Science.gov

Sample records for dnae2 complement dna

  1. Error-prone DnaE2 Balances the Genome Mutation Rates in Myxococcus xanthus DK1622

    PubMed Central

    Peng, Ran; Chen, Jiang-he; Feng, Wan-wan; Zhang, Zheng; Yin, Jun; Li, Ze-shuo; Li, Yue-zhong

    2017-01-01

    dnaE is an alpha subunit of the tripartite protein complex of DNA polymerase III that is responsible for the replication of bacterial genome. The dnaE gene is often duplicated in many bacteria, and the duplicated dnaE gene was reported dispensable for cell survivals and error-prone in DNA replication in a mystery. In this study, we found that all sequenced myxobacterial genomes possessed two dnaE genes. The duplicate dnaE genes were both highly conserved but evolved divergently, suggesting their importance in myxobacteria. Using Myxococcus xanthus DK1622 as a model, we confirmed that dnaE1 (MXAN_5844) was essential for cell survival, while dnaE2 (MXAN_3982) was dispensable and encoded an error-prone enzyme for replication. The deletion of dnaE2 had small effects on cellular growth and social motility, but significantly decreased the development and sporulation abilities, which could be recovered by the complementation of dnaE2. The expression of dnaE1 was always greatly higher than that of dnaE2 in either the growth or developmental stage. However, overexpression of dnaE2 could not make dnaE1 deletable, probably due to their protein structural and functional divergences. The dnaE2 overexpression not only improved the growth, development and sporulation abilities, but also raised the genome mutation rate of M. xanthus. We argued that the low-expressed error-prone DnaE2 played as a balancer for the genome mutation rates, ensuring low mutation rates for cell adaptation in new environments but avoiding damages from high mutation rates to cells. PMID:28203231

  2. Error-prone DnaE2 Balances the Genome Mutation Rates in Myxococcus xanthus DK1622.

    PubMed

    Peng, Ran; Chen, Jiang-He; Feng, Wan-Wan; Zhang, Zheng; Yin, Jun; Li, Ze-Shuo; Li, Yue-Zhong

    2017-01-01

    dnaE is an alpha subunit of the tripartite protein complex of DNA polymerase III that is responsible for the replication of bacterial genome. The dnaE gene is often duplicated in many bacteria, and the duplicated dnaE gene was reported dispensable for cell survivals and error-prone in DNA replication in a mystery. In this study, we found that all sequenced myxobacterial genomes possessed two dnaE genes. The duplicate dnaE genes were both highly conserved but evolved divergently, suggesting their importance in myxobacteria. Using Myxococcus xanthus DK1622 as a model, we confirmed that dnaE1 (MXAN_5844) was essential for cell survival, while dnaE2 (MXAN_3982) was dispensable and encoded an error-prone enzyme for replication. The deletion of dnaE2 had small effects on cellular growth and social motility, but significantly decreased the development and sporulation abilities, which could be recovered by the complementation of dnaE2. The expression of dnaE1 was always greatly higher than that of dnaE2 in either the growth or developmental stage. However, overexpression of dnaE2 could not make dnaE1 deletable, probably due to their protein structural and functional divergences. The dnaE2 overexpression not only improved the growth, development and sporulation abilities, but also raised the genome mutation rate of M. xanthus. We argued that the low-expressed error-prone DnaE2 played as a balancer for the genome mutation rates, ensuring low mutation rates for cell adaptation in new environments but avoiding damages from high mutation rates to cells.

  3. Complementation assays adapted for DNA repair-deficient keratinocytes.

    PubMed

    Fréchet, Mathilde; Bergoglio, Valérie; Chevallier-Lagente, Odile; Sarasin, Alain; Magnaldo, Thierry

    2006-01-01

    Genetic alterations affecting nucleotide excision repair, the most versatile DNA-repair mechanism responsible for removal of bulky DNA adducts including ultraviolet (UV) light-induced DNA lesions, may result in the rare, recessively inherited autosomal syndromes xeroderma pigmentosum (XP), Cockayne syndrome (CS), or trichothiodystrophy (TTD). Classical approaches such as somatic cell fusions or microinjection assays have formalized the genetic complexity of these related but clinically distinct syndromes, and contributed to the determination of seven, five, and three complementation groups for XP, CS, and TTD, respectively. XP patients are highly susceptible to photoinduced cutaneous cancers of epidermal origin. To better study the responses to UV irradiation of XP keratinocytes, and to objectively determine the extent to which cutaneous gene therapy may be realized, we set up experimental procedures adapted to ex vivo genetic complementation of keratinocytes from XP patients. We provide here detailed rationales and procedures for these approaches.

  4. Complement

    MedlinePlus

    ... fungal infections and some parasitic infections such as malaria . Normal Results Total blood complement level: 41 to ... Glomerulonephritis Hepatitis Hereditary angioedema Kidney transplant Lupus nephritis Malaria Protein in diet Rheumatoid arthritis Septicemia Shock Systemic ...

  5. Metals and DNA: molecular left-handed complements.

    PubMed

    Barton, J K

    1986-08-15

    Chiral metal complexes provide unique molecular probes for DNA. Chiral reagents that "recognize" different local structures along the DNA strand have been designed by a process in which the asymmetry in shape and size of the complex is matched to that of the DNA helical groove. As a result, the chiral metal complexes provide very sensitive probes for local helical structure, both left- and right-handed. Direct coordination of chiral complexes to the DNA bases adds an element of sequence selectivity to the probe design. With a suitable reactive metal center, reagents that target chemically specific sites along the strand may be developed. One such chiral reagent, which cleaves left-handed DNA sites with photoactivation, has been useful in mapping this distinct conformation and examining its biological role. The conformation-specific molecular cleaver, much like a DNA-binding enzyme, recognizes and reacts at discrete sites along the DNA strand. These site-specific chiral metal complexes provide exciting new tools for probing the local variations in DNA structure and its role in the regulation of gene expression.

  6. Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies

    PubMed Central

    Macao, Bertil; Grönke, Sebastian; Siibak, Triinu; Stewart, James B; Baggio, Francesca; Dols, Jacqueline; Partridge, Linda; Falkenberg, Maria; Wredenberg, Anna; Larsson, Nils-Göran

    2016-01-01

    Replication errors are the main cause of mtDNA mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineered the tamas locus, encoding fly POLγA, and introduced alleles expressing exonuclease- (exo-) and polymerase-deficient (pol-) POLγA versions. The exo- mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol- mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease. PMID:26554610

  7. An "instant gene bank" method for heterologous gene cloning: complementation of two Aspergillus nidulans mutants with Gaeumannomyces graminis DNA.

    PubMed

    Bowyer, P; Osbourn, A E; Daniels, M J

    1994-02-01

    We present a novel technique for gene cloning by complementation of mutations in Aspergillus nidulans with DNA from a heterologous organism, Gaeumannomyces graminis. This technique bypasses the time-consuming and difficult construction of gene libraries, making it both rapid and simple. The method relies on recombination between a fungal replicating vector pHELP1 and linear G. graminis genomic DNA during co-transformation. We were able to complement two out of seven A. nidulans mutants tested and to rescue transforming DNA from both in Escherichia coli. Complementation of the A. nidulans argB mutation resulted from integration of 8-10 kb segments of G. graminis DNA into pHELP1. The complementation of the A. nidulans pyrG mutation resulted from a complex rearrangement. Complementing DNA was shown to originate from G. graminis, and was capable of retransforming the original mutants to give the expected phenotype.

  8. Clinical characteristics, DNA repair, and complementation groups in xeroderma pigmentosum patients from Egypt.

    PubMed

    Hashem, N; Bootsma, D; Keijzer, W; Greene, A; Coriell, L; Thomas, G; Cleaver, J E

    1980-01-01

    Xeroderma pigmentosum (XP) has been reported to be unusually frequent among Middle Eastern populations. This report describes the first survey of DNA repair characteristics among Egyptians. Sixteen XP patients were contacted, and biopsies from eight were analyzed for unscheduled DNA synthesis, strand breakage during pyrimidine dimer excision, and complementation groups. The patients were equally distributed between Complementation Groups A and C. Unscheduled synthesis and strand breaks were significantly higher in Group C than in Group A cells. Central nervous system disorders were found in all of the Group A patients and in none of the Group C patients. No clinical symptoms were observed in the heterozygotes. A 2-month-old sib of an XP patient was free of symptoms, but unscheduled synthesis and strand breakage in cultures from this sib were the same as in the related XP homozygote. From the relative frequencies of each complementation group found in various parts of the world, we offer a hypothesis concerning the relative sizes and roles for gene products specified by the alleles or genes corresponding to each complementation group.

  9. Xeroderma pigmentosum complementation group C protein (XPC) serves as a general sensor of damaged DNA

    PubMed Central

    Shell, Steven M.; Hawkins, Edward K.; Tsai, Miaw-Sheue; Hlaing, Aye Su; Rizzo, Carmelo J.; Chazin, Walter J.

    2013-01-01

    The xeroderma pigmentosum complementation group C protein (XPC) serves as the primary initiating factor in the global genome nucleotide excision repair pathway (GG-NER). Recent reports suggest XPC also stimulates repair of oxidative lesions by base excision repair. However, whether XPC distinguishes among various types of DNA lesions remains unclear. Although the DNA binding properties of XPC have been studied by several groups, there is a lack of consensus over whether XPC discriminates between DNA damaged by lesions associated with NER activity versus those that are not. In this study we report a high-throughput fluorescence anisotropy assay used to measure the DNA binding affinity of XPC for a panel of DNA substrates containing a range of chemical lesions in a common sequence. Our results demonstrate that while XPC displays a preference for binding damaged DNA, the identity of the lesion has little effect on the binding affinity of XPC. Moreover, XPC was equally capable of binding to DNA substrates containing lesions not repaired by GG-NER. Our results support an indirect read-out model for sensing the presence of lesions by human XPC and suggest XPC may act as a general sensor of damaged DNA capable of recognizing DNA containing lesions not repaired by NER. PMID:24051049

  10. Interallelic complementation provides functional evidence for cohesin-cohesin interactions on DNA.

    PubMed

    Eng, Thomas; Guacci, Vincent; Koshland, Douglas

    2015-11-15

    The cohesin complex (Mcd1p, Smc1p, Smc3p, and Scc3p) has multiple roles in chromosome architecture, such as promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. The prevailing embrace model for sister chromatid cohesion posits that a single cohesin complex entraps both sister chromatids. We report interallelic complementation between pairs of nonfunctional mcd1 alleles (mcd1-1 and mcd1-Q266) or smc3 alleles (smc3-42 and smc3-K113R). Cells bearing individual mcd1 or smc3 mutant alleles are inviable and defective for both sister chromatid cohesion and condensation. However, cells coexpressing two defective mcd1 or two defective smc3 alleles are viable and have cohesion and condensation. Because cohesin contains only a single copy of Smc3p or Mcd1p, these examples of interallelic complementation must result from interplay or communication between the two defective cohesin complexes, each harboring one of the mutant allele products. Neither mcd1-1p nor smc3-42p is bound to chromosomes when expressed individually at its restrictive temperature. However, their chromosome binding is restored when they are coexpressed with their chromosome-bound interallelic complementing partner. Our results support a mechanism by which multiple cohesin complexes interact on DNA to mediate cohesion and condensation.

  11. UV damage-specific DNA-binding protein in xeroderma pigmentosum complementation group E

    SciTech Connect

    Kataoka, H.; Fujiwara, Y. )

    1991-03-29

    The gel mobility shift assay method revealed a specifically ultraviolet (UV) damage recognizing, DNA-binding protein in nuclear extracts of normal human cells. The resulted DNA/protein complexes caused the two retarded mobility shifts. Four xeroderma pigmentosum complementation group E (XPE) fibroblast strains derived from unrelated Japanese families were not deficient in such a DNA damage recognition/binding protein because of the normal complex formation and gel mobility shifts, although we confirmed the reported lack of the protein in the European XPE (XP2RO and XP3RO) cells. Thus, the absence of this binding protein is not always commonly observed in all the XPE strains, and the partially repair-deficient and intermediately UV-hypersensitive phenotype of XPE cells are much similar whether or not they lack the protein.

  12. Complementation of an Escherichia coli pyrF mutant with DNA from Desulfovibrio vulgaris

    SciTech Connect

    Li, C.; Peck, H.D. Jr.; Przybyla, A.E.

    1986-02-01

    A PyrF/sup -/ mutant of Escherichia coli (SK1108, pyrF::Tn5 Kan/sup r/) was complemented with the Desulfovibrio vulgaris (Hildenborough) structural gene for orotidine-5'-phosphate decarboxylase. Either orientation of a 1.6-kilobase-pair D. vulgaris DNA fragment (pLP3B or pLP3A) complemented the PyrF/sup -/ strain suggesting that the D. vulgaris pyrF promoter was functional. The apparent product of the D. vulgaris pyrF gene was a single 26-kilodalton polypeptide. These results demonstrate the utility of E. coli cloning systems in studying metabolic and energetic pathways in sulfate-reducing bacteria.

  13. Quantitative determination of anti-dsDNA antibodies and antibody/dsDNA stoichiometries in prepared, soluble complement-fixing antibody/dsDNA immune complexes.

    PubMed

    Taylor, R P; Horgan, C

    1984-10-01

    We have investigated quantitatively the complement-mediated binding of prepared, soluble 125I-7S IgG antibody/3H-dsDNA immune complexes to human red blood cells (RBCs). We have performed these studies by using a detailed modification of the RBC-CF assay [Pedersen et al., J. Immun. Meth. 38, 269-280 (1980)] which now allows for the simultaneous measurement of both 3H-DNA and 125I-binding to the cells. Our results indicate that, in the case of three SLE patients, their anti-dsDNA antibody titers are sufficiently high that a small fraction of their 125I-7S IgG antibodies (ca 0.1-0.2%) can be identified as specifically anti-dsDNA. We have also used an indirect method (with 125I-labelled rabbit anti-human IgG) for the determination of IgG anti-dsDNA antibodies in complement-fixing antibody/dsDNA immune complexes that bind to RBCs, and the results of these measurements are in reasonable agreement with the direct binding experiments. These studies have also allowed us to estimate the antibody/DNA stoichiometries in complement-fixing immune complexes. The results of these experiments may provide a useful standard for the analysis of monoclonal anti-dsDNA antibodies.

  14. Complementation of DNA repair defect in xeroderma pigmentosum cells of group C by the transfer of human chromosome 5

    SciTech Connect

    Kaur, G.P.; Athwal, R.S. )

    1993-01-01

    Complementation of DNA excision repair defect in xeroderma pigmentosum cells of group C (XP-C) has been achieved by the transfer of human chromosome 5. Individual human chromosomes tagged with a selectable marker were transferred to XP-C cells by microcell fusion from mouse-human hybrid cell lines each bearing a single different human chromosome. Analysis of the chromosome transfer clones revealed that introduction of chromosome 5 into XP-C cells corrected the DNA repair defect as well as UV-sensitive phenotypes, while chromosomes 2, 6, 7, 9, 13, 15, 17, and 21 failed to complement. The introduced chromosome 5 in complemented UV[sup r] clones was distinguished from the parental XP-C chromosomes by polymorphism for dinucleotide (CA)[sub n] repeats at two loci, D5S117 and D5S209. In addition, an intact marked chromosome 5 was rescued into mouse cells from a complemented UV[sup r] clone by microcell fusion. Five subclones of a complemented clone that had lost the marked chromosome 5 exhibited UV-sensitive and repair-deficient phenotypes identical to parental XP-C cells. Concordant loss of the transferred chromosome and reappearance of XP-C phenotype further confirmed the presence of a DNA repair gene on human chromosome 5. 38 refs., 7 figs., 1 tab.

  15. In-Frame cDNA Library Combined with Protein Complementation Assay Identifies ARL11-Binding Partners

    PubMed Central

    Lee, Sangkyou; Lee, Ilkyun; Jung, Yoonsuh; McConkey, David; Czerniak, Bogdan

    2012-01-01

    The cDNA expression libraries that produce correct proteins are essential in facilitating the identification of protein-protein interactions. The 5′-untranslated regions (UTRs) that are present in the majority of mammalian and non-mammalian genes are predicted to alter the expression of correct proteins from cDNA libraries. We developed a novel cDNA expression library from which 5′-UTRs were removed using a mixture of polymerase chain reaction primers that complement the Kozak sequences we refer to as an “in-frame cDNA library.” We used this library with the protein complementation assay to identify two novel binding partners for ras-related ADP-ribosylation factor-like 11 (ARL11), cellular retinoic acid binding protein 2 (CRABP2), and phosphoglycerate mutase 1 (PGAM1). Thus, the in-frame cDNA library without 5′-UTRs we describe here increases the chance of correctly identifying protein interactions and will have wide applications in both mammalian and non-mammalian detection systems. PMID:23272234

  16. In-frame cDNA library combined with protein complementation assay identifies ARL11-binding partners.

    PubMed

    Lee, Sangkyou; Lee, Ilkyun; Jung, Yoonsuh; McConkey, David; Czerniak, Bogdan

    2012-01-01

    The cDNA expression libraries that produce correct proteins are essential in facilitating the identification of protein-protein interactions. The 5'-untranslated regions (UTRs) that are present in the majority of mammalian and non-mammalian genes are predicted to alter the expression of correct proteins from cDNA libraries. We developed a novel cDNA expression library from which 5'-UTRs were removed using a mixture of polymerase chain reaction primers that complement the Kozak sequences we refer to as an "in-frame cDNA library." We used this library with the protein complementation assay to identify two novel binding partners for ras-related ADP-ribosylation factor-like 11 (ARL11), cellular retinoic acid binding protein 2 (CRABP2), and phosphoglycerate mutase 1 (PGAM1). Thus, the in-frame cDNA library without 5'-UTRs we describe here increases the chance of correctly identifying protein interactions and will have wide applications in both mammalian and non-mammalian detection systems.

  17. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial–nuclear interactions

    PubMed Central

    Cristina Kenney, M.; Chwa, Marilyn; Atilano, Shari R.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Cáceres-del-Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Vawter, Marquis; Michal Jazwinski, S.; Miceli, Michael; Wallace, Douglas C.; Udar, Nitin

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in developed countries. While linked to genetic polymorphisms in the complement pathway, there are many individuals with high risk alleles that do not develop AMD, suggesting that other ‘modifiers’ may be involved. Mitochondrial (mt) haplogroups, defined by accumulations of specific mtDNA single nucleotide polymorphisms (SNPs) which represent population origins, may be one such modifier. J haplogroup has been associated with high risk for AMD while the H haplogroup is protective. It has been difficult to assign biological consequences for haplogroups so we created human ARPE-19 cybrids (cytoplasmic hybrids), which have identical nuclei but mitochondria of either J or H haplogroups, to investigate their effects upon bioenergetics and molecular pathways. J cybrids have altered bioenergetic profiles compared with H cybrids. Q-PCR analyses show significantly lower expression levels for seven respiratory complex genes encoded by mtDNA. J and H cybrids have significantly altered expression of eight nuclear genes of the alternative complement, inflammation and apoptosis pathways. Sequencing of the entire mtDNA was carried out for all the cybrids to identify haplogroup and non-haplogroup defining SNPs. mtDNA can mediate cellular bioenergetics and expression levels of nuclear genes related to complement, inflammation and apoptosis. Sequencing data suggest that observed effects are not due to rare mtDNA variants but rather the combination of SNPs representing the J versus H haplogroups. These findings represent a paradigm shift in our concepts of mt–nuclear interactions. PMID:24584571

  18. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M.

    PubMed

    Meetei, Amom Ruhikanta; Medhurst, Annette L; Ling, Chen; Xue, Yutong; Singh, Thiyam Ramsing; Bier, Patrick; Steltenpool, Jurgen; Stone, Stacie; Dokal, Inderjeet; Mathew, Christopher G; Hoatlin, Maureen; Joenje, Hans; de Winter, Johan P; Wang, Weidong

    2005-09-01

    Fanconi anemia is a genetic disease characterized by genomic instability and cancer predisposition. Nine genes involved in Fanconi anemia have been identified; their products participate in a DNA damage-response network involving BRCA1 and BRCA2 (refs. 2,3). We previously purified a Fanconi anemia core complex containing the FANCL ubiquitin ligase and six other Fanconi anemia-associated proteins. Each protein in this complex is essential for monoubiquitination of FANCD2, a key reaction in the Fanconi anemia DNA damage-response pathway. Here we show that another component of this complex, FAAP250, is mutant in individuals with Fanconi anemia of a new complementation group (FA-M). FAAP250 or FANCM has sequence similarity to known DNA-repair proteins, including archaeal Hef, yeast MPH1 and human ERCC4 or XPF. FANCM can dissociate DNA triplex, possibly owing to its ability to translocate on duplex DNA. FANCM is essential for monoubiquitination of FANCD2 and becomes hyperphosphorylated in response to DNA damage. Our data suggest an evolutionary link between Fanconi anemia-associated proteins and DNA repair; FANCM may act as an engine that translocates the Fanconi anemia core complex along DNA.

  19. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9

    SciTech Connect

    Kaur, G.P.; Athwal, R.S. )

    1989-11-01

    Complementation of the repair defect in xeroderma pigmentosum cells of complementation group A was achieved by the transfer of human chromosome 9. A set of mouse-human hybrid cell lines, each containing a single Ecogpt-marked human chromosome, was used as a source of donor chromosomes. Chromosome transfer to XPTG-1 cells, a hypoxanthine/guanine phosphoribosyltransferase-deficient mutant of simian virus 40-transformed complementation group A cells, was achieved by microcell fusion and selection for Ecogpt. Chromosome-transfer clones of XPTG-1 cells, each containing a different human donor chromosome, were analyzed for complementation of sensitivity to UV irradiation. Among all the clones, increased levels of resistance to UV was observed only in clones containing chromosome 9. Since our recipient cell line XPTG-1 is hypoxanthine/guanine phosphoribosyltransferase deficient, cultivation of Ecogpt+ clones in medium containing 6-thioguanine permits selection of cells for loss of the marker and, by inference, transferred chromosome 9. Clones isolated for growth in 6-thioguanine, which have lost the Ecogpt-marked chromosome, exhibited a UV-sensitive phenotype, confirming the presence of the repair gene(s) for complementation group A on chromosome 9.

  20. Assignment of the XRCC2 human DNA repair gene to chromosome 7q36 by complementation analysis

    SciTech Connect

    Jones, N.J.; Thompson, L.H.; Zhao, Y.

    1995-04-10

    The V79 hamster cell line irs1 is a repair-deficient mutant hypersensitive to radiation and DNA-reactive chemical agents. Somatic cell hybrids were formed by fusing irs1 cells with human lymphocytes and selecting for complementation in medium containing concentrations of mitomycin C (MMC) that are toxic to irs1. Thirty-eight MMC-resistant hybrids showed extensive segregation of human chromosomes, with 35 of them retaining human chromosome 7, as indicated by molecular marker and cytogenetic analyses. Inter-Alu-PCR products from the DNA of hybrids, when used as a fluorescence in situ hybridization probe onto normal human metaphases, indicated that one resistant hybrid was monochromosomal for chromosome 7 and that the three resistant hybrids shown to be negative for chromosome 7 markers have retained portions of chromosome 7, with region 7q36 being the smallest common region. MMC-sensitive subclones of a resistant hybrid lost human chromosome 7. Therefore, the gene complementing the repair defect, XRCC2 (X-ray repair cross complementing), is assigned to human chromosome 7q36. 27 refs., 1 fig., 1 tab.

  1. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum.

    PubMed Central

    Tanaka, K; Satokata, I; Ogita, Z; Uchida, T; Okada, Y

    1989-01-01

    For isolation of the gene responsible for xeroderma pigmentosum (XP) complementation group A, plasmid pSV2gpt and genomic DNA from a mouse embryo were cotransfected into XP2OSSV cells, a group-A XP cell line. Two primary UV-resistant XP transfectants were isolated from about 1.6 X 10(5) pSV2gpt-transformed XP colonies. pSV2gpt and genomic DNA from the primary transfectants were again cotransfected into XP2OSSV cells and a secondary UV-resistant XP transfectant was obtained by screening about 4.8 X 10(5) pSV2gpt-transformed XP colonies. The secondary transfectant retained fewer mouse repetitive sequences. A mouse gene that complements the defect of XP2OSSV cells was cloned into an EMBL3 vector from the genome of a secondary transfectant. Transfections of the cloned DNA also conferred UV resistance on another group-A XP cell line but not on XP cell lines of group C, D, F, or G. Northern blot analysis of poly(A)+ RNA with a subfragment of cloned mouse DNA repair gene as the probe revealed that an approximately 1.0 kilobase mRNA was transcribed in the donor mouse embryo and secondary transfectant, and approximately 1.0- and approximately 1.3-kilobase mRNAs were transcribed in normal human cells, but none of these mRNAs was detected in three strains of group-A XP cells. These results suggest that the cloned DNA repair gene is specific for group-A XP and may be the mouse homologue of the group-A XP human gene. Images PMID:2748601

  2. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum

    SciTech Connect

    Tanaka, K.; Satokata, I.; Ogita, Z.; Uchida, T.; Okada, Y.

    1989-07-01

    For isolation of the gene responsible for xeroderma pigmentosum (XP) complementation group A, plasmid pSV2gpt and genomic DNA from a mouse embryo were cotransfected into XP2OSSV cells, a group-A XP cell line. Two primary UV-resistant XP transfectants were isolated from about 1.6 X 10(5) pSV2gpt-transformed XP colonies. pSV2gpt and genomic DNA from the primary transfectants were again cotransfected into XP2OSSV cells and a secondary UV-resistant XP transfectant was obtained by screening about 4.8 X 10(5) pSV2gpt-transformed XP colonies. The secondary transfectant retained fewer mouse repetitive sequences. A mouse gene that complements the defect of XP2OSSV cells was cloned into an EMBL3 vector from the genome of a secondary transfectant. Transfections of the cloned DNA also conferred UV resistance on another group-A XP cell line but not on XP cell lines of group C, D, F, or G. Northern blot analysis of poly(A)+ RNA with a subfragment of cloned mouse DNA repair gene as the probe revealed that an approximately 1.0 kilobase mRNA was transcribed in the donor mouse embryo and secondary transfectant, and approximately 1.0- and approximately 1.3-kilobase mRNAs were transcribed in normal human cells, but none of these mRNAs was detected in three strains of group-A XP cells. These results suggest that the cloned DNA repair gene is specific for group-A XP and may be the mouse homologue of the group-A XP human gene.

  3. Ancient DNA complements microfossil record in deep-sea subsurface sediments.

    PubMed

    Lejzerowicz, Franck; Esling, Philippe; Majewski, Wojciech; Szczuciński, Witold; Decelle, Johan; Obadia, Cyril; Arbizu, Pedro Martinez; Pawlowski, Jan

    2013-08-23

    Deep-sea subsurface sediments are the most important archives of marine biodiversity. Until now, these archives were studied mainly using the microfossil record, disregarding large amounts of DNA accumulated on the deep-sea floor. Accessing ancient DNA (aDNA) molecules preserved down-core would offer unique insights into the history of marine biodiversity, including both fossilized and non-fossilized taxa. Here, we recover aDNA of eukaryotic origin across four cores collected at abyssal depths in the South Atlantic, in up to 32.5 thousand-year-old sediment layers. Our study focuses on Foraminifera and Radiolaria, two major groups of marine microfossils also comprising diverse non-fossilized taxa. We describe their assemblages in down-core sediment layers applying both micropalaeontological and environmental DNA sequencing approaches. Short fragments of the foraminiferal and radiolarian small subunit rRNA gene recovered from sedimentary DNA extracts provide evidence that eukaryotic aDNA is preserved in deep-sea sediments encompassing the last glacial maximum. Most aDNA were assigned to non-fossilized taxa that also dominate in molecular studies of modern environments. Our study reveals the potential of aDNA to better document the evolution of past marine ecosystems and opens new horizons for the development of deep-sea palaeogenomics.

  4. Lac Repressor Mediated DNA Looping: Monte Carlo Simulation of Constrained DNA Molecules Complemented with Current Experimental Results

    PubMed Central

    Biton, Yoav Y.; Kumar, Sandip; Dunlap, David; Swigon, David

    2014-01-01

    Tethered particle motion (TPM) experiments can be used to detect time-resolved loop formation in a single DNA molecule by measuring changes in the length of a DNA tether. Interpretation of such experiments is greatly aided by computer simulations of DNA looping which allow one to analyze the structure of the looped DNA and estimate DNA-protein binding constants specific for the loop formation process. We here present a new Monte Carlo scheme for accurate simulation of DNA configurations subject to geometric constraints and apply this method to Lac repressor mediated DNA looping, comparing the simulation results with new experimental data obtained by the TPM technique. Our simulations, taking into account the details of attachment of DNA ends and fluctuations of the looped subsegment of the DNA, reveal the origin of the double-peaked distribution of RMS values observed by TPM experiments by showing that the average RMS value for anti-parallel loop types is smaller than that of parallel loop types. The simulations also reveal that the looping probabilities for the anti-parallel loop types are significantly higher than those of the parallel loop types, even for loops of length 600 and 900 base pairs, and that the correct proportion between the heights of the peaks in the distribution can only be attained when loops with flexible Lac repressor conformation are taken into account. Comparison of the in silico and in vitro results yields estimates for the dissociation constants characterizing the binding affinity between O1 and Oid DNA operators and the dimeric arms of the Lac repressor. PMID:24800809

  5. Isolation of cDNA clones specifying the fourth component of mouse complement and its isotype, sex-limited protein.

    PubMed Central

    Nonaka, M; Takahashi, M; Natsuume-Sakai, S; Nonaka, M; Tanaka, S; Shimizu, A; Honjo, T

    1984-01-01

    cDNA clones specific for the fourth component of mouse complement (C4) and its hormonally regulated isotype, sex-linked protein (Slp), were isolated using as a probe a 20-mer synthetic oligonucleotide corresponding to a known sequence of human C4 cDNA. Two types of clones, one specific for C4 (pFC4/10, with a 3.7 kilobase insert) and one specific for Slp (pFSlp/1, with a 4.7 kilobase insert), were isolated from liver cDNA libraries constructed from the Slp-producing FM mouse strain. The cDNA inserts of these clones shared 70% of the restriction sites determined. Only one type of clone was isolated from the Slp-negative DBA/1 strain; this type showed restriction maps indistinguishable from that of pFC4/10. pFC4/10 and pFSlp/1 displayed extensive homology: 94% nucleotide homology and 89% derived amino acid homology in the C4a region and 92% nucleotide homology and 89% derived amino acid homology in the thiol-ester region. An Arg-Gln-Lys-Arg sequence in the beta-alpha junction and a Cys-Ala-Glu-Gln sequence in the thiol-ester site were identified for both proteins. A remarkable divergency between C4 and Slp sequences was recognized in the region immediately following the C4a sequence. PMID:6208559

  6. Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA

    PubMed Central

    Zhao, Jian; Giles, Brendan M; Taylor, Rhonda L; Yette, Gabriel A; Lough, Kara M; Ng, Han Leng; Abraham, Lawrence J; Wu, Hui; Kelly, Jennifer A; Glenn, Stuart B; Adler, Adam J; Williams, Adrienne H; Comeau, Mary E; Ziegler, Julie T; Marion, Miranda; Alarcón-Riquelme, Marta E; Alarcón, Graciela S; Anaya, Juan-Manuel; Bae, Sang-Cheol; Kim, Dam; Lee, Hye-Soon; Criswell, Lindsey A; Freedman, Barry I; Gilkeson, Gary S; Guthridge, Joel M; Jacob, Chaim O; James, Judith A; Kamen, Diane L; Merrill, Joan T; Sivils, Kathy Moser; Niewold, Timothy B; Petri, Michelle A; Ramsey-Goldman, Rosalind; Reveille, John D; Scofield, R Hal; Stevens, Anne M; Vilá, Luis M; Vyse, Timothy J; Kaufman, Kenneth M; Harley, John B; Langefeld, Carl D; Gaffney, Patrick M; Brown, Elizabeth E; Edberg, Jeffrey C; Kimberly, Robert P; Ulgiati, Daniela; Tsao, Betty P; Boackle, Susan A

    2016-01-01

    Objectives Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association. Methods Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR. Results The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10−4, OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10−7, OR 0.71; case-only pmeta=1.9×10−4, OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR. Conclusions These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications. PMID:25180293

  7. [Influences of excision repair cross complementation group 4 genetic variations on DNA damage in lymphocytes among coke oven workers].

    PubMed

    Yang, Xiao-bo; Zhen, Jin-ping; Bai, Yun; Wang, Hong; Tan, Hao; Tian, Feng-jie; Chen, Wei-hong; Wu, Tang-chun

    2007-08-01

    To investigate the relationship between excision repair cross complementation group 4 ERCC4 gene polymorphisms and DNA damage in lymphocytes of coke oven workers and controls. Two hundred and forty-six coke oven workers and one hundred and twenty-seven controls were recruited in the study, and peripheral vein blood was drawn after over night fasting. Comet assay was used to evaluate DNA damage, and TaqMan-MGB probes were used to analyze ERCC4 genetic variations including the three Tagged-single nucleotide polymorphisms (Tag SNPs), referred to rs744154, rs3136079 and rs31870 which were picked out from Hapmap database. Then haplotypes were reconstructed by PHASE2.0.2 software. The lymphocytes Olive TM value of coke oven workers was significantly higher than that of controls (1.26+/-1.12 vs 0.52+/-0.97, P<0.01). Among coke oven workers, no significant difference was found between the Olive TM of those with different genotypes or haplotype pairs at ERCC4 gene (P>0.05). However, in the control group, the TG genotype carriers had higher Olive TM than the TT and GG genotype carriers (0.26+/-0.96 vs 0.66+/-0.98 and 0.66+/-0.51, P<0.05), and the CTG/CTG haplotype pairs carriers had the highest Olive TM (0.69+/-1.01), and no CTG haplotype carriers had the lowest Olive TM (0.25+/-0.80), and the difference was borderline (P=0.08). The gene polymorphism at ERCC4 gene has no effects on the DNA damage of lymphocytes in coke oven workers, but the TG genotype carriers has lower DNA damage in the control. DNA damage is influenced by the interaction of genetic and environmental factors.

  8. DNA sequences of Alu elements indicate a recent replacement of the human autosomal genetic complement

    SciTech Connect

    Knight, A.; Deininger, P.L.; Batzer, M.A.

    1996-04-30

    DNA sequences of neutral nuclear autosomal loci, compared across diverse human populations, provide a previously untapped perspective into the mode and tempo of the emergence of modern humans and a critical comparison with published clonally inherited mitochondrial DNA and Y chromosome measurements of human diversity. We obtained over 55 kilobases of sequence from three autosomal loci encompassing Alu repeats for representatives of diverse human populations as well as orthologous sequences for other hominoid species at one of these loci. Nucleotide diversity was exceedingly low. Most individuals and populations were identical. Only a single nucleotide difference distinguished presumed ancestral alleles from descendants. These results differ from those expected if alleles from divergent archaic populations were maintained through multiregional continuity. The observed virtual lack of sequence polymorphism is the signature of a recent single origin for modern humans, with general replacement of archaic populations. 47 refs., 2 figs., 1 tab.

  9. Isolation of a complementary DNA clone for the human complement protein C2 and its use in the identification of a restriction fragment length polymorphism.

    PubMed Central

    Woods, D E; Edge, M D; Colten, H R

    1984-01-01

    Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718

  10. Preferential association of a functional variant in complement receptor 2 with antibodies to double-stranded DNA.

    PubMed

    Zhao, Jian; Giles, Brendan M; Taylor, Rhonda L; Yette, Gabriel A; Lough, Kara M; Ng, Han Leng; Abraham, Lawrence J; Wu, Hui; Kelly, Jennifer A; Glenn, Stuart B; Adler, Adam J; Williams, Adrienne H; Comeau, Mary E; Ziegler, Julie T; Marion, Miranda; Alarcón-Riquelme, Marta E; Alarcón, Graciela S; Anaya, Juan-Manuel; Bae, Sang-Cheol; Kim, Dam; Lee, Hye-Soon; Criswell, Lindsey A; Freedman, Barry I; Gilkeson, Gary S; Guthridge, Joel M; Jacob, Chaim O; James, Judith A; Kamen, Diane L; Merrill, Joan T; Sivils, Kathy Moser; Niewold, Timothy B; Petri, Michelle A; Ramsey-Goldman, Rosalind; Reveille, John D; Scofield, R Hal; Stevens, Anne M; Vilá, Luis M; Vyse, Timothy J; Kaufman, Kenneth M; Harley, John B; Langefeld, Carl D; Gaffney, Patrick M; Brown, Elizabeth E; Edberg, Jeffrey C; Kimberly, Robert P; Ulgiati, Daniela; Tsao, Betty P; Boackle, Susan A

    2016-01-01

    Systemic lupus erythematosus (SLE; OMIM 152700) is characterised by the production of antibodies to nuclear antigens. We previously identified variants in complement receptor 2 (CR2/CD21) that were associated with decreased risk of SLE. This study aimed to identify the causal variant for this association. Genotyped and imputed genetic variants spanning CR2 were assessed for association with SLE in 15 750 case-control subjects from four ancestral groups. Allele-specific functional effects of associated variants were determined using quantitative real-time PCR, quantitative flow cytometry, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP)-PCR. The strongest association signal was detected at rs1876453 in intron 1 of CR2 (pmeta=4.2×10(-4), OR 0.85), specifically when subjects were stratified based on the presence of dsDNA autoantibodies (case-control pmeta=7.6×10(-7), OR 0.71; case-only pmeta=1.9×10(-4), OR 0.75). Although allele-specific effects on B cell CR2 mRNA or protein levels were not identified, levels of complement receptor 1 (CR1/CD35) mRNA and protein were significantly higher on B cells of subjects harbouring the minor allele (p=0.0248 and p=0.0006, respectively). The minor allele altered the formation of several DNA protein complexes by EMSA, including one containing CCCTC-binding factor (CTCF), an effect that was confirmed by ChIP-PCR. These data suggest that rs1876453 in CR2 has long-range effects on gene regulation that decrease susceptibility to lupus. Since the minor allele at rs1876453 is preferentially associated with reduced risk of the highly specific dsDNA autoantibodies that are present in preclinical, active and severe lupus, understanding its mechanisms will have important therapeutic implications. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Sundanese Complementation

    ERIC Educational Resources Information Center

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  12. Sundanese Complementation

    ERIC Educational Resources Information Center

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  13. Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed Central

    MacInnes, M A; Dickson, J A; Hernandez, R R; Learmonth, D; Lin, G Y; Mudgett, J S; Park, M S; Schauer, S; Reynolds, R J; Strniste, G F

    1993-01-01

    Several human genes related to DNA excision repair (ER) have been isolated via ER cross-species complementation (ERCC) of UV-sensitive CHO cells. We have now isolated and characterized cDNAs for the human ERCC5 gene that complement CHO UV135 cells. The ERCC5 mRNA size is about 4.6 kb. Our available cDNA clones are partial length, and no single clone was active for UV135 complementation. When cDNAs were mixed pairwise with a cosmid clone containing an overlapping 5'-end segment of the ERCC5 gene, DNA transfer produced UV-resistant colonies with 60 to 95% correction of UV resistance relative to either a genomic ERCC5 DNA transformant or the CHO AA8 progenitor cells. cDNA-cosmid transformants regained intermediate levels (20 to 45%) of ER-dependent reactivation of a UV-damaged pSVCATgpt reporter plasmid. Our evidence strongly implicates an in situ recombination mechanism in cDNA-cosmid complementation for ER. The complete deduced amino acid sequence of ERCC5 was reconstructed from several cDNA clones encoding a predicted protein of 1,186 amino acids. The ERCC5 protein has extensive sequence similarities, in bipartite domains A and B, to products of RAD repair genes of two yeasts, Saccharomyces cerevisiae RAD2 and Schizosaccharomyces pombe rad13. Sequence, structural, and functional data taken together indicate that ERCC5 and its relatives are probable functional homologs. A second locus represented by S. cerevisiae YKL510 and S. pombe rad2 genes is structurally distinct from the ERCC5 locus but retains vestigial A and B domain similarities. Our analyses suggest that ERCC5 is a nuclear-localized protein with one or more highly conserved helix-loop-helix segments within domains A and B. Images PMID:8413238

  14. Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of saccharomyces cerevisiae and schizosaccharomyces pombe

    SciTech Connect

    MacInnes, M.A.; Dickson, J.A.; Hernandez, R.R.; Lin, G.Y.; Park, M.S.; Schauer, S.; Reynolds, R.J.; Strniste, G.F. ); Learmonth, D. ); Mudgett, J.S. ); Yu, J.Y. )

    1993-10-01

    Several human genes related to DNA excision repair (ER) have been isolated via ER cross-species complementation (ERCC) of UV-sensitive CHO cells. The authors have now isolated and characterized cDNAs for the human ERCC5 gene that complement CHO UV135 cells. The ERCC5 mRNA size is about 4.6 kb. Their available cDNA clones are partial length, and no single clone was active for UV135 complementation. When cDNAs were mixed pairwise with a cosmid clone containing an overlapping 5[prime]-end segment of the ERCC5 gene, DNA transfer produced UV-resistant colonies with 60 to 95% correction of UV resistance relative to either a genomic ERCC5 DNA transformant or the CHO AA8 progenitor cells. cDNA-cosmid transformants regained intermediate levels (20 to 45%) of ER-dependent reactivation of a UV-damaged pSVCATgpt reporter plasmid. Their evidence strongly implicates an in situ recombination mechanism in cDNA-cosmid complementation for ER. The complete deduced amino acid sequence of ERCC5 was reconstructed for several cDNA clones encoding a predicted protein of 1,186 amino acids. The ERCC5 protein has extensive sequence similarities, in bipartite domains A and B, to products of RAD repair genes of two yeast, Saccharomyces cerevisiae RAD2 and Schizosaccharomyces pombe rad13. Sequence, structural, and functional data taken together indicate that ERCC5 and its relatives are probable functional homologs. A second locus represented by S. cerevisiae YKL510 and S. pombe rad2 genes is structurally distinct from the ERCC5 locus but retains vestigial A and B domain similarities. Their analyses suggest that ERCC5 is a nuclear-localized protein with one or more highly conserved helix-loop-helix segments within domains A and B. 69 refs., 6 figs., 1 tab.

  15. Isolation of a gene encoding a chaperonin-like protein by complementation of yeast amino acid transport mutants with human cDNA.

    PubMed Central

    Segel, G B; Boal, T R; Cardillo, T S; Murant, F G; Lichtman, M A; Sherman, F

    1992-01-01

    A human cDNA library in lambda-yes plasmid was used to transform a strain of Saccharomyces cerevisiae with defects in histidine biosynthesis (his4-401) and histidine permease (hip1-614) and with the general amino acid permease (GAP) repressed by excess ammonium. We investigated three plasmids complementing the transport defect on a medium with a low concentration of histidine. Inserts in these plasmids hybridized with human genomic but not yeast genomic DNA, indicating their human origin. mRNA corresponding to the human DNA insert was produced by each yeast transformant. Complementation of the histidine transport defect was confirmed by direct measurement of histidine uptake, which was increased 15- to 65-fold in the transformants as compared with the parental strain. Competitive inhibition studies, measurement of citrulline uptake, and lack of complementation in gap1- strains indicated that the human cDNA genes code for proteins that prevent GAP repression by ammonium. The amino acid sequence encoded by one of the cDNA clones is related to T-complex proteins, which suggests a "chaperonin"-like function. We suggest that the human chaperonin-like protein stabilizes the NPR1 gene product and prevents inactivation of GAP. Images PMID:1352881

  16. Baseline autoantibody profiles predict normalization of complement and anti-dsDNA autoantibody levels following rituximab treatment in systemic lupus erythematosus.

    PubMed

    Tew, G W; Rabbee, N; Wolslegel, K; Hsieh, H-J; Monroe, J G; Behrens, T W; Brunetta, P G; Keir, M E

    2010-02-01

    B cells are thought to play a major role in the pathogenesis of systemic lupus erythematosus (SLE). Rituximab (RTX), a chimeric anti-CD20 mAb, effectively depletes CD20( +) peripheral B cells. Recent results from EXPLORER, a placebo-controlled trial of RTX in addition to aggressive prednisone and immunosuppressive therapy, showed similar levels of clinical benefit in patients with active extra-renal SLE despite effective B cell depletion. We performed further data analyses to determine whether significant changes in disease activity biomarkers occurred in the absence of clinical benefit. We found that RTX-treated patients with baseline autoantibodies (autoAbs) had decreased anti-dsDNA and anti-cardiolipin autoAbs and increased complement levels. Patients with anti-dsDNA autoAb who lacked baseline RNA binding protein (RBP) autoAbs showed increased complement and decreased anti-dsDNA autoAb in response to RTX. Other biomarkers, such as baseline BAFF levels or IFN signature status did not predict enhanced effects of RTX therapy on complement or anti-dsDNA autoAb levels. Finally, platelet levels normalized in RTX-treated patients who entered the study with low baseline counts. Together, these findings demonstrate clear biologic activity of RTX in subsets of SLE patients, despite an overall lack of incremental clinical benefit with RTX in the EXPLORER trial.

  17. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: Involvement of the human ERCC2 DNA repair gene

    SciTech Connect

    Flejter, W.L.; McDaniel, L.D.; Johns, D.; Schultz, R.A. ); Friedberg, E.C. )

    1992-01-01

    Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. The authors now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2) gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.

  18. In vitro complementation as an assay for new proteins required for bacteriophage T4 DNA replication: purification of the complex specified by T4 genes 44 and 62.

    PubMed

    Barry, J; Alberts, B

    1972-09-01

    We have developed an in vitro complementation assay for six T4 bacteriophage gene products believed to be components of the T4 DNA replication apparatus. This assay is based upon the fact that DNA synthesis in an infected cell lysate that lacks a given gene product is specifically stimulated by addition of the missing product. By the use of such an assay, two proteins that appear to be the products of T4 genes 44 and 62 have been purified to electrophoretic homogeneity as a single complex of the two polypeptide chains.

  19. Complementation of the UV-sensitive phenotype of a xeroderma pigmentosum human cell line by transfection with a cDNA clone library

    SciTech Connect

    Teitz, T.; Naiman, T.; Avissar, S.S.; Bar, S.; Okayama, H.; Canaani, D.

    1987-12-01

    In previous work, a xeroderma pigmentosum cell line belonging to complementation group C was established by transformation with origin-defective simian virus 40. We now report the complementation of the UV sensitivity of this cell line by gene transfer. A human cDNA clone library constructed in a mammalian expression vector, and itself incorporated in a lambda phage vector, was introduced into the cells as a calcium phosphate precipitate. Following selection to G418 resistance, provided by the neo gene of the vector, transformants were selected for UV resistance. Twenty-one cell clones were obtained with UV-resistance levels typical of normal human fibroblasts. All transformants contained vector DNA sequences in their nuclei. Upon further propagation in the absence of selection for G418 resistance, about half of the primary transformants remained UV-resistant. Secondary transformants were generated by transfection with a partial digest of total chromosomal DNA from one of these stable transformants. This resulted in 15 G418-resistant clones, 2 of which exhibited a UV-resistant phenotype. The other primary clones lost UV resistance rapidly when subcultured in the absence of G418. Importantly, several retained UV resistance under G418 selection pressure. The acquisition of UV resistance by secondary transformants derived by transfection of DNA from a stable primary transformant, and the linkage between G418 and UV resistances in the unstable primary transformants, strongly suggests that the transformants acquired UV resistance through DNA-mediated gene transfer and not by reversion.

  20. Selective enrichment of environmental DNA libraries for genes encoding nonribosomal peptides and polyketides by phosphopantetheine transferase-dependent complementation of siderophore biosynthesis

    PubMed Central

    Charlop-Powers, Zachary; Banik, Jacob J.; Owen, Jeremy G.; Craig, Jeffrey W.; Brady, Sean F.

    2012-01-01

    The cloning of DNA directly from environmental samples provides a means to functionally access biosynthetic gene clusters present in the genomes of the large fraction of bacteria that remains recalcitrant to growth in the laboratory. Herein we demonstrate a method by which complementation of phosphopantetheine transferase deletion mutants can be used to restore siderophore biosynthesis and to therefore selectively enrich eDNA libraries for nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) gene sequences to unprecedented levels. The common use of NRPS/PKS-derived siderophores across bacterial taxa makes this method generalizable and should allow for the facile selective enrichment of NRPS/PKS-containing biosynthetic gene clusters from large environmental DNA libraries using a wide variety of phylogenetically diverse bacterial hosts. PMID:23072412

  1. Mechanism of promoter melting by the xeroderma pigmentosum complementation group B helicase of transcription factor IIH revealed by protein-DNA photo-cross-linking.

    PubMed

    Douziech, M; Coin, F; Chipoulet, J M; Arai, Y; Ohkuma, Y; Egly, J M; Coulombe, B

    2000-11-01

    The p89/xeroderma pigmentosum complementation group B (XPB) ATPase-helicase of transcription factor IIH (TFIIH) is essential for promoter melting prior to transcription initiation by RNA polymerase II (RNAPII). By studying the topological organization of the initiation complex using site-specific protein-DNA photo-cross-linking, we have shown that p89/XPB makes promoter contacts both upstream and downstream of the initiation site. The upstream contact, which is in the region where promoter melting occurs (positions -9 to +2), requires tight DNA wrapping around RNAPII. The addition of hydrolyzable ATP tethers the template strand at positions -5 and +1 to RNAPII subunits. A mutation in p89/XPB found in a xeroderma pigmentosum patient impairs the ability of TFIIH to associate correctly with the complex and thereby melt promoter DNA. A model for open complex formation is proposed.

  2. Mechanism of Promoter Melting by the Xeroderma Pigmentosum Complementation Group B Helicase of Transcription Factor IIH Revealed by Protein-DNA Photo-Cross-Linking

    PubMed Central

    Douziech, Maxime; Coin, Frédéric; Chipoulet, Jean-Marc; Arai, Yoko; Ohkuma, Yoshiaki; Egly, Jean-Marc; Coulombe, Benoit

    2000-01-01

    The p89/xeroderma pigmentosum complementation group B (XPB) ATPase-helicase of transcription factor IIH (TFIIH) is essential for promoter melting prior to transcription initiation by RNA polymerase II (RNAPII). By studying the topological organization of the initiation complex using site-specific protein-DNA photo-cross-linking, we have shown that p89/XPB makes promoter contacts both upstream and downstream of the initiation site. The upstream contact, which is in the region where promoter melting occurs (positions −9 to +2), requires tight DNA wrapping around RNAPII. The addition of hydrolyzable ATP tethers the template strand at positions −5 and +1 to RNAPII subunits. A mutation in p89/XPB found in a xeroderma pigmentosum patient impairs the ability of TFIIH to associate correctly with the complex and thereby melt promoter DNA. A model for open complex formation is proposed. PMID:11027286

  3. Selective enrichment of environmental DNA libraries for genes encoding nonribosomal peptides and polyketides by phosphopantetheine transferase-dependent complementation of siderophore biosynthesis.

    PubMed

    Charlop-Powers, Zachary; Banik, Jacob J; Owen, Jeremy G; Craig, Jeffrey W; Brady, Sean F

    2013-01-18

    The cloning of DNA directly from environmental samples provides a means to functionally access biosynthetic gene clusters present in the genomes of the large fraction of bacteria that remains recalcitrant to growth in the laboratory. Herein, we demonstrate a method by which complementation of phosphopantetheine transferase deletion mutants can be used to restore siderophore biosynthesis and to therefore selectively enrich eDNA libraries for nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) gene sequences to unprecedented levels. The common use of NRPS/PKS-derived siderophores across bacterial taxa makes this method generalizable and should allow for the facile selective enrichment of NRPS/PKS-containing biosynthetic gene clusters from large environmental DNA libraries using a wide variety of phylogenetically diverse bacterial hosts.

