.

    PubMed

    Holbrook, J A; Tsodikov, O V; Saecker, R M; Record, M T

    2001-07-01

    Site-specific DNA binding of architectural protein integration host factor (IHF) is involved in formation of functional multiprotein-DNA assemblies in Escherichia coli, while non-specific binding of IHF and other histone-like proteins serves to structure the nucleoid. Here, we report an isothermal titration calorimetry study of the thermodynamics of binding IHF to a 34 bp fragment composed entirely of the specific H' site from lambda-phage DNA. At low to moderate [K(+)] (60-100 mM), strong competition is observed between specific and non-specific binding as a result of a low specificity ratio (approximately 10(2)) and a very small non-specific site size. In this [K(+)] range, both specific and non-specific binding are enthalpy-driven, with large negative enthalpy, entropy and heat capacity changes and binding constants that are insensitive to [K(+)]. Above 100 mM K(+), only specific binding is observed, and both the binding constant and the magnitudes of enthalpy, entropy and heat capacity changes all decrease strongly with increasing [K(+)]. When interpreted in the context of the structure of the specific complex, the thermodynamics provide compelling evidence for a previously unrecognized design principle by which proteins that form extensive binding interfaces with nucleic acids control binding constants, binding site sizes and effects of temperature and ion concentrations on stability and specificity. We propose that up to 22 of the 23 IHF cationic side-chains that are located within 6 A of DNA phosphate oxygen atoms in the complex, are masked in the absence of DNA by pairing with anionic carboxylate groups in intramolecular salt-bridges (dehydrated ion-pairs). These salt-bridges increase in stability with increasing temperature and decreasing [K(+)]. To explain the unusual thermodynamics of IHF-DNA interactions, we propose that both specific and non-specific binding at low [K(+)] require disruption of salt-bridges (as many as 18 for specific binding) whereupon

  20. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  1. Intergenic transcriptional interference is blocked by RNA polymerase III transcription factor TFIIIB in Saccharomyces cerevisiae.

    PubMed

    Korde, Asawari; Rosselot, Jessica M; Donze, David

    2014-02-01

    The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such "extratranscriptional" activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467-ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins.

  2. Sequence-Specific DNA Binding by a Short Peptide Dimer

    NASA Astrophysics Data System (ADS)

    Talanian, Robert V.; McKnight, C. James; Kim, Peter S.

    1990-08-01

    A recently described class of DNA binding proteins is characterized by the "bZIP" motif, which consists of a basic region that contacts DNA and an adjacent "leucine zipper" that mediates protein dimerization. A peptide model for the basic region of the yeast transcriptional activator GCN4 has been developed in which the leucine zipper has been replaced by a disulfide bond. The 34-residue peptide dimer, but not the reduced monomer, binds DNA with nanomolar affinity at 4^circC. DNA binding is sequence-specific as judged by deoxyribonuclease I footprinting. Circular dichroism spectroscopy suggests that the peptide adopts a helical structure when bound to DNA. These results demonstrate directly that the GCN4 basic region is sufficient for sequence-specific DNA binding and suggest that a major function of the GCN4 leucine zipper is simply to mediate protein dimerization. Our approach provides a strategy for the design of short sequence-specific DNA binding peptides.

  3. The methylated-DNA binding protein MBD2 enhances NGFI-A (egr-1)-mediated transcriptional activation of the glucocorticoid receptor.

    PubMed

    Weaver, Ian C G; Hellstrom, Ian C; Brown, Shelley E; Andrews, Stephen D; Dymov, Sergiy; Diorio, Josie; Zhang, Tie-Yuan; Szyf, Moshe; Meaney, Michael J

    2014-09-26

    Variations in maternal care in the rat influence the epigenetic state and transcriptional activity of glucocorticoid receptor (GR) gene in the hippocampus. The mechanisms underlying this maternal effect remained to be defined, including the nature of the relevant maternally regulated intracellular signalling pathways. We show here that increased maternal licking/grooming (LG), which stably enhances hippocampal GR expression, paradoxically increases hippocampal expression of the methyl-CpG binding domain protein-2 (MBD2) and MBD2 binding to the exon 17 GR promoter. Knockdown experiments of MBD2 in hippocampal primary cell culture show that MBD2 is required for activation of exon 17 GR promoter. Ectopic co-expression of nerve growth factor-inducible protein A (NGFI-A) with MBD2 in HEK 293 cells with site-directed mutagenesis of the NGFI-A response element within the methylated exon 17 GR promoter supports the hypothesis that MBD2 collaborates with NGFI-A in binding and activation of this promoter. These data suggest a possible mechanism linking signalling pathways, which are activated by behavioural stimuli and activation of target genes.

  4. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation.

    PubMed

    Hao, Yu-Jun; Song, Qing-Xin; Chen, Hao-Wei; Zou, Hong-Feng; Wei, Wei; Kang, Xu-Sheng; Ma, Biao; Zhang, Wan-Ke; Zhang, Jin-Song; Chen, Shou-Yi

    2010-10-01

    Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.

  5. Positive Control Mutations in the MyoD Basic Region Fail to Show Cooperative DNA Binding and Transcriptional Activation in vitro

    NASA Astrophysics Data System (ADS)

    Bengal, Eyal; Flores, Osvaldo; Rangarajan, Pundi N.; Chen, Amy; Weintraub, Harold; Verma, Inder M.

    1994-06-01

    An in vitro transcription system from HeLa cells has been established in which MyoD and E47 proteins activate transcription both as homodimers and heterodimers. However, heterodimers activate transcription more efficiently than homodimers, and function synergistically from multiple binding sites. Positive control mutants in the basic region of MyoD that have previously been shown to be defective in initiating the myogenic program, can bind DNA but have lost their ability to function as transcriptional activators in vitro. Additionally, positive control mutants, unlike wild-type MyoD, fail to bind cooperatively to DNA. We propose that binding of MyoD complexes to high affinity MyoD binding sites induces conformational changes that facilitate cooperative binding to multiple sites and promote transcriptional activation.

  6. A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata

    PubMed Central

    Merhej, Jawad; Thiebaut, Antonin; Blugeon, Corinne; Pouch, Juliette; Ali Chaouche, Mohammed El Amine; Camadro, Jean-Michel; Le Crom, Stéphane; Lelandais, Gaëlle; Devaux, Frédéric

    2016-01-01

    The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption, and iron metabolism. PMID:27242683

  7. Global analysis of ion dependence unveils hidden steps in DNA binding and bending by integration host factor

    NASA Astrophysics Data System (ADS)

    Vivas, Paula; Velmurugu, Yogambigai; Kuznetsov, Serguei V.; Rice, Phoebe A.; Ansari, Anjum

    2013-09-01

    Proteins that recognize and bind to specific sites on DNA often distort the DNA at these sites. The rates at which these DNA distortions occur are considered to be important in the ability of these proteins to discriminate between specific and nonspecific sites. These rates have proven difficult to measure for most protein-DNA complexes in part because of the difficulty in separating the kinetics of unimolecular conformational rearrangements (DNA bending and kinking) from the kinetics of bimolecular complex association and dissociation. A notable exception is the Integration Host Factor (IHF), a eubacterial architectural protein involved in chromosomal compaction and DNA recombination, which binds with subnanomolar affinity to specific DNA sites and bends them into sharp U-turns. The unimolecular DNA bending kinetics has been resolved using both stopped-flow and laser temperature-jump perturbation. Here we expand our investigation by presenting a global analysis of the ionic strength dependence of specific binding affinity and relaxation kinetics of an IHF-DNA complex. This analysis enables us to obtain each of the underlying elementary rates (DNA bending/unbending and protein-DNA association/dissociation), and their ionic strength dependence, even under conditions where the two processes are coupled. Our analysis indicates interesting differences in the ionic strength dependence of the bi- versus unimolecular steps. At moderate [KCl] (100-500 mM), nearly all the ionic strength dependence to the overall equilibrium binding affinity appears in the bimolecular association/dissociation of an initial, presumably weakly bent, encounter complex, with a slope SKbi ≈ 8 describing the loglog-dependence of the equilibrium constant to form this complex on [KCl]. In contrast, the unimolecular equilibrium constant to form the fully wrapped specific complex from the initial complex is nearly independent of [KCl], with SKuni < 0.5. This result is counterintuitive because there

  8. The functional landscape bound to the transcription factors of Escherichia coli K-12.

    PubMed

    Pérez-Rueda, Ernesto; Tenorio-Salgado, Silvia; Huerta-Saquero, Alejandro; Balderas-Martínez, Yalbi I; Moreno-Hagelsieb, Gabriel

    2015-10-01

    Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria.

  9. Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number.

    PubMed

    Campbell, Christopher T; Kolesar, Jill E; Kaufman, Brett A

    2012-01-01

    Mitochondrial transcription factor A (mtTFA, mtTF1, TFAM) is an essential protein that binds mitochondrial DNA (mtDNA) with and without sequence specificity to regulate both mitochondrial transcription initiation and mtDNA copy number. The abundance of mtDNA generally reflects TFAM protein levels; however, the precise mechanism(s) by which this occurs remains a matter of debate. Data suggest that the usage of mitochondrial promoters is regulated by TFAM dosage, allowing TFAM to affect both gene expression and RNA priming for first strand mtDNA replication. Additionally, TFAM has a non-specific DNA binding activity that is both cooperative and high affinity. TFAM can compact plasmid DNA in vitro, suggesting a structural role for the non-specific DNA binding activity in genome packaging. This review summarizes TFAM-mtDNA interactions and describes an emerging view of TFAM as a multipurpose coordinator of mtDNA transactions, with direct consequences for the maintenance of gene expression and genome copy number. This article is part of a Special Issue entitled: Mitochondrial Gene Expression. PMID:22465614

  10. Methods for Proteomic Analysis of Transcription Factors

    PubMed Central

    Jiang, Daifeng; Jarrett, Harry W.; Haskins, William E.

    2009-01-01

    Investigation of the transcription factor (TF) proteome presents challenges including the large number of low abundance and post-translationally modified proteins involved. Specialized purification and analysis methods have been developed over the last decades which facilitate the study of the TF proteome and these are reviewed here. Generally applicable proteomics methods that have been successfully applied are also discussed. TFs are selectively purified by affinity techniques using the DNA response element (RE) as the basis for highly specific binding, and several agents have been discovered that either enhance binding or diminish non-specific binding. One such affinity method called “trapping” enables purification of TFs bound to nM concentrations and recovery of TF complexes in a highly purified state. The electrophoretic mobility shift assay (EMSA) is the most important assay of TFs because it provides both measures of the affinity and amount of the TF present. Southwestern (SW) blotting and DNA-protein crosslinking (DPC) allow in vitro estimates of DNA-binding-protein mass, while chromatin immunoprecipitation (ChIP) allows confirmation of promoter binding in vivo. Two-dimensional gel electrophoresis methods (2-DE), and 3-DE methods which combines EMSA with 2-DE, allow further resolution of TFs. The synergy of highly selective purification and analytical strategies has led to an explosion of knowledge about the TF proteome and the proteomes of other DNA- and RNA-binding proteins. PMID:19726046

  11. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity.

    PubMed Central

    Xanthoudakis, S; Curran, T

    1992-01-01

    Fos and Jun form a heterodimeric complex that regulates gene transcription by binding to the activator protein-1 (AP-1) DNA sequence motif. Previously, we demonstrated that the DNA-binding activity of Fos and Jun is regulated in vitro by a novel redox (reduction-oxidation) mechanism. Reduction of a conserved cysteine (cys) residue in the DNA-binding domains of Fos and Jun by chemical reducing agents or by a nuclear redox factor stimulates DNA-binding activity. Here, we describe purification and characterization of a 37 kDa protein (Ref-1) corresponding to the redox factor. Although Ref-1 does not bind to the AP-1 site in association with Fos and Jun, it partially copurifies with a subset of AP-1 proteins. Purified Ref-1 protein stimulates AP-1 DNA-binding activity through the conserved Cys residues in Fos and Jun, but it does not alter the DNA-binding specificity of Fos and Jun. Ref-1 may represent a novel redox component of the signal transduction processes that regulate eukaryotic gene expression. Images PMID:1537340

  12. The multifunctional transcription factor Rap1: a regulator of yeast physiology.

    PubMed

    Azad, Gajendra Kumar; Tomar, Raghuvir Singh

    2016-01-01

    Transcription is a fundamental process that is tightly regulated by transcription factors to maintain cellular homeostasis. Transcription factors have DNA-binding domains, some of which are sequence specific, and are found throughout the eukaryotic kingdom. Recent studies have revealed the molecular mechanisms by which transcription factors perform their functions. In the budding yeast Saccharomyces cerevisiae, Rap1 (ScRap1) can either activate or repress transcription. This bimodal transcriptional activity has led to the widespread study of the mode of action of ScRap1. This review summarizes current knowledge about yeast ScRap1, including its structure, mechanisms of transcription regulation, and biological functions, and the future directions in the field.

  13. Domain analysis of the plant DNA-binding protein GT1a: requirement of four putative alpha-helices for DNA binding and identification of a novel oligomerization region.

    PubMed Central

    Lam, E

    1995-01-01

    Light is an important environmental signal that can influence diverse developmental processes in plants. Many plant nuclear genes respond to light at the level of transcription initiation. GT-1 and GT2 are nuclear factors which interact with DNA sequences in many light-responsive gene promoters. cDNA clones which encode proteins with sequence binding specificities similar to those of these two factors have been isolated. They show significant amino acid sequence similarities within three closely spaced, putative alpha-helices that were predicted by secondary structure analysis but do not show significant homologies with any other reported DNA-binding protein. In this work, N- and C-terminal deletions of tobacco GT1a were generated by in vitro transcription and translation, and their DNA-binding activities and subunit structures were studied. The results suggest that the C-terminal domain of GT1a is critical for protein oligomerization, while a region predicted to contain four closely spaced alpha-helices is required for DNA binding. Direct chemical cross-linking and gel filtration analyses of full-length and truncated derivatives of GT1a suggest that this factor can exist in solution as a homotetramer and that oligomerization is independent of DNA binding. This study thus establishes two independent functional domains in this class of eukaryotic trans-acting factors. Possible implications of the multimeric nature of GT1a in relation to the known characteristics of light-responsive promoter architecture are discussed. PMID:7823917

  14. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development

    PubMed Central

    2014-01-01

    Background Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility. PMID:24581456

  15. The conserved histone deacetylase Rpd3 and the DNA binding regulator Ume6 repress BOI1's meiotic transcript isoform during vegetative growth in Saccharomyces cerevisiae.

    PubMed

    Liu, Yuchen; Stuparevic, Igor; Xie, Bingning; Becker, Emmanuelle; Law, Michael J; Primig, Michael

    2015-05-01

    BOI1 and BOI2 are paralogs important for the actin cytoskeleton and polar growth. BOI1 encodes a meiotic transcript isoform with an extended 5'-untranslated region predicted to impair protein translation. It is, however, unknown how the isoform is repressed during mitosis, and if Boi1 is present during sporulation. By interpreting microarray data from MATa cells, MATa/α cells, a starving MATα/α control, and a meiosis-impaired rrp6 mutant, we classified BOI1's extended isoform as early meiosis-specific. These results were confirmed by RNA-Sequencing, and extended by a 5'-RACE assay and Northern blotting, showing that meiotic cells induce the long isoform while the mitotic isoform remains detectable during meiosis. We provide evidence via motif predictions, an in vivo binding assay and genetic experiments that the Rpd3/Sin3/Ume6 histone deacetylase complex, which represses meiotic genes during mitosis, also prevents the induction of BOI1's 5'-extended isoform in mitosis by direct binding of Ume6 to its URS1 target. Finally, we find that Boi1 protein levels decline when cells switch from fermentation to respiration and sporulation. The histone deacetylase Rpd3 is conserved, and eukaryotic genes frequently encode transcripts with variable 5'-UTRs. Our findings are therefore relevant for regulatory mechanisms involved in the control of transcript isoforms in multi-cellular organisms.

  16. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors

    PubMed Central

    2014-01-01

    Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription. PMID:24499263

  17. Regulation of Lactobacillus casei Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM▿

    PubMed Central

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.

    2008-01-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  18. Regulation of Lactobacillus casei sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM.

    PubMed

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J

    2008-09-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTS(Gut)). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIB(Gat) domain) and a mannitol/fructose-specific EIIA-like domain (EIIA(Mtl) domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBC(Gut) negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  19. Synergistic transcriptional activation by CTF/NF-I and the estrogen receptor involves stabilized interactions with a limiting target factor.

    PubMed Central

    Martinez, E; Dusserre, Y; Wahli, W; Mermod, N

    1991-01-01

    Transcription initiation at eukaryotic protein-coding gene promoters is regulated by a complex interplay of site-specific DNA-binding proteins acting synergistically or antagonistically. Here, we have analyzed the mechanisms of synergistic transcriptional activation between members of the CCAAT-binding transcription factor/nuclear factor I (CTF/NF-I) family and the estrogen receptor. By using cotransfection experiments with HeLa cells, we show that the proline-rich transcriptional activation domain of CTF-1, when fused to the GAL4 DNA-binding domain, synergizes with each of the two estrogen receptor-activating regions. Cooperative DNA binding between the GAL4-CTF-1 fusion and the estrogen receptor does not occur in vitro, and in vivo competition experiments demonstrate that both activators can be specifically inhibited by the overexpression of a proline-rich competitor, indicating that a common limiting factor is mediating their transcriptional activation functions. Furthermore, the two activators functioning synergistically are much more resistant to competition than either factor alone, suggesting that synergism between CTF-1 and the estrogen receptor is the result of a stronger tethering of the limiting target factor(s) to the two promoter-bound activators. Images PMID:2038313

  20. Multicomponent differentiation-regulated transcription factors in F9 embryonal carcinoma stem cells.

    PubMed Central

    Shivji, M K; La Thangue, N B

    1991-01-01

    Murine F9 embryonal carcinoma (F9 EC) stem cells have an E1a-like transcription activity that is down-regulated as these cells differentiate to parietal endoderm. For the adenovirus E2A promoter, this activity requires at least two sequence-specific transcription factors, one that binds the cyclic AMP-responsive element (CRE) and the other, DRTF1, the DNA-binding activity of which is down-regulated as F9 EC cells differentiate. Here we report the characterization of several binding activities in F9 EC cell extracts, referred to as DRTF 1a, 1b and 1c, that recognize the DRTF1 cis-regulatory sequence (-70 to -50 region). These activities can be chromatographically separated but are not distinguishable by DNA sequence specificity. Activity 1a is a detergent-sensitive complex in which DNA binding is regulated by phosphorylation. In contrast, activities 1b and 1c are unaffected by these treatments but exist as multicomponent protein complexes even before DNA binding. Two sets of DNA-binding polypeptides, p50DR and p30DR, affinity purified from F9 EC cell extracts produce complexes 1b and 1c. Both polypeptides appear to be present in the same DNA-bound protein complex and both directly contact DNA. These affinity-purified polypeptides activate transcription in vitro in a binding-site-dependent manner. These data indicate the in F9 EC stem cells, multicomponent differentiation-regulated transcription factors contribute to the cellular E1a-like activity. Images PMID:1825349

  1. Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space.

    PubMed

    Hudson, William H; Kossmann, Bradley R; de Vera, Ian Mitchelle S; Chuo, Shih-Wei; Weikum, Emily R; Eick, Geeta N; Thornton, Joseph W; Ivanov, Ivaylo N; Kojetin, Douglas J; Ortlund, Eric A

    2016-01-12

    Many genomes contain families of paralogs--proteins with divergent function that evolved from a common ancestral gene after a duplication event. To understand how paralogous transcription factors evolve divergent DNA specificities, we examined how the glucocorticoid receptor and its paralogs evolved to bind activating response elements [(+)GREs] and negative glucocorticoid response elements (nGREs). We show that binding to nGREs is a property of the glucocorticoid receptor (GR) DNA-binding domain (DBD) not shared by other members of the steroid receptor family. Using phylogenetic, structural, biochemical, and molecular dynamics techniques, we show that the ancestral DBD from which GR and its paralogs evolved was capable of binding both nGRE and (+)GRE sequences because of the ancestral DBD's ability to assume multiple DNA-bound conformations. Subsequent amino acid substitutions in duplicated daughter genes selectively restricted protein conformational space, causing this dual DNA-binding specificity to be selectively enhanced in the GR lineage and lost in all others. Key substitutions that determined the receptors' response element-binding specificity were far from the proteins' DNA-binding interface and interacted epistatically to change the DBD's function through DNA-induced allosteric mechanisms. These amino acid substitutions subdivided both the conformational and functional space of the ancestral DBD among the present-day receptors, allowing a paralogous family of transcription factors to control disparate transcriptional programs despite high sequence identity.

  2. Structural Insights into the Autoregulation and Cooperativity of the Human Transcription Factor Ets-2*

    PubMed Central

    Newman, Joseph A; Cooper, Christopher D. O.; Aitkenhead, Hazel; Gileadi, Opher

    2015-01-01

    Ets-2, like its closely related homologue Ets-1, is a member of the Ets family of DNA binding transcription factors. Both proteins are subject to multiple levels of regulation of their DNA binding and transactivation properties. One such regulatory mechanism is the presence of an autoinhibitory module, which in Ets-1 allosterically inhibits the DNA binding activity. This inhibition can be relieved by interaction with protein partners or cooperative binding to closely separated Ets binding sites in a palindromic arrangement. In this study we describe the 2.5 Å resolution crystal structure of a DNA complex of the Ets-2 Ets domain. The Ets domain crystallized with two distinct species in the asymmetric unit, which closely resemble the autoinhibited and DNA bound forms of Ets-1. This discovery prompted us to re-evaluate the current model for the autoinhibitory mechanism and the structural basis for cooperative DNA binding. In contrast to Ets-1, in which the autoinhibition is caused by a combination of allosteric and steric mechanisms, we were unable to find clear evidence for the allosteric mechanism in Ets-2. We also demonstrated two possibly distinct types of cooperative binding to substrates with Ets binding motifs separated by four and six base pairs and suggest possible molecular mechanisms for this behavior. PMID:25670864

  3. Structural insights into the autoregulation and cooperativity of the human transcription factor Ets-2.

    PubMed

    Newman, Joseph A; Cooper, Christopher D O; Aitkenhead, Hazel; Gileadi, Opher

    2015-03-27

    Ets-2, like its closely related homologue Ets-1, is a member of the Ets family of DNA binding transcription factors. Both proteins are subject to multiple levels of regulation of their DNA binding and transactivation properties. One such regulatory mechanism is the presence of an autoinhibitory module, which in Ets-1 allosterically inhibits the DNA binding activity. This inhibition can be relieved by interaction with protein partners or cooperative binding to closely separated Ets binding sites in a palindromic arrangement. In this study we describe the 2.5 Å resolution crystal structure of a DNA complex of the Ets-2 Ets domain. The Ets domain crystallized with two distinct species in the asymmetric unit, which closely resemble the autoinhibited and DNA bound forms of Ets-1. This discovery prompted us to re-evaluate the current model for the autoinhibitory mechanism and the structural basis for cooperative DNA binding. In contrast to Ets-1, in which the autoinhibition is caused by a combination of allosteric and steric mechanisms, we were unable to find clear evidence for the allosteric mechanism in Ets-2. We also demonstrated two possibly distinct types of cooperative binding to substrates with Ets binding motifs separated by four and six base pairs and suggest possible molecular mechanisms for this behavior.

  4. A Genome-wide Screen for Neurospora crassa Transcription Factors Regulating Glycogen Metabolism*

    PubMed Central

    Gonçalves, Rodrigo Duarte; Cupertino, Fernanda Barbosa; Freitas, Fernanda Zanolli; Luchessi, Augusto Ducati; Bertolini, Maria Célia

    2011-01-01

    Transcription factors play a key role in transcription regulation as they recognize and directly bind to defined sites in promoter regions of target genes, and thus modulate differential expression. The overall process is extremely dynamic, as they have to move through the nucleus and transiently bind to chromatin in order to regulate gene transcription. To identify transcription factors that affect glycogen accumulation in Neurospora crassa, we performed a systematic screen of a deletion strains set generated by the Neurospora Knockout Project and available at the Fungal Genetics Stock Center. In a wild-type strain of N. crassa, glycogen content reaches a maximal level at the end of the exponential growth phase, but upon heat stress the glycogen content rapidly drops. The gene encoding glycogen synthase (gsn) is transcriptionally down-regulated when the mycelium is exposed to the same stress condition. We identified 17 deleted strains having glycogen accumulation profiles different from that of the wild-type strain under both normal growth and heat stress conditions. Most of the transcription factors identified were annotated as hypothetical protein, however some of them, such as the PacC, XlnR, and NIT2 proteins, were biochemically well-characterized either in N. crassa or in other fungi. The identification of some of the transcription factors was coincident with the presence of DNA-binding motifs specific for the transcription factors in the gsn 5′-flanking region, and some of these DNA-binding motifs were demonstrated to be functional by Electrophoretic Mobility Shift Assay (EMSA) experiments. Strains knocked-out in these transcription factors presented impairment in the regulation of gsn expression, suggesting that the transcription factors regulate glycogen accumulation by directly regulating gsn gene expression. Five selected mutant strains showed defects in cell cycle progression, and two transcription factors were light-regulated. The results indicate

  5. DNA specificity determinants associate with distinct transcription factor functions.

    PubMed

    Hollenhorst, Peter C; Chandler, Katherine J; Poulsen, Rachel L; Johnson, W Evan; Speck, Nancy A; Graves, Barbara J

    2009-12-01

    of DNA binding motifs may enable variable transcription factor function at different genomic sites.

  6. Identifying DNA Binding Motifs by Combining Data from Different Sources

    SciTech Connect

    Mao, Linyong; Resat, Haluk; Nagib Callaos; Katsuhisa Horimoto; Jake Chen; Amy Sze Chan

    2004-07-19

    A transcription factor regulates the expression of its target genes by binding to their operator regions. It functions by affecting the interactions between RNA polymerases and the gene's promoter. Many transcription factors bind to their targets by recognizing a specific DNA sequence pattern, which is referred to as a consensus sequence or a motif. Since it would remove the possible biases, combining biological data from different sources can be expected to improve the quality of the information extracted from the biological data. We analyzed the microarray gene expression data and the organism's genome sequence jointly to determine the transcription factor recognition sequences with more accuracy. Utilizing such a data integration approach, we have investigated the regulation of the photosynthesis genes of the purple non-sulphur photosynthetic bacterium Rhodobacter sphaeroides. The photosynthesis genes in this organism are tightly regulated as a function of environmental growth conditions by three major regulatory systems, PrrB/PrrA, AppA/PpsR and FnrL. In this study, we have detected a previously undefined PrrA consensus sequence, improved the previously known DNA-binding motif of PpsR, and confirmed the consensus sequence of the global regulator FnrL.

  7. APE1/Ref-1 enhances DNA binding activity of mutant p53 in a redox-dependent manner.

    PubMed

    Cun, Yanping; Dai, Nan; Li, Mengxia; Xiong, Chengjie; Zhang, Qinhong; Sui, Jiangdong; Qian, Chengyuan; Wang, Dong

    2014-02-01

    Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual function protein; in addition to its DNA repair activity, it can stimulate DNA binding activity of numerous transcription factors as a reduction-oxidation (redox) factor. APE1/Ref-1 has been found to be a potent activator of wild-type p53 (wtp53) DNA binding in vitro and in vivo. Although p53 is mutated in most types of human cancer including hepatocellular carcinoma (HCC), little is known about whether APE1/Ref-1 can regulate mutant p53 (mutp53). Herein, we reported the increased APE1/Ref-1 protein and accumulation of mutp53 in HCC by immunohistochemistry. Of note, it was observed that APE1/Ref-1 high-expression and mutp53 expression were associated with carcinogenesis and progression of HCC. To determine whether APE1/Ref-1 regulates DNA binding of mutp53, we performed electromobility shift assays (EMSAs) and quantitative chromatin immunoprecipitation (ChIP) assays in HCC cell lines. In contrast to sequence-specific and DNA structure-dependent binding of wtp53, reduced mutp53 efficiently bound to nonlinear DNA, but not to linear DNA. Notably, overexpression of APE1/Ref-1 resulted in increased DNA binding activity of mutp53, while downregulation of APE1/Ref-1 caused a marked decrease of mutp53 DNA binding. In addition, APE1/Ref-1 could not potentiate the accumulation of p21 mRNA and protein in mutp53 cells. These data indicate that APE1/Ref-1 can stimulate mutp53 DNA binding in a redox-dependent manner.