  4. Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant.

    PubMed Central

    Glerum, D M; Tzagoloff, A

    1994-01-01

    We have cloned the human homolog of the Saccharomyces cerevisiae COX10 gene by functional complementation of a yeast cox10 null mutant. The 2.8-kb cDNA encoding the human heme A:farnesyltransferase codes for a 443-aa protein with high homology to the yeast and bacterial farnesylases. The human COX10 homolog, however, does not complement the mutation as efficiently as the yeast COX10 protein, likely due to the heterologous environment. PCR amplification and Southern analysis confirm the existence of a large mRNA for the human protein, with an unusually long 3' untranslated region. This clone can now be used to screen patients with inherited deficiencies in cytochrome oxidase in which the mutations remain unidentified and are likely to reside in a protein influencing the assembly of the enzyme. Images PMID:8078902

  5. Functional complementation of Leishmania (Leishmania) amazonensis AP endonuclease gene (lamap) in Escherichia coli mutant strains challenged with DNA damage agents

    PubMed Central

    Verissimo-Villela, Erika; Kitahara-Oliveira, Milene Yoko; dos Reis, Ana Beatriz de Bragança; Albano, Rodolpho Mattos; Da-Cruz, Alda Maria; Bello, Alexandre Ribeiro

    2016-01-01

    During its life cycle Leishmania spp. face several stress conditions that can cause DNA damages. Base Excision Repair plays an important role in DNA maintenance and it is one of the most conserved mechanisms in all living organisms. DNA repair in trypanosomatids has been reported only for Old World Leishmania species. Here the AP endonuclease from Leishmania (L.) amazonensis was cloned, expressed in Escherichia coli mutants defective on the DNA repair machinery, that were submitted to different stress conditions, showing ability to survive in comparison to the triple null mutant parental strain BW535. Phylogenetic and multiple sequence analyses also confirmed that LAMAP belongs to the AP endonuclease class of proteins. PMID:27223868

  6. CD14 and Complement Crosstalk and Largely Mediate the Transcriptional Response to Escherichia coli in Human Whole Blood as Revealed by DNA Microarray

    PubMed Central

    Lau, Corinna; Nygård, Ståle; Fure, Hilde; Olstad, Ole Kristoffer; Holden, Marit; Lappegård, Knut Tore; Brekke, Ole-Lars; Espevik, Terje; Hovig, Eivind; Mollnes, Tom Eirik

    2015-01-01

    Systemic inflammation like in sepsis is still lacking specific diagnostic markers and effective therapeutics. The first line of defense against intruding pathogens and endogenous damage signals is pattern recognition by e.g., complement and Toll-like receptors (TLR). Combined inhibition of a key complement component (C3 and C5) and TLR-co-receptor CD14 has been shown to attenuate certain systemic inflammatory responses. Using DNA microarray and gene annotation analyses, we aimed to decipher the effect of combined inhibition of C3 and CD14 on the transcriptional response to bacterial challenge in human whole blood. Importantly, combined inhibition reversed the transcriptional changes of 70% of the 2335 genes which significantly responded to heat-inactivated Escherichia coli by on average 80%. Single inhibition was less efficient (p<0.001) but revealed a suppressive effect of C3 on 21% of the responding genes which was partially counteracted by CD14. Furthermore, CD14 dependency of the Escherichia coli-induced response was increased in C5-deficient compared to C5-sufficient blood. The observed crucial distinct and synergistic roles for complement and CD14 on the transcriptional level correspond to their broad impact on the inflammatory response in human blood, and their combined inhibition may become inevitable in the early treatment of acute systemic inflammation. PMID:25706641

  7. Fanconi anemia complementation group D2 (FANCD2) functions independently of BRCA2- and RAD51-associated homologous recombination in response to DNA damage.

    PubMed

    Ohashi, Akihiro; Zdzienicka, Malgorzata Z; Chen, Junjie; Couch, Fergus J

    2005-04-15

    The BRCA2 breast cancer tumor suppressor is involved in the repair of double strand breaks and broken replication forks by homologous recombination through its interaction with DNA repair protein Rad51. Cells defective in BRCA2.FANCD1 are extremely sensitive to mitomycin C (MMC) similarly to cells deficient in any of the Fanconi anemia (FA) complementation group proteins (FANC). These observations suggest that the FA pathway and the BRCA2 and Rad51 repair pathway may be linked, although a functional connection between these pathways in DNA damage signaling remains to be determined. Here, we systematically investigated the interaction between these pathways. We show that in response to DNA damage, BRCA2-dependent Rad51 nuclear focus formation was normal in the absence of FANCD2 and that FANCD2 nuclear focus formation and mono-ubiquitination appeared normal in BRCA2-deficient cells. We report that the absence of BRCA2 substantially reduced homologous recombination repair of DNA breaks, whereas the absence of FANCD2 had little effect. Furthermore, we established that depletion of BRCA2 or Rad51 had a greater effect on cell survival in response to MMC than depletion of FANCD2 and that depletion of BRCA2 in FANCD2 mutant cells further sensitized these cells to MMC. Our results suggest that FANCD2 mediates double strand DNA break repair independently of Rad51-associated homologous recombination.

  8. Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes

    PubMed Central

    Timinskas, Kęstutis; Balvočiūtė, Monika; Timinskas, Albertas; Venclovas, Česlovas

    2014-01-01

    The analysis of ∼2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an ‘impaired’ version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set. PMID:24106089

  9. recA gene of Escherichia coli complements defects in DNA repair and mutagenesis in Streptomyces fradiae JS6 (mcr-6).

    PubMed Central

    Matsushima, P; Baltz, R H

    1987-01-01

    Streptomyces fradiae JS6 (mcr-6) is a mutant which is defective in repair of DNA damage induced by a variety of chemical mutagens and UV light. JS6 is also defective in error-prone (mutagenic) DNA repair (J. Stonesifer and R. H. Baltz, Proc. Natl. Acad. Sci. USA 82:1180-1183, 1985). The recA gene of Escherichia coli, cloned in a bifunctional vector that replicates in E. coli and Streptomyces spp., complemented the mutation in S. fradiae JS6, indicating that E. coli and S. fradiae express similar SOS responses and that the mcr+ gene product of S. fradiae is functionally analogous to the protein encoded by the recA gene of E. coli. PMID:3308856

  10. Xeroderma pigmentosum complementation group A protein is driven to nucleotide excision repair sites by the electrostatic potential of distorted DNA.

    PubMed

    Camenisch, Ulrike; Dip, Ramiro; Vitanescu, Mirela; Naegeli, Hanspeter

    2007-12-01

    The presumed DNA-binding cleft of xeroderma pigmentosum group A (XPA) protein, a key regulatory subunit of the eukaryotic nucleotide excision repair complex, displays a distinctive array of 6 positively charged amino acid side chains. Here, the molecular function of these closely spaced electropositive residues has been tested by systematic site-directed mutagenesis. After the introduction of single amino acid substitutions, the mutants were probed for protein-DNA interactions in electrophoretic mobility shift and photochemical crosslinking assays. This analysis led to the identification of a critical hot-spot for DNA substrate recognition composed of two neighboring lysines at codons 141 and 179 of the human XPA sequence. The replacement of other basic side chains in the DNA interaction domain conferred more moderate defects of substrate binding. When the function of XPA was tested as a fusion product with either mCherry or green-fluorescent protein, a glutamate substitution of one of the positively charged residues at positions 141 and 179 was sufficient to decrease DNA repair activity in human fibroblasts. Thus, the removal of a single cationic side chain abolished DNA-binding activity and significant excision repair defects could be induced by single charge inversions on the XPA surface, indicating that this molecular sensor participates in substrate recognition by monitoring the electrostatic potential of distorted DNA repair sites.

  11. Dynamics of interaction between complement-fixing antibody/dsDNA immune complexes and erythrocytes. In vitro studies and potential general applications to clinical immune complex testing

    SciTech Connect

    Taylor, R.P.; Horgan, C.; Hooper, M.; Burge, J.

    1985-01-01

    Soluble antibody//sub 3/H-double-stranded PM2 DNA (dsDNA) immune complexes were briefly opsonized with complement and then allowed to bind to human erythrocytes (via complement receptors). The cells were washed and subsequently a volume of autologous blood in a variety of media was added, and the release of the bound immune complexes from the erythrocytes was studied as a function of temperature and time. After 1-2 h, the majority of the bound immune complexes were not released into the serum during blood clotting at either 37 degrees C or room temperature, but there was a considerably greater release of the immune complexes into the plasma of blood that was anticoagulated with EDTA. Similar results were obtained using various conditions of opsonization and also using complexes that contained lower molecular weight dsDNA. Thus, the kinetics of release of these antibody/dsDNA immune complexes differed substantially from the kinetics of release of antibody/bovine serum albumin complexes that was reported by others. Studies using the solution phase C1q immune complex binding assay confirmed that in approximately half of the SLE samples that were positive for immune complexes, there was a significantly higher level of detectable immune complexes in plasma vs. serum. Freshly drawn erythrocytes from some SLE patients exhibiting this plasma/serum discrepancy had IgG antigen on their surface that was released by incubation in EDTA plasma. Thus, the higher levels of immune complexes observed in EDTA plasma vs. serum using the C1q assay may often reflect the existence of immune complexes circulating in vivo bound to erythrocytes.

  12. Human inhibitor of the first component of complement, C1: characterization of cDNA clones and localization of the gene to chromosome 11.

    PubMed Central

    Davis, A E; Whitehead, A S; Harrison, R A; Dauphinais, A; Bruns, G A; Cicardi, M; Rosen, F S

    1986-01-01

    C1 inhibitor is a heavily glycosylated plasma protein that regulates the activity of the first component of complement (C1) by inactivation of the serine protease subcomponents, C1r and C1s. C1 inhibitor cDNA clones have been isolated, and one of these (pC1INH1, 950 base pairs) has been partially sequenced. Sequence analysis demonstrates that the C1 inhibitor is a member of the serpin "superfamily" of protease inhibitors. In the region sequenced, C1 inhibitor has 22% identity with antithrombin III, 26% with alpha 1-antitrypsin and alpha 1-antichymotrypsin, and 18% with human angiotensinogen. C1 inhibitor has a larger amino-terminal extension than do the other plasma protease inhibitors. In addition, inspection of residues that are invariant among the other protease inhibitors shows that C1 inhibitor differs at 14 of 41 of these positions. Thus, it appears that C1 inhibitor diverged from the group relatively early in evolution, although probably after the divergence of angiotensinogen. Southern blot analysis of BamHI-digested DNA from normal individuals and from rodent-human somatic cell hybrid cell lines (that contain a limited but varied human chromosome complement) was used to localize the human C1 inhibitor gene to chromosome 11. Images PMID:3458172

  13. Synthesis of triazole-linked oligonucleotides with high affinity to DNA complements and an analysis of their compatibility with biosystems.

    PubMed

    Varizhuk, Anna M; Kaluzhny, Dmitry N; Novikov, Roman A; Chizhov, Alexandr O; Smirnov, Igor P; Chuvilin, Andrey N; Tatarinova, Olga N; Fisunov, Gleb Y; Pozmogova, Galina E; Florentiev, Vladimir L

    2013-06-21

    New oligonucleotide analogues with triazole internucleotide linkages were synthesized, and their hybridization properties were studied. The analogues demonstrated DNA binding affinities similar to those of unmodified oligonucleotides. The modification was shown to protect the oligonucleotides from nuclease hydrolysis. The modified oligonucleotides were tested as PCR primers. Modifications remote from the 3'-terminus were tolerated by polymerases. Our results suggest that these new oligonucleotide analogues are among the most promising triazole DNA mimics characterized to date.

  14. Virgin Olive Oil Enriched with Its Own Phenols or Complemented with Thyme Phenols Improves DNA Protection against Oxidation and Antioxidant Enzyme Activity in Hyperlipidemic Subjects.

    PubMed

    Romeu, Marta; Rubió, Laura; Sánchez-Martos, Vanessa; Castañer, Olga; de la Torre, Rafael; Valls, Rosa M; Ras, Rosa; Pedret, Anna; Catalán, Úrsula; López de las Hazas, María del Carmen; Motilva, María J; Fitó, Montserrat; Solà, Rosa; Giralt, Montserrat

    2016-03-09

    The effects of virgin olive oil (VOO) enriched with its own phenolic compounds (PC) and/or thyme PC on the protection against oxidative DNA damage and antioxidant endogenous enzymatic system (AEES) were estimated in 33 hyperlipidemic subjects after the consumption of VOO, VOO enriched with its own PC (FVOO), or VOO complemented with thyme PC (FVOOT). Compared to pre-intervention, 8-hydroxy-2'-deoxyguanosine (a marker for DNA damage) decreased in the FVOO intervention and to a greater extent in the FVOOT with a parallel significant increase in olive and thyme phenolic metabolites. Superoxide dismutase (AEES enzyme) significantly increased in the FVOO intervention and to a greater extent in the FVOOT with a parallel significant increase in thyme phenolic metabolites. When all three oils were compared, FVOOT appeared to have the greatest effect in protecting against oxidative DNA damage and improving AEES. The sustained intake of a FVOOT improves DNA protection against oxidation and AEES probably due to a greater bioavailability of thyme PC in hyperlipidemic subjects.

  15. Molecular cloning of the cDNA encoding the Epstein-Barr virus/C3d receptor (complement receptor type 2) of human B lymphocytes

    SciTech Connect

    Moore, M.D.; Cooper, N.R.; Tack, B.F.; Nemerow, G.R.

    1987-12-01

    Complementary DNA clones for complement receptor type 2 (CR2), the B-lymphocyte membrane protein that serves as the receptor for Epstein-Barr virus and the C3d complement fragment, were obtained by screening a lambda gt11 library generated from Raji B lymphoblastoid cell mRNA. A 4.2-kilobase (kb) clone, representing the entire coding sequence of the protein plus untranslated 5' and 3' nucleotide sequences was obtained and sequenced. The 4.2-kb clone, which contains all but about 500 base pairs (bp) of the 5' untranslated region of the full-length CR2 mRNA, consists of 63 bp of 5' untranslated nucleotide sequence followed successively by a start codon, a 20-amino acid hydrophobic signal peptide, 1005 amino acids having a repeating motif, a 28-amino acid probable transmembrane domain, and a 34-amino acid cytoplasmic tail. The deduced amino acid sequence of the protein indicates that the extracellular domain consists entirely of 16 tandemly arranged repeating elements, each 60-75 amino acids in length, which are identified by multiple conserved residues. This repeating motif also occurs in the C3b/C4b receptor, several complement proteins, and a number of noncomplement proteins. In CR2, the 16 repeats occur in four clusters of four repeats each. Approximately 10% of the deduced amino acid sequence, including the amino and carboxyl termini, was confirmed by amino acid sequencing of tryptic peptides derived from purified CR2. The nucleotide and derived amino acid sequence of CR2 and related studies are presented here.

  16. Interplay between base excision repair activity and toxicity of 3-methyladenine DNA glycosylases in an E. coli complementation system.

    PubMed

    Troll, Christopher J; Adhikary, Suraj; Cueff, Marie; Mitra, Ileena; Eichman, Brandt F; Camps, Manel

    2014-01-01

    DNA glycosylases carry out the first step of base excision repair by removing damaged bases from DNA. The N3-methyladenine (3MeA) DNA glycosylases specialize in alkylation repair and are either constitutively expressed or induced by exposure to alkylating agents. To study the functional and evolutionary significance of constitutive versus inducible expression, we expressed two closely related yeast 3MeA DNA glycosylases - inducible Saccharomyces cerevisiae MAG and constitutive S. pombe Mag1 - in a glycosylase-deficient Escherichia coli strain. In both cases, constitutive expression conferred resistance to alkylating agent exposure. However, in the absence of exogenous alkylation, high levels of expression of both glycosylases were deleterious. We attribute this toxicity to excessive glycosylase activity, since suppressing spMag1 expression correlated with improved growth in liquid culture, and spMag1 mutants exhibiting decreased glycosylase activity showed improved growth and viability. Selection of a random spMag1 mutant library for increased survival in the presence of exogenous alkylation resulted in the selection of hypomorphic mutants, providing evidence for the presence of a genetic barrier to the evolution of enhanced glycosylase activity when constitutively expressed. We also show that low levels of 3MeA glycosylase expression improve fitness in our glycosylase-deficient host, implying that 3MeA glycosylase activity is likely necessary for repair of endogenous lesions. These findings suggest that 3MeA glycosylase activity is evolutionarily conserved for repair of endogenously produced alkyl lesions, and that inducible expression represents a common strategy to rectify deleterious effects of excessive 3MeA activity in the absence of exogenous alkylation challenge.

  17. Complementation of an Arabidopsis thaliana mutant that lacks complex asparagine-linked glycans with the human cDNA encoding N-acetylglucosaminyltransferase I

    SciTech Connect

    Gomez, L.; Chrispeels, M.J.

    1994-03-01

    N-Acetylglucosaminyltransferase I (EC 2.4.1.101) initiates the conversion of high-mannose asparagine-linked glycans to complex asparagine-linked glycans in plant as well as in animal cells. This Golgi enzyme is missing in the cgl mutant of Arabidopsis thaliana, and the mutant cells are unable to synthesize complex glycans. Transformation of cells from the mutant plants with the cDNA encoding human N-acetylglucosaminyltransferase I restores the wild-type phenotype of the plant cells. Fractionation of the subcellular organelles on isopycnic sucrose gradients show that the human enzyme in the complemented cells bands at the same density, 1.14 g/cm{sup 3}, typical of Golgi cisternae, as the enzyme in the wild-type plant cells. These results demonstrate that complementation results from the presence of the human enzyme in the plant Golgi apparatus, where it is functionally integrated into the biosynthetic machinery of the plant cell. In addition, given the evolutionary distance between plants and mammals and the great diversity of glycoproteins that are modified in each, there is probably no specific recognition between this Golgi enzyme and the polypeptide domains of the proteins it modifies.

  18. Structural basis for the targeting of complement anaphylatoxin C5a using a mixed L-RNA/L-DNA aptamer

    NASA Astrophysics Data System (ADS)

    Yatime, Laure; Maasch, Christian; Hoehlig, Kai; Klussmann, Sven; Andersen, Gregers R.; Vater, Axel

    2015-04-01

    L-Oligonucleotide aptamers (Spiegelmers) consist of non-natural L-configured nucleotides and are of particular therapeutic interest due to their high resistance to plasma nucleases. The anaphylatoxin C5a, a potent inflammatory mediator generated during complement activation that has been implicated with organ damage, can be efficiently targeted by Spiegelmers. Here, we present the first crystallographic structures of an active Spiegelmer, NOX-D20, bound to its physiological targets, mouse C5a and C5a-desArg. The structures reveal a complex 3D architecture for the L-aptamer that wraps around C5a, including an intramolecular G-quadruplex stabilized by a central Ca2+ ion. Functional validation of the observed L-aptamer:C5a binding mode through mutational studies also rationalizes the specificity of NOX-D20 for mouse and human C5a against macaque and rat C5a. Finally, our structural model provides the molecular basis for the Spiegelmer affinity improvement through positional L-ribonucleotide to L-deoxyribonucleotide exchanges and for its inhibition of the C5a:C5aR interaction.

  19. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass

    PubMed Central

    Lee, Young-Sam; Gregory, Mark T.; Yang, Wei

    2014-01-01

    DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3–Rev7–PolD2–PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3–Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3′ guanine and Pol ζ4 to extend the primers. PMID:24449906

  20. Repair of damaged DNA by extracts from a xeroderma pigmentosum complementation group A revertant and expression of a protein absent in its parental cell line.

    PubMed

    Jones, C J; Cleaver, J E; Wood, R D

    1992-03-11

    Cells derived from individuals with mutations in the xeroderma pigmentosum complementation group A gene (XP-A gene) are hypersensitive to UV light and have a severe defect in nucleotide excision repair of damaged DNA. UV-resistant revertant cell lines can arise from XP-A cells in culture. Cells of one such revertant, XP129, were previously shown to remove (6-4) photoproducts from irradiated DNA, but to have poor repair of cyclobutane pyrimidine dimers. To analyze the biochemical nature of the reversion, whole cell extracts were prepared from the SV40-immortalized fibroblast cell lines XP12RO (an XP-A cell line), the revertant XP129 (derived from XP12RO), and 1BR.3N (from a normal individual). The ability of extracts to carry out repair synthesis in UV-irradiated DNA was examined, and immunoblots were performed using antiserum that recognizes XP-A protein. XP12RO extracts exhibited a very low level of repair and no detectable XP-A protein, but repair activity could be conferred by adding purified XP-A protein to the reaction mixture. XP129 extracts have essentially normal repair synthesis consistent with the observation that most repair of UV-irradiated DNA by extracts appears to occur at (6-4) photoproducts. An XP-A polypeptide of normal size was present in XP129, but in reduced amounts. The results indicate that in XP129 a mutational event has converted the inactive XP12RO XP-A gene into a form which expresses an active XP-A protein.

  1. A critical evaluation of how ancient DNA bulk bone metabarcoding complements traditional morphological analysis of fossil assemblages

    NASA Astrophysics Data System (ADS)

    Grealy, Alicia C.; McDowell, Matthew C.; Scofield, Paul; Murray, Dáithí C.; Fusco, Diana A.; Haile, James; Prideaux, Gavin J.; Bunce, Michael

    2015-11-01

    When pooled for extraction as a bulk sample, the DNA within morphologically unidentifiable fossil bones can, using next-generation sequencing, yield valuable taxonomic data. This method has been proposed as a means to rapidly and cost-effectively assess general ancient DNA preservation at a site, and to investigate temporal and spatial changes in biodiversity; however, several caveats have yet to be considered. We critically evaluated the bulk bone metabarcoding (BBM) method in terms of its: (i) repeatability, by quantifying sampling and technical variance through a nested experimental design containing sub-samples and replicates at several stages; (ii) accuracy, by comparing morphological and molecular family-level identifications; and (iii) overall utility, by applying the approach to two independent Holocene fossil deposits, Bat Cave (Kangaroo Island, Australia) and Finsch's Folly (Canterbury, New Zealand). For both sites, bone and bone powder sub-sampling were found to contribute significantly to variance in molecularly identified family assemblage, while the contribution of library preparation and sequencing was almost negligible. Nevertheless, total variance was small. Sampling over 80% fewer bones than was required to morphologically identify the taxonomic assemblages, we found that the families identified molecularly are a subset of the families identified morphologically and, for the most part, represent the most abundant families in the fossil record. In addition, we detected a range of extinct, extant and endangered taxa, including some that are rare in the fossil record. Given the relatively low sampling effort of the BBM approach compared with morphological approaches, these results suggest that BBM is largely consistent, accurate, sensitive, and therefore widely applicable. Furthermore, we assessed the overall benefits and caveats of the method, and suggest a workflow for palaeontologists, archaeologists, and geneticists that will help mitigate these

  2. Partial complementation of a DNA ligase I deficiency by DNA ligase III and its impact on cell survival and telomere stability in mammalian cells.

    PubMed

    Le Chalony, Catherine; Hoffschir, Françoise; Gauthier, Laurent R; Gross, Julia; Biard, Denis S; Boussin, François D; Pennaneach, Vincent

    2012-09-01

    DNA ligase I (LigI) plays a central role in the joining of strand interruptions during replication and repair. In our current study, we provide evidence that DNA ligase III (LigIII) and XRCC1, which form a complex that functions in single-strand break repair, are required for the proliferation of mammalian LigI-depleted cells. We show from our data that in cells with either dysfunctional LigI activity or depleted of this enzyme, both LigIII and XRCC1 are retained on the chromatin and accumulate at replication foci. We also demonstrate that the LigI and LigIII proteins cooperate to inhibit sister chromatid exchanges but that only LigI prevents telomere sister fusions. Taken together, these results suggest that in cells with dysfunctional LigI, LigIII contributes to the ligation of replication intermediates but not to the prevention of telomeric instability.

  3. Mitochondria and the success of somatic cell nuclear transfer cloning: from nuclear-mitochondrial interactions to mitochondrial complementation and mitochondrial DNA recombination.

    PubMed

    Hiendleder, Stefan; Zakhartchenko, Valeri; Wolf, Eckhard

    2005-01-01

    The overall success of somatic cell nuclear transfer (SCNT) cloning is rather unsatisfactory, both in terms of efficacy and from an animal health and welfare point of view. Most research activities have concentrated on epigenetic reprogramming problems as one major cause of SCNT failure. The present review addresses the limited success of mammalian SCNT from yet another viewpoint, the mitochondrial perspective. Mitochondria have a broad range of critical functions in cellular energy supply, cell signalling and programmed cell death and, thus, affect embryonic and fetal development, suggesting that inadequate or perturbed mitochondrial functions may adversely affect SCNT success. A survey of perinatal clinical data from human subjects with deficient mitochondrial respiratory chain activity has revealed a plethora of phenotypes that have striking similarities with abnormalities commonly encountered in SCNT fetuses and offspring. We discuss the limited experimental data on nuclear-mitochondrial interaction effects in SCNT and explore the potential effects in the context of new findings about the biology of mitochondria. These include mitochondrial fusion/fission, mitochondrial complementation and mitochondrial DNA recombination, processes that are likely to be affected by and impact on SCNT cloning. Furthermore, we indicate pathways that could link epigenetic reprogramming and mitochondria effects in SCNT and address questions and perspectives for future research.

  4. A partial genomic DNA clone for the alpha subunit of the mouse complement receptor type 3 and cellular adhesion molecule Mac-1.

    PubMed Central

    Sastre, L; Roman, J M; Teplow, D B; Dreyer, W J; Gee, C E; Larson, R S; Roberts, T M; Springer, T A

    1986-01-01

    A genomic clone coding for the alpha subunit of the mouse complement receptor type 3 and the cellular adhesion molecule Mac-1 has been isolated directly from a genomic library using synthetic oligonucleotide probes based on the amino-terminal amino acid sequence of the protein. The identity of the clone has been established by DNA sequencing and in vitro translation of hybrid-selected mRNA. The gene is present in a single copy in the murine genome. The region containing the amino-terminal exon has been sequenced. RNA gel blotting shows that the Mac-1 alpha-subunit mRNA is 6 kilobases in length. Mac-1 alpha-subunit mRNA is present in macrophages but not T lymphoma or L cells. During gamma interferon-stimulated maturation of the mouse premyelocytic cell line M1, Mac-1 alpha-subunit mRNA is induced. This corresponds with the tissue distribution of the Mac-1 alpha subunit, showing expression is regulated at least partially at the message level. Images PMID:2942940

  5. Decreased complement mediated binding of antibody//sup 3/-dsDNA immune complexes to the red blood cells of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies

    SciTech Connect

    Taylor, R.P.; Horgan, C.; Buschbacher, R.; Brunner, C.M.; Hess, C.E.; O'Brien, W.M.; Wanebo, H.J.

    1983-06-01

    The complement mediated binding of prepared antibody//sup 3/H-dsDNA immune complexes to the red blood cells obtained from a number of patient populations has been investigated. Patients with solid tumors have binding activity similar to that seen in a normal group of individuals. However, a significant fraction of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies have lowered binding activity compared with normal subjects. Quantitative studies indicate the lowered activity probably arises due to a decrease in complement receptors on the respective red blood cells. The potential importance and implications of these findings are briefly discussed.

  6. Cloning of a human cDNA encoding a CDC2-related kinase by complementation of a budding yeast cdc28 mutation

    SciTech Connect

    Ninomiya-Tsuji, Jun ); Nomoto, Satoshi; Matsumoto, Kunihiro ); Yasuda, Hideyo ); Reed, S.I. )

    1991-10-15

    The authors have cloned two different human cDNAs that can complement cdc28 mutations of budding yeast Saccharomyces cerevisiae. One corresponds to a gene encoding human p34{sup CDC2} kinase, and the other to a gene (CDK2; cell division kinase) that has not been characterized previously. The CDK2 protein is highly homologous to p34{sup CDC2} kinase and more significantly is homologous to Xenopus Eg1 kinase, suggesting that CDK2 is the human homolog of Eg1. The human CDC2 and CDK2 genes were both able to complement the inviability of a null allele of S. cerevisiae CDC28. This result indicates that the CDK2 protein has a biological activity closely related to the CDC28 and p34{sup CDC2} kinases. However, CDK2 was unable to complement cdc2 mutants in fission yeast Schizosaccharomyces pombe under the condition where the human CDC2 gene could complement them. CDK2 mRNA appeared late in G{sub 1} or in early S phase, slightly before CDC2 mRNA, after growth stimulation in normal human fibroblast cells. These results suggest that in human cells, two different CDC2-like kinases may regulate the cell cycle at distinct stages.

  7. Characterization of the interaction between P143 and LEF-3 from two different baculovirus species: Choristoneura fumiferana nucleopolyhedrovirus LEF-3 can complement Autographa californica nucleopolyhedrovirus LEF-3 in supporting DNA replication.

    PubMed

    Chen, Tricia; Sahri, Daniela; Carstens, Eric B

    2004-01-01

    The baculovirus protein P143 is essential for viral DNA replication in vivo, likely as a DNA helicase. We have demonstrated that another viral protein, LEF-3, first described as a single-stranded DNA binding protein, is required for transporting P143 into the nuclei of insect cells. Both of these proteins, along with several other early viral proteins, are also essential for DNA replication in transient assays. We now describe the identification, nucleotide sequences, and transcription patterns of the Choristoneura fumiferana nucleopolyhedrovirus (CfMNPV) homologues of p143 and lef-3 and demonstrate that CfMNPV LEF-3 is also responsible for P143 localization to the nucleus. We predicted that the interaction between P143 and LEF-3 might be critical for cross-species complementation of DNA replication. Support for this hypothesis was generated by substitution of heterologous P143 and LEF-3 between two different baculovirus species, Autographa californica nucleopolyhedrovirus and CfMNPV, in transient DNA replication assays. The results suggest that the P143-LEF-3 complex is an important baculovirus replication factor.

  8. Complement component 4

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003354.htm Complement component 4 To use the sharing features on this page, please enable JavaScript. Complement component 4 is a blood test that measures the ...

  9. Complementation of the embryo-lethal T-DNA insertion mutant of AUXIN-BINDING-PROTEIN 1 (ABP1) with abp1 point mutated versions reveals crosstalk of ABP1 and phytochromes.

    PubMed

    Effendi, Yunus; Ferro, Noel; Labusch, Corinna; Geisler, Markus; Scherer, Günther F E

    2015-01-01

    The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII-FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin- or light-induced expression of marker genes, we showed that auxin-induced expression was delayed already after 10 min, and light-induced expression within 60 min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10-20 min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways.

  10. Complement-targeted therapeutics

    PubMed Central

    Ricklin, Daniel; Lambris, John D

    2010-01-01

    The complement system is a central component of innate immunity and bridges the innate to the adaptive immune response. However, it can also turn its destructive capabilities against host cells and is involved in numerous diseases and pathological conditions. Modulation of the complement system has been recognized as a promising strategy in drug discovery, and a large number of therapeutic modalities have been developed. However, successful marketing of complement-targeted drugs has proved to be more difficult than initially expected, and many strategies have been discontinued. The US Food and Drug Administration’s approval of the first complement-specific drug, an antibody against complement component C5 (eculizumab; Soliris), in March 2007, was a long-awaited breakthrough in the field. Approval of eculizumab validates the complement system as therapeutic target and might facilitate clinical development of other promising drug candidates. PMID:17989689

  11. Choristoneura fumiferana multiple nucleopolyhedrovirus LEF-3-P143 complex can complement DNA replication and budded virus in an AcMNPV LEF-3-P143 double knockout bacmid.

    PubMed

    Yu, Mei; Carstens, Eric B

    2012-02-01

    Transient replication assays using Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and Choristoneura fumiferana multiple nucleopolyhedrovirus (CfMNPV) genes suggested that the interactions between P143, the viral helicase and LEF-3, a ssDNA-binding protein, may represent virus species specificity determinants. P143 and LEF-3 are essential for DNA replication in these assays and together with IE-1, the major immediate-early transcription factor, may be part of the viral replisome. In the current report, a lef-3/p143 double-knockout AcMNPV bacmid was constructed that was defective for viral DNA replication and late gene expression. When the homologous lef-3/p143 CfMNPV genes were introduced into this double-knockout bacmid, DNA replication was restored but the level of replication was lower, budded virus production was delayed, and the yields were reduced from those in an AcMNPV-rescue bacmid. These results suggest that to maximize virus replication, baculovirus replisome assembly and function requires protein-protein interactions between P143 and LEF-3, and other viral proteins.

  12. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    PubMed Central

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-01-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils. PMID:8742713

  13. Targeting complement in therapy.

    PubMed

    Kirschfink, M

    2001-04-01

    With increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases, strategies that interfere with its deleterious action have become a major focus in pharmacological research. Endogenous soluble complement inhibitors (C1 inhibitor, recombinant soluble complement receptor 1, antibodies) blocking key proteins of the cascade reaction, neutralizing the action of the complement-derived anaphylatoxin C5a, or interfering with complement receptor 3 (CR3, CD18/11b)-mediated adhesion of inflammatory cells to the vascular endothelium have successfully been tested in various animal models over the past years. Promising results consequently led to clinical trials. Furthermore, incorporation of membrane-bound complement regulators (decay-accelerating factor (CD55), membrane co-factor protein (CD46), CD59) in transgenic animals has provided a major step forward in protecting xenografts from hyperacute rejection. At the same time, the poor contribution of complement to the antitumor response, which is caused by multiple resistance mechanisms that hamper the efficacy of antibody-based tumor therapy, is increasingly recognized and requires pharmacologic intervention. First attempts have now been made to interfere with the resistance mechanisms, thereby improving complement-mediated tumor cell destruction.

  14. Complement in autoimmune diseases.

    PubMed

    Vignesh, Pandiarajan; Rawat, Amit; Sharma, Madhubala; Singh, Surjit

    2017-02-01

    The complement system is an ancient and evolutionary conserved element of the innate immune mechanism. It comprises of more than 20 serum proteins most of which are synthesized in the liver. These proteins are synthesized as inactive precursor proteins which are activated by appropriate stimuli. The activated forms of these proteins act as proteases and cleave other components successively in amplification pathways leading to exponential generation of final effectors. Three major pathways of complement pathways have been described, namely the classical, alternative and lectin pathways which are activated by different stimuli. However, all the 3 pathways converge on Complement C3. Cleavage of C3 and C5 successively leads to the production of the membrane attack complex which is final common effector. Excessive and uncontrolled activation of the complement has been implicated in the host of autoimmune diseases. But the complement has also been bemusedly described as the proverbial "double edged sword". On one hand, complement is the final effector of tissue injury in autoimmune diseases and on the other, deficiencies of some components of the complement can result in autoimmune diseases. Currently available tools such as enzyme based immunoassays for functional assessment of complement pathways, flow cytometry, next generation sequencing and proteomics-based approaches provide an exciting opportunity to study this ancient yet mysterious element of innate immunity.

  15. Platelet-mediated transformation of mtDNA-less human cells: Analysis of phenotypic variability among clones from normal individuals-and complementation behavior of the tRNA[sup Lys] mutation causing myoclonic epilepsy and ragged red fibers

    SciTech Connect

    Chomyn, A.; Lai, S.T.; Shakeley, R.; Attardi, G. ); Bresolin, N.; Scarlato, G. )

    1994-06-01

    In the present work, the authors demonstrate the possibility of using human blood platelets as mitochondrial donors for the repopulation of mtDNA-less ([rho][sup o]) cells. The noninvasive nature of platelet isolation, combined with the prolonged viability of platelet mitochondria and the simplicity and efficiency of the mitochondria-transfer procedure, has substantially increased the applicability of the [rho][sup o] cell transformation approach for mitochondrial genetic analysis and for the study of mtDNA-linked diseases. This approach has been applied to platelets from several normal human individuals and one individual affected by the myoclonic-epilepsy-and-ragged-red-fibers (MERRF) encephalomyopathy. A certain variability in respiratory capacity was observed among the platelet-derived [rho][sup o] cell transformants from a given normal subject, and it was shown to be unrelated to their mtDNA content. The results of sequential transfer of mitochondria from selected transformants into a [rho][sup o] cell line different from the first [rho][sup o] acceptor strongly suggest that this variability reflected, at least in part, differences in nuclear gene content and/or activity among the original recipient cells. A much greater variability in respiratory capacity was observed among the transformants derived from the MERRF patient and was found to be related to the presence and amount of the mitochondrial tRNA[sup Lys] mutation associated with the MERRF syndrome. An analysis of the relationship between proportion of mtDNA carrying the MERRF mutation and degree of respiratory activity in various transformations derived from the MERRF patient revealed an unusual complementation behavior of the tRNA[sup Lys] mutation, possibly reflecting the distribution of mutant mtDNA among the platelet mitochondria. 29 refs., 4 figs., 1 tab.

  16. Cloning of a chicken liver cDNA encoding 5-aminoimidazole ribonucleotide carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide synthetase by functional complementation of Escherichia coli pur mutants.

    PubMed Central

    Chen, Z D; Dixon, J E; Zalkin, H

    1990-01-01

    We have used functional complementation of Escherichia coli pur mutants to clone avian cDNA encoding 5-aminoimidazole ribonucleotide (AIR) carboxylase-5-aminoimidazole-4-N-succinocarboxamide ribonucleotide (SAICAR) synthetase, the bifunctional enzyme catalyzing steps 6 and 7 in the pathway for de novo purine nucleotide synthesis. Mutational analyses have been used to establish the structure-function relationship: NH2-SAICAR synthetase-AIR carboxylase-COOH. The amino acid sequence of the SAICAR synthetase domain is homologous to that of bacterial purC-encoded enzymes, and the sequence of the following AIR carboxylase domain is homologous to that of bacterial purE-encoded enzymes. In E. coli, AIR carboxylase is the product of genes purEK with the purK subunit postulated to have a role in CO2 binding. The avian enzyme lacks sequences corresponding to purK yet functions in E. coli. Functional complementation of E. coli pur mutants can be used to clone additional avian cDNAs for de novo purine nucleotide synthesis. Images PMID:1691501

  17. Use of the genomic matching technique to complement multiplex STR profiling reduces DNA profiling costs in high volume crimes and intelligence led screens.

    PubMed

    Laird, R; Dawkins, R L; Gaudieri, S

    2005-07-16

    The genomic matching technique (GMT) targets duplicated polymorphic sequences within genomic blocks in the human major histocompatibility complex (MHC), differentiating between individuals at the DNA level using a single primer pair per block. The GMT is currently used to supplement human leukocyte antigen (HLA) typing to match donor and recipient pairs for bone marrow transplantation and has the potential to be employed as a powerful exclusion tool in forensic biology. The GMT is highly reproducible, produces DNA profiles from less than 1 ng of DNA and was successfully employed to profile a range of forensic samples including buccal swabs, handled objects and fingerprints. Furthermore, GMT profiles from a single genomic block in the MHC are likely to be more discriminatory than known highly polymorphic short tandem repeat (STR) loci such as ACTBP2. As such, the GMT can reduce the cost of investigations that require profiling of multiple suspects or samples from one or more crime scenes and could be extended to profile genomic blocks in other polymorphic genetic systems in the human genome.

  18. TMA: beware of complements.

    PubMed

    Ricklin, Daniel; Cines, Douglas B

    2013-09-19

    In this issue of Blood, Jodele and colleagues report that defective complement regulation contributes to the development of thrombotic microangiopathy (TMA) after hematopoietic stem cell transplantation (HSCT) with important implications for diagnosis and management of this severe clinical complication.

  19. Trans-complementation by human apurinic endonuclease (Ape) of hypersensitivity to DNA damage and spontaneous mutator phenotype in apn1-yeast.

    PubMed Central

    Wilson, D M; Bennett, R A; Marquis, J C; Ansari, P; Demple, B

    1995-01-01

    Abasic (AP) sites in DNA are potentially lethal and mutagenic. 'Class II' AP endonucleases initiate the repair of these and other DNA lesions. In yeast, the predominant enzyme of this type is Apn1, and its elimination sensitizes the cells to killing by simple alkylating agents or oxidants, and raises the rate of spontaneous mutation. We investigated the ability of the major human class II AP endonuclease, Ape, which is structurally unrelated to Apn1, to replace the yeast enzyme in vivo. Confocal immunomicroscopy studies indicate that approximately 25% of the Ape expressed in yeast is present in the nucleus. High-level Ape expression corresponding to approximately 7000 molecules per nucleus, equal to the normal Apn1 copy number, restored resistance to methyl methanesulfonate to near wild-type levels in Apn1-deficient (apn1-) yeast. Ape expression in apn1- yeast provided little protection against H2O2 challenges, consistent with the weak 3'-repair diesterase activity of the human enzyme. Ape expression at approximately 2000 molecules per nucleus reduced the spontaneous mutation rate of apn1- yeast to that seen for wild-type cells. Because Ape has a powerful AP endonuclease but weak 3'-diesterase activity, these findings indicate that endogenously generated AP sites can drive spontaneous mutagenesis. Images PMID:8559661

  20. Topological mapping of complement component C9 by recombinant DNA techniques suggests a novel mechanism for its insertion into target membranes.

    PubMed Central

    Stanley, K K; Herz, J

    1987-01-01

    cDNA molecules coding for mouse and trout C9 have been isolated and the derived amino acid sequences compared with that of human C9. Regions of high homology between the closely related species (mouse and human) correlate with putative domains in the protein structure supporting a model of C9 having five globular domains. Comparison between the more distant species (trout and human) suggests regions of particular importance to C9 structure and function. In addition the three related sequences allow the secondary structure to be predicted with more confidence and we have tested the prediction by mapping surface features of the protein. Reported here is a recombinant DNA approach to fine mapping of antibody epitopes. Two of the putative domains of C9 are connected by a stretch of about 40 amino acid residues in which features characteristic of individual conformational forms of C9 are concentrated. We suggest that this region might act as a hinge allowing the rearrangement of globular domains necessary for membrane insertion. In the membrane inserting domain one highly conserved sequence has the potential to form an amphipathic alpha-helix once it is buried in the lipid bilayer. These features suggest a novel mechanism for the irreversible, post-translational insertion of C9 into target membranes. Images Fig. 2. PMID:2443347

  1. Complement in the Brain

    PubMed Central

    Veerhuis, Robert; Nielsen, Henrietta M.; Tenner, Andrea J.

    2011-01-01

    The brain is considered to be an immune privileged site, because the blood-brain barrier limits entry of blood borne cells and proteins into the central nervous system (CNS). As a result, the detection and clearance of invading microorganisms and senescent cells as well as surplus neurotransmitters, aged and glycated proteins, in order to maintain a healthy environment for neuronal and glial cells, is largely confined to the innate immune system. In recent years it has become clear that many factors of innate immunity are expressed throughout the brain. Neuronal and glial cells express Toll like receptors as well as complement receptors, and virtually all complement components can be locally produced in the brain, often in response to injury or developmental cues. However, as inflammatory reactions could interfere with proper functioning of the brain, tight and fine tuned regulatory mechanisms are warranted. In age related diseases, such as Alzheimer’s disease (AD), accumulating amyloid proteins elicit complement activation and a local, chronic inflammatory response that leads to attraction and activation of glial cells that, under such activation conditions, can produce neurotoxic substances, including pro-inflammatory cytokines and oxygen radicals. This process may be exacerbated by a disturbed balance between complement activators and complement regulatory proteins such as occurs in AD, as the local synthesis of these proteins is differentially regulated by pro-inflammatory cytokines. Much knowledge about the role of complement in neurodegenerative diseases has been derived from animal studies with transgenic overexpressing or knockout mice for specific complement factors or receptors. These studies have provided insight into the potential therapeutic use of complement regulators and complement receptor antagonists in chronic neurodegenerative diseases as well as in acute conditions, such as stroke. Interestingly, recent animal studies have also indicated that

  2. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA.

    PubMed Central

    Alderson, A; Sabelli, P A; Dickinson, J R; Cole, D; Richardson, M; Kreis, M; Shewry, P R; Halford, N G

    1991-01-01

    A cDNA, cRKIN1, encoding a putative homologue of the yeast (Saccharomyces cerevisiae) SNF1-encoded protein-serine/threonine kinase, has been isolated from a library prepared from rye endosperm mRNA. Northern blot analysis demonstrated the presence of cRKIN1-related transcripts in developing endosperms but not in shoots, and Southern blot analysis showed the presence of a small gene family. SNF1 plays a central role in carbon catabolite repression in yeast and expression of the RKIN1 sequence in yeast snf1 mutants restored SNF1 function. This suggests that the RKIN1 protein has a role in the control of carbon metabolism in endosperms of rye. Images PMID:1924320

  3. Complement component 3 (C3)

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003539.htm Complement component 3 (C3) To use the sharing features on ... and C4 are the most commonly measured complement components. A complement test may be used to monitor ...

  4. Outline of Hungarian Complementation.

    ERIC Educational Resources Information Center

    Szamosi, Michael

    This study presents a preliminary analysis of Hungarian complement constructions and the syntactic operations needed to account for them. The expository framework (and the implicit framework of the research itself) is based upon that of Rosenbaum (1967). The aim of the paper is to arrive at a rough picture of the kinds of structures and syntactic…

  5. Verbal Complementizers in Arabic

    ERIC Educational Resources Information Center

    Ahmed, Hossam Eldin Ibrahim

    2015-01-01

    A class of Modern Standard Arabic complementizers known as "'?inna' and its sisters" demonstrate unique case and word order restrictions. While CPs in Arabic allow both Subject-Verb (SV) and Verb-Subject (VS) word order and their subjects show nominative morphology, CPs introduced by "?inna" ban a verb from directly following…

  6. Molecular and cellular analysis of the DNA repair defect in a patient in Xeroderma pigmentosum complementation group D who has the clinical features of Xeroderma pigmentosum and Cockayne syndrome

    SciTech Connect

    Broughton, B.C.; Thompson, A.F.; Harcourt, S.A.; Cole, J.; Arlett, C.F.; Lehmann, A.R.; Vermeulen, W.; Hoeijmakers, J.H.J.; Botta, E.; Stefanini, M.

    1995-01-01

    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are quite distinct genetic disorders that are associated with defects in excision repair of UV-induced DNA damage. A few patients have been described previously with the clinical features of both disorders. In this paper we describe an individual in this category who has unusual cellular responses to UV light. We show that his cultured fibroblasts and lymphocytes are extremely sensitive to irradiation with UV-C, despite a level of nucleotide excision repair that is 30%-40% that of normal cells. The deficiency is assigned to the XP-D complementation group, and we have identified two causative mutations in the XPD gene: a gly{yields}arg change at amino acid 675 in the allele inherited from the patient`s mother and a -1 frameshift at amino acid 669 in the allele inherited from his father. These mutations are in the C-terminal 20% of the 760-amino-acid XPD protein, in a region where we have recently identified several mutations in patients with trichothiodystrophy. 44 refs., 5 figs., 2 tabs.

  7. Complements do not lie.

    PubMed

    Robert, Stefanie Christina; Forbes, Suzanne Helen; Soleimanian, Surusch; Hadley, Julia S

    2011-12-13

    A 74-year-old patient presented with constitutional symptoms and was found to have acute kidney injury. He was known to have a prosthetic aortic valve. He was febrile with splenomegaly and vasculitic lesions on both hands. Nephritic screen revealed strongly positive cytoplasmic-antineutrophil cytoplasmic antibodies (c-ANCA). Differential diagnosis thus included a small vessel vasculitis or infective endocarditis. Transoesophageal echocardiography demonstrated no vegetations and serial blood cultures were negative. Immunosuppression for presumed granulomatosis with polyangiitis (Wegeners granulomatosis) was therefore instituted. The patient deteriorated, requiring multi-organ support. Renal biopsy showed a proliferative glomerulopathy and complements were low. Atypical screen for culture negative endocarditis revealed a strongly positive IgG-antibody titre against Bartonella henselae. Immunosuppression was discontinued and treatment for chronic Bartonellosis commenced. The patient made a remarkable recovery. His renal function quickly returned to normal, and ANCA titres and complements normalised. He was discharged home after completing a 6 week course of antibiotic therapy.

  8. Complements do not lie

    PubMed Central

    Robert, Stefanie Christina; Forbes, Suzanne Helen; Soleimanian, Surusch; Hadley, Julia S

    2011-01-01

    A 74-year-old patient presented with constitutional symptoms and was found to have acute kidney injury. He was known to have a prosthetic aortic valve. He was febrile with splenomegaly and vasculitic lesions on both hands. Nephritic screen revealed strongly positive cytoplasmic-antineutrophil cytoplasmic antibodies (c-ANCA). Differential diagnosis thus included a small vessel vasculitis or infective endocarditis. Transoesophageal echocardiography demonstrated no vegetations and serial blood cultures were negative. Immunosuppression for presumed granulomatosis with polyangiitis (Wegeners granulomatosis) was therefore instituted. The patient deteriorated, requiring multi-organ support. Renal biopsy showed a proliferative glomerulopathy and complements were low. Atypical screen for culture negative endocarditis revealed a strongly positive IgG-antibody titre against Bartonella henselae. Immunosuppression was discontinued and treatment for chronic Bartonellosis commenced. The patient made a remarkable recovery. His renal function quickly returned to normal, and ANCA titres and complements normalised. He was discharged home after completing a 6 week course of antibiotic therapy. PMID:22674942

  9. Complements do not lie.

    PubMed

    Robert, Stefanie Christina; Forbes, Suzanne Helen; Soleimanian, Surusch; Hadley, Julia S

    2011-12-01

    A 74-year-old patient presented with constitutional symptoms and was found to have acute kidney injury. He was known to have a prosthetic aortic valve. He was febrile with splenomegaly and vasculitic lesions on both hands. Nephritic screen revealed strongly positive cytoplasmic-antineutrophil cytoplasmic antibodies (c-ANCA). Differential diagnosis thus included a small vessel vasculitis or infective endocarditis. Transoesophageal echocardiography demonstrated no vegetations and serial blood cultures were negative. Immunosuppression for presumed granulomatosis with polyangiitis (Wegeners granulomatosis) was therefore instituted. The patient deteriorated, requiring multi-organ support. Renal biopsy showed a proliferative glomerulopathy and complements were low. Atypical screen for culture negative endocarditis revealed a strongly positive IgG-antibody titre against Bartonella henselae. Immunosuppression was discontinued and treatment for chronic Bartonellosis commenced. The patient made a remarkable recovery. His renal function quickly returned to normal, and ANCA titres and complements normalised. He was discharged home after completing a 6 week course of antibiotic therapy.

  10. IXO: The Instrument Complement

    NASA Astrophysics Data System (ADS)

    Nousek, John A.; IWG, IXO

    2009-01-01

    The International X-ray Observatory (IXO) has recently been created as a mission concept by a joint team of NASA, ESA and JAXA scientists, based on the previous Constellation-X and XEUS concepts. Definition of the IXO instruments is still under evolution, but the core instrument complement will include a Wide Field X-ray Imager, an X-ray Calorimeter / Narrow Field X-ray Imager, and an X-ray Grating Spectrometer. Other, modest additional instruments (such as a hard X-ray capability, a polarimeter, and a high time resolution detector) will also be considered. We present the current status of the IXO instrument complement and offer the opportunity for discussion of ideas relevant to the IXO mission concept process.

  11. Development of a lambda-based complementation assay for the preliminary localization of lacI mutants from the Big Blue mouse: implications for a DNA-sequencing strategy.

    PubMed

    Gu, M; Ahmed, A; Wei, C; Gorelick, N; Glickman, B W

    1994-06-01

    in the 32-208-bp region. This complementation assay can potentially reduce the amount of DNA sequencing necessary to produce a mutational spectrum by optimising the choice of sequencing primers, and thus provide a significant saving of the material and time required. Furthermore, evidence indicates that the restriction of the mutational target to the NC+ region extends these savings without reducing the usefulness of the mutational specificity data.

  12. DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida

    PubMed Central

    Jatsenko, Tatjana; Sidorenko, Julia; Saumaa, Signe; Kivisaar, Maia

    2017-01-01

    Translesion DNA synthesis (TLS), facilitated by low-fidelity polymerases, is an important DNA damage tolerance mechanism. Here, we investigated the role and biological function of TLS polymerase ImuC (former DnaE2), generally present in bacteria lacking DNA polymerase V, and TLS polymerase DinB in response to DNA alkylation damage in Pseudomonas aeruginosa and P. putida. We found that TLS DNA polymerases ImuC and DinB ensured a protective role against N- and O-methylation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in both P. aeruginosa and P. putida. DinB also appeared to be important for the survival of P. aeruginosa and rapidly growing P. putida cells in the presence of methyl methanesulfonate (MMS). The role of ImuC in protection against MMS-induced damage was uncovered under DinB-deficient conditions. Apart from this, both ImuC and DinB were critical for the survival of bacteria with impaired base excision repair (BER) functions upon alkylation damage, lacking DNA glycosylases AlkA and/or Tag. Here, the increased sensitivity of imuCdinB double deficient strains in comparison to single mutants suggested that the specificity of alkylated DNA lesion bypass of DinB and ImuC might also be different. Moreover, our results demonstrated that mutagenesis induced by MMS in pseudomonads was largely ImuC-dependent. Unexpectedly, we discovered that the growth temperature of bacteria affected the efficiency of DinB and ImuC in ensuring cell survival upon alkylation damage. Taken together, the results of our study disclosed the involvement of ImuC in DNA alkylation damage tolerance, especially at low temperatures, and its possible contribution to the adaptation of pseudomonads upon DNA alkylation damage via increased mutagenesis. PMID:28118378

  13. DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida.

    PubMed

    Jatsenko, Tatjana; Sidorenko, Julia; Saumaa, Signe; Kivisaar, Maia

    2017-01-01

    Translesion DNA synthesis (TLS), facilitated by low-fidelity polymerases, is an important DNA damage tolerance mechanism. Here, we investigated the role and biological function of TLS polymerase ImuC (former DnaE2), generally present in bacteria lacking DNA polymerase V, and TLS polymerase DinB in response to DNA alkylation damage in Pseudomonas aeruginosa and P. putida. We found that TLS DNA polymerases ImuC and DinB ensured a protective role against N- and O-methylation induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in both P. aeruginosa and P. putida. DinB also appeared to be important for the survival of P. aeruginosa and rapidly growing P. putida cells in the presence of methyl methanesulfonate (MMS). The role of ImuC in protection against MMS-induced damage was uncovered under DinB-deficient conditions. Apart from this, both ImuC and DinB were critical for the survival of bacteria with impaired base excision repair (BER) functions upon alkylation damage, lacking DNA glycosylases AlkA and/or Tag. Here, the increased sensitivity of imuCdinB double deficient strains in comparison to single mutants suggested that the specificity of alkylated DNA lesion bypass of DinB and ImuC might also be different. Moreover, our results demonstrated that mutagenesis induced by MMS in pseudomonads was largely ImuC-dependent. Unexpectedly, we discovered that the growth temperature of bacteria affected the efficiency of DinB and ImuC in ensuring cell survival upon alkylation damage. Taken together, the results of our study disclosed the involvement of ImuC in DNA alkylation damage tolerance, especially at low temperatures, and its possible contribution to the adaptation of pseudomonads upon DNA alkylation damage via increased mutagenesis.

  14. The extracellular RNA complement of Escherichia coli.

    PubMed

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-21

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. © 2015 The

  15. The extracellular RNA complement of Escherichia coli

    PubMed Central

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-01

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. PMID:25611733

  16. Complementing Gender Analysis Methods.

    PubMed

    Kumar, Anant

    2016-01-01

    The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital.

  17. Complement inhibition in cancer therapy.

    PubMed

    Pio, Ruben; Ajona, Daniel; Lambris, John D

    2013-02-01

    For decades, complement has been recognized as an effector arm of the immune system that contributes to the destruction of tumor cells. In fact, many therapeutic strategies have been proposed that are based on the intensification of complement-mediated responses against tumors. However, recent studies have challenged this paradigm by demonstrating a tumor-promoting role for complement. Cancer cells seem to be able to establish a convenient balance between complement activation and inhibition, taking advantage of complement initiation without suffering its deleterious effects. Complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. In this context, inhibition of complement activation would be a therapeutic option for treating cancer. This concept is relatively new and deserves closer attention. In this article, we summarize the mechanisms of complement activation on cancer cells, the cancer-promoting effect of complement initiation, and the rationale behind the use of complement inhibition as a therapeutic strategy against cancer.

  18. Nanomedicine and the complement paradigm.

    PubMed

    Moghimi, S Moein; Farhangrazi, Z Shadi

    2013-05-01

    The role of complement in idiosyncratic reactions to nanopharmaceutical infusion is receiving increasing attention. We discuss this in relation to nanopharmaceutical development and the possible use of complement inhibitors to prevent related adverse reactions. We further call on initiation of genetic association studies to unravel the genetic basis of nanomedicine infusion-related adverse responses, since most of the polymorphic genes in the genome belong to the immune system. In this paper, idiosyncratic reactions based on complement activation are discussed in the context of newly available complement inhibitors. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Complement System in Lung Disease

    PubMed Central

    Pandya, Pankita H.

    2014-01-01

    In addition to its established contribution to innate immunity, recent studies have suggested novel roles for the complement system in the development of various lung diseases. Several studies have demonstrated that complement may serve as a key link between innate and adaptive immunity in a variety of pulmonary conditions. However, the specific contributions of complement to lung diseases based on innate and adaptive immunity are just beginning to emerge. Elucidating the role of complement-mediated immune regulation in these diseases will help to identify new targets for therapeutic interventions. PMID:24901241

  20. Complementation of Myelodysplastic Syndrome Clones with Lentivirus Expression Libraries

    DTIC Science & Technology

    2012-07-01

    were validated; they induced myeloid colonies in vitro and engrafted in the marrow of SG3, but not NSG mice. Myelodysplastic syndrome , lentivirus...cDNA libraries, complementation The Cleveland Clinic Foundation Cleveland, OH 44195 Complementation of Myelodysplastic Syndrome Clones with...Martin-Padura, P. Mancuso, P. Marighetti, C. Rabascio, G. Pruneri, L. D. Shultz, and F. Bertolini. 2008. Human acute leukemia cells injected in NOD

  1. Complementation of Myelodysplastic Syndrome Clones with Lentivirus Expression Libraries

    DTIC Science & Technology

    2013-01-01

    Complementation of Myelodysplastic Syndrome Clones with Lentivirus Expression Libraries PRINCIPAL INVESTIGATOR: Daniel J. Lindner, M.D., Ph.D...YYYY) 2013 2. REPORT TYPE Final 3. DATES COVERED (From - To) 201 31 2012 4. TITLE AND SUBTITLE Complementation of Myelodysplastic Syndrome Clones...vitro and engrafted in the marrow of SG3, but not NSG mice. 15. SUBJECT TERMS Myelodysplastic syndrome , lentivirus, cDNA libraries

  2. Nouns, Verbs and NP Complements.

    ERIC Educational Resources Information Center

    Platt, J. T.

    This paper investigates restrictions on three types of noun-phrase complements (gerundive, infinitive, clause) in English and seeks to point out some parallels between the occurrence of these three types in object positions. The author first presents a list of verbs which may be followed by noun-phrase complements; he then considers the occurrence…

  3. Activation of complement during apheresis.

    PubMed Central

    Hetland, G; Mollnes, T E; Garred, P

    1991-01-01

    C3 activation products and the terminal complement complex (TCC) were examined in plasma during plasmapheresis of patients with Guillain-Barré Syndrome (GBS) (n = 4), Waldenström's syndrome (n = 4), and hypercholesterolaemia (n = 1), or during cytapheresis of platelet (n = 10) and granulocyte (n = 2) donors. Blood specimens were taken before, during and after the procedures. There was a significant activation of complement after apheresis in the GBS patients and one of the patients with Waldenström's syndrome, but not in the other patients. There were no significant differences in complement activation products before compared with after cytapheresis in the healthy donors. This demonstrates the biocompatibility with respect to complement activation of the materials used. The observed complement activation in some of the patients during plasma exchange is probably caused by activation products in the replacement plasma. PMID:1904328

  4. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  5. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  6. Gene for ataxia-telangiectasia complementation group D (ATDC)

    DOEpatents

    Murnane, John P.; Painter, Robert B.; Kapp, Leon N.; Yu, Loh-Chung

    1995-03-07

    Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for said gene are provided as well as proteins encoded by said gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of said proteins. Further disclosed are methods to detect mutations in said gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups.

  7. Gene for ataxia-telangiectasia complementation group D (ATDC)

    DOEpatents

    Murnane, J.P.; Painter, R.B.; Kapp, L.N.; Yu, L.C.

    1995-03-07

    Disclosed herein is a new gene, an AT gene for complementation group D, the ATDC gene and fragments thereof. Nucleic acid probes for the gene are provided as well as proteins encoded by the gene, cDNA therefrom, preferably a 3 kilobase (kb) cDNA, and recombinant nucleic acid molecules for expression of the proteins. Further disclosed are methods to detect mutations in the gene, preferably methods employing the polymerase chain reaction (PCR). Also disclosed are methods to detect AT genes from other AT complementation groups. 30 figs.

  8. Complement in health and disease.

    PubMed

    Carroll, Maria V; Sim, Robert B

    2011-09-16

    The complement system consists of about 35-40 proteins and glycoproteins present in blood plasma or on cell surfaces. Its main biological function is to recognise "foreign" particles and macromolecules, and to promote their elimination either by opsonisation or lysis. Although historically complement has been studied as a system for immune defence against bacteria, it has an important homeostatic role in which it recognises damaged or altered "self" components. Thus complement has major roles in both immune defence against microorganisms, and in clearance of damaged or "used" host components. Since complement proteins opsonise or lyse cells, complement can damage healthy host cells and tissues. The system is regulated by many endogenous regulatory proteins. Regulation is sometimes imperfect and both too much and too little complement activation is associated with many diseases. Excessive or inappropriate activation can cause tissue damage in diseases such as rheumatoid arthritis, age-related macular degeneration (AMD), multiple sclerosis, ischemia-reperfusion injury (e.g. ischemic stroke). Insufficient complement activity is associated with susceptibility to infection (mainly bacterial) and development of autoimmune disease, like SLE (systemic lupus erythematosus).

  9. Complement Evasion by Pathogenic Leptospira

    PubMed Central

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host. PMID:28066433

  10. Complement Evasion by Pathogenic Leptospira.

    PubMed

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  11. Genetics of the complement system.

    PubMed Central

    Lachmann, P

    1975-01-01

    The complement system, unlike the coagulation system, was largely characterized by in-vitro techniques which did not make use of genetically deficient plasmas. The existence of the genetically deficient plasmas. The existence of the genetically deficient subjects therefore has served largely to increase our knowledge of the in-vivo role of complement. At the present time its clearest role is in the resistance to infection; obviously in the case of C3 deficiency and bacterial infection and possibly more subtly in the case of deficiency of the early active complement components and low virulence organisms. There is so far no evidence that genetic complement deficiency interferes with antibody formation or with the generation of tolerance as has been suggested in the pas (Azar et al, 1968; Dukor and Hartmann, 1973). PMID:768477

  12. Complement Activation Alters Platelet Function

    DTIC Science & Technology

    2013-10-01

    mice and mice transfused with Syk inhibitor-treated platelets . Platelet lodging was remarkably decreased in lungs of mice transfused with Syk...AD_________________ Award Number: W81XWH-12-1-0523 TITLE: Complement Activation Alters Platelet ...30September2012–29September2013 4. TITLE AND SUBTITLE Complement Activation Alters Platelet Function 5a. CONTRACT NUMBER W81XWH-12-1-0523 5b. GRANT NUMBER

  13. Plasminogen Is a Complement Inhibitor*

    PubMed Central

    Barthel, Diana; Schindler, Susann; Zipfel, Peter F.

    2012-01-01

    Plasminogen is a 92-kDa single chain glycoprotein that circulates in plasma as a zymogen and when converted to proteolytically active plasmin dissolves preformed fibrin clots and extracellular matrix components. Here, we characterize the role of plasmin(ogen) in the complement cascade. Plasminogen binds the central complement protein C3, the C3 cleavage products C3b and C3d, and C5. Plasminogen binds to C3, C3b, C3d, and C5 via lysine residues, and the interaction is ionic strength-dependent. Plasminogen and Factor H bind C3b; however, the two proteins bind to different sites and do not compete for binding. Plasminogen affects complement action in multiple ways. Plasminogen enhanced Factor I-mediated C3b degradation in the presence of the cofactor Factor H. Plasminogen when activated to plasmin inhibited complement as demonstrated by hemolytic assays using either rabbit or sheep erythrocytes. Similarly, plasmin either in the fluid phase or attached to surfaces inhibited complement that was activated via the alternative and classical pathways and cleaved C3b to fragments of 68, 40, 30, and 17 kDa. The C3b fragments generated by plasmin differ in size from those generated by the complement protease Factor I, suggesting that plasmin-mediated C3b cleavage fragments lack effector function. Plasmin also cleaved C5 to products of 65, 50, 30, and 25 kDa. Thus, plasmin(ogen) regulates both complement and coagulation, the two central cascade systems of a vertebrate organism. This complement-inhibitory activity of plasmin provides a new explanation why pathogenic microbes utilize plasmin(ogen) for immune evasion and tissue penetration. PMID:22451663

  14. Luciferase fragment complementation imaging in preclinical cancer studies

    PubMed Central

    Lake, Madryn C.; Aboagye, Eric O.

    2014-01-01

    The luciferase fragment complementation assay (LFCA) enables molecular events to be non-invasively imaged in live cells in vitro and in vivo in a comparatively cheap and safe manner. It is a development of previous enzyme complementation assays in which reporter genes are split into two, individually enzymatically inactive, fragments that are able to complement one another upon interaction. This complementation can be used to externally visualize cellular activities. In recent years, the number of studies which have used LFCAs to probe questions relevant to cancer have increased, and this review summarizes the most significant and interesting of these. In particular, it focuses on work conducted on the epidermal growth factor, nuclear and chemokine receptor families, and intracellular signaling pathways, including IP3, cAMP, Akt, cMyc, NRF2 and Rho GTPases. LFCAs which have been developed to image DNA methylation and detect RNA transcripts are also discussed. PMID:25594026

  15. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  16. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  17. Mycoplasma polysaccharide protects against complement

    PubMed Central

    Bolland, Jeffrey R.; Simmons, Warren L.; Daubenspeck, James M.

    2012-01-01

    Although they lack a cell wall, mycoplasmas do possess a glycocalyx. The interactions between the glycocalyx, mycoplasmal surface proteins and host complement were explored using the murine pathogen Mycoplasma pulmonis as a model. It was previously shown that the length of the tandem repeat region of the surface lipoprotein Vsa is associated with susceptibility to complement-mediated killing. Cells producing a long Vsa containing about 40 repeats are resistant to complement, whereas strains that produce a short Vsa of five or fewer repeats are susceptible. We show here that the length of the Vsa protein modulates the affinity of the M. pulmonis EPS-I polysaccharide for the mycoplasma cell surface, with more EPS-I being associated with mycoplasmas producing a short Vsa protein. An examination of mutants that lack EPS-I revealed that planktonic mycoplasmas were highly susceptible to complement killing even when the Vsa protein was long, demonstrating that both EPS-I and Vsa length contribute to resistance. In contrast, the mycoplasmas were resistant to complement even in the absence of EPS-I when the cells were encased in a biofilm. PMID:22504437

  18. Milk immunoglobulins and complement factors.

    PubMed

    Korhonen, H; Marnila, P; Gill, H S

    2000-11-01

    The importance of colostrum for the growth and health of newborn offspring is well known. In bovine colostrum, the antibody (immunoglobulin) complement system provides a major antimicrobial effect against a wide range of microbes and confers passive immunity until the calf's own immune system has matured. Bovine serum and lacteal secretions contain three major classes of immunoglobulins: IgG, IgM and IgA. The immunoglobulins are selectively transported from the serum into the mammary gland, as a result of which the first colostrum contains very high concentrations of immunoglobulins (40-200 mg/ml). IgG1 accounts for over 75 % of the immunoglobulins in colostral whey, followed by IgM, IgA and IgG2. All these immunoglobulins decrease within a few days to a total immunoglobulin concentration of 0.7-1.0 mg/ml, with IgG1 representing the major Ig class in milk throughout the lactation period. Together with the antibodies absorbed from colostrum after birth, the complement system plays a crucial role in the passive immunisation of the newborn calf. The occurrence of haemolytic or bactericidal complement activity in bovine colostrum and milk has been demonstrated in several studies. This review deals with the characteristics of bovine Igs and the complement system to be exploited as potential ingredients for health-promoting functional foods.

  19. Improvisation: A Complement to Curriculum

    ERIC Educational Resources Information Center

    Ronald, Green A.

    2006-01-01

    With the growth of standardized assessment benchmarks in both the public and private paradigms, testing performance matters to institutions more than ever. In an attempt to take as many hindering variables out of this process, such as test anxiety, socioeconomic influences, and latency in cognition, Improvisation: A Complement to Curriculum seeks…

  20. Role of complement in xenotransplantation.

    PubMed

    Mollnes, Tom Eirik; Fiane, A E

    2002-01-01

    The xenotransplantation research is driven by the increasing gap between the number of patients with end-stage organ failure on waiting lists for transplantation and the supply of allografts. The lack of success in developing suitable artificial organs for permanent treatment of organ failure has further strengthened the need for xenotransplantation research. Pigs are now generally accepted to be the source animal of choice. Transplantation of pig organs to humans faces several barriers which have to be overcome before it comes to clinical application: (1) anatomical and physiological conditions; (2) immunological rejection mechanisms; (3) molecular compatibility between signal molecules of the two species; (4) risk of transmission of microorganisms, particularly pig endogenous retroviruses; and (5) legal and ethical aspects both with respect to the animal and the recipient. Here we will focus on the role of the complement system in the rejection of immediately vascularized pig-to-primate xenografts. The hyperacute rejection occurring within minutes after transplantation is mediated by binding of natural antibodies to the Galalpha(l-3)Gal epitope on the endothelial cells with subsequent complement activation. Whereas inhibition of complement activation protects against hyperacute rejection, the role of complement in the later rejection phases is less clarified.

  1. Sentential Complementation--An Overview.

    ERIC Educational Resources Information Center

    Nuessel, Frank H., Jr.

    A review of traditional and transformational studies on the phenomenon of sentential complementation (noun clauses) reveals many areas of agreement. Although some adherents of generative grammar may have occasionally obscured this aspect because of the offensive nature of their criticism of other modes of analysis, it is seen that, in several…

  2. Characterization of group A Streptococcus strains recovered from Mexican children with pharyngitis by automated DNA sequencing of virulence-related genes: unexpectedly large variation in the gene (sic) encoding a complement-inhibiting protein.

    PubMed Central

    Mejia, L M; Stockbauer, K E; Pan, X; Cravioto, A; Musser, J M

    1997-01-01

    Sequence variation was studied in several target genes in 54 strains of group A Streptococcus (GAS) cultured from children with pharyngitis in Mexico City. Although 16 distinct emm alleles were identified, only 4 had not been previously described. Virtually all bacteria (31 of 33 [94%] with the streptococcal pyrogenic exotoxin gene (speA) had emm1-related, emm3, or emm6 alleles. The gene (sic) encoding an extracellular GAS protein that inhibits complement function was unusually variable among isolates with the emm1 family of alleles, with a total of seven variants identified. The data suggest that many GAS strains infecting Mexican children are genetically similar to organisms commonly encountered in the United States and western Europe. Sequence variation in the sic gene is useful for rapid differentiation among GAS isolates with the emm1 family of alleles. PMID:9399523

  3. Structural insights on complement activation.

    PubMed

    Alcorlo, Martín; López-Perrote, Andrés; Delgado, Sandra; Yébenes, Hugo; Subías, Marta; Rodríguez-Gallego, César; Rodríguez de Córdoba, Santiago; Llorca, Oscar

    2015-10-01

    The proteolytic cleavage of C3 to generate C3b is the central and most important step in the activation of complement, a major component of innate immunity. The comparison of the crystal structures of C3 and C3b illustrates large conformational changes during the transition from C3 to C3b. Exposure of a reactive thio-ester group allows C3b to bind covalently to surfaces such as pathogens or apoptotic cellular debris. The displacement of the thio-ester-containing domain (TED) exposes hidden surfaces that mediate the interaction with complement factor B to assemble the C3-convertase of the alternative pathway (AP). In addition, the displacement of the TED and its interaction with the macroglobulin 1 (MG1) domain generates an extended surface in C3b where the complement regulators factor H (FH), decay accelerating factor (DAF), membrane cofactor protein (MCP) and complement receptor 1 (CR1) can bind, mediating accelerated decay of the AP C3-convertase and proteolytic inactivation of C3b. In the last few years, evidence has accumulated revealing that the structure of C3b in solution is significantly more flexible than anticipated. We review our current knowledge on C3b structural flexibility to propose a general model where the TED can display a collection of conformations around the MG ring, as well as a few specialized positions where the TED is held in one of several fixed locations. Importantly, this conformational heterogeneity in C3b impacts complement regulation by affecting the interaction with regulators.

  4. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations.

    PubMed Central

    Schild, D; Brake, A J; Kiefer, M C; Young, D; Barr, P J

    1990-01-01

    Functional complementation of mutations in the yeast Saccharomyces cerevisiae has been used to clone three multifunctional human genes involved in de novo purine biosynthesis. A HepG2 cDNA library constructed in a yeast expression vector was used to transform yeast strains with mutations in adenine biosynthetic genes. Clones were isolated that complement mutations in the yeast ADE2, ADE3, and ADE8 genes. The cDNA that complemented the ade8 (phosphoribosylglycinamide formyltransferase, GART) mutation, also complemented the ade5 (phosphoribosylglycinamide synthetase) and ade7 [phosphoribosylaminoimidazole synthetase (AIRS; also known as PAIS)] mutations, indicating that it is the human trifunctional GART gene. Supporting data include homology between the AIRS and GART domains of this gene and the published sequence of these domains from other organisms, and localization of the cloned gene to human chromosome 21, where the GART gene has been shown to map. The cDNA that complemented ade2 (phosphoribosylaminoimidazole carboxylase) also complemented ade1 (phosphoribosylaminoimidazole succinocarboxamide synthetase), supporting earlier data suggesting that in some organisms these functions are part of a bifunctional protein. The cDNA that complemented ade3 (formyltetrahydrofolate synthetase) is different from the recently isolated human cDNA encoding this enzyme and instead appears to encode a related mitochondrial enzyme. Images PMID:2183217

  5. Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement.

    PubMed

    Cabral-de-Mello, D C; Moura, R C; Martins, C

    2010-04-01

    Chromosomal banding techniques and repetitive DNA mapping are useful tools in comparative analysis and in the elucidation of genome organization of several groups of eukaryotes. In this study, we contributed to the knowledge of Coleoptera genomes by reporting the chromosomal organization of repetitive DNA sequences, as well as the presence and characteristics of a B chromosome in two natural populations of Dichotomius geminatus (Coleoptera; Scarabaeidae) using classical, chromosomal banding and molecular cytogenetic techniques. As in other coleopteran species, the heterochromatin was mainly concentrated in pericentromeric regions and the B chromosome was composed almost entirely of heterochromatin. Physical mapping using double fluorescent in situ hybridization was performed for the first time in Coleoptera; using DNA probes for 5S and 18S ribosomal RNA (rRNA) and histone H3 genes, we showed that ribosomal 18S rDNAs are located in chromosomes 3 and 4, whereas 5S rRNA and histone H3 genes are colocalized in chromosomal pair 2 and show an apparently interspersed organization. Moreover, these genes are not present in the B chromosome, suggesting that the B chromosome did not originate from chromosomal pairs 2, 3 or 4. On the other hand, mapping of the C(0)t-1 DNA fraction showed that the B chromosome is enriched in repetitive DNA elements, also present in the standard complement, indicating an intraspecific origin of this element in D. geminatus. These results will contribute to our understanding of genome organization and evolution of repetitive elements in Coleoptera and other insects regarding both A and B chromosomes.

  6. Cockayne syndrome complementation group B associated with xeroderma pigmentosum phenotype.

    PubMed

    Itoh, T; Cleaver, J E; Yamaizumi, M

    1996-02-01

    Two siblings have been reported whose clinical manifestations (cutaneous photosensitivity and central nervous system dysfunction) are strongly reminiscent of the DeSanctis-Cacchione syndrome (DCS) variant of xeroderma pigmentosum (XP), a severe form of XP. Fibroblasts from the siblings showed UV sensitivity, a failure of recovery of RNA synthesis (RRS) after UV-irradiation, and a normal level of unscheduled DNA synthesis (UDS), which were, unexpectedly, the biochemical characteristics usually associated with Cockayne syndrome (CS). However, no complementation group assignment in these cells has yet been performed. We here report that these patients can be assigned to CS complementation group B (CSB) by cell fusion complementation analysis. To our knowledge, these are the first patients with defects in the CSB gene to be associated with an XP phenotype. The results imply that the gene product from the CSB gene must interact with the gene products involved in excision repair and associated with XP.

  7. DNA codes

    SciTech Connect

    Torney, D. C.

    2001-01-01

    We have begun to characterize a variety of codes, motivated by potential implementation as (quaternary) DNA n-sequences, with letters denoted A, C The first codes we studied are the most reminiscent of conventional group codes. For these codes, Hamming similarity was generalized so that the score for matched letters takes more than one value, depending upon which letters are matched [2]. These codes consist of n-sequences satisfying an upper bound on the similarities, summed over the letter positions, of distinct codewords. We chose similarity 2 for matches of letters A and T and 3 for matches of the letters C and G, providing a rough approximation to double-strand bond energies in DNA. An inherent novelty of DNA codes is 'reverse complementation'. The latter may be defined, as follows, not only for alphabets of size four, but, more generally, for any even-size alphabet. All that is required is a matching of the letters of the alphabet: a partition into pairs. Then, the reverse complement of a codeword is obtained by reversing the order of its letters and replacing each letter by its match. For DNA, the matching is AT/CG because these are the Watson-Crick bonding pairs. Reversal arises because two DNA sequences form a double strand with opposite relative orientations. Thus, as will be described in detail, because in vitro decoding involves the formation of double-stranded DNA from two codewords, it is reasonable to assume - for universal applicability - that the reverse complement of any codeword is also a codeword. In particular, self-reverse complementary codewords are expressly forbidden in reverse-complement codes. Thus, an appropriate distance between all pairs of codewords must, when large, effectively prohibit binding between the respective codewords: to form a double strand. Only reverse-complement pairs of codewords should be able to bind. For most applications, a DNA code is to be bi-partitioned, such that the reverse-complementary pairs are separated

  8. Differential Expression of Complement Markers in Normal and AMD Transmitochondrial Cybrids

    PubMed Central

    Nashine, Sonali; Chwa, Marilyn; Kazemian, Mina; Thaker, Kunal; Lu, Stephanie; Nesburn, Anthony; Kuppermann, Baruch D.; Kenney, M. Cristina

    2016-01-01

    Purpose Variations in mitochondrial DNA (mtDNA) and abnormalities in the complement pathways have been implicated in the pathogenesis of age-related macular degeneration (AMD). This study was designed to determine the effects of mtDNA from AMD subjects on the complement pathway. Methods Transmitochondrial cybrids were prepared by fusing platelets from AMD and age-matched Normal subjects with Rho0 (lacking mtDNA) human ARPE-19 cells. Quantitative PCR and Western blotting were performed to examine gene and protein expression profiles, respectively, of complement markers in these cybrids. Bioenergetic profiles of Normal and AMD cybrids were examined using the Seahorse XF24 flux analyzer. Results Significant decreases in the gene and protein expression of complement inhibitors, along with significantly higher levels of complement activators, were found in AMD cybrids compared to Older-Normal cybrids. Seahorse flux data demonstrated that the bioenergetic profiles for Older-Normal and Older-AMD cybrid samples were similar to each other but were lower compared to Young-Normal cybrid samples. Conclusion In summary, since all cybrids had identical nuclei and differed only in mtDNA content, the observed changes in components of complement pathways can be attributed to mtDNA variations in the AMD subjects, suggesting that mitochondrial genome and retrograde signaling play critical roles in this disease. Furthermore, the similar bioenergetic profiles of AMD and Older-Normal cybrids indicate that the signaling between mitochondria and nuclei are probably not via a respiratory pathway. PMID:27486856

  9. The Complement System and Adverse Pregnancy Outcomes

    PubMed Central

    Regal, Jean F.; Gilbert, Jeffrey S.; Burwick, Richard M.

    2015-01-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the feta allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child. PMID:25802092

  10. Whole Genome Amplification of Day 3 or Day 5 Human Embryos Biopsies Provides a Suitable DNA Template for PCR-Based Techniques for Genotyping, a Complement of Preimplantation Genetic Testing

    PubMed Central

    Schaeffer, Elizabeth; López-Bayghen, Bruno; Neumann, Adina; Porchia, Leonardo M.; Camacho, Rafael; Garrido, Efraín; Camargo, Felipe

    2017-01-01

    Our objective was to determine if whole genome amplification (WGA) provides suitable DNA for qPCR-based genotyping for human embryos. Single blastomeres (Day 3) or trophoblastic cells (Day 5) were isolated from 342 embryos for WGA. Comparative Genomic Hybridization determined embryo sex as well as Trisomy 18 or Trisomy 21. To determine the embryo's sex, qPCR melting curve analysis for SRY and DYS14 was used. Logistic regression indicated a 4.4%, 57.1%, or 98.8% probability of a male embryo when neither gene, SRY only, or both genes were detected, respectively (accuracy = 94.1%, kappa = 0.882, and p < 0.001). Fluorescent Capillary Electrophoresis for the amelogenin genes (AMEL) was also used to determine sex. AMELY peak's height was higher and this peak's presence was highly predictive of male embryos (AUC = 0.93, accuracy = 81.7%, kappa = 0.974, and p < 0.001). Trisomy 18 and Trisomy 21 were determined using the threshold cycle difference for RPL17 and TTC3, respectively, which were significantly lower in the corresponding embryos. The Ct difference for TTC3 specifically determined Trisomy 21 (AUC = 0.89) and RPL17 for Trisomy 18 (AUC = 0.94). Here, WGA provides adequate DNA for PCR-based techniques for preimplantation genotyping. PMID:28717645

  11. Whole Genome Amplification of Day 3 or Day 5 Human Embryos Biopsies Provides a Suitable DNA Template for PCR-Based Techniques for Genotyping, a Complement of Preimplantation Genetic Testing.

    PubMed

    Schaeffer, Elizabeth; López-Bayghen, Bruno; Neumann, Adina; Porchia, Leonardo M; Camacho, Rafael; Garrido, Efraín; Gómez, Rocío; Camargo, Felipe; López-Bayghen, Esther

    2017-01-01

    Our objective was to determine if whole genome amplification (WGA) provides suitable DNA for qPCR-based genotyping for human embryos. Single blastomeres (Day 3) or trophoblastic cells (Day 5) were isolated from 342 embryos for WGA. Comparative Genomic Hybridization determined embryo sex as well as Trisomy 18 or Trisomy 21. To determine the embryo's sex, qPCR melting curve analysis for SRY and DYS14 was used. Logistic regression indicated a 4.4%, 57.1%, or 98.8% probability of a male embryo when neither gene, SRY only, or both genes were detected, respectively (accuracy = 94.1%, kappa = 0.882, and p < 0.001). Fluorescent Capillary Electrophoresis for the amelogenin genes (AMEL) was also used to determine sex. AMELY peak's height was higher and this peak's presence was highly predictive of male embryos (AUC = 0.93, accuracy = 81.7%, kappa = 0.974, and p < 0.001). Trisomy 18 and Trisomy 21 were determined using the threshold cycle difference for RPL17 and TTC3, respectively, which were significantly lower in the corresponding embryos. The Ct difference for TTC3 specifically determined Trisomy 21 (AUC = 0.89) and RPL17 for Trisomy 18 (AUC = 0.94). Here, WGA provides adequate DNA for PCR-based techniques for preimplantation genotyping.

  12. Complement fixation test to C. burnetii

    MedlinePlus

    ... ency/article/003520.htm Complement fixation test to C burnetii To use the sharing features on this ... JavaScript. The complement fixation test to Coxiella burnetii ( C burnetti ) is a blood test that checks for ...

  13. Complement and Immunoregulation in Tissue Injury

    DTIC Science & Technology

    2014-10-01

    19), T cells (20, 21), neutrophils (22), endothelial cells and platelets (23). Deposition of natural antibodies, subsequent complement activation ...of the ischemic cells to which natural IgM bind and subsequently activate complement (27, 28). Deficiency of complement factors has been shown to be...expression by damaged cells of antigens that are recognized by circulating natural antibodies, which fix and activate complement. This is supported by

  14. An Integrated Theory of Complement Control.

    ERIC Educational Resources Information Center

    Sag, Ivan A.; Pollard, Carl

    1991-01-01

    Presents an integrated theory of the syntactic and semantic representation of complements where the unexpressed subjects of the embedded verb-phrase complement are subject to certain interpretation restrictions. It is argued that the grammar of English controlled complements can be derived from the interaction of semantically based principles of…

  15. An Integrated Theory of Complement Control.

    ERIC Educational Resources Information Center

    Sag, Ivan A.; Pollard, Carl

    1991-01-01

    Presents an integrated theory of the syntactic and semantic representation of complements where the unexpressed subjects of the embedded verb-phrase complement are subject to certain interpretation restrictions. It is argued that the grammar of English controlled complements can be derived from the interaction of semantically based principles of…

  16. Complement in the Homeostatic and Ischemic Brain

    PubMed Central

    Alawieh, Ali; Elvington, Andrew; Tomlinson, Stephen

    2015-01-01

    The complement system is a component of the immune system involved in both recognition and response to pathogens, and it is implicated in an increasing number of homeostatic and disease processes. It is well documented that reperfusion of ischemic tissue results in complement activation and an inflammatory response that causes post-reperfusion injury. This occurs following cerebral ischemia and reperfusion and triggers secondary damage that extends beyond the initial infarcted area, an outcome that has rationalized the use of complement inhibitors as candidate therapeutics after stroke. In the central nervous system, however, recent studies have revealed that complement also has essential roles in synaptic pruning, neurogenesis, and neuronal migration. In the context of recovery after stroke, these apparent divergent functions of complement may account for findings that the protective effect of complement inhibition in the acute phase after stroke is not always maintained in the subacute and chronic phases. The development of effective stroke therapies based on modulation of the complement system will require a detailed understanding of complement-dependent processes in both early neurodegenerative events and delayed neuro-reparatory processes. Here, we review the role of complement in normal brain physiology, the events initiating complement activation after cerebral ischemia-reperfusion injury, and the contribution of complement to both injury and recovery. We also discuss how the design of future experiments may better characterize the dual role of complement in recovery after ischemic stroke. PMID:26322048

  17. Mechanisms of rejection: role of complement.

    PubMed

    Farrar, Conrad A; Sacks, Steven H

    2014-02-01

    To provide the reader with an up-to-date comprehensive review of recent findings that highlight advances describing how proteins of the complement cascades contribute to the pathogenesis of solid organ rejection. The review is focussed mainly on renal transplantation. Of note are recent advances in elucidating the interactions between anaphylatoxins and their receptors in organ transplantation; there is evidence of direct engagement of C5aR on donor tubules and in addition, mechanisms by which the allostimulatory capacity of dendritic cells is modulated by complement are more fully understood. Activation of the lectin pathway is increasingly implicated in allograft rejection and the role of complement in modulating regulatory T cells is being vigorously investigated. As an alternative to systemic complement inhibition, there is continued focus on the design of targeted anti-complement therapies, directed to the donor organ. Complement has evolved as the first line of defence against pathogens, employing well defined effector mechanisms to rapidly remove infectious material. However, complement effector mechanisms are also triggered during inflammation associated with solid organ transplantation. Hence, complement has a significant role in mediating donor organ injury during both the initial ischaemia/reperfusion phase and the subsequent adaptive immune responses. Research on mechanisms of complement-mediated injury in transplantation provide a basis for the development of therapies that are aimed at transiently blocking complement activation at the site of injury, whereas leaving systemic anti-bacterial complement effector mechanisms intact.

  18. Role of complement in experiment silicosis

    SciTech Connect

    Callis, A.H.; Sohnle, P.G.; Mandel, G.S.; Mandel, N.S.

    1986-08-01

    The role of the complement system in the pathogenesis of crystal-induced pulmonary inflammation and fibrosis was evaluated using a mouse model of silicosis and congenitally complement-deficient mice. Mice lacking the fifth component of complement (B10.D2/o) were compared to C5-sufficient animals (B10.D2/n) for pulmonary changes following intratracheal instillation of silica crystals. Complement-deficient mice demonstrated a significant reduction compared to complement-sufficient mice in both cell number and protein content of lung lavage fluid throughout the 12 weeks following silica exposure. Lung hydroxyproline content (indicative of collagen deposition) was equivalent for both strains and significantly higher than controls at all times points following silica instillation. Moreover, studies in vitro have shown that silica crystals are capable of activating complement via the alternative pathway. These studies indicate that the complement system may be responsible for some of the pulmonary inflammation, but not fibrosis elicited by silica exposure.

  19. Meningococcal disease and the complement system

    PubMed Central

    Lewis, Lisa A; Ram, Sanjay

    2014-01-01

    Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest. PMID:24104403

  20. The Semantics of Complementation in English: A Cognitive Semantic Account of Two English Complement Constructions

    ERIC Educational Resources Information Center

    Smith, Michael B.

    2009-01-01

    Studies on complementation in English and other languages have traditionally focused on syntactic issues, most notably on the constituent structures of different complement types. As a result, they have neglected the role of meaning in the choice of different complements. This paper investigates the semantics of complementation within the…

  1. Chromosomal mapping of rDNAs and H3 histone sequences in the grasshopper rhammatocerus brasiliensis (acrididae, gomphocerinae): extensive chromosomal dispersion and co-localization of 5S rDNA/H3 histone clusters in the A complement and B chromosome

    PubMed Central

    2011-01-01

    Background Supernumerary B chromosomes occur in addition to standard karyotype and have been described in about 15% of eukaryotes, being the repetitive DNAs the major component of these chromosomes, including in some cases the presence of multigene families. To advance in the understanding of chromosomal organization of multigene families and B chromosome structure and evolution, the distribution of rRNA and H3 histone genes were analyzed in the standard karyotype and B chromosome of three populations of the grasshopper Rhammatocerus brasiliensis. Results The location of major rDNA was coincident with the previous analysis for this species. On the other hand, the 5S rDNA mapped in almost all chromosomes of the standard complement (except in the pair 11) and in the B chromosome, showing a distinct result from other populations previously analyzed. Besides the spreading of 5S rDNA in the genome of R. brasiliensis it was also observed multiple sites for H3 histone genes, being located in the same chromosomal regions of 5S rDNAs, including the presence of the H3 gene in the B chromosome. Conclusions Due to the intense spreading of 5S rRNA and H3 histone genes in the genome of R. brasiliensis, their chromosomal distribution was not informative in the clarification of the origin of B elements. Our results indicate a linked organization for the 5S rRNA and H3 histone multigene families investigated in R. brasiliensis, reinforcing previous data concerning the association of both genes in some insect groups. The present findings contribute to understanding the organization/evolution of multigene families in the insect genomes. PMID:22075079

  2. Complement Activation and Inhibition in Wound Healing

    PubMed Central

    Cazander, Gwendolyn; Jukema, Gerrolt N.; Nibbering, Peter H.

    2012-01-01

    Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required. PMID:23346185

  3. Complement Evasion Strategies of Viruses: An Overview

    PubMed Central

    Agrawal, Palak; Nawadkar, Renuka; Ojha, Hina; Kumar, Jitendra; Sahu, Arvind

    2017-01-01

    Being a major first line of immune defense, the complement system keeps a constant vigil against viruses. Its ability to recognize large panoply of viruses and virus-infected cells, and trigger the effector pathways, results in neutralization of viruses and killing of the infected cells. This selection pressure exerted by complement on viruses has made them evolve a multitude of countermeasures. These include targeting the recognition molecules for the avoidance of detection, targeting key enzymes and complexes of the complement pathways like C3 convertases and C5b-9 formation – either by encoding complement regulators or by recruiting membrane-bound and soluble host complement regulators, cleaving complement proteins by encoding protease, and inhibiting the synthesis of complement proteins. Additionally, viruses also exploit the complement system for their own benefit. For example, they use complement receptors as well as membrane regulators for cellular entry as well as their spread. Here, we provide an overview on the complement subversion mechanisms adopted by the members of various viral families including Poxviridae, Herpesviridae, Adenoviridae, Flaviviridae, Retroviridae, Picornaviridae, Astroviridae, Togaviridae, Orthomyxoviridae and Paramyxoviridae. PMID:28670306

  4. Role of Complement in Autoimmune Hemolytic Anemia.

    PubMed

    Berentsen, Sigbjørn

    2015-09-01

    The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed.

  5. Role of Complement in Autoimmune Hemolytic Anemia

    PubMed Central

    Berentsen, Sigbjørn

    2015-01-01

    Summary The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed. PMID:26696798

  6. The eye as a complement dysregulation hotspot.

    PubMed

    Clark, Simon J; Bishop, Paul N

    2017-09-25

    Complement turnover is tightly regulated throughout the human body in order to prevent over-activation and subsequent damage from inflammation. In the eye, low-level complement activation is maintained to provide immune tolerance in this immune privileged organ. Conversely, the complement system is suppressed in the cornea to protect it from continuous immunological insult. Over-activation of the complement cascade has been implicated in the disease progression of glaucoma and diabetic retinopathy and is now known to be a central driver in the pathogenesis of age-related macular degeneration (AMD). Indeed, it is with AMD where the most recent and exciting work has been carried out with complement-based therapies entering into clinical trials. However, the success of these trials will depend upon delivering the therapeutics to the correct anatomical sites within the eye, so a full understanding of how complement regulation is compartmentalized in the eye is required, a topic that will be highlighted in this review.

  7. Serum complement and immunoconglutinin in malnutrition.

    PubMed Central

    Chandra, R K

    1975-01-01

    Serum haemolytic complement activity and C3 were significantly decreased in 35 malnourished children. The changes were more pronounced in those with infection. Electrophoretically altered forms of complement C were detected in 14. There was an inverse correlation between C3 levels and immunoconglutinin titres. Nutritional rehabilitation and eradication of infection reversed the abnormalities. It is suggested that reduced complement function in malnutrition is the combined result of impaired synthesis, complement activation in vivo, and changes in plasma volume, and that it may contribute to an increased susceptibility to infection in undernourished individuals. PMID:807166

  8. Infectious diseases associated with complement deficiencies.

    PubMed Central

    Figueroa, J E; Densen, P

    1991-01-01

    The complement system consists of both plasma and membrane proteins. The former influence the inflammatory response, immune modulation, and host defense. The latter are complement receptors, which mediate the cellular effects of complement activation, and regulatory proteins, which protect host cells from complement-mediated injury. Complement activation occurs via either the classical or the alternative pathway, which converge at the level of C3 and share a sequence of terminal components. Four aspects of the complement cascade are critical to its function and regulation: (i) activation of the classical pathway, (ii) activation of the alternative pathway, (iii) C3 convertase formation and C3 deposition, and (iv) membrane attack complex assembly and insertion. In general, mechanisms evolved by pathogenic microbes to resist the effects of complement are targeted to these four steps. Because individual complement proteins subserve unique functional activities and are activated in a sequential manner, complement deficiency states are associated with predictable defects in complement-dependent functions. These deficiency states can be grouped by which of the above four mechanisms they disrupt. They are distinguished by unique epidemiologic, clinical, and microbiologic features and are most prevalent in patients with certain rheumatologic and infectious diseases. Ethnic background and the incidence of infection are important cofactors determining this prevalence. Although complement undoubtedly plays a role in host defense against many microbial pathogens, it appears most important in protection against encapsulated bacteria, especially Neisseria meningitidis but also Streptococcus pneumoniae, Haemophilus influenzae, and, to a lesser extent, Neisseria gonorrhoeae. The availability of effective polysaccharide vaccines and antibiotics provides an immunologic and chemotherapeutic rationale for preventing and treating infection in patients with these deficiencies. PMID

  9. Rapid complementation method for classifying excision repair-defective xeroderma pigmentosum cell strains.

    PubMed

    Cleaver, J E

    1982-11-01

    A rapid method has been developed that permits demonstration of complementation between different cell strains from ultraviolet-sensitive xeroderma pigmentosum patients. Combining polyethylene glycol-mediated cell fusion with low doses of ultraviolet light to eliminate unfused sensitive cells, the method permits assignment of cell strains to complementation groups by visual inspection, avoiding use of laborious methods involving autoradiography. This method can be augmented by measuring DNA repair synthesis, which shows large quantitative differences between fusions that result in complementation and those that do not.

  10. Review on complement analysis method and the roles of glycosaminoglycans in the complement system.

    PubMed

    Li, Lian; Li, Yan; Ijaz, Muhammad; Shahbaz, Muhammad; Lian, Qianqian; Wang, Fengshan

    2015-12-10

    Complement system is composed of over 30 proteins and it plays important roles in self-defence and inflammation. There are three activation pathways, including classical pathway, alternative pathway and lectin pathway, in complement system, and they are associated with many diseases such as osteoarthritis and age-related macular degeneration. Modulation of the complement system may be a promising strategy in the treatment of related diseases. Glycosaminoglycans are anionic linear polysaccharides without branches. They are one kind of multi-functional macromolecules which have great potential in regulating complement system. This review is organized around two aspects between the introduction of complement system and the interaction of glycosaminoglycans with complement system. Three complement activation pathways and the biological significance were introduced first. Then functional analysis methods were compared to provide a strategy for potential glycosaminoglycans screen. Finally, the roles of glycosaminoglycans played in the complement system were summed up.

  11. Complement associated pathogenic mechanisms in myasthenia gravis.

    PubMed

    Tüzün, Erdem; Christadoss, Premkumar

    2013-07-01

    The complement system is profoundly involved in the pathogenesis of acetylcholine receptor (AChR) antibody (Ab) related myasthenia gravis (MG) and its animal model experimental autoimmune myasthenia gravis (EAMG). The most characteristic finding of muscle pathology in both MG and EAMG is the abundance of IgG and complement deposits at the nerve-muscle junction (NMJ), suggesting that AChR-Ab induces muscle weakness by complement pathway activation and consequent membrane attack complex (MAC) formation. This assumption has been supported with EAMG resistance of complement factor C3 knockout (KO), C4 KO and C5 deficient mice and amelioration of EAMG symptoms following treatment with complement inhibitors such as cobra venom factor, soluble complement receptor 1, anti-C1q, anti-C5 and anti-C6 Abs. Moreover, the complement inhibitor decay accelerating factor (DAF) KO mice exhibit increased susceptibility to EAMG. These findings have brought forward improvisation of novel therapy methods based on inhibition of classical and common complement pathways in MG treatment.

  12. The role of complement in AMD.

    PubMed

    Zipfel, Peter F; Lauer, Nadine; Skerka, Christine

    2010-01-01

    Age related macular degeneration (AMD) is a common form of blindness in the western world and genetic variations of several complement genes, including the complement regulator Factor H, the central complement component C3, Factor B, C2, and also Factor I confer a risk for the disease. However deletion of a chromosomal segment in the Factor H gene cluster on human chromosome 1, which results in the deficiency of the terminal pathway regulator CFHR1, and of the putative complement regulator CFHR3 has a protective effect for development of AMD. The Factor H gene encodes two proteins Factor H and FHL1 which are derived from alternatively processed transcripts. In particular a sequence variation at position 402 of both Factor H and FHL1 is associated with a risk for AMD. A tyrosine residue at position 402 represents the protective and a histidine residue the risk variant. AMD is considered a chronic inflammatory disease, which can be caused by defective and inappropriate regulation of the continuously activated alternative complement pathway. This activation generates complement effector products and inflammatory mediators that stimulate further inflammatory reactions. Defective regulation can lead to formation of immune deposits, drusen and ultimately translate into damage of retinal pigment epithelial cells, rupture of the interface between these epithelial cells and the Bruch's membrane and vision loss. Here we describe the role of complement in the retina and summarize the current concept how defective or inappropriate local complement control contributes to inflammation and the pathophysiology of AMD.

  13. Progress and Trends in Complement Therapeutics

    PubMed Central

    Ricklin, Daniel; Lambris, John D.

    2012-01-01

    The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field. PMID:22990692

  14. Complement activation in pemphigus vulgaris blister fluid*

    PubMed Central

    Jordon, R. E.; Day, N. K.; Luckasen, J. R.; Good, R. A.

    1973-01-01

    Total haemolytic complement was reduced in blister fluids of four pemphigus vulgaris patients when compared to serum complement levels and other serum and blister fluid proteins. Complement levels in most control blister fluids, on the other hand, more closely approached their corresponding serum levels. Haemolytic C1, C4, C2, C3 and C5, measured in two pemphigus sera and blister fluids, were not measurable in one blister fluid and were extremely low in the second patient. C3 proactivator (C3PA) was absent from both of these blister fluids. Three of the blister fluids exhibited anti-complementary activity when tested with normal human serum. By adding one blister fluid to normal human serum, inhibition of haemolytic C1, C2, C3 and C5 with conversion of C3 and C3PA occurred. Activation of complement locally in pemphigus blister fluids would suggest a pathogenetic role for complement in this disease. PMID:4765721

  15. Complement System Part II: Role in Immunity

    PubMed Central

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  16. Serological and Genetic Evidence for Altered Complement System Functionality in Systemic Lupus Erythematosus: Findings of the GAPAID Consortium

    PubMed Central

    Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László

    2016-01-01

    Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement

  17. Serological and Genetic Evidence for Altered Complement System Functionality in Systemic Lupus Erythematosus: Findings of the GAPAID Consortium.