  8. An A-tract at the AtzR binding site assists DNA binding, inducer-dependent repositioning and transcriptional activation of the PatzDEF promoter.

    PubMed

    Porrúa, Odil; López-Sánchez, Aroa; Platero, Ana I; Santero, Eduardo; Shingler, Victoria; Govantes, Fernando

    2013-10-01

    The LysR-type regulator AtzR activates the Pseudomonas sp. ADP atzDEF operon in response to nitrogen limitation and cyanuric acid. Activation involves repositioning of the AtzR tetramer on the PatzDEF promoter and relaxation of an AtzR-induced DNA bend. Here we examine the in vivo and in vitro contribution of an A5 -tract present at the PatzDEF promoter region to AtzR binding and transcriptional activation. Substitution of the A-tract for the sequence ACTCA prevented PatzDEF activation and high-affinity AtzR binding, impaired AtzR contacts with the activator binding site and shifted the position of the AtzR-induced DNA bend. Analysis of a collection of mutants bearing different alterations in the A-tract sequence showed that the extent of AtzR-dependent activation does not correlate with the magnitude or orientation of the spontaneous DNA bend generated at this site. Our results support the notion that indirect readout of the A-tract-associated narrow minor groove is essential for the AtzR-DNA complex to achieve a conformation competent for activation of the PatzDEF promoter. Conservation of this motif in several binding sites of LysR-type regulators suggests that this mechanism may be shared by other proteins in this family.

  9. The Next Generation of Transcription Factor Binding Site Prediction

    PubMed Central

    Mathelier, Anthony; Wasserman, Wyeth W.

    2013-01-01

    Finding where transcription factors (TFs) bind to the DNA is of key importance to decipher gene regulation at a transcriptional level. Classically, computational prediction of TF binding sites (TFBSs) is based on basic position weight matrices (PWMs) which quantitatively score binding motifs based on the observed nucleotide patterns in a set of TFBSs for the corresponding TF. Such models make the strong assumption that each nucleotide participates independently in the corresponding DNA-protein interaction and do not account for flexible length motifs. We introduce transcription factor flexible models (TFFMs) to represent TF binding properties. Based on hidden Markov models, TFFMs are flexible, and can model both position interdependence within TFBSs and variable length motifs within a single dedicated framework. The availability of thousands of experimentally validated DNA-TF interaction sequences from ChIP-seq allows for the generation of models that perform as well as PWMs for stereotypical TFs and can improve performance for TFs with flexible binding characteristics. We present a new graphical representation of the motifs that convey properties of position interdependence. TFFMs have been assessed on ChIP-seq data sets coming from the ENCODE project, revealing that they can perform better than both PWMs and the dinucleotide weight matrix extension in discriminating ChIP-seq from background sequences. Under the assumption that ChIP-seq signal values are correlated with the affinity of the TF-DNA binding, we find that TFFM scores correlate with ChIP-seq peak signals. Moreover, using available TF-DNA affinity measurements for the Max TF, we demonstrate that TFFMs constructed from ChIP-seq data correlate with published experimentally measured DNA-binding affinities. Finally, TFFMs allow for the straightforward computation of an integrated TF occupancy score across a sequence. These results demonstrate the capacity of TFFMs to accurately model DNA

  10. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  11. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  12. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor

    PubMed Central

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light–oxygen–voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na+-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na+ currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  13. Sigma Factors for Cyanobacterial Transcription

    PubMed Central

    Imamura, Sousuke; Asayama, Munehiko

    2009-01-01

    Cyanobacteria are photosynthesizing microorganisms that can be used as a model for analyzing gene expression. The expression of genes involves transcription and translation. Transcription is performed by the RNA polymerase (RNAP) holoenzyme, comprising a core enzyme and a sigma (σ) factor which confers promoter selectivity. The unique structure, expression, and function of cyanobacterial σ factors (and RNAP core subunits) are summarized here based on studies, reported previously. The types of promoter recognized by the σ factors are also discussed with regard to transcriptional regulation. PMID:19838335

  14. New DNA-binding radioprotectors

    NASA Astrophysics Data System (ADS)

    Martin, Roger

    The normal tissue damage associated with cancer radiotherapy has motivated the development at Peter Mac of a new class of DNA-binding radioprotecting drugs that could be applied top-ically to normal tissues at risk. Methylproamine (MP), the lead compound, reduces radiation induced cell kill at low concentrations. For example, experiments comparing the clonogenic survival of transformed human keratinocytes treated with 30 micromolar MP before and dur-ing various doses of ionising radiation, with the radiation dose response for untreated cells, indicate a dose reduction factor (DRF) of 2. Similar survival curve experiments using various concentrations of MP, with parallel measurements of uptake of MP into cell nuclei, have en-abled the relationship between drug uptake and extent of radioprotection to be established. Radioprotection has also been demonstrated after systemic administration to mice, for three different endpoints, namely lung, jejunum and bone marrow (survival at 30 days post-TBI). The results of pulse radiolysis studies indicated that the drugs act by reduction of transient radiation-induced oxidative species on DNA. This hypothesis was substantiated by the results of experiments in which MP radioprotection of radiation-induced DNA double-strand breaks, assessed as -H2AX foci, in the human keratinocyte cell line. For both endpoints, the extent of radioprotection increased with MP concentration up to a maximal value. These results are consistent with the hypothesis that radioprotection by MP is mediated by attenuation of the extent of initial DNA damage. However, although MP is a potent radioprotector, it becomes cytotoxic at higher concentrations. This limitation has been addressed in an extensive program of lead optimisation and some promising analogues have emerged from which the next lead will be selected. Given the clinical potential of topical radioprotection, the new analogues are being assessed in terms of delivery to mouse oral mucosa. This is

  15. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core.

    PubMed Central

    Morris, J F; Hromas, R; Rauscher, F J

    1994-01-01

    The myeloid zinc finger gene 1, MZF1, encodes a transcription factor which is expressed in hematopoietic progenitor cells that are committed to myeloid lineage differentiation. MZF1 contains 13 C2H2 zinc fingers arranged in two domains which are separated by a short glycine- and proline-rich sequence. The first domain consists of zinc fingers 1 to 4, and the second domain is formed by zinc fingers 5 to 13. We have determined that both sets of zinc finger domains bind DNA. Purified, recombinant MZF1 proteins containing either the first set of zinc fingers or the second set were prepared and used to affinity select DNA sequences from a library of degenerate oligonucleotides by using successive rounds of gel shift followed by PCR amplification. Surprisingly, both DNA-binding domains of MZF1 selected similar DNA-binding consensus sequences containing a core of four or five guanine residues, reminiscent of an NF-kappa B half-site: 1-4, 5'-AGTGGGGA-3'; 5-13, 5'-CGGGnGAGGGGGAA-3'. The full-length MZF1 protein containing both sets of zinc finger DNA-binding domains recognizes synthetic oligonucleotides containing either the 1-4 or 5-13 consensus binding sites in gel shift assays. Thus, we have identified the core DNA consensus binding sites for each of the two DNA-binding domains of a myeloid-specific zinc finger transcription factor. Identification of these DNA-binding sites will allow us to identify target genes regulated by MZF1 and to assess the role of MZF1 as a transcriptional regulator of hematopoiesis. Images PMID:8114711

  16. Dynamic mitochondrial localization of nuclear transcription factor HMGA1

    SciTech Connect

    Dement, Gregory A.; Treff, Nathan R.; Magnuson, Nancy S.; Franceschi, Vincent; Reeves, Raymond . E-mail: reevesr@mail.wsu.edu

    2005-07-15

    It has been well established that high mobility group A1 (HMGA1) proteins act within the nucleus of mammalian cells as architectural transcription factors that regulate the expression of numerous genes. Here, however, we report on the unexpected cytoplasmic/mitochondrial localization of the HMGA1 proteins within multiple cell types. Indirect immunofluorescence, electron microscopic immunolocalization, and Western blot studies revealed that, in addition to the nucleus, HMGA1 proteins could also be found in both the cytoplasm and mitochondria of randomly dividing populations of wild-type murine NIH3T3 cells and transgenic human MCF-7 breast cancer epithelial cells expressing a hemagglutinin tagged-HMGA1a fusion protein. While the molecular mechanisms underlying these novel subcellular localization patterns have not yet been determined, initial synchronization studies revealed a dynamic, cell cycle-dependent translocation of HMGA1 proteins from the nucleus into the cytoplasm and mitochondria of NIH3T3 cells. Furthermore, preliminary functionality studies utilizing a modified 'chromatin' immunoprecipitation protocol revealed that HMGA1 retains its DNA binding capabilities within the mitochondria and associates with the regulatory D-loop region in vivo. We discuss potential new biological roles for the classically nuclear HMGA1 proteins with regard to the observed nucleocytoplasmic translocation, mitochondrial internalization, and regulatory D-loop DNA binding.

  17. Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities

    PubMed Central

    Narasimhan, Kamesh; Lambert, Samuel A; Yang, Ally WH; Riddell, Jeremy; Mnaimneh, Sanie; Zheng, Hong; Albu, Mihai; Najafabadi, Hamed S; Reece-Hoyes, John S; Fuxman Bass, Juan I; Walhout, Albertha JM; Weirauch, Matthew T; Hughes, Timothy R

    2015-01-01

    Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI: http://dx.doi.org/10.7554/eLife.06967.001 PMID:25905672

  18. Effects of Cigarette Smoke on the Activation of Oxidative Stress-Related Transcription Factors in Female A/J Mouse Lung

    PubMed Central

    Tharappel, Job C.; Cholewa, Jill; Espandiari, Parvaneh; Spear, Brett T.; Gairola, C. Gary; Glauert, Howard P.

    2010-01-01

    Cigarette smoke contains a high concentration of free radicals and induces oxidative stress in the lung and other tissues. Several transcription factors are known to be activated by oxidative stress, including nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and hypoxia-inducible factor (HIF). Studies were therefore undertaken to examine if cigarette smoke could activate these transcription factors, as well as other transcription factors that may be important in lung carcinogenesis. Female A/J mice were exposed to cigarette smoke for 2, 5, 10, 15, 20, 42, or 56 days (6 hr/day, 5 days/wk). Cigarette smoke did not increase NF-κB activation at any of these times, but NF-κB DNA binding activity was lower after 15 days and 56 days of smoke exposure. The DNA binding activity of AP-1 was lower after 10 days and 56 days but was not changed after 42 days of smoke exposure. The DNA binding activity of HIF was quantitatively increased after 42 days of smoke exposure but decreased after 56 days. Whether the activation of other transcription factors in the lung could be altered after exposure to cigarette smoke was subsequently examined. The DNA binding activities of FoxF2, myc-CF1, RORE, and p53 were examined after 10 days of smoke exposure. The DNA binding activities of FoxF2 and p53 were quantitatively increased, but those of myc-CF1 and RORE were unaffected. These studies show that cigarette smoke exposure leads to quantitative increases in DNA binding activities of FoxF2 and p53, while the activations of NF-κB, AP-1, and HIF are largely unaffected or reduced. PMID:20711931

  19. Anti-Transcription Factor RNA Aptamers as Potential Therapeutics

    PubMed Central

    Mondragón, Estefanía

    2016-01-01

    Transcription factors (TFs) are DNA-binding proteins that play critical roles in regulating gene expression. These proteins control all major cellular processes, including growth, development, and homeostasis. Because of their pivotal role, cells depend on proper TF function. It is, therefore, not surprising that TF deregulation is linked to disease. The therapeutic drug targeting of TFs has been proposed as a frontier in medicine. RNA aptamers make interesting candidates for TF modulation because of their unique characteristics. The products of in vitro selection, aptamers are short nucleic acids (DNA or RNA) that bind their targets with high affinity and specificity. Aptamers can be expressed on demand from transgenes and are intrinsically amenable to recognition by nucleic acid-binding proteins such as TFs. In this study, we review several natural prokaryotic and eukaryotic examples of RNAs that modulate the activity of TFs. These examples include 5S RNA, 6S RNA, 7SK, hepatitis delta virus-RNA (HDV-RNA), neuron restrictive silencer element (NRSE)-RNA, growth arrest-specific 5 (Gas5), steroid receptor RNA activator (SRA), trophoblast STAT utron (TSU), the 3′ untranslated region of caudal mRNA, and heat shock RNA-1 (HSR1). We then review examples of unnatural RNA aptamers selected to inhibit TFs nuclear factor-kappaB (NF-κB), TATA-binding protein (TBP), heat shock factor 1 (HSF1), and runt-related transcription factor 1 (RUNX1). The field of RNA aptamers for DNA-binding proteins continues to show promise. PMID:26509637

  20. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    SciTech Connect

    Kewley, Robyn J. . E-mail: rkewley@csu.edu.au; Whitelaw, Murray L.

    2005-12-09

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer.

  1. Lineage-specific and ubiquitous biological roles of the mammalian transcription factor LSF

    PubMed Central

    Veljkovic, Jelena; Hansen, Ulla

    2012-01-01

    Transcriptional regulation in mammalian cells is driven by a complex interplay of multiple transcription factors that respond to signals from either external or internal stimuli. A single transcription factor can control expression of distinct sets of target genes, dependent on its state of post-translational modifications, interacting partner proteins, and the chromatin environment of the cellular genome. Furthermore, many transcription factors can act as either transcriptional repressors or activators, depending on promoter and cellular contexts (Alvarez, et al., 2003). Even in this light, the versatility of LSF (Late SV40 Factor) is remarkable. A hallmark of LSF is its unusual DNA binding domain, as evidenced both by lack of homology to any other established DNA-binding domains and by its DNA recognition sequence. Although a dimer in solution, LSF requires additional multimerization with itself or partner proteins in order to interact with DNA. Transcriptionally, LSF can function as an activator or a repressor. It is a direct target of an increasing number of signal transduction pathways. Biologically, LSF plays roles in cell cycle progression and cell survival, as well as in cell lineage-specific functions, shown most strikingly to date in hematopoietic lineages. This review discusses how the unique aspects of LSF DNA-binding activity may make it particularly susceptible to regulation by signal transduction pathways and may relate to its distinct biological roles. We present current progress in elucidation of both tissue-specific and more universal cellular roles of LSF. Finally, we discuss suggestive data linking LSF to signaling by the amyloid precursor protein and to Alzheimer's disease, as well as to the regulation of latency of the human immunodeficiency virus (HIV). PMID:15563829

  2. The Functional Significance of Common Polymorphisms in Zinc Finger Transcription Factors

    PubMed Central

    Lockwood, Sarah H.; Guan, Anna; Yu, Abigail S.; Zhang, Chi; Zykovich, Artem; Korf, Ian; Rannala, Bruce; Segal, David J.

    2014-01-01

    Variants that alter the DNA-binding specificity of transcription factors could affect the specificity for and expression of potentially many target genes, as has been observed in several tumor-derived mutations. Here we examined if such trans expression quantitative trait loci (trans-eQTLs) could similarly result from common genetic variants. We chose to focus on the Cys2-His2 class of zinc finger transcription factors because they are the most abundant superfamily of transcription factors in human and have well-characterized DNA binding interactions. We identified 430 SNPs that cause missense substitutions in the DNA-contacting residues. Fewer common missense SNPs were found at DNA-contacting residues compared with non-DNA-contacting residues (P = 0.00006), consistent with possible functional selection against SNPs at DNA-contacting positions. Functional predictions based on zinc finger transcription factor (ZNF) DNA binding preferences also suggested that many common substitutions could potentially alter binding specificity. However, Hardy-Weinberg Equilibrium analysis and examination of seven orthologs within the primate lineage failed to find evidence of trans-eQTLs associated with the DNA-contacting positions or evidence of a different selection pressure on a contemporary and evolutionary timescales. The overall conclusion was that common SNPs that alter the DNA-contacting residues of these factors are unlikely to produce strong trans-eQTLs, consistent with the observations by others that trans-eQTLs in humans tend to be few and weak. Some rare SNPs might alter specificity and remained rare due to purifying selection. The study also underscores the need for large-scale eQTLs mapping efforts that might provide experimental evidence for SNPs that alter the choice of transcription factor binding sites. PMID:24970883

  3. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORα (PPARα) AGONISTS DIFFERENTIALLY REGULATE INHIBITOR OF DNA BINDING (ID2) EXPRESSION IN RODENTS AND HUMAN CELLS

    EPA Science Inventory

    Abstract Inhibitor of DNA binding (Id2) is a member of the helix-loop-helix (HLH) transcription factor family whose members play important roles in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones,...

  4. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use. PMID:26443210

  5. TAL Effector DNA-Binding Principles and Specificity.

    PubMed

    Richter, Annekatrin; Streubel, Jana; Boch, Jens

    2016-01-01

    Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use.

  6. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules.

    PubMed

    Kiessling, Anke; Sperl, Bianca; Hollis, Angela; Eick, Dirk; Berg, Thorsten

    2006-07-01

    bZip and bHLHZip protein family members comprise a large fraction of eukaryotic transcription factors and need to bind DNA in order to exert most of their fundamental biological roles. Their binding to DNA requires homo- or heterodimerization via alpha-helical domains, which generally do not contain obvious binding sites for small molecules. We have identified two small molecules, dubbed Mycro1 and Mycro2, which inhibit the protein-protein interactions between the bHLHZip proteins c-Myc and Max. Mycros are the first inhibitors of c-Myc/Max dimerization, which have been demonstrated to inhibit DNA binding of c-Myc with preference over other dimeric transcription factors in vitro. Mycros inhibit c-Myc-dependent proliferation, gene transcription, and oncogenic transformation in the low micromolar concentration range. Our data support the idea that dimeric transcription factors can be druggable even in the absence of obvious small-molecule binding pockets.

  7. Absence of a simple code: how transcription factors read the genome

    PubMed Central

    Slattery, Matthew; Zhou, Tianyin; Yang, Lin; Machado, Ana Carolina Dantas; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factors (TFs) influence cell fate by interpreting the regulatory DNA within a genome. TFs recognize DNA in a specific manner; the mechanisms underlying this specificity have been identified for many TFs, based on three-dimensional structures of protein-DNA complexes. More recently, structural views have been complemented with data from high-throughput in vitro and in vivo explorations of the DNA binding preferences of many TFs. Together, these approaches have greatly expanded our understanding of TF-DNA interactions. However, the mechanisms by which TFs select in vivo binding sites and alter gene expression remain unclear. Recent work has highlighted the many variables that influence TF-DNA binding, while demonstrating that a biophysical understanding of these many factors will be central to understanding TF function. PMID:25129887

  8. DNA binding triggers tetramerization of the glucocorticoid receptor in live cells.

    PubMed

    Presman, Diego M; Ganguly, Sourav; Schiltz, R Louis; Johnson, Thomas A; Karpova, Tatiana S; Hager, Gordon L

    2016-07-19

    Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR's oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors. PMID:27382178

  9. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    PubMed

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution.

  10. Hepatocyte nuclear factor 4 response to injury involves a rapid decrease in DNA binding and transactivation via a JAK2 signal transduction pathway.

    PubMed Central

    Li, Xuemei; Salisbury-Rowswell, John; Murdock, Alan D; Forse, R Armour; Burke, Peter A

    2002-01-01

    The injury response is a complex set of events, which represents the reaction of a biological system to a perceived change in its environment in an attempt to maintain system integrity. Isolation of individual events or components of this response cannot describe the overall process, but may reflect general mechanisms that have evolved over time to solve the complex requirements of the injury response. The process, generally termed the acute phase response, is a series of organ-specific responses that begin shortly after a systemic injury. In the liver, this response involves both dramatic inductions and reductions in specific sets of genes, and an overall widespread global change in proteins produced. This can be thought of as a phenotypic change or 'reprogramming' of the liver. These changes in protein production are modulated and regulated at the level of transcription and involve significant manipulations of transcriptional regulatory mechanisms. Hepatocyte nuclear factor 4 (HNF-4) is a liver enriched transcription factor that regulates a large number of liver-specific genes, which play important roles in the critical pathways modulated by the response to injury. HNF-4 also performs an essential role in overall development and is critical for the normal expression of multiple genes in the developed liver, as well as being upstream of HNF-1 in a transcriptional hierarchy that drives hepatocyte differentiation. The role of HNF-4 in regulating liver-specific transcriptional changes directed by injury remains to be defined. In our cell-culture and whole-animal models, we demonstrate that the binding activity of HNF-4 decreases quickly after injury due to post-translational modification by phosphorylation. The mechanisms by which HNF-4 is modified after injury involve the activation of Janus kinase 2 (JAK2) signal transduction pathways, but the direct or indirect interaction of JAK2 with HNF-4 remains to be defined. PMID:12106016

  11. Physical and functional sensitivity of zinc finger transcription factors to redox change.

    PubMed Central

    Wu, X; Bishopric, N H; Discher, D J; Murphy, B J; Webster, K A

    1996-01-01

    Redox regulation of DNA-binding proteins through the reversible oxidation of key cysteine sulfhydryl groups has been demonstrated to occur in vitro for a range of transcription factors. The direct redox regulation of DNA binding has not been described in vivo, possibly because most protein thiol groups are strongly buffered against oxidation by the highly reduced intracellular environment mediated by glutathione, thioredoxin, and associated pathways. For this reason, only accessible protein thiol groups with high thiol-disulfide oxidation potentials are likely to be responsive to intracellular redox changes. In this article, we demonstrate that zinc finger DNA-binding proteins, in particular members of the Sp-1 family, appear to contain such redox-sensitive -SH groups. These proteins displayed a higher sensitivity to redox regulation than other redox-responsive factors both in vitro and in vivo. This effect was reflected in the hyperoxidative repression of transcription from promoters with essential Sp-1 binding sites, including the simian virus 40 early region, glycolytic enzyme, and dihydrofolate reductase genes. Promoter analyses implicated the Sp-1 sites in this repression. Non-Sp-1-dependent redox-regulated genes including metallothionein and heme oxygenase were induced by the same hyperoxic stress. The studies demonstrate that cellular redox changes can directly regulate gene expression in vivo by determining the level of occupancy of strategically positioned GC-binding sites. PMID:8622648

  12. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research.

    PubMed

    Fujita, Toshitsugu; Fujii, Hodaka

    2015-09-24

    Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE) proteins and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) (CRISPR/Cas) system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.

  13. Actinomycin D specifically inhibits the interaction between transcription factor Sp1 and its binding site.

    PubMed

    Czyz, M; Gniazdowski, M

    1998-01-01

    The mode of action of many anticancer drugs involves DNA interactions. We here examine the ability of actinomycin D to alter the specific binding of transcription factors Spl and NFkappaB to their DNA sequences. Employing an electrophoretic mobility shift assay, it is shown that actinomycin D inhibits complex formation between nuclear proteins present in the extracts from stimulated human umbilical vein endothelial cells and the Sp1-binding site. Actinomycin D is also able to induce disruption of preformed DNA-protein complexes, pointing to the importance of an equilibrium of three components: actinomycin D, protein and DNA for drug action. The effect of actinomycin D is sequence-specific, since no inhibition is observed for interaction of nuclear proteins with the NFkappaB binding site. The results support the view that DNA-binding drugs displaying high sequence-selectivity can exhibit distinct effects on the interaction between DNA and different DNA-binding proteins. PMID:9701497

  14. Identification of a Hydrophobic Cleft in the LytTR Domain of AgrA as a Locus for Small Molecule Interactions that Inhibit DNA Binding

    PubMed Central

    Leonard, Paul G.; Bezar, Ian F.; Sidote, David J.; Stock, Ann M.

    2012-01-01

    The AgrA transcription factor regulates the quorum-sensing response in Staphylococcus aureus, controlling the production of hemolysins and other virulence factors. AgrA binds to DNA via its C-terminal LytTR domain, a domain not found in humans but common in many pathogenic bacteria, making it a potential target for antimicrobial development. We have determined the crystal structure of the apo AgrA LytTR domain and screened a library of 500 fragment compounds to find inhibitors of AgrA DNA-binding activity. Using NMR, the binding site for five compounds has been mapped to a common locus at the C-terminal end of the LytTR domain, a site known to be important for DNA-binding activity. Three of these compounds inhibit AgrA DNA binding. These results provide the first evidence that LytTR domains can be targeted by small organic compounds. PMID:23181972

  15. CHANGES IN THE DNA-BINDING OF SEVERAL TRANSCRIPTION FACTORS IN THE DEVELOPING RAT CEREBELLUM BY PCBS.

    EPA Science Inventory

    PCBs are a class of persistent halogenated aromatic hydrocarbon chemical pollutants and considered as one of the major environmental contaminants resulting from intensive industrial use and inadequate disposal. In utero exposure to PCBs has been known to cause delayed neuronal de...

  16. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors.

    PubMed

    Landin-Malt, André; Benhaddou, Ataaillah; Zider, Alain; Flagiello, Domenico

    2016-10-10

    TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression. PMID:27421669

  17. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors.

    PubMed

    Landin-Malt, André; Benhaddou, Ataaillah; Zider, Alain; Flagiello, Domenico

    2016-10-10

    TEAD proteins constitute a family of highly conserved transcription factors, characterized by a DNA-binding domain called the TEA domain and a protein-binding domain that permits association with transcriptional co-activators. TEAD proteins are unable to induce transcription on their own. They have to interact with transcriptional cofactors to do so. Once TEADs bind their co-activators, the different complexes formed are known to regulate the expression of genes that are crucial for embryonic development, important for organ formation (heart, muscles), and involved in cell death and proliferation. In the first part of this review we describe what is known of the structure of TEAD proteins. We then focus on two members of the family: TEAD1 and TEAD2. First the different transcriptional cofactors are described. These proteins can be classified in three categories: i), cofactors regulating chromatin conformation, ii), cofactors able to bind DNA, and iii), transcriptional cofactors without DNA binding domain. Finally we discuss the recent findings that identified TEAD1 and 2 and its coactivators involved in cancer progression.

  18. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network.

    PubMed

    Pougach, Ksenia; Voet, Arnout; Kondrashov, Fyodor A; Voordeckers, Karin; Christiaens, Joaquin F; Baying, Bianka; Benes, Vladimir; Sakai, Ryo; Aerts, Jan; Zhu, Bo; Van Dijck, Patrick; Verstrepen, Kevin J

    2014-01-01

    The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits. Interestingly, the ancestral transcription factor was promiscuous and could bind different motifs in its target promoters. After duplication, one paralogue evolved increased binding specificity so that it only binds one type of motif, whereas the other copy evolved a decreased activity so that it only activates promoters that contain multiple binding sites. Interestingly, only a few mutations in both the DNA-binding domains and in the promoter binding sites were required to gradually disentangle the two networks. These results reveal how duplication of a promiscuous transcription factor followed by concerted cis and trans mutations allows expansion of a regulatory network.

  19. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network

    PubMed Central

    Pougach, Ksenia; Voet, Arnout; Kondrashov, Fyodor A.; Voordeckers, Karin; Christiaens, Joaquin F.; Baying, Bianka; Benes, Vladimir; Sakai, Ryo; Aerts, Jan; Zhu, Bo; Van Dijck, Patrick; Verstrepen, Kevin J.

    2014-01-01

    The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits. Interestingly, the ancestral transcription factor was promiscuous and could bind different motifs in its target promoters. After duplication, one paralogue evolved increased binding specificity so that it only binds one type of motif, whereas the other copy evolved a decreased activity so that it only activates promoters that contain multiple binding sites. Interestingly, only a few mutations in both the DNA-binding domains and in the promoter binding sites were required to gradually disentangle the two networks. These results reveal how duplication of a promiscuous transcription factor followed by concerted cis and trans mutations allows expansion of a regulatory network. PMID:25204769

  20. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  1. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  2. DNA methylation presents distinct binding sites for human transcription factors.

    PubMed

    Hu, Shaohui; Wan, Jun; Su, Yijing; Song, Qifeng; Zeng, Yaxue; Nguyen, Ha Nam; Shin, Jaehoon; Cox, Eric; Rho, Hee Sool; Woodard, Crystal; Xia, Shuli; Liu, Shuang; Lyu, Huibin; Ming, Guo-Li; Wade, Herschel; Song, Hongjun; Qian, Jiang; Zhu, Heng

    2013-01-01

    DNA methylation, especially CpG methylation at promoter regions, has been generally considered as a potent epigenetic modification that prohibits transcription factor (TF) recruitment, resulting in transcription suppression. Here, we used a protein microarray-based approach to systematically survey the entire human TF family and found numerous purified TFs with methylated CpG (mCpG)-dependent DNA-binding activities. Interestingly, some TFs exhibit specific binding activity to methylated and unmethylated DNA motifs of distinct sequences. To elucidate the underlying mechanism, we focused on Kruppel-like factor 4 (KLF4), and decoupled its mCpG- and CpG-binding activities via site-directed mutagenesis. Furthermore, KLF4 binds specific methylated or unmethylated motifs in human embryonic stem cells in vivo. Our study suggests that mCpG-dependent TF binding activity is a widespread phenomenon and provides a new framework to understand the role and mechanism of TFs in epigenetic regulation of gene transcription. DOI:http://dx.doi.org/10.7554/eLife.00726.001. PMID:24015356

  3. A genome-scale resource for the functional characterization of Arabidopsis transcription factors

    PubMed Central

    Pruneda-Paz, Jose L.; Breton, Ghislain; Nagel, Dawn H.; Kang, S. Earl; Bonaldi, Katia; Doherty, Colleen J.; Ravelo, Stephanie; Galli, Mary; Ecker, Joseph R.; Kay, Steve A.

    2014-01-01

    SUMMARY Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs) bound to gene promoters. TF-promoter interactions thus provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive clone-collection of Arabidopsis TFs created to provide a versatile resource to uncover TF biological functions. We leveraged this collection by implementing a high-throughput DNA-binding assay and identified direct regulators of a key clock gene (CCA1) that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes. PMID:25043187

  4. Towards the classification of DYT6 dystonia mutants in the DNA-binding domain of THAP1

    PubMed Central

    Campagne, Sébastien; Muller, Isabelle; Gervais, Virginie

    2012-01-01

    The transcription factor THAP1 (THanatos Associated Protein 1) has emerged recently as the cause of DYT6 primary dystonia, a type of rare, familial and mostly early-onset syndrome that leads to involuntary muscle contractions. Many of the mutations described in the DYT6 patients fall within the sequence-specific DNA-binding domain (THAP domain) of THAP1 and are believed to negatively affect DNA binding. Here, we have used an integrated approach combining spectroscopic (NMR, fluorescence, DSF) and calorimetric (ITC) methods to evaluate the effect of missense mutations, within the THAP domain, on the structure, stability and DNA binding. Our study demonstrates that none of the mutations investigated failed to bind DNA and some of them even bind DNA stronger than the wild-type protein. However, some mutations could alter DNA-binding specificity. Furthermore, the most striking effect is the decrease of stability observed for mutations at positions affecting the zinc coordination, the hydrophobic core or the C-terminal AVPTIF motif, with unfolding temperatures ranging from 46°C for the wild-type to below 37°C for two mutations. These findings suggest that reduction in population of folded protein under physiological conditions could also account for the disease. PMID:22844099

  5. Towards the classification of DYT6 dystonia mutants in the DNA-binding domain of THAP1.

    PubMed

    Campagne, Sébastien; Muller, Isabelle; Milon, Alain; Gervais, Virginie

    2012-10-01

    The transcription factor THAP1 (THanatos Associated Protein 1) has emerged recently as the cause of DYT6 primary dystonia, a type of rare, familial and mostly early-onset syndrome that leads to involuntary muscle contractions. Many of the mutations described in the DYT6 patients fall within the sequence-specific DNA-binding domain (THAP domain) of THAP1 and are believed to negatively affect DNA binding. Here, we have used an integrated approach combining spectroscopic (NMR, fluorescence, DSF) and calorimetric (ITC) methods to evaluate the effect of missense mutations, within the THAP domain, on the structure, stability and DNA binding. Our study demonstrates that none of the mutations investigated failed to bind DNA and some of them even bind DNA stronger than the wild-type protein. However, some mutations could alter DNA-binding specificity. Furthermore, the most striking effect is the decrease of stability observed for mutations at positions affecting the zinc coordination, the hydrophobic core or the C-terminal AVPTIF motif, with unfolding temperatures ranging from 46°C for the wild-type to below 37°C for two mutations. These findings suggest that reduction in population of folded protein under physiological conditions could also account for the disease. PMID:22844099

  6. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1.

    PubMed

    Omichinski, J G; Clore, G M; Schaad, O; Felsenfeld, G; Trainor, C; Appella, E; Stahl, S J; Gronenborn, A M

    1993-07-23

    The three-dimensional solution structure of a complex between the DNA binding domain of the chicken erythroid transcription factor GATA-1 and its cognate DNA site has been determined with multidimensional heteronuclear magnetic resonance spectroscopy. The DNA binding domain consists of a core which contains a zinc coordinated by four cysteines and a carboxyl-terminal tail. The core is composed of two irregular antiparallel beta sheets and an alpha helix, followed by a long loop that leads into the carboxyl-terminal tail. The amino-terminal part of the core, including the helix, is similar in structure, although not in sequence, to the amino-terminal zinc module of the glucocorticoid receptor DNA binding domain. In the other regions, the structures of these two DNA binding domains are entirely different. The DNA target site in contact with the protein spans eight base pairs. The helix and the loop connecting the two antiparallel beta sheets interact with the major groove of the DNA. The carboxyl-terminal tail, which is an essential determinant of specific binding, wraps around into the minor groove. The complex resembles a hand holding a rope with the palm and fingers representing the protein core and the thumb, the carboxyl-terminal tail. The specific interactions between GATA-1 and DNA in the major groove are mainly hydrophobic in nature, which accounts for the preponderance of thymines in the target site. A large number of interactions are observed with the phosphate backbone. PMID:8332909

  7. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    PubMed

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications.

  8. Transcription factor-based biosensor

    SciTech Connect

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  9. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains.

    PubMed Central

    Vallee, B L; Coleman, J E; Auld, D S

    1991-01-01

    We now recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a "zinc cluster" akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is approximately 3.5 A. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is approximately 13 A, and in this instance, a "zinc twist" is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native "zinc fingers," structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent. Images PMID:1846973

  10. Recent discoveries concerning the involvement of transcription factors from the Grainyhead-like family in cancer.

    PubMed

    Mlacki, Michal; Kikulska, Agnieszka; Krzywinska, Ewa; Pawlak, Magdalena; Wilanowski, Tomasz

    2015-11-01

    The Grainyhead-like (GRHL) family of transcription factors has three mammalian members, which are currently termed Grainyhead-like 1 (GRHL1), Grainyhead-like 2 (GRHL2), and Grainyhead-like 3 (GRHL3). These factors adopt a DNA-binding immunoglobulin fold homologous to the DNA-binding domain of key tumor suppressor p53. Their patterns of expression are tissue and developmentally specific. Earlier studies of the GRHL proteins focused on their functions in mammalian development. In recent years, these factors have been linked to many different types of cancer: squamous cell carcinoma of the skin, breast cancer, gastric cancer, hepatocellular carcinoma, colorectal cancer, clear cell renal cell carcinoma, neuroblastoma, prostate cancer, and cervical cancer. The roles of GRHL proteins in these various types of cancer are complex, and in some cases appear to be contradictory: they can serve to promote cancer development, or they may act as tumor suppressors, depending on the particular GRHL protein involved and on the cancer type. The reasons for obvious discrepancies in results from different studies remain unclear. At the molecular level, the GRHL transcription factors regulate the expression of genes whose products are involved in cellular proliferation, differentiation, adhesion, and polarity. We herein review the roles of GRHL proteins in cancer development, and we critically examine relevant molecular mechanisms, which were proposed by different authors. We also discuss the significance of recent discoveries implicating the involvement of GRHL transcription factors in cancer and highlight potential future applications of this knowledge in cancer treatment.

  11. Recent discoveries concerning the involvement of transcription factors from the Grainyhead-like family in cancer

    PubMed Central

    Mlacki, Michal; Kikulska, Agnieszka; Krzywinska, Ewa; Pawlak, Magdalena

    2015-01-01

    The Grainyhead-like (GRHL) family of transcription factors has three mammalian members, which are currently termed Grainyhead-like 1 (GRHL1), Grainyhead-like 2 (GRHL2), and Grainyhead-like 3 (GRHL3). These factors adopt a DNA-binding immunoglobulin fold homologous to the DNA-binding domain of key tumor suppressor p53. Their patterns of expression are tissue and developmentally specific. Earlier studies of the GRHL proteins focused on their functions in mammalian development. In recent years, these factors have been linked to many different types of cancer: squamous cell carcinoma of the skin, breast cancer, gastric cancer, hepatocellular carcinoma, colorectal cancer, clear cell renal cell carcinoma, neuroblastoma, prostate cancer, and cervical cancer. The roles of GRHL proteins in these various types of cancer are complex, and in some cases appear to be contradictory: they can serve to promote cancer development, or they may act as tumor suppressors, depending on the particular GRHL protein involved and on the cancer type. The reasons for obvious discrepancies in results from different studies remain unclear. At the molecular level, the GRHL transcription factors regulate the expression of genes whose products are involved in cellular proliferation, differentiation, adhesion, and polarity. We herein review the roles of GRHL proteins in cancer development, and we critically examine relevant molecular mechanisms, which were proposed by different authors. We also discuss the significance of recent discoveries implicating the involvement of GRHL transcription factors in cancer and highlight potential future applications of this knowledge in cancer treatment. PMID:26069269

  12. Zinc finger transcription factor CASZ1 interacts with histones, DNA repair proteins and recruits NuRD complex to regulate gene transcription

    PubMed Central

    Liu, Zhihui; Lam, Norris; Thiele, Carol J.

    2015-01-01

    The zinc finger transcription factor CASZ1 has been found to control neural fate-determination in flies, regulate murine and frog cardiac development, control murine retinal cell progenitor expansion and function as a tumor suppressor gene in humans. However, the molecular mechanism by which CASZ1 regulates gene transcription to exert these diverse biological functions has not been described. Here we identify co-factors that are recruited by CASZ1b to regulate gene transcription using co-immunoprecipitation (co-IP) and mass spectrometry assays. We find that CASZ1b binds to the nucleosome remodeling and histone deacetylase (NuRD) complex, histones and DNA repair proteins. Mutagenesis of the CASZ1b protein assay demonstrates that the N-terminus of CASZ1b is required for NuRD binding, and a poly(ADP-ribose) binding motif in the CASZ1b protein is required for histone H3 and DNA repair proteins binding. The N-terminus of CASZ1b fused to an artificial DNA-binding domain (GAL4DBD) causes a significant repression of transcription (5xUAS-luciferase assay), which could be blocked by treatment with an HDAC inhibitor. Realtime PCR results show that the transcriptional activity of CASZ1b mutants that abrogate NuRD or histone H3/DNA binding is significantly decreased. This indicates a model in which CASZ1b binds to chromatin and recruits NuRD complexes to orchestrate epigenetic-mediated transcriptional programs. PMID:26296975

  13. Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity

    PubMed Central

    Albu, Mihai; Cote, Atina; Montenegro-Montero, Alejandro; Drewe, Philipp; Najafabadi, Hamed S.; Lambert, Samuel A.; Mann, Ishminder; Cook, Kate; Zheng, Hong; Goity, Alejandra; van Bakel, Harm; Lozano, Jean-Claude; Galli, Mary; Lewsey, Mathew; Huang, Eryong; Mukherjee, Tuhin; Chen, Xiaoting; Reece-Hoyes, John S.; Govindarajan, Sridhar; Shaulsky, Gad; Walhout, Albertha J.M.; Bouget, François-Yves; Ratsch, Gunnar; Larrondo, Luis F.; Ecker, Joseph R.; Hughes, Timothy R.

    2014-01-01

    SUMMARY Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ~1% of all eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ~34% of the ~170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in ChIP-seq peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif “library” (http://cisbp.ccbr.utoronto.ca) can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes. PMID:25215497

  14. Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4

    PubMed Central

    Marsboom, Glenn; Zhang, Guo-Fang; Pohl-Avila, Nicole; Zhang, Yanmin; Yuan, Yang; Kang, Hojin; Hao, Bo; Brunengraber, Henri; Malik, Asrar B.; Rehman, Jalees

    2016-01-01

    SUMMARY The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs) are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous anti-oxidant glutathione, which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4lo cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation. PMID:27346346

  15. A transcriptional repressive role for epithelial-specific ETS factor ELF3 on oestrogen receptor alpha in breast cancer cells.

    PubMed

    Gajulapalli, Vijaya Narasihma Reddy; Samanthapudi, Venkata Subramanyam Kumar; Pulaganti, Madhusudana; Khumukcham, Saratchandra Singh; Malisetty, Vijaya Lakhsmi; Guruprasad, Lalitha; Chitta, Suresh Kumar; Manavathi, Bramanandam

    2016-04-15

    Oestrogen receptor-α (ERα) is a ligand-dependent transcription factor that primarily mediates oestrogen (E2)-dependent gene transcription required for mammary gland development. Coregulators critically regulate ERα transcription functions by directly interacting with it. In the present study, we report that ELF3, an epithelial-specific ETS transcription factor, acts as a transcriptional repressor of ERα. Co-immunoprecipitation (Co-IP) analysis demonstrated that ELF3 strongly binds to ERα in the absence of E2, but ELF3 dissociation occurs upon E2 treatment in a dose- and time-dependent manner suggesting that E2 negatively influences such interaction. Domain mapping studies further revealed that the ETS (E-twenty six) domain of ELF3 interacts with the DNA binding domain of ERα. Accordingly, ELF3 inhibited ERα's DNA binding activity by preventing receptor dimerization, partly explaining the mechanism by which ELF3 represses ERα transcriptional activity. Ectopic expression of ELF3 decreases ERα transcriptional activity as demonstrated by oestrogen response elements (ERE)-luciferase reporter assay or by endogenous ERα target genes. Conversely ELF3 knockdown increases ERα transcriptional activity. Consistent with these results, ELF3 ectopic expression decreases E2-dependent MCF7 cell proliferation whereas ELF3 knockdown increases it. We also found that E2 induces ELF3 expression in MCF7 cells suggesting a negative feedback regulation of ERα signalling in breast cancer cells. A small peptide sequence of ELF3 derived through functional interaction between ERα and ELF3 could inhibit DNA binding activity of ERα and breast cancer cell growth. These findings demonstrate that ELF3 is a novel transcriptional repressor of ERα in breast cancer cells. Peptide interaction studies further represent a novel therapeutic option in breast cancer therapy.

  16. Mutational Analysis of AREA, a Transcriptional Activator Mediating Nitrogen Metabolite Repression in Aspergillus nidulans and a Member of the “Streetwise” GATA Family of Transcription Factors

    PubMed Central

    Wilson, Richard A.; Arst, Herbert N.

    1998-01-01

    Summary: The transcriptional activator AREA is a member of the GATA family of transcription factors and mediates nitrogen metabolite repression in the fungus Aspergillus nidulans. The nutritional versatility of A. nidulans and its amenability to classical and reverse genetic manipulations make the AREA DNA binding domain (DBD) a useful model for analyzing GATA family DBDs, particularly as structures of two AREA-DNA complexes have been determined. The 109 extant mutant forms of the AREA DBD surveyed here constitute one of the highest totals of eukaryotic transcription factor DBD mutants, are discussed in light of the roles of individual residues, and are compared to corresponding mutant sequence changes in other fungal GATA factor DBDs. Other topics include delineation of the DBD using both homology and mutational truncation, use of frameshift reversion to detect regions of tolerance to mutational change, the finding that duplication of the DBD can apparently enhance AREA function, and use of the AREA system to analyze a vertebrate GATA factor DBD. Some major points to emerge from work on the AREA DBD are (i) tolerance to sequence change (with retention of function) is surprisingly great, (ii) mutational changes in a transcription factor can have widely differing, even opposing, effects on expression of different structural genes so that monitoring expression of one or even several structural genes can be insufficient and possibly misleading, and (iii) a mutational change altering local hydrophobic packing and DNA binding target specificity can markedly influence the behavior of mutational changes elsewhere in the DBD. PMID:9729601

  17. Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential

    PubMed Central

    Davies, Kelli A.; Bergmann, Dominique C.

    2014-01-01

    Transcription factor duplication events and subsequent specialization can drive evolution by facilitating biological innovation and developmental complexity. Identification of sequences that confer distinct biochemical function in vivo is an important step in understanding how related factors could refine specific developmental processes over time. Functional analysis of the basic helix–loop–helix (bHLH) protein SPEECHLESS, one of three closely related transcription factors required for stomatal lineage progression in Arabidopsis thaliana, allowed a dissection of motifs associated with specific developmental outputs. Phosphorylated residues, shown previously to quantitatively affect activity, also allow a qualitative shift in function between division and cell fate-promoting activities. Our data also provide surprising evidence that, despite deep sequence conservation in DNA-binding domains, the functional requirement for these domains has diverged, with the three stomatal bHLHs exhibiting absolute, partial, or no requirements for DNA-binding residues for their in vivo activities. Using these data, we build a plausible model describing how the current unique and overlapping roles of these proteins might have evolved from a single ancestral protein. PMID:25304637

  18. Functional specialization of stomatal bHLHs through modification of DNA-binding and phosphoregulation potential.

    PubMed

    Davies, Kelli A; Bergmann, Dominique C

    2014-10-28

    Transcription factor duplication events and subsequent specialization can drive evolution by facilitating biological innovation and developmental complexity. Identification of sequences that confer distinct biochemical function in vivo is an important step in understanding how related factors could refine specific developmental processes over time. Functional analysis of the basic helix-loop-helix (bHLH) protein SPEECHLESS, one of three closely related transcription factors required for stomatal lineage progression in Arabidopsis thaliana, allowed a dissection of motifs associated with specific developmental outputs. Phosphorylated residues, shown previously to quantitatively affect activity, also allow a qualitative shift in function between division and cell fate-promoting activities. Our data also provide surprising evidence that, despite deep sequence conservation in DNA-binding domains, the functional requirement for these domains has diverged, with the three stomatal bHLHs exhibiting absolute, partial, or no requirements for DNA-binding residues for their in vivo activities. Using these data, we build a plausible model describing how the current unique and overlapping roles of these proteins might have evolved from a single ancestral protein.

  19. The Velvet Family of Fungal Regulators Contains a DNA-Binding Domain Structurally Similar to NF-κB

    PubMed Central

    Bayram, Özgür; Neumann, Piotr; Ni, Min; Dickmanns, Achim; Kim, Sun Chang; Yu, Jae-Hyuk; Braus, Gerhard H.; Ficner, Ralf

    2013-01-01

    Morphological development of fungi and their combined production of secondary metabolites are both acting in defence and protection. These processes are mainly coordinated by velvet regulators, which contain a yet functionally and structurally uncharacterized velvet domain. Here we demonstrate that the velvet domain of VosA is a novel DNA-binding motif that specifically recognizes an 11-nucleotide consensus sequence consisting of two motifs in the promoters of key developmental regulatory genes. The crystal structure analysis of the VosA velvet domain revealed an unforeseen structural similarity with the Rel homology domain (RHD) of the mammalian transcription factor NF-κB. Based on this structural similarity several conserved amino acid residues present in all velvet domains have been identified and shown to be essential for the DNA binding ability of VosA. The velvet domain is also involved in dimer formation as seen in the solved crystal structures of the VosA homodimer and the VosA-VelB heterodimer. These findings suggest that defence mechanisms of both fungi and animals might be governed by structurally related DNA-binding transcription factors. PMID:24391470

  20. Characterization of the transcriptional activation domains of human TEF3-1 (transcription enhancer factor 3 isoform 1).

    PubMed

    Qiao, Cheng; Jiang, Yajie; Deng, Cuilan; Huang, Zebo; Teng, Kaixuan; Chen, Lan; Liu, Xin

    2015-03-01

    TEF3-1 (transcription enhancer factor 3 isoform 1) is a human transcriptional factor, which has a N-terminal TEA/ATTS domain supposedly for DNA binding and C-terminal PRD and STY domains for transcriptional activation. Taking advantage of the efficient reporter design of yeast two-hybrid system, we characterized the TEF3-1 domains in activating gene expression. Previously study usually mentioned that the C-terminal domain of TEF3-1 has the transcriptional activity, however, our data shows that the peptides TEF3-11-66 and TEF3-1197-434 functioned as two independent activation domains, suggesting that N-terminal domain of TEF3-1 also has transcriptional activation capacity. Additionally, more deletions of amino acids 197-434 showed that only the peptides TEF3-1197-265 contained the minimum sequences for the C-terminal transcriptional activation domain. The protein structure is predicted to contain a helix-turn-helix structure in TEF3-11-66 and four β sheets in TEF3-1197-265. Finally, after the truncated fragments of TEF3-1 were expressed in HUVEC cells, the whole TEF3-1 and the two activation domains could increase F-actin stress fiber, cell proliferation, migration and targeted gene expression. Further analysis and characterization of the activation domains in TEF3-1 may broaden our understanding of the gene involved in angiogenesis and other pathological processes.

  1. Transcriptional activation by Myc is under negative control by the transcription factor AP-2.

    PubMed Central

    Gaubatz, S; Imhof, A; Dosch, R; Werner, O; Mitchell, P; Buettner, R; Eilers, M

    1995-01-01

    The Myc protein binds to and transactivates the expression of genes via E-box elements containing a central CAC(G/A)TG sequence. The transcriptional activation function of Myc is required for its ability to induce cell cycle progression, cellular transformation and apoptosis. Here we show that transactivation by Myc is under negative control by the transcription factor AP-2. AP-2 inhibits transactivation by Myc via two distinct mechanisms. First, high affinity binding sites for AP-2 overlap Myc-response elements in two bona fide target genes of Myc, prothymosin-alpha and ornithine decarboxylase. On these sites, AP-2 competes for binding of either Myc/Max heterodimers or Max/Max homodimers. The second mechanism involves a specific interaction between C-terminal domains of AP-2 and the BR/HLH/LZ domain of Myc, but not Max or Mad. Binding of AP-2 to Myc does not preclude association of Myc with Max, but impairs DNA binding of the Myc/Max complex and inhibits transactivation by Myc even in the absence of an overlapping AP-2 binding site. Taken together, our data suggest that AP-2 acts as a negative regulator of transactivation by Myc. Images PMID:7729426

  2. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  3. A Putative Transcription Factor MYT1 Is Required for Female Fertility in the Ascomycete Gibberella zeae

    PubMed Central

    Lin, Yang; Son, Hokyoung; Lee, Jungkwan; Min, Kyunghun; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2011-01-01

    Gibberella zeae is an important pathogen of major cereal crops. The fungus produces ascospores that forcibly discharge from mature fruiting bodies, which serve as the primary inocula for disease epidemics. In this study, we characterized an insertional mutant Z39P105 with a defect in sexual development and identified a gene encoding a putative transcription factor designated as MYT1. This gene contains a Myb DNA-binding domain and is conserved in the subphylum Pezizomycotina of Ascomycota. The MYT1 protein fused with green fluorescence protein localized in nuclei, which supports its role as a transcriptional regulator. The MYT1 deletion mutant showed similar phenotypes to the wild-type strain in vegetative growth, conidia production and germination, virulence, and mycotoxin production, but had defect in female fertility. A mutant overexpressing MYT1 showed earlier germination, faster mycelia growth, and reduced mycotoxin production compared to the wild-type strain, suggesting that improper MYT1 expression affects the expression of genes involved in the cell cycle and secondary metabolite production. This study is the first to characterize a transcription factor containing a Myb DNA-binding domain that is specific to sexual development in G. zeae. PMID:21984921

  4. Expression of Drosophila forkhead transcription factors during kidney development.

    PubMed

    Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F; Zuo, Xiaofeng; Lipschutz, Joshua H

    2014-03-28

    The Drosophila forkhead (Dfkh) family of transcription factors has over 40 family members. One Dfkh family member, BF2 (aka FoxD1), has been shown, by targeted disruption, to be essential for kidney development. In order to determine if other Dfkh family members were involved in kidney development and to search for new members of this family, reverse transcriptase polymerase chain reaction (RT-PCR) was performed using degenerate primers of the consensus sequence of the DNA binding domain of this family and developing rat kidney RNA. The RT-PCR product was used to probe RNA from a developing rat kidney (neonatal), from a 20-day old kidney, and from an adult kidney. The RT-PCR product hybridized only to a developing kidney RNA transcript of ∼2.3 kb (the size of BF2). A lambda gt10 mouse neonatal kidney library was then screened, using the above-described RT-PCR product as a probe. Three lambda phage clones were isolated that strongly hybridized to the RT-PCR probe. Sequencing of the RT-PCR product and the lambda phage clones isolated from the developing kidney library revealed Dfkh BF2. In summary, only Dfkh family member BF2, which has already been shown to be essential for nephrogenesis, was identified in our screen and no other candidate Dfkh family members were identified.

  5. Expression of Drosophila Forkhead Transcription Factors During Kidney Development

    PubMed Central

    Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F.; Zuo, Xiaofeng; Lipschutz, Joshua H.

    2014-01-01

    The Drosophila forkhead (Dfkh) family of transcription factors has over 40 family members. One Dfkh family member, BF2 (aka FoxD1), has been shown, by targeted disruption, to be essential for kidney development. In order to determine if other Dfkh family members were involved in kidney development and to search for new members of this family, reverse transcriptase polymerase chain reaction (RT-PCR) was performed using degenerate primers of the consensus sequence of the DNA binding domain of this family and developing rat kidney RNA. The RT-PCR product was used to probe RNA from a developing rat kidney (neonatal), from a 20-day old kidney, and from an adult kidney. The RT-PCR product hybridized only to a developing kidney RNA transcript of ~2.3 kb (the size of BF2). A lambda gt10 mouse neonatal kidney library was then screened, using the above-described RT-PCR product as a probe. Three lambda phage clones were isolated that strongly hybridized to the RT-PCR probe. Sequencing of the RT-PCR product and the lambda phage clones isolated from the developing kidney library revealed Dfkh BF2. In summary, only Dfkh family member BF2, which has already been shown to be essential for nephrogenesis, was identified in our screen and no other candidate Dfkh family members were identified. PMID:24491558

  6. The effects of cytosine methylation on general transcription factors

    NASA Astrophysics Data System (ADS)

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-07-01

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.

  7. The effects of cytosine methylation on general transcription factors

    PubMed Central

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-01-01

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs. PMID:27385050

  8. The effects of cytosine methylation on general transcription factors.

    PubMed

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-07-07

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.

  9. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Yang, Dong-Hoon; Maeng, Shinae; Lee, Kyung-Tae; So, Yee-Seul; Hong, Joohyeon; Choi, Jaeyoung; Byun, Hyo-Jeong; Kim, Hyelim; Bang, Soohyun; Song, Min-Hee; Lee, Jang-Won; Kim, Min Su; Kim, Seo-Young; Ji, Je-Hyun; Park, Goun; Kwon, Hyojeong; Cha, Suyeon; Meyers, Gena Lee; Wang, Li Li; Jang, Jooyoung; Janbon, Guilhem; Adedoyin, Gloria; Kim, Taeyup; Averette, Anna K; Heitman, Joseph; Cheong, Eunji; Lee, Yong-Hwan; Lee, Yin-Won; Bahn, Yong-Sun

    2015-04-07

    Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but its overall biological and pathogenic regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs). Here, we report the construction of a high-quality library of 322 signature-tagged gene-deletion strains for 155 putative TF genes previously predicted using the DNA-binding domain TF database, and examine their in vitro and in vivo phenotypic traits under 32 distinct growth conditions. At least one phenotypic trait is exhibited by 145 out of 155 TF mutants (93%) and ∼85% of them (132/155) are functionally characterized for the first time in this study. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and human fungal pathogens.