    PubMed

    Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; Del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László

    2016-01-01

    Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement

  18. Properdin in Complement Activation and Tissue Injury

    PubMed Central

    Lesher, AM; B, Nilsson; Song, W-C

    2013-01-01

    The plasma protein properdin is the only known positive regulator of complement activation. Although regarded as an initiator of the alternative pathway of complement activation at the time of its discovery more than a half century ago, the role and mechanism of action of properdin in the complement cascade has undergone significant conceptual evolution since then. Despite the long history of research on properdin, however, new insight and unexpected findings on the role of properdin in complement activation, pathogen infection and host tissue injury are still being revealed by ongoing investigations. In this article, we provide a brief review on recent studies that shed new light on properdin biology, focusing on the following three topics: 1) its role as a pattern recognition molecule to direct and trigger complement activation, 2) its context-dependent requirement in complement activation on foreign and host cell surfaces, and 3) its involvement in alternative pathway complement-mediated immune disorders and considerations of properdin as a potential therapeutic target in human diseases. PMID:23816404

  19. Xeroderma pigmentosum complementation group G associated with Cockayne syndrome.

    PubMed Central

    Vermeulen, W; Jaeken, J; Jaspers, N G; Bootsma, D; Hoeijmakers, J H

    1993-01-01

    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are two rare inherited disorders with a clinical and cellular hypersensitivity to the UV component of the sunlight spectrum. Although the two traits are generally considered as clinically and genetically distinct entities, on the biochemical level a defect in the nucleotide excision-repair (NER) pathway is involved in both. Classical CS patients are primarily deficient in the preferential repair of DNA damage in actively transcribed genes, whereas in most XP patients the genetic defect affects both "preferential" and "overall" NER modalities. Here we report a genetic study of two unrelated, severely affected patients with the clinical characteristics of CS but with a biochemical defect typical of XP. By complementation analysis, using somatic cell fusion and nuclear microinjection of cloned repair genes, we assign these two patients to XP complementation group G, which previously was not associated with CS. This observation extends the earlier identification of two patients with a rare combined XP/CS phenotype within XP complementation groups B and D, respectively. It indicates that some mutations in at least three of the seven genes known to be involved in XP also can result in a picture of partial or even full-blown CS. We conclude that the syndromes XP and CS are biochemically closely related and may be part of a broader clinical disease spectrum. We suggest, as a possible molecular mechanism underlying this relation, that the XPGC repair gene has an additional vital function, as shown for some other NER genes. PMID:8317483

  20. Infections Revealing Complement Deficiency in Adults

    PubMed Central

    Audemard-Verger, A.; Descloux, E.; Ponard, D.; Deroux, A.; Fantin, B.; Fieschi, C.; John, M.; Bouldouyre, A.; Karkowsi, L.; Moulis, G.; Auvinet, H.; Valla, F.; Lechiche, C.; Davido, B.; Martinot, M.; Biron, C.; Lucht, F.; Asseray, N.; Froissart, A.; Buzelé, R.; Perlat, A.; Boutboul, D.; Fremeaux-Bacchi, V.; Isnard, S.; Bienvenu, B.

    2016-01-01

    Abstract Complement system is a part of innate immunity, its main function is to protect human from bacterial infection. As genetic disorders, complement deficiencies are often diagnosed in pediatric population. However, complement deficiencies can also be revealed in adults but have been poorly investigated. Herein, we describe a case series of infections revealing complement deficiency in adults to study clinical spectrum and management of complement deficiencies. A nationwide retrospective study was conducted in French university and general hospitals in departments of internal medicine, infectious diseases enrolling patients older than 15 years old who had presented at least one infection leading to a complement deficiency diagnosis. Forty-one patients included between 2002 and 2015 in 19 different departments were enrolled in this study. The male-to-female ratio was 1.3 and the mean age at diagnosis was 28 ± 14 (15–67) years. The main clinical feature was Neisseria meningitidis meningitis 75% (n = 31/41) often involving rare serotype: Y (n = 9) and W 135 (n = 7). The main complement deficiency observed was the common final pathway deficiency 83% (n = 34/41). Half of the cohort displayed severe sepsis or septic shock at diagnosis (n = 22/41) but no patient died. No patient had family history of complement deficiency. The mean follow-up was 1.15 ± 1.95 (0.1–10) years. Half of the patients had already suffered from at least one infection before diagnosis of complement deficiency: meningitis (n = 13), pneumonia (n = 4), fulminans purpura (n = 1), or recurrent otitis (n = 1). Near one-third (n = 10/39) had received prophylactic antibiotics (cotrimoxazole or penicillin) after diagnosis of complement deficiency. The vaccination coverage rate, at the end of the follow-up, for N meningitidis, Streptococcus pneumonia, and Haemophilius influenzae were, respectively, 90% (n = 33/37), 47% (n = 17/36), and 35

  1. CD46: the 'multitasker' of complement proteins.

    PubMed

    Yamamoto, Hidekazu; Fara, Antonella Francesca; Dasgupta, Prokar; Kemper, Claudia

    2013-12-01

    Complement is undeniably quintessential for innate immunity by detecting and eliminating infectious microorganisms. Recent work, however, highlights an equally profound impact of complement on the induction and regulation of a wide range of immune cells. In particular, the complement regulator CD46 emerges as a key sensor of immune activation and a vital modulator of adaptive immunity. In this review, we summarize the current knowledge of CD46-mediated signalling events and their functional consequences on immune-competent cells with a specific focus on those in CD4(+) T cells. We will also discuss the promises and challenges that potential therapeutic modulation of CD46 may hold and pose.

  2. Regulation of humoral immunity by complement.

    PubMed

    Carroll, Michael C; Isenman, David E

    2012-08-24

    The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity.

  3. Nomenclature for human complement component C2*

    PubMed Central

    1992-01-01

    This note describes the designations for variants of the human complement component C2, which were approved by the Nomenclature Committee of the International Union of Immunological Societies (IUIS). PMID:1394787

  4. Autocrine Effects of Tumor-Derived Complement

    PubMed Central

    Cho, Min Soon; Vasquez, Hernan G.; Rupaimoole, Rajesha; Pradeep, Sunila; Wu, Sherry; Zand, Behrouz; Han, Hee-Dong; Rodriguez-Aguayo, Cristian; Bottsford-Miller, Justin; Huang, Jie; Miyake, Takahito; Choi, Hyun-Jin; Dalton, Heather J.; Ivan, Cristina; Baggerly, Keith; Lopez-Berestein, Gabriel; Sood, Anil K.; Afshar-Kharghan, Vahid

    2014-01-01

    SUMMARY We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications. PMID:24613353

  5. On complements of coradicals of finite groups

    NASA Astrophysics Data System (ADS)

    Vedernikov, V. A.; Sorokina, M. M.

    2016-06-01

    Let F be an ω-local Fitting formation, and G a finite group that can be represented in the form of a product of n subnormal subgroups whose F-coradicals are ω-soluble, and whose Sylow p-subgroups are abelian for any p\\inω. It is established that there exist ω-complements of the F-coradical of G. New theorems on the existence of complements of coradicals of a group are obtained as corollaries. For an ω-local formation F, conditions are established for the existence of complements and ω-complements of the F-coradical of a group in any of its extensions. Bibliography: 21 titles.

  6. Complement activation by a B cell superantigen.

    PubMed

    Kozlowski, L M; Soulika, A M; Silverman, G J; Lambris, J D; Levinson, A I

    1996-08-01

    Staphylococcal protein A (SpA), acting as a B cell superantigen, binds to the Fab region of human VH3+ Igs. Using SpA abrogated of its IgG Fc binding activity (Mod SpA) as a model B cell superantigen, we determined whether such an interaction causes complement activation. Addition of Mod SpA to human serum led to complement consumption and the generation of C3a. To determine whether this complement activation 1) was due to an interaction between VH3+ Igs and the Fab binding site of SpA and 2) proceeded via the classical complement pathway, we tested a panel of monoclonal IgM proteins for the ability to hind C1q following interaction with SpA. C1q binding was restricted to SpA-reactive, VH3+ IgM proteins. To formally determine whether the binding of SpA to the reactive VH3+ IgM proteins led to complement activation, we reconstituted the serum from a hypogammaglobulinemic patient with monoclonal IgM proteins and measured complement consumption and C3a generation following the addition of Mod SpA. We observed complement consumption and C3a production only in Mod SpA-treated serum reconstituted with a VH3+, SpA-binding, IgM protein. Taken together, these results provide compelling evidence that the interaction of the Fab binding site of SpA and VH3+ Igs can lead to complement activation via the classical pathway. This novel interaction may have significant implications for the in vivo properties of a B cell superantigen.

  7. Expression cloning of multiple human cDNAs that complement the phenotypic defects of ataxia-telangiectasia group D fibroblasts

    SciTech Connect

    Meyn, M.S.; Lu-Kuo, J.M.; Herzing, L.B.K. )

    1993-12-01

    Ataxia-telangiectasia (A-T) is an inherited human disease of unknown etiology associated with neurologic degeneration, immune dysfunction, cancer risk, and genetic instability. A-T cells are sensitive to ionizing radiation and radiomimetic drugs, offering the possibility of cloning A-T genes by phenotypic complementation. The authors have used this sensitivity to isolate the first human cDNAs reported to complement A-T cells in culture. Complementation group D A-T fibroblasts were transfected with an episomal vector-based human cDNA library, [approximately]610,000 resultant transformants were treated with the radiomimetic drug streptonigrin-resistent, and nine unrelated cDNAs were recovered from 20 surviving stretptonigrin-resistant clones. Five cDNAs were mapped, but none localized to 11q23, the site of A-T D fibroblasts on secondary transfection. One cDNA was identified as a fragment of dek, a gene involved in acute myeloid leukemia. The dek cDNA fragment and pCAT4.5, a 4.5-kb cDNA that mapped to 17p11, independently complemented three different phenotypic abnormalities of A-T D fibroblasts (mutagen sensitivity, hyperrecombination, and radio-resistant DNA synthesis). The pCAT4.5 cDNA did not complement the mutagen sensitivity of an A-T group C fibroblast line, suggesting that it represents a candidate disease gene for group D A-T. These results indicate that phenotypic complementation alone is insufficient evidence to prove that a candidate cDNA is an A-T disease gene. The complementing cDNAs may represent previously uncharacterized genes that function in the same pathway as does the A-T gene product(s) in the regulation of cellular responses to DNA damage. 38 refs., 7 figs., 3 tabs.

  8. Complement and thrombosis in the antiphospholipid syndrome.

    PubMed

    Oku, Kenji; Nakamura, Hiroyuki; Kono, Michihiro; Ohmura, Kazumasa; Kato, Masaru; Bohgaki, Toshiyuki; Horita, Tetsuya; Yasuda, Shinsuke; Amengual, Olga; Atsumi, Tatsuya

    2016-10-01

    The involvement of complement activation in the pathophysiology of antiphospholipid syndrome (APS) was first reported in murine models of antiphospholipid antibody (aPL)-related pregnancy morbidities. We previously reported that complement activation is prevalent and may function as a source of procoagulant cell activation in the sera of APS patients. Recently, autoantibodies against C1q, a component of complement 1, were reported to be correlated with complement activation in systemic lupus erythematosus. These antibodies target neoepitopes of deformed C1q bound to various molecules (i.e., anionic phospholipids) and induce accelerated complement activation. We found that anti-C1q antibodies are more frequently detected in primary APS patients than in control patients and in refractory APS patients with repeated thrombotic events. The titer of anti-C1q antibodies was significantly higher in refractory APS patients than in APS patients without flare. The binding of C1q to anionic phospholipids may be associated with the surge in complement activation in patients with anti-C1q antibodies when triggered by 'second-hit' biological stressors such as infection. Such stressors will induce overexpression of anionic phospholipids, with subsequent increases in deformed C1q that is targeted by anti-C1q antibodies.

  9. [The determination of the complementation groups for the cells of patients with xeroderma pigmentosum and the Cockayne syndrome found in Russia].

    PubMed

    Pleskach, N M; Mikhel'son, V M; Raams, A; Bootsma, D

    1996-01-01

    Complementation groups for xeroderma pigmentosum (XP) and Cockayne's syndrome (CS) cells have been first determined for patients encountered in the former Soviet Union. The determination was carried out using fusion of fibroblasts to be examined with those of already known complementation groups, and subsequently registering the level of DNA unscheduled synthesis (for XP cells) and RNA synthesis recovery (for CS cells) after UV-irradiation. The evidence of the complementation was normalization of these indexes. Cells of XP2SP and XP4SP patients are shown to fall under the XPC complementation group, whereas CS1SP cells are classified within the CSA complementation group.

  10. Complementation in cytoplasmic petite mutants of yeast to form respiratory competent cells.

    PubMed Central

    Clark-Walker, G D; Miklos, G L

    1975-01-01

    Complementation has been observed in cytoplasmic respiratory deficient yeast cells (petites) to yield respiratory competent diploids. This successful demonstration depended on the use of spontaneous petites of recent origin and on crosses involving all possible apirwise combinations between the many different petite isolates of opposite mating type. The possibility of deletion of a single unique region of yeast mitochondrial DNA as the initial lesion in petite formation has been eliminated by using strains isogenic for their mitochondrial DNA. Images PMID:1090936

  11. Complement genetics, deficiencies, and disease associations.

    PubMed

    Mayilyan, Karine R

    2012-07-01

    The complement system is a key component of innate immunity. More than 45 genes encoding the proteins of complement components or their isotypes and subunits, receptors, and regulators have been discovered. These genes are distributed throughout different chromosomes, with 19 genes comprising three significant complement gene clusters in the human genome. Genetic deficiency of any early component of the classical pathway (C1q, C1r/s, C2, C4, and C3) is associated with autoimmune diseases due to the failure of clearance of immune complexes (IC) and apoptotic materials, and the impairment of normal humoral response. Deficiencies of mannan-binding lectin (MBL) and the early components of the alternative (factor D, properdin) and terminal pathways (from C3 onward components: C5, C6, C7, C8, C9) increase susceptibility to infections and their recurrence. While the association of MBL deficiency with a number of autoimmune and infectious disorders has been well established, the effects of the deficiency of other lectin pathway components (ficolins, MASPs) have been less extensively investigated due to our incomplete knowledge of the genetic background of such deficiencies and the functional activity of those components. For complement regulators and receptors, the consequences of their genetic deficiency vary depending on their specific involvement in the regulatory or signalling steps within the complement cascade and beyond. This article reviews current knowledge and concepts about the genetic load of complement component deficiencies and their association with diseases. An integrative presentation of genetic data with the latest updates provides a background to further investigations of the disease association investigations of the complement system from the perspective of systems biology and systems genetics.

  12. Complement in therapy and disease: Regulating the complement system with antibody-based therapeutics.

    PubMed

    Melis, Joost P M; Strumane, Kristin; Ruuls, Sigrid R; Beurskens, Frank J; Schuurman, Janine; Parren, Paul W H I

    2015-10-01

    Complement is recognized as a key player in a wide range of normal as well as disease-related immune, developmental and homeostatic processes. Knowledge of complement components, structures, interactions, and cross-talk with other biological systems continues to grow and this leads to novel treatments for cancer, infectious, autoimmune- or age-related diseases as well as for preventing transplantation rejection. Antibodies are superbly suited to be developed into therapeutics with appropriate complement stimulatory or inhibitory activity. Here we review the design, development and future of antibody-based drugs that enhance or dampen the complement system.

  13. Phylogenetic aspects of the complement system.

    PubMed

    Zarkadis, I K; Mastellos, D; Lambris, J D

    2001-01-01

    During evolution two general systems of immunity have emerged: innate or, natural immunity and adaptive (acquired), or specific immunity. The innate system is phylogenetically older and is found in some form in all multicellular organisms, whereas the adaptive system appeared about 450 million years ago and is found in all vertebrates except jawless fish. The complement system in higher vertebrates plays an important role as an effector of both the innate and the acquired immune response, and also participates in various immunoregulatory processes. In lower vertebrates complement is activated by the alternative and lectin pathways and is primarily involved in the opsonization of foreign material. The Agnatha (the most primitive vertebrate species) possess the alternative and lectin pathways while cartilaginous fish are the first species in which the classical pathway appears following the emergence of immunoglobulins. The rest of the poikilothermic species, ranging from teleosts to reptilians, appear to contain a well-developed complement system resembling that of the homeothermic vertebrates. It seems that most of the complement components have appeared after the duplication of primordial genes encoding C3/C4/C5, fB/C2, C1s/C1r/MASP-1/MASP-2, and C6/C7/C8/C9 molecules, in a process that led to the formation of distinct activation pathways. However, unlike homeotherms, several species of poikilotherms (e.g. trout) have recently been shown to possess multiple forms of complement components (C3, factor B) that are structurally and functionally more diverse than those of higher vertebrates. We hypothesize that this remarkable diversity has allowed these animals to expand their innate capacity for immune recognition and response. Recent studies have also indicated the possible presence of complement receptors in protochordates and lower vertebrates. In conclusion, there is considerable evidence suggesting that the complement system is present in the entire lineage of

  14. Regulator of complement activation (RCA) locus in chicken: identification of chicken RCA gene cluster and functional RCA proteins.

    PubMed

    Oshiumi, Hiroyuki; Shida, Kyoko; Goitsuka, Ryo; Kimura, Yuko; Katoh, Jun; Ohba, Shinya; Tamaki, Yuichiroh; Hattori, Takashi; Yamada, Nozomi; Inoue, Norimitsu; Matsumoto, Misako; Mizuno, Shigeki; Seya, Tsukasa

    2005-08-01

    A 150-kb DNA fragment, which contains the gene of the chicken complement regulatory protein CREM (formerly named Cremp), was isolated from a microchromosome by screening bacterial artificial chromosome library. Within 100 kb of the cloned region, three complete genes encoding short consensus repeats (SCRs, motifs with tandemly arranged 60 aa) were identified by exon-trap method and 3'- or 5'-RACE. A chicken orthologue of the human gene 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2, which exists in close proximity to the regulator of complement activation genes in humans and mice, was located near this chicken SCR gene cluster. Moreover, additional genes encoding SCR proteins appeared to be present in this region. Three distinct transcripts were detected in RNA samples from a variety of chicken organs and cell lines. Two novel genes named complement regulatory secretory protein of chicken (CRES) and complement regulatory GPI-anchored protein of chicken (CREG) besides CREM were identified by cloning corresponding cDNA. Based on the predicted primary structures and properties of the expressed molecules, CRES is a secretory protein, whereas CREG is a GPI-anchored membrane protein. CREG and CREM were protected host cells from chicken complement-mediated cytolysis. Likewise, a membrane-bound form of CRES, which was artificially generated, also protected host cells from chicken complement. Taken together, the chicken possesses an regulator of complement activation locus similar to those of the mammals, and the gene products function as complement regulators.

  15. Inhibition of Complement Retards Ankylosing Spondylitis Progression

    PubMed Central

    Yang, Chaoqun; Ding, Peipei; Wang, Qingkai; Zhang, Long; Zhang, Xin; Zhao, Jianquan; Xu, Enjie; Wang, Na; Chen, Jianfeng; Yang, Guang; Hu, Weiguo; Zhou, Xuhui

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic axial spondyloarthritis (SpA) resulting in back pain and progressive spinal ankyloses. Currently, there are no effective therapeutics targeting AS largely due to elusive pathogenesis mechanisms, even as potential candidates such as HLA-B27 autoantigen have been identified. Herein, we employed a proteoglycan (PG)-induced AS mouse model together with clinical specimens, and found that the complement system was substantially activated in the spinal bone marrow, accompanied by a remarkable proportion alteration of neutrophils and macrophage in bone marrow and spleen, and by the significant increase of TGF-β1 in serum. The combined treatment with a bacteria-derived complement inhibitor Efb-C (C-terminal of extracellular fibrinogen-binding protein of Staphylococcus aureus) remarkably retarded the progression of mouse AS by reducing osteoblast differentiation. Furthermore, we demonstrated that two important modulators involved in AS disease, TGF-β1 and RANKL, were elevated upon in vitro complement attack in osteoblast and/or osteoclast cells. These findings further unravel that complement activation is closely related with the pathogenesis of AS, and suggest that complement inhibition may hold great potential for AS therapy. PMID:27698377

  16. Applying Complement Therapeutics to Rare Diseases

    PubMed Central

    Reis, Edimara S.; Mastellos, Dimitrios C.; Yancopoulou, Despina; Risitano, Antonio M.; Ricklin, Daniel; Lambris, John D.

    2015-01-01

    Around 350 million people worldwide suffer from rare diseases. These may have a genetic, infectious, or autoimmune basis, and several include an inflammatory component. Launching of effective treatments can be very challenging when there is a low disease prevalence and limited scientific insights into the disease mechanisms. As a key trigger of inflammatory processes, complement has been associated with a variety of diseases and has become an attractive therapeutic target for conditions involving inflammation. In view of the clinical experience acquired with drugs licensed for the treatment of rare diseases such as hereditary angioedema and paroxysmal nocturnal hemoglobinuria, growing evidence supports the safety and efficacy of complement therapeutics in restoring immune balance and preventing aggravation of clinical outcomes. This review provides an overview of the candidates currently in the pharmaceutical pipeline with potential to treat orphan diseases and discusses the molecular mechanisms triggered by complement involved with the disease pathogenesis. PMID:26341313

  17. State of Büchi Complementation

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Hsien; Fogarty, Seth; Vardi, Moshe Y.; Tsay, Yih-Kuen

    Büchi complementation has been studied for five decades since the formalism was introduced in 1960. Known complementation constructions can be classified into Ramsey-based, determinization-based, rank-based, and slice-based approaches. For the performance of these approaches, there have been several complexity analyses but very few experimental results. What especially lacks is a comparative experiment on all the four approaches to see how they perform in practice. In this paper, we review the state of Büchi complementation, propose several optimization heuristics, and perform comparative experimentation on the four approaches. The experimental results show that the determinization-based Safra-Piterman construction outperforms the other three and our heuristics substantially improve the Safra-Piterman construction and the slice-based construction.

  18. Applying complement therapeutics to rare diseases.

    PubMed

    Reis, Edimara S; Mastellos, Dimitrios C; Yancopoulou, Despina; Risitano, Antonio M; Ricklin, Daniel; Lambris, John D

    2015-12-01

    Around 350 million people worldwide suffer from rare diseases. These may have a genetic, infectious, or autoimmune basis, and several include an inflammatory component. Launching of effective treatments can be very challenging when there is a low disease prevalence and limited scientific insights into the disease mechanisms. As a key trigger of inflammatory processes, complement has been associated with a variety of diseases and has become an attractive therapeutic target for conditions involving inflammation. In view of the clinical experience acquired with drugs licensed for the treatment of rare diseases such as hereditary angioedema and paroxysmal nocturnal hemoglobinuria, growing evidence supports the safety and efficacy of complement therapeutics in restoring immune balance and preventing aggravation of clinical outcomes. This review provides an overview of the candidates currently in the pharmaceutical pipeline with potential to treat orphan diseases and discusses the molecular mechanisms triggered by complement involved with the disease pathogenesis.

  19. Complement activation in chronic liver disease.

    PubMed Central

    Munoz, L E; De Villiers, D; Markham, D; Whaley, K; Thomas, H C

    1982-01-01

    Patients with HBsAg positive chronic active liver disease (CALD) and primary biliary cirrhosis (PBC) exhibit increased C3d concentrations and changes in the serum concentrations of the complement components consistent with activation of the classical and alternative pathways. In these patients the concentrations of the regulatory proteins, C3b inactivator (C3bINA) and beta IH globulin, are normal. Patients with HBsAg negative CALD and alcohol induced liver disease (ALD) exhibit no evidence of an increased level of complement system activation. In these patients diminished serum concentrations of complement components appear to be related to diminished hepatic synthetic function. C4 synthesis may be specifically reduced in autoimmune chronic active liver disease. PMID:7083631

  20. Therapeutic complement inhibition in complement-mediated hemolytic anemias: Past, present and future.

    PubMed

    Risitano, Antonio M; Marotta, Serena

    2016-06-01

    The introduction in the clinic of anti-complement agents represented a major achievement which gave to physicians a novel etiologic treatment for different human diseases. Indeed, the first anti-complement agent eculizumab has changed the treatment paradigm of paroxysmal nocturnal hemoglobinuria (PNH), dramatically impacting its severe clinical course. In addition, eculizumab is the first agent approved for atypical Hemolytic Uremic Syndrome (aHUS), a life-threatening inherited thrombotic microangiopathy. Nevertheless, such remarkable milestone in medicine has brought to the fore additional challenges for the scientific community. Indeed, the list of complement-mediated anemias is not limited to PNH and aHUS, and other human diseases can be considered for anti-complement treatment. They include other thrombotic microangiopathies, as well as some antibody-mediated hemolytic anemias. Furthermore, more than ten years of experience with eculizumab led to a better understanding of the individual steps of the complement cascade involved in the pathophysiology of different human diseases. Based on this, new unmet clinical needs are emerging; a number of different strategies are currently under development to improve current anti-complement treatment, trying to address these specific clinical needs. They include: (i) alternative anti-C5 agents, which may improve the heaviness of eculizumab treatment; (ii) broad-spectrum anti-C3 agents, which may improve the efficacy of anti-C5 treatment by intercepting the complement cascade upstream (i.e., preventing C3-mediated extravascular hemolysis in PNH); (iii) targeted inhibitors of selective complement activating pathways, which may prevent early pathogenic events of specific human diseases (e.g., anti-classical pathway for antibody-mediated anemias, or anti-alternative pathway for PNH and aHUS). Here we briefly summarize the status of art of current and future complement inhibition for different complement-mediated anemias

  1. Inhibition of complement-mediated cytolysis by the terminal complement inhibitor of herpesvirus saimiri.

    PubMed

    Rother, R P; Rollins, S A; Fodor, W L; Albrecht, J C; Setter, E; Fleckenstein, B; Squinto, S P

    1994-02-01

    Herpesvirus saimiri (HVS) is a lymphotropic herpesvirus that induces T-cell transformation in vitro and causes lymphomas and leukemias in New World primates other than its natural host, the squirrel monkey. Nucleotide sequence analysis of the HVS genome revealed two open reading frames with significant homology to genes for human complement regulatory molecules. One of these genes encodes a predicted protein (designated HVSCD59) with 48% amino acid sequence identity to the human terminal complement regulatory protein CD59 (HuCD59). The CD59 homolog from squirrel monkey (SMCD59) was cloned, and the corresponding amino acid sequence showed 69% identity with HVSCD59. BALB/3T3 cells stably expressing HVSCD59, SMCD59, or HuCD59 were equally protected from complement-mediated lysis by human serum. However, only HVSCD59-expressing cells were effectively protected from complement-mediated lysis when challenged with rat serum, suggesting that HVSCD59 was less species restrictive. The complement regulatory activity of HVSCD59 and SMCD59 occurred after C3b deposition, indicating terminal complement inhibition. Treatment of BALB/3T3 stable transfectants with phosphatidylinositol-specific phospholipase C prior to complement attack decreased the complement regulatory function of HVSCD59, suggesting cell surface attachment via a glycosyl-phosphatidylinositol anchor. Cells expressing HVSCD59 effectively inhibited complement-mediated lysis by squirrel monkey serum in comparison with SMCD59-expressing cells. Finally HVSCD59-specific transcripts were detected in owl monkey cells permissive for lytic HVS replication but not in T cells transformed by HVS, which failed to produce virions. These data are the first to demonstrate a functional, virally encoded terminal complement inhibitor and suggest that HVSCD59 represents a humoral immune evasion mechanism supporting the lytic life cycle of HVS.

  2. Identification of three complementation units in the gerA spore germination locus of Bacillus subtilis.

    PubMed Central

    Zuberi, A R; Feavers, I M; Moir, A

    1985-01-01

    The gerA locus, mutations in which affect the germination response of spores to L-alanine and related amino acids, is contained within a 6-kilobase region of DNA cloned in phage and plasmid vectors. Fragments from this region, subcloned in the shuttle vector pHV33, were introduced into Bacillus subtilis, and their ability to complement chromosomal gerA mutations in a recE4 background was examined. Although the plasmids were somewhat unstable, it was possible to score complementation within spore-containing colonies on nutrient agar by their ability to reduce 2,3,5-triphenyltetrazolium chloride in an overlay. These studies have assigned the 10 gerA mutations tested to three complementation groups. An analysis of Tn1000 insertions into the cloned DNA of two relatively stable plasmids that together encompass the entire gerA region has identified more precisely the location and extent of the complementation units; recombination studies and in vitro mutagenesis were used to further delineate the extents of two of the units. The evidence suggests that the three complementation units are adjacent and that they are probably capable of separate transcription. PMID:2985546

  3. Xeroderma pigmentosum complementation group G associated with Cockayne syndrome

    SciTech Connect

    Vermeulen, W.; Jaspers, N.G.J.; Bootsma, D.; Hoeijmakers, J.H.J. ); Jaeken, J. )

    1993-07-01

    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are two rare inherited disorders with a clinical and cellular hypersensitivity to the UV component of the sunlight spectrum. Although the two traits are generally considered as clinically and genetically distinct entities, on the biochemical level a defect in the nucleotide excision-repair (NER) pathway is involved in both. Classical CS patients are primarily deficient in the preferential repair of DNA damage in actively transcribed genes, whereas in most XP patients the genetic defect affects both [open quotes]preferential[close quotes] and [open quotes]overall[close quotes] NER modalities. Here the authors report a genetic study of two unrelated, severely affected patients with the clinical characteristics of CS but with a biochemical defect typical of XP. By complementation analysis, using somatic cell fusion and nuclear microinjection of cloned repair genes, they assign these two patients to XP complementation group G, which previously was not associated with CS. This observation extends the earlier identification of two patients with a rare combined XP/CS phenotype within XP complementation groups B and D, respectively. It indicates that some mutations in at least three of the seven genes known to be involved in XP also can result in a picture of partial or even full-blown CS. It is concluded that the syndromes XP and CS are biochemically closely related and may be part of a broader clinical disease spectrum. The authors suggest, as a possible molecular mechanism underlying this relation, that the XPGC repair gene has an additional vital function, as shown for some other NER genes. 33 refs., 5 tabs.

  4. A detailed genetic analysis of the late complementation groups of simian virus 40.

    PubMed

    Mertz, J E

    1984-01-15

    A simple mixed-plaque assay procedure for determining complementation between pairs of SV40 mutants is described. Since the data obtained can be quantified with respect to both the relative numbers and sizes of plaques, this method is less likely than other complementation assay procedures to yield false-positive results and gives some indication as to the efficiency of the complementation. This quantitative assay procedure, which works with both viral DNA and virions, was used to examine the complementation properties of a variety of late region temperature-sensitive and deletion mutants of SV40. Conclusions reached from these studies included (i) the complementation observed between tsB and tsC mutants is definitely intragenic; (ii) D mutants define a true complementation group; (iii) sequences within the last 68 carboxyl-terminal amino acids of VP-3 are necessary for expression of the D function; and (iv) when linked to the last 19 carboxyl-terminal amino acids of VP-1, the first 136 amino-terminal amino acids of VP-2 are sufficient for expression of the E function. Lastly, the collection of deletion mutants described here may be useful in identifying both structural and regulatory functions of the virion proteins and in analyzing some aspects of viral mRNA biogenesis.

  5. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4100...

  6. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4100...

  7. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4100...

  8. Emai Sentence Complements in Typological Perspective.

    ERIC Educational Resources Information Center

    Schaefer, Ronald P.; Egbokhare, Francis O.

    This paper explores the syntactic and semantic character of previously undescribed sentence complements (SCs) in Emai, a Benue-Congo language of Nigeria's Edoid group. Data come from ongoing documentation incorporating oral narrative texts as well as dictionary and grammar descriptions. To delineate the grammatical properties of SCs, the paper…

  9. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4100...

  10. 21 CFR 866.4100 - Complement reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4100...

  11. The complement system: an evolution in progress

    PubMed Central

    Ghebrehiwet, Berhane

    2016-01-01

    The complement system, which consists of three independent but interacting pathways, constitutes a powerful arm of innate immunity. Its major function is to recognize and destroy pathogenic microorganisms as well as eliminate modified self-antigens. Although it is a fine-tuned system with innate capacity to discriminate self from non-self as well as danger from non-danger signals, an unwarranted activation can nonetheless occur and cause tissue destruction. To prevent such activation, specific regulators present both in plasma and on the cell surface tightly control it. Data accumulated over the past four decades have also shown that the complement system is capable of not only cross-talk with the activation cascades of plasma––i.e. blood coagulation, contact activation, and the kinin/kallikrein system––but also serving as a bridge between innate and adaptive immunity. It is for these reasons that the various activation steps of the complement system have been recently targeted for therapy to treat diseases in which the role of complement is beyond doubt. This trend will certainly continue for years to come, especially as novel concepts guiding the field into areas never contemplated before are continuing to be discovered. PMID:27990282

  12. Complement and lupus: old concepts and new directions.

    PubMed

    Porcel, J M; Vergani, D

    1992-12-01

    In this review it is our intention to outline briefly the relevance of the complement system in systemic lupus erythematosus. Three main issues will be addressed: the role of complement in handling immune complexes (ICs), the association between complement deficiencies and IC diseases, and the value of measuring complement components and their conversion products in monitoring disease activity.

  13. Complement Constructions in English: Fairly Difficult for EFL Language Learners

    ERIC Educational Resources Information Center

    Fazeli, Fatemeh; Shokrpour, Nasrin

    2012-01-01

    Complement constructions vary significantly in English and Persian. There are more complementation structures in English than in Persian and a complement structure in Persian might have more than one equivalent in English. Producing complement structures (CSs) in English is very difficult for native speakers of Persian, especially in an EFL…

  14. Complement Constructions in English: Fairly Difficult for EFL Language Learners

    ERIC Educational Resources Information Center

    Fazeli, Fatemeh; Shokrpour, Nasrin

    2012-01-01

    Complement constructions vary significantly in English and Persian. There are more complementation structures in English than in Persian and a complement structure in Persian might have more than one equivalent in English. Producing complement structures (CSs) in English is very difficult for native speakers of Persian, especially in an EFL…

  15. Characterization of the complement inhibitory function of rhesus rhadinovirus complement control protein (RCP).

    PubMed

    Okroj, Marcin; Mark, Linda; Stokowska, Anna; Wong, Scott W; Rose, Nicola; Blackbourn, David J; Villoutreix, Bruno O; Spiller, O Brad; Blom, Anna M

    2009-01-02

    Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.

  16. Targeted Inhibition of Complement Using Complement Receptor 2-Conjugated Inhibitors Attenuates EAE

    PubMed Central

    Hu, Xianzhen; Tomlinson, Stephen; Barnum, Scott R.

    2012-01-01

    Multiple sclerosis (MS) is the most common autoimmune demyelinating disease, affecting millions of individuals worldwide. In the last two decades, many therapeutic options for the treatment of MS have become available, however they are limited in terms of effectiveness and some remain plagued by safety issues. The currently available treatment options target relapsing remitting forms of MS and are not effective against the more progressive forms of the disease. These limitations highlight a significant unmet treatment need for MS. In experimental autoimmune encephalomyelitis (EAE) studies from our laboratory, we have previously shown, using a number of complement mutant and transgenic mice, that inhibition of the alternative complement pathway and the C3 convertase confers significant protection from disease. We report here that targeted inhibition of complement activation using complement receptor 2 (CR2)-conjugated inhibitors significantly attenuates EAE. Administration of CR2-Crry (blocks all complement pathways at C3 activation) and CR2-fH (specifically blocks the alternative pathway) just prior to and during the onset of EAE blocks progression of both acute and chronic disease. These data indicate that inhibition of complement may offer an effective therapeutic approach to treating both acute and chronic forms of demyelinating disease through blocking the alternative pathway or complement convertases. PMID:23079547

  17. Targeted inhibition of complement using complement receptor 2-conjugated inhibitors attenuates EAE.

    PubMed

    Hu, Xianzhen; Tomlinson, Stephen; Barnum, Scott R

    2012-11-30

    Multiple sclerosis (MS) is the most common autoimmune demyelinating disease, affecting millions of individuals worldwide. In the last two decades, many therapeutic options for the treatment of MS have become available, however they are limited in terms of effectiveness and some remain plagued by safety issues. The currently available treatment options target relapsing remitting forms of MS and are not effective against the more progressive forms of the disease. These limitations highlight a significant unmet treatment need for MS. In experimental autoimmune encephalomyelitis (EAE) studies from our laboratory, we have previously shown, using a number of complement mutant and transgenic mice, that inhibition of the alternative complement pathway and the C3 convertase confers significant protection from disease. We report here that targeted inhibition of complement activation using complement receptor 2 (CR2)-conjugated inhibitors significantly attenuates EAE. Administration of CR2-Crry (blocks all complement pathways at C3 activation) and CR2-fH (specifically blocks the alternative pathway) just prior to and during the onset of EAE blocks progression of both acute and chronic disease. These data indicate that inhibition of complement may offer an effective therapeutic approach to treating both acute and chronic forms of demyelinating disease through blocking the alternative pathway or complement convertases.

  18. Non-specific adsorption of complement proteins affects complement activation pathways of gold nanomaterials.

    PubMed

    Quach, Quang Huy; Kah, James Chen Yong

    2017-04-01

    The complement system is a key humoral component of innate immunity, serving as the first line of defense against intruders, including foreign synthetic nanomaterials. Although gold nanomaterials (AuNMs) are widely used in nanomedicine, their immunological response is not well understood. Using AuNMs of three shapes commonly used in biomedical applications: spherical gold nanoparticles, gold nanostars and gold nanorods, we demonstrated that AuNMs activated whole complement system, leading to the formation of SC5b-9 complex. All three complement pathways were simultaneously activated by all the AuNMs. Recognition molecules of the complement system interacted with all AuNMs in vitro, except for l-ficolin, but the correlation between these interactions and corresponding complement pathway activation was only observed in the classical and alternative pathways. We also observed the mediating role of complement activation in cellular uptake of all AuNMs by human U937 promonocytic cells, which expresses complement receptors. Taken together, our results highlighted the potential immunological challenges for clinical applications of AuNMs that were often overlooked.

  19. Ectromelia virus inhibitor of complement enzymes protects intracellular mature virus and infected cells from mouse complement.

    PubMed

    Moulton, Elizabeth A; Bertram, Paula; Chen, Nanhai; Buller, R Mark L; Atkinson, John P

    2010-09-01

    Poxviruses produce complement regulatory proteins to subvert the host's immune response. Similar to the human pathogen variola virus, ectromelia virus has a limited host range and provides a mouse model where the virus and the host's immune response have coevolved. We previously demonstrated that multiple components (C3, C4, and factor B) of the classical and alternative pathways are required to survive ectromelia virus infection. Complement's role in the innate and adaptive immune responses likely drove the evolution of a virus-encoded virulence factor that regulates complement activation. In this study, we characterized the ectromelia virus inhibitor of complement enzymes (EMICE). Recombinant EMICE regulated complement activation on the surface of CHO cells, and it protected complement-sensitive intracellular mature virions (IMV) from neutralization in vitro. It accomplished this by serving as a cofactor for the inactivation of C3b and C4b and by dissociating the catalytic domain of the classical pathway C3 convertase. Infected murine cells initiated synthesis of EMICE within 4 to 6 h postinoculation. The levels were sufficient in the supernatant to protect the IMV, upon release, from complement-mediated neutralization. EMICE on the surface of infected murine cells also reduced complement activation by the alternative pathway. In contrast, classical pathway activation by high-titer antibody overwhelmed EMICE's regulatory capacity. These results suggest that EMICE's role is early during infection when it counteracts the innate immune response. In summary, ectromelia virus produced EMICE within a few hours of an infection, and EMICE in turn decreased complement activation on IMV and infected cells.

  20. The effects of soluble recombinant complement receptor 1 on complement-mediated experimental glomerulonephritis.

    PubMed

    Couser, W G; Johnson, R J; Young, B A; Yeh, C G; Toth, C A; Rudolph, A R

    1995-05-01

    Complement is a major mediator of tissue injury in several types of glomerulonephritis. However, no therapeutic agents that inhibit complement activation are available for human use. sCR1 (TP10, BRL 55736) is a recombinant, soluble human complement receptor 1 (CR1) molecule lacking transmembrane and cytoplasmic domains that inhibits C3 and C5 convertase activity by preferentially binding C4b and C3b. To test the efficacy of sCR1 on complement-mediated glomerulonephritis, rats were pretreated with sCR1 (60 mg/kg per day) before and during the induction of three models of complement-dependent glomerulonephritis (concanavalin A and antithymocyte serum models of proliferative glomerulonephritis, passive Heyman nephritis). Daily sCR1 and complement hemolytic activity levels were measured, and renal histology and urine protein excretion were examined. Mean serum sCR1 levels of 100 to 200 micrograms/mL were maintained with a reduction in complement hemolytic activity to less than 15% in most animals. In the antithymocyte serum model, sCR1-treated animals had significant reductions in mesangiolysis, glomerular platelet and macrophage infiltrates, and proteinuria at 48 h. In the concanavalin A model, sCR1 significantly reduced glomerular C3 and fibrin deposits, platelet infiltrates, and proteinuria at 48 h. In passive Heymann nephritis, proteinuria was also significantly reduced (199 +/- 8.5 versus 125 +/- 16 mg/day, P < 0.002) at 5 days. It was concluded that sCR1 significantly reduces both morphologic and functional consequences of several different types of complement-mediated glomerulonephritis and deserves evaluation as a potential therapeutic agent in complement-mediated immune glomerular disease in humans.

  1. Can Cell Bound Complement Activation Products Predict Inherited Complement Deficiency in Systemic Lupus Erythematosus?

    PubMed Central

    Waters, Barry

    2016-01-01

    Activation of the classical pathway complement system has long been implicated in stimulating immune complex mediated tissue destruction in systemic lupus erythematosus (SLE). C3 and C4 complement levels are utilized as part of SLE diagnosis and monitoring criteria. Recently, cell bound complement activation products (CBCAPs) have shown increased sensitivity in diagnosing and monitoring lupus activity, compared to traditional markers. CBCAPs are increasingly utilized in rheumatology practice as additional serological markers in evaluating SLE patients. We report a case of a patient diagnosed with SLE that had chronically low C3 and C4, along with negative CBCAPs. We surmise that the patient has an inherited complement deficiency as the etiology of her SLE and that CBCAPs could be used to predict such deficiency. PMID:28074166

  2. Tanker avionics and aircrew complement evaluation.

    PubMed

    Moss, R W; Barbato, G J

    1982-11-01

    This paper describes an effort to determine control and display criteria for operating SAC's KC-135 tanker with a reduced crew complement. The Tanker Avionics and Aircrew Complement Evaluation (TAACE) Program was a four-phase effort addressing the control and display design issues associated with operating the tanker without the navigator position. Discussed are: the mission analysis phase, during which the tanker's operational responsibilities were defined and documented; the design phase, during which alternative crew station design concepts were developed; the mockup evaluation phase, which accomplished initial SAC crew member assessment of cockpit designs; and the simulation phase, which validated the useability of the crew system redesign. The paper also describes a recommended crew station configuration and discusses some of the philosophy underlying the selection of cockpit hardware and systems.

  3. Soluble human complement receptor type 1 inhibits complement-mediated host defense.

    PubMed

    Swift, A J; Collins, T S; Bugelski, P; Winkelstein, J A

    1994-09-01

    Soluble complement receptor type 1 (sCR1) is a powerful inhibitor of complement activation. Because of this ability, sCR1 may prove to be an important therapeutic agent that can be used to block the immunopathologic effects of uncontrolled complement activation in a variety of clinically significant disorders. Although several previous studies have examined the ability of sCR1 to inhibit complemented-mediated immunopathologic damage, there is no information on its ability to interfere with the host's defense against infection. In the current experiments sCR1 exerted a concentration-dependent inhibitory effect on the phagocytosis of Streptococcus pneumoniae by human polymorphonuclear leukocytes in vitro. Not only di sCR1 inhibit complement-dependent opsonization of the pneumococcus but at higher concentrations it also inhibited the ingestion of bacteria which had been previously opsonized. Furthermore, when rats were injected with sCR1, it inhibited both their serum hemolytic activity and serum opsonic activity in a dose-dependent fashion. Finally, for rats treated with sCR1, the 50% lethal dose was S. pneumoniae and Pseudomonas aeruginosa. These data demonstrate that sCR1 significantly inhibits complement-mediated host against bacterial infection.

  4. COMPLEMENT REGULATION IN RENAL DISEASE MODELS

    PubMed Central

    Naik, Abhijit; Sharma, Shweta; Quigg, Richard J.

    2014-01-01

    Activation of the complement system is tightly regulated by plasma and cell-associated complement regulatory proteins (CRPs), such as factor H (fH), decay-accelerating factor (DAF), and membrane cofactor protein (MCP). Animal models of disease have provided considerable insights into the important roles for CRPs in the kidney. Mice deficient in fH have excessive fluid phase C3 activation and inactivation leading to deposition of iC3b in glomerular capillary walls (GCW), comparable to dense deposit disease. In contrast, when fH lacks C-terminal surface targeting regions, local activation on the GCW leads to a disease reminiscent of thrombotic microangiopathy. The uniquely rodent protein, CR1-related y (Crry), has features analogous to human MCP. Defective Crry leads to unrestricted alternative pathway activation in the tubulointerstitium (TI) resulting in pathological features ranging from TMA, acute kidney injury and TI nephritis. In the presence of initiators of the classical or lectin pathways, commonly in the form of immune complexes in human glomerular diseases, complement regulation on self is stressed, with the potential for recruitment of the spontaneously active alternative pathway. The threshold for this activation is set by CRPs; pathology is more likely when complement regulation is defective. Within the endocapillary region of the GCW, fH is key, while DAF and Crry are protective on mesangial cells and podocytes. Arguably, acquired alterations in these CRPs is a more common event, extending from pathological states of cellular injury or production of inhibitory antibodies, to physiological fine tuning of the adaptive immune response. PMID:24161042

  5. Anti-complement sesquiterpenes from Viola yedoensis.

    PubMed

    Du, Dongsheng; Cheng, Zhihong; Chen, Daofeng

    2015-03-01

    Two new germacrane sesquiterpenes, yedoensins A (1) and B (2), together with 8 known ones (3-10) were isolated from the herb of Viola yedoensis. The structures of the new compounds were established by extensive spectroscopic means including 1D ((1)H and (13)C) and 2D NMR experiments (HSQC, HMBC, and NOESY) as well as HR-ESI-MS analysis. The absolute configurations of the known sesquiterpenes versicolactone B (3) and madolin W (6) were determined by a modified Mosher's method for the first time. The sesquiterpenes 1-3, and 5-9 exhibited anti-complement activity against the classical pathway (CP) and the alternative pathway (AP) with the CH50 and AP50 values ranging from 0.14 to 0.37mg/mL and 0.32 to 0.54mg/mL, respectively. Preliminary mechanism study using complement-depleted sera showed that yedoensin A (1) and versicolactone B (3) acted on C1q, C3 and C9, while madolin W (6), aristoyunnolin E (7) and madolin Y (9) interacted with C1q, C3, C5 and C9 components in the complement activation cascade. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Detection of complement activation by counterimmunoelectrophoresis (CIE).

    PubMed

    Arroyave, C M; Tan, E M

    1976-01-01

    Counterimmunoelectrophoresis (CIE) was used as a method of detecting activation of the third component of the complement system (C3). Highly purified C3, normal human serum (NHS), EDTA-treated plasma and serum activated with aggregated human immunoglobulin (agg-IgG) or inulin were used as sources of C3 and/or C3 split products. Activation of the alternative pathway of complement was assayed in the presence of EGTA (10 mM) and MgCl2 (0.3 mM), conditions which block activation of the classical pathway. When purified native C3, fresh NHS and fresh EDTA-plasma were tested in CIE against either antisera to whole C3 or to C3 split products, only one precipitin line was found, which was identified as native C3. However, when serum activated with agg-IgG or inulin were tested against the same reagents, two precipitin lines were seen. The first, with more cathodal mobility was identical to that of native C3. The second line had a more anodal mobility, was distinctly separated from the first and contained C3c and C3d as shown immunochemically with specific antisera. Native C3 and split products of C3 were identified by this CIE method in patients showing evidence of activated complement by having subnormal total complement (CH50) levels. When C3 split products were identified, the C3c-C3d precipitin line could always be distinguished from native C3 by its different electrophoretic mobility, even when C3 concentrations in serum varied from 0.25 mg/ml to 1.5 mg/ml. The sensitivity of CIE was compared to that of CH50 by asssaying at different time intervals after agg-IgG was added to fresh NHS. C3c-C3d split products were detected by CIE before any fall in CH50 and at all times when a significant decrease in CH50 was present. This study shows that the CIE technique is a highly sensitive, specific and rapid method for detecting activation of the complement system via classical or alternative pathways in human disease.

  7. Expression cloning of multiple human cDNAs that complement the phenotypic defects of ataxia-telangiectasia group D fibroblasts.

    PubMed Central

    Meyn, M S; Lu-Kuo, J M; Herzing, L B

    1993-01-01

    Ataxia-telangiectasia (A-T) is an inherited human disease of unknown etiology associated with neurologic degeneration, immune dysfunction, cancer risk, and genetic instability. A-T cells are sensitive to ionizing radiation and radiomimetic drugs, offering the possibility of cloning A-T genes by phenotypic complementation. We have used this sensitivity to isolate the first human cDNAs reported to complement A-T cells in culture. Complementation group D A-T fibroblasts were transfected with an episomal vector-based human cDNA library, approximately 610,000 resultant transformants were treated with the radiomimetic drug streptonigrin-resistant, and nine unrelated cDNAs were recovered from 29 surviving streptonigrin-resistant clones. Five cDNAs were mapped, but none localized to 11q23, the site of A-T complementation group A and C loci. Four of the mapped cDNAs conferred mutagen resistance to A-T D fibroblasts on secondary transfection. One cDNA was identified as a fragment of dek, a gene involved in acute myeloid leukemia. The dek cDNA fragment and pCAT4.5, a 4.5-kb cDNA that mapped to 17p11, independently complemented three different phenotypic abnormalities of A-T D fibroblasts (mutagen sensitivity, hyper-recombination, and radio-resistant DNA synthesis). The pCAT4.5 cDNA did not complement the mutagen sensitivity of an A-T group C fibroblast line, suggesting that it represents a candidate disease gene for group D A-T. Our results indicate that phenotypic complementation alone is insufficient evidence to prove that a candidate cDNA is an A-T disease gene. The complementing cDNAs may represent previously uncharacterized genes that function in the same pathway as does the A-T gene product(s) in the regulation of cellular responses to DNA damage. Images Figure 2 PMID:7504406

  8. Age-related macular degeneration: Complement in action.

    PubMed

    van Lookeren Campagne, Menno; Strauss, Erich C; Yaspan, Brian L

    2016-06-01

    The complement system plays a key role in host-defense against common pathogens but must be tightly controlled to avoid inflammation and tissue damage. Polymorphisms in genes encoding two important negative regulators of the alternative complement pathway, complement factor H (CFH) and complement factor I (CFI), are associated with the risk for Age-Related Macular Degeneration (AMD), a leading cause of vision impairment in the ageing population. In this review, we will discuss the genetic basis of AMD and the potential impact of complement de-regulation on disease pathogenesis. Finally, we will highlight recent therapeutic approaches aimed at controlling complement activation in patients with AMD.

  9. Comparative Genomics and the Gene Complement of a Minimal Cell

    NASA Astrophysics Data System (ADS)

    Islas, Sara; Becerra, Arturo; Luisi, P. Luigi; Lazcano, Antonio

    2004-02-01

    The concept of a minimal cell is discussed from the viewpoint of comparative genomics. Analysis of published DNA content values determined for 641 different archaeal and bacterial species by pulsed field gel electrophoresis has lead to a more precise definition of the genome size ranges of free-living and host-associated organisms. DNA content is not an indicator of phylogenetic position. However, the smallest genomes in our sample do not have a random distribution in rRNA-based evolutionary trees, and are found mostly in (a) the basal branches of the tree where thermophiles are located; and (b) in late clades, such as those of Gram positive bacteria. While the smallest-known genome size for an endosymbiont is only 450 kb, no free-living prokaryote has been described to have genomes <1450 kb. Estimates of the size of minimal gene complement can provide important insights in the primary biological functions required for a sustainable, reproducing cell nowadays and throughout evolutionary times, but definitions of the minimum cell is dependent on specific environments.

  10. The sequence and topology of human complement component C9.

    PubMed Central

    Stanley, K K; Kocher, H P; Luzio, J P; Jackson, P; Tschopp, J

    1985-01-01

    A partial nucleotide sequence of human complement component C9 cDNA representing 94% of the coding region of the mature protein is presented. The amino acid sequence predicted from the open reading frame of this cDNA concurs with the amino acid sequence at the amino-terminal end of three proteolytic fragments of purified C9 protein. No long stretches of hydrophobic residues are present, even in the carboxy-terminal half of the molecule which reacts with lipid-soluble photoaffinity probes. Monoclonal antibody epitopes have been mapped by comparing overlapping fragments of C9 molecule to which the antibodies bind on Western blots. Several of these epitopes map to small regions containing other surface features (e.g., proteolytic cleavage sites and N-linked oligosaccharide). The amino-terminal half of C9 is rich in cysteine residues and contains a region with a high level of homology to the LDL receptor cysteine-rich domains. A model for C9 topology based on these findings is proposed. Images Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. PMID:4018030

  11. Hagfish humoral defense protein exhibits structural and functional homology with mammalian complement components.

    PubMed Central

    Hanley, P J; Hook, J W; Raftos, D A; Gooley, A A; Trent, R; Raison, R L

    1992-01-01

    A genomic clone and cDNA fragment encoding a portion of a humoral recognition molecule from the hagfish were isolated and sequenced. The serum protein has previously been described as having structural features that are immunoglobulin-like. Amino acid sequence obtained from the 77-kDa H1 heavy chain facilitated the isolation of a genomic clone containing at least two coding regions. Through use of primers derived from the genomic sequences, a 231-base-pair cDNA fragment was obtained by PCR from liver RNA. Comparison of the deduced 120-amino acid sequence from the N terminus of H1 with known protein sequences revealed substantial sequence similarity with the beta chain of the murine fourth complement component C4 and with the related third and fifth complement molecules C5 and C3 and the major histocompatibility complex-encoded sex-limited protein. Observation of structural and functional similarities associated with the sequence similarity indicate that these molecules share an evolutionary relationship: the polypeptide chain structure of hagfish complement-like protein (CLP) resembles that of C4; CLP contains a hidden thioester group on the 70-kDa chain; CLP binds to streptococcal cells and enhances the phagocytosis of yeast by hagfish leukocytes. These data suggest that CLP forms part of a non-clonally-derived complement-related humoral defense system in the hagfish. Images PMID:1518812

  12. Complement research in the 18th-21st centuries: Progress comes with new technology.

    PubMed

    Sim, R B; Schwaeble, W; Fujita, T

    2016-10-01

    The complement system has been studied for about 120 years. Progress in defining this large and complex system has been dependent on the research technologies available, but since the introduction of protein chromatography, electrophoresis, and antibody-based assay methods in the 1950s and 60s, and sequencing of proteins and DNA in the 70s and 80s, there has been very rapid accumulation of data. With more recent improvements in 3D structure determination (nmr and X-ray crystallography), the structures of most of the complement proteins have now been solved. Complement research since 1990 has been greatly stimulated by the discoveries of the multiple proteins in the lectin pathway, the strong association of Factor H, C3, Factor B allelic variants with adult macular degeneration and atypical haemolytic uremic syndrome, and the introduction of the anti-C5 monoclonal antibody as a therapy for paroxysmal nocturnal hemoglobinuria and atypical haemolytic uremic syndrome. Potential new roles for complement in tissue development and the search for novel therapeutics suggest a very active future for complement research.

  13. ANTI-DNA ANTIBODIES IN HYPERIMMUNIZED RABBITS

    PubMed Central

    Christian, Charles L.; DeSimone, Arthur R.; Abruzzo, John L.

    1965-01-01

    Complement-fixing anti-DNA antibodies were detected in a minority of sera of rabbits hyperimmunized with killed Gram-negative bacteria. The C'-fixing property of DNA was lost after DNase treatment. Preferential reactivity with denatured DNA was observed. The antisera reacted with DNA preparations derived from rabbit bone marrow and thymus, calf thymus, pneumococci, salmon sperm, and Escherichia coli. E. coli DNA was less effective than preparations of mammalian and salmon sperm DNA in fixation of C'. Inhibition of DNA C' fixation by nucleotides and nucleosides was observed. The bulk of anti-DNA activity was associated with the low molecular weight antibody fraction. PMID:14264274

  14. Complementing asteroseismology with 4MOST spectroscopy

    NASA Astrophysics Data System (ADS)

    de Jong, R. S.; 4MOST Consortium; 4MOST Spectroscopy Consortium

    2016-09-01

    4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the areas of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO. 4MOST will have an unique operations concept in which 5-years public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. As a dedicated spectroscopic survey facility with a large field-of-view, a high multiplex that can be reconfigured quickly, and with a broad wavelength coverage, 4MOST is particularly well suited to complement the upcoming asteroseismology space missions like TESS and PLATO. Here we show that, by dedicating the observing time during twilight and poor observing conditions to bright stars, 4MOST will obtain resolution {R>18 000} spectra of nearly all stars brighter than ˜ 12th magnitude at Dec < 30o every ˜ 2 years. 4MOST is also expected to spectroscopically complement any fainter asteroseismology target to be observed with PLATO. These observations will provide a chemical characterization of nearly all stars to be observed with the TESS and PLATO missions and place any planets found in a full chemo-dynamical context of the star formation history of the Galaxy, yield very accurate ages and masses for all stars that can be characterized with asteroseismology, and allow removal of contaminants from target samples (e.g., spectroscopic binaries).

  15. VISUALIZATION OF MOLECULAR INTERACTIONS BY FLUORESCENCE COMPLEMENTATION

    PubMed Central

    Kerppola, Tom K.

    2008-01-01

    The visualization of protein complexes in living cells enables validation of protein interactions in their normal environment and determination of their subcellular localization. The bimolecular fluorescence complementation (BiFC) assay has been used to visualize interactions among multiple proteins in many cell types and organisms. This assay is based on the association between two fluorescent-protein fragments when they are brought together by an interaction between proteins fused to the fragments. Modified forms of this assay have been used to visualize the competition between alternative interaction partners and the covalent modification of proteins by ubiquitin family peptides. PMID:16625152

  16. Complementation cloning and sequence analysis of the Chlamydomonas reinhardtii hemL gene encoding glutamate-1-semialdehyde aminotransferase

    SciTech Connect

    Matters, G.L.; Beale, S.I. )

    1993-05-01

    Glutamate-1-semialdehyde amino-transferase (GSAT) catalyzes formation of the tetrapyrrole precursor, [delta]-aminolevulinic acid. GSAT is encoded by the hemL gene. A Chlamydomonas reinhardtii hemL cDNA was selected from a vegetative stage expression library by complementation of Escherichia coli hemL mutant GE 1377. In vitro GSAT activity was ten-fold higher in an extract of the complemented hemL cells than in an extract of uncomplemented mutant cells. The complementing cDNA is 2010 bp long and includes 591 bp of 3' noncoding DNA and an estimated 27 bp of 5' noncoding DNA. The coding region includes the sequence for a putative 30-amino acid chloroplast transit peptide and a 433-amino acid mature protein. The mature protein deduced from the Chlamydomonas cDNA sequence has a molecular weight of 45,880, compared to the value of 43,000 reported for purified Chlamydomonas GSAT (d. Jahn et al., 1991, J. Biol. Chem. 266:161-167). The deduced peptide is 74% identical to Synechococcus GSAT, 70% identical to barley GSAT and 66% identical to tobacco GSAT. The putative pyridoxal binding region has the sequence TTMGKVIGG, which differs somewhat from those reported for other aminotransferases. The deduced putative chloroplast transit peptide has recognizable similarity to barley GSAT transit peptide. Southern analysis of genomic DNA from Chlamydomonas strain CC124, using the cDNA as a probe, indicates that GSAT is probably encoded by a single gene.

  17. Genetics Home Reference: complement component 2 deficiency

    MedlinePlus

    ... navigation Home Page Search Home Health Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Share: Email ... deficiency have a significantly increased risk of recurrent bacterial infections, specifically of the lungs (pneumonia), the membrane ...

  18. Genetics Home Reference: complement component 8 deficiency

    MedlinePlus

    ... navigation Home Page Search Home Health Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Share: Email ... deficiency have a significantly increased risk of recurrent bacterial infections, particularly by a bacterium called Neisseria meningitidis . ...

  19. Soluble complement receptor 1 inhibits both complement and granulocyte activation during ex vivo hemodialysis.

    PubMed

    Himmelfarb, J; McMonagle, E; Holbrook, D; Toth, C

    1995-10-01

    Hemodialysis with cellulosic membranes results in both complement and granulocyte activation. We investigated the effects of soluble complement receptor 1 (sCR1), a potent complement inhibitor, on both complement and granulocyte activation in an ex vivo model of dialysis. Measurements were made of complement activation (radioimmunoassay for C3a desArg) as well as granulocyte activation (flow cytometric measurements of reactive oxygen species production, granulocyte CD11b/CD18 (MAC-1) expression and CD62L (L-selectin) expression). sCR1 completely abolished the generation of plasma C3a desArg during ex vivo hemodialysis. Without sCR1, C3a desArg levels rose from 968 +/- 373 ng/ml to 4961 +/- 40 ng/ml by the end of the ex vivo procedure (p < 0.001). sCR1 also completely inhibited MAC-1 upregulation and L-selectin shedding from granulocytes during ex vivo hemodialysis. With sCR1 there was still a statistically significant increase in granulocyte reactive oxygen species production (from 2.42 +/- 0.1 fluorescence channels to 6.47 +/- 0.7 fluorescence channels, p < 0.01) but a 50% inhibition when compared with experiments without sCR1 (3.15 +/- 0.5 to 11.2 +/- 1.9, p < 0.01). We conclude that sCR1 completely abolishes complement activation and changes in granulocyte cell adhesion molecules during ex vivo hemodialysis with cellulosic membranes. sCR1 partially inhibits granulocyte reactive oxygen species formation.

  20. The Production of Complement Clauses in Children with Language Impairment

    ERIC Educational Resources Information Center

    Steel, Gillian; Rose, Miranda; Eadie, Patricia

    2016-01-01

    Purpose: The purpose of this research was to provide a comprehensive description of complement-clause production in children with language impairment. Complement clauses were examined with respect to types of complement structure produced, verb use, and both semantic and syntactic accuracy. Method: A group of 17 children with language impairment…

  1. The Complement System in Flavivirus Infections.

    PubMed

    Conde, Jonas N; Silva, Emiliana M; Barbosa, Angela S; Mohana-Borges, Ronaldo

    2017-01-01

    The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses.

  2. Complement related kidney diseases: Recurrence after transplantation.

    PubMed

    Salvadori, Maurizio; Bertoni, Elisabetta

    2016-12-24

    The recurrence of renal disease after renal transplantation is becoming one of the main causes of graft loss after kidney transplantation. This principally concerns some of the original diseases as the atypical hemolytic uremic syndrome (HUS), the membranoproliferative glomerulonephritis (MPGN), in particular the MPGN now called C3 glomerulopathy. Both this groups of renal diseases are characterized by congenital (genetic) or acquired (auto-antibodies) modifications of the alternative pathway of complement. These abnormalities often remain after transplantation because they are constitutional and poorly influenced by the immunosuppression. This fact justifies the high recurrence rate of these diseases. Early diagnosis of recurrence is essential for an optimal therapeutically approach, whenever possible. Patients affected by end stage renal disease due to C3 glomerulopathies or to atypical HUS, may be transplanted with extreme caution. Living donor donation from relatives is not recommended because members of the same family may be affected by the same gene mutation. Different therapeutically approaches have been attempted either for recurrence prevention and treatment. The most promising approach is represented by complement inhibitors. Eculizumab, a monoclonal antibody against C5 convertase is the most promising drug, even if to date is not known how long the therapy should be continued and which are the best dosing. These facts face the high costs of the treatment. Eculizumab resistant patients have been described. They could benefit by a C3 convertase inhibitor, but this class of drugs is by now the object of randomized controlled trials.

  3. The Complement System in Flavivirus Infections

    PubMed Central

    Conde, Jonas N.; Silva, Emiliana M.; Barbosa, Angela S.; Mohana-Borges, Ronaldo

    2017-01-01

    The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical climates worldwide, affecting hundreds of millions of people each year. The Flaviviridae family includes dengue, West Nile, Zika, Japanese encephalitis, and yellow fever viruses that are typically transmitted by mosquitoes or ticks, and cause a wide range of symptoms, such as fever, shock, meningitis, paralysis, birth defects, and death. The flavivirus genome is composed of a single positive-sense RNA molecule encoding a single viral polyprotein. This polyprotein is further processed by viral and host proteases into three structural proteins (C, prM/M, E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) that are involved in viral replication and pathogenicity. The complement system has been described to play an important role in flavivirus infection either by protecting the host and/or by influencing disease pathogenesis. In this mini-review, we will explore the role of complement system inhibition and/or activation against infection by the Flavivirus genus, with an emphasis on dengue and West Nile viruses. PMID:28261172

  4. Complement related kidney diseases: Recurrence after transplantation

    PubMed Central

    Salvadori, Maurizio; Bertoni, Elisabetta

    2016-01-01

    The recurrence of renal disease after renal transplantation is becoming one of the main causes of graft loss after kidney transplantation. This principally concerns some of the original diseases as the atypical hemolytic uremic syndrome (HUS), the membranoproliferative glomerulonephritis (MPGN), in particular the MPGN now called C3 glomerulopathy. Both this groups of renal diseases are characterized by congenital (genetic) or acquired (auto-antibodies) modifications of the alternative pathway of complement. These abnormalities often remain after transplantation because they are constitutional and poorly influenced by the immunosuppression. This fact justifies the high recurrence rate of these diseases. Early diagnosis of recurrence is essential for an optimal therapeutically approach, whenever possible. Patients affected by end stage renal disease due to C3 glomerulopathies or to atypical HUS, may be transplanted with extreme caution. Living donor donation from relatives is not recommended because members of the same family may be affected by the same gene mutation. Different therapeutically approaches have been attempted either for recurrence prevention and treatment. The most promising approach is represented by complement inhibitors. Eculizumab, a monoclonal antibody against C5 convertase is the most promising drug, even if to date is not known how long the therapy should be continued and which are the best dosing. These facts face the high costs of the treatment. Eculizumab resistant patients have been described. They could benefit by a C3 convertase inhibitor, but this class of drugs is by now the object of randomized controlled trials. PMID:28058212

  5. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion

    PubMed Central

    Hovingh, Elise S.; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed. PMID:28066340

  6. Targeted complement inhibition and microvasculature in transplants: a therapeutic perspective.

    PubMed

    Khan, M A; Hsu, J L; Assiri, A M; Broering, D C

    2016-02-01

    Active complement mediators play a key role in graft-versus-host diseases, but little attention has been given to the angiogenic balance and complement modulation during allograft acceptance. The complement cascade releases the powerful proinflammatory mediators C3a and C5a anaphylatoxins, C3b, C5b opsonins and terminal membrane attack complex into tissues, which are deleterious if unchecked. Blocking complement mediators has been considered to be a promising approach in the modern drug discovery plan, and a significant number of therapeutic alternatives have been developed to dampen complement activation and protect host cells. Numerous immune cells, especially macrophages, develop both anaphylatoxin and opsonin receptors on their cell surface and their binding affects the macrophage phenotype and their angiogenic properties. This review discusses the mechanism that complement contributes to angiogenic injury, and the development of future therapeutic targets by antagonizing activated complement mediators to preserve microvasculature in rejecting the transplanted organ. © 2015 British Society for Immunology.

  7. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    PubMed

    Potempa, Michal; Potempa, Jan; Kantyka, Tomasz; Nguyen, Ky-Anh; Wawrzonek, Katarzyna; Manandhar, Surya P; Popadiak, Katarzyna; Riesbeck, Kristian; Eick, Sigrun; Blom, Anna M

    2009-02-01

    Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A) resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  8. Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement.

    PubMed

    Rosengard, Ariella M; Liu, Yu; Nie, Zhiping; Jimenez, Robert

    2002-06-25

    Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30-40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges.

  9. Variola virus immune evasion design: Expression of a highly efficient inhibitor of human complement

    PubMed Central

    Rosengard, Ariella M.; Liu, Yu; Nie, Zhiping; Jimenez, Robert

    2002-01-01

    Variola virus, the most virulent member of the genus Orthopoxvirus, specifically infects humans and has no other animal reservoir. Variola causes the contagious disease smallpox, which has a 30–40% mortality rate. Conversely, the prototype orthopoxvirus, vaccinia, causes no disease in immunocompetent humans and was used in the global eradication of smallpox, which ended in 1977. However, the threat of smallpox persists because clandestine stockpiles of variola still exist. Although variola and vaccinia share remarkable DNA homology, the strict human tropism of variola suggests that its proteins are better suited than those of vaccinia to overcome the human immune response. Here, we demonstrate the functional advantage of a variola complement regulatory protein over that of its vaccinia homologue. Because authentic variola proteins are not available for study, we molecularly engineered and characterized the smallpox inhibitor of complement enzymes (SPICE), a homologue of a vaccinia virulence factor, vaccinia virus complement control protein (VCP). SPICE is nearly 100-fold more potent than VCP at inactivating human C3b and 6-fold more potent at inactivating C4b. SPICE is also more human complement-specific than is VCP. By inactivating complement components, SPICE serves to inhibit the formation of the C3/C5 convertases necessary for complement-mediated viral clearance. SPICE provides the first evidence that variola proteins are particularly adept at overcoming human immunity, and the decreased function of VCP suggests one reason why the vaccinia virus vaccine was associated with relatively low mortality. Disabling SPICE may be therapeutically useful if smallpox reemerges. PMID:12034872

  10. Complement components in Nigerians with bronchial asthma.

    PubMed

    Onyemelukwe, G C

    1989-10-01

    Serum complement components C1q, C3, C4, factor B, and C3d breakdown products were measured in asthmatic Nigerians and in age-matched and sex-matched controls. C3 mean level was higher than in controls while C1q and C4 mean levels were lower than in controls. High levels of C3d in asthmatic patients suggest the possible role of C3a and C5a anaphylatoxins in the etiopathogenesis of perennial asthma in Nigerian patients in a tropical environment with ubiquitous airborne allergens and infective agents. The significantly elevated levels of IgM and IgG may suggest recurrent respiratory challenge of perennial antigens in our environment.

  11. The minimal gene complement of mycoplasma genitalium

    SciTech Connect

    Fraser, C.M.; Gocayne, J.D.; White, O.

    1995-10-20

    The complete nucleotide sequence (580,070 base pairs) of the Mycoplasma genitalium genome, the smallest known genome of any free-living organism, has been determined by whole-genome random sequencing and assembly. A total of only 470 predicted coding regions were identified that include genes required for DNA replication, transcription and translation, DNA repair, cellular transport, and energy metabolism. Comparison of this genome to that of Haemophilus influenzae suggests that differences in genome content are reflected as profound differences in physiology and metabolic capacity between these two organisms. 43 refs., 1 fig., 2 tabs.

  12. A complementation method for functional analysis of mammalian genes

    PubMed Central

    Gonzalez-Santos, Juana Maria; Cao, Huibi; Wang, Anan; Koehler, David R.; Martin, Bernard; Navab, Roya; Hu, Jim

    2005-01-01

    Our progress in understanding mammalian gene function has lagged behind that of gene identification. New methods for mammalian gene functional analysis are needed to accelerate the process. In yeast, the powerful genetic shuffle system allows deletion of any chromosomal gene by homologous recombination and episomal expression of a mutant allele in the same cell. Here, we report a method for mammalian cells, which employs a helper-dependent adenoviral (HD-Ad) vector to synthesize small hairpin (sh) RNAs to knock-down the expression of an endogenous gene by targeting untranslated regions (UTRs). The vector simultaneously expresses an exogenous version of the same gene (wild-type or mutant allele) lacking the UTRs for functional analysis. We demonstrated the utility of the method by using PRPF3, which encodes the human RNA splicing factor Hprp3p. Recently, missense mutations in PRPF3 were found to cause autosomal-dominant Retinitis Pigmentosa, a form of genetic eye diseases affecting the retina. We knocked-down endogenous PRPF3 in multiple cell lines and rescued the phenotype (cell death) with exogenous PRPF3 cDNA, thereby creating a genetic complementation method. Because Ad vectors can efficiently transduce a wide variety of cell types, and many tissues in vivo, this method could have a wide application for gene function studies. PMID:15944448

  13. A vital role for complement in heart disease.

    PubMed

    Lappegård, Knut T; Garred, Peter; Jonasson, Lena; Espevik, Terje; Aukrust, Pål; Yndestad, Arne; Mollnes, Tom E; Hovland, Anders

    2014-10-01

    Heart diseases are common and significant contributors to worldwide mortality and morbidity. During recent years complement mediated inflammation has been shown to be an important player in a variety of heart diseases. Despite some negative results from clinical trials using complement inhibitors, emerging evidence points to an association between the complement system and heart diseases. Thus, complement seems to be important in coronary heart disease as well as in heart failure, where several studies underscore the prognostic importance of complement activation. Furthermore, patients with atrial fibrillation often share risk factors both with coronary heart disease and heart failure, and there is some evidence implicating complement activation in atrial fibrillation. Moreover, Chagas heart disease, a protozoal infection, is an important cause of heart failure in Latin America, and the complement system is crucial for the protozoa-host interaction. Thus, complement activation appears to be involved in the pathophysiology of a diverse range of cardiac conditions. Determination of the exact role of complement in the various heart diseases will hopefully help to identify patients that might benefit from therapeutic complement intervention. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Therapeutic potential of complement inhibitors in myocardial ischaemia.

    PubMed

    Lucchesi, B R; Tanhehco, E J

    2000-05-01

    Under normal conditions, the complement system functions to eradicate microbes and other membrane bound pathogens. In other situations, complement activation comprises a pivotal mechanism for mediating tissue demolition in inflammatory disorders, including ischaemia/reperfusion injury. Complement-mediated tissue damage has long been recognised as a significant contributor to myocardial reperfusion injury. However, clinical use of complement inhibitors to reduce the extent of irreversible tissue injury related to reperfusion, remains in the early stages of development. Activation of the complement system generates anaphylatoxins, opsonins and the lytic moiety known as the membrane attack complex (MAC). In addition, fragments of the complement cascade proteins (e.g., C3a and C5a) secondarily initiate processes deleterious to myocytes by recruiting and stimulating inflammatory cells, such as neutrophils and macrophages, within the area of reperfusion. Damaged tissue itself, is capable of upregulating the genes that encode the formation of complement proteins leading to assembly of the MAC, which in turn further advances tissue injury. All of these factors contribute to the development of myocardial infarction subsequent to ischaemia and reperfusion. This paper provides an overview of how the complement system operates and examines the various inhibitors, both endogenous and exogenous, that regulate the complement cascade. Activation and inhibition of the complement system will be discussed primarily in the context of myocardial ischaemia and reperfusion injury.

  15. Complement inhibition: a promising concept for cancer treatment

    PubMed Central

    Pio, Ruben; Ajona, Daniel; Lambris, John D.

    2013-01-01

    For decades, complement has been recognized as an effector arm of the immune system that contributes to the destruction of tumor cells. In fact, many therapeutic strategies have been proposed that are based on the intensification of complement-mediated responses against tumors. However, recent studies have challenged this paradigm by demonstrating a tumor-promoting role for complement. Cancer cells seem to be able to establish a convenient balance between complement activation and inhibition, taking advantage of complement initiation without suffering its deleterious effects. Complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. In this context, inhibition of complement activation would be a therapeutic option for treating cancer. This concept is relatively novel and deserves closer attention. In this paper, we will summarize the mechanisms of complement activation on cancer cells, the cancer-promoting effect of complement initiation, and the rationale behind the use of complement inhibition as a therapeutic strategy against cancer. PMID:23706991

  16. Bovine viral diarrhea virus structural protein E2 as a complement regulatory protein.

    PubMed

    Ostachuk, Agustín

    2016-07-01

    Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, family Flaviviridae, and is one of the most widely distributed viruses in cattle worldwide. Approximately 60 % of cattle in endemic areas without control measures are infected with BVDV during their lifetime. This wide prevalence of BVDV in cattle populations results in significant economic losses. BVDV is capable of establishing persistent infections in its host due to its ability to infect fetuses, causing immune tolerance. However, this cannot explain how the virus evades the innate immune system. The objective of the present work was to test the potential activity of E2 as a complement regulatory protein. E2 glycoprotein, produced both in soluble and transmembrane forms in stable CHO-K1 cell lines, was able to reduce complement-mediated cell lysis up to 40 % and complement-mediated DNA fragmentation by 50 %, in comparison with cell lines not expressing the glycoprotein. This work provides the first evidence of E2 as a complement regulatory protein and, thus, the finding of a mechanism of immune evasion by BVDV. Furthermore, it is postulated that E2 acts as a self-associated molecular pattern (SAMP), enabling the virus to avoid being targeted by the immune system and to be recognized as self.

  17. Interspecies complementation analysis of xeroderma pigmentosum and UV-sensitive Chinese hamster cells

    SciTech Connect

    Stefanini, M.; Keijzer, W.; Westerveld, A.; Bootsma, D.

    1985-12-01

    Complementation analysis was performed 24 h after fusion of UV-sensitive CHO cells (CHO 12 RO) with XP cells of complementation groups A, B, C, D, F and G. The parental cells are characterized by low levels of unscheduled DNA synthesis (UDS). In all combinations, the UDS levels observed in heterokaryons were higher than those in parental mutant cells, clearly indicating cooperation of human and Chinese hamster repair functions. In heterokaryons of CHO 12 RO with XP-A and XP-C cells, the UDS values reached about the normal human level, whereas in heterokaryons with XP-B, XP-D and XP-F, UDS was restored at a level approaching that in wild-type CHO cells. The results obtained after fusion of CHO cells with two representative cell strains from the XP-G group, XP 2 BI and XP 3 BR, were inconsistent. Fusion with XP 3 BR cells yielded UDS levels ranging from wild-type Chinese hamster to normal human, whereas fusion with XP 2 BI cells resulted in a slight increase in UDS which even after 48 h remained below the level found in wild-type CHO cells. The occurrence of complementation in these interspecies heterokaryons indicates that the genetic defect in the CHO 12 RO cells is different from the defects in the XP complementation groups tested.

  18. Modular fluorescence complementation sensors for live cell detection of epigenetic signals at endogenous genomic sites.

    PubMed

    Lungu, Cristiana; Pinter, Sabine; Broche, Julian; Rathert, Philipp; Jeltsch, Albert

    2017-09-21

    Investigation of the fundamental role of epigenetic processes requires methods for the locus-specific detection of epigenetic modifications in living cells. Here, we address this urgent demand by developing four modular fluorescence complementation-based epigenetic biosensors for live-cell microscopy applications. These tools combine engineered DNA-binding proteins with domains recognizing defined epigenetic marks, both fused to non-fluorescent fragments of a fluorescent protein. The presence of the epigenetic mark at the target DNA sequence leads to the reconstitution of a functional fluorophore. With this approach, we could for the first time directly detect DNA methylation and histone 3 lysine 9 trimethylation at endogenous genomic sites in live cells and follow dynamic changes in these marks upon drug treatment, induction of epigenetic enzymes and during the cell cycle. We anticipate that this versatile technology will improve our understanding of how specific epigenetic signatures are set, erased and maintained during embryonic development or disease onset.Tools for imaging epigenetic modifications can shed light on the regulation of epigenetic processes. Here, the authors present a fluorescence complementation approach for detection of DNA and histone methylation at endogenous genomic sites allowing following of dynamic changes of these marks by live-cell microscopy.

  19. An in vitro complementation assay for the Escherichia coli uvrD gene product.

    PubMed Central

    Kuemmerle, N B; Masker, W E

    1983-01-01

    An in vitro assay specific for the product of the uvrD gene of Escherichia coli has been developed. This assay, derived from properties of uvrD mutants revealed by in vivo experiments, is based on the necessity for a functional UvrD protein for complete rejoining of covalently closed circular DNA during the excision repair of UV-induced damage. Extracts prepared from gently lysed uvrD101 mutant cells are capable of restoring UV-damaged DNA to its covalently closed circular form when provided with a functional UvrD protein from other repair-deficient cell extracts or from partially purified protein fractions. This assay was employed to monitor the activity of the UvrD protein after several steps of fractionation. The partially purified UvrD protein does not complement extracts deficient in DNA polymerase I or temperature-sensitive in DNA ligase; it does, however, complement extracts from strains mutant at the uvrE and recL loci, which are considered allelic with the uvrD locus. PMID:6300798

  20. Xeroderma pigmentosum complementation group G patient with a novel homozygous missense mutation and no neurological abnormalities.

    PubMed

    Moriwaki, Shinichi; Takigawa, Masahiro; Igarashi, Naoya; Nagai, Yayoi; Amano, Hiroo; Ishikawa, Osamu; Khan, Sikandar G; Kraemer, Kenneth H

    2012-04-01

    We describe an unusual xeroderma pigmentosum (XP) patient with a mutation in XP complementation group G, representing only the third reported Japanese XP-G patient. A 40-year-old men (XP3HM), born from consanguineous parents experienced sun sensitivity and pigmentary changes of sun-exposed skin since childhood. He developed a squamous cell carcinoma on his lower lip at the age of 40. He has neither neurological abnormalities nor Cockayne syndrome. The primary fibroblasts of the patient were hypersensitive to killing by UV (D(0) = 0.6 J/m(2)) and the post-UV unscheduled DNA synthesis was 8% of normal. Host cell reactivation complementation analysis implicated XP complementation group G. We identified a novel homozygous mutation (c.194T>C) in a conserved portion of the XPG(ERCC5) gene, resulting in a predicted amino acid change; p.L65P. We confirmed that this genetic change reduced DNA repair thus linking this mutation to increased skin cancer.

  1. A Molecular Insight into Complement Evasion by the Staphylococcal Complement Inhibitor Protein Family1

    PubMed Central

    Ricklin, Daniel; Tzekou, Apostolia; Garcia, Brandon L.; Hammel, Michal; McWhorter, William J.; Sfyroera, Georgia; Wu, You-Qiang; Holers, V. Michael; Herbert, Andrew P.; Barlow, Paul N.; Geisbrecht, Brian V.; Lambris, John D.

    2010-01-01

    Staphylococcus aureus possesses an impressive arsenal of complement evasion proteins that help the bacterium escape attack of the immune system. The staphylococcal complement inhibitor (SCIN) protein exhibits a particularly high potency and was previously shown to block complement by acting at the level of the C3 convertases. However, many details about the exact binding and inhibitory mechanism remained unclear. In this study, we demonstrate that SCIN directly binds with nanomolar affinity to a functionally important area of C3b that lies near the C terminus of its β-chain. Direct competition of SCIN with factor B for C3b slightly decreased the formation of surface-bound convertase. However, the main inhibitory effect can be attributed to an entrapment of the assembled convertase in an inactive state. Whereas native C3 is still able to bind to the blocked convertase, no generation and deposition of C3b could be detected in the presence of SCIN. Furthermore, SCIN strongly competes with the binding of factor H to C3b and influences its regulatory activities: the SCIN-stabilized convertase was essentially insensitive to decay acceleration by factor H and the factor I- and H-mediated conversion of surface-bound C3b to iC3b was significantly reduced. By targeting a key area on C3b, SCIN is able to block several essential functions within the alternative pathway, which explains the high potency of the inhibitor. Our findings provide an important insight into complement evasion strategies by S. aureus and may act as a base for further functional studies. PMID:19625656

  2. Identification of hot spots in the variola virus complement inhibitor (SPICE) for human complement regulation.

    PubMed

    Yadav, Viveka Nand; Pyaram, Kalyani; Mullick, Jayati; Sahu, Arvind

    2008-04-01

    Variola virus, the causative agent of smallpox, encodes a soluble complement regulator named SPICE. Previously, SPICE has been shown to be much more potent in inactivating human complement than the vaccinia virus complement control protein (VCP), although they differ only in 11 amino acid residues. In the present study, we have expressed SPICE, VCP, and mutants of VCP by substituting each or more of the 11 non-variant VCP residues with the corresponding residue of SPICE to identify hot spots that impart functional advantage to SPICE over VCP. Our data indicate that (i) SPICE is approximately 90-fold more potent than VCP in inactivating human C3b, and the residues Y98, Y103, K108 and K120 are predominantly responsible for its enhanced activity; (ii) SPICE is 5.4-fold more potent in inactivating human C4b, and residues Y98, Y103, K108, K120 and L193 mainly dictate this increase; (iii) the classical pathway decay-accelerating activity of activity is only twofold higher than that of VCP, and the 11 mutations in SPICE do not significantly affect this activity; (iv) SPICE possesses significantly greater binding ability to human C3b compared to VCP, although its binding to human C4b is lower than that of VCP; (v) residue N144 is largely responsible for the increased binding of SPICE to human C3b; and (vi) the human specificity of SPICE is dictated primarily by residues Y98, Y103, K108, and K120 since these are enough to formulate VCP as potent as SPICE. Together, these results suggest that principally 4 of the 11 residues that differ between SPICE and VCP partake in its enhanced function against human complement.

  3. The link between morphology and complement in ocular disease.

    PubMed

    Mohlin, Camilla; Sandholm, Kerstin; Ekdahl, Kristina N; Nilsson, Bo

    2017-09-01

    The complement system is a vital component of the immune-priveliged human eye that is always active at a low-grade level, preventing harmful intraocular injuries caused by accumulation of turnover products and controlling pathogens to preserve eye homeostasis and vision. The complement system is a double-edged sword that is essential for protection but may also become harmful and contribute to eye pathology. Here, we review the evidence for the involvement of complement system dysregulation in age-related macular degeneration, glaucoma, uveitis, and neuromyelitis optica, highlighting the relationship between morphogical changes and complement system protein expression and regulation in these diseases. The potential benefits of complement inhibition in age-related macular degeneration, glaucoma, uveitis, and neuromyelitis optica are abundant, as are those of further research to improve our understanding of complement-mediated injury in these diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Complement-mediated regulation of metabolism and basic cellular processes

    PubMed Central

    Hess, Christoph; Kemper, Claudia

    2016-01-01

    Complement is well appreciated as critical arm of innate immunity. It is required for the removal of invading pathogens and functions by direct pathogen destruction and through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental processes of the cell, such as survival, proliferation, and autophagy. Novel identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism, and the potential implications in infection and other disease settings. PMID:27533012

  5. Protein ultrastructure and the nanoscience of complement activation.

    PubMed

    Vorup-Jensen, Thomas; Boesen, Thomas

    2011-09-16

    The complement system constitutes an important barrier to infection of the human body. Over more than four decades structural properties of the proteins of the complement system have been investigated with X-ray crystallography, electron microscopy, small-angle scattering, and atomic force microscopy. Here, we review the accumulated evidence that the nm-scaled dimensions and conformational changes of these proteins support functions of the complement system with regard to tissue distribution, molecular crowding effects, avidity binding, and conformational regulation of complement activation. In the targeting of complement activation to the surfaces of nanoparticulate material, such as engineered nanoparticles or fragments of the microbial cell wall, these processes play intimately together. This way the complement system is an excellent example where nanoscience may serve to unravel the molecular biology of the immune response.

  6. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings.

  7. Vitronectin-binding staphylococci enhance surface-associated complement activation.

    PubMed Central

    Lundberg, F; Lea, T; Ljungh, A

    1997-01-01

    Coagulase-negative staphylococci are well recognized in medical device-associated infections. Complement activation is known to occur at the biomaterial surface, resulting in unspecific inflammation around the biomaterial. The human serum protein vitronectin (Vn), a potent inhibitor of complement activation by formation of an inactive terminal complement complex, adsorbs to biomaterial surfaces in contact with blood. In this report, we discuss the possibility that surface-immobilized Vn inhibits complement activation and the effect of Vn-binding staphylococci on complement activation on surfaces precoated with Vn. The extent of complement activation was measured with a rabbit anti-human C3c antibody and a mouse anti-human C9 antibody, raised against the neoepitope of C9. Our data show that Vn immobilized on a biomaterial surface retains its ability to inhibit complement activation. The additive complement activation-inhibitory effect of Vn on a heparinized surface is very small. In the presence of Vn-binding strain, Staphylococcus hemolyticus SM131, complement activation on a surface precoated with Vn occurred as it did in the absence of Vn precoating. For S. epidermidis 3380, which does not express binding of Vn, complement activation on a Vn-precoated surface was significantly decreased. The results could be repeated on heparinized surfaces. These data suggest that Vn adsorbed to a biomaterial surface may serve to protect against surface-associated complement activation. Furthermore, Vn-binding staphylococcal cells may enhance surface-associated complement activation by blocking the inhibitory effect of preadsorbed Vn. PMID:9038294

  8. Complement component 5 promotes lethal thrombosis

    PubMed Central

    Mizuno, Tomohiro; Yoshioka, Kengo; Mizuno, Masashi; Shimizu, Mie; Nagano, Fumihiko; Okuda, Tomoyuki; Tsuboi, Naotake; Maruyama, Shoichi; Nagamatsu, Tadashi; Imai, Masaki

    2017-01-01

    Extracellular histones promote platelet aggregation and thrombosis; this is followed by induction of coagulation disorder, which results in exhaustion of coagulation factors. Complement component 5 (C5) is known to be associated with platelet aggregation and coagulation system activation. To date, the pathological mechanism underlying liver injury has remained unclear. Here, we investigated whether C5 promotes liver injury associated with histone-induced lethal thrombosis. C5-sufficient and C5-deficient mice received single tail vein injections of purified, unfractionated histones obtained from calf thymus (45–75 μg/g). Subsequently, the mice were monitored for survival for up to 72 h. Based on the survival data, the 45 μg/g dose was used for analysis of blood cell count, liver function, blood coagulation ability, and promotion of platelet aggregation and platelet/leukocyte aggregate (PLA) production by extracellular histones. C5-deficient mice were protected from lethal thrombosis and had milder thrombocytopenia, consumptive coagulopathy, and liver injury with embolism and lower PLA production than C5-sufficient mice. These results indicate that C5 is associated with coagulation disorders, PLA production, and embolism-induced liver injury. In conclusion, C5 promotes liver injury associated with histone-induced lethal thrombosis. PMID:28205538

  9. Altmetrics – a complement to conventional metrics

    PubMed Central

    Melero, Remedios

    2015-01-01

    Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Both can be employed in conjunction to offer a richer picture of an article use from immediate to long terms. Article-level metrics (ALM) is the result of the aggregation of different data sources and the collection of content from multiple social network services. Sources used for the aggregation can be broken down into five categories: usage, captures, mentions, social media and citations. Data sources depend on the tool, but they include classic metrics indicators based on citations, academic social networks (Mendeley, CiteULike, Delicious) and social media (Facebook, Twitter, blogs, or Youtube, among others). Altmetrics is not synonymous with alternative metrics. Altmetrics are normally early available and allow to assess the social impact of scholarly outputs, almost at the real time. This paper overviews briefly the meaning of altmetrics and describes some of the existing tools used to apply this new metrics: Public Library of Science - Article-Level Metrics, Altmetric, Impactstory and Plum. PMID:26110028

  10. Complement binding to Leishmania donovani promastigotes (LD)

    SciTech Connect

    Puentes, S.M.; Bates, P.A.; Dwyer, D.M.; Joiner, K.A.

    1986-03-01

    To study the binding and processing of C3 on LD, parasites in various phases of growth were incubated in human serum deficient in complement component 8 containing /sup 125/I-C3. Uptake of /sup 125/I-C3 is rapid, peaking at 1.7-2.1 x 10/sup 6/ C3 molecules bound per parasite at 15 minutes for all growth phases, and decreases thereafter with continued incubation. One half of total C3 bound is spontaneously released by 90 minutes of incubation with all LD phases and occurs at a similar rate for LD washed free of serum and incubated at 37/sup 0/ C in buffer. As assessed by SDS-PAGE autoradiography, C3 on the surface of LD is present as C3b (36 to 50%) and iC3b (50 to 65%), linked covalently via a bond resistant to hydroxylamine treatment, presumably an amide linkage. Immunoblot analysis of purified membranes from serum-incubated LD, using rabbit antibody to C3 and LD surface constituents, strongly suggests that a major C3 acceptor is the LD acid phosphatase (AP). These results, in conjunction with recent studies, suggest a previously unrecognized role of AP as a C3 acceptor and, thus, as a molecule potentially involved in parasite binding and uptake.

  11. Altmetrics - a complement to conventional metrics.

    PubMed

    Melero, Remedios

    2015-01-01

    Emerging metrics based on article-level does not exclude traditional metrics based on citations to the journal, but complements them. Both can be employed in conjunction to offer a richer picture of an article use from immediate to long terms. Article-level metrics (ALM) is the result of the aggregation of different data sources and the collection of content from multiple social network services. Sources used for the aggregation can be broken down into five categories: usage, captures, mentions, social media and citations. Data sources depend on the tool, but they include classic metrics indicators based on citations, academic social networks (Mendeley, CiteULike, Delicious) and social media (Facebook, Twitter, blogs, or Youtube, among others). Altmetrics is not synonymous with alternative metrics. Altmetrics are normally early available and allow to assess the social impact of scholarly outputs, almost at the real time. This paper overviews briefly the meaning of altmetrics and describes some of the existing tools used to apply this new metrics: Public Library of Science--Article-Level Metrics, Altmetric, Impactstory and Plum.

  12. Complement activation in very early Alzheimer disease.

    PubMed

    Zanjani, H; Finch, C E; Kemper, C; Atkinson, J; McKeel, D; Morris, J C; Price, J L

    2005-01-01

    The activation of the classical complement (C)-system in early-stage Alzheimer disease (AD) and nondemented aging was examined with immunohistochemistry in subjects assessed by the Clinical Dementia Rating (CDR). Activation (staining for C3 and C4 fragments) was found in all brains with amyloid deposits, including all nondemented (CDR 0) cases, with either small numbers of diffuse plaques or with sufficient plaques and tangles to indicate preclinical AD. Staining for C3 and C4 increased in parallel with plaque density in very mild to severe clinical AD. A subset of very mild AD (CDR 0.5) cases also showed C1q (on plaques) and C5b-9 (on neuritic plaques and tangles), whereas these C-fragments were consistently found in severe AD (CDR 3). Mirror section (split-face) analysis showed that C1q, C3, and apoJ (clusterin) occurred on the same plaques. However, C-system regulators CD59, CR1, DAF, and MCP were not detected on plaques or tangles at any stage, indicating that C-activation related to AD is incompletely controlled.

  13. Genetic complementation studies of multiple sulfatase deficiency.

    PubMed

    Horwitz, A L

    1979-12-01

    Cultured fibroblasts from two individuals with multiple sulfatase deficiency (MSD) were found to have decreased activities of arylsulfatases (aryl-sulfate sulfohydrolase, EC 3.1.6.1) A, B, and C as well as iduronate-sulfate sulfatase, sulfamidase, and N-acetylglucosamine-6-sulfate sulfatase. The activity of N-acetylgalactosamine-6-sulfate sulfatase was decreased in one line but not in the other. Mixtures of MSD cell extracts with extracts from normal cells did not result in inhibition of normal sulfatase activities. Mixtures of MSD cell extracts with extracts of fibroblasts from patients with Hunter or Sanfilippo A syndrome did not activate iduronate-sulfate sulfatase or sulfamidase activity. Heterokaryons formed by fusion of MSD cells with Sanfilippo A fibroblasts demonstrated a partial correction of the enzyme deficiency. In similar manner, MSD-Hunter heterokaryons showed a significant increase in iduronate-sulfate-sulfatase activity. Genetic complementation in heterokaryons of MSD fibroblasts and cells of either Sanfilippo A or Hunter syndrome implies a genetic defect in MSD different from that causing specific sulfatase deficiencies.

  14. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these proteins aids in the diagnosis of immunologic disorders, especially those associated with deficiencies...

  15. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these proteins aids in the diagnosis of immunologic disorders, especially those associated with deficiencies...

  16. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... tissues. Complement is a group of serum proteins which destroy infectious agents. Measurements of these proteins aids in the diagnosis of immunologic disorders, especially those associated with deficiencies...

  17. Complement response after experimental bacterial infection in various nutritional states.

    PubMed Central

    Sakamoto, M; Ishii, S; Nishioka, K; Shimada, K

    1979-01-01

    In malnourished rats, nutritionally rehabilitated rats at various stages, and in well nourished rats, levels of serum complement after bacterial infection caused by Staphylococcus aureus, as well as tuberculin reactivity, were examined. The elevation of complement showed a peak 2--3 days after infection, herein called the first complement response. A reelevation occurred at a later stage, 7--14 days after infection, and is referred to as the second complement response. The first complement response was observed in all the rats after Staphylococcus aureus infection but it was greater in well nourished rats. In malnourished rats, only the first complement response was observed and the tuberculin reaction and second complement response were lacking. After 1 week of nutritional rehabilitation, 40% of the rats showed recovery of tuberculin responses and both the first and second complement responses were observed. Nutritionally rehabilitated rats treated longer than 2 weeks, together with the well nourished control rats, showed positive tuberculin reactivity. The second complement response was also observed in such rats when bacterial infection was severe but not with mild infection. PMID:511223

  18. Complement: A primer for the coming therapeutic revolution.

    PubMed

    Barnum, Scott R

    2017-04-01

    The complement system is an important part of the innate and adaptive immune systems. Originally characterized as a single serum component contributing to the killing of bacteria, we now know that there are close to sixty complement proteins, multiple activation pathways and a wide range of effector functions mediated by complement. The system plays a critical role in host defense against bacteria, viruses, fungi and other pathogens. However, inappropriate complement activation contributes to the pathophysiology of autoimmune diseases and many inflammatory syndromes. Over the last several decades, therapeutic approaches to inhibit complement activation at various steps in the pathways have met with initial success, particularly at the level of the terminal pathway. This success, combined with insight from animal model studies, has lead to an unprecedented effort by biotech and pharmaceutical companies to begin developing complement inhibitors. As a result, complement has been brought for the first time to the attention of pharmacologists, toxicologists, project managers and others in the drug development industry, as well as those in the investment world. The purpose of this primer is to provide a broad overview of complement immunobiology to help those new to complement understand the rationale behind the current therapeutic directions and the investment potential of these new therapeutics. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Complement--tapping into new sites and effector systems.

    PubMed

    Kolev, Martin; Le Friec, Gaelle; Kemper, Claudia

    2014-12-01

    Complement is traditionally known to be a system of serum proteins that provide protection against pathogens through direct cell lysis and the mobilization of innate and adaptive immunity. However, recent work indicates that the complement system has additional physiological roles beyond those in host defence. In this Opinion article, we describe the new modes and locations of complement activation that enable it to interact with other cell effector systems, such as growth factor receptors, inflammasomes and metabolic pathways. We propose that the location of complement activation dictates its function.

  20. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  1. Production of random DNA oligomers for scalable DNA computing.

    PubMed

    Wang, Sixue S L; Johnson, John J X; Hughes, Bradley S T; Karabay, Dundar A O; Bader, Karson D W; Austin, Allen; Austin, Alan; Habib, Aisha; Hatef, Husnia; Joshi, Megha; Nguyen, Lawrence; Mills, Allen P

    2009-01-01

    While remarkably complex networks of connected DNA molecules can form from a relatively small number of distinct oligomer strands, a large computational space created by DNA reactions would ultimately require the use of many distinct DNA strands. The automatic synthesis of this many distinct strands is economically prohibitive. We present here a new approach to producing distinct DNA oligomers based on the polymerase chain reaction (PCR) amplification of a few random template sequences. As an example, we designed a DNA template sequence consisting of a 50-mer random DNA segment flanked by two 20-mer invariant primer sequences. Amplification of a dilute sample containing about 30 different template molecules allows us to obtain around 10(11) copies of these molecules and their complements. We demonstrate the use of these amplicons to implement some of the vector operations that will be required in a DNA implementation of an analog neural network.

  2. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response.

    PubMed

    Surace, Laura; Lysenko, Veronika; Fontana, Andrea Orlando; Cecconi, Virginia; Janssen, Hans; Bicvic, Antonela; Okoniewski, Michal; Pruschy, Martin; Dummer, Reinhard; Neefjes, Jacques; Knuth, Alexander; Gupta, Anurag; van den Broek, Maries

    2015-04-21

    Radiotherapy induces DNA damage and cell death, but recent data suggest that concomitant immune stimulation is an integral part of the therapeutic action of ionizing radiation. It is poorly understood how radiotherapy supports tumor-specific immunity. Here we report that radiotherapy induced tumor cell death and transiently activated complement both in murine and human tumors. The local production of pro-inflammatory anaphylatoxins C3a and C5a was crucial to the tumor response to radiotherapy and concomitant stimulation of tumor-specific immunity. Dexamethasone, a drug frequently given during radiotherapy, limited complement activation and the anti-tumor effects of the immune system. Overall, our findings indicate that anaphylatoxins are key players in radiotherapy-induced tumor-specific immunity and the ensuing clinical responses.

  3. Replication of chicken anemia virus (CAV) requires apoptin and is complemented by VP3 of human torque teno virus (TTV).

    PubMed

    Prasetyo, Afiono Agung; Kamahora, Toshio; Kuroishi, Ayumu; Murakami, Kyoko; Hino, Shigeo

    2009-03-01

    To test requirement for apoptin in the replication of chicken anemia virus (CAV), an apoptin-knockout clone, pCAV/Ap(-), was constructed. DNA replication was completely abolished in cells transfected with replicative form of CAV/Ap(-). A reverse mutant competent in apoptin production regained the full level of DNA replication. DNA replication and virus-like particle (VLP) production of CAV/Ap(-) was fully complemented by supplementation of the wild-type apoptin. The virus yield of a point mutant, CAV/ApT(108)I, was 1/40 that of the wild type, even though its DNA replication level was full. The infectious titer of CAV was fully complemented by supplementing apoptin. Progeny virus was free from reverse mutation for T(108)I. To localize the domain within apoptin molecule inevitable for CAV replication, apoptin-mutant expressing plasmids, pAp1, pAp2, pAp3, and pAp4, were constructed by deleting amino acids 10-36, 31-59, 59-88 and 80-112, respectively. While Ap1 and Ap2 were preferentially localized in nuclei, Ap3 and Ap4 were mainly present in cytoplasm. Although complementation capacity of Ap3 and Ap4 was 1/10 of the wild type, neither of them completely lost its activity. VP3 of TTV did fully complement the DNA replication and VLP of CAV/Ap(-). These data suggest that apoptin is inevitable not only for DNA replication but also VLP of CAV. The common feature of apoptin and TTV-VP3 presented another evidence for close relatedness of CAV and TTV.