  10. Conserved Cysteine Residue in the DNA-Binding Domain of the Bovine Papillomavirus Type 1 E2 Protein Confers Redox Regulation of the DNA- Binding Activity in Vitro

    NASA Astrophysics Data System (ADS)

    McBride, Alison A.; Klausner, Richard D.; Howley, Peter M.

    1992-08-01

    The bovine papillomavirus type 1 E2 open reading frame encodes three proteins involved in viral DNA replication and transcriptional regulation. These polypeptides share a carboxyl-terminal domain with a specific DNA-binding activity; through this domain the E2 polypeptides form dimers. In this study, we demonstrate the inhibition of E2 DNA binding in vitro by reagents that oxidize or otherwise chemically modify the free sulfydryl groups of reactive cysteine residues. However, these reagents had no effect on DNA-binding activity when the E2 polypeptide was first bound to DNA, suggesting that the free sulfydryl group(s) may be protected by DNA binding. Sensitivity to sulfydryl modification was mapped to a cysteine residue at position 340 in the E2 DNA-binding domain, an amino acid that is highly conserved among the E2 proteins of different papillomaviruses. Replacement of this residue with other amino acids abrogated the sensitivity to oxidation-reduction changes but did not affect the DNA-binding property of the E2 protein. These results suggest that papillomavirus DNA replication and transcriptional regulation could be modulated through the E2 proteins by changes in the intracellular redox environment. Furthermore, a motif consisting of a reactive cysteine residue carboxyl-terminal to a lysine residue in a basic region of the DNA-binding domain is a feature common to a number of transcriptional regulatory proteins that, like E2, are subject to redox regulation. Thus, posttranslational regulation of the activity of these proteins by the intracellular redox environment may be a general phenomenon.

  11. E2F transcription factor 1 regulates cellular and organismal senescence by inhibiting Forkhead box O transcription factors.

    PubMed

    Xie, Qi; Peng, Shengyi; Tao, Li; Ruan, Haihe; Yang, Yanglu; Li, Tie-Mei; Adams, Ursula; Meng, Songshu; Bi, Xiaolin; Dong, Meng-Qiu; Yuan, Zengqiang

    2014-12-01

    E2F1 and FOXO3 are two transcription factors that have been shown to participate in cellular senescence. Previous report reveals that E2F1 enhanced cellular senescence in human fibroblast cells, while FOXO transcription factors play against senescence by regulation reactive oxygen species scavenging proteins. However, their functional interplay has been unclear. Here we use E2F1 knock-out murine Embryonic fibroblasts (MEFs), knockdown RNAi constructs, and ectopic expression of E2F1 to show that it functions by negatively regulating FOXO3. E2F1 attenuates FOXO3-mediated expression of MnSOD and Catalase without affecting FOXO3 protein stability, subcellular localization, or phosphorylation by Akt. We mapped the interaction between E2F1 and FOXO3 to a region including the DNA binding domain of E2F1 and the C-terminal transcription-activation domain of FOXO3. We propose that E2F1 inhibits FOXO3-dependent transcription by directly binding FOXO3 in the nucleus and preventing activation of its target genes. Moreover, knockdown of the Caenorhabditis elegans E2F1 ortholog efl-1 significantly extends lifespan in a manner that requires the activity of the C. elegans FOXO gene daf-16. We conclude that there is an evolutionarily conserved signaling connection between E2F1 and FOXO3, which regulates cellular senescence and aging by regulating the activity of FOXO3. We speculate that drugs and/or therapies that inhibit this physical interaction might be good candidates for reducing cellular senescence and increasing longevity.

  12. E2F transcription factor 1 regulates cellular and organismal senescence by inhibiting Forkhead box O transcription factors.

    PubMed

    Xie, Qi; Peng, Shengyi; Tao, Li; Ruan, Haihe; Yang, Yanglu; Li, Tie-Mei; Adams, Ursula; Meng, Songshu; Bi, Xiaolin; Dong, Meng-Qiu; Yuan, Zengqiang

    2014-12-01

    E2F1 and FOXO3 are two transcription factors that have been shown to participate in cellular senescence. Previous report reveals that E2F1 enhanced cellular senescence in human fibroblast cells, while FOXO transcription factors play against senescence by regulation reactive oxygen species scavenging proteins. However, their functional interplay has been unclear. Here we use E2F1 knock-out murine Embryonic fibroblasts (MEFs), knockdown RNAi constructs, and ectopic expression of E2F1 to show that it functions by negatively regulating FOXO3. E2F1 attenuates FOXO3-mediated expression of MnSOD and Catalase without affecting FOXO3 protein stability, subcellular localization, or phosphorylation by Akt. We mapped the interaction between E2F1 and FOXO3 to a region including the DNA binding domain of E2F1 and the C-terminal transcription-activation domain of FOXO3. We propose that E2F1 inhibits FOXO3-dependent transcription by directly binding FOXO3 in the nucleus and preventing activation of its target genes. Moreover, knockdown of the Caenorhabditis elegans E2F1 ortholog efl-1 significantly extends lifespan in a manner that requires the activity of the C. elegans FOXO gene daf-16. We conclude that there is an evolutionarily conserved signaling connection between E2F1 and FOXO3, which regulates cellular senescence and aging by regulating the activity of FOXO3. We speculate that drugs and/or therapies that inhibit this physical interaction might be good candidates for reducing cellular senescence and increasing longevity. PMID:25344604

  13. E2F Transcription Factor 1 Regulates Cellular and Organismal Senescence by Inhibiting Forkhead Box O Transcription Factors*

    PubMed Central

    Xie, Qi; Peng, Shengyi; Tao, Li; Ruan, Haihe; Yang, Yanglu; Li, Tie-Mei; Adams, Ursula; Meng, Songshu; Bi, Xiaolin; Dong, Meng-Qiu; Yuan, Zengqiang

    2014-01-01

    E2F1 and FOXO3 are two transcription factors that have been shown to participate in cellular senescence. Previous report reveals that E2F1 enhanced cellular senescence in human fibroblast cells, while FOXO transcription factors play against senescence by regulation reactive oxygen species scavenging proteins. However, their functional interplay has been unclear. Here we use E2F1 knock-out murine Embryonic fibroblasts (MEFs), knockdown RNAi constructs, and ectopic expression of E2F1 to show that it functions by negatively regulating FOXO3. E2F1 attenuates FOXO3-mediated expression of MnSOD and Catalase without affecting FOXO3 protein stability, subcellular localization, or phosphorylation by Akt. We mapped the interaction between E2F1 and FOXO3 to a region including the DNA binding domain of E2F1 and the C-terminal transcription-activation domain of FOXO3. We propose that E2F1 inhibits FOXO3-dependent transcription by directly binding FOXO3 in the nucleus and preventing activation of its target genes. Moreover, knockdown of the Caenorhabditis elegans E2F1 ortholog efl-1 significantly extends lifespan in a manner that requires the activity of the C. elegans FOXO gene daf-16. We conclude that there is an evolutionarily conserved signaling connection between E2F1 and FOXO3, which regulates cellular senescence and aging by regulating the activity of FOXO3. We speculate that drugs and/or therapies that inhibit this physical interaction might be good candidates for reducing cellular senescence and increasing longevity. PMID:25344604

  14. A systematic analysis of factors localized to damaged chromatin reveals PARP-dependent recruitment of transcription factors

    PubMed Central

    Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C.; Westbrook, Thomas F.; Harper, J. Wade; Elledge, Stephen J.

    2015-01-01

    Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify new DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors and >70% of randomly tested transcription factors localized to sites of DNA damage and approximately 90% were PARP-dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding domain-dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP-dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. PMID:26004182

  15. Cleavage of the JunB transcription factor by caspases generates a carboxyl-terminal fragment that inhibits activator protein-1 transcriptional activity.

    PubMed

    Lee, Jason K H; Pearson, Joel D; Maser, Brandon E; Ingham, Robert J

    2013-07-26

    The activator protein-1 (AP-1) family transcription factor, JunB, is an important regulator of proliferation, apoptosis, differentiation, and the immune response. In this report, we show that JunB is cleaved in a caspase-dependent manner in apoptotic anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma cell lines and that ectopically expressed JunB is cleaved in murine RAW 264.7 macrophage cells treated with the NALP1b inflammasome activator, anthrax lethal toxin. In both cases, we identify aspartic acid 137 as the caspase cleavage site and demonstrate that JunB can be directly cleaved in vitro by multiple caspases at this site. Cleavage of JunB at aspartic acid 137 separates the N-terminal transactivation domain from the C-terminal DNA binding and dimerization domains, and we show that the C-terminal cleavage fragment retains both DNA binding activity and the ability to interact with AP-1 family transcription factors. Furthermore, this fragment interferes with the binding of full-length JunB to AP-1 sites and inhibits AP-1-dependent transcription. In summary, we have identified and characterized a novel mechanism of JunB post-translational modification and demonstrate that the C-terminal JunB caspase cleavage product functions as a potent inhibitor of AP-1-dependent transcription.

  16. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    PubMed

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity.

  17. Glucocorticoid receptor transformation and DNA binding

    SciTech Connect

    Tienrungroj, W.

    1986-01-01

    The overall goal is to probe the mechanism whereby glucocorticoid receptors are transformed from a non-DNA-binding form to their active DNA-binding form. The author has examined the effect of an endogenous inhibitor purified from rat liver cytosol on receptor binding to DNA. The inhibitor binds to transformed receptors in whole cytosol and prevent their binding to DNA. He also examined the role of sulfhydryl groups in determining the DNA binding activity of the transformed receptor and in determining the transformation process. Treatment of rat liver cytosol containing temperature-transformed, (/sup 3/H)dexamethasone-bound receptors at 0/sup 0/C with the sulfhydryl modifying reagent methyl methanethiosulfonate inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol. In addition, he has examined the relationship between receptor phosphorylation and DNA binding. Untransformed receptor complexes purified from cytosol prepared from mouse L cells grown in medium containing (/sup 32/P)orthophosphate contain two components, a 100 k-Da and a 90-kDa subunit, both of which are phosphoproteins. On transformation, the receptor dissociates from the 90-kDa protein. Transformation of the complex under cell free conditions does not result in a dephosphorylation of the 100-kDa steroid-binding protein. Transformed receptor that has been bound to DNA and purified by monoclonal antibody is still in a phosphorylated form. These results suggest that dephosphorylation is not required for receptor binding to DNA.

  18. Transcriptional activity of Pannier is regulated negatively by heterodimerization of the GATA DNA-binding domain with a cofactor encoded by the u-shaped gene of Drosophila

    PubMed Central

    Haenlin, Marc; Cubadda, Yolande; Blondeau, Francois; Heitzler, Pascal; Lutz, Yves; Simpson, Pat; Ramain, Philippe

    1997-01-01

    The genes pannier (pnr) and u-shaped (ush) are required for the regulation of achaete-scute during establishment of the bristle pattern in Drosophila. pnr encodes a protein belonging to the GATA family of transcription factors, whereas ush encodes a novel zinc finger protein. Genetic interactions between dominant pnr mutants bearing lesions situated in the amino-terminal zinc finger of the GATA domain and ush mutants have been described. We show here that both wild-type Pannier and the dominant mutant form activate transcription from the heterologous α globin promoter when transfected into chicken embryonic fibroblasts. Furthermore, Pnr and Ush are found to heterodimerize through the amino-terminal zinc finger of Pnr and when associated with Ush, the transcriptional activity of Pnr is lost. In contrast, the mutant pnr protein with lesions in this finger associates only poorly with Ush and activates transcription even when cotransfected with Ush. These interactions have been investigated in vivo by overexpression of the mutant and wild-type proteins. The results suggest an antagonistic effect of Ush on Pnr function and reveal a new mode of regulation of GATA factors during development. PMID:9367990

  19. Propensity for HBZ-SP1 isoform of HTLV-I to inhibit c-Jun activity correlates with sequestration of c-Jun into nuclear bodies rather than inhibition of its DNA-binding activity

    SciTech Connect

    Clerc, Isabelle; Hivin, Patrick; Rubbo, Pierre-Alain; Lemasson, Isabelle; Barbeau, Benoit; Mesnard, Jean-Michel

    2009-09-01

    HTLV-I bZIP factor (HBZ) contains a C-terminal zipper domain involved in its interaction with c-Jun. This interaction leads to a reduction of c-Jun DNA-binding activity and prevents the protein from activating transcription of AP-1-dependent promoters. However, it remained unclear whether the negative effect of HBZ-SP1 was due to its weak DNA-binding activity or to its capacity to target cellular factors to transcriptionally-inactive nuclear bodies. To answer this question, we produced a mutant in which specific residues present in the modulatory and DNA-binding domain of HBZ-SP1 were substituted for the corresponding c-Fos amino acids to improve the DNA-binding activity of the c-Jun/HBZ-SP1 heterodimer. The stability of the mutant, its interaction with c-Jun, DNA-binding activity of the resulting heterodimer, and its effect on the c-Jun activity were tested. In conclusion, we demonstrate that the repression of c-Jun activity in vivo is mainly due to the HBZ-SP1-mediated sequestration of c-Jun to the HBZ-NBs.

  20. An Overview of the Prediction of Protein DNA-Binding Sites

    PubMed Central

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-01-01

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications. PMID:25756377

  1. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato.

    PubMed

    Hahn, Alexander; Bublak, Daniela; Schleiff, Enrico; Scharf, Klaus-Dieter

    2011-02-01

    Heat stress transcription factors (Hsfs) regulate gene expression in response to environmental stress. The Hsf network in plants is controlled at the transcriptional level by cooperation of distinct Hsf members and by interaction with chaperones. We found two general mechanisms of Hsf regulation by chaperones while analyzing the three major Hsfs, A1, A2, and B1, in tomato (Solanum lycopersicum). First, Hsp70 and Hsp90 regulate Hsf function by direct interactions. Hsp70 represses the activity of HsfA1, including its DNA binding, and the coactivator function of HsfB1 in the complex with HsfA2, while the DNA binding activity of HsfB1 is stimulated by Hsp90. Second, Hsp90 affects the abundance of HsfA2 and HsfB1 by modulating hsfA2 transcript degradation involved in regulation of the timing of HsfA2 synthesis. By contrast, HsfB1 binding to Hsp90 and to DNA are prerequisites for targeting this Hsf for proteasomal degradation, which also depends on a sequence element in its carboxyl-terminal domain. Thus, HsfB1 represents an Hsp90 client protein that, by interacting with the chaperone, is targeted for, rather than protected from, degradation. Based on these findings, we propose a versatile regulatory regime involving Hsp90, Hsp70, and the three Hsfs in the control of heat stress response. PMID:21307284

  2. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter.

    PubMed Central

    Archer, T K; Cordingley, M G; Wolford, R G; Hager, G L

    1991-01-01

    A fragment of the mouse mammary tumor virus (MMTV) promoter was reconstituted from pure histones into a dinucleosome with uniquely positioned octamer cores. Core boundaries for the in vitro-assembled dinucleosome corresponded to the observed in vivo phasing pattern for long terminal repeat nucleosomes A and B. Nuclear factor 1 (NF1), a constituent of the MMTV transcription initiation complex, was excluded from the assembled dinucleosome, whereas the glucocorticoid receptor was able to bind. During transcription of MMTV in vivo, displacement of nucleosome B was necessary to permit assembly of the initiation complex. These results indicate that the nucleoprotein structure of the promoter can provide differential access to sequence-specific DNA-binding proteins and that active chromatin remodeling can occur during transcription activation. Images PMID:1846670

  3. From pioneers to team players: TGA transcription factors provide a molecular link between different stress pathways.

    PubMed

    Gatz, Christiane

    2013-02-01

    The plant immune system encompasses an arsenal of defense genes that is activated upon recognition of a pathogen. Appropriate adjustment of gene expression is mediated by multiple interconnected signal transduction cascades that finally control the activity of transcription factors. These sequence-specific DNA-binding proteins act at the interface between the DNA and the regulatory protein network. In 1989, tobacco TGA1a was cloned as the first plant transcription factor. Since then, multiple studies have shown that members of the TGA family play important roles in defense responses against biotrophic and necrotrophic pathogens and against chemical stress. Here, we review 22 years of research on TGA factors which have yielded both consistent and conflicting results. PMID:23013435

  4. The transcription factors ATF-1 and CREB-1 bind constitutively to the hypoxia-inducible factor-1 (HIF-1) DNA recognition site.

    PubMed Central

    Kvietikova, I; Wenger, R H; Marti, H H; Gassmann, M

    1995-01-01

    The hypoxia-inducible factor-1 (HIF-1) was first described as a DNA binding activity that specifically recognizes an 8 bp motif known to be essential for hypoxia-inducible erythropoietin gene transcription. Subsequently HIF-1 activity has also been found in cell lines which do not express erythropoietin, suggesting that HIF-1 is part of a widespread oxygen sensing mechanism. In electrophoretic mobility shift assays HIF-1 DNA binding activity is only detectable in nuclear extracts of cells cultivated in a low oxygen atmosphere. In addition to HIF-1, a constitutive DNA binding activity also specifically binds the HIF1 probe. Here we report that CRE and AP1 oligonucleotides efficiently competed for binding of the HIF1 probe to this constitutive factor, whereas HIF-1 activity itself remained unaffected. Monoclonal antibodies raised against the CRE binding factors ATF-1 and CREB-1 supershifted the constitutive factors ATF-1 and CREB-1 supershifted the constitutive factor, while Jun and Fos family members, which constitute the AP-1 factor, were immunologically undetectable. Recombinant ATF-1 and CREB-1 proteins bound HIF1 probes either as homodimers or as heterodimers, indicating a new binding specificity for ATF-1/CREB-1. Finally, reporter gene assays in HeLa cells treated with either a cAMP analogue or a phorbol ester suggest that the PKA, but not the PKC signalling pathway is involved in oxygen sensing. Images PMID:8524640

  5. Cooperative DNA Binding and Sequence-Selective Recognition Conferred by the STAT Amino-Terminal Domain

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Sun, Ya-Lin; Hoey, Timothy

    1996-08-01

    STAT proteins (signal transducers and activators of transcription) activate distinct target genes despite having similar DNA binding preferences. The transcriptional specificity of STAT proteins was investigated on natural STAT binding sites near the interferon-gamma gene. These sites are arranged in multiple copies and required cooperative interactions for STAT binding. The conserved amino-terminal domain of STAT proteins was required for cooperative DNA binding, although this domain was not essential for dimerization or binding to a single site. Cooperative binding interactions enabled the STAT proteins to recognize variations of the consensus site. These sites can be specific for the different STAT proteins and may function to direct selective transcriptional activation.

  6. The p120ctn-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides

    PubMed Central

    Daniel, Juliet M.; Spring, Christopher M.; Crawford, Howard C.; Reynolds, Albert B.; Baig, Akeel

    2002-01-01

    The p120ctn-binding partner Kaiso is a new member of the POZ-zinc finger family of transcription factors implicated in development and cancer. To understand the role of Kaiso in gene regulation and p120ctn-mediated signaling and adhesion, we sought to identify Kaiso-specific DNA binding sequences and potential target genes. Here we demonstrate that Kaiso is a dual specificity DNA-binding protein that recognizes the specific consensus sequence TCCTGCNA as well as methyl-CpG dinucleotides. A minimal core sequence CTGCNA was identified as sufficient for Kaiso binding. Two copies of the Kaiso-binding site are present in the human and murine matrilysin promoters, implicating matrilysin as a candidate target gene for Kaiso. In electrophoretic mobility shift assays, matrilysin promoter-derived oligonucleotide probes formed a complex with GST–Kaiso fusion proteins possessing the zinc finger domain but not with fusion proteins lacking the zinc fingers. We further determined that only Kaiso zinc fingers 2 and 3 were necessary and sufficient for sequence-specific DNA binding. Interestingly, Kaiso also possesses a methyl-CpG-dependent DNA-binding activity distinct from its sequence-specific DNA binding. However, Kaiso has a higher affinity for the TCCTGCNA consensus than for the methyl-CpG sites. Furthermore, the DNA-binding ability of Kaiso with either recognition site was inhibited by p120ctn. Kaiso thus appears to have two modes of DNA binding and transcriptional repression, both of which may be modulated by its interaction with the adhesion cofactor p120ctn. PMID:12087177

  7. Chromatin-driven de novo discovery of DNA binding motifs in the human malaria parasite

    PubMed Central

    2011-01-01

    Background Despite extensive efforts to discover transcription factors and their binding sites in the human malaria parasite Plasmodium falciparum, only a few transcription factor binding motifs have been experimentally validated to date. As a consequence, gene regulation in P. falciparum is still poorly understood. There is now evidence that the chromatin architecture plays an important role in transcriptional control in malaria. Results We propose a methodology for discovering cis-regulatory elements that uses for the first time exclusively dynamic chromatin remodeling data. Our method employs nucleosome positioning data collected at seven time points during the erythrocytic cycle of P. falciparum to discover putative DNA binding motifs and their transcription factor binding sites along with their associated clusters of target genes. Our approach results in 129 putative binding motifs within the promoter region of known genes. About 75% of those are novel, the remaining being highly similar to experimentally validated binding motifs. About half of the binding motifs reported show statistically significant enrichment in functional gene sets and strong positional bias in the promoter region. Conclusion Experimental results establish the principle that dynamic chromatin remodeling data can be used in lieu of gene expression data to discover binding motifs and their transcription factor binding sites. Our approach can be applied using only dynamic nucleosome positioning data, independent from any knowledge of gene function or expression. PMID:22165844

  8. Reversible supramolecular assembly at specific DNA sites: nickel-promoted bivalent DNA binding with designed peptide and bipyridyl-bis(benzamidine) components.

    PubMed

    Sánchez, Mateo I; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2014-09-01

    At specific DNA sites, nickel(II) salts promote the assembly of designed components, namely a bis(histidine)-modified peptide that is derived from a bZIP transcription factor and a bis(benzamidine) unit that is equipped with a bipyridine. This programmed supramolecular system with emergent properties reproduces some key characteristics of naturally occurring DNA-binding proteins, such as bivalence, selectivity, responsiveness to external agents, and reversibility.

  9. Cooperative Activation of a Eukaryotic Transcription Factor: Interaction between Cu(I) and Yeast ACE1 Protein

    NASA Astrophysics Data System (ADS)

    Furst, Peter; Hamer, Dean

    1989-07-01

    Cu ions activate yeast metallothionein gene transcription by altering the conformation and DNA-binding activity of the ACE1 transcription factor. We show that this conformational switch occurs in an all-or-none highly cooperative fashion (Hill coefficient = 4). Analysis of the subunit composition of ACE1 bound to DNA indicates that cooperativity results from the binding of multiple Cu(I) ions to the cysteine-rich DNA-binding domain. Surprisingly, DNA has little effect on the interaction between Cu(I) and ACE1 as assayed by partial proteolysis; this suggests that the effect of the metal on DNA binding is primarily kinetic rather than thermodynamic. Although Ag(I) also activates ACE1, it acts less cooperatively than the smaller Cu(I) ion and the resulting metalloprotein has a reduced affinity for DNA. The cooperative interaction between Cu and ACE1 allows the cell to respond to a small change in metal concentration by a large change in gene expression.

  10. Regulation of Cell Fate Determination by Single-Repeat R3 MYB Transcription Factors in Arabidopsis

    SciTech Connect

    Wang, Shucai; Chen, Jay

    2014-01-01

    MYB transcription factors regulate multiple aspects of plant growth and development. Among the large family of MYB transcription factors, single-repeat R3 MYB are characterized by their short sequence (<120 amino acids) consisting largely of the single MYB DNA-binding repeat. In the model plant Arabidopsis, R3 MYBs mediate lateral inhibition during epidermal patterning and are best characterized for their regulatory roles in trichome and root hair development. R3 MYBs act as negative regulators for trichome formation but as positive regulators for root hair development. In this article, we provide a comprehensive review on the role of R3 MYBs in the regulation of cell type specification in the model plant Arabidopsis.

  11. Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis

    PubMed Central

    Wang, Shucai; Chen, Jin-Gui

    2014-01-01

    MYB transcription factors regulate multiple aspects of plant growth and development. Among the large family of MYB transcription factors, single-repeat R3 MYBs are characterized by their short sequence (<120 amino acids) consisting largely of the single MYB DNA-binding repeat. In the model plant Arabidopsis, R3 MYBs mediate lateral inhibition during epidermal patterning and are best characterized for their regulatory roles in trichome and root hair development. R3 MYBs act as negative regulators for trichome formation but as positive regulators for root hair development. In this article, we provide a comprehensive review on the role of R3 MYBs in the regulation of cell type specification in the model plant Arabidopsis. PMID:24782874

  12. Participation of Rel/NF-kappaB transcription factors in long-term memory in the crab Chasmagnathus.

    PubMed

    Freudenthal, R; Romano, A

    2000-02-14

    The induction of gene expression has been correlated with long-lasting neuronal plasticity and long-term memory (LTM) formation. The fast activation of constitutive transcription factors by signaling mechanisms is thought to be the link between synaptic events and gene expression. However, only one constitutive transcription factor, CREB, has been shown to play a key role in several memory paradigms, both in vertebrates and invertebrates. Here, we report evidences for Rel/NFkappa-B constitutive transcription factors participation in memory. Using the LTM paradigm in the crab Chasmagnathus, an enhancement of NFkappa-B DNA-binding activity was found after spaced training, which induces LTM, but not after massed training which yields an intermediate-term memory (ITM). Such finding is correlated with the requirement of protein synthesis for LTM consolidation but not for ITM. Furthermore, NFkappa-B activation was observed after 15 or 30 training trials, which are sufficient to induce LTM, but not after 5 or 10 trials, a number of trials insufficient to induce LTM. The kinetics of activation was studied and two waves of DNA-binding activity were found, similar to the time course described in other systems. NFkappa-B activation after training was also found in synaptosomal extracts. The latter result supports the hypothesis of a novel synapse-to-nucleus signaling system, in which the transcription factor is locally activated by synaptic events and then transported to the nucleus.

  13. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins.

    PubMed

    Savic, Daniel; Partridge, E Christopher; Newberry, Kimberly M; Smith, Sophia B; Meadows, Sarah K; Roberts, Brian S; Mackiewicz, Mark; Mendenhall, Eric M; Myers, Richard M

    2015-10-01

    Chromatin immunoprecipitation followed by next-generation DNA sequencing (ChIP-seq) is a widely used technique for identifying transcription factor (TF) binding events throughout an entire genome. However, ChIP-seq is limited by the availability of suitable ChIP-seq grade antibodies, and the vast majority of commercially available antibodies fail to generate usable data sets. To ameliorate these technical obstacles, we present a robust methodological approach for performing ChIP-seq through epitope tagging of endogenous TFs. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing technology to develop CRISPR epitope tagging ChIP-seq (CETCh-seq) of DNA-binding proteins. We assessed the feasibility of CETCh-seq by tagging several DNA-binding proteins spanning a wide range of endogenous expression levels in the hepatocellular carcinoma cell line HepG2. Our data exhibit strong correlations between both replicate types as well as with standard ChIP-seq approaches that use TF antibodies. Notably, we also observed minimal changes to the cellular transcriptome and to the expression of the tagged TF. To examine the robustness of our technique, we further performed CETCh-seq in the breast adenocarcinoma cell line MCF7 as well as mouse embryonic stem cells and observed similarly high correlations. Collectively, these data highlight the applicability of CETCh-seq to accurately define the genome-wide binding profiles of DNA-binding proteins, allowing for a straightforward methodology to potentially assay the complete repertoire of TFs, including the large fraction for which ChIP-quality antibodies are not available.