  4. Saccharomyces cerevisiae RAD27 complements its Escherichia coli homolog in damage repair but not mutation avoidance.

    PubMed

    Ohnishi, Gaku; Daigaku, Yasukazu; Nagata, Yuki; Ihara, Makoto; Yamamoto, Kazuo

    2004-06-01

    In eukaryotes, the flap endonuclease of Rad27/Fen-1 is thought to play a critical role in lagging-strand DNA replication by removing ribonucleotides present at the 5' ends of Okazaki fragments, and in base excision repair by cleaving a 5' flap structure that may result during base excision repair. Saccharomyces cerevisiae rad27Delta mutants further display a repeat tract instability phenotype and a high rate of forward mutations to canavanine resistance that result from duplications of DNA sequence, indicating a role in mutation avoidance. Two conserved motifs in Rad27/Fen-1 show homology to the 5' --> 3' exonuclease domain of Escherichia coli DNA polymerase I. The strain defective in the 5' --> 3' exonuclease domain in DNA polymerase I shows essentially the same phenotype as the yeast rad27Delta strain. In this study, we expressed the yeast RAD27 gene in an E. coli strain lacking the 5' --> 3' exonuclease domain in DNA polymerase I in order to test whether eukaryotic RAD27/FEN-1 can complement the defect of its bacterial homolog. We found that the yeast Rad27 protein complements sensitivity to methyl methanesulfonate in an E. coli mutant. On the other hand, Rad27 protein did not reduce the high rate of spontaneous mutagenesis in the E. coli tonB gene which results from duplication of DNA. These results indicate that the yeast Rad27 and E. coli 5' --> 3' exonuclease act on the same substrate. We argue that the lack of mutation avoidance of yeast RAD27 in E. coli results from a lack of interaction between the yeast Rad27 protein and the E. coli replication clamp (beta-clamp).

  5. Superimposed Code Theoretic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2008-01-01

    complements of one another and the DNA duplex formed is a Watson - Crick (WC) duplex. However, there are many instances when the formation of non-WC...that the user’s requirements for probe selection are met based on the Watson - Crick probe locality within a target. The second type, called

  6. DNA probe for lactobacillus delbrueckii

    SciTech Connect

    Delley, M.; Mollet, B.; Hottinger, H. )

    1990-06-01

    From a genomic DNA library of Lactobacillus delbrueckii subsp. bulgaricus, a clone was isolated which complements a leucine auxotrophy of an Escherichia coli strain (GE891). Subsequent analysis of the clone indicated that it could serve as a specific DNA probe. Dot-blot hybridizations with over 40 different Lactobacillus strains showed that this clone specifically recognized L. delbrueckii subsp. delbrueckii, bulgaricus, and lactis. The sensitivity of the method was tested by using an {alpha}-{sup 32}P-labeled probe.

  7. Characterization and expression analysis of a complement component gene in sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; Zhou, Zunchun; Yang, Aifu; Dong, Ying; Guan, Xiaoyan; Jiang, Bei; Wang, Bai

    2015-12-01

    The complement system plays a crucial role in the innate immune system of animals. It can be activated by distinct yet overlapping classical, alternative and lectin pathways. In the alternative pathway, complement factor B (Bf) serves as the catalytic subunit of complement component 3 (C3) convertase, which plays the central role among three activation pathways. In this study, the Bf gene in sea cucumber ( Apostichopus japonicus), termed AjBf, was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA of AjBf was 3231 bp in length barring the poly (A) tail. It contained an open reading frame (ORF) of 2742 bp encoding 913 amino acids, a 105 bp 5'-UTR (5'-terminal untranslated region) and a 384 bp 3'-UTR. AjBf was a mosaic protein with six CCP (complement control protein) domains, a VWA (von Willebrand factor A) domain, and a serine protease domain. The deduced molecular weight of AjBf protein was 101 kDa. Quantitative real time PCR (qRT-PCR) analysis indicated that the expression level of AjBf in A. japonicus was obviously higher at larval stage than that at embryonic stage. Expression detection in different tissues showed that AjBf expressed higher in coelomocytes than in other four tissues. In addation, AjBf expression in different tissues was induced significantly after LPS or PolyI:C challenge. These results indicated that AjBf plays an important role in immune responses to pathogen infection.

  8. Keeping It All Going-Complement Meets Metabolism.

    PubMed

    Kolev, Martin; Kemper, Claudia

    2017-01-01

    The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity-indicating that complement's function is likely broader than initially anticipated-the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond "classic" immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature-mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement's emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also

  9. Minor Role of Plasminogen in Complement Activation on Cell Surfaces

    PubMed Central

    Hyvärinen, Satu; Jokiranta, T. Sakari

    2015-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare, but severe thrombotic microangiopathy. In roughly two thirds of the patients, mutations in complement genes lead to uncontrolled activation of the complement system against self cells. Recently, aHUS patients were described with deficiency of the fibrinolytic protein plasminogen. This zymogen and its protease form plasmin have both been shown to interact with complement proteins in the fluid phase. In this work we studied the potential of plasminogen to restrict complement propagation. In hemolytic assays, plasminogen inhibited complement activation, but only when it had been exogenously activated to plasmin and when it was used at disproportionately high concentrations compared to serum. Addition of only the zymogen plasminogen into serum did not hinder complement-mediated lysis of erythrocytes. Plasminogen could not restrict deposition of complement activation products on endothelial cells either, as was shown with flow cytometry. With platelets, a very weak inhibitory effect on deposition of C3 fragments was observed, but it was considered too weak to be significant for disease pathogenesis. Thus it was concluded that plasminogen is not an important regulator of complement on self cells. Instead, addition of plasminogen was shown to clearly hinder platelet aggregation in serum. This was attributed to plasmin causing disintegration of formed platelet aggregates. We propose that reduced proteolytic activity of plasmin on structures of growing thrombi, rather than on complement activation fragments, explains the association of plasminogen deficiency with aHUS. This adds to the emerging view that factors unrelated to the complement system can also be central to aHUS pathogenesis and suggests that future research on the mechanism of the disease should expand beyond complement dysregulation. PMID:26637181

  10. The role of complement inhibitors beyond controlling inflammation.

    PubMed

    Blom, A M

    2017-03-26

    The complement system is an arm of innate immunity that aids in the removal of pathogens and dying cells. Due to its harmful, pro-inflammatory potential, complement is controlled by several soluble and membrane-bound inhibitors. This family of complement regulators has been recently extended by the discovery of several new members, and it is becoming apparent that these proteins harbour additional functions. In this review, the current state of knowledge of the physiological functions of four complement regulators will be described: cartilage oligomeric matrix protein (COMP), CUB and sushi multiple domains 1 (CSMD1), sushi domain-containing protein 4 (SUSD4) and CD59. Complement activation is involved in both the development of and defence against cancer. COMP expression is pro-oncogenic, whereas CSMD1 and SUSD4 act as tumour suppressors. These effects may be related in part to the complex influence of complement on cancer but also depend on unrelated functions such as the protection of cells from endoplasmic reticulum stress conveyed by intracellular COMP. CD59 is the main inhibitor of the membrane attack complex, and its deficiency leads to complement attack on erythrocytes and severe haemolytic anaemia, which is now amenable to treatment with an inhibitor of C5 cleavage. Unexpectedly, the intracellular pool of CD59 is crucial for insulin secretion from pancreatic β-cells. This finding is one of several relating to the intracellular functions of complement proteins, which until recently were only considered to be present in the extracellular space. Understanding the alternative functions of complement inhibitors may unravel unexpected links between complement and other physiological systems, but is also important for better design of therapeutic complement inhibition.

  11. Complement C3 in Bernese Mountain dogs.

    PubMed

    Gerber, Bernhard; Eichenberger, Simone; Joller-Jemelka, Helen I; Wittenbrink, Max M; Reusch, Claudia E

    2010-06-01

    Previous research suggests that low serum concentrations of the third component of complement (C3) are associated with both the susceptibility to infectious agents such as Borrelia burgdorferi and the development of glomerular disease. We hypothesized that low levels of C3 are associated with the coincident occurrence of B. burgdorferi infection and glomerulonephritis in Bernese Mountain dogs. The aims of this study were to evaluate the serum concentration of C3 in Bernese Mountain dogs with and without antibodies against B. burgdorferi and to compare this concentration with that of healthy control dogs. Eighty-three clinically healthy Bernese Mountain dogs and 46 control dogs were included. Antibodies against B. burgdorferi were determined using an ELISA with a whole cell sonicate as antigen. Results were confirmed using Western blot. C3 was measured using a single radial immunodiffusion test. Results were reported as the percentage concentration of C3 compared with that in pooled preserved canine serum (100% C3 concentration). Median C3 concentration was 128.5% in Bernese Mountain dogs with antibodies against B. burgdorferi, 133.5% in B. burgdorferi-negative Bernese Mountain dogs, 87.8% in positive control dogs, and 102.2% in negative control dogs. Within Bernese Mountain and control groups, C3 was lower in dogs with antibodies against B. burgdorferi compared with those without. Percentage concentration of C3 was higher in healthy Bernese Mountain dogs compared with control dogs. Low C3 concentration is not an explanation for the high prevalence of B. burgdorferi infections and glomerular disease in Bernese Mountain dogs.

  12. Complement activation in leprosy: a retrospective study shows elevated circulating terminal complement complex in reactional leprosy.

    PubMed

    Bahia El Idrissi, N; Hakobyan, S; Ramaglia, V; Geluk, A; Morgan, B Paul; Das, P Kumar; Baas, F

    2016-06-01

    Mycobacterium leprae infection gives rise to the immunologically and histopathologically classified spectrum of leprosy. At present, several tools for the stratification of patients are based on acquired immunity markers. However, the role of innate immunity, particularly the complement system, is largely unexplored. The present retrospective study was undertaken to explore whether the systemic levels of complement activation components and regulators can stratify leprosy patients, particularly in reference to the reactional state of the disease. Serum samples from two cohorts were analysed. The cohort from Bangladesh included multi-bacillary (MB) patients with (n = 12) or without (n = 46) reaction (R) at intake and endemic controls (n = 20). The cohort from Ethiopia included pauci-bacillary (PB) (n = 7) and MB (n = 23) patients without reaction and MB (n = 15) patients with reaction. The results showed that the activation products terminal complement complex (TCC) (P ≤ 0·01), C4d (P ≤ 0·05) and iC3b (P ≤ 0·05) were specifically elevated in Bangladeshi patients with reaction at intake compared to endemic controls. In addition, levels of the regulator clusterin (P ≤ 0·001 without R; P < 0·05 with R) were also elevated in MB patients, irrespective of a reaction. Similar analysis of the Ethiopian cohort confirmed that, irrespective of a reaction, serum TCC levels were increased significantly in patients with reactions compared to patients without reactions (P ≤ 0·05). Our findings suggests that serum TCC levels may prove to be a valuable tool in diagnosing patients at risk of developing reactions. © 2016 British Society for Immunology.

  13. Rescue of Xrcc1 knockout mouse embryo lethality by transgene-complementation.

    PubMed

    Tebbs, Robert S; Thompson, Larry H; Cleaver, James E

    2003-12-09

    Xrcc1 knockout embryos show increased DNA breakage and apoptosis in tissues of the embryo proper prior to death at embryonic day E6.5. An additional deficiency in Trp53 allows Xrcc1(-/-) embryos to enlarge slightly and initiate gastrulation although ultimately death is delayed by less than 24h. Death presumably results from DNA damage that reaches toxic levels in the post-implantation mouse embryo. To investigate the level of XRCC1 protein needed for successful mouse development, we derived Xrcc1 transgene-complemented Xrcc1(-/-) mice that express Xrcc1 within the normal range or at a greatly reduced level (<10% normal). The greatly reduced XRCC1 protein level destabilized the XRCC1 partner protein DNA ligase III (LIG3) but still allowed for successful mouse development and healthy, fertile adults. Fibroblasts from these animals exhibited almost normal alkylation sensitivity measured by differential cytotoxicity. Thus, a large reduction of both XRCC1 and DNA ligase III has no observable effect on mouse embryogenesis and post-natal development, and no significant effect on cellular sensitivity to DNA alkylation. The presence of XRCC1, even at reduced levels of expression, is therefore capable of supporting mouse development and DNA repair.

  14. Maximality and Idealized Cognitive Models: The Complementation of Spanish "Tener."

    ERIC Educational Resources Information Center

    Hilferty, Joseph; Valenzuela, Javier

    2001-01-01

    Discusses the bare-noun phrase (NP) complementation pattern of the Spanish verb "tener" (have). Shows that the maximality of the complement NP is dependent upon three factors: (1) idiosyncratic valence requirements; (2) encyclopedic knowledge related to possession; and (3) contextualized semantic construal. (Author/VWL)

  15. Identification of a central role for complement in osteoarthritis.

    PubMed

    Wang, Qian; Rozelle, Andrew L; Lepus, Christin M; Scanzello, Carla R; Song, Jason J; Larsen, D Meegan; Crish, James F; Bebek, Gurkan; Ritter, Susan Y; Lindstrom, Tamsin M; Hwang, Inyong; Wong, Heidi H; Punzi, Leonardo; Encarnacion, Angelo; Shamloo, Mehrdad; Goodman, Stuart B; Wyss-Coray, Tony; Goldring, Steven R; Banda, Nirmal K; Thurman, Joshua M; Gobezie, Reuben; Crow, Mary K; Holers, V Michael; Lee, David M; Robinson, William H

    2011-11-06

    Osteoarthritis, characterized by the breakdown of articular cartilage in synovial joints, has long been viewed as the result of 'wear and tear'. Although low-grade inflammation is detected in osteoarthritis, its role is unclear. Here we identify a central role for the inflammatory complement system in the pathogenesis of osteoarthritis. Through proteomic and transcriptomic analyses of synovial fluids and membranes from individuals with osteoarthritis, we find that expression and activation of complement is abnormally high in human osteoarthritic joints. Using mice genetically deficient in complement component 5 (C5), C6 or the complement regulatory protein CD59a, we show that complement, specifically, the membrane attack complex (MAC)-mediated arm of complement, is crucial to the development of arthritis in three different mouse models of osteoarthritis. Pharmacological modulation of complement in wild-type mice confirmed the results obtained with genetically deficient mice. Expression of inflammatory and degradative molecules was lower in chondrocytes from destabilized joints from C5-deficient mice than C5-sufficient mice, and MAC induced production of these molecules in cultured chondrocytes. Further, MAC colocalized with matrix metalloprotease 13 (MMP13) and with activated extracellular signal-regulated kinase (ERK) around chondrocytes in human osteoarthritic cartilage. Our findings indicate that dysregulation of complement in synovial joints has a key role in the pathogenesis of osteoarthritis.

  16. How antibodies use complement to regulate antibody responses.

    PubMed

    Sörman, Anna; Zhang, Lu; Ding, Zhoujie; Heyman, Birgitta

    2014-10-01

    Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed.

  17. Assessing reprogramming by chimera formation and tetraploid complementation.

    PubMed

    Li, Xin; Xia, Bao-long; Li, Wei; Zhou, Qi

    2015-01-01

    Pluripotent stem cells can be evaluated by pluripotent markers expression, embryoid body aggregation, teratoma formation, chimera contribution and even more, tetraploid complementation. Whether iPS cells in general are functionally equivalent to normal ESCs is difficult to establish. Here, we present the detailed procedure for chimera formation and tetraploid complementation, the most stringent criterion, to assessing pluripotency.

  18. Complement inhibitors to treat IgM-mediated autoimmune hemolysis

    PubMed Central

    Wouters, Diana; Zeerleder, Sacha

    2015-01-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia. PMID:26521297

  19. Inactivation of complement by Loxosceles reclusa spider venom.

    PubMed

    Gebel, H M; Finke, J H; Elgert, K D; Cambell, B J; Barrett, J T

    1979-07-01

    Zymosan depletion of serum complement in guinea pigs rendered them highly resistant to lesion by Loxosceles reclusa spider venom. Guinea pigs deficient in C4 of the complement system are as sensitive to the venom as normal guinea pigs. The injection of 35 micrograms of whole recluse venom intradermally into guinea pigs lowered their complement level by 35.7%. Brown recluse spider venom in concentrations as slight as 0.02 micrograms protein/ml can totally inactivate one CH50 of guinea pig complement in vitro. Bee, scorpion, and other spider venoms had no influence on the hemolytic titer of complement. Fractionation of recluse spider venom by Sephadex G-200 filtration separated the complement-inactivating property of the venom into three major regions which could be distinguished on the basis of heat stability as well as size. None was neutralized by antivenom. Polyacrylamide gel electrophoresis of venom resolved the complement inactivators into five fractions. Complement inactivated by whole venom or the Sephadex fractions could be restored to hemolytic activity by supplements of fresh serum but not by heat-inactivated serum, pure C3, pure C5, or C3 and C5 in combination.

  20. Complement Attack against Aspergillus and Corresponding Evasion Mechanisms.

    PubMed

    Speth, Cornelia; Rambach, Günter

    2012-01-01

    Invasive aspergillosis shows a high mortality rate particularly in immunocompromised patients. Perpetually increasing numbers of affected patients highlight the importance of a clearer understanding of interactions between innate immunity and fungi. Innate immunity is considered to be the most significant host defence against invasive fungal infections. Complement represents a crucial part of this first line defence and comprises direct effects against invading pathogens as well as bridging functions to other parts of the immune network. However, despite the potency of complement to attack foreign pathogens, the prevalence of invasive fungal infections is increasing. Two possible reasons may explain that phenomenon: First, complement activation might be insufficient for an effective antifungal defence in risk patients (due to, e.g., low complement levels, poor recognition of fungal surface, or missing interplay with other immune elements in immunocompromised patients). On the other hand, fungi may have developed evasion strategies to avoid recognition and/or eradication by complement. In this review, we summarize the most important interactions between Aspergillus and the complement system. We describe the various ways of complement activation by Aspergillus and the antifungal effects of the system, and also show proven and probable mechanisms of Aspergillus for complement evasion.

  1. Complement component 3: characterization and association with mastitis resistance in Egyptian water buffalo and cattle.

    PubMed

    El-Halawany, Nermin; Abd-El-Monsif, Shawky A; Al-Tohamy Ahmed, F M; Hegazy, Lamees; Abdel-Shafy, Hamdy; Abdel-Latif, Magdy A; Ghazi, Yasser A; Neuhoff, Christiane; Salilew-Wondim, Dessie; Schellander, Karl

    2017-03-01

    Mastitis is an infectious disease of the mammary gland that leads to reduced milk production and change in milk composition. Complement component C3 plays a major role as a central molecule of the complement cascade involving in killing of microorganisms, either directly or in cooperation with phagocytic cells. C3 cDNA were isolated, from Egyptian buffalo and cattle, sequenced and characterized. The C3 cDNA sequences of buffalo and cattle consist of 5025 and 5019 bp, respectively. Buffalo and cattle C3 cDNAs share 99% of sequence identity with each other. The 4986 bp open reading frame in buffalo encodes a putative protein of 1661 amino acids-as in cattle-and includes all the functional domains. Further, analysis of the C3 cDNA sequences detected six novel single-nucleotide polymorphisms (SNPs) in buffalo and three novel SNPs in cattle. The association analysis of the detected SNPs with milk somatic cell score as an indicator of mastitis revealed that the most significant association in buffalo was found in the C>A substitution (ss: 1752816097) in exon 27, whereas in cattle it was in the C>T substitution (ss: 1752816085) in exon 12. Our findings provide preliminary information about the contribution of C3 polymorphisms to mastitis resistance in buffalo and cattle.

  2. Activation of vertebrate complement by Helix pomatia haemolymph.

    PubMed

    Koch, C; Nielsen, H E

    1984-01-01

    Haemolymph plasma from the pulmonate snail Helix pomatia contains a constituent, not yet identified, which causes activation of vertebrate complement via the alternative complement pathway in fluid phase. The activation of vertebrate complement by snail plasma is closely analogous to the activation caused by cobra venom factor (CVF), the snake's C3b, with one notable exception; the snail factor requires vertebrate C3 for the formation of C3 convertase which cobra venom factor does not. Our results do not allow any definite conclusion on the exact mechanism but we favour the idea that the haemolymph contains a complement-like protein which functions as an opsonin in the snail, and which can interact with vertebrate alternative complement pathway components.

  3. The complement system in ischemia-reperfusion injuries.

    PubMed

    Gorsuch, William B; Chrysanthou, Elvina; Schwaeble, Wilhelm J; Stahl, Gregory L

    2012-11-01

    Tissue injury and inflammation following ischemia and reperfusion of various organs have been recognized for many years. Many reviews have been written over the last several decades outlining the role of complement in ischemia/reperfusion injury. This short review provides a current state of the art knowledge on the complement pathways activated, complement components involved and a review of the clinical biologics/inhibitors used in the clinical setting of ischemia/reperfusion. This is not a complete review of the complement system in ischemia and reperfusion injury but will give the reader an updated view point of the field, potential clinical use of complement inhibitors, and the future studies needed to advance the field.

  4. The Complement System in Ischemia-Reperfusion Injuries

    PubMed Central

    Gorsuch, William B.; Chrysanthou, Elvina; Schwaeble, Wilhelm J.; Stahl, Gregory L.

    2012-01-01

    Tissue injury and inflammation following ischemia and reperfusion of various organs has been recognized for many years. Many reviews have been written over the last several decades outlining the role of complement in ischemia/reperfusion injury. This short review provides a current state of the art knowledge on the complement pathways activated, complement components involved and a review of the clinical biologics/inhibitors used in the clinical setting of ischemia/reperfusion. This is not a complete review of the complement system in ischemia and reperfusion injury but will give the reader an updated view point of the field, potential clinical use of complement inhibitors, and the future studies needed to advance the field. PMID:22964228

  5. Aeromonas salmonicida resistance to complement-mediated killing.

    PubMed Central

    Merino, S; Albertí, S; Tomás, J M

    1994-01-01

    The resistance of Aeromonas salmonicida to complement-mediated killing was investigated by using different strains and their isogenic mutants that had been previously characterized for their surface components. We found that the classical complement pathway is involved in serum killing of susceptible A. salmonicida strains, while the alternative complement pathway seems not to be involved. All of the A. salmonicida strains are able to activate complement, but the smooth strains (with or without the A-layer) are resistant to complement-mediated killing. The reasons for this resistance are that C3b may be bound far from the cell membrane and that it is rapidly degraded; therefore, the lytic final complex C5b-9 (membrane attack complex) is not formed. Isogenic rough mutants are serum sensitive because they bind more C3b than the smooth strains, and if C3b is not completely degraded, then the lytic complex (C5b-9) is formed. Images PMID:7525485

  6. Physicochemical signatures of nanoparticle-dependent complement activation

    NASA Astrophysics Data System (ADS)

    Thomas, Dennis G.; Chikkagoudar, Satish; Heredia-Langner, Alejandro; Tardiff, Mark F.; Xu, Zhixiang; Hourcade, Dennis E.; Pham, Christine T. N.; Lanza, Gregory M.; Weinberger, Kilian Q.; Baker, Nathan A.

    2014-01-01

    Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we employed an in vitro hemolysis assay to measure the serum complement activity of perfluorocarbon nanoparticles that differed by size, surface charge, and surface chemistry, quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework.

  7. Construction of the plasmid, expression by Chinese hamster ovary cell, purification and characterization of the first three short consensus repeat modules of human complement receptor type 1.

    PubMed

    Yamaguchi, Atsushi; Takagawa, Hiroaki; Iwakaji, Hirofumi; Miyagawa, Shuji; Wang, Pi-Chao; Ishii, Noriyuki

    2009-04-01

    Short consensus repeat (SCR1-3), the first three SCR modules from N-terminus of type 1 complement receptor (CR1), is expected to accelerate dissociation of complement components and suppress complement activity by binding the main component of complement C4b. In order to clarify the three-dimensional structure, which triggers the activity of SCR1-3 on complement, we constructed an over-expression system in CHO DG44 cells which facilitated mass production of SCR1-3. The mass production was achieved by a two-stage culture system and optimum culture conditions using ASF104N medium and MTX-, NaBu-containing alpha-MEM/10% FBS medium, respectively. The constructed gene of SCR1-3 was confirmed by restriction enzyme digestion and DNA sequence analysis, and the expressed protein by CHO DG44 cells was confirmed by western blotting. The expressed SCR1-3 was proved containing N-linked sugar chain, an important factor to the proper expression of protein, by the cleavage with glycosidase of N-linked oligosaccharide (PNGase F). The suppression effect of the yield protein on complement-mediated inflammation was investigated by haemolytic assay and necrosis assay of stromal cells. Both assays showed that SCR1-3 possessed complement control activity. However, residing sugar chain on SCR1-3 did not show significant difference in the complement control activity.

  8. Atypical Haemolytic Uraemic Syndrome Associated with a Hybrid Complement Gene

    PubMed Central

    Bourn, David; Powell, Helen M; Warwicker, Paul; Diaz-Torres, Martha L; Sampson, Anne; Mead, Paul; Webb, Michelle; Pirson, Yves; Jackson, Michael S; Hughes, Anne; Wood, Katrina M; Goodship, Judith A; Goodship, Timothy H. J

    2006-01-01

    Background Sequence analysis of the regulators of complement activation (RCA) cluster of genes at chromosome position 1q32 shows evidence of several large genomic duplications. These duplications have resulted in a high degree of sequence identity between the gene for factor H (CFH) and the genes for the five factor H-related proteins (CFHL1–5; aliases CFHR1–5). CFH mutations have been described in association with atypical haemolytic uraemic syndrome (aHUS). The majority of the mutations are missense changes that cluster in the C-terminal region and impair the ability of factor H to regulate surface-bound C3b. Some have arisen as a result of gene conversion between CFH and CFHL1. In this study we tested the hypothesis that nonallelic homologous recombination between low-copy repeats in the RCA cluster could result in the formation of a hybrid CFH/CFHL1 gene that predisposes to the development of aHUS. Methods and Findings In a family with many cases of aHUS that segregate with the RCA cluster we used cDNA analysis, gene sequencing, and Southern blotting to show that affected individuals carry a heterozygous CFH/CFHL1 hybrid gene in which exons 1–21 are derived from CFH and exons 22/23 from CFHL1. This hybrid encodes a protein product identical to a functionally significant CFH mutant (c.3572C>T, S1191L and c.3590T>C, V1197A) that has been previously described in association with aHUS. Conclusions CFH mutation screening is recommended in all aHUS patients prior to renal transplantation because of the high risk of disease recurrence post-transplant in those known to have a CFH mutation. Because of our finding it will be necessary to implement additional screening strategies that will detect a hybrid CFH/CFHL1 gene. PMID:17076561

  9. Hide and Seek: How Lyme Disease Spirochetes Overcome Complement Attack

    PubMed Central

    Kraiczy, Peter

    2016-01-01

    Overcoming the first line of the innate immune system is a general hallmark of pathogenic microbes to avoid recognition and to enter the human host. In particular, spirochetes belonging to the Borrelia burgdorferi sensu lato complex have developed various means to counter the immune response and to successfully survive in diverse host environments for a prolonged period of time. In regard to complement resistance, Borrelia utilize a plethora of immune evasion strategies involves capturing of host-derived complement regulators, terminating complement activation as well as shedding of cell-destroying complement complexes to manipulate and to expeditiously inhibit human complement. Owing to their mode of action, the interacting surface-exposed proteins identified among B. burgdorferi sensu stricto (s.s.), Borrelia afzelii, Borrelia spielmanii, and Borrelia bavariensis can be classified into at least two major categories, namely, molecules that directly interfere with distinct complement components including BBK32, CspA, BGA66, BGA71, and a CD59-like protein or molecules, which indirectly counteract complement activation by binding various complement regulators such as Factor H, Factor H-like protein 1 (FHL-1), Factor H-related proteins FHR-1, FHR-2, or C4Bp. The latter group of genetically and structurally unrelated proteins has been collectively referred to as “complement regulator-acquiring surface proteins” and consists of CspA, CspZ, ErpA, ErpC, ErpP, and the as yet unidentified protein p43. This review focuses on the current knowledge of immune evasion mechanisms exhibited by Lyme disease spirochetes and highlights the role of complement-interfering, infection-associated molecules playing an important part in these processes. Deciphering the immune evasion strategies may provide novel avenues for improved diagnostic approaches and therapeutic interventions. PMID:27725820

  10. Systemic complement activation in age-related macular degeneration.

    PubMed

    Scholl, Hendrik P N; Charbel Issa, Peter; Walier, Maja; Janzer, Stefanie; Pollok-Kopp, Beatrix; Börncke, Florian; Fritsche, Lars G; Chong, Ngaihang V; Fimmers, Rolf; Wienker, Thomas; Holz, Frank G; Weber, Bernhard H F; Oppermann, Martin

    2008-07-02

    Dysregulation of the alternative pathway (AP) of complement cascade has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the elderly. To further test the hypothesis that defective control of complement activation underlies AMD, parameters of complement activation in blood plasma were determined together with disease-associated genetic markers in AMD patients. Plasma concentrations of activation products C3d, Ba, C3a, C5a, SC5b-9, substrate proteins C3, C4, factor B and regulators factor H and factor D were quantified in patients (n = 112) and controls (n = 67). Subjects were analyzed for single nucleotide polymorphisms in factor H (CFH), factor B-C2 (BF-C2) and complement C3 (C3) genes which were previously found to be associated with AMD. All activation products, especially markers of chronic complement activation Ba and C3d (p<0.001), were significantly elevated in AMD patients compared to controls. Similar alterations were observed in factor D, but not in C3, C4 or factor H. Logistic regression analysis revealed better discriminative accuracy of a model that is based only on complement activation markers Ba, C3d and factor D compared to a model based on genetic markers of the complement system within our study population. In both the controls' and AMD patients' group, the protein markers of complement activation were correlated with CFH haplotypes.This study is the first to show systemic complement activation in AMD patients. This suggests that AMD is a systemic disease with local disease manifestation at the ageing macula. Furthermore, the data provide evidence for an association of systemic activation of the alternative complement pathway with genetic variants of CFH that were previously linked to AMD susceptibility.

  11. Free Energy Gap and Statistical Thermodynamic Fidelity of DNA Codes

    DTIC Science & Technology

    2007-10-01

    reverse-complement unless otherwise stated. For strand x, let Nx denote its complement. A (perfect) Watson - Crick duplex is the joining of complement...is possible for complementary sequences to form a non-perfectly aligned duplex, we will call any x W Nx duplex a Watson - Crick (WC) duplex. Two...DATES COVERED (From - To) 4. TITLE AND SUBTITLE FREE ENERGY GAP AND STATISTICAL THERMODYNAMIC FIDELITY OF DNA CODES 5a. CONTRACT NUMBER FA8750-07

  12. The coccidioidal complement fixation and immunodiffusion-complement fixation antigen is a chitinase.

    PubMed Central

    Johnson, S M; Pappagianis, D

    1992-01-01

    Culture filtrates and autolysates of Coccidioides immitis have provided suitable crude antigens for the serodiagnosis and prognosis of coccidioidomycosis. One of these, a heat-labile antigen which participates in the immunodiffusion reaction corresponding to the complement fixation reaction (IDCF), has been characterized as a 110-kDa native protein that, when subjected to reducing conditions and heat, yields a 48-kDa component. The present report provides serologic and biochemical evidence that this antigen is a chitinase. This chitinase, isolated from 48-h culture filtrate of the spherule-endospore-phase C. immitis by affinity adsorption to chitin, formed a line of identity with the IDCF reference antigen and participated in the complement fixation reaction with human serum. It lost its enzymatic as well as antigenic activity when heated, but when not heated it retained its enzymatic activity even when precipitated with coccidiodal antibody present in human serum. This chitinase represents a significant serodiagnostic substance and may be important in the morphogenesis of C. immitis. Images PMID:1612728

  13. Complementation of a Fanconi anemia group A cell line by UbA{sup 52}

    SciTech Connect

    Moses, R.E.; Heina, J.A.; Jakobs, P.M.

    1994-09-01

    Cells from patients with Fanconi anemia (FA) display chromosomal instability and increased sensitivity to mitomycin C (MMC) and diepoxybutane (DEB) relative to normal cells. Several genes act in this pathway of DNA damage processing based upon four known complementation groups in FA. We have made a cDNA expression library in a vector with a G418 selectable marker to identify FA genes other than the FA-C group. Approximately 1 x 10{sup 6} independent cDNA clones were isolated with an average cDNA size of 1.5 kb. Five cell lines resistant to MMC and DEB were isolated from 6 x 10{sup 6} G418-resistant transfectants from 65 individual transfections of the FA-A fibroblast line GM6914. The isolated cell lines also showed normal chromosome stability. The same cDNA (600 bp) was recovered from three independent cell lines by PCR using flanking sequence primers. The gene has sequence identity with a known gene, the ubiquitin fusion gene, UbA{sub 52}. Interestingly, each of the cDNAs were inserted in antisense orientation relative to the cytomegalovirus (CMV) promoter as determined by sequencing and PCR using UbA{sub 52}-specific internal primers. Southern blot analysis indicated the cell lines had distinct chromosomal insertion sites. Mutation analysis by chemical cleavage showed no reading frame mutations, indicating that UbA{sub 52} is not the FA-A gene. Re-transfection with the UbA{sub 52} gene in antisense gave complementation for MMC, DEB and chromosome stability to varying degrees. Re-transfection of the antisense construct with the CMV promotor removed or with a sense construct did not alter the MMC sensitivity. We conclude that the antisense UbA{sub 52} gene has a non-specific effect, perhaps acting by altering the cell cycle or susceptibility to apoptosis.

  14. DNA Code Validation Using Experimental Fluorescence Measurements and Thermodynamic Calculations

    DTIC Science & Technology

    2004-03-01

    1 SUMMARY A DNA code is a collection of single-stranded DNA molecules. In DNA hybridization assays, the formation of any Watson - Crick ...combinations represent the canonical Watson - Crick pairings. To obtain the reverse complement of a strand of DNA , one must first reverse the order of the... DNA codes. Using software designed by A.Macula and V. Rykov, (Macula, 2003), a set of 13 pairs, (X, WC(X)), of Watson - Crick reverse complementary

  15. Keeping It All Going—Complement Meets Metabolism

    PubMed Central

    Kolev, Martin; Kemper, Claudia

    2017-01-01

    The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity—indicating that complement’s function is likely broader than initially anticipated—the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond “classic” immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature—mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement’s emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions

  16. Bullous pemphigoid autoantibodies directly induce blister formation without complement activation.

    PubMed

    Ujiie, Hideyuki; Sasaoka, Tetsumasa; Izumi, Kentaro; Nishie, Wataru; Shinkuma, Satoru; Natsuga, Ken; Nakamura, Hideki; Shibaki, Akihiko; Shimizu, Hiroshi

    2014-11-01

    Complement activation and subsequent recruitment of inflammatory cells at the dermal/epidermal junction are thought to be essential for blister formation in bullous pemphigoid (BP), an autoimmune blistering disease induced by autoantibodies against type XVII collagen (COL17); however, this theory does not fully explain the pathological features of BP. Recently, the involvement of complement-independent pathways has been proposed. To directly address the question of the necessity of the complement activation in blister formation, we generated C3-deficient COL17-humanized mice. First, we show that passive transfer of autoantibodies from BP patients induced blister formation in neonatal C3-deficient COL17-humanized mice without complement activation. By using newly generated human and murine mAbs against the pathogenic noncollagenous 16A domain of COL17 with high (human IgG1, murine IgG2), low (murine IgG1), or no (human IgG4) complement activation abilities, we demonstrate that the deposition of Abs, and not complements, is relevant to the induction of blister formation in neonatal and adult mice. Notably, passive transfer of BP autoantibodies reduced the amount of COL17 in lesional mice skin, as observed in cultured normal human keratinocytes treated with the same Abs. Moreover, the COL17 depletion was associated with a ubiquitin/proteasome pathway. In conclusion, the COL17 depletion induced by BP autoantibodies, and not complement activation, is essential for the blister formation under our experimental system.

  17. COMPLEMENT FIXATION TEST IN EXPERIMENTAL CLINICAL AND SUBCLINICAL MELIOIDOSIS

    PubMed Central

    Nigg, Clara; Johnston, Margaret M.

    1961-01-01

    Nigg, Clara (University of California, Berkeley), and Margaret M. Johnston. Complement fixation test in experimental clinical and subclinical melioidosis. J. Bacteriol. 82:159–168. 1961.—Soluble stable antigens prepared from Pseudomonas pseudomallei gave 4+ complement fixation reactions in a dilution of 1 to 8,000 when tested with specific rabbit antiserum diluted 1 to 10,000. The complement fixation reaction was positive in 100% of experimentally infected rabbits 9 to 11 days postinfection. Infected guinea pigs and monkeys showed similar results. Monkeys inoculated with very small infecting doses of P. pseudomallei developed positive complement fixation reactions in the absence of clinical manifestation of infection. An anamnestic complement-fixing antibody response could be induced in such monkeys, after the titer had dropped to approximately the preinfection level, by inoculating very small doses of viable P. pseudomallei or larger doses of killed melioidosis vaccine. The complement fixation test described appeared to be both sensitive and specific, and should be of value in human melioidosis which cannot be diagnosed on the basis of clinical manifestations alone. It is suggested that subclinical infections may play a role in the epidemiology of human meliodosis. The potential application of the complement fixation test to serological surveys in areas where melioidosis occurs endemically is discussed. PMID:13729013

  18. Complement factor B expression profile in a spontaneous uveitis model.

    PubMed

    Zipplies, Johanna K; Kirschfink, Michael; Amann, Barbara; Hauck, Stefanie M; Stangassinger, Manfred; Deeg, Cornelia A

    2010-12-01

    Equine recurrent uveitis serves as a spontaneous model for human autoimmune uveitis. Unpredictable relapses and ongoing inflammation in the eyes of diseased horses as well as in humans lead to destruction of the retina and finally result in blindness. However, the molecular mechanisms leading to inflammation and retinal degeneration are not well understood. An initial screening for differentially regulated proteins in sera of uveitic cases compared to healthy controls revealed an increase of the alternative pathway complement component factor B in ERU cases. To determine the activation status of the complement system, sera were subsequently examined for complement split products. We could demonstrate a significant higher concentration of the activation products B/Ba, B/Bb, Bb neoantigen, iC3b and C3d in uveitic condition compared to healthy controls, whereas for C5b-9 no differences were detected. Additionally, we investigated complement activation directly in the retina by immunohistochemistry, since it is the main target organ of this autoimmune disease. Interestingly, infiltrating cells co-expressed activated factor Bb neoantigen, complement split product C3d as well as CD68, a macrophage marker. In this study, we could demonstrate activation of the complement system both systemically as well as in the eye, the target organ of spontaneous recurrent uveitis. Based on these novel findings, we postulate a novel role for macrophages in connection with complement synthesis at the site of inflammation.

  19. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  20. Role of Complement Activation in Obliterative Bronchiolitis Post Lung Transplantation

    PubMed Central

    Suzuki, Hidemi; Lasbury, Mark E.; Fan, Lin; Vittal, Ragini; Mickler, Elizabeth A.; Benson, Heather L.; Shilling, Rebecca; Wu, Qiang; Weber, Daniel J.; Wagner, Sarah R.; Lasaro, Melissa; Devore, Denise; Wang, Yi; Sandusky, George E.; Lipking, Kelsey; Pandya, Pankita; Reynolds, John; Love, Robert; Wozniak, Thomas; Gu, Hongmei; Brown, Krista M.; Wilkes, David S.

    2013-01-01

    Obliterative bronchiolitis (OB) post lung transplantation involves IL-17 regulated autoimmunity to type V collagen and alloimmunity, which could be enhanced by complement activation. However, the specific role of complement activation in lung allograft pathology, IL-17 production, and OB are unknown. The current study examines the role of complement activation in OB. Complement regulatory protein (CRP) (CD55, CD46, Crry/CD46) expression was down regulated in human and murine OB; and C3a, a marker of complement activation, was up regulated locally. IL-17 differentially suppressed Crry expression in airway epithelial cells in vitro. Neutralizing IL-17 recovered CRP expression in murine lung allografts and decreased local C3a production. Exogenous C3a enhanced IL-17 production from alloantigen or autoantigen (type V collagen) reactive lymphocytes. Systemically neutralizing C5 abrogated the development of OB, reduced acute rejection severity, lowered systemic and local levels of C3a and C5a, recovered CRP expression, and diminished systemic IL-17 and IL-6 levels. These data indicated that OB induction is in part complement dependent due to IL-17 mediated down regulation of CRPs on airway epithelium. C3a and IL-17 are part of a feed forward loop that may enhance CRP down regulation, suggesting that complement blockade could be a therapeutic strategy for OB. PMID:24043901

  1. Complement activation promotes muscle inflammation during modified muscle use

    NASA Technical Reports Server (NTRS)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  2. Complement in Pancreatic Disease—Perpetrator or Savior?

    PubMed Central

    Bettac, Lucas; Denk, Stephanie; Seufferlein, Thomas; Huber-Lang, Markus

    2017-01-01

    The complement system is a major pillar of the humoral innate immune system. As a first line of defense against pathogens, it mediates early inflammatory response and links different branches of humoral and cellular immunity. Disorders affecting the exocrine pancreas, such as acute pancreatitis, potentially lead to a life-threatening systemic inflammatory response with aberrant activation of complement and coagulation cascades. Pancreatic proteases can activate key effectors of the complement system, which in turn drive local and systemic inflammation. Beyond that, the extent of pancreas–complement interaction covers complex pro- and anti-inflammatory mechanisms, which to this day remain to be fully elucidated. This review provides a comprehensive overview of the pathophysiological role of complement in diseases of the exocrine pancreas, based on existing experimental and clinical data. Participation of complement in acute and chronic pancreatitis is addressed, as well as its role in tumor immunology. Therapeutic strategies targeting complement in these diseases have long been proposed but have not yet arrived in the clinical setting. PMID:28144242

  3. Evolution and diversity of the complement system of poikilothermic vertebrates.

    PubMed

    Sunyer, J O; Lambris, J D

    1998-12-01

    In mammals the complement system plays an important role in innate and acquired host defense mechanisms against infection and in various immunoregulatory processes. The complement system is an ancient defense mechanism that is already present in the invertebrate deuterostomes. In these species as well as in agnathans (the most primitive vertebrate species), both the alternative and lectin pathway of complement activation are already present, and the complement system appears to be involved mainly in opsonization of foreign material. With the emergence of immunoglobulins in cartilaginous fish, the classical and lytic pathways first appear. The rest of the poikilothermic species, from teleosts to reptilians, appear to contain a well-developed complement system resembling that of homeothermic vertebrates. However, important differences remain. Unlike homeotherms, several species of poikilotherms have recently been shown to possess multiple forms of complement components (C3 and factor B) that are structurally and functionally more diverse than those of higher vertebrates. It is noteworthy that the multiple forms of C3 that have been characterized in several teleost fish are able to bind with varying efficiencies to various complement-activating surfaces. We hypothesize that this diversity has allowed these animals to expand their innate capacity for immune recognition.

  4. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence.

    PubMed

    Shin, Dong-Ho; Webb, Barbara M; Nakao, Miki; Smith, Sylvia L

    2009-07-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and -d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (DNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1-3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent.

  5. Characterization of shark complement factor I gene(s): genomic analysis of a novel shark-specific sequence

    PubMed Central

    Shin, Dong-Ho; Webb, Barbara M.; Nakao, Miki; Smith, Sylvia L.

    2009-01-01

    Complement factor I is a crucial regulator of mammalian complement activity. Very little is known of complement regulators in non-mammalian species. We isolated and sequenced four highly similar complement factor I cDNAs from the liver of the nurse shark (Ginglymostoma cirratum), designated as GcIf-1, GcIf-2, GcIf-3 and GcIf-4 (previously referred to as nsFI-a, -b, -c and –d) which encode 689, 673, 673 and 657 amino acid residues, respectively. They share 95% (≤) amino acid identities with each other, 35.4 ~ 39.6% and 62.8 ~ 65.9% with factor I of mammals and banded houndshark (Triakis scyllium), respectively. The modular structure of the GcIf is similar to that of mammals with one notable exception, the presence of a novel shark-specific sequence between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain. The cDNA sequences differ only in the size and composition of the shark-specific region (SSR). Sequence analysis of each SSR has identified within the region two novel short sequences (SS1 and SS2) and three repeat sequences (RS1, 2 and 3). Genomic analysis has revealed the existence of three introns between the leader peptide and the FIMAC domain, tentatively designated intron 1, intron 2, and intron 3 which span 4067, 2293 and 2082 bp, respectively. Southern blot analysis suggests the presence of a single gene copy for each cDNA type. Phylogenetic analysis suggests that complement factor I of cartilaginous fish diverged prior to the emergence of mammals. All four GcIf cDNA species are expressed in four different tissues and the liver is the main tissue in which expression level of all four is high. This suggests that the expression of GcIf isotypes is tissue-dependent. PMID:19423168

  6. Complement activity and pharmacological inhibition in cardiovascular disease

    PubMed Central

    Théroux, Pierre; Martel, Catherine

    2006-01-01

    While complement is the most important component of humoral autoimmunity, and inflammation plays a key role in atherosclerosis, relatively few studies have looked at complement implications in atherosclerosis and its complications. C-reactive protein is a marker of inflammation and is also involved in atherosclerosis; it activates complement and colocalizes with activated complement proteins within the infarcting myocardium and the active atherosclerotic plaques. As new agents capable of modulating complement activity are being developed, new targets for the management of atherosclerosis are emerging that are related to autoimmunity and inflammation. The present paper reviews the putative roles of the various complement activation pathways in the development of atherosclerosis, in ST segment elevation and non-ST segment elevation acute coronary syndromes, and in coronary artery bypass graft surgery. It also provides a perspective on new therapeutic interventions being developed to modulate complement activity. These interventions include the C1 esterase inhibitor, which may be consumed in some inflammatory states resulting in the loss of one of the mechanisms inhibiting activation of the classical and lectin pathways; TP10, a recombinant protein of the soluble complement receptor type 1 (sCR1) which inhibits the C3 and C5 convertases of the common pathway by binding C3b and C4b; a truncated version of the soluble complement receptor type 1 CRI lacking the C4b binding site which selectively inhibits the alternative pathway; and pexelizumab, a monoclonal antibody selectively blocking C5 to prevent the activation of the terminal pathway that is involved in excessive inflammation and autoimmune responses. PMID:16498508

  7. Coordinate expression of Escherichia coli dnaA and dnaN genes.

    PubMed

    Sako, T; Sakakibara, Y

    1980-01-01

    The defects of temperature-sensitive dnaA and dnaN mutants of Escherichia coli are complemented by a recombinant lambda phage, which carries the bacterial DNA segment composed of two EcoRI segments of 1.0 and 3.3 kilobases. Derivatives of the phage, which have an insertion segment of Tn3 in the dnaA gene, are much less active in expressing the dnaN gene function than the parent phage. The dnaN gene activity was determined as the efficiency of superinfecting phage to suppress loss of the viability of lambda lysogenic dnaN59 cells at the non-permissive temperature. Deletions that include the end of the dnaA gene distal to the dnaN gene also reduce the expression of the dnaN gene function. Deletion and insertion in the dnaN gene do not affect the expression of the dnaA gene function. The expression of the dnaN gene function by the dnaA- dnaN+ phages remains weak upon simultaneous infection with dnaA+ dnaN- phages. Thus the insertion and deletion of the dnaA gene influence in cis the expresion of the dnaN gene. We propose that the dnaA and dnaN genes constitute an operon, where the former is upstream to the latter.

  8. Fanconi anemia complementation group A cells are hypersensitive to chromium(VI)-induced toxicity.

    PubMed Central

    Vilcheck, Susan K; O'Brien, Travis J; Pritchard, Daryl E; Ha, Linan; Ceryak, Susan; Fornsaglio, Jamie L; Patierno, Steven R

    2002-01-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by diverse developmental abnormalities, progressive bone marrow failure, and a markedly increased incidence of malignancy. FA cells are hypersensitive to DNA cross-linking agents, suggesting a general defect in the repair of DNA cross-links. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including ternary DNA-Cr-DNA interstrand cross-links (Cr-DDC). We hypothesized that human FA complementation group A (FA-A) cells would be hypersensitive to Cr(VI) and Cr(VI)-induced apoptosis. Using phosphatidylserine translocation and caspase-3 activation, human FA-A fibroblasts were found to be markedly hypersensitive to chromium-induced apoptosis compared with CRL-1634 cells, which are normal human foreskin fibroblasts (CRL). The clonogenicity of FA-A cells was also significantly decreased compared with CRL cells after Cr(VI) treatment. There was no significant difference in either Cr(VI) uptake or Cr-DNA adduct formation between FA-A and CRL cells. These results show that FA-A cells are hypersensitive to Cr(VI) and Cr-induced apoptosis and that this hypersensitivity is not due to increased Cr(VI) uptake or increased Cr-DNA adduct formation. The results also suggest that Cr-DDC may be proapoptotic lesions. These results are the first to show that FA cells are hypersensitive to an environmentally relevant DNA cross-linking agent. PMID:12426130

  9. Mechanisms involved in antibody- and complement-mediated allograft rejection

    PubMed Central

    2010-01-01

    Antibody-mediated rejection has become critical clinically because this form of rejection is usually unresponsive to conventional anti-rejection therapy, and therefore, it has been recognized as a major cause of allograft loss. Our group developed experimental animal models of vascularized organ transplantation to study pathogenesis of antibody- and complement-mediated endothelial cell injury leading to graft rejection. In this review, we discuss mechanisms of antibody-mediated graft rejection resulting from activation of complement by C1q- and MBL (mannose-binding lectin)-dependent pathways and interactions with a variety of effector cells, including macrophages and monocytes through Fcγ receptors and complement receptors. PMID:20135240

  10. Convertase Inhibitory Properties of Staphylococcal Extracellular Complement-binding Protein*

    PubMed Central

    Jongerius, Ilse; Garcia, Brandon L.; Geisbrecht, Brian V.; van Strijp, Jos A. G.; Rooijakkers, Suzan H. M.

    2010-01-01

    The human pathogen Staphylococcus aureus secretes several complement evasion molecules to combat the human immune response. Extracellular complement-binding protein (Ecb) binds to the C3d domain of C3 and thereby blocks C3 convertases of the alternative pathway and C5 convertases via all complement pathways. Inhibition of C5 convertases results in complete inhibition of C5a generation and subsequent neutrophil migration. Here, we show that binding of Ecb to the C3d domain of C3b is crucial for inhibition of C5 convertases. Ecb does not interfere with substrate binding to convertases but prevents formation of an active convertase enzyme. PMID:20304920

  11. In vivo Bactericidal Activity of Mouse Complement Against Esch. coli

    PubMed Central

    Medhurst, Fiona A.; Glynn, A. A.

    1970-01-01

    Live Escherichia coli of complement sensitive and resistant strains were labelled with 14C and injected i.v. into normal mice and into a co-isogenic strain deficient in C′5. The fate of the bacteria was followed by determining total and viable counts in blood samples taken at intervals over a 30 min. period and in homogenates of the liver, spleen, lungs and kidneys taken at the end of the experiment. The results show that sensitive bacteria can be killed by mouse complement within the circulation and suggest that complement may also play a part in the intracellular killing of Esch. coli in some organs. PMID:4923650

  12. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    PubMed

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  13. Complement requirement for virus neutralization by antibody and reduced serum complement levels associated with experimental equine herpesvirus 1 infection.