  14. Cross-talk between the ligand- and DNA-binding domains of estrogen receptor.

    PubMed

    Huang, Wei; Greene, Geoffrey L; Ravikumar, Krishnakumar M; Yang, Sichun

    2013-11-01

    Estrogen receptor alpha (ERα) is a hormone-responsive transcription factor that contains several discrete functional domains, including a ligand-binding domain (LBD) and a DNA-binding domain (DBD). Despite a wealth of knowledge about the behaviors of individual domains, the molecular mechanisms of cross-talk between LBD and DBD during signal transduction from hormone to DNA-binding of ERα remain elusive. Here, we apply a multiscale approach combining coarse-grained (CG) and atomistically detailed simulations to characterize this cross-talk mechanism via an investigation of the ERα conformational landscape. First, a CG model of ERα is built based on crystal structures of individual LBDs and DBDs, with more emphasis on their interdomain interactions. Second, molecular dynamics simulations are implemented and enhanced sampling is achieved via the "push-pull-release" strategy in the search for different LBD-DBD orientations. Third, multiple energetically stable ERα conformations are identified on the landscape. A key finding is that estradiol-bound LBDs utilize the well-described activation helix H12 to pack and stabilize LBD-DBD interactions. Our results suggest that the estradiol-bound LBDs can serve as a scaffold to position and stabilize the DBD-DNA complex, consistent with experimental observations of enhanced DNA binding with the LBD. Final assessment using atomic-level simulations shows that these CG-predicted models are significantly stable within a 15-ns simulation window and that specific pairs of lysine residues in close proximity at the domain interfaces could serve as candidate sites for chemical cross-linking studies. Together, these simulation results provide a molecular view of the role of ERα domain interactions in response to hormone binding.

  15. An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding.

    PubMed

    Schmidt, Hugo G; Sewitz, Sven; Andrews, Steven S; Lipkow, Karen

    2014-01-01

    We present a computational model of transcription factor motion that explains both the observed rapid target finding of transcription factors, and how this motion influences protein and genome structure. Using the Smoldyn software, we modelled transcription factor motion arising from a combination of unrestricted 3D diffusion in the nucleoplasm, sliding along the DNA filament, and transferring directly between filament sections by intersegmental transfer. This presents a fine-grain picture of the way in which transcription factors find their targets two orders of magnitude faster than 3D diffusion alone allows. Eukaryotic genomes contain sections of nucleosome free regions (NFRs) around the promoters; our model shows that the presence and size of these NFRs can be explained as their acting as antennas on which transcription factors slide to reach their targets. Additionally, our model shows that intersegmental transfer may have shaped the quaternary structure of transcription factors: sequence specific DNA binding proteins are unusually enriched in dimers and tetramers, perhaps because these allow intersegmental transfer, which accelerates target site finding. Finally, our model shows that a 'hopping' motion can emerge from 3D diffusion on small scales. This explains the apparently long sliding lengths that have been observed for some DNA binding proteins observed in vitro. Together, these results suggest that transcription factor diffusion dynamics help drive the evolution of protein and genome structure.

  16. An Integrated Model of Transcription Factor Diffusion Shows the Importance of Intersegmental Transfer and Quaternary Protein Structure for Target Site Finding

    PubMed Central

    Schmidt, Hugo G.; Sewitz, Sven; Andrews, Steven S.; Lipkow, Karen

    2014-01-01

    We present a computational model of transcription factor motion that explains both the observed rapid target finding of transcription factors, and how this motion influences protein and genome structure. Using the Smoldyn software, we modelled transcription factor motion arising from a combination of unrestricted 3D diffusion in the nucleoplasm, sliding along the DNA filament, and transferring directly between filament sections by intersegmental transfer. This presents a fine-grain picture of the way in which transcription factors find their targets two orders of magnitude faster than 3D diffusion alone allows. Eukaryotic genomes contain sections of nucleosome free regions (NFRs) around the promoters; our model shows that the presence and size of these NFRs can be explained as their acting as antennas on which transcription factors slide to reach their targets. Additionally, our model shows that intersegmental transfer may have shaped the quaternary structure of transcription factors: sequence specific DNA binding proteins are unusually enriched in dimers and tetramers, perhaps because these allow intersegmental transfer, which accelerates target site finding. Finally, our model shows that a ‘hopping’ motion can emerge from 3D diffusion on small scales. This explains the apparently long sliding lengths that have been observed for some DNA binding proteins observed in vitro. Together, these results suggest that transcription factor diffusion dynamics help drive the evolution of protein and genome structure. PMID:25333780

  17. Nanopore sensing of individual transcription factors bound to DNA

    PubMed Central

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-01-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes. PMID:26109509

  18. Transcription factor-based biosensors enlightened by the analyte

    PubMed Central

    Fernandez-López, Raul; Ruiz, Raul; de la Cruz, Fernando; Moncalián, Gabriel

    2015-01-01

    Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task. PMID:26191047

  19. Nanopore sensing of individual transcription factors bound to DNA

    NASA Astrophysics Data System (ADS)

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-06-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.

  20. Molecular evolution of the transcription factor LEAFY in Brassicaceae.

    PubMed

    Baum, David A; Yoon, Ho-Sung; Oldham, Rebecca L

    2005-10-01

    LEAFY (LFY) is a DNA-binding transcription factor that regulates floral meristem identity. LFY is unusual among angiosperm developmental regulators because it is not part of an extended gene family. Recent expression studies and transgenic experiments have suggested that changes at the LFY locus might have played a role in the evolution of rosette flowering, a modified plant architecture that has evolved at least three times in Brassicaceae. Here we examined the sequences of LFY genes from 16 species of Brassicaceae to evaluate whether gene duplication and/or the shift to rosette flowering correlate with changes in the molecular evolution of LFY. We found evidence of gene duplication in four taxa, but phylogenetic analysis suggested that duplicate genes have generally not persisted through multiple speciation events. This result can be explained if LFY is prone to be lost by drift due to a low probability of subfunctionalization or neofunctionalization. Despite great heterogeneity in dN/dS ratios, duplicate genes show a significant tendency to have elevated dN/dS ratios. Rosette-flowering lineages also show elevated dN/dS ratios and two of the rosette-flowering taxa, Idahoa and Leavenworthia, have some radical amino acid substitutions that are candidates for having played a causal role in the evolution of rosette flowering.

  1. Porcine bocavirus NP1 negatively regulates interferon signaling pathway by targeting the DNA-binding domain of IRF9.

    PubMed

    Zhang, Ruoxi; Fang, Liurong; Wang, Dang; Cai, Kaimei; Zhang, Huan; Xie, Lilan; Li, Yi; Chen, Huanchun; Xiao, Shaobo

    2015-11-01

    To subvert host antiviral immune responses, many viruses have evolved countermeasures to inhibit IFN signaling pathway. Porcine bocavirus (PBoV), a newly identified porcine parvovirus, has received attention because it shows clinically high co-infection prevalence with other pathogens in post-weaning multisystemic wasting syndrome (PWMS) and diarrheic piglets. In this study, we screened the structural and non-structural proteins encoded by PBoV and found that the non-structural protein NP1 significantly suppressed IFN-stimulated response element (ISRE) activity and subsequent IFN-stimulated gene (ISG) expression. However, NP1 affected neither the activation and translocation of STAT1/STAT2, nor the formation of the heterotrimeric transcription factor complex ISGF3 (STAT1/STAT2/IRF9). Detailed analysis demonstrated that PBoV NP1 blocked the ISGF3 DNA-binding activity by combining with the DNA-binding domain (DBD) of IRF9. In summary, these results indicate that PBoV NP1 interferes with type I IFN signaling pathway by blocking DNA binding of ISGF3 to attenuate innate immune responses.

  2. Retroposition and evolution of the DNA-binding motifs of YY1, YY2 and REX1.

    PubMed

    Kim, Jeong Do; Faulk, Christopher; Kim, Joomyeong

    2007-01-01

    YY1 is a DNA-binding transcription factor found in both vertebrates and invertebrates. Database searches identified 62 YY1 related sequences from all the available genome sequences ranging from flying insects to human. These sequences are characterized by high levels of sequence conservation, ranging from 66% to 100% similarity, in the zinc finger DNA-binding domain of the predicted proteins. Phylogenetic analyses uncovered duplication events of YY1 in several different lineages, including flies, fish and mammals. Retroposition is responsible for generating one duplicate in flies, PHOL from PHO, and two duplicates in placental mammals, YY2 and Reduced Expression 1 (REX1) from YY1. DNA-binding motif studies have demonstrated that YY2 still binds to the same consensus sequence as YY1 but with much lower affinity. In contrast, REX1 binds to DNA motifs divergent from YY1, but the binding motifs of REX1 and YY1 share some similarity at their core regions (5'-CCAT-3'). This suggests that the two duplicates, YY2 and REX1, although generated through similar retroposition events have undergone different selection schemes to adapt to new roles in placental mammals. Overall, the conservation of YY2 and REX1 in all placental mammals predicts that each duplicate has co-evolved with some unique features of eutherian mammals. PMID:17478514

  3. The transcription factor GATA-6 regulates pathological cardiac hypertrophy

    PubMed Central

    van Berlo, Jop H.; Elrod, John W.; van den Hoogenhof, Maarten M.G.; York, Allen J.; Aronow, Bruce J.; Duncan, Stephen A.; Molkentin, Jeffery D.

    2010-01-01

    Rationale The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger-containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. Objective To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. Methods and Results Here we performed a cardiomyocyte-specific conditional gene targeting approach for Gata6, as well as a transgenic approach to overexpress GATA-6 in the mouse heart. Deletion of Gata6-loxP with Nkx2.5-cre produced late embryonic lethality with heart defects, while deletion with β-myosin heavy chain-cre (βMHC-cre) produced viable adults with greater than 95% loss of GATA-6 protein in the heart. These later mice were subjected to pressure overload induced hypertrophy for 2 and 6 weeks, which showed a significant reduction in cardiac hypertrophy similar to that observed Gata4 heart-specific deleted mice. Gata6-deleted mice subjected to pressure overload also developed heart failure while control mice maintained proper cardiac function. Gata6-deleted mice also developed less cardiac hypertrophy following 2 weeks of angiotensin II/phenylephrine infusion. Controlled GATA-6 overexpression in the heart induced hypertrophy with aging and predisposed to greater hypertrophy with pressure overload stimulation. Combinatorial deletion of Gata4 and Gata6 from the adult heart resulted in dilated cardiomyopathy and lethality by 16 weeks of age. Mechanistically, deletion of Gata6 from the heart resulted in fundamental changes in the levels of key regulatory genes and myocyte differentiation-specific genes. Conclusions These results indicate that GATA-6 is both necessary and sufficient for regulating the cardiac hypertrophic response and differentiated gene expression, both alone and in coordination with GATA-4. PMID:20705924

  4. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    PubMed

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα.

  5. Negative regulation of the oncogenic transcription factor FoxM1 by thiazolidinediones and mithramycin

    PubMed Central

    Petrovic, Vladimir; Costa, Robert H.; Lau, Lester F.; Raychaudhuri, Pradip; Tyner, Angela L.

    2010-01-01

    The Forkhead Box transcription factor FoxM1 regulates expression of genes that promote cell cycle progression, and it plays essential roles in the development of liver, lung, prostate and colorectal tumors. Thiazolidinediones (TZDs) activate the peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-activated nuclear receptor transcription factor. We found that treatment of the human hepatoma cell lines HepG2 and PLC/PRF/5 cells with TZDs leads to inhibition of FoxM1 gene expression. No PPARγ/retinoid X receptor (RXR) consensus DNA binding sites were detected in the FoxM1 promoter extending to −10 kb upstream, and knockdown of PPARγ had no impact on TZD mediated downregulation of FoxM1 expression. Previously, others showed that PPARγ agonists inhibit the expression and DNA-binding activity of the Sp1 transcription factor. Here we show that Sp1 binds to the FoxM1 promoter region and positively regulates FoxM1 transcription, while mithramycin, a chemotherapy drug that specifically binds GC rich sequences in the DNA and inhibits activities of Sp1, inhibits expression of FoxM1. Our data suggest that TZD mediated suppression of Sp1 is responsible for downregulation of FoxM1 gene expression. Inhibition of FoxM1 expression by TZDs provides a new mechanism for TZD mediated negative regulation of cancer cell growth. FoxM1 expression and activity in cancer cells can be targeted using PPARγ agonists or the anti-neoplastic antibiotic mithramycin. PMID:20372080

  6. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  7. Evolving insights on how cytosine methylation affects protein–DNA binding

    PubMed Central

    Dantas Machado, Ana Carolina; Zhou, Tianyin; Rao, Satyanarayan; Goel, Pragya; Rastogi, Chaitanya; Lazarovici, Allan; Bussemaker, Harmen J.

    2015-01-01

    Many anecdotal observations exist of a regulatory effect of DNA methylation on gene expression. However, in general, the underlying mechanisms of this effect are poorly understood. In this review, we summarize what is currently known about how this important, but mysterious, epigenetic mark impacts cellular functions. Cytosine methylation can abrogate or enhance interactions with DNA-binding proteins, or it may have no effect, depending on the context. Despite being only a small chemical change, the addition of a methyl group to cytosine can affect base readout via hydrophobic contacts in the major groove and shape readout via electrostatic contacts in the minor groove. We discuss the recent discovery that CpG methylation increases DNase I cleavage at adjacent positions by an order of magnitude through altering the local 3D DNA shape and the possible implications of this structural insight for understanding the methylation sensitivity of transcription factors (TFs). Additionally, 5-methylcytosines change the stability of nucleosomes and, thus, affect the local chromatin structure and access of TFs to genomic DNA. Given these complexities, it seems unlikely that the influence of DNA methylation on protein–DNA binding can be captured in a small set of general rules. Hence, data-driven approaches may be essential to gain a better understanding of these mechanisms. PMID:25319759

  8. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast.

    PubMed

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. (1)H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes.

  9. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development

    PubMed Central

    Li, Shutian

    2015-01-01

    The TCP family of transcription factors is named after the first 4 characterized members, namely TEOSINTE BRANCHED1 (TB1) from maize (Zea mays), CYCLOIDEA (CYC) from snapdragon (Antirrhinum majus), as well as PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR1 (PCF1) and PCF2 from rice (Oryza sativa). Phylogenic analysis of this plant-specific protein family unveils a conserved bHLH-containing DNA-binding motif known as the TCP domain. In accordance with the structure of this shared domain, TCP proteins are grouped into class I (TCP-P) and class II (TCP-C), which are suggested to antagonistically modulate plant growth and development via competitively binding similar cis-regulatory modules called site II elements. Over the last decades, TCPs across the plant kingdom have been demonstrated to control a plethora of plant processes. Notably, TCPs also regulate plant development and defense responses via stimulating the biosynthetic pathways of bioactive metabolites, such as brassinosteroid (BR), jasmonic acid (JA) and flavonoids. Besides, mutagenesis analysis coupled with biochemical experiments identifies several crucial amino acids located within the TCP domain, which confer the redox sensitivity of class I TCPs and determine the distinct DNA-binding properties of TCPs. In this review, developmental functions of TCPs in various biological pathways are briefly described with an emphasis on their involvement in the synthesis of bioactive substances. Furthermore, novel biochemical aspects of TCPs with respect to redox regulation and DNA-binding preferences are elaborated. In addition, the unexpected participation of TCPs in effector-triggered immunity (ETI) and defense against insects indicates that the widely recognized developmental regulators are capable of fine-tuning defense signaling and thereby enable plants to evade deleterious developmental phenotypes. Altogether, these recent impressive breakthroughs remarkably advance our understanding as to how TCPs integrate

  10. Mammalian cAMP-responsive element can activate transcription in yeast and binds a yeast factor(s) that resembles the mammalian transcription factor ANF.

    PubMed Central

    Jones, R H; Jones, N C

    1989-01-01

    The human ATF and AP1 transcription factors bind to highly related DNA sequences. Their consensus binding sites differ by a single nucleotide, but this single change is crucial in determining factor binding specificity. We have previously identified an AP1 (yAP1) binding activity in yeast. In this report we identify a yeast ATF (yATF) binding activity whose specificity can be distinguished from that of yAP1 by the same crucial nucleotide that distinguishes binding of human ATF and AP1. The ATF binding site can act as an efficient upstream activating sequence in vivo, suggesting that yATF is a transcriptional activator. The yATF DNA-binding complex is phosphorylated and the binding activity of partially purified yATF can be enhanced in vitro by the addition of protein kinase A, indicating that the phosphorylation state of yATF may be important in determining its ability to bind DNA. Images PMID:2538834

  11. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal.

    PubMed Central

    Hirst, K; Fisher, F; McAndrew, P C; Goding, C R

    1994-01-01

    The Pho80-Pho85 cyclin-cdk complex prevents transcription of PHO5 by inhibiting the ability of the basic-helix-loop-helix transcription factor Pho4 to activate transcription in response to high phosphate conditions. In low phosphate the Pho80-Pho85 complex is inactivated and Pho4 is then able to activate the acid phosphatase gene PHO5. We show here that Pho4 and the homeobox protein Pho2 interact in vivo and act cooperatively to activate the PHO5 UAS, with interaction being regulated by the phosphate switch. In addition, we also demonstrate that an additional factor, Pho81, interacts in high phosphate with both the Pho80 cyclin and with Pho4. In low phosphate, Pho80 and Pho81 dissociate from Pho4, but retain the ability to interact with each other. The evidence presented here supports the idea that Pho81 acts as a phosphate-sensitive trigger that regulates the ability of the Pho80-Pho85 cyclin-cdk complex to bind Pho4, while DNA binding by Pho4 is dependent on the phosphate-sensitive interaction with Pho2. Images PMID:7957107

  12. wDBTF: an integrated database resource for studying wheat transcription factor families

    PubMed Central

    2010-01-01

    Background Transcription factors (TFs) regulate gene expression by interacting with promoters of their target genes and are classified into families based on their DNA-binding domains. Genes coding for TFs have been identified in the sequences of model plant genomes. The rice (Oryza sativa spp. japonica) genome contains 2,384 TF gene models, which represent the mRNA transcript of a locus, classed into 63 families. Results We have created an extensive list of wheat (Triticum aestivum L) TF sequences based on sequence homology with rice TFs identified and classified in the Database of Rice Transcription Factors (DRTF). We have identified 7,112 wheat sequences (contigs and singletons) from a dataset of 1,033,960 expressed sequence tag and mRNA (ET) sequences available. This number is about three times the number of TFs in rice so proportionally is very similar if allowance is made for the hexaploidy of wheat. Of these sequences 3,820 encode gene products with a DNA-binding domain and thus were confirmed as potential regulators. These 3,820 sequences were classified into 40 families and 84 subfamilies and some members defined orphan families. The results were compiled in the Database of Wheat Transcription Factor (wDBTF), an inventory available on the web http://wwwappli.nantes.inra.fr:8180/wDBFT/. For each accession, a link to its library source and its Affymetrix identification number is provided. The positions of Pfam (protein family database) motifs were given when known. Conclusions wDBTF collates 3,820 wheat TF sequences validated by the presence of a DNA-binding domain out of 7,112 potential TF sequences identified from publicly available gene expression data. We also incorporated in silico expression data on these TFs into the database. Thus this database provides a major resource for systematic studies of TF families and their expression in wheat as illustrated here in a study of DOF family members expressed during seed development. PMID:20298594

  13. Prunus transcription factors: breeding perspectives

    PubMed Central

    Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  14. Prunus transcription factors: breeding perspectives.

    PubMed

    Bianchi, Valmor J; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  15. Transcription factors, chromatin proteins and the diversification of Hemiptera.

    PubMed

    Vidal, Newton M; Grazziotin, Ana Laura; Iyer, Lakshminarayan M; Aravind, L; Venancio, Thiago M

    2016-02-01

    Availability of complete genomes provides a means to explore the evolution of enormous developmental, morphological, and behavioral diversity among insects. Hemipterans in particular show great diversity of both morphology and life history within a single order. To better understand the role of transcription regulators in the diversification of hemipterans, using sequence profile searches and hidden Markov models we computationally analyzed transcription factors (TFs) and chromatin proteins (CPs) in the recently available Rhodnius prolixus genome along with 13 other insect and 4 non-insect arthropod genomes. We generated a comprehensive collection of TFs and CPs across arthropods including 303 distinct types of domains in TFs and 139 in CPs. This, along with the availability of two hemipteran genomes, R. prolixus and Acyrthosiphon pisum, helped us identify possible determinants for their dramatic morphological and behavioral divergence. We identified five domain families (i.e. Pipsqueak, SAZ/MADF, THAP, FLYWCH and BED finger) as having undergone differential patterns of lineage-specific expansion in hemipterans or within hemipterans relative to other insects. These expansions appear to be at least in part driven by transposons, with the DNA-binding domains of transposases having provided the raw material for emergence of new TFs. Our analysis suggests that while R. prolixus probably retains a state closer to the ancestral hemipteran, A. pisum represents a highly derived state, with the emergence of asexual reproduction potentially favoring genome duplication and transposon expansion. Both hemipterans are predicted to possess active DNA methylation systems. However, in the course of their divergence, aphids seem to have expanded the ancestral hemipteran DNA methylation along with a distinctive linkage to the histone methylation system, as suggested by expansion of SET domain methylases, including those fused to methylated CpG recognition domains. Thus

  16. Internal deletion mutants of Xenopus transcription factor IIIA.

    PubMed Central

    Hanas, J S; Littell, R M; Gaskins, C J; Zebrowski, R

    1989-01-01

    Xenopus transcription factor IIIA (TFIIIA) or TFIIIA mutants with internal deletions were expressed in E. coli utilizing a bacteriophage T7 RNA polymerase system. TFIIIA or deletion mutant TFIIIAs, isolated from E.coli cell extracts, were identified by SDS PAGE and immunoblotting with rabbit antiserum against native TFIIIA purified from Xenopus immature oocytes. Specific DNA binding of intact or internally deleted TFIIIA was compared by analyzing their abilities to protect the internal control gene (ICR) of the Xenopus 5S RNA gene from DNase I digestion. Intact protein, synthesized from a full-length TFIIIA cDNA, bound specifically to the entire ICR (+96 to +43) and promoted 5S RNA gene transcription in vitro. One TFIIIA deletion mutant, expressed from cDNA lacking the coding sequence for the putative fourth zinc finger (designated from the N-terminus, amino acids 103-132) protected the ICR from DNase I digestion from nucleotide positions +96 to +78. A second TFIIIA mutant resulting from fusion of putative zinc fingers 7 and 8 (deletion of amino acids 200-224) protected the 5S gene ICR from positions +96 to +63. The DNase I protection patterns of these mutant proteins are consistent with the formation of strong ICR contacts by those regions of the protein on the N-terminal side of the mutation but not by those regions on the C-terminal side of the mutation. The regions of the protein comprising the N-terminal 3 fingers and N-terminal six fingers appear to be in contact with approximately 18 and 33 bp of DNA respectively on the 3' side of the 5S gene ICR. These internal deletion mutants promoted 5S RNA synthesis in vitro and DNA renaturation. Images PMID:2690011

  17. Specificity and robustness in transcription control networks.

    PubMed

    Sengupta, Anirvan M; Djordjevic, Marko; Shraiman, Boris I

    2002-02-19

    Recognition by transcription factors of the regulatory DNA elements upstream of genes is the fundamental step in controlling gene expression. How does the necessity to provide stability with respect to mutation constrain the organization of transcription control networks? We examine the mutation load of a transcription factor interacting with a set of n regulatory response elements as a function of the factor/DNA binding specificity and conclude on theoretical grounds that the optimal specificity decreases with n. The predicted correlation between variability of binding sites (for a given transcription factor) and their number is supported by the genomic data for Escherichia coli. The analysis of E. coli genomic data was carried out using an algorithm suggested by the biophysical model of transcription factor/DNA binding. Complete results of the search for candidate transcription factor binding sites are available at http://www.physics.rockefeller.edu/~boris/public/search_ecoli. PMID:11854503

  18. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    PubMed Central

    Fujita, Toshitsugu; Fujii, Hodaka

    2015-01-01

    Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE) proteins and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) (CRISPR/Cas) system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing. PMID:26404236

  19. Factors affecting nucleolytic efficiency of some ternary metal complexes with DNA binding and recognition domains. Crystal and molecular structure of Zn(phen)(edda).

    PubMed

    Seng, Hoi-Ling; Ong, Han-Kiat Alan; Rahman, Raja Noor Zaliha Raja Abd; Yamin, Bohari M; Tiekink, Edward R T; Tan, Kong Wai; Maah, Mohd Jamil; Caracelli, Ignez; Ng, Chew Hee

    2008-11-01

    The binding selectivity of the M(phen)(edda) (M=Cu, Co, Ni, Zn; phen=1,10-phenanthroline, edda=ethylenediaminediacetic acid) complexes towards ds(CG)(6), ds(AT)(6) and ds(CGCGAATTCGCG) B-form oligonucleotide duplexes were studied by CD spectroscopy and molecular modeling. The binding mode is intercalation and there is selectivity towards AT-sequence and stacking preference for A/A parallel or diagonal adjacent base steps in their intercalation. The nucleolytic properties of these complexes were investigated and the factors affecting the extent of cleavage were determined to be: concentration of complex, the nature of metal(II) ion, type of buffer, pH of buffer, incubation time, incubation temperature, and the presence of hydrogen peroxide or ascorbic acid as exogenous reagents. The fluorescence property of these complexes and its origin were also investigated. The crystal structure of the Zn(phen)(edda) complex is reported in which the zinc atom displays a distorted trans-N(4)O(2) octahedral geometry; the crystal packing features double layers of complex molecules held together by extensive hydrogen bonding that inter-digitate with adjacent double layers via pi...pi interactions between 1,10-phenanthroline residues. The structure is compared with that of the recently described copper(II) analogue and, with the latter, included in molecular modeling.

  20. Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming

    PubMed Central

    Soufi, Abdenour; Garcia, Meilin Fernandez; Jaroszewicz, Artur; Osman, Nebiyu; Pellegrini, Matteo; Zaret, Kenneth S.

    2015-01-01

    SUMMARY Pioneer transcription factors (TFs) access silent chromatin and initiate cell fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2 (HMG box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH DBD), which together reprogram somatic cells to pluripotency. Purified Oct4, Sox2, and Klf4 proteins can bind nucleosomes in vitro, and in vivo they preferentially target silent sites enriched for nucleosomes. Pioneer activity relates simply to the ability of a given DBD to target partial motifs displayed on the nucleosome surface. Such partial motif recognition can occur by coordinate binding between factors. Our findings provide insight into how pioneer factors can target naïve chromatin sites. PMID:25892221

  1. Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates.

    PubMed

    Longobardi, E; Penkov, D; Mateos, D; De Florian, G; Torres, M; Blasi, Francesco

    2014-01-01

    TALE (three amino acids loop extension) homeodomain transcription factors are required in various steps of embryo development, in many adult physiological functions, and are involved in important pathologies. This review focuses on the PREP, MEIS, and PBX sub-families of TALE factors and aims at giving information on their biochemical properties, i.e., structure, interactors, and interaction surfaces. Members of the three sets of protein form dimers in which the common partner is PBX but they can also directly interact with other proteins forming higher-order complexes, in particular HOX. Finally, recent advances in determining the genome-wide DNA-binding sites of PREP1, MEIS1, and PBX1, and their partial correspondence with the binding sites of some HOX proteins, are reviewed. These studies have generated a few general rules that can be applied to all members of the three gene families. PREP and MEIS recognize slightly different consensus sequences: PREP prefers to bind to promoters and to have PBX as a DNA-binding partner; MEIS prefers HOX as partner, and both PREP and MEIS drive PBX to their own binding sites. This outlines the clear individuality of the PREP and MEIS proteins, the former mostly devoted to basic cellular functions, the latter more to developmental functions.

  2. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player

    PubMed Central

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis. PMID:27100893

  3. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.

    PubMed

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-04-21

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca(2+)-regulated members (NFAT1-NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.

  4. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.