    PubMed Central

    Snyder, D B; Myrup, A C; Dutta, S K

    1981-01-01

    Pony foals, negative for detectable serum-neutralizing antibody to equine herpesvirus 1 by the standard tube-culture virus neutralization test, were experimentally infected with equine herpesvirus 1. Complement-requiring (CR) and non-complement-requiring (NCR) serum-neutralizing antibodies were evaluated in preinfection and postinfection sera by means of a complement-enhanced plaque reduction assay. Low levels of CR antibodies were found in the preinfection sera of only group II ponies. Upon infection, CR antibodies were detected by day 2 postinfection and reached peak titers between 7 and 14 days postinfection in the antisera of all ponies. NCR antibodies were detected later than CR antibodies and at levels approximately 40 to 150 times lower than the latter. CR/NCR ratios indicated that complement requirement was greatest early in the acute stages of disease and that this requirement decreased during the convalescent phase. Fractionation of 1-week and 2-week postinfection antisera of group I ponies indicated the CR antibody activity resided in both the 7S and 19S fractions. Total serum complement levels of the ponies were quantified throughout the infection with an equine anti-goat erythrocyte hemolytic system. In vivo, complement levels were depressed for all ponies during the first 2 weeks of infection. A decline in complement levels was seen as early as day 2, and they decreased to an average of 35% of preinfection levels on day 10 postinfection for all ponies. PMID:6260672

  14. Cloning of a human galactokinase gene (GK2) on chromosome 15 by complementation in yeast.

    PubMed Central

    Lee, R T; Peterson, C L; Calman, A F; Herskowitz, I; O'Donnell, J J

    1992-01-01

    A human cDNA encoding a galactokinase (EC 2.7.1.6) was isolated by complementation of a galactokinase-deficient (gal1-) strain of Saccharomyces cerevisiae. This cDNA encodes a predicted protein of 458 amino acids with 29% identity to galactokinase of Saccharomyces carlsbergensis. Previous studies have mapped a human galactokinase gene (GK1) to chromosome 17q23-25, closely linked to thymidine kinase. The galactokinase gene that we have isolated (GK2) is located on chromosome 15. The relationship between the disease locus for galactokinase deficiency galactosemia, which is responsible for cataracts in newborns and possibly presenile cataracts in adults, and the two galactokinase loci is unknown. Images PMID:1438294

  15. Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats

    PubMed Central

    Sharp, Julia A.; Hair, Pamela S.; Pallera, Haree K.; Kumar, Parvathi S.; Mauriello, Clifford T.; Nyalwidhe, Julius O.; Phelps, Cody A.; Park, Dalnam; Thielens, Nicole M.; Pascal, Stephen M.; Chen, Waldon; Duffy, Diane M.; Lattanzio, Frank A.; Cunnion, Kenji M.; Krishna, Neel K.

    2015-01-01

    The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases. PMID:26196285

  16. Complement involvement in periodontitis: molecular mechanisms and rational therapeutic approaches

    PubMed Central

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D.

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis. PMID:26306443

  17. The Complement-Fixation Test in Hepatic Coccidiosis of Rabbits

    PubMed Central

    Rose, M. Elaine

    1961-01-01

    Antibodies to Eimeria stiedae were measured in rabbit serum by complement fixation. The titre rose to a maximum at about the 22nd day after infection, remained at this level for about 20 days and then declined. Antibodies were still detectable up to 160 days after infection. Evidence of past or present slight E. stiedae infection was found in clinically normal rabbits whose sera fixed complement with E. stiedae antigens. Challenge of rabbits which had recovered from a near-fatal infection had no effect upon the complement fixation titres of their sera. The serum of a rabbit which had been injected with alum-precipitated antigen fixed complement with E. stiedae antigens. However, the animal was still susceptible to a superimposed oral infection which had the effect of further increasing the serum titre. PMID:14493840

  18. Complement: a key system for immune surveillance and homeostasis.

    PubMed

    Ricklin, Daniel; Hajishengallis, George; Yang, Kun; Lambris, John D

    2010-09-01

    Nearly a century after the significance of the human complement system was recognized, we have come to realize that its functions extend far beyond the elimination of microbes. Complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses and sending 'danger' signals, complement contributes substantially to homeostasis, but it can also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its multiple roles in homeostasis and disease.

  19. Immobilization of soluble complement receptor 1 on islets.

    PubMed

    Luan, Nguyen M; Teramura, Yuji; Iwata, Hiroo

    2011-07-01

    Transplantation of pancreatic islets of Langerhans (islets) is a promising method to treat insulin-dependent diabetes mellitus. Control of complement activation is necessary to improve graft survival in alloislet and xenoislet transplantation. In this study, human soluble complement receptor 1 (sCR1) was immobilized on the islet cell surface through poly(ethylene glycol)-conjugated phospholipid (PEG-lipid) without loss of islet cell viability or insulin secretion ability. sCR1 on islets effectively inhibits complement activation and protects islets against attack by xenoreactive antibodies and complement. This method will be an efficient means to control early islet loss in clinical islet transplantation and realize xenoislet transplantation in the future.

  20. Complement in immune and inflammatory disorders: therapeutic interventions

    PubMed Central

    Ricklin, Daniel; Lambris, John D.

    2013-01-01

    With the awareness that immune-inflammatory crosstalk is at the heart of many disorders, the desire for novel immunomodulatory strategies in the therapy of such diseases has grown dramatically. As a prime initiator and important modulator of immunological and inflammatory processes, the complement system has emerged as an attractive target for early and upstream intervention in inflammatory diseases and has moved into the spotlight of drug discovery. While prevalent conditions such as age-related macular degeneration have attracted the most attention, the diverse array of complement-mediated pathologies, with distinct underlying mechanisms, demands a multifaceted arsenal of therapeutic strategies. Fortunately, efforts in recent years have not only introduced the first complement inhibitors to the clinic but also filled the pipelines with promising candidates. With a focus on immunomodulatory strategies, this review discusses complement-directed therapeutic concepts and highlights promising candidate molecules. PMID:23564578

  1. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities.

    PubMed

    Xiang, Jinsong; Li, Xihong; Chen, Yadong; Lu, Yang; Yu, Mengjun; Chen, Xuejie; Zhang, Wenting; Zeng, Yan; Sun, Luming; Chen, Songlin; Sha, Zhenxia

    2015-11-01

    Complement factor I (Cfi) is a soluble serine protease which plays a crucial role in the modulation of complement cascades. In the presence of substrate modulating cofactors (such as complement factor H, C4bp, CR1, etc), Cfi cleaves and inactivates C3b and C4b, thereby controlling the complement-mediated processes. In this study, we sequenced and characterized Cfi gene from Cynoglossus Semilaevis (designated as CsCfi) for the first time. The full-length cDNA of CsCfi was 2230 bp in length, including a 98 bp 5'-untranslated region (UTR), a 164 bp 3'-UTR and a 1968 bp open reading frame (ORF). It encoded a polypeptide of 656 amino acids, with a molecular mass of 72.28 kDa and an isoelectric point of 7.71. A signal peptide was defined at N-terminus, resulting in a 626-residue mature protein. Multiple sequence alignment revealed that Cfi proteins were well conserved with the typical modular architecture and identical active sites throughout the vertebrates, which suggested the conserved function of Cfi. Phylogenetic analysis indicated that CsCfi and the homologous Cfi sequences from teleosts clustered into a clade, separating from another clade from the cartilaginous fish and other vertebrates. Tissue expression profile analysis by quantitative real-time PCR (qRT-PCR) showed that CsCfi mRNA constitutively expressed in all tested tissues, with the predominant expression in liver and the lowest in stomach. Temporal expression levels of CsCfi after challenging with Vibrio anguillarum showed different expression patterns in intestine, spleen, skin, blood, head kidney and liver. The recombinant CsCfi (rCsCfi) protein showed broad-spectrum antimicrobial activities against the Gram-positive bacteria Staphylococcus aureus and the Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and Shewanella putrefaciens. The research revealed that CsCfi plays an important role in C. Semilaevis immunity.

  2. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah.

    PubMed

    Zeng, Lin; Sun, Qian-Yun; Jin, Yang; Zhang, Yong; Lee, Wen-Hui; Zhang, Yun

    2012-09-01

    Cobra venom factor (CVF) is an anti-complement factor existing in cobra venom. CVF proteins have been purified from the venoms of Naja haje, Naja siamensis, Naja atra, Naja kaouthia, Naja naja, Naja melanoleuca and Austrelaps superbus, but only three full-length cDNA sequences of CVF are available. In the present work, a cobra venom factor termed OVF was purified from the crude venom of Ophiophagus hannah by successive gel filtration, ion-exchange and heparin affinity chromatography steps. The purified OVF was homogenous on the SDS-PAGE gel with an apparent molecular weight of 140 kDa under non-reducing conditions. Under reducing conditions, OVF was divided into three bands with apparent molecular weight of 72 kDa (α chain), 45 kDa (β chain) and 32 kDa (γ chain), respectively. OVF consumed complement components with anti-complement activity of 154 units per mg. By using Reverse transcription-PCR and 5'-RACE assay, the open reading frame of OVF was obtained. MALDI-TOF and protein sequencing assays confirmed the cloned cDNA coding for OVF protein. The cDNA sequence of OVF is conservative when aligned with that of other CVFs. Phylogenetic analysis revealed OVF is closer to CVF from N. kaouthia than to AVF-1 and AVF-2 from A. superbus. Our results demonstrated that OVF has its unique features as following: 1) The N-terminal amino acid sequence of OVF γ chain is different from that of other known CVFs, suggesting that the OVF γ chain might be further processed; 2) Unlike N. kaouthia CVF and A. superbus AVF-1, which have potential N-linked glycosylation sites located in both α and β chain, OVF only has N-linked glycosylation site in its α chain as revealed by Schiff's reagent staining and protein sequence analysis; 3) In addition to the 27 well conserved cysteine residues in all known CVFs, OVF have an additional cysteine residue in its γ chain. Understanding the importance of above mentioned specific characteristics might provide useful information on structure

  3. Complement and cytokine response in acute Thrombotic Thrombocytopenic Purpura

    PubMed Central

    Westwood, John-Paul; Langley, Kathryn; Heelas, Edward; Machin, Samuel J; Scully, Marie

    2014-01-01

    Complement dysregulation is key in the pathogenesis of atypical Haemolytic Uraemic Syndrome (aHUS), but no clear role for complement has been identified in Thrombotic Thrombocytopenic Purpura (TTP). We aimed to assess complement activation and cytokine response in acute antibody-mediated TTP. Complement C3a and C5a and cytokines (interleukin (IL)-2, IL-4, IL-6, IL-10, tumour necrosis factor, interferon-γ and IL-17a) were measured in 20 acute TTP patients and 49 remission cases. Anti-ADAMTS13 immunoglobulin G (IgG) subtypes were measured in acute patients in order to study the association with complement activation. In acute TTP, median C3a and C5a were significantly elevated compared to remission, C3a 63·9 ng/ml vs. 38·2 ng/ml (P < 0·001) and C5a 16·4 ng/ml vs. 9·29 ng/ml (P < 0·001), respectively. Median IL-6 and IL-10 levels were significantly higher in the acute vs. remission groups, IL-6: 8 pg/ml vs. 2 pg/ml (P = 0·003), IL-10: 6 pg/ml vs. 2 pg/ml (P < 0·001). C3a levels correlated with both anti-ADAMTS13 IgG (rs = 0·604, P = 0·017) and IL-10 (rs = 0·692, P = 0·006). No anti-ADAMTS13 IgG subtype was associated with higher complement activation, but patients with the highest C3a levels had 3 or 4 IgG subtypes present. These results suggest complement anaphylatoxin levels are higher in acute TTP cases than in remission, and the complement response seen acutely may relate to anti-ADAMTS13 IgG antibody and IL-10 levels. PMID:24372446

  4. Complement activation in diseases presenting with thrombotic microangiopathy.

    PubMed

    Meri, Seppo

    2013-09-01

    The complement system contains a great deal of biological "energy". This is demonstrated by the atypical hemolytic uremic syndrome (aHUS), which is a thrombotic microangiopathy (TMA) characterized by endothelial and blood cell damage and thrombotic vascular occlusions. Kidneys and often also other organs (brain, lungs and gastrointestinal tract) are affected. A principal pathophysiological feature in aHUS is a complement attack against endothelial cells and blood cells. This leads to platelet activation and aggregation, hemolysis, prothrombotic and inflammatory changes. The attacks can be triggered by infections, pregnancy, drugs or trauma. Complement-mediated aHUS is distinct from bacterial shiga-toxin (produced e.g. by E. coli O:157 or O:104 serotypes) induced "typical" HUS, thrombotic thrombocytopenic purpura (TTP) associated with ADAMTS13 (an adamalysin enzyme) dysfunction and from a recently described disease related to mutations in intracellular diacylglycerol kinase ε (DGKE). Mutations in proteins that regulate complement (factor H, factor I, MCP/CD46, thrombomodulin) or promote (C3, factor B) amplification of its alternative pathway or anti-factor H antibodies predispose to aHUS. The fundamental defect in aHUS is an excessive complement attack against cellular surfaces. This can be due to 1) an inability to regulate complement on self cell surfaces, 2) hyperactive C3 convertases or 3) complement activation and coagulation promoting changes on cell surfaces. The most common genetic cause is in factor H, where aHUS mutations disrupt its ability to recognize protective polyanions on surfaces where C3b has become attached. Most TMAs are thus characterized by misdirected complement activation affecting endothelial cell and platelet integrity. Copyright © 2013 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  5. Protective responses to sublytic complement in the retinal pigment epithelium

    PubMed Central

    Tan, Li Xuan; Toops, Kimberly A.; Lakkaraju, Aparna

    2016-01-01

    The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4−/− Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4−/− mice, indicating that they could be effective therapeutic approaches for macular degenerations. PMID:27432952

  6. Legionella pneumophila lipopolysaccharide activates the classical complement pathway.

    PubMed Central

    Mintz, C S; Schultz, D R; Arnold, P I; Johnson, W

    1992-01-01

    Legionella pneumophila is a gram-negative bacterium capable of entering and growing in alveolar macrophages and monocytes. Complement and complement receptors are important in the uptake of L. pneumophila by human mononuclear phagocytes. The surface molecules of L. pneumophila that activate the complement system are unknown. To identify these factors, we investigated the effects of L. pneumophila lipopolysaccharide (LPS) on the classical and alternative complement pathways of normal human serum by functional hemolytic assays. Although incubation of LPS in normal human serum at 37 degrees C resulted in the activation of both pathways, complement activation proceeded primarily through the classical pathway. Activation of the classical pathway by LPS was dependent on natural antibodies of the immunoglobulin M class that were present in various quantities in sera from different normal individuals but were absent in an immunoglobulin-deficient serum obtained from an agammaglobulinemic patient. Additional studies using sheep erythrocytes coated with LPS suggested that the antibodies recognized antigenic sites in the carbohydrate portion of LPS. The ability of LPS to interact with the complement system suggests a role for LPS in the uptake of L. pneumophila by mononuclear phagocytes. PMID:1612744

  7. Complement Activation in Acetaminophen-Induced Liver Injury in Mice

    PubMed Central

    Singhal, Rohit; Ganey, Patricia E.

    2012-01-01

    Overdose with acetaminophen (APAP) results in acute liver failure in humans and experimental animals. Complement comprises more than 30 proteins that can participate in tissue injury and/or repair, but the role of complement activation in APAP-induced hepatotoxicity has not been evaluated. Treatment of male, C57BL6J mice with APAP (200–400 mg/kg) resulted in liver injury as evidenced by increased activity of alanine aminotransferase (ALT) in plasma and hepatocellular necrosis. Plasma concentration of the complement component C3 was significantly reduced 6 h after treatment with APAP, indicating complement activation, and C3b (detected by immunostaining) accumulated in the centrilobular areas of liver lobules. Pretreatment with cobra venom factor (CVF; 15 U/mouse) to deplete complement components abolished APAP-mediated C3b accumulation, and this was accompanied by reductions in plasma ALT activity, hepatocellular necrosis, hepatic neutrophil accumulation, and expression of inflammatory genes (interleukin-6, interleukin-10, and plasminogen activation inhibitor-1) at 24 h after APAP treatment. Loss of hepatocellular GSH was similar in APAP-treated mice pretreated with either saline or CVF, suggesting that CVF pretreatment did not affect APAP bioactivation. Mice with a genetic deficiency in C3 had reduced ALT activity 6 and 12 h after APAP administration compared with wild-type animals. These results reveal a key role for complement activation in hepatic inflammation and progression of injury during the pathogenesis of APAP-induced hepatotoxicity. PMID:22319198

  8. Single-radial-complement-fixation: a new immunodiffusion technique

    PubMed Central

    Haaheim, L. R.

    1978-01-01

    A new immunodiffusion technique in agarose gel for the quantification of complement-fixing antibodies is described. The test involves the incorporation of antigen and complement in a primary agarose gel. Heat-inactivated serum samples are allowed to diffuse radially from wells overnight at 4°C. A secondary gel, containing antibody-coated sheep erythrocytes, is layered on top of the first gel and the system is incubated for 45 min at 37°C. Where complement is fixed, i.e., around wells with positive serum samples, zones of unlysed cells appear. There is a straight line relationship between zone areas so produced and log2 serum titres obtained with the conventional complement fixation test. The method appears to be applicable to a variety of antigens. It has been found suitable for bacterial and viral antigens. The test can also be reversed, thus allowing the quantification of diffusible antigens in a gel containing immune serum and complement. This paper describes in detail the use of this method as a diagnostic tool for the assay of complement-fixing antibodies to the type-specific antigens of influenza virus in paired human sera. ImagesFig. 2 PMID:96950

  9. Staphylococcal proteases aid in evasion of the human complement system

    PubMed Central

    Jusko, Monika; Potempa, Jan; Kantyka, Tomasz; Bielecka, Ewa; Miller, Halie K.; Kalinska, Magdalena; Dubin, Grzegorz; Garred, Peter; Shaw, Lindsey N.; Blom, Anna M.

    2014-01-01

    Staphylococcus aureus is an opportunistic pathogen that presents severe healthcare concerns due to the prevalence of multiple antibiotic resistant strains. New treatment strategies are urgently needed, which requires an understanding of disease causation mechanisms. Complement is one of the first lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component by aureolysin. We demonstrate here that four major extracellular proteases of S. aureus are potent complement inhibitors. Incubation of human serum with the cysteine proteases staphopain A and staphopain B, the serine protease V8, and the metalloproteinase aureolysin resulted in a drastic decrease in the haemolytic activity of serum; whereas two serine-protease like enzymes, SplD and SplE, had no effect. These four proteases were found to inhibit all pathways of complement due to the efficient degradation of several crucial components. Furthermore, S. aureus mutants lacking proteolytic enzymes were found to be more efficiently killed in human blood. Taken together, the major proteases of S. aureus appear to be important for pathogen-mediated evasion of the human complement system. PMID:23838186

  10. Complement involvement in kidney diseases: From physiopathology to therapeutical targeting.

    PubMed

    Salvadori, Maurizio; Rosso, Giuseppina; Bertoni, Elisabetta

    2015-05-06

    Complement cascade is involved in several renal diseases and in renal transplantation. The different components of the complement cascade might represent an optimal target for innovative therapies. In the first section of the paper the authors review the physiopathology of complement involvement in renal diseases and transplantation. In some cases this led to a reclassification of renal diseases moving from a histopathological to a physiopathological classification. The principal issues afforded are: renal diseases with complement over activation, renal diseases with complement dysregulation, progression of renal diseases and renal transplantation. In the second section the authors discuss the several complement components that could represent a therapeutic target. Even if only the anti C5 monoclonal antibody is on the market, many targets as C1, C3, C5a and C5aR are the object of national or international trials. In addition, many molecules proved to be effective in vitro or in preclinical trials and are waiting to move to human trials in the future.

  11. Exploitation of complement regulatory proteins by Borrelia and Francisella.

    PubMed

    Madar, Marian; Bencurova, Elena; Mlynarcik, Patrik; Almeida, André M; Soares, Renata; Bhide, Katarina; Pulzova, Lucia; Kovac, Andrej; Coelho, Ana V; Bhide, Mangesh

    2015-06-01

    Pathogens have developed sophisticated mechanisms of complement evasion such as binding to the host complement regulatory proteins (CRPs) on their surface or expression of CRP mimicking molecules. The ability of pathogens to evade the complement system has been correlated with pathogenesis and host selectivity. Hitherto, little work has been undertaken to determine whether Borrelia and Francisella exploit various CRPs to block complement attack. Seventeen Borrelia (twelve species) and six Francisella (three subspecies) strains were used to assess their ability to bind human, sheep and cattle CRPs or mimic membrane associated complement regulators. A series of experiments including affinity ligand binding experiments, pull-down assays and mass spectrometry based protein identification, revealed an array of CRP binding proteins of Borrelia and Francisella. Unlike Francisella, Borrelia strains were able to bind multiple human CRPs. Three strains of Borrelia (SKT-4, SKT-2 and HO14) showed the presence of a human CD46-homologous motif, indicating their ability to possess putative human CD46 mimicking molecules. Similarly, five strains of Borrelia and two strains of Francisella may have surface proteins with human CD59-homologous motifs. Among ovine and bovine CRPs, the only CRP bound by Francisella (LVS, Tul4 strain) was vitronectin, while ovine C4BP, ovine factor H and bovine factor H were bound to Borrelia strains SKT-2, DN127 and Co53. This study presents an array of proteins of Borrelia and Francisella that bind CRPs or may mimic membrane-CRPs, thus enabling multiphasic complement evasion strategies of these pathogens.

  12. Identification of a central role for complement in osteoarthritis

    PubMed Central

    Wang, Qian; Rozelle, Andrew L.; Lepus, Christin M.; Scanzello, Carla R.; Song, Jason J.; Larsen, D. Meegan; Crish, James F.; Bebek, Gurkan; Ritter, Susan Y.; Lindstrom, Tamsin M.; Hwang, Inyong; Wong, Heidi H.; Punzi, Leonardo; Encarnacion, Angelo; Shamloo, Mehrdad; Goodman, Stuart B.; Wyss-Coray, Tony; Goldring, Steven R.; Banda, Nirmal K.; Thurman, Joshua M.; Gobezie, Reuben; Crow, Mary K.; Holers, V. Michael; Lee, David M.; Robinson, William H.

    2011-01-01

    Osteoarthritis, characterized by the breakdown of articular cartilage in synovial joints, has long been viewed as the result of “wear and tear”1. Although low-grade inflammation is detected in osteoarthritis, its role is unclear2–4. Here we identify a central role for the inflammatory complement system in the pathogenesis of osteoarthritis. Through proteomic and transcriptomic analyses of synovial fluids and membranes from individuals with osteoarthritis, we find that expression and activation of complement is abnormally high in human osteoarthritic joints. Using mice genetically deficient in C5, C6, or CD59a, we show that complement, and specifically the membrane attack complex (MAC)-mediated arm of complement, is critical to the development of arthritis in three different mouse models of osteoarthritis. Pharmacological modulation of complement in wild-type mice confirmed the results obtained with genetically deficient mice. Expression of inflammatory and degradative molecules was lower in chondrocytes from destabilized joints of C5-deficient mice than C5-sufficient mice, and MAC induced production of these molecules in cultured chondrocytes. Furthermore, MAC co-localized with matrix metalloprotease (MMP)-13 and with activated extracellular signal-regulated kinase (ERK) around chondrocytes in human osteoarthritic cartilage. Our findings indicate that dysregulation of complement in synovial joints plays a critical role in the pathogenesis of osteoarthritis. PMID:22057346

  13. Derivatives of human complement component C3 for therapeutic complement depletion: a novel class of therapeutic agents.

    PubMed

    Fritzinger, David C; Hew, Brian E; Lee, June Q; Newhouse, James; Alam, Maqsudul; Ciallella, John R; Bowers, Mallory; Gorsuch, William B; Guikema, Benjamin J; Stahl, Gregory L; Vogel, Carl-Wilhelm

    2008-01-01

    To obtain proteins with the complement-depleting activity of Cobra Venom Factor (CVF), but with less immunogenicity, we have prepared human C3/CVF hybrid proteins, in which the C-terminus of the alpha-chain of human C3 is exchanged with homologous regions of the C-terminus of the beta-chain of CVF. We show that these hybrid proteins are able to deplete complement, both in vitro and in vivo. One hybrid protein, HC3-1496, is shown to be effective in reducing complement-mediated damage in two disease models in mice, collagen-induced arthritis and myocardial ischemia/reperfusion injury. Human C3/CVF hybrid proteins represent a novel class ofbiologicals as potential therapeutic agents in many diseases where complement is involved in the pathogenesis.

  14. Relationships between the haemolytic activities of the human complement system and complement components.

    PubMed Central

    Takada, A; Imamura, Y; Takada, Y

    1979-01-01

    The relationships between the haemolytic activities of complement and its components were studied. The activities studied included CH50 (classical pathway), AP50 (alternative pathway), CV50 (early part of alternative pathway) and C(3--9)H50 ((the late part of both pathways). The components included C3, C4, C5, C9, B and D. There was a good correlation between CH50 and AP50. AP50 had a good correlation with B and CV50. There was no correlation between AP50 and C(3--9)H50, and none between C(3--9)H50 and C5 or C9. AP50 may primarily represent changes in the early part of the alternative pathway. C(3--9)H50 is not influenced by respective changes in the amounts of C5 or C9. Since cell lesion is now considered to be caused by a unit of C5b to C9, a change in each component of C5 to C9 may not influence haemolytic activity. PMID:436337

  15. Disease-causing mutations in genes of the complement system.

    PubMed

    Degn, Søren E; Jensenius, Jens C; Thiel, Steffen

    2011-06-10

    Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of "conventional" complement deficiencies with these newly described developmental roles.

  16. Disease-Causing Mutations in Genes of the Complement System

    PubMed Central

    Degn, Søren E.; Jensenius, Jens C.; Thiel, Steffen

    2011-01-01

    Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of “conventional” complement deficiencies with these newly described developmental roles. PMID:21664996

  17. Effects of Streptococcus pneumoniae Strain Background on Complement Resistance

    PubMed Central

    Hyams, Catherine; Opel, Sophia; Hanage, William; Yuste, Jose; Bax, Katie; Henriques-Normark, Birgitta; Spratt, Brian G.; Brown, Jeremy S.

    2011-01-01

    Background Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity. Methodology and Principal Findings C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS. Conclusions These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains. PMID:22022358

  18. Complement activation and interleukin response in major abdominal surgery.

    PubMed

    Kvarnström, A L; Sarbinowski, R T; Bengtson, J-P; Jacobsson, L M; Bengtsson, A L

    2012-05-01

    The objective of this study was to evaluate whether major abdominal surgery leads to complement activation and interleukin response and whether the kind of anaesthesia influence complement activation and the release of inflammatory interleukins. The study design was prospective and randomised. Fifty patients undergoing open major colorectal surgery due to cancer disease or inflammatory bowel disease were studied. Twenty-five patients were given total intravenous anaesthesia (TIVA) with propofol and remifentanil, and 25 patients were given inhalational anaesthesia with sevoflurane and fentanyl. To determine complement activation (C3a and SC5b-9) and the release of pro- and anti-inflammatory interleukins (tumour necrosis factor-a (TNF-a)), interleukin-1b (IL-1b), IL-6, IL-8, IL-4 and IL-10), blood samples were drawn preoperatively, 60 minutes after start of surgery, 30 minutes after end of surgery and 24 hours postoperatively. Complement was activated and pro-inflammatory interleukins (IL-6 and IL-8) and anti-inflammatory interleukins (IL-10) were released during major colorectal surgery. There was no significant difference between TIVA and inhalational anaesthesia regarding complement activation and cytokine release. Major colorectal surgery leads to activation of the complement cascade and the release of both pro-inflammatory and anti-inflammatory cytokines. There are no significant differences between total intravenous anaesthesia (TIVA) with propofol and remifentanil and inhalational anaesthesia with sevoflurane and fentanyl regarding complement activation and the release of pro- and anti-inflammatory interleukins. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd. Scandinavian Journal of Immunology.

  19. Plasma Complement Components and Activation Fragments: Associations with Age-Related Macular Degeneration Genotypes and Phenotypes

    PubMed Central

    Reynolds, Robyn; Hartnett, M. Elizabeth; Atkinson, John P.; Giclas, Patricia C.; Rosner, Bernard; Seddon, Johanna M.

    2010-01-01

    Purpose Several genes encoding complement system components and fragments are associated with age-related macular degeneration (AMD). This study was conducted to determine whether alterations in circulating levels of these markers of complement activation and regulation are also independently associated with advanced AMD and whether they are related to AMD genotypes. Methods Plasma and DNA samples were selected from individuals in our AMD registry who had progressed to or developed the advanced stages of AMD, including 58 with geographic atrophy and 62 with neovascular disease. Subjects of similar age and sex, but without AMD, and who did not progress were included as controls (n = 60). Plasma complment components (C3, CFB, CFI, CFH, and factor D) and activation fragments (Bb, C3a, C5a, iC3b, and SC5b-9) were analyzed. DNA samples were genotyped for seven single-nucleotide polymorphisms in six genes previously shown to be associated with AMD: CFB, CFH, C2, C3, and CFI and the LOC387715/ARMS2 gene region. The association between AMD and each complement biomarker was assessed by using logistic regression, controlling for age, sex, and proinflammatory risk factors: smoking and body mass index (BMI). Functional genomic analyses were performed to assess the relationship between the complement markers and genotypes. Concordance, or C, statistics were calculated to assess the effect of complement components and activation fragments in an AMD gene-environment prediction model. Results The highest quartiles of Bb and C5a were significantly associated with advanced AMD, when compared with the lowest quartiles. In multivariate models without genetic variants, the odds ratio (OR) for Bb was 3.3 (95% confidence interval [CI] = 1.3-8.6), and the OR for C5a was 3.6 (95% CI = 1.2-10.3). With adjustment for genetic variants, these ORs were substantially higher. The alternative pathway regulator CFH was inversely associated with AMD in the model without genotypes (OR = 0.3; P = 0

  20. Xeroderma pigmentosum complementation group A protein acts as a processivity factor.

    PubMed

    Lambert, M W; Yang, L

    2000-05-19

    We have previously shown that endonucleases present in a protein complex, which has specificity for cyclobutane pyrimidine dimers, locate sites of damage in DNA by a processive mechanism of action in normal human lymphoblastoid cells. In contrast, the endonucleases present in this complex from xeroderma pigmentosum complementation group A (XPA) cells locate damage sites by a distributive or significantly less processive mechanism. Since the XPA protein has been shown to be responsible for the DNA repair defect in XPA cells, this protein was examined for involvement in the mechanism of target site location of these endonucleases. A recombinant XPA protein, produced by expression of the normal XPA cDNA in E. coli, was isolated and purified. The results show that the recombinant XPA protein was able to correct the defect in ability of the XPA endonucleases to act by a processive mechanism of action on UVC irradiated DNA. These studies indicate that the XPA protein, in addition to a role in damage recognition or damage verification, may function as a processivity factor.

  1. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  2. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  3. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  4. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  5. 21 CFR 866.5260 - Complement C3b inactivator immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... immunochemical techniques the complement C3b inactivator (a plasma protein) in serum. Complement is a group of serum proteins that destroy infectious agents. Measurement of complement C3b inactivator aids in...

  6. Landscape complementation revealed through bipartite networks: An example with the Florida manatee

    USGS Publications Warehouse

    Haase, Catherine; Fletcher, Robert J; Slone, Daniel; Reid, James P.; Butler, Susan

    2017-01-01

    Landscape complementation is an important predictor of selection and thus classic complementation measures are not sufficient in describing the process. Formalization of complementation with bipartite network can therefor reveal effects potentially missed with conventional measures.

  7. Transcriptome Analysis of the Innate Immunity-Related Complement System in Spleen Tissue of Ctenopharyngodon idella Infected with Aeromonas hydrophila

    PubMed Central

    Dang, Yunfei; Xu, Xiaoyan; Shen, Yubang; Hu, Moyan; Zhang, Meng; Li, Lisen; Lv, Liqun; Li, Jiale

    2016-01-01

    The grass carp (Ctenopharyngodon idella) is an important commercial farmed herbivorous fish species in China, but is susceptible to Aeromonas hydrophila infections. In the present study, we performed de novo RNA-Seq sequencing of spleen tissue from specimens of a disease-resistant family, which were given intra-peritoneal injections containing PBS with or without a dose of A. hydrophila. The fish were sampled from the control group at 0 h, and from the experimental group at 4, 8, 12, 24, 48 and 72 h. 122.18 million clean reads were obtained from the normalized cDNA libraries; these were assembled into 425,260 contigs and then 191,795 transcripts. Of those, 52,668 transcripts were annotated with the NCBI Nr database, and 41,347 of the annotated transcripts were assigned into 90 functional groups. 20,569 unigenes were classified into six main categories, including 38 secondary KEGG pathways. 2,992 unigenes were used in the analysis of differentially expressed genes (DEGs). 89 of the putative DEGs were related to the immune system and 41 of them were involved in the complement and coagulation cascades pathway. This study provides insights into the complement and complement-related pathways involved in innate immunity, through expression profile analysis of the genomic resources in C. idella. We conclude that complement and complement-related genes play important roles during defense against A. hydrophila infection. The immune response is activated at 4 h after the bacterial injections, indicating that the complement pathways are activated at the early stage of bacterial infection. The study has improved our understanding of the immune response mechanisms in C. idella to bacterial pathogens. PMID:27383749

  8. Defining the Complement Biomarker Profile of C3 Glomerulopathy

    PubMed Central

    Zhang, Yuzhou; Nester, Carla M.; Martin, Bertha; Skjoedt, Mikkel-Ole; Meyer, Nicole C.; Shao, Dingwu; Borsa, Nicolò; Palarasah, Yaseelan

    2014-01-01

    Background and objectives C3 glomerulopathy (C3G) applies to a group of renal diseases defined by a specific renal biopsy finding: a dominant pattern of C3 fragment deposition on immunofluorescence. The primary pathogenic mechanism involves abnormal control of the alternative complement pathway, although a full description of the disease spectrum remains to be determined. This study sought to validate and define the association of complement dysregulation with C3G and to determine whether specific complement pathway abnormalities could inform disease definition. Design, setting, participants, & measurements This study included 34 patients with C3G (17 with C3 glomerulonephritis [C3GN] and 17 with dense deposit disease [DDD]) diagnosed between 2008 and 2013 selected from the C3G Registry. Control samples (n=100) were recruited from regional blood drives. Nineteen complement biomarkers were assayed on all samples. Results were compared between C3G disease categories and with normal controls. Results Assessment of the alternative complement pathway showed that compared with controls, patients with C3G had lower levels of serum C3 (P<0.001 for both DDD and C3GN) and factor B (P<0.001 for both DDD and C3GN) as well as higher levels of complement breakdown products including C3d (P<0.001 for both DDD and C3GN) and Bb (P<0.001 for both DDD and C3GN). A comparison of terminal complement pathway proteins showed that although C5 levels were significantly suppressed (P<0.001 for both DDD and C3GN) its breakdown product C5a was significantly higher only in patients with C3GN (P<0.05). Of the other terminal pathway components (C6–C9), the only significant difference was in C7 levels between patients with C3GN and controls (P<0.01). Soluble C5b-9 was elevated in both diseases but only the difference between patients with C3GN and controls reached statistical significance (P<0.001). Levels of C3 nephritic factor activity were qualitatively higher in patients with DDD compared

  9. Neutrophil extracellular traps can activate alternative complement pathways.

    PubMed

    Wang, H; Wang, C; Zhao, M-H; Chen, M

    2015-09-01

    The interaction between neutrophils and activation of alternative complement pathway plays a pivotal role in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). ANCAs activate primed neutrophils to release neutrophil extracellular traps (NETs), which have recently gathered increasing attention in the development of AAV. The relationship between NETs and alternative complement pathway has not been elucidated. The current study aimed to investigate the relationship between NETs and alternative complement pathway. Detection of components of alternative complement pathway on NETs in vitro was assessed by immunostain and confocal microscopy. Complement deposition on NETs were detected after incubation with magnesium salt ethyleneglycol tetraacetic acid (Mg-EGTA)-treated human serum. After incubation of serum with supernatants enriched in ANCA-induced NETs, levels of complement components in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Complement factor B (Bb) and properdin deposited on NETs in vitro. The deposition of C3b and C5b-9 on NETs incubated with heat-inactivated normal human serum (Hi-NHS) or EGTA-treated Hi-NHS (Mg-EGTA-Hi-NHS) were significantly less than that on NETs incubated with NHS or EGTA-treated NHS (Mg-EGTA-NHS). NETs induced by ANCA could activate the alternative complement cascade in the serum. In the presence of EGTA, C3a, C5a and SC5b-9 concentration decreased from 800·42 ± 244·81 ng/ml, 7·68 ± 1·50 ng/ml, 382·15 ± 159·75 ng/ml in the supernatants enriched in ANCA induced NETs to 479·07 ± 156·2 ng/ml, 4·86 ± 1·26 ng/ml, 212·65 ± 44·40 ng/ml in the supernatants of DNase I-degraded NETs (P < 0·001, P = 0·008, P < 0·001, respectively). NETs could activate the alternative complement pathway, and might thus participate in the pathogenesis of AAV. © 2015 British Society for Immunology.

  10. Neutrophil extracellular traps can activate alternative complement pathways

    PubMed Central

    Wang, H; Wang, C; Zhao, M-H; Chen, M

    2015-01-01

    The interaction between neutrophils and activation of alternative complement pathway plays a pivotal role in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). ANCAs activate primed neutrophils to release neutrophil extracellular traps (NETs), which have recently gathered increasing attention in the development of AAV. The relationship between NETs and alternative complement pathway has not been elucidated. The current study aimed to investigate the relationship between NETs and alternative complement pathway. Detection of components of alternative complement pathway on NETs in vitro was assessed by immunostain and confocal microscopy. Complement deposition on NETs were detected after incubation with magnesium salt ethyleneglycol tetraacetic acid (Mg-EGTA)-treated human serum. After incubation of serum with supernatants enriched in ANCA-induced NETs, levels of complement components in supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Complement factor B (Bb) and properdin deposited on NETs in vitro. The deposition of C3b and C5b-9 on NETs incubated with heat-inactivated normal human serum (Hi-NHS) or EGTA-treated Hi-NHS (Mg-EGTA-Hi-NHS) were significantly less than that on NETs incubated with NHS or EGTA-treated NHS (Mg-EGTA-NHS). NETs induced by ANCA could activate the alternative complement cascade in the serum. In the presence of EGTA, C3a, C5a and SC5b-9 concentration decreased from 800·42 ± 244·81 ng/ml, 7·68 ± 1·50 ng/ml, 382·15 ± 159·75 ng/ml in the supernatants enriched in ANCA induced NETs to 479·07 ± 156·2 ng/ml, 4·86 ± 1·26 ng/ml, 212·65 ± 44·40 ng/ml in the supernatants of DNase I-degraded NETs (P < 0·001, P = 0·008, P < 0·001, respectively). NETs could activate the alternative complement pathway, and might thus participate in the pathogenesis of AAV PMID:25963026

  11. Sequence diversity of the Trypanosoma cruzi complement regulatory protein family.

    PubMed

    Beucher, M; Norris, K A

    2008-02-01

    As a central component of innate immunity, complement activation is a critical mechanism of containment and clearance of microbial pathogens in advance of the development of acquired immunity. Several pathogens restrict complement activation through the acquisition of host proteins that regulate complement activation or through the production of their own complement regulatory molecules (M. K. Liszewski, M. K. Leung, R. Hauhart, R. M. Buller, P. Bertram, X. Wang, A. M. Rosengard, G. J. Kotwal, and J. P. Atkinson, J. Immunol. 176:3725-3734, 2006; J. Lubinski, L. Wang, D. Mastellos, A. Sahu, J. D. Lambris, and H. M. Friedman, J. Exp. Med. 190:1637-1646, 1999). The infectious stage of the protozoan parasite Trypanosoma cruzi produces a surface-anchored complement regulatory protein (CRP) that functions to inhibit alternative and classical pathway complement activation (K. A. Norris, B. Bradt, N. R. Cooper, and M. So, J. Immunol. 147:2240-2247, 1991). This study addresses the genomic complexity of the T. cruzi CRP and its relationship to the T. cruzi supergene family comprising active trans-sialidase (TS) and TS-like proteins. The TS superfamily consists of several functionally distinct subfamilies that share a characteristic sialidase domain at their amino termini. These TS families include active TS, adhesions, CRPs, and proteins of unknown functions (G. A. Cross and G. B. Takle, Annu. Rev. Microbiol. 47:385-411, 1993). A sequence comparison search of GenBank using BLASTP revealed several full-length paralogs of CRP. These proteins share significant homology at their amino termini and a strong spatial conservation of cysteine residues. Alternative pathway complement regulation was confirmed for CRP paralogs with 58% (low) and 83% (high) identity to AAB49414. CRPs are functionally similar to the microbial and mammalian proteins that regulate complement activation. Sequence alignment of mammalian complement control proteins to CRP showed that these sequences are

  12. Micrurus snake venoms activate human complement system and generate anaphylatoxins

    PubMed Central

    2012-01-01

    Background The genus Micrurus, coral snakes (Serpentes, Elapidae), comprises more than 120 species and subspecies distributed from the south United States to the south of South America. Micrurus snake bites can cause death by muscle paralysis and further respiratory arrest within a few hours after envenomation. Clinical observations show mainly neurotoxic symptoms, although other biological activities have also been experimentally observed, including cardiotoxicity, hemolysis, edema and myotoxicity. Results In the present study we have investigated the action of venoms from seven species of snakes from the genus Micrurus on the complement system in in vitro studies. Several of the Micrurus species could consume the classical and/or the lectin pathways, but not the alternative pathway, and C3a, C4a and C5a were generated in sera treated with the venoms as result of this complement activation. Micrurus venoms were also able to directly cleave the α chain of the component C3, but not of the C4, which was inhibited by 1,10 Phenanthroline, suggesting the presence of a C3α chain specific metalloprotease in Micrurus spp venoms. Furthermore, complement activation was in part associated with the cleavage of C1-Inhibitor by protease(s) present in the venoms, which disrupts complement activation control. Conclusion Micrurus venoms can activate the complement system, generating a significant amount of anaphylatoxins, which may assist due to their vasodilatory effects, to enhance the spreading of other venom components during the envenomation process. PMID:22248157

  13. Physicochemical signatures of nanoparticle-dependent complement activation

    SciTech Connect

    Thomas, Dennis G.; Chikkagoudar, Satish; Heredia-Langner, Alejandro; Tardiff, Mark F.; Xu, Zhixiang; Hourcade, Dennis; Pham, Christine; Lanza, Gregory M.; Weinberger, Kilian Q.; Baker, Nathan A.

    2014-03-21

    Nanoparticles are potentially powerful therapeutic tools that have the capacity to target drug payloads and imaging agents. However, some nanoparticles can activate complement, a branch of the innate immune system, and cause adverse side-effects. Recently, we developed an in vitro hemolytic assay protocol for measuring the nanoparticle-dependent complement activity of serum samples and applied this protocol to several nanoparticle formulations that differed in size, surface charge, and surface chemistry; quantifying the nanoparticle-dependent complement activity using a metric called Residual Hemolytic Activity (RHA). In the present work, we have used a decision tree learning algorithm to derive the rules for estimating nanoparticle-dependent complement response based on the data generated from the hemolytic assay studies. Our results indicate that physicochemical properties of nanoparticles, namely, size, polydispersity index, zeta potential, and mole percentage of the active surface ligand of a nanoparticle, can serve as good descriptors for prediction of nanoparticle-dependent complement activation in the decision tree modeling framework. The robustness and predictability of the model can be improved by training the model with additional data points that are uniformly distributed in the RHA/physicochemical descriptor space and by incorporating instability effects on nanoparticle physicochemical properties into the model.

  14. Complement factor H in host defense and immune evasion.

    PubMed

    Parente, Raffaella; Clark, Simon J; Inforzato, Antonio; Day, Anthony J

    2017-05-01

    Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.

  15. Complement activation by antibodies to Sm in systemic lupus erythematosus.

    PubMed

    Sabharwal, U K; Fong, S; Hoch, S; Cook, R D; Vaughan, J H; Curd, J G

    1983-02-01

    An enzyme linked immunosorbent assay was developed to quantitate antibodies to Sm (anti-Sm) and to measure complement activation by anti-Sm in vitro. Anti-Sm in plasma of patients with systemic lupus erythematosus (SLE) were bound to purified Sm bound to polyvinyl chloride microtitre plates and assayed for bound IgG or IgM using enzyme linked anti-gamma or anti-mu. The activation of C4 by anti-Sm was measured by adding diluted normal human serum (complement) to the wells and quantitating the amount of C4 bound to the well surface using (Fab')2 goat anti-C4 followed by enzyme linked rabbit anti-goat IgG. The plasmas of 12 of 36 patients with SLE contained anti-Sm and all 12 activated complement (complement activating anti-Sm). Twenty-eight plasmas containing anti-Sm from 12 patients with SLE were studied. Ten of the 12 patients had anti-Sm of the IgG class whereas two had anti-Sm of both IgG and IgM classes. The amount of C4 activating anti-Sm correlated significantly with the in vivo activation of C4 measured by rocket immunoelectrophoresis for C4d and C4, suggesting that complement activation by anti-Sm is important in vivo.

  16. Expanding horizons in complement drug discovery: challenges and emerging strategies.

    PubMed

    Harris, Claire L

    2017-10-06

    The complement system is best known for its role in innate immunity, providing a first line of defence against infection, maintaining tissue homeostasis by flagging apoptotic cells and debris for removal, and orchestrating crosstalk between adaptive and innate immunity. In a growing number of diseases, complement is known to drive pathogenesis or to contribute as an inflammatory amplifier of a disease trigger. Association of complement with common and devastating diseases has driven an upsurge in complement drug discovery, but despite a wealth of knowledge in the complexities of the cascade, and many decades of effort, very few drugs have progressed to late-stage clinical studies. The reasons for this are becoming clear with difficulties including high target concentration and turnover, lack of clarity around disease mechanism and unwanted side effects. Lessons learnt from drugs which are either approved, or are currently in late-stage development, or have failed and dropped off the drug development landscape, have been invaluable to drive a new generation of innovative drugs which are progressing through clinical development. In this review, the challenges associated with complement drug discovery are discussed and the current drug development landscape is reviewed. The latest approaches to improve drug characteristics are explored and those agents which employ these technologies to improve accessibility to patients are highlighted.

  17. Complement activation by Coccidioides immitis: in vitro and clinical studies.

    PubMed Central

    Galgiani, J N; Yam, P; Petz, L D; Williams, P L; Stevens, D A

    1980-01-01

    Mycelial- or spherule-phase derivatives of Coccidioides immitis caused a decrease in vitro of total hemolytic complement in serum from a nonsensitized person. Activation involved both classic and alternative pathways as shown by deprssion of hemolytic C4 and by generation of products of activation of components C3, C4, and factor B. In addition, functional complement activity or immunoreactive levels of complement components or both were measured in 23 patients with self-limited or disseminated coccidioidomycosis. Low total hemolytic complement was found in nine, usually during the early phase of primary illness, and was transient. Hemolytic C4 was low, and the effect of inulin to decrease complement levels was blunted, suggested both classic and alternative pathways may be deficient. However, associated depression of immunoreactive levels of components assayed (C3, C4, C5, factor B, and properdin) was not consistently found. This disparity raises the possibility of enhanced in vitro inactivation analogous to activation by immune complexes. Images Fig. 2 PMID:6901703

  18. Treatment of C3 glomerulopathy with complement blockers.

    PubMed

    Vivarelli, Marina; Emma, Francesco

    2014-06-01

    C3 glomerulopathy (C3G) is a newly defined clinical entity comprising glomerular lesions with predominant C3 staining. Under this definition are now included membranoproliferative glomerulonephritis type II (dense deposit disease) and C3 glomerulonephritis. This group of glomerular diseases with a heterogeneous histological aspect shares a common pathogenesis, that is, a dysregulation of the alternative pathway of complement in the fluid phase leading to C3 deposition in the kidney. Recent advances have expanded our understanding of the underlying mechanisms, leading to the hypothesis that blocking the alternative complement pathway may be an effective treatment for C3Gs, as has been shown in other renal diseases driven by alternative pathway dysregulation, such as atypical hemolytic uremic syndrome. Results of 11 published cases of patients with different forms of C3G treated with eculizumab, an anti-C5 humanized monoclonal antibody, are encouraging. Given the complexity of disease pathogenesis in C3G, a patient-tailored approach including a comprehensive workup of complement abnormalities is necessary to evaluate the best treatment options. Clinical trials assessing effectiveness of different complement blockers on the background of the individual complement profile are needed. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Function of Serum Complement in Drinking Water Arsenic Toxicity

    PubMed Central

    Islam, Laila N.; Zahid, M. Shamim Hasan; Nabi, A. H. M. Nurun; Hossain, Mahmud

    2012-01-01

    Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity. PMID:22545044

  20. Complement Evasion Mediated by Enhancement of Captured Factor H: Implications for Protection of Self-Surfaces from Complement

    PubMed Central

    Herbert, Andrew P.; Makou, Elisavet; Chen, Zhuo A.; Kerr, Heather; Richards, Anna; Rappsilber, Juri

    2015-01-01

    In an attempt to evade annihilation by the vertebrate complement system, many microbes capture factor H (FH), the key soluble complement-regulating protein in human plasma. However, FH is normally an active complement suppressor exclusively on self-surfaces and this selective action of FH is pivotal to self versus non-self discrimination by the complement system. We investigated whether the bacterially captured FH becomes functionally enhanced and, if so, how this is achieved at a structural level. We found, using site-directed and truncation mutagenesis, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and cross-linking and mass spectrometry, that the N-terminal domain of Streptococcus pneumoniae protein PspC (PspCN) not only binds FH extraordinarily tightly but also holds it in a previously uncharacterized conformation. Functional enhancement arises from exposure of a C-terminal cryptic second binding site in FH for C3b, the activation-specific fragment of the pivotal complement component, C3. This conformational change of FH doubles its affinity for C3b and increases 5-fold its ability to accelerate decay of the binary enzyme (C3bBb) responsible for converting C3 to C3b in an amplification loop. Despite not sharing critical FH-binding residues, PspCNs from D39 and Tigr4 S. pneumoniae exhibit similar FH-anchoring and enhancing properties. We propose that these bacterial proteins mimic molecular markers of self-surfaces, providing a compelling hypothesis for how FH prevents complement-mediated injury to host tissue while lacking efficacy on virtually all other surfaces. In hemolysis assays with 2-aminoethylisothiouronium bromide–treated erythrocytes that recapitulate paroxysmal nocturnal hemoglobinuria, PspCN enhanced protection of cells by FH, suggesting a new paradigm for therapeutic complement suppression. PMID:26459349

  1. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    SciTech Connect

    Thomas, S.M.; Sedgwick, S.G. )

    1989-11-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli.

  2. The Complement System in Neuropathic and Postoperative Pain

    PubMed Central

    Fritzinger, David C.; Benjamin, Daniel E.