    PubMed

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca(2+)-regulated members (NFAT1-NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis. PMID:27100893

  5. Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates

    PubMed Central

    Wellik, Deneen; Torres, Miguel; Ros, Marian

    2014-01-01

    TALE (three amino acids loop extension) homeodomain transcription factors are required in various steps of embryo development, in many adult physiological functions, and are involved in important pathologies. This review focuses on the PREP, MEIS, and PBX sub-families of TALE factors and aims at giving information on their biochemical properties, i.e., structure, interactors, and interaction surfaces. Members of the three sets of protein form dimers in which the common partner is PBX but they can also directly interact with other proteins forming higher-order complexes, in particular HOX. Finally, recent advances in determining the genome-wide DNA-binding sites of PREP1, MEIS1, and PBX1, and their partial correspondence with the binding sites of some HOX proteins, are reviewed. These studies have generated a few general rules that can be applied to all members of the three gene families. PREP and MEIS recognize slightly different consensus sequences: PREP prefers to bind to promoters and to have PBX as a DNA-binding partner; MEIS prefers HOX as partner, and both PREP and MEIS drive PBX to their own binding sites. This outlines the clear individuality of the PREP and MEIS proteins, the former mostly devoted to basic cellular functions, the latter more to developmental functions. Developmental Dynamics 243:59–75, 2014. © 2013 Wiley Periodicals, Inc. PMID:23873833

  6. Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family1[W][OA

    PubMed Central

    Viola, Ivana L.; Güttlein, Leandro N.; Gonzalez, Daniel H.

    2013-01-01

    TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR1 (TCP) transcription factors participate in plant developmental processes associated with cell proliferation and growth. Most members of class I, one of the two classes that compose the family, have a conserved cysteine at position 20 (Cys-20) of the TCP DNA-binding and dimerization domain. We show that Arabidopsis (Arabidopsis thaliana) class I proteins with Cys-20 are sensitive to redox conditions, since their DNA-binding activity is inhibited after incubation with the oxidants diamide, oxidized glutathione, or hydrogen peroxide or with nitric oxide-producing agents. Inhibition can be reversed by treatment with the reductants dithiothreitol or reduced glutathione or by incubation with the thioredoxin/thioredoxin reductase system. Mutation of Cys-20 in the class I protein TCP15 abolished its redox sensitivity. Under oxidizing conditions, covalently linked dimers were formed, suggesting that inactivation is associated with the formation of intermolecular disulfide bonds. Inhibition of class I TCP protein activity was also observed in vivo, in yeast (Saccharomyces cerevisiae) cells expressing TCP proteins and in plants after treatment with redox agents. This inhibition was correlated with modifications in the expression of the downstream CUC1 gene in plants. Modeling studies indicated that Cys-20 is located at the dimer interface near the DNA-binding surface. This places this residue in the correct orientation for intermolecular disulfide bond formation and explains the sensitivity of DNA binding to the oxidation of Cys-20. The redox properties of Cys-20 and the observed effects of cellular redox agents both in vitro and in vivo suggest that class I TCP protein action is under redox control in plants. PMID:23686421

  7. Development of DNA affinity techniques for the functional characterization of purified RNA polymerase II transcription factors

    SciTech Connect

    Garfinkel, S.; Thompson, J.A.; Cohen, R.B.; Brendler, T.; Safer, B.

    1987-05-01

    Affinity adsorption, precipitation, and partitioning techniques have been developed to purify and characterize RNA Pol II transcription components from whole cell extracts (WCE) (HeLa) and nuclear extracts (K562). The titration of these extracts with multicopy constructs of the Ad2 MLP but not pUC8, inhibits transcriptional activity. DNA-binding factors precipitated by this technique are greatly enriched by centrifugation. Using this approach, factors binding to the upstream promoter sequence (UPS) of the Ad2 MLP have been rapidly isolated by Mono Q, Mono S, and DNA affinity chromatography. By U.V. crosslinking to nucleotides containing specific TSP-phosphodiester bonds within the recognition sequence, this factor is identified as a M/sub r/ = 45,000 polypeptide. To generate an assay system for the functional evaluation of single transcription components, a similar approach using synthetic oligonucleotide sequences spanning single promoter binding sites has been developed. The addition of a synthetic 63-mer containing the UPS element of the Ad2 MLP to HeLa WCE inhibited transcription by 60%. The addition of partially purified UPS binding protein, but not RNA Pol II, restored transcriptional activity. The addition of synthetic oligonucleotides containing other regulatory sequences not present in the Ad2 MLP was without effect.

  8. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  9. Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains.

    PubMed Central

    Carruth, L M; Hardwick, J M; Morse, B A; Clements, J E

    1994-01-01

    Visna virus is a pathogenic lentivirus of sheep tat is distantly related to the primate lentiviruses, including human immunodeficiency virus type 1. The visna virus genome encodes a small regulatory protein, Tat, which is necessary for efficient viral replication and enhanced viral transcription. To investigate the mechanism of action of the visna Tat protein and to localize the protein domain(s) responsible for transcriptional activation, chimeric proteins containing visna virus Tat sequences fused to the DNA binding domain of the yeast transactivation factor GAL4 (residues 1 to 147) were made. The GAL4-Tat fusion proteins were transfected into cells and tested for the ability to activate the adenovirus E1b promoter via upstream GAL4 DNA binding sites. Full-length GAL4-Tat fusion proteins were weak transactivators in this system, giving only a two- to fourfold increase in transcription in several cell types, including HeLa and sheep choroid plexus cells. In contrast, fusion of the N-terminal region of the Tat protein to GAL4 revealed a potent activation domain. Amino acids 13 to 38 appeared to be the most critical for activation. No other region of the protein showed any activation in the GAL4 system. This N-terminal region of the visna virus Tat protein has a large number of acidic and hydrophobic residues, suggesting that Tat has an acidic activation domain common to many transcriptional transactivators. Mutations in hydrophobic and bulky aromatic residues dramatically reduced the activity of the chimeric protein. Competition experiments suggest that mechanism of the visna virus Tat activation domain may closely resemble that of the herpesvirus activator VP16 and human immunodeficiency virus Tat, a related lentivirus activator, since both significantly reduce the level of visna virus Tat activation. Finally, a domain between residues 39 and 53 was identified in the Tat protein that, in the GAL4 system, negatively regulates activation by Tat. Images PMID:8083955

  10. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids.

    PubMed

    Liénard, Marjorie A; Araripe, Luciana O; Hartl, Daniel L

    2016-07-19

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1 Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1 Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation.

  11. The Drosophila termination factor DmTTF regulates in vivo mitochondrial transcription

    PubMed Central

    Roberti, Marina; Bruni, Francesco; Polosa, Paola Loguercio; Gadaleta, Maria Nicola; Cantatore, Palmiro

    2006-01-01

    DmTTF is a Drosophila mitochondrial DNA-binding protein, which recognizes two sequences placed at the boundary of clusters of genes transcribed in opposite directions. To obtain in vivo evidences on the role of DmTTF, we characterized a DmTTF knock-down phenotype obtained by means of RNA interference in D.Mel-2 cells. By a combination of RNase protection and real-time RT–PCR experiments we found that knock-down determines remarkable changes in mitochondrial transcription. In particular, protein depletion increases not only the level of (+) and (−)strand RNAs mapping immediately after of the two protein-binding site, but also that of transcripts located further downstream. Unexpectedly, depletion of the protein also causes the decrease in the content of those transcripts mapping upstream of the protein target sites, including the two rRNAs. The changes in transcript level do not depend on a variation in mitochondrial DNA (mtDNA) content, since mtDNA copy number is unaffected by DmTTF depletion. This work shows conclusively that DmTTF arrests in vivo the progression of the mitochondrial RNA polymerase; this is the first ever-obtained evidence for an in vivo role of an animal mitochondrial transcription termination factor. In addition, the reported data provide interesting insights into the involvement of DmTTF in transcription initiation in Drosophila mitochondria. PMID:16648357

  12. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense.

    PubMed

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-10-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif-containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens.

  13. MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency.

    PubMed

    Minguet, Eugenio Gómez; Segard, Stéphane; Charavay, Céline; Parcy, François

    2015-01-01

    Transcriptional networks are central to any biological process and changes affecting transcription factors or their binding sites in the genome are a key factor driving evolution. As more organisms are being sequenced, tools are needed to easily predict transcription factor binding sites (TFBS) presence and affinity from mere inspection of genomic sequences. Although many TFBS discovery algorithms exist, tools for using the DNA binding models they generate are relatively scarce and their use is limited among the biologist community by the lack of flexible and user-friendly tools. We have developed a suite of web tools (called Morpheus) based on the proven Position Weight Matrices (PWM) formalism that can be used without any programing skills and incorporates some unique features such as the presence of dependencies between nucleotides positions or the possibility to compute the predicted occupancy of a large regulatory region using a biophysical model. To illustrate the possibilities and simplicity of Morpheus tools in functional and evolutionary analysis, we have analysed the regulatory link between LEAFY, a key plant transcription factor involved in flower development, and its direct target gene APETALA1 during the divergence of Brassicales clade.

  14. MORPHEUS, a Webtool for Transcription Factor Binding Analysis Using Position Weight Matrices with Dependency.

    PubMed

    Minguet, Eugenio Gómez; Segard, Stéphane; Charavay, Céline; Parcy, François

    2015-01-01

    Transcriptional networks are central to any biological process and changes affecting transcription factors or their binding sites in the genome are a key factor driving evolution. As more organisms are being sequenced, tools are needed to easily predict transcription factor binding sites (TFBS) presence and affinity from mere inspection of genomic sequences. Although many TFBS discovery algorithms exist, tools for using the DNA binding models they generate are relatively scarce and their use is limited among the biologist community by the lack of flexible and user-friendly tools. We have developed a suite of web tools (called Morpheus) based on the proven Position Weight Matrices (PWM) formalism that can be used without any programing skills and incorporates some unique features such as the presence of dependencies between nucleotides positions or the possibility to compute the predicted occupancy of a large regulatory region using a biophysical model. To illustrate the possibilities and simplicity of Morpheus tools in functional and evolutionary analysis, we have analysed the regulatory link between LEAFY, a key plant transcription factor involved in flower development, and its direct target gene APETALA1 during the divergence of Brassicales clade. PMID:26285209

  15. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    SciTech Connect

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  16. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling.

    PubMed

    Muñoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Díaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-10-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal alpha-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression. PMID:19654000

  17. Activation of c-Jun transcription factor by substitution of a charged residue in its N-terminal domain.

    PubMed Central

    Hoeffler, W K; Levinson, A D; Bauer, E A

    1994-01-01

    C-Jun is a cellular transcription factor that can control gene expression in response to treatment of cells with phorbol esters, growth factors, and expression of some oncogenes. The ability of c-Jun to catalyze the transcription of certain genes is controlled, in part, by changes in the phosphorylation state of specific amino acids in c-Jun. One of the major sites that is phosphorylated during signal response is Ser73. Here we show that substitution of a negatively charged aspartic acid residue at 73 constitutively increased transcriptional activity of c-Jun. The Asp73 substitution also enhanced its availability to bind to DNA in a whole cell extract without altering its intrinsic DNA binding activity since the intrinsic activity was unaltered for the c-Jun mutant proteins expressed in a bacterial system. The negatively charged Asp substitution may mimic the negative charge of a phosphorylated serine at 73. The substitution of an uncharged alanine at 73 resulted in lowered activities. The N-terminal end of c-Jun containing these substitutions was fused to the DNA-binding region of the bovine papilloma virus E2 protein, and was able to confer the same activation properties to the fusion protein at the heterologous E2 DNA-binding site. Ser73 lies in a region of c-Jun previously proposed to bind an uncharacterized inhibitor, perhaps related to a protein of approximately 17.5 kD that coprecipitates along with our c-Jun or the JunE2 fusion products. Images PMID:8165146

  18. A Chimeric Subunit of Yeast Transcription Factor IIIC Forms a Subcomplex with τ95

    PubMed Central

    Manaud, Nathalie; Arrebola, Rosalía; Buffin-Meyer, Bénédicte; Lefebvre, Olivier; Voss, Hartmut; Riva, Michel; Conesa, Christine; Sentenac, André

    1998-01-01

    The multisubunit yeast transcription factor IIIC (TFIIIC) is a multifunctional protein required for promoter recognition, transcription factor IIIB recruitment, and chromatin antirepression. We report the isolation and characterization of TFC7, an essential gene encoding the 55-kDa polypeptide, τ55, present in affinity-purified TFIIIC. τ55 is a chimeric protein generated by an ancient chromosomal rearrangement. Its C-terminal half is essential for cell viability and sufficient to ensure TFIIIC function in DNA binding and transcription assays. The N-terminal half is nonessential and highly similar to a putative yeast protein encoded on another chromosome and to a cyanobacterial protein of unknown function. Partial deletions of the N-terminal domain impaired τ55 function at a high temperature or in media containing glycerol or ethanol, suggesting a link between PolIII transcription and metabolic pathways. Interestingly, τ55 was found, together with TFIIIC subunit τ95, in a protein complex which was distinct from TFIIIC and which may play a role in the regulation of PolIII transcription, possibly in relation to cell metabolism. PMID:9584160

  19. Molecular beacons for detecting DNA binding proteins.

    PubMed

    Heyduk, Tomasz; Heyduk, Ewa

    2002-02-01

    We report here a simple, rapid, homogeneous fluorescence assay, the molecular beacon assay, for the detection and quantification of sequence-specific DNA-binding proteins. The central feature of the assay is the protein-dependent association of two DNA fragments each containing about half of a DNA sequence defining a protein-binding site. Protein-dependent association of DNA fragments can be detected by any proximity-based spectroscopic signal, such as fluorescence resonance energy transfer (FRET) between fluorochromes introduced into these DNA molecules. The assay is fully homogeneous and requires no manipulations aside from mixing of the sample and the test solution. It offers flexibility with respect to the mode of signal detection and the fluorescence probe, and is compatible with multicolor simultaneous detection of several proteins. The assay can be used in research and medical diagnosis and for high-throughput screening of drugs targeted to DNA-binding proteins.

  20. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA.

    SciTech Connect

    Zhang, R.; Pappas, T.; Brace, J.; Miller, P.; Oulmassov, T.; Molyneaux, J.; Anderson, J.; Bashkin, J.; Winans, S.; Joachimiak, A.; Biosciences Division; Cornell Univ.; Monsanto Co.

    2002-06-27

    Many proteobacteria are able to monitor their population densities through the release of pheromones known as N-acylhomoserine lactones. At high population densities, these pheromones elicit diverse responses that include bioluminescence, biofilm formation, production of antimicrobials, DNA exchange, pathogenesis and symbiosis1. Many of these regulatory systems require a pheromone-dependent transcription factor similar to the LuxR protein of Vibrio fischeri. Here we present the structure of a LuxR-type protein. TraR of Agrobacterium tumefaciens was solved at 1.66 A as a complex with the pheromone N-3-oxooctanoyl-l-homoserine lactone (OOHL) and its TraR DNA-binding site. The amino-terminal domain of TraR is an {alpha}/{beta}/{alpha} sandwich that binds OOHL, whereas the carboxy-terminal domain contains a helix-turn-helix DNA-binding motif. The TraR dimer displays a two-fold symmetry axis in each domain; however, these two axes of symmetry are at an approximately 90 degree angle, resulting in a pronounced overall asymmetry of the complex. The pheromone lies fully embedded within the protein with virtually no solvent contact, and makes numerous hydrophobic contacts with the protein as well as four hydrogen bonds: three direct and one water-mediated.

  1. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    PubMed Central

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T.; Arenillas, David; Zhao, Xiaobei; Valen, Eivind; Yusuf, Dimas; Lenhard, Boris; Wasserman, Wyeth W.; Sandelin, Albin

    2010-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches. PMID:19906716

  2. Specific interactions of the wing domains of FOXA1 transcription factor with DNA.

    PubMed

    Cirillo, Lisa A; Zaret, Kenneth S

    2007-02-23

    FOX (forkhead box) transcription factors have diverse regulatory roles in development, signaling, and longevity, as well as being able to bind stably to target sites in silent chromatin. Crystal structure analysis showed that the FOXA DNA binding domain folds into a helix-turn-helix (HTH) motif flanked on either side by "wings" of polypeptide chain. The wings have the potential to interact with the DNA minor groove along the long axis of the DNA helix, flanking the HTH interactions with the major groove. Diverse FOX family homologs exist, and structural studies with certain DNA target sites suggest that neither of the wing regions are well ordered or provide a stable contribution to DNA target site binding. However, FOXA1 binds certain DNA target sites with high affinity, and as a monomer. To determine whether the wing domains contribute to stable DNA binding, we assessed complexes of FOXA with high and lower affinity DNA target sites by hydroxyl radical footprinting and site-directed mutagenesis. The data revealed clear protections predicted for wing interactions at the high affinity target, but less so at the lower affinity target, indicating that the wing domains stably interact with high affinity DNA sites for FOXA proteins.

  3. The GATA Family of Transcription Factors in Arabidopsis and Rice1

    PubMed Central

    Reyes, José C.; Muro-Pastor, M. Isabel; Florencio, Francisco J.

    2004-01-01

    GATA transcription factors are a group of DNA binding proteins broadly distributed in eukaryotes. The GATA factors DNA binding domain is a class IV zinc finger motif in the form CX2CX17–20CX2C followed by a basic region. In plants, GATA DNA motifs have been implicated in light-dependent and nitrate-dependent control of transcription. Herein, we show that the Arabidopsis and the rice (Oryza sativa) genomes present 29 and 28 loci, respectively, that encode for putative GATA factors. A phylogenetic analysis of the 57 GATA factors encoding genes, as well as the study of their intron-exon structure, indicates the existence of seven subfamilies of GATA genes. Some of these subfamilies are represented in both species but others are exclusive for one of them. In addition to the GATA zinc finger motif, polypeptides of the different subfamilies are characterized by the presence of additional domains such as an acidic domain, a CCT (CONSTANS, CO-like, and TOC1) domain, or a transposase-like domain also found in FAR1 and FHY3. Subfamily VI comprises genes that encode putative bi-zinc finger polypeptides, also found in metazoan and fungi, and a tri-zinc finger protein which has not been previously reported in eukaryotes. The phylogeny of the GATA zinc finger motif, excluding flanking regions, evidenced the existence of four classes of GATA zinc fingers, three of them containing 18 residues in the zinc finger loop and one containing a 20-residue loop. Our results support multiple models of evolution of the GATA gene family in plants including gene duplication and exon shuffling. PMID:15084732

  4. Phylogenetic and Transcription Analysis of Chrysanthemum WRKY Transcription Factors

    PubMed Central

    Song, Aiping; Li, Peiling; Jiang, Jiafu; Chen, Sumei; Li, Huiyun; Zeng, Jun; Shao, Yafeng; Zhu, Lu; Zhang, Zhaohe; Chen, Fadi

    2014-01-01

    WRKY transcription factors are known to function in a number of plant processes. Here we have characterized 15 WRKY family genes of the important ornamental species chrysanthemum (Chrysanthemum morifolium). A total of 15 distinct sequences were isolated; initially internal fragments were amplified based on transcriptomic sequence, and then the full length cDNAs were obtained using RACE (rapid amplification of cDNA ends) PCR. The transcription of these 15 genes in response to a variety of phytohormone treatments and both biotic and abiotic stresses was characterized. Some of the genes behaved as would be predicted based on their homology with Arabidopsis thaliana WRKY genes, but others showed divergent behavior. PMID:25196345

  5. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    PubMed

    Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  6. Sleep Loss Reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to Specific Clock Genes in the Mouse Cerebral Cortex

    PubMed Central

    Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), −6, −12, and −18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and −6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven. PMID:22039518

  7. Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains.

    PubMed

    Yang, Z; Gu, L; Romeo, P H; Bories, D; Motohashi, H; Yamamoto, M; Engel, J D

    1994-03-01

    GATA-3 is a zinc finger transcription factor which is expressed in a highly restricted and strongly conserved tissue distribution pattern in vertebrate organisms, specifically, in a subset of hematopoietic cells, in cells within the central and peripheral nervous systems, in the kidney, and in placental trophoblasts. Tissue-specific cellular genes regulated by GATA-3 have been identified in T lymphocytes and the placenta, while GATA-3-regulated genes in the nervous system and kidney have not yet been defined. We prepared monoclonal antibodies with which we could dissect the biochemical and functional properties of human GATA-3. The results of these experiments show some anticipated phenotypes, for example, the definition of discrete domains required for specific DNA-binding site recognition (amino acids 303 to 348) and trans activation (amino acids 30 to 74). The signaling sequence for nuclear localization of human GATA-3 is a property conferred by sequences within and surrounding the amino finger (amino acids 249 to 311) of the protein, thereby assigning a function to this domain and thus explaining the curious observation that this zinc finger is dispensable for DNA binding by the GATA family of transcription factors.

  8. A novel genetic system to isolate a dominant negative effector on DNA-binding activity of Oct-2.

    PubMed Central

    Terunuma, A; Shiba, K; Noda, T

    1997-01-01

    Recent studies have revealed that interactions between transcription factors play an important role in regulation of gene expression in eukaryotic cells. To isolate cDNA clones that dominantly inhibit the DNA-binding activity of Oct-2, chosen as a representative factor, we have developed a novel screening system. This employs an Escherichia coli tester strain carrying a modified lac operon as a reporter gene, with the lac operator sequence replaced by an octamer sequence. Oct-2 expressed in this tester strain represses the expression of the reporter gene and changes the phenotype of the cell from Lac+to Lac-. Introduction of a cDNA expression library prepared from a human T-cell line into the Oct-2-harboring tester strain allowed selection of three Lac+clones out of 1 x 10(5) transformants. One of them, hT86, encoding a putative zinc finger protein was found to derepress beta-galactosidase activity in the Oct-2-harboring tester strain at the transcriptional level. In gel mobility shift assays, hT86 attenuated the intensity of the retarded band composed of the octamer probe and Oct-2, suggesting a dominant negative effect on the DNA-binding activity of Oct-2. The strategy described here provides a new approach for studying protein-protein interactions that govern the complex regulation of gene expression. PMID:9115366

  9. Regulation of Liver Enriched Transcription Factors in Rat Hepatocytes Cultures on Collagen and EHS Sarcoma Matrices

    PubMed Central

    Borlak, Jürgen; Singh, Prafull Kumar; Rittelmeyer, Ina

    2015-01-01

    Liver-enriched transcription factors (LETF) play a crucial role in the control of liver-specific gene expression and for hepatocytes to retain their molecular and cellular functions complex interactions with extra cellular matrix (ECM) are required However, during cell isolation ECM interactions are disrupted and for hepatocytes to regain metabolic competency cells are cultured on ECM substrata. The regulation of LETFs in hepatocytes cultured on different ECM has not been studied in detail. We therefore compared two common sources of ECM and evaluated cellular morphology and hepatocyte differentiation by investigating DNA binding activity of LETFs at gene specific promoters and marker genes of hepatic metabolism. Furthermore, we studied testosterone metabolism and albumin synthesis to assess the metabolic competence of cell cultures. Despite significant difference in morphological appearance and except for HNF1β (p<0.001) most LETFs and several of their target genes did not differ in transcript expression after Bonferroni adjustment when cultured on collagen or Matrigel. Nonetheless, Western blotting revealed HNF1β, HNF3α, HNF3γ, HNF4α, HNF6 and the smaller subunits of C/EBPα and C/EBPβ to be more abundant on Matrigel cultured cells. Likewise, DNA binding activity of HNF3α, HNF3β, HNF4α, HNF6 and gene expression of hepatic lineage markers were increased on Matrigel cultured hepatocytes. To further investigate hepatic gene regulation, the effects of Aroclor 1254 treatment, e.g. a potent inducer of xenobiotic defense were studied in vivo and in vitro. The gene expression of C/EBP-α increased in rat liver and hepatocytes cultured on collagen and this treatment induced DNA binding activity of HNF4α, C/EBPα and C/EBPβ and gene expression of CYP1A1 and CYP1A2 in vivo and in vitro. Taken collectively, two sources of ECM greatly affected hepatocyte morphology, activity of liver enriched transcription factors, hepatic gene expression and metabolic competency

  10. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-01

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1). PMID:23375483

  11. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    PubMed

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-01

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1).

  12. Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro.

    PubMed

    Lodeiro, Maria F; Uchida, Akira; Bestwick, Megan; Moustafa, Ibrahim M; Arnold, Jamie J; Shadel, Gerald S; Cameron, Craig E

    2012-04-24

    Cell-based studies support the existence of two promoters on the heavy strand of mtDNA: heavy-strand promoter 1 (HSP1) and HSP2. However, transcription from HSP2 has been reported only once in a cell-free system, and never when recombinant proteins have been used. Here, we document transcription from HSP2 using an in vitro system of defined composition. An oligonucleotide template representing positions 596-685 of mtDNA was sufficient to observe transcription by the human mtRNA polymerase (POLRMT) that was absolutely dependent on mitochondrial transcription factor B2 (TFB2M). POLRMT/TFB2M-dependent transcription was inhibited by concentrations of mitochondrial transcription factor A (TFAM) stoichiometric with the transcription template, a condition that activates transcription from the light-strand promoter (LSP) in vitro. Domains of TFAM required for LSP activation were also required for HSP2 repression, whereas other mtDNA binding proteins failed to alter transcriptional output. Binding sites for TFAM were located on both sides of the start site of transcription from HSP2, suggesting that TFAM binding interferes with POLRMT and/or TFB2M binding. Consistent with a competitive binding model for TFAM repression of HSP2, the impact of TFAM concentration on HSP2 transcription was diminished by elevating the POLRMT and TFB2M concentrations. In the context of our previous studies of LSP and HSP1, it is now clear that three promoters exist in human mtDNA. Each promoter has a unique requirement for and/or response to the level of TFAM present, thus implying far greater complexity in the regulation of mammalian mitochondrial transcription than recognized to date.

  13. Transcription factors expressed in olfactory bulb local progenitor cells revealed by genome-wide transcriptome profiling

    PubMed Central

    Campbell, Gordon R. O.; Baudhuin, Ariane; Vranizan, Karen; Ngai, John

    2011-01-01

    The local progenitor population in the olfactory bulb (OB) gives rise to mitral and tufted projection neurons during embryonic development. In contrast, OB interneurons are derived from sources outside the bulb where neurogenesis continues throughout life. While many of the genes involved in OB interneuron development have been characterized, the genetic pathways driving local progenitor cell differentiation in this tissue are largely unknown. To better understand this process, we used transcriptional profiling to monitor gene expression of whole OB at daily intervals from embryonic day 11 through birth, generating a compendium of gene expression encompassing the major developmental events of this tissue. Through hierarchical clustering, bioinformatics analysis, and validation by RNA in situ hybridizations, we identified a large number of transcription factors, DNA binding proteins, and cell cycle-related genes expressed by the local neural progenitor cells (NPCs) of the embryonic OB. Further in silico analysis of transcription factor binding sites identified an enrichment of genes regulated by the E2F-Rb pathway among those expressed in the local NPC population. Together these results provide initial insights into the molecular identity of the OB local NPC population and the transcription factor networks that may regulate their function. PMID:21194568

  14. The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators.

    PubMed

    Rekdal, C; Sjøttem, E; Johansen, T

    2000-12-22

    SPBP (stromelysin-1 platelet-derived growth factor-responsive element binding protein) was originally cloned from a cDNA expression library by virtue of its ability to bind to a platelet-derived growth factor-responsive element in the human stromelysin-1 promoter. A 937-amino acid-long protein was deduced from a 3995-nucleotide murine cDNA sequence. By analyses of both human and murine cDNAs, we now show that SPBP is twice as large as originally found. The human SPBP gene contains six exons and is located on chromosome 22q13.1-13.3. Two isoforms differing in their C termini are expressed due to alternative splicing. PCR analyses of multitissue cDNA panels showed that SPBP is expressed in most tissues except for ovary and prostate. Functional mapping revealed that SPBP is a nuclear, multidomain protein containing an N-terminal region with transactivating ability, a novel type of DNA-binding domain containing an AT hook motif, and a bipartite nuclear localization signal as well as a C-terminal zinc finger domain. This type of zinc finger domain is also found in the trithorax family of chromatin-based transcriptional regulator proteins. Using cotransfection experiments, we find that SPBP enhances the transcriptional activity of various transcription factors such as c-Jun, Ets1, Sp1, and Pax6. Hence, SPBP seems to act as a transcriptional coactivator. PMID:10995766

  15. Cloning and identification of a YY-1 homolog as a potential transcription factor from Pinctada fucata.

    PubMed

    Zheng, Xiangnan; Cheng, Minzhang; Xiang, Liang; Su, Jingtan; Zhou, Yujuan; Xie, Liping; Zhang, Rongqing

    2015-11-01

    Biomineralization is an important and ubiquitous process in organisms. The shell formation of mollusks is a typical biomineral physical activity and is used as a canonical model in biomineralization research. Most recent studies focused on the identification of matrix proteins involved in shell formation; however, little is known about their transcriptional regulation mechanism, especially the transcription factors involved in shell formation. In this study, we identified a homolog of the YY-1 transcriptional factor from Pinctada fucata, named Pf-YY-1, and characterized its expression pattern and biological functions. Pf-YY-1 has a typical zinc finger motif highly similar to those in humans, mice, and other higher organisms, which indicated its DNA-binding capability and its function as a transcription factor. Pf-YY-1 is ubiquitously expressed in many tissues, but at a higher level in the mantle, which suggested a role in biomineralization. The expression pattern of Pf-YY-1 during pearl sac development was quite similar to, and was synchronized with, those of Prisilkin-39, ACCBP, and other genes involved in biomineralization, which also suggested its function in biomineralization.

  16. Miz-1 activates gene expression via a novel consensus DNA binding motif.

    PubMed

    Barrilleaux, Bonnie L; Burow, Dana; Lockwood, Sarah H; Yu, Abigail; Segal, David J; Knoepfler, Paul S

    2014-01-01

    The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences--ATCGGTAATC and ATCGAT (Mizm1 and Mizm2)--bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate. PMID:24983942

  17. Transcription factors as targets of anticancer drugs.

    PubMed

    Gniazdowski, M; Czyz, M

    1999-01-01

    Several general and gene- and cell-selective transcription factors are required for specific transcription to occur. Many of them exert their functions through specific contacts either in the promoter region or at distant sequences regulating the initiation. These contacts may be altered by anticancer drugs which form non-covalent complexes with DNA. Covalent modifications of DNA by alkylating agents may prevent transcription factors from recognizing their specific sequences or may constitute multiple "unnatural" binding sites in DNA which attract the factors thus decreasing their availability in the cell. The anticancer drug-transcription factor interplay which is based on specific interactions with DNA may contribute to pharmacological properties of the former and provide a basis for the search for new drugs. PMID:10547027

  18. High throughput assays for analyzing transcription factors.

    PubMed

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed. PMID:16834538

  19. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3

    PubMed Central

    Dalton, Jutta C.; Bätz, Ulrike; Liu, Jason; Curie, Gemma L.; Quail, Peter H.

    2016-01-01

    Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5′-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation. PMID:27379152

  20. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3.

    PubMed

    Dalton, Jutta C; Bätz, Ulrike; Liu, Jason; Curie, Gemma L; Quail, Peter H

    2016-01-01

    Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5'-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation. PMID:27379152

  1. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3.

    PubMed

    Dalton, Jutta C; Bätz, Ulrike; Liu, Jason; Curie, Gemma L; Quail, Peter H

    2016-01-01

    Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5'-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation.

  2. Arsenic Directly Binds to and Activates the Yeast AP-1-Like Transcription Factor Yap8

    PubMed Central

    Kumar, Nallani Vijay; Yang, Jianbo; Pillai, Jitesh K.; Rawat, Swati; Solano, Carlos; Kumar, Abhay; Grøtli, Morten; Stemmler, Timothy L.; Rosen, Barry P.

    2015-01-01

    The AP-1-like transcription factor Yap8 is critical for arsenic tolerance in the yeast Saccharomyces cerevisiae. However, the mechanism by which Yap8 senses the presence of arsenic and activates transcription of detoxification genes is unknown. Here we demonstrate that Yap8 directly binds to trivalent arsenite [As(III)] in vitro and in vivo and that approximately one As(III) molecule is bound per molecule of Yap8. As(III) is coordinated by three sulfur atoms in purified Yap8, and our genetic and biochemical data identify the cysteine residues that form the binding site as Cys132, Cys137, and Cys274. As(III) binding by Yap8 does not require an additional yeast protein, and Yap8 is regulated neither at the level of localization nor at the level of DNA binding. Instead, our data are consistent with a model in which a DNA-bound form of Yap8 acts directly as an As(III) sensor. Binding of As(III) to Yap8 triggers a conformational change that in turn brings about a transcriptional response. Thus, As(III) binding to Yap8 acts as a molecular switch that converts inactive Yap8 into an active transcriptional regulator. This is the first report to demonstrate how a eukaryotic protein couples arsenic sensing to transcriptional activation. PMID:26711267

  3. The Intracellular Domain of Teneurin-1 Induces the Activity of Microphthalmia-associated Transcription Factor (MITF) by Binding to Transcriptional Repressor HINT1

    PubMed Central

    Schöler, Jonas; Ferralli, Jacqueline; Thiry, Stéphane; Chiquet-Ehrismann, Ruth

    2015-01-01

    Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB. PMID:25648896

  4. Optogenetic Inhibitor of the Transcription Factor CREB.

    PubMed

    Ali, Ahmed M; Reis, Jakeb M; Xia, Yan; Rashid, Asim J; Mercaldo, Valentina; Walters, Brandon J; Brechun, Katherine E; Borisenko, Vitali; Josselyn, Sheena A; Karanicolas, John; Woolley, G Andrew

    2015-11-19

    Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events. PMID:26590638

  5. By the company they keep: interaction networks define the binding ability of transcription factors

    PubMed Central

    Cirillo, Davide; Botta-Orfila, Teresa; Tartaglia, Gian Gaetano

    2015-01-01

    Access to genome-wide data provides the opportunity to address questions concerning the ability of transcription factors (TFs) to assemble in distinct macromolecular complexes. Here, we introduce the PAnDA (Protein And DNA Associations) approach to characterize DNA associations with human TFs using expression profiles, protein–protein interactions and recognition motifs. Our method predicts TF binding events with >0.80 accuracy revealing cell-specific regulatory patterns that can be exploited for future investigations. Even when the precise DNA-binding motifs of a specific TF are not available, the information derived from protein-protein networks is sufficient to perform high-confidence predictions (area under the ROC curve of 0.89). PAnDA is freely available at http://service.tartaglialab.com/new_submission/panda. PMID:26089389

  6. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module.

    PubMed

    McKeown, Alesia N; Bridgham, Jamie T; Anderson, Dave W; Murphy, Michael N; Ortlund, Eric A; Thornton, Joseph W

    2014-09-25

    Complex gene regulatory networks require transcription factors (TFs) to bind distinct DNA sequences. To understand how novel TF specificity evolves, we combined phylogenetic, biochemical, and biophysical approaches to interrogate how DNA recognition diversified in the steroid hormone receptor (SR) family. After duplication of the ancestral SR, three mutations in one copy radically weakened binding to the ancestral estrogen response element (ERE) and improved binding to a new set of DNA sequences (steroid response elements, SREs). They did so by establishing unfavorable interactions with ERE and abolishing unfavorable interactions with SRE; also required were numerous permissive substitutions, which nonspecifically improved cooperativity and affinity of DNA binding. Our findings indicate that negative determinants of binding play key roles in TFs' DNA selectivity and-with our prior work on the evolution of SR ligand specificity during the same interval-show how a specific new gene regulatory module evolved without interfering with the integrity of the ancestral module. PMID:25259920

  7. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes

    PubMed Central

    Uhl, Juli D.; Zandvakili, Arya; Gebelein, Brian

    2016-01-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. PMID:27058369

  8. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes.

    PubMed

    Uhl, Juli D; Zandvakili, Arya; Gebelein, Brian

    2016-04-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. PMID:27058369

  9. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes.

    PubMed

    Uhl, Juli D; Zandvakili, Arya; Gebelein, Brian

    2016-04-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints.

  10. A Putative Transcription Factor MYT2 Regulates Perithecium Size in the Ascomycete Gibberella zeae

    PubMed Central

    Lin, Yang; Son, Hokyoung; Min, Kyunghun; Lee, Jungkwan; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2012-01-01

    The homothallic ascomycete fungus Gibberella zeae is a plant pathogen that is found worldwide, causing Fusarium head blight (FHB) in cereal crops and ear rot of maize. Ascospores formed in fruiting bodies (i.e., perithecia) are hypothesized to be the primary inocula for FHB disease. Perithecium development is a complex cellular differentiation process controlled by many developmentally regulated genes. In this study, we selected a previously reported putative transcription factor containing the Myb DNA-binding domain MYT2 for an in-depth study on sexual development. The deletion of MYT2 resulted in a larger perithecium, while its overexpression resulted in a smaller perithecium when compared to the wild-type strain. These data suggest that MYT2 regulates perithecium size differentiation. MYT2 overexpression affected pleiotropic phenotypes including vegetative growth, conidia production, virulence, and mycotoxin production. Nuclear localization of the MYT2 protein supports its role as a transcriptional regulator. Transcriptional analyses of trichothecene synthetic genes suggest that MYT2 additionally functions as a suppressor for trichothecene production. This is the first study characterizing a transcription factor required for perithecium size differentiation in G. zeae, and it provides a novel angle for understanding sexual development in filamentous fungi. PMID:22649560

  11. Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF

    SciTech Connect

    Kamada, Katsuhiko; De Angelis, Jacqueline; Roeder, Robert G.; Burley, Stephen K.

    2012-12-13

    The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-{angstrom} resolution. The {alpha}/{beta} structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3{gamma} (HNF-3{gamma}), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3{gamma} and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the {beta} subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.

  12. neptune, a Krüppel-like transcription factor that participates in primitive erythropoiesis in Xenopus.

    PubMed

    Huber, T L; Perkins, A C; Deconinck, A E; Chan, F Y; Mead, P E; Zon, L I

    2001-09-18

    The specification of the erythroid lineage from hematopoietic stem cells requires the expression and activity of lineage-specific transcription factors. One transcription factor family that has several members involved in hematopoiesis is the Krüppel-like factor (KLF) family [1]. For example, erythroid KLF (EKLF) regulates beta-globin expression during erythroid differentiation [2-6]. KLFs share a highly conserved zinc finger-based DNA binding domain (DBD) that mediates binding to CACCC-box and GC-rich sites, both of which are frequently found in the promoters of hematopoietic genes. Here, we identified a novel Xenopus KLF gene, neptune, which is highly expressed in the ventral blood island (VBI), cranial ganglia, and hatching and cement glands. neptune expression is induced in response to components of the BMP-4 signaling pathway in injected animal cap explants. Similar to its family member, EKLF, Neptune can bind CACCC-box and GC-rich DNA elements. We show that Neptune cooperates with the hematopoietic transcription factor XGATA-1 to enhance globin induction in animal cap explants. A fusion protein comprised of Neptune's DBD and the Drosophila engrailed repressor domain suppresses the induction of globin in ventral marginal zones and in animal caps. These studies demonstrate that Neptune is a positive regulator of primitive erythropoiesis in Xenopus.

  13. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2).

    PubMed

    Lee, Ping-Chin; Umeyama, Takashi; Horinouchi, Sueharu

    2002-03-01

    AfsR is a pleiotropic, global regulator that controls the production of actinorhodin, undecylprodigiosin and calcium-dependent antibiotic in Streptomyces coelicolor A3(2). AfsR, with 993 amino acids, is phosphorylated on serine and threonine residues by a protein serine/threonine kinase AfsK and contains an OmpR-like DNA-binding fold at its N-terminal portion and A- and B-type nucleotide-binding motifs in the middle of the protein. The DNA-binding domain, in-dependently of the nucleotide-binding domain, contributed the binding of AfsR to the upstream region of afsS that locates immediately 3' to afsR and encodes a 63-amino-acid protein. No transcription of afsS in the DeltaafsR background and restoration of afsS transcription by afsR on a plasmid in the same genetic background indicated that afsR served as a transcriptional activator for afsS. Interestingly, the AfsR binding site overlapped the promoter of afsS, as determined by DNase I protection assay and high-resolution S1 nuclease mapping. The nucleotide-binding domain contributed distinct ATPase and GTPase activity. The phosphorylation of AfsR by AfsK greatly enhanced the DNA-binding activity and modulated the ATPase activity. The DNA-binding ability of AfsR was independent of the ATPase activity. However, the ATPase activity was essential for transcriptional activation of afsS, probably because the energy available from ATP hydrolysis is required for the isomerization of the closed complex between AfsR and RNA polymerase to a transcriptionally competent open complex. Thus, AfsR turns out to be a unique transcriptional factor, in that it is modular, in which DNA-binding and ATPase activities are physically separable, and the two functions are modulated by phosphorylation on serine and threonine residues.

  14. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor

    PubMed Central

    Kaneko, Izumi; Iwanaga, Shiroh; Kato, Tomomi; Kobayashi, Issei; Yuda, Masao

    2015-01-01

    Stage-specific transcription is a fundamental biological process in the life cycle of the Plasmodium parasite. Proteins containing the AP2 DNA-binding domain are responsible for stage-specific transcriptional regulation and belong to the only known family of transcription factors in Plasmodium parasites. Comprehensive identification of their target genes will advance our understanding of the molecular basis of stage-specific transcriptional regulation and stage-specific parasite development. AP2-O is an AP2 family transcription factor that is expressed in the mosquito midgut-invading stage, called the ookinete, and is essential for normal morphogenesis of this stage. In this study, we identified the genome-wide target genes of AP2-O by chromatin immunoprecipitation-sequencing and elucidate how this AP2 family transcription factor contributes to the formation of this motile stage. The analysis revealed that AP2-O binds specifically to the upstream genomic regions of more than 500 genes, suggesting that approximately 10% of the parasite genome is directly regulated by AP2-O. These genes are involved in distinct biological processes such as morphogenesis, locomotion, midgut penetration, protection against mosquito immunity and preparation for subsequent oocyst development. This direct and global regulation by AP2-O provides a model for gene regulation in Plasmodium parasites and may explain how these parasites manage to control their complex life cycle using a small number of sequence-specific AP2 transcription factors. PMID:26018192

  15. Specific transcription factors stimulate simian virus 40 and polyomavirus origins of DNA replication.

    PubMed Central

    Guo, Z S; DePamphilis, M L

    1992-01-01

    The origins of DNA replication (ori) in simian virus 40 (SV40) and polyomavirus (Py) contain an auxiliary component (aux-2) composed of multiple transcription factor binding sites. To determine whether this component stimulated replication by binding specific transcription factors, aux-2 was replaced by synthetic oligonucleotides that bound a single transcription factor. Sp1 and T-antigen (T-ag) sites, which exist in the natural SV40 aux-2 sequence, provided approximately 75 and approximately 20%, respectively, of aux-2 activity when transfected into monkey cells. In cell extracts, only T-ag sites were active. AP1 binding sites could replace completely either SV40 or Py aux-2. Mutations that eliminated AP1 binding also eliminated AP1 stimulation of replication. Yeast GAL4 binding sites that strongly stimulated transcription in the presence of GAL4 proteins failed to stimulate SV40 DNA replication, although they did partially replace Py aux-2. Stimulation required the presence of proteins consisting of the GAL4 DNA binding domain fused to specific activation domains such as VP16 or c-Jun. These data demonstrate a clear role for transcription factors with specific activation domains in activating both SV40 and Py ori. However, no correlation was observed between the ability of specific proteins to stimulate promoter activity and their ability to stimulate origin activity. We propose that only transcription factors whose specific activation domains can interact with the T-ag initiation complex can stimulate SV40 and Py ori-core activity. Images PMID:1317005

  16. Structure-Function Analysis of the Drosophila melanogaster Caudal Transcription Factor Provides Insights into Core Promoter-preferential Activation.

    PubMed

    Shir-Shapira, Hila; Sharabany, Julia; Filderman, Matan; Ideses, Diana; Ovadia-Shochat, Avital; Mannervik, Mattias; Juven-Gershon, Tamar

    2015-07-10

    Regulation of RNA polymerase II transcription is critical for the proper development, differentiation, and growth of an organism. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters encompass the RNA start site and consist of functional elements such as the TATA box, initiator, and downstream core promoter element (DPE), which confer specific properties to the core promoter. We have previously discovered that Drosophila Caudal, which is a master regulator of genes involved in development and differentiation, is a DPE-specific transcriptional activator. Here, we show that the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4) are also preferential core promoter transcriptional activators. To elucidate the mechanism that enables Caudal to preferentially activate DPE transcription, we performed structure-function analysis. Using a systematic series of deletion mutants (all containing the intact DNA-binding homeodomain) we discovered that the C-terminal region of Caudal contributes to the preferential activation of the fushi tarazu (ftz) Caudal target gene. Furthermore, the region containing both the homeodomain and the C terminus of Caudal was sufficient to confer core promoter-preferential activation to the heterologous GAL4 DNA-binding domain. Importantly, we discovered that Drosophila CREB-binding protein (dCBP) is a co-activator for Caudal-regulated activation of ftz. Strikingly, dCBP conferred the ability to preferentially activate the DPE-dependent ftz reporter to mini-Caudal proteins that were unable to preferentially activate ftz transcription themselves. Taken together, it is the unique combination of dCBP and Caudal that enables the co-activation of ftz in a core promoter-preferential manner.

  17. Selectively Targeting the DNA-binding Domain of the Androgen Receptor as a Prospective Therapy for Prostate Cancer*

    PubMed Central

    Dalal, Kush; Roshan-Moniri, Mani; Sharma, Aishwariya; Li, Huifang; Ban, Fuqiang; Hessein, Mohamed; Hsing, Michael; Singh, Kriti; LeBlanc, Eric; Dehm, Scott; Tomlinson Guns, Emma S.; Cherkasov, Artem; Rennie, Paul S.

    2014-01-01

    The androgen receptor (AR) is a transcription factor that has a pivotal role in the occurrence and progression of prostate cancer. The AR is activated by androgens that bind to its ligand-binding domain (LBD), causing the transcription factor to enter the nucleus and interact with genes via its conserved DNA-binding domain (DBD). Treatment for prostate cancer involves reducing androgen production or using anti-androgen drugs to block the interaction of hormones with the AR-LBD. Eventually the disease changes into a castration-resistant form of PCa where LBD mutations render anti-androgens ineffective or where constitutively active AR splice variants, lacking the LBD, become overexpressed. Recently, we identified a surfaced exposed pocket on the AR-DBD as an alternative drug-target site for AR inhibition. Here, we demonstrate that small molecules designed to selectively bind the pocket effectively block transcriptional activity of full-length and splice variant AR forms at low to sub-micromolar concentrations. The inhibition is lost when residues involved in drug interactions are mutated. Furthermore, the compounds did not impede nuclear localization of the AR and blocked interactions with chromatin, indicating the interference of DNA binding with the nuclear form of the transcription factor. Finally, we demonstrate the inhibition of gene expression and tumor volume in mouse xenografts. Our results indicate that the AR-DBD has a surface site that can be targeted to inhibit all forms of the AR, including enzalutamide-resistant and constitutively active splice variants and thus may serve as a potential avenue for the treatment of recurrent and metastatic prostate cancer. PMID:25086042

  18. Functional Analysis of Transcription Factors in Arabidopsis

    PubMed Central

    Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2009-01-01

    Transcription factors (TFs) regulate the expression of genes at the transcriptional level. Modification of TF activity dynamically alters the transcriptome, which leads to metabolic and phenotypic changes. Thus, functional analysis of TFs using ‘omics-based’ methodologies is one of the most important areas of the post-genome era. In this mini-review, we present an overview of Arabidopsis TFs and introduce strategies for the functional analysis of plant TFs, which include both traditional and recently developed technologies. These strategies can be assigned to five categories: bioinformatic analysis; analysis of molecular function; expression analysis; phenotype analysis; and network analysis for the description of entire transcriptional regulatory networks. PMID:19478073

  19. Transcription Factors in Xylem Development. Final report

    SciTech Connect

    Sederoff, Ronald; Whetten, Ross; O'Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  20. ETS transcription factors in embryonic vascular development.

    PubMed

    Craig, Michael P; Sumanas, Saulius

    2016-07-01

    At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.

  1. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites.

    PubMed

    Jagelská, Eva B; Brázda, Václav; Pecinka, Petr; Palecek, Emil; Fojta, Miroslav

    2008-05-15

    The tumour suppressor protein p53 is one of the most important factors regulating cell proliferation, differentiation and programmed cell death in response to a variety of cellular stress signals. P53 is a nuclear phosphoprotein and its biochemical function is closely associated with its ability to bind DNA in a sequence-specific manner and operate as a transcription factor. Using a competition assay, we investigated the effect of DNA topology on the DNA binding of human wild-type p53 protein. We prepared sets of topoisomers of plasmid DNA with and without p53 target sequences, differing in their internal symmetry. Binding of p53 to DNA increased with increasing negative superhelix density (-sigma). At -sigma < or = 0.03, the relative effect of DNA supercoiling on protein-DNA binding was similar for DNA containing both symmetrical and non-symmetrical target sites. On the other hand, at higher -sigma, target sites with a perfect inverted repeat sequence exhibited a more significant enhancement of p53 binding as a result of increasing levels of negative DNA supercoiling. For -sigma = 0.07, an approx. 3-fold additional increase in binding was observed for a symmetrical target site compared with a non-symmetrical target site. The p53 target sequences possessing the inverted repeat symmetry were shown to form a cruciform structure in sufficiently negative supercoiled DNA. We show that formation of cruciforms in DNA topoisomers at -sigma > or = 0.05 correlates with the extra enhancement of p53-DNA binding. PMID:18271758

  2. Mutations within Helix I of Twist1 Result in Distinct Limb Defects and Variation of DNA-Binding Affinities

    PubMed Central

    Firulli, Beth A.; Redick, Bradley A.; Conway, Simon J.; Firulli, Anthony B.

    2008-01-01

    Twist1 is a basic helix-loop-helix (bHLH) factor that plays an important role in limb development. Haploinsufficiency of Twist1 results in polydactyly via the inability of Twist1 to antagonistically regulate the related factor Hand2. The mechanism modulating Twist1-Hand2 antagonism is via phosphoregulation of conserved threonine and serine residues in helix I of the bHLH domain. Phosphoregulation alters the dimerization affinities for both proteins. Here we show that the expression of Twist1 and Twist1 phosphoregulation mutants result in distinct limb phenotypes in mice. In addition to dimer regulation, Twist1 phosphoregulation affects the DNA-binding affinities of Twist1 in a partner dependent and cis-element dependent manner. In order to gain a better understanding of the specific Twist1 transcriptional complexes that function during limb morphogensis, we employ a series of Twist1-tethered dimers that include the known Twist1 partners, E12 and Hand2, as well as a tethered Twist1 homodimer. We show that these dimers behave in a manner similar to monomerically expressed bHLH factors and result in distinct limb phenotypes that correlate well with those observed from the limb expression of Twist1 and Twist1 phosphoregulation mutants. Taken together, this study shows that the Twist1 dimer affinity for a given partner can modulate the DNA binding affinity and that Twist1 dimer choice determines phenotypic outcome during limb development. PMID:17652084

  3. Molecular Dynamics Simulations of p53 DNA-Binding Domain

    PubMed Central

    Lu, Qiang; Tan, Yu-Hong; Luo, Ray

    2008-01-01

    We have studied room-temperature structural and dynamic properties of the p53 DNA-binding domain in both DNA-bound and DNA-free states. A cumulative 55ns of explicit solvent molecular dynamics simulations with the Particle Mesh Ewald treatment of electrostatics were performed. It is found that the mean structures in the production portions of the trajectories agree well with the crystal structure: backbone root-mean squared deviations are in the range of 1.6Å and 2.0Å. In both simulations, noticeable backbone deviations from the crystal structure are observed only in loop L6, due to the lack of crystal packing in the simulations. More deviations are observed in the DNA-free simulation, apparently due to the absence of DNA. Computed backbone B-factor is also in qualitative agreement with the crystal structure. Interestingly little backbone structural change was observed between the mean simulated DNA-bound and DNA-free structures. Notable difference is only observed at the DNA-binding interface. The correlation between native contacts and inactivation mechanisms of tumor mutations is also discussed. In the H2 region, tumor mutations at sites D281, R282, E285, and E286 may weaken five key interactions that stabilize H2, indicating that their inactivation mechanisms may be related to the loss of local structure around H2, which in turn may reduce the overall stability to a measurable amount. In the L2 region, tumor mutations at sites Y163, K164, E171, V173, L194, R249, I251 and E271 are likely to be responsible for the loss of stability in the protein. In addition to apparent DNA contacts that are related to DNA binding, interactions R175/S183, S183/R196, and E198/N235 are highly occupied only in the DNA-bound form, indicating that they are more likely to be responsible for DNA binding. PMID:17824689

  4. PTEN downregulates p75NTR expression by decreasing DNA-binding activity of Sp1

    SciTech Connect

    Rankin, Sherri L.; Guy, Clifford S.; Mearow, Karen M.

    2009-02-13

    p75NTR is expressed throughout the nervous system and its dysregulation is associated with pathological conditions. We have recently demonstrated a signalling cascade initiated by laminin (LN), which upregulates PTEN and downregulates p75NTR. Here we investigate the mechanism by which PTEN modulates p75NTR. Studies using PTEN mutants show that its protein phosphatase activity directly modulates p75NTR protein expression. Nuclear relocalization of PTEN subsequent to LN stimulation suggests transcriptional control of p75NTR expression, which was confirmed following EMSA and ChIP analysis of Sp1 transcription factor binding activity. LN and PTEN independently decrease the DNA-binding ability of PTEN to the p75NTR promoter. Sp1 regulation of p75NTR occurs via dephosphorylation of Sp1, thus reducing p75NTR transcription and protein expression. This mechanism represents a novel regulatory pathway which controls the expression level of a receptor with broad implications not only for the development of the nervous system but also for progression of pathological conditions.

  5. Conformational Dynamics and the Binding of Specific and Nonspecific DNA by the Autoinhibited Transcription Factor Ets-1.

    PubMed

    Desjardins, Geneviève; Okon, Mark; Graves, Barbara J; McIntosh, Lawrence P

    2016-07-26

    The affinity of the Ets-1 transcription factor for DNA is autoinhibited by an intrinsically disordered serine-rich region (SRR) and a helical inhibitory module (IM) appended to its winged helix-turn-helix ETS domain. Using NMR spectroscopy, we investigated how Ets-1 recognizes specific versus nonspecific DNA, with a focus on the roles of protein dynamics and autoinhibition in these processes. Upon binding either DNA, the two marginally stable N-terminal helices of the IM predominantly unfold, but still sample partially ordered conformations. Also, on the basis of amide chemical shift perturbation mapping, Ets-1 associates with both specific and nonspecific DNA through the same canonical ETS domain interface. These interactions are structurally independent of the SRR, and thus autoinhibition does not impart DNA-binding specificity. However, relative to the pronounced NMR spectroscopic changes in Ets-1 resulting from specific DNA binding, the spectra of the nonspecific DNA complexes showed conformational exchange broadening and lacked several diagnostic amide and indole signals attributable to hydrogen bonding interactions seen in reported X-ray crystallographic structures of this transcription factor with its cognate DNA sequences. Such differences are highlighted by the chemical shift and relaxation properties of several interfacial lysine and arginine side chains. Collectively, these data support a general model in which Ets-1 interacts with nonspecific DNA via dynamic electrostatic interactions, whereas hydrogen bonding drives the formation of well-ordered complexes with specific DNA. PMID:27362745

  6. Evolution of hematopoiesis: Three members of the PU.1 transcription factor family in a cartilaginous fish, Raja eglanteria

    NASA Technical Reports Server (NTRS)

    Anderson, M. K.; Sun, X.; Miracle, A. L.; Litman, G. W.; Rothenberg, E. V.

    2001-01-01

    T lymphocytes and B lymphocytes are present in jawed vertebrates, including cartilaginous fishes, but not in jawless vertebrates or invertebrates. The origins of these lineages may be understood in terms of evolutionary changes in the structure and regulation of transcription factors that control lymphocyte development, such as PU.1. The identification and characterization of three members of the PU.1 family of transcription factors in a cartilaginous fish, Raja eglanteria, are described here. Two of these genes are orthologs of mammalian PU.1 and Spi-C, respectively, whereas the third gene, Spi-D, is a different family member. In addition, a PU.1-like gene has been identified in a jawless vertebrate, Petromyzon marinus (sea lamprey). Both DNA-binding and transactivation domains are highly conserved between mammalian and skate PU.1, in marked contrast to lamprey Spi, in which similarity is evident only in the DNA-binding domain. Phylogenetic analysis of sequence data suggests that the appearance of Spi-C may predate the divergence of the jawed and jawless vertebrates and that Spi-D arose before the divergence of the cartilaginous fish from the lineage leading to the mammals. The tissue-specific expression patterns of skate PU.1 and Spi-C suggest that these genes share regulatory as well as structural properties with their mammalian orthologs.

  7. Conformational Dynamics and the Binding of Specific and Nonspecific DNA by the Autoinhibited Transcription Factor Ets-1.

    PubMed

    Desjardins, Geneviève; Okon, Mark; Graves, Barbara J; McIntosh, Lawrence P

    2016-07-26

    The affinity of the Ets-1 transcription factor for DNA is autoinhibited by an intrinsically disordered serine-rich region (SRR) and a helical inhibitory module (IM) appended to its winged helix-turn-helix ETS domain. Using NMR spectroscopy, we investigated how Ets-1 recognizes specific versus nonspecific DNA, with a focus on the roles of protein dynamics and autoinhibition in these processes. Upon binding either DNA, the two marginally stable N-terminal helices of the IM predominantly unfold, but still sample partially ordered conformations. Also, on the basis of amide chemical shift perturbation mapping, Ets-1 associates with both specific and nonspecific DNA through the same canonical ETS domain interface. These interactions are structurally independent of the SRR, and thus autoinhibition does not impart DNA-binding specificity. However, relative to the pronounced NMR spectroscopic changes in Ets-1 resulting from specific DNA binding, the spectra of the nonspecific DNA complexes showed conformational exchange broadening and lacked several diagnostic amide and indole signals attributable to hydrogen bonding interactions seen in reported X-ray crystallographic structures of this transcription factor with its cognate DNA sequences. Such differences are highlighted by the chemical shift and relaxation properties of several interfacial lysine and arginine side chains. Collectively, these data support a general model in which Ets-1 interacts with nonspecific DNA via dynamic electrostatic interactions, whereas hydrogen bonding drives the formation of well-ordered complexes with specific DNA.

  8. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    NASA Astrophysics Data System (ADS)

    Clifford, Jacob; Adami, Christoph

    2015-10-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  9. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development.

    PubMed

    Chardin, Camille; Girin, Thomas; Roudier, François; Meyer, Christian; Krapp, Anne

    2014-10-01

    The plant specific RWP-RK family of transcription factors, initially identified in legumes and Chlamydomonas, are found in all vascular plants, green algae, and slime molds. These proteins possess a characteristic RWP-RK motif, which mediates DNA binding. Based on phylogenetic and domain analyses, we classified the RWP-RK proteins of six different species in two subfamilies: the NIN-like proteins (NLPs), which carry an additional PB1 domain at their C-terminus, and the RWP-RK domain proteins (RKDs), which are divided into three subgroups. Although, the functional analysis of this family is still in its infancy, several RWP-RK proteins have a key role in regulating responses to nitrogen availability. The nodulation-specific NIN proteins are involved in nodule organogenesis and rhizobial infection under nitrogen starvation conditions. Arabidopsis NLP7 in particular is a major player in the primary nitrate response. Several RKDs act as transcription factors involved in egg cell specification and differentiation or gametogenesis in algae, the latter modulated by nitrogen availability. Further studies are required to extend the general picture of the functional role of these exciting transcription factors.

  10. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    PubMed

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  11. Transcription Factors Expressed in Lateral Organ Boundaries: Identification of Downstream Targets

    SciTech Connect

    Springer, Patricia S

    2010-07-12

    The processes of lateral organ initiation and patterning are central to the generation of mature plant form. Characterization of the molecular mechanisms underlying these processes is essential to our understanding of plant development. Communication between the shoot apical meristem and initiating organ primordia is important both for functioning of the meristem and for proper organ patterning, and very little is known about this process. In particular, the boundary between meristem and leaf is emerging as a critical region that is important for SAM maintenance and regulation of organogenesis. The goal of this project was to characterize three boundary-expressed genes that encode predicted transcription factors. Specifically, we have studied LATERAL ORGAN BOUNDARIES (LOB), LATERAL ORGAN FUSION1 (LOF1), and LATERAL ORGAN FUSION2 (LOF2). LOB encodes the founding member of the LOB-DOMAIN (LBD) plant-specific DNA binding transcription factor family and LOF1 and LOF2 encode paralogous MYB-domain transcription factors. We characterized the genetic relationship between these three genes and other boundary and meristem genes. We also used an ectopic inducible expression system to identify direct targets of LOB.

  12. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose.

    PubMed

    Jia, Yinshan; Jarrett, Harry W

    2015-08-01

    The use of a method of coupling DNA was investigated for trapping and purifying transcription factors. Using the GFP-C/EBP (CAAT/enhancer binding protein) fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry used is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA binding. The method involves introducing a ribose nucleotide to the 3' end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose that couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture, and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes, including E2A, c-Myc, and Myo-D, were also purified, but myogenin and NFκB were not. Therefore, this approach proved to be valuable for both affinity chromatography and the trapping approach. PMID:25935261

  13. Method for trapping affinity chromatography of transcription factors using aldehyde-hydrazide coupling to agarose

    PubMed Central

    Jia, Yinshan; Jarrett, Harry W.

    2015-01-01

    The uses of a method of coupling DNA is investigated for trapping and purifying transcription factors. Using the GFP-C/EBP fusion protein as a model, trapping gives higher purity and comparable yield to conventional affinity chromatography. The chemistry utilized is mild and was shown to have no detrimental effect on GFP fluorescence or GFP-C/EBP DNA-binding. The method involves introducing a ribose nucleotide to the 3′ end of a DNA sequence. Reaction with mM NaIO4 (sodium metaperiodate) produces a dialdehyde of ribose which couples to hydrazide-agarose. The DNA is combined at nM concentration with a nuclear extract or other protein mixture and DNA-protein complexes form. The complex is then coupled to hydrazide-agarose for trapping the DNA-protein complex and the protein eluted by increasing NaCl concentration. Using a different oligonucleotide with the proximal E-box sequence from the human telomerase promoter, USF-2 transcription factor was purified by trapping, again with higher purity than results from conventional affinity chromatography and similar yield. Other transcription factors binding E-boxes including E2A, c-myc, and myo-D were also purified but myogenenin and NFκB were not. Therfore, this approach proved valuable for both affinity chromatography and for the trapping approach. PMID:25935261

  14. Structures of mithramycin analogues bound to DNA and implications for targeting transcription factor FLI1

    PubMed Central

    Hou, Caixia; Weidenbach, Stevi; Cano, Kristin E.; Wang, Zhonghua; Mitra, Prithiba; Ivanov, Dmitri N.; Rohr, Jürgen; Tsodikov, Oleg V.

    2016-01-01

    Transcription factors have been considered undruggable, but this paradigm has been recently challenged. DNA binding natural product mithramycin (MTM) is a potent antagonist of oncogenic transcription factor EWS–FLI1. Structural details of MTM recognition of DNA, including the FLI1 binding sequence GGA(A/T), are needed to understand how MTM interferes with EWS–FLI1. We report a crystal structure of an MTM analogue MTM SA–Trp bound to a DNA oligomer containing a site GGCC, and two structures of a novel analogue MTM SA–Phe in complex with DNA. MTM SA–Phe is bound to sites AGGG and GGGT on one DNA, and to AGGG and GGGA(T) (a FLI1 binding site) on the other, revealing how MTM recognizes different DNA sequences. Unexpectedly, at sub-micromolar concentrations MTMs stabilize FLI1–DNA complex on GGAA repeats, which are critical for the oncogenic function of EWS–FLI1. We also directly demonstrate by nuclear magnetic resonance formation of a ternary FLI1–DNA–MTM complex on a single GGAA FLI1/MTM binding site. These biochemical and structural data and a new FLI1–DNA structure suggest that MTM binds the minor groove and perturbs FLI1 bound nearby in the major groove. This ternary complex model may lead to development of novel MTM analogues that selectively target EWS–FLI1 or other oncogenic transcription factors, as anti-cancer therapeutics. PMID:27587584

  15. Cloning and analysis of axolotl ISL2 and LHX2 LIM-homeodomain transcription factors.

    PubMed

    Showalter, Aaron D; Yaden, Benjamin C; Chernoff, Ellen A G; Rhodes, Simon J

    2004-03-01

    We cloned and characterized the ISL2 and LHX2 LIM-homeodomain transcription factors of the Mexican salamander, or axolotl, Ambystoma mexicanum. Using a degenerate PCR approach, partial cDNAs representing five LIM-homeodomain genes were cloned, indicating conservation of this class of transcription factors in urodeles. Full-length cDNAs for Isl2 and Lhx2 were identified and sequenced. The predicted ISL2 and LHX2 proteins are well conserved, especially in the LIM and DNA-binding domains. The Isl2 and Lhx2 genes are expressed at all examined stages of embryogenesis and display tissue-restricted expression patterns in adults. In functional tests, axolotl LHX2 was inactive compared to homologous mammalian factors and adopted unusual DNA/protein complexes. However, axolotl ISL2 bound and induced transcription from the rat insulin gene. These experiments demonstrate conservation of key developmental regulatory proteins in salamanders and will allow future studies of their potential roles in the molecular regulation of tissue regeneration in such species. PMID:15048808

  16. Specific induction of endogenous viral restriction factors using CRISPR/Cas-derived transcriptional activators

    PubMed Central

    Bogerd, Hal P.; Kornepati, Anand V. R.; Marshall, Joy B.; Kennedy, Edward M.; Cullen, Bryan R.

    2015-01-01

    Whereas several mammalian proteins can restrict the replication of HIV-1 and other viruses, these are often not expressed in relevant target cells. A potential method to inhibit viral replication might therefore be to use synthetic transcription factors to induce restriction factor expression. In particular, mutants of the RNA-guided DNA binding protein Cas9 that have lost their DNA cleavage activity could be used to recruit transcription activation domains to specific promoters. However, initial experiments revealed only weak activation unless multiple promoter-specific single guide RNAs (sgRNAs) were used. Recently, the recruitment of multiple transcription activation domains by a single sgRNA, modified to contain MS2-derived stem loops that recruit fusion proteins consisting of the MS2 coat protein linked to transcription activation domains, was reported to induce otherwise silent cellular genes. Here, we demonstrate that such “synergistic activation mediators” can induce the expression of two restriction factors, APOBEC3G (A3G) and APOBEC3B (A3B), in human cells that normally lack these proteins. We observed modest activation of endogenous A3G or A3B expression using single sgRNAs but high expression when two sgRNAs were used. Whereas the induced A3G and A3B proteins both blocked infection by an HIV-1 variant lacking a functional vif gene by inducing extensive dC-to-dU editing, only the induced A3B protein inhibited wild-type HIV-1. These data demonstrate that Cas9-derived transcriptional activators have the potential to be used for screens for endogenous genes that affect virus replication and raise the possibility that synthetic transcription factors might prove clinically useful if efficient delivery mechanisms could be developed. PMID:26668372

  17. One-hybrid screens at the Saccharomyces cerevisiae HMR locus identify novel transcriptional silencing factors.

    PubMed Central

    Andrulis, Erik D; Zappulla, David C; Alexieva-Botcheva, Krassimira; Evangelista, Carlos; Sternglanz, Rolf

    2004-01-01

    In Saccharomyces cerevisiae, genes located at the telomeres and the HM loci are subject to transcriptional silencing. Here, we report results of screening a Gal4 DNA-binding domain hybrid library for proteins that cause silencing when targeted to a silencer-defective HMR locus. PMID:15020450

  18. A stable transcription factor complex nucleated by oligomeric AML1–ETO controls leukaemogenesis

    SciTech Connect

    Sun, Xiao-Jian; Wang, Zhanxin; Wang, Lan; Jiang, Yanwen; Kost, Nils; Soong, T. David; Chen, Wei-Yi; Tang, Zhanyun; Nakadai, Tomoyoshi; Elemento, Olivier; Fischle, Wolfgang; Melnick, Ari; Patel, Dinshaw J.; Nimer, Stephen D.; Roeder, Robert G.

    2013-06-30

    Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression. AML1–ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia, is a transcription factor implicated in both gene repression and activation. AML1–ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis, making it important to identify co-regulatory factors that ‘read’ the NHR2 oligomerization and contribute to leukaemogenesis. Here we show that, in human leukaemic cells, AML1–ETO resides in and functions through a stable AML1–ETO-containing transcription factor complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, co-localize genome wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1–ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2–N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1–ETO-induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1–ETO, and provide a potential therapeutic target in t(8;21)-positive acute myeloid leukaemia.

  19. Hog1 mitogen-activated protein kinase (MAPK) interrupts signal transduction between the Kss1 MAPK and the Tec1 transcription factor to maintain pathway specificity.

    PubMed

    Shock, Teresa R; Thompson, James; Yates, John R; Madhani, Hiten D

    2009-04-01

    In Saccharomyces cerevisiae, the mating, filamentous growth (FG), and high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) signaling pathways share components and yet mediate distinct responses to different extracellular signals. Cross talk is suppressed between the mating and FG pathways because mating signaling induces the destruction of the FG transcription factor Tec1. We show here that HOG pathway activation results in phosphorylation of the FG MAPK, Kss1, and the MAPKK, Ste7. However, FG transcription is not activated because HOG signaling prevents the activation of Tec1. In contrast to the mating pathway, we find that the mechanism involves the inhibition of DNA binding by Tec1 rather than its destruction. We also find that nuclear accumulation of Tec1 is not affected by HOG signaling. Inhibition by Hog1 is apparently indirect since it does not require any of the consensus S/TP MAPK phosphorylation sites on Tec1, its DNA-binding partner Ste12, or the associated regulators Dig1 or Dig2. It also does not require the consensus MAPK sites of the Ste11 activator Ste50, in contrast to a recent proposal for a role for negative feedback in specificity. Our results demonstrate that HOG signaling interrupts the FG pathway signal transduction between the phosphorylation of Kss1 and the activation of DNA binding by Tec1. PMID:19218425

  20. DBSI: DNA-binding site identifier

    PubMed Central

    Zhu, Xiaolei; Ericksen, Spencer S.; Mitchell, Julie C.

    2013-01-01

    In this study, we present the DNA-Binding Site Identifier (DBSI), a new structure-based method for predicting protein interaction sites for DNA binding. DBSI was trained and validated on a data set of 263 proteins (TRAIN-263), tested on an independent set of protein-DNA complexes (TEST-206) and data sets of 29 unbound (APO-29) and 30 bound (HOLO-30) protein structures distinct from the training data. We computed 480 candidate features for identifying protein residues that bind DNA, including new features that capture the electrostatic microenvironment within shells near the protein surface. Our iterative feature selection process identified features important in other models, as well as features unique to the DBSI model, such as a banded electrostatic feature with spatial separation comparable with the canonical width of the DNA minor groove. Validations and comparisons with established methods using a range of performance metrics clearly demonstrate the predictive advantage of DBSI, and its comparable performance on unbound (APO-29) and bound (HOLO-30) conformations demonstrates robustness to binding-induced protein conformational changes. Finally, we offer our feature data table to others for integration into their own models or for testing improved feature selection and model training strategies based on DBSI. PMID:23873960

  1. Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression.

    PubMed

    Chuang, Linda Shyue Huey; Khor, Jian Ming; Lai, Soak Kuan; Garg, Shubham; Krishnan, Vaidehi; Koh, Cheng-Gee; Lee, Sang Hyun; Ito, Yoshiaki

    2016-06-01

    The Runt-related transcription factors (RUNX) are master regulators of development and major players in tumorigenesis. Interestingly, unlike most transcription factors, RUNX proteins are detected on the mitotic chromatin and apparatus, suggesting that they are functionally active in mitosis. Here, we identify key sites of RUNX phosphorylation in mitosis. We show that the phosphorylation of threonine 173 (T173) residue within the Runt domain of RUNX3 disrupts RUNX DNA binding activity during mitotic entry to facilitate the recruitment of RUNX proteins to mitotic structures. Moreover, knockdown of RUNX3 delays mitotic entry. RUNX3 phosphorylation is therefore a regulatory mechanism for mitotic entry. Cancer-associated mutations of RUNX3 T173 and its equivalent in RUNX1 further corroborate the role of RUNX phosphorylation in regulating proper mitotic progression and genomic integrity. PMID:27217562

  2. Comparative genomics and evolution of regulons of the LacI-family transcription factors

    PubMed Central

    Ravcheev, Dmitry A.; Khoroshkin, Matvei S.; Laikova, Olga N.; Tsoy, Olga V.; Sernova, Natalia V.; Petrova, Svetlana A.; Rakhmaninova, Aleksandra B.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.

    2014-01-01

    DNA-binding transcription factors (TFs) are essential components of transcriptional regulatory networks in bacteria. LacI-family TFs (LacI-TFs) are broadly distributed among certain lineages of bacteria. The majority of characterized LacI-TFs sense sugar effectors and regulate carbohydrate utilization genes. The comparative genomics approaches enable in silico identification of TF-binding sites and regulon reconstruction. To study the function and evolution of LacI-TFs, we performed genomics-based reconstruction and comparative analysis of their regulons. For over 1300 LacI-TFs from over 270 bacterial genomes, we predicted their cognate DNA-binding motifs and identified target genes. Using the genome context and metabolic subsystem analyses of reconstructed regulons, we tentatively assigned functional roles and predicted candidate effectors for 78 and 67% of the analyzed LacI-TFs, respectively. Nearly 90% of the studied LacI-TFs are local regulators of sugar utilization pathways, whereas the remaining 125 global regulators control large and diverse sets of metabolic genes. The global LacI-TFs include the previously known regulators CcpA in Firmicutes, FruR in Enterobacteria, and PurR in Gammaproteobacteria, as well as the three novel regulators—GluR, GapR, and PckR—that are predicted to control the central carbohydrate metabolism in three lineages of Alphaproteobacteria. Phylogenetic analysis of regulators combined with the reconstructed regulons provides a model of evolutionary diversification of the LacI protein family. The obtained genomic collection of in silico reconstructed LacI-TF regulons in bacteria is available in the RegPrecise database (http://regprecise.lbl.gov). It provides a framework for future structural and functional classification of the LacI protein family and identification of molecular determinants of the DNA and ligand specificity. The inferred regulons can be also used for functional gene annotation and reconstruction of sugar catabolic

  3. Overexpression of Inhibitor of DNA-Binding 2 Attenuates Pulmonary Fibrosis through Regulation of c-Abl and Twist

    PubMed Central

    Yang, Jibing; Velikoff, Miranda; Agarwal, Manisha; Disayabutr, Supparerk; Wolters, Paul J.; Kim, Kevin K.

    2016-01-01

    Fibrosis is a multicellular process leading to excessive extracellular matrix deposition. Factors that affect lung epithelial cell proliferation and activation may be important regulators of the extent of fibrosis after injury. We and others have shown that activated alveolar epithelial cells (AECs) directly contribute to fibrogenesis by secreting mesenchymal proteins, such as type I collagen. Recent evidence suggests that epithelial cell acquisition of mesenchymal features during carcinogenesis and fibrogenesis is regulated by several mesenchymal transcription factors. Induced expression of direct inhibitors to these mesenchymal transcription factors offers a potentially novel therapeutic strategy. Inhibitor of DNA-binding 2 (Id2) is an inhibitory helix-loop-helix transcription factor that is highly expressed by lung epithelial cells during development and has been shown to coordinate cell proliferation and differentiation of cancer cells. We found that overexpression of Id2 in primary AECs promotes proliferation by inhibiting a retinoblastoma protein/c-Abl interaction leading to greater c-Abl activity. Id2 also blocks transforming growth factor β1–mediated expression of type I collagen by inhibiting Twist, a prominent mesenchymal basic helix-loop-helix transcription factor. In vivo, Id2 induced AEC proliferation and protected mice from lung fibrosis. By using a high-throughput screen, we found that histone deacetylase inhibitors induce Id2 expression by adult AECs. Collectively, these findings suggest that Id2 expression by AECs can be induced, and overexpression of Id2 affects AEC phenotype, leading to protection from fibrosis. PMID:25661109

  4. Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila.

    PubMed

    Lebrecht, Danielle; Foehr, Marisa; Smith, Eric; Lopes, Francisco J P; Vanario-Alonso, Carlos E; Reinitz, John; Burz, David S; Hanes, Steven D

    2005-09-13

    Cooperative interactions by DNA-binding proteins have been implicated in cell-fate decisions in a variety of organisms. To date, however, there are few examples in which the importance of such interactions has been explicitly tested in vivo. Here, we tested the importance of cooperative DNA binding by the Bicoid protein in establishing a pattern along the anterior-posterior axis of the early Drosophila embryo. We found that bicoid mutants specifically defective in cooperative DNA binding fail to direct proper development of the head and thorax, leading to embryonic lethality. The mutants did not faithfully stimulate transcription of downstream target genes such as hunchback (hb), giant, and Krüppel. Quantitative analysis of gene expression in vivo indicated that bcd cooperativity mutants were unable to accurately direct the extent to which hb is expressed along the anterior-posterior axis and displayed a reduced ability to generate sharp on/off transitions for hb gene expression. These failures in precise transcriptional control demonstrate the importance of cooperative DNA binding for embryonic patterning in vivo.

  5. DNA binding properties of dioxin receptors in wild-type and mutant mouse hepatoma cells

    SciTech Connect

    Cuthill, S.; Poellinger, L.

    1988-04-19

    The current model of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) entails stimulation of target gene transcription via the formation of dioxin-receptor complexes and subsequent accumulation of the complexes within the cell nucleus. Here, the authors have analyzed the DNA binding properties of the dioxin receptor in wild-type mouse hepatoma (Hepa 1c1c7) cells and a class of nonresponsive mutant cells which fail to accumulate dioxin-receptor complexes within the nucleus in vivo. In vitro, both the wild-type and mutant (/sup 3/H)dioxin-receptor complexes exhibited low affinity for DNA-cellulose (5-8% and around 4% retention, respectively) in the absence of prior biochemical manipulations. However, following chromatography on heparin-Sepharose, the wild-type but not the mutant dioxin receptor was transformed to a species with an increased affinity for DNA (40-50% retention on DNA-cellulose). The gross molecular structure of the mutant, non DNA binding dioxin receptor did not appear to be altered as compared to that of the wild-type receptor. These results imply that the primary deficiency in the mutant dioxin receptor form may reside at the DNA binding level and that, in analogy to steroid hormone receptors, DNA binding of the receptor may be an essential step in the regulation of target gene transcription by dioxin.

  6. Structural insight into DNA binding and oligomerization of the multifunctional Cox protein of bacteriophage P2

    PubMed Central

    Berntsson, Ronnie P.-A.; Odegrip, Richard; Sehlén, Wilhelmina; Skaar, Karin; Svensson, Linda M.; Massad, Tariq; Högbom, Martin; Haggård-Ljungquist, Elisabeth; Stenmark, Pål

    2014-01-01

    The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer. PMID:24259428

  7. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling.

    PubMed

    Zeitlinger, Julia; Simon, Itamar; Harbison, Christopher T; Hannett, Nancy M; Volkert, Thomas L; Fink, Gerald R; Young, Richard A

    2003-05-01

    Specialized gene expression programs are induced by signaling pathways that act on transcription factors. Whether these transcription factors can function in multiple developmental programs through a global switch in promoter selection is not known. We have used genome-wide location analysis to show that the yeast Ste12 transcription factor, which regulates mating and filamentous growth, is bound to distinct program-specific target genes dependent on the developmental condition. This condition-dependent distribution of Ste12 requires concurrent binding of the transcription factor Tec1 during filamentation and is differentially regulated by the MAP kinases Fus3 and Kss1. Program-specific distribution across the genome may be a general mechanism by which transcription factors regulate distinct gene expression programs in response to signaling. PMID:12732146

  8. Noncanonical DNA-binding mode of repressor and its disassembly by antirepressor

    PubMed Central

    Kim, Minsik; Kim, Hee Jung; Son, Sang Hyeon; Yoon, Hye Jin; Lim, Youngbin; Lee, Jong Woo; Seok, Yeong-Jae; Jin, Kyeong Sik; Yu, Yeon Gyu; Kim, Seong Keun; Ryu, Sangryeol; Lee, Hyung Ho

    2016-01-01

    DNA-binding repressors are involved in transcriptional repression in many organisms. Disabling a repressor is a crucial step in activating expression of desired genes. Thus, several mechanisms have been identified for the removal of a stably bound repressor (Rep) from the operator. Here, we describe an uncharacterized mechanism of noncanonical DNA binding and induction by a Rep from the temperate Salmonella phage SPC32H; this mechanism was revealed using the crystal structures of homotetrameric Rep (92–198) and a hetero-octameric complex between the Rep and its antirepressor (Ant). The canonical method of inactivating a repressor is through the competitive binding of the antirepressor to the operator-binding site of the repressor; however, these studies revealed several noncanonical features. First, Ant does not compete for the DNA-binding region of Rep. Instead, the tetrameric Ant binds to the C-terminal domains of two asymmetric Rep dimers. Simultaneously, Ant facilitates the binding of the Rep N-terminal domains to Ant, resulting in the release of two Rep dimers from the bound DNA. Second, the dimer pairs of the N-terminal DNA-binding domains originate from different dimers of a Rep tetramer (trans model). This situation is different from that of other canonical Reps, in which two N-terminal DNA-binding domains from the same dimeric unit form a dimer upon DNA binding (cis model). On the basis of these observations, we propose a noncanonical model for the reversible inactivation of a Rep by an Ant. PMID:27099293

  9. Regulation of Bacterial DNA Packaging in Early Stationary Phase by Competitive DNA Binding of Dps and IHF

    PubMed Central

    Lee, Sin Yi; Lim, Ci Ji; Dröge, Peter; Yan, Jie

    2015-01-01

    The bacterial nucleoid, a bacterial genome packed by nucleoid binding proteins, forms the physical basis for cellular processes such as gene transcription and DNA replication. Bacteria need to dynamically modulate their nucleoid structures at different growth phases and in response to environmental changes. At the nutrients deficient stationary phase, DNA-binding proteins from starved cells (Dps) and Integration host factors (IHF) are the two most abundant nucleoid associated proteins in E. coli. Yet, it remains unclear how the nucleoid architecture is controlled by the interplay between these two proteins, as well as the nucleoid’s response to environmental changes. This question is addressed here using single DNA manipulation approach. Our results reveal that the two proteins are differentially selected for DNA binding, which can be tuned by changing environmental factors over physiological ranges including KCl (50–300 mM), MgCl2 (0–10 mM), pH (6.5–8.5) and temperature (23–37 °C). Increasing pH and MgCl2 concentrations switch from Dps-binding to IHF-binding. Stable Dps-DNA and IHF-DNA complexes are insensitive to temperature changes for the range tested. The environment dependent selection between IHF and Dps results in different physical organizations of DNA. Overall, our findings provide important insights into E. coli nucleoid architecture. PMID:26657062

  10. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  11. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium

    PubMed Central<