    2017-01-01

    Certain types of pain are major unmet medical needs that affect more than 8 percent of the population. Neuropathic pain can be caused by many pathogenic processes including injury, autoimmune disease, neurological disease, endocrine dysfunction, infection, toxin exposure, and substance abuse and is frequently resistant to available pain therapies. The same can be said of postsurgical pain, which can arise from uncontrolled inflammation around the wound site. The complement system is part of the innate immune system and can both initiate and sustain acute and chronic inflammatory pain. Here we review the complement system and original investigations that identify potential drug targets within this system. Drugs that act to inhibit the complement system could fill major gaps in our current standard of care for neuropathic pain states. PMID:28154610

  3. Dual-Color Click Beetle Luciferase Heteroprotein Fragment Complementation Assays

    PubMed Central

    Villalobos, Victor; Naik, Snehal; Bruinsma, Monique; Dothager, Robin S.; Pan, Mei-Hsiu; Samrakandi, Mustapha; Moss, Britney; Elhammali, Adnan; Piwnica-Worms, David

    2010-01-01

    Summary Understanding the functional complexity of protein interactions requires mapping biomolecular complexes within the cellular environment over biologically-relevant time scales. Herein we describe a novel set of reversible, multicolored heteroprotein complementation fragments based on various firefly and click beetle luciferases that utilize the same substrate, D-luciferin. Luciferase heteroprotein fragment complementation systems enabled dual-color quantification of two discreet pairs of interacting proteins simultaneously or two distinct proteins interacting with a third shared protein in live cells. Using real-time analysis of click beetle green and click beetle red luciferase heteroprotein fragment complementation applied to β-TrCP, an E3-ligase common to the regulation of both β-catenin and IκBα, GSK3β was identified as a novel candidate kinase regulating IκBα processing. These dual-color protein interaction switches may enable directed dynamic analysis of a variety of protein interactions in living cells. PMID:20851351

  4. Serum immunoglobulins and complement (C'3) in oral lichen planus.

    PubMed

    Sklavounou, A D; Laskaris, G; Angelopoulos, A P

    1983-01-01

    Serum immunoglobulins and complement (C'3) were determined by single radial immunodiffusion according to the method of Mancini and co-workers in fifty patients with oral lichen planus and twenty persons with clinically normal oral mucosa. Significantly increased levels of serum IgG (p less than 0.05) and a significant reduction of serum IgA concentration (p less than 0.05) in the experimental group as compared with normal controls were observed. Mean serum IgM and complement (C'3) levels were similar in patients and controls. No correlation between disease variety or extensiveness and immunoglobulin or complement levels was noticed. These results suggest that patients with oral lichen planus may have a generalized immunologic disorder in which humoral immunity is disturbed. Whether humoral immunity is of etiologic significance, contributes to the disease process, or, finally, represents an event secondary to the pathologic changes seen in the disease remains to be determined.

  5. Role of complement in IgA nephropathy.

    PubMed

    Daha, Mohamed R; van Kooten, Cees

    2016-02-01

    Immunoglobulin A nephropathy (IgAN) is characterized by the deposition of IgA in the mesangium of glomeruli. This mesangial IgA has been found to consist mainly of polymeric IgA1 which drives the activation of the mesangial cells and results in excessive production of several inflammatory mediators. The activation of mesangial cells is amplified by the ability of IgA to activate the complement system, originally thought to occur mainly via the alternative pathway of complement. However more recent studies indicate that lectin pathway involvement has a strong association with progression of renal disease. In this review we summarize the contribution of complement to the IgA- mediated inflammatory process.

  6. COMPLEMENT-FIXATION TITERS IN EXPERIMENTAL COCCIDIOIDOMYCOSIS IN RABBITS1

    PubMed Central

    Brosbe, Edwin A.; Kietzman, Jewell N.; Kurnick, Nathaniel B.

    1964-01-01

    Brosbe, Edwin A. (Veterans Administration Hospital, Long Beach, Calif.), Jewell N. Kietzman, and Nathaniel B. Kurnick. Complement-fixation titers in experimental coccidioidomycosis. J. Bacteriol. 88:233–241. 1964.—The course of experimental coccicioidomycosis in rabbits was followed with complement-fixation (CF) tests. Uniformity of complement-fixing antibody response to large infective doses was observed, and levels as high as 1:4,096 in the New Zealand albino and 1:16,384 in the Dutch rabbit were attained. Mortality reflected the size of the inoculum rather than the level of CF titer. Animals receiving additional challenges displayed no marked elevation in titer, although high titers persisted. Nitrogen mustard, for the most part, did not influence the CF titer. Images PMID:14197893

  7. Role of complement in porphyrin-induced photosensitivity

    SciTech Connect

    Lim, H.W.; Gigli, I.

    1981-01-01

    Addition of porphyrins to sera of guinea pigs in vitro, followed by irradiation with 405 nm light, resulted in dose-dependent inhibitions of hemolytic activity of complement. With guinea pig as an animal model, we also found that systemically administered porphyrins, followed by irradiation with 405 nm light, resulted in dose-dependent inhibition of CH50 in vivo. The erythrocytes from porphyrin-treated guinea pigs showed an increased susceptibility to hemolysis induced by 405 nm irradiation in vitro. Clinical changes in these animals were limited to light-exposed areas and consisted of erythema, crusting, and delayed growth of hair. Histologically, dermal edema, dilation of blood vessels, and infiltration of mononuclear and polymorphonuclear cells were observed. Guinea pigs irradiated with ultraviolet-B developed erythema, but had no alteration of their complement profiles. It is suggested that complement products may play a specific role in the pathogenesis of the cutaneous lesions of some porphyrias.

  8. Complement-inactivating Proteinase(s) from Clostridium histolyticum1

    PubMed Central

    Goldlust, Marvin B.; Luzzati, Alma; Levine, Lawrence

    1968-01-01

    A proteinase fraction inhibiting the hemolytic activity of guinea pig complement was obtained from supernatant fluids of Clostridium histolyticum cultures and purified 150- to 350-fold by ammonium sulfate precipitation, Sephadex G-75 gel filtration, and diethylaminoethyl cellulose chromatography. An assay was developed based on the inactivation of hemolytic complement. Partially purified anticomplementary preparations were active against casein and were capable of “solubilizing” Escherichia coli endotoxin. Two components were found by differential heat inactivation, with complement and casein as substrates, but only one of these components was active against endotoxin. The more heat-stable activity, showing 50% inactivation at about 47 C, was characterized as to pH and ionic strength optima and sensitivity to reagents such as cysteine, β-mercaptoethanol, ethylenediaminetetraacetate, and heavy metals. PMID:5724966

  9. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2010-03-01

    that the hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research... Watson - Crick (WC) duplex, e.g., TCGCA TCGCA . Note that non-WC duplexes can form and such a formation is called a cross-hybridization. Cross...5’GAAAGTCGCGTA3’ Watson Crick (WC) Duplexes TACGCGACTTTC Cross Hybridized (CH) Duplexes ATTTTTGCGTTA GAAAAAGAAGAA Coding Strands for Ligation

  10. Variants in Complement Factor H and Complement Factor H-Related Protein Genes, CFHR3 and CFHR1, Affect Complement Activation in IgA Nephropathy

    PubMed Central

    Zhu, Li; Zhai, Ya-Ling; Wang, Feng-Mei; Hou, Ping; Lv, Ji-Cheng; Xu, Da-Min; Shi, Su-Fang; Liu, Li-Jun; Yu, Feng; Zhao, Ming-Hui; Novak, Jan; Gharavi, Ali G.

    2015-01-01

    Complement activation is common in patients with IgA nephropathy (IgAN) and associated with disease severity. Our recent genome-wide association study of IgAN identified susceptibility loci on 1q32 containing the complement regulatory protein-encoding genes CFH and CFHR1–5, with rs6677604 in CFH as the top single-nucleotide polymorphism and CFHR3–1 deletion (CFHR3–1∆) as the top signal for copy number variation. In this study, to explore the clinical effects of variation in CFH, CFHR3, and CFHR1 on IgAN susceptibility and progression, we enrolled two populations. Group 1 included 1178 subjects with IgAN and available genome-wide association study data. Group 2 included 365 subjects with IgAN and available clinical follow-up data. In group 1, rs6677604 was associated with mesangial C3 deposition by genotype–phenotype correlation analysis. In group 2, we detected a linkage between the rs6677604-A allele and CFHR3–1∆ and found that the rs6677604-A allele was associated with higher serum levels of CFH and lower levels of the complement activation split product C3a. Furthermore, CFH levels were positively associated with circulating C3 levels and negatively associated with mesangial C3 deposition. Moreover, serum levels of the pathogenic galactose-deficient glycoform of IgA1 were also associated with the degree of mesangial C3 deposition in patients with IgAN. Our findings suggest that genetic variants in CFH, CFHR3, and CFHR1 affect complement activation and thereby, predispose patients to develop IgAN. PMID:25205734

  11. Quantitative Modeling of the Alternative Pathway of the Complement System

    PubMed Central

    Dorado, Angel; Morikis, Dimitrios

    2016-01-01

    The complement system is an integral part of innate immunity that detects and eliminates invading pathogens through a cascade of reactions. The destructive effects of the complement activation on host cells are inhibited through versatile regulators that are present in plasma and bound to membranes. Impairment in the capacity of these regulators to function in the proper manner results in autoimmune diseases. To better understand the delicate balance between complement activation and regulation, we have developed a comprehensive quantitative model of the alternative pathway. Our model incorporates a system of ordinary differential equations that describes the dynamics of the four steps of the alternative pathway under physiological conditions: (i) initiation (fluid phase), (ii) amplification (surfaces), (iii) termination (pathogen), and (iv) regulation (host cell and fluid phase). We have examined complement activation and regulation on different surfaces, using the cellular dimensions of a characteristic bacterium (E. coli) and host cell (human erythrocyte). In addition, we have incorporated neutrophil-secreted properdin into the model highlighting the cross talk of neutrophils with the alternative pathway in coordinating innate immunity. Our study yields a series of time-dependent response data for all alternative pathway proteins, fragments, and complexes. We demonstrate the robustness of alternative pathway on the surface of pathogens in which complement components were able to saturate the entire region in about 54 minutes, while occupying less than one percent on host cells at the same time period. Our model reveals that tight regulation of complement starts in fluid phase in which propagation of the alternative pathway was inhibited through the dismantlement of fluid phase convertases. Our model also depicts the intricate role that properdin released from neutrophils plays in initiating and propagating the alternative pathway during bacterial infection. PMID

  12. 670-nm light treatment reduces complement propagation following retinal degeneration

    PubMed Central

    2012-01-01

    Aim Complement activation is associated with the pathogenesis of age-related macular degeneration (AMD). We aimed to investigate whether 670-nm light treatment reduces the propagation of complement in a light-induced model of atrophic AMD. Methods Sprague–Dawley (SD) rats were pretreated with 9 J/cm2 670-nm light for 3 minutes daily over 5 days; other animals were sham treated. Animals were exposed to white light (1,000 lux) for 24 h, after which animals were kept in dim light (5 lux) for 7 days. Expression of complement genes was assessed by quantitative polymerase chain reaction (qPCR), and immunohistochemistry. Counts were made of C3-expressing monocytes/microglia using in situ hybridization. Photoreceptor death was also assessed using outer nuclear layer (ONL) thickness measurements, and oxidative stress using immunohistochemistry for 4-hydroxynonenal (4-HNE). Results Following light damage, retinas pretreated with 670-nm light had reduced immunoreactivity for the oxidative damage maker 4-HNE in the ONL and outer segments, compared to controls. In conjunction, there was significant reduction in retinal expression of complement genes C1s, C2, C3, C4b, C3aR1, and C5r1 following 670 nm treatment. In situ hybridization, coupled with immunoreactivity for the marker ionized calcium binding adaptor molecule 1 (IBA1), revealed that C3 is expressed by infiltrating microglia/monocytes in subretinal space following light damage, which were significantly reduced in number after 670 nm treatment. Additionally, immunohistochemistry for C3 revealed a decrease in C3 deposition in the ONL following 670 nm treatment. Conclusions Our data indicate that 670-nm light pretreatment reduces lipid peroxidation and complement propagation in the degenerating retina. These findings have relevance to the cellular events of complement activation underling the pathogenesis of AMD, and highlight the potential of 670-nm light as a non-invasive anti-inflammatory therapy. PMID:23181358

  13. Biomedical polymers differ in their capacity to activate complement.

    PubMed

    Janatova, J; Cheung, A K; Parker, C J

    1991-01-01

    Conventionally, complement activation by biomedical polymers has been evaluated by determining the C3a concentration in the fluid phase only. According to this criterion, biomaterials such as hemodialysis membranes made from cellulosic or various synthetic polymers were classified as activators or nonactivators of complement. Since certain membranes bind large quantities of C3a from the fluid phase, classification based on fluid-phase C3a concentration has in some instances been inaccurate. As follows from the comparison of complement activation by cuprophane and polyacrylonitrile membranes, the capacity of a biomedical polymer to activate complement is not determined by the number of potential covalent binding sites on its surface. Biomaterial itself may lack hydroxyl and/or amino groups, and yet it may activate C3 in human serum very efficiently. Some of the biomaterials may also bind unactivated/unfragmented C3 whether in the absence or presence of other serum proteins. In addition, binding of factor B (a promotor of C3 activation) and binding of factor H (an inhibitor of C3 activation) to certain biomaterials have been found to be independent of complement activation and unaffected by the presence or absence of C3. Thus, it is becoming apparent that the requirements for the formation and stability of the C3 convertase on artificial surfaces differ from those on biological membranes, and that the relative magnitude of binding of factor B and factor H to the surface per se cannot be used as a reliable indicator of the capacity of the biomaterial to activate complement. Further studies are necessary to elucidate the molecular mechanisms of C3 and C5 activation on the surfaces of biomedical polymers.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Redefining Escherichia coli σ70 Promoter Elements: −15 Motif as a Complement of the −10 Motif ▿ †

    PubMed Central

    Djordjevic, Marko

    2011-01-01

    Classical elements of σ70 bacterial promoters include the −35 element (−35TTGACA−30), the −10 element (−12TATAAT−7), and the extended −10 element (−15TG−14). Although the −35 element, the extended −10 element, and the upstream-most base in the −10 element (−12T) interact with σ70 in double-stranded DNA (dsDNA) form, the downstream bases in the −10 motif (−11ATAAT−7) are responsible for σ70-single-stranded DNA (ssDNA) interactions. In order to directly reflect this correspondence, an extension of the extended −10 element to a so-called −15 element (−15TGnT−12) has been recently proposed. I investigated here the sequence specificity of the proposed −15 element and its relationship to other promoter elements. I found a previously undetected significant conservation of −13G and a high degeneracy at −15T. I therefore defined the −15 element as a degenerate motif, which, together with the conserved stretch of sequence between −15 and −12, allows treating this element analogously to −35 and −10 elements. Furthermore, the strength of the −15 element inversely correlates with the strengths of the −35 element and −10 element, whereas no such complementation between other promoter elements was found. Despite the direct involvement of −15 element in σ70-dsDNA interactions, I found a significantly stronger tendency of this element to complement weak −10 elements that are involved in σ70-ssDNA interactions. This finding is in contrast to the established view, according to which the −15 element provides a sufficient number of σ70-dsDNA interactions, and suggests that the main parameter determining a functional promoter is the overall promoter strength. PMID:21908667

  15. Reincarnation of ancient links between coagulation and complement.

    PubMed

    Conway, E M

    2015-06-01

    Throughout evolution, organisms have developed means to contain wounds by simultaneously limiting bleeding and eliminating pathogens and damaged host cells via the recruitment of innate defense mechanisms. Disease emerges when there is unchecked activation of innate immune and/or coagulation responses. A key component of innate immunity is the complement system. Concurrent excess activation of coagulation and complement - two major blood-borne proteolytic pathways - is evident in numerous diseases, including atherosclerosis, diabetes, venous thromboembolic disease, thrombotic microangiopathies, arthritis, cancer, and infectious diseases. Delineating the cross-talk between these two cascades will uncover novel therapeutic insights.

  16. Microvascular alterations and the role of complement in dermatomyositis.

    PubMed

    Lahoria, Rajat; Selcen, Duygu; Engel, Andrew G

    2016-07-01

    Different mechanisms have been proposed to explain the pathological basis of perifascicular muscle fibre atrophy in dermatomyositis. These include ischaemia due to immune-mediated microvascular injury, enhanced expression of type 1 interferon-induced gene transcripts in perifascicular capillaries and muscle fibres, and occlusion of larger perimysial blood vessels. Microvascular complement deposition is a feature of dermatomyositis pathology but the trigger for complement activation, the predominant complement pathway involved, or its role in the pathogenesis of the disease, has not been clearly defined. In the first step of this study we examined the density of capillaries and transverse vessels and searched for occlusion or depletion of larger perimysial blood vessels in 10 patients with dermatomyositis. This revealed an invariable association of perifascicular atrophy with capillary and transverse vessel depletion. The capillary and transverse vessel densities in non-atrophic fibre regions were not significantly different from those in muscle specimens of 10 age-matched controls. Next, in the same 10, as well as in 40 additional dermatomyositis patients, we searched for vascular deposits of IgG, IgM, and the C5b-9 complement membrane attack complex. Thirty-one of 50 dermatomyositis specimens contained C5b-9 reactive endomysial microvessels but none of these or other vessels reacted for IgG. Ten of 50 specimens harboured IgM-positive capillaries but only a few of these reacted for C5b-9. Finally, we analysed and compared different pathways of complement activation in dermatomyositis, lupus nephritis, and necrotic muscle fibres in Duchenne dystrophy. In lupus nephritis, C5-b9 deposits co-localized with IgG, IgM, C1q, and C4d, consistent with immune complex dependent activation of the classical complement pathway. In both dermatomyositis and Duchenne dystrophy, C5-b9 deposits co-localized with C1q and C4d and rarely with IgM indicating activation of the classical

  17. Restricted Quadratic Forms, Inertia Theorems and the Schur Complement,

    DTIC Science & Technology

    1985-01-01

    subspace S , the usual orthogonal complement of S. Definition 3.1. For an mxn matrix C, the generalized , or Moore - Penrose , inverse is the unique nym...References D. Carlson, E. Haynsworth and T. Markham (1974); A generalization of the Schur complement by means of the Moore - Penrose Inverse , SIAM 3...A The results of §2 are direct in the sense that they do not Involve any inversion of the matrix A. It will here be shown that when the Moore - Penrose

  18. The Complement System: A Prey of Trypanosoma cruzi

    PubMed Central

    Lidani, Kárita C. F.; Bavia, Lorena; Ambrosio, Altair R.; de Messias-Reason, Iara J.

    2017-01-01

    Trypanosoma cruzi is a protozoan parasite known to cause Chagas disease (CD), a neglected sickness that affects around 6–8 million people worldwide. Originally, CD was mainly found in Latin America but more recently, it has been spread to countries in North America, Asia, and Europe due the international migration from endemic areas. Thus, at present CD represents an important concern of global public health. Most of individuals that are infected by T. cruzi may remain in asymptomatic form all lifelong, but up to 40% of them will develop cardiomyopathy, digestive mega syndromes, or both. The interaction between the T. cruzi infective forms and host-related immune factors represents a key point for a better understanding of the physiopathology of CD. In this context, the complement, as one of the first line of host defense against infection was shown to play an important role in recognizing T. cruzi metacyclic trypomastigotes and in controlling parasite invasion. The complement consists of at least 35 or more plasma proteins and cell surface receptors/regulators, which can be activated by three pathways: classical (CP), lectin (LP), and alternative (AP). The CP and LP are mainly initiated by immune complexes or pathogen-associated molecular patterns (PAMPs), respectively, whereas AP is spontaneously activated by hydrolysis of C3. Once activated, several relevant complement functions are generated which include opsonization and phagocytosis of particles or microorganisms and cell lysis. An important step during T. cruzi infection is when intracellular trypomastigotes are release to bloodstream where they may be target by complement. Nevertheless, the parasite uses a sequence of events in order to escape from complement-mediated lysis. In fact, several T. cruzi molecules are known to interfere in the initiation of all three pathways and in the assembly of C3 convertase, a key step in the activation of complement. Moreover, T. cruzi promotes secretion of plasma

  19. Conserved structural complement component C3 in miiuy croaker Miichthys miiuy and their involvement in pathogenic bacteria induced immunity.

    PubMed

    Sun, Yueyan; Wang, Rixin; Xu, Tianjun

    2013-07-01

    Complement component C3 is a key protein in the complement system whose activation is essential for all the important functions performed by this system. In this study, the complete C3 cDNA sequence was isolated from the miiuy croaker (Miichthys miiuy), which was high similarity to other complement C3. In this study, we report the primary sequence, the tissue expression profile, the polypeptide domain architecture and the phylogenetic analysis of miiuy croaker C3 gene. Rapid amplification of the cDNA ends (RACE) yielded the full open reading frame of this protein (4974 bp), and subsequent analysis indicated that the M. miiuy C3 gene encoded a protein of 1657 amino acids. The deduced amino acid sequence showed that M. miiuy C3 has conserved residues and domains known to be critical for C3 function. Phylogenetic analysis showed that miiuy croaker was most closely related to Epinephelus coioides. Expression analysis showed that C3 was expressed differentially in miiuy croaker tissues, while liver was the main source of C3 expression. Infection of miiuy croaker with Vibrio anguillarum resulted in significant changes expression of C3 gene in the immune-related tissues. These results showed that C3 gene might play an important role in immune mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cigarette smoke can activate the alternative pathway of complement in vitro by modifying the third component of complement.

    PubMed Central

    Kew, R R; Ghebrehiwet, B; Janoff, A

    1985-01-01

    Cigarette smoking is associated with significant increases in the number of pulmonary mononuclear phagocytes and neutrophils. A potent chemoattractant for these cells is C5a, a peptide generated during complement (C) activation. We, therefore, investigated the possibility that cigarette smoke could activate the complement system in vitro. Our results show that factor(s) (mol wt less than 1,000) present in an aqueous solution of whole, unfiltered cigarette smoke can deplete the hemolytic capacity of whole human serum in a dose-dependent manner. The particle-free, filtered gas phase of cigarette smoke is inactive. The smoke factor(s) do not activate serum C1, but do deplete serum C4 activity. Treatment of purified human C3 with whole smoke solution modifies the molecule such that its subsequent addition to serum (containing Mg/EGTA to block the classical pathway) results in consumption of hemolytic complement by activation of the alternative pathway. Smoke-modified C3 shows increased anodal migration in agarose electrophoresis, but this is not due to proteolytic cleavage of the molecule as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In contrast to methylamine-treated C3, C3 treated with smoke is only partially susceptible to the action of the complement regulatory proteins Factors H and I. In addition, smoke-modified C3 has diminished binding to Factor H as compared with methylamine-treated C3. Finally, smoke-modified C3 incorporates [14C]methylamine which suggests that the thiolester bond may be intact. These data indicate that aqueous whole cigarette smoke solution can modify C3 and activate the alternative pathway of complement, perhaps by a previously unrecognized mechanism. Should this occur in vivo, complement activation might partly account for the extensive pulmonary leukocyte recruitment observed in smokers. Images PMID:3156879

  1. Chimeric Autofluorescent Proteins as Photophysical Model System for Multicolor Bimolecular Fluorescence Complementation.

    PubMed

    Peter, Sébastien; Oven-Krockhaus, Sven Zur; Veerabagu, Manikandan; Rodado, Virtudes Mira; Berendzen, Kenneth W; Meixner, Alfred J; Harter, Klaus; Schleifenbaum, Frank E

    2017-03-10

    The yellow fluorescent protein (YFP) is frequently used in a protein complementation assay called bimolecular fluorescence complementation (BiFC), and is employed to visualize protein-protein interactions. In this analysis, two different, nonfluorescent fragments of YFP are genetically attached to proteins of interest. Upon interaction of these proteins, the YFP fragments are brought into proximity close enough to reconstitute their original structure, enabling fluorescence. BiFC allows for a straightforward readout of protein-protein interactions and furthermore facilitates their functional investigation by in vivo imaging. Furthermore, it has been observed that the available color range in BiFC can be extended upon complementing fragments of different proteins that are, like YFP, derived from the Aequorea victoria green fluorescent protein, thereby allowing for a multiplexed investigation of protein-protein interactions. Some spectral characteristics of "multicolor" BiFC (mcBiFC) complexes have been reported before; however, no in-depth analysis has been performed yet. Therefore, little is known about the photophysical characteristics of these mcBiFC complexes because a proper characterization essentially relies on in vitro data. This is particularly difficult for fragments of autofluorescent proteins (AFPs) because they show a very strong tendency to form supramolecular aggregates which precipitate ex vivo. In this study, this intrinsic difficulty is overcome by directly fusing the coding DNA of different AFP fragments. Translation of the genetic sequence in Escherichia coli leads to fully functional, highly soluble fluorescent proteins with distinct properties. On the basis of their construction, they are designated chimeric AFPs, or BiFC chimeras, here. Comparison of their spectral characteristics with experimental in vivo BiFC data confirmed the utility of the chimeric proteins as a BiFC model system. In this study, nine different chimeras were thoroughly

  2. Expression of xeroderma pigmentosum complementation group C protein predicts cisplatin resistance in lung adenocarcinoma patients.

    PubMed

    Lai, Tan-Chen; Chow, Kuan-Chih; Fang, Hsin-Yuan; Cho, Hsin-Ching; Chen, Chih-Yi; Lin, Tze-Yi; Chiang, I-Ping; Ho, Shu-Peng

    2011-05-01

    DNA repair has been suggested to be a major cause of spontaneous drug resistance in patients with lung adenocarcinomas (LADC). Among the DNA repair-related proteins, excision repair cross-complementation group 1 (ERCC1) has been shown to be essential for repairing cisplatin-induced interstrand cross-linkage. However, the role of other DNA repair-related proteins in drug resistance has not been clearly elucidated. In this study, we used suppression subtractive hybridization and microarray analysis to identify the DNA repair-related genes associated with cisplatin resistance. We focused on the association of XPC protein expression, which plays a pivotal role in the earliest response to global genomic repair, with the survival of LADC patients. Using suppression subtractive hybridization and a microarray analysis to identify drug resistance-associated DNA repair-related genes, we found that the mRNA levels of ERCC1, MSH-3, MSH-6 and XPC were significantly increased in LADC patients. Since the results of ERCC1 mRNA expression corresponded well with those in previous reports, in this study we focused on the clinical correlation between XPC expression and patient survival. The level of XPC protein was determined by immunohistochemical and immunoblotting analyses. We detected the XPC protein in 46 (43%) of 107 pathological LADC samples. XPC protein expression correlated with tumor stage, cigarette smoking and poor survival. In the in vitro experiments with LADC cell lines, increased XPC expression was associated with elevated drug resistance, and silencing of XPC expression reduced cisplatin resistance. Our results suggest that XPC expression predicts drug resistance in LADC.

  3. Activated Complement Factors as Disease Markers for Sepsis

    PubMed Central

    Charchaflieh, Jean; Rushbrook, Julie; Worah, Samrat; Zhang, Ming

    2015-01-01

    Sepsis is a leading cause of death in the United States and worldwide. Early recognition and effective management are essential for improved outcome. However, early recognition is impeded by lack of clinically utilized biomarkers. Complement factors play important roles in the mechanisms leading to sepsis and can potentially serve as early markers of sepsis and of sepsis severity and outcome. This review provides a synopsis of recent animal and clinical studies of the role of complement factors in sepsis development, together with their potential as disease markers. In addition, new results from our laboratory are presented regarding the involvement of the complement factor, mannose-binding lectin, in septic shock patients. Future clinical studies are needed to obtain the complete profiles of complement factors/their activated products during the course of sepsis development. We anticipate that the results of these studies will lead to a multipanel set of sepsis biomarkers which, along with currently used laboratory tests, will facilitate earlier diagnosis, timely treatment, and improved outcome. PMID:26420913

  4. Hair: A Diagnostic Tool to Complement Blood Serum and Urine.

    ERIC Educational Resources Information Center

    Maugh, Thomas H., II

    1978-01-01

    Trace elements and some drugs can be identified in hair and it seems likely that other organic chemicals will be identifiable in the future. Since hair is so easily collected, stored, and analyzed it promises to be an ideal complement to serum and urine analysis as a diagnostic tool. (BB)

  5. Juvenile Justice and a Strengths Perspective: Complement or Clash?

    ERIC Educational Resources Information Center

    Clark, Michael D.

    2009-01-01

    Does the new realm of positive psychology and strength-based strategies complement or clash with the remedial discipline of social control traditionally practiced in juvenile justice programs? Many welcome the balance of positive psychology, the strengths perspective, and coping and resilience studies. Although emerging from different disciplines,…

  6. Complement and contact activation in term neonates after fetal acidosis

    PubMed Central

    Sonntag, J.; Wagner, M.; Strauss, E.; Obladen, M.

    1998-01-01

    AIMS—To evaluate complement and contact activation after fetal acidosis.
METHODS—Fifteen term neonates with hypoxic-ischaemic encephalopathy after umbilical arterial pH < 7.10 were compared with 15 healthy neonates with umbilical arterial pH > 7.20. Determinations of the complement function and C1-inhibitor activity were performed as kinetic tests 22-28 hours after birth. C1q, C1-inhibitor, and factor B concentrations were determined by radial immunodiffusion and those of C3a, C5a, and factor XIIa by enzyme immunoabsorbent assay.
RESULTS—Median complement function (46 vs 73 %), C1q (4.3 vs 9.1 mg/dl), and factor B (5.2 vs 7.7 mg/dl) decreased after fetal acidosis. The activated split products C3a (260 vs 185 µg/l), C5a (5.0 vs 0.6 µg/l), and factor XIIa (3.2 vs 1.3 µg/l) increased in the neonates after fetal acidosis. No differences were found in the concentration and activity of C1-inhibitor.
CONCLUSIONS—Complement and contact activation occurred in the newborns with hypoxic-ischaemic encephalopathy. Activation of these systems generates mediators which can trigger inflammation and tissue injury.

 PMID:9577283

  7. Detection of surface bound complement at increasing serum anticoagulant concentrations.

    PubMed

    Arvidsson, S; Askendal, A; Lindahl, T L; Tengvall, P

    2008-04-01

    Surface mediated immune complement activation can be detected by a variety of antibody utilizing methods such as ELISA, fluorescence- or radiolabelling techniques, QCM, and ellipsometry. In the present work we investigated how the common anticoagulants heparin, dalteparin, fondaparinux and sodium citrate affected the binding of anti-complement factor 3c (anti-C3c) on a model complement activator surface, immobilised IgG, after incubation in human blood serum. The results show, as expected, that different anticoagulants affect the antibody binding differently. Increasing amounts of heparin, dalteparin and sodium citrate in normal serum resulted in a decreasing anti-C3c binding. The antibody deposition was not sensitive for the fondaparinux concentration. Surprisingly high concentrations of anti-coagulantia were needed to completely eradicate the antibody binding. Experiments in EGTA-serum showed that anticoagulants interfered directly with both the classical and alternative pathways. Control C3a-des arg ELISA measurements show that the lowered antibody surface binding was not a result of complement depletion in serum. Kallikrein generation by hydrophilic glass surfaces was not affected by high anticoagulant concentrations.

  8. Complement activation of electrogenic ion transport in isolated rat colon.

    PubMed

    McCole, D F; Otti, B; Newsholme, P; Baird, A W

    1997-11-15

    The complement cascade is an important component in many immune and inflammatory reactions and may contribute to both the diarrhoea and inflammation associated with inflammatory bowel disease. Isolated rat colonic mucosae were voltage clamped in Ussing chambers. Basolateral addition of zymosan-activated whole human serum (ZAS) induced a rapid onset, transient inward short circuit current (SCC). This response was concentration dependent and was significantly attenuated by pre-heating ZAS at 60 degrees C for 30 min. Depletion of complement from normal human serum with cobra venom factor (CVF) significantly lowered SCC responses. Chloride was the primary charge carrying ion as responses to ZAS were abolished in the presence of the loop diuretic bumetanide. The complement component C3a stimulated ion transport but not to the same extent as whole serum. Exogenous C5 was without effect. The cyclooxygenase inhibitor piroxicam significantly attenuated the response to ZAS. These findings support the possibility that complement activation may contribute to the pathophysiology of secretory diarrhoea since activation of electrogenic chloride secretion converts intestinal epithelia to a state of net fluid secretion.

  9. Loss of Infinitival Complementation in Romanian Diachronic Syntax

    ERIC Educational Resources Information Center

    Jordan, Maria

    2009-01-01

    For the most part, my study is a descriptive analysis of infinitival complement clauses and the corresponding subjunctive clauses in Romanian, that is, obligatory control (OC) structures. OC is a relation of obligatory coreferentiality between a matrix argument (controller) and the null subject of the subordinate (controlee) of the same sentence.…

  10. Hair: A Diagnostic Tool to Complement Blood Serum and Urine.

    ERIC Educational Resources Information Center

    Maugh, Thomas H., II

    1978-01-01

    Trace elements and some drugs can be identified in hair and it seems likely that other organic chemicals will be identifiable in the future. Since hair is so easily collected, stored, and analyzed it promises to be an ideal complement to serum and urine analysis as a diagnostic tool. (BB)

  11. The Importance of Being a Complement: CED Effects Revisited

    ERIC Educational Resources Information Center

    Jurka, Johannes

    2010-01-01

    This dissertation revisits subject island effects (Ross 1967, Chomsky 1973) cross-linguistically. Controlled acceptability judgment studies in German, English, Japanese and Serbian show that extraction out of specifiers is consistently degraded compared to extraction out of complements, indicating that the Condition on Extraction domains (CED,…

  12. Polymorphism of the complement components in human pathology.

    PubMed

    Brai, M; Accardo, P; Bellavia, D

    1994-01-01

    The complement system is an important part of non clonal or innate immunity that collaborates with acquired immunity to kill pathogens and to facilitate the clearance of immune complexes. The complement is made up of 20 distinct plasma proteins and 9 different membrane proteins. Three components, factor B, C2 and C4 (with 2 isotypes), are coded by polymorphic HLA-linked genes and are sometimes referred to as class III antigens, inherited as compact units called complotypes. The C4 genes are the most polymorphic, including a common null allele (Q0) at both the C4A and C4B loci. Other polymorphic complement factors (not linked to HLA) are C3 (2 common alleles), C6 and C7 (closely linked, with 3 and 2 alleles, respectively). A certain degree of polymorphism has also been described for complement receptors and membrane control proteins. No differences in functional activity are usually detected among different alleles. Immune-mediated diseases are associated with C4Q0, in particular: systemic lupus erythematosus and discoid-systemic lupus erythematosus, insulin-dependent diabetes mellitus, liver cirrhosis, celiac disease and IgA/IgG4 deficiency. Even if optimal HLA markers do become available, genetic counselling is usually not the ultimate goal for dealing with most of the HLA-associated common diseases, although their study could help to better delineate disease pathogenesis.

  13. Alternative complement pathway: activity levels in allogeneic pregnancy.

    PubMed

    Brai, M; Tolone, G; Magro, A; Waks, H; Brai, M

    1976-12-15

    Classical and alternative complement pathway activities have been evaluated in sera of women in progressive stages of gestation and in pregnant mice belonging to outbred or inbred matings, as compared to suitable controls. While classical C pathway was found to be unmodified, the alternative one attained in pregnancy significantly higher activity levels. Results are discussed in the light of mother-conceptus relationships.

  14. Interaction of toxic venoms with the complement system

    PubMed Central

    Birdsey, Vanessa; Lindorfer, Jean; Gewurz, H.

    1971-01-01

    Thirty-nine venoms from various vertebrate and invertebrate species were tested for their ability to consume haemolytic complement (C) activity upon incubation in fresh guinea-pig serum. Nineteen had `anti-complementary' activity, and these were provisionally sorted into the following groups: Pattern I—exemplified by the Naja haje (Egyptian cobra) and six other Elapidae species (all cobras), which induced selective consumption of C3—C9, and led to formation of a stable C3—C9-consuming intermediate; Pattern II—exemplified by the Agkistrodon rhodostoma (Malayan pit viper), Bitis arietans (puff adder), Bothrops jararaca (South American pit viper), Bothrops atrox (Fer de Lance) and three other species, which induced marked consumption of C4 and C2, as well as C3—C9, but did not form a stable C3—C9-consuming intermediate; and individual animals, e.g. the Lachesis muta (bushmaster), which induced other patterns (III—VI) of complement component consumption. Active fractions of representative venoms were partially purified by ion exchange and gel filtration chromatography and their interactions with the complement system characterized further. It is anticipated that these enzymes, with a capacity to activate the complement system in unique ways, will prove to be of further experimental usefulness. PMID:4398349

  15. Children's Understanding of the Addition/Subtraction Complement Principle

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Peters, Greet; De Smedt, Bert; Ghesquière, Pol; Verschaffel, Lieven

    2016-01-01

    Background: In the last decades, children's understanding of mathematical principles has become an important research topic. Different from the commutativity and inversion principles, only few studies have focused on children's understanding of the addition/subtraction complement principle (if a - b = c, then c + b = a), mainly relying on verbal…

  16. Lessons learned from mice deficient in lectin complement pathway molecules.

    PubMed

    Genster, Ninette; Takahashi, Minoru; Sekine, Hideharu; Endo, Yuichi; Garred, Peter; Fujita, Teizo

    2014-10-01

    The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules in complement activation, pathogen infection, coagulation, host tissue injury and developmental biology have been revealed by in vivo investigations. This review provides an overview of the mice deficient in lectin pathway molecules and highlights some of the most important findings that have resulted from studies of these. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Heterogeneity of Lethals in a "Simple" Lethal Complementation Group

    PubMed Central

    Janca, Frank C.; Woloshyn, Effie P.; Nash, David

    1986-01-01

    Of 24 ethyl methanesulphonate-induced, recessive-lethal mutations in the region 9E1-9F13 of the X chromosome of Drosophila melanogaster , eight fall into a typically homogeneous lethal complementation group associated with the raspberry (ras) locus. Mutations in this group have previously been shown to be pleiotropic, affecting not only ras but also two other genetic entities, gua1 and pur1, which yield auxotrophic mutations.—The eight new mutations have been characterized phenotypically in double heterozygotes with gua1, pur1 and ras mutations. Despite their homogeneity in lethal complementation tests, the mutations prove quite diverse. For example, two mutations have little or no effect on eye color in double heterozygotes with ras2 . The differences between the lethals are allele-specific and cannot be explained as a trivial outcome of a hypomorphic series.—Taken alone, the lethal complementation studies mask the complexity of the locus and the diversity of its recessive lethal alleles. By extension, we argue that the general use of lethal saturation studies provides an unduly simplified image of genetic organization. We suggest that the reason why recessive lethal mutations rarely present complex complementation patterns is that complex loci tend to produce mutations that affect several subfunctions. PMID:3080355

  18. Complement activation and effect of eculizumab in scleroderma renal crisis

    PubMed Central

    Devresse, Arnaud; Aydin, Selda; Le Quintrec, Moglie; Demoulin, Nathalie; Stordeur, Patrick; Lambert, Catherine; Gastoldi, Sara; Pirson, Yves; Jadoul, Michel; Morelle, Johann

    2016-01-01

    Abstract Background: Scleroderma renal crisis (SRC) is a life-threatening complication of systemic sclerosis characterized by abrupt onset of hypertension, thrombotic microangiopathy, and kidney injury. The mechanisms of the disease remain ill-defined, but a growing body of evidence suggests that activation of the complement system may be involved. Methods: Here, we report the case of a patient presenting with severe SRC and strong evidence of complement activation, both in serum and in the kidney, in the absence of genetic defect of the complement system. Results: Immunofluorescence studies on kidney biopsy showed significant deposits of C1q and C4d in the endothelium of renal arterioles, pointing toward activation of the classical pathway. Because of the dramatic clinical and histological severity, and the lack of response to early treatment with angiotensin-converting enzyme inhibitors, calcium channel blockers and plasma exchange, the patient was treated with the specific C5 blocker eculizumab. Contrarily to conventional treatment, eculizumab efficiently blocked C5b-9 deposition ex vivo and maintained hematological remission. Unfortunately, the patient died from heart failure a few weeks later. Postmortem examination of the heart showed diffuse patchy interstitial fibrosis, the typical lesion of systemic sclerosis-related cardiomyopathy, but normal coronary arteries and myocardial microvasculature. Conclusion: SRC may lead to complement system activation through the classical pathway. Early administration of C5 inhibitor eculizumab may have therapeutic potential in patients with life-threatening SRC refractory to conventional treatment using angiotensin-converting enzyme inhibitors. PMID:27472742

  19. Children's Understanding of the Addition/Subtraction Complement Principle

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Peters, Greet; De Smedt, Bert; Ghesquière, Pol; Verschaffel, Lieven

    2016-01-01

    Background: In the last decades, children's understanding of mathematical principles has become an important research topic. Different from the commutativity and inversion principles, only few studies have focused on children's understanding of the addition/subtraction complement principle (if a - b = c, then c + b = a), mainly relying on verbal…

  20. The Importance of Being a Complement: CED Effects Revisited

    ERIC Educational Resources Information Center

    Jurka, Johannes

    2010-01-01

    This dissertation revisits subject island effects (Ross 1967, Chomsky 1973) cross-linguistically. Controlled acceptability judgment studies in German, English, Japanese and Serbian show that extraction out of specifiers is consistently degraded compared to extraction out of complements, indicating that the Condition on Extraction domains (CED,…

  1. Cercarial glycocalyx of Schistosoma mansoni activates human complement.

    PubMed Central

    Samuelson, J C; Caulfield, J P

    1986-01-01

    Human complement activation by cercariae and schistosomula of the human parasite Schistosoma mansoni was studied in vitro. Cercariae are composed of tails which are shed after infection of the host and bodies which transform into the larvae or schistosomula after infection. After incubation in fresh normal human serum (NHS), cercarial tails bound more anti-C3 antibodies than did cercarial bodies (CB), and the tails were rapidly lysed, while the attached CB remained intact. Complement activation by cercariae was dependent on the alternative pathway but was independent of antibody, as shown by C3 deposition by hypogammaglobulinemic human sera. By transmission microscopy, the fibrillar glycocalyx on both CB and tails was stained by NHS but not by heat-inactivated serum (HI-NHS). The glycocalyx was labeled with periodate and tritiated borohydride, and parasites were incubated in NHS and HI-NHS. After solubilization, the labeled glycocalyx on organisms incubated in NHS but not HI-NHS bound anti-C3 antibodies. Of the CB incubated with eserine sulfate to prevent transformation, 78% +/- 10% were dead after culture for 24 h in NHS. In contrast, 21% +/- 12% of the CB were dead after culture in HI-NHS. Schistosomula incubated in NHS bound 37% of the amount of anti-C3 antibodies bound by cercariae but were not killed by NHS. In conclusion, the cercarial glycocalyx activated human complement, and schistosomula were less susceptible to killing than cercariae because they had less glycocalyx and activated less complement. Images PMID:3940995

  2. Loss of Infinitival Complementation in Romanian Diachronic Syntax

    ERIC Educational Resources Information Center

    Jordan, Maria

    2009-01-01

    For the most part, my study is a descriptive analysis of infinitival complement clauses and the corresponding subjunctive clauses in Romanian, that is, obligatory control (OC) structures. OC is a relation of obligatory coreferentiality between a matrix argument (controller) and the null subject of the subordinate (controlee) of the same sentence.…

  3. Complement modulates the cutaneous microbiome and inflammatory milieu

    PubMed Central

    Chehoud, Christel; Rafail, Stavros; Tyldsley, Amanda S.; Seykora, John T.; Lambris, John D.; Grice, Elizabeth A.

    2013-01-01

    The skin is colonized by a plethora of microbes that include commensals and potential pathogens, but it is currently unknown how cutaneous host immune mechanisms influence the composition, diversity, and quantity of the skin microbiota. Here we reveal an interactive role for complement in cutaneous host–microbiome interactions. Inhibiting signaling of the complement component C5a receptor (C5aR) altered the composition and diversity of the skin microbiota as revealed by deep sequencing of the bacterial 16S rRNA gene. In parallel, we demonstrate that C5aR inhibition results in down-regulation of genes encoding cutaneous antimicrobial peptides, pattern recognition receptors, and proinflammatory mediators. Immunohistochemistry of inflammatory cell infiltrates in the skin showed reduced numbers of macrophages and lymphocytes with C5aR inhibition. Further, comparing cutaneous gene expression in germ-free mice vs. conventionally raised mice suggests that the commensal microbiota regulates expression of complement genes in the skin. These findings demonstrate a component of host immunity that impacts colonization of the skin by the commensal microbiota and vice versa, a critical step toward understanding host–microbe immune mutualism of the skin and its implications for health and disease. Additionally, we reveal a role for complement in homeostatic host–microbiome interactions of the skin. PMID:23980152

  4. Complement and IL-22: partnering up for border patrol.

    PubMed

    Yamamoto, Hidekazu; Kemper, Claudia

    2014-10-16

    Intestinal pathobionts that escape into the periphery can cause serious morbidity and death. In this issue of Immunity, Hasegawa et al. (2014) show that the host's protective measures against such events include interleukin-22-driven systemic elimination of pathobionts via complement regulation.

  5. Complementation of multiple sulfatase deficiency in somatic cell hybrids.

    PubMed

    Fedde, K; Horwitz, A L

    1984-05-01

    Multiple sulfatase deficiency (MSD) is an inherited disorder characterized by deficient activity of seven different sulfatases. Genetic complementation for steroid sulfatase (STS), arylsulfatase A, and N-acetylgalactosamine 6-SO4 sulfatase was demonstrated in somatic cell hybrids between MSD fibroblasts and mouse cells ( LA9 ) or Chinese hamster cells ( CHW ). In an electrophoretic system that separates human and rodent STS isozymes, enzyme from hybrids migrated as human enzyme. We concluded that the rodent cell complemented the MSD deficiency and allowed normal expression of the STS structural gene. Some MSD- LA9 hybrids showed significant levels of human arylsulfatase A activity, as shown by the immunoprecipitation of active enzyme by human-specific antiserum. Complementation was also suggested for N-acetylgalactosamine 6- sulfatate sulfatase (GalNAc-6S sulfatase) in several MSD- LA9 hybrids by the demonstration of a significant increase in activity (10-fold) over that of the GalNAc-6S sulfatase-deficient parental mouse and MSD cells. Thus, it was possible to demonstrate complementation for more than one sulfatase in a single MSD-rodent hybrid. Normal levels of sulfatase activity in hybrids indicate that the sulfatase structural genes are intact in MSD cells.

  6. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  7. 21 CFR 866.5240 - Complement components immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Complement components immunological test system. 866.5240 Section 866.5240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunological Test Systems §...

  8. Superimposed Code Theoretic Analysis of Deoxyribonucleic Acid (DNA) Codes and DNA Computing

    DTIC Science & Technology

    2010-01-01

    hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research addresses how the...are 5′→3′ and strands with strikethrough are 3′→5′. A dsDNA duplex formed between a strand and its reverse complement is called a Watson - Crick (WC...3’ 5’ 3’ 5’TACGCGACTTTC3’ 5’GAAAGTCGCGTA3’ ATCAAACGATGC GCATCGTTTGAT Watson Crick (WC) Duplexes TACGCGACTTTC

  9. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes.

    PubMed

    Lee, Linda; Zhang, Ye; Ozar, Brittany; Sensen, Christoph W; Schriemer, David C

    2016-09-02

    Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.

  10. Recombinant human erythropoietin modulates erythrocyte complement receptor 1 functional activity in patients with lupus nephritis.

    PubMed

    Kiss, E; Kávai, M; Csipõ, I; Szegedi, G

    1998-06-01

    Deposition of immune complexes (IC) is an important step in the pathogenesis of lupus nephritis. Impairment of IC-clearance contributes to the accumulation of IC. It may be partly attributed to decreased complement containing immune complex (ICC) binding by erythrocytic complement receptor 1 (ECR1). Stimulating erythropoiesis with recombinant human erythropoietin (rHuEPO) may enhance the IC-clearance as increasing ECR1 expression and/or functional activity. Ten anemic patients with lupus nephritis were treated with 50 IU rHuEPO (Eprex) per kg body weight three times a week during a five week period. ICC-binding capacity of ECR1 was determined with 125I-labelled, C3ib containing BSA-anti-BSA complexes. In addition to effective correction of anemia, indicated by increased red blood cell count (RBC), hemoglobin concentration and reticulocyte ratio, rHuEPO significantly improved decreased ECR1 functional (ICC-binding) activity in patients with lupus nephritis. This improvement correlated with the increase in reticulocyte ratio. Although patients were kept on their previous therapy during Eprex administration, their clinical condition also improved. That was shown by a decrease in Westergreen ratio, serum creatinine concentration and anti-dsDNA level and also by an increase in creatinine clearance. Results suggest a beneficial immune modulatory effect of rHuEPO in lupus nephritis.

  11. Complementation for an essential ancillary nonstructural protein function across parvovirus genera

    PubMed Central

    Mihaylov, Ivailo S.; Cotmore, Susan F.; Tattersall, Peter

    2014-01-01

    Parvoviruses encode a small number of ancillary proteins that differ substantially between genera. Within the genus Protoparvovirus, minute virus of mice (MVM) encodes three isoforms of its ancillary protein NS2, while human bocavirus 1 (HBoV1), in the genus Bocaparvovirus, encodes an NP1 protein that is unrelated in primary sequence to MVM NS2. To search for functional overlap between NS2 and NP1, we generated murine A9 cell populations that inducibly express HBoV1 NP1. These were used to test whether NP1 expression could complement specific defects resulting from depletion of MVM NS2 isoforms. NP1 induction had little impact on cell viability or cell cycle progression in uninfected cells, and was unable to complement late defects in MVM virion production associated with low NS2 levels. However, NP1 did relocate to MVM replication centers, and supports both the normal expansion of these foci and overcomes the early paralysis of DNA replication in NS2-null infections. PMID:25194919

  12. Isolation and cloning of a Azospirillum lipoferum locus that complements Escherichia coli proU mutant.

    PubMed

    Tripathi, A K; Mishra, B M

    1998-05-15

    Glycine betaine relieved sodium chloride-mediated inhibition of growth in Azospirillum lipoferum ATCC 29708. 35S-methionine labelling of proteins after salinity up-shock revealed strong induction of a 30 kDa protein which cross-reacted with the anti-glycine betaine binding protein antibody from Escherichia coli. This suggested that A. lipoferum had a salinity-induced ProU-like high-affinity glycine betaine transport system. A genomic library of A. lipoferum ATCC 29708 was screened for the proU-like gene by complementation of a proU mutant of E. coli. Four recombinant cosmids, capable of restoring growth of the proU mutant on plates containing 600 mM NaCl and 1 mM glycine betaine were selected. Selected recombinant cosmids hybridized with a proU gene probe from E. coli. Complementation of E. coli proU mutant with the A. lipoferum genomic DNA was evident by the ability of proU mutant (containing selected recombinant cosmids) to grow on minimal medium supplemented with 600 mM NaCl and 1 mM glycine betaine.

  13. Sorting fluorescent nanocrystals with DNA

    SciTech Connect

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  14. The Lectin Pathway of Complement and Rheumatic Heart Disease

    PubMed Central

    Beltrame, Marcia Holsbach; Catarino, Sandra Jeremias; Goeldner, Isabela; Boldt, Angelica Beate Winter; de Messias-Reason, Iara José

    2014-01-01

    The innate immune system is the first line of host defense against infection and is comprised of humoral and cellular mechanisms that recognize potential pathogens within minutes or hours of entry. The effector components of innate immunity include epithelial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement system. Complement plays an important role in the immediate response against microorganisms, including Streptococcus sp. The lectin pathway is one of three pathways by which the complement system can be activated. This pathway is initiated by the binding of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3 convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization, phagocytosis, and lysis of target microorganisms through the formation of the membrane-attack complex. In addition, activation of complement may induce several inflammatory effects, such as expression of adhesion molecules, chemotaxis and activation of leukocytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In this chapter, we review the general aspects of the structure, function, and genetic polymorphism of lectin-pathway components and discuss most recent understanding on the role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever. PMID:25654073

  15. Complement drives Th17 cell differentiation and triggers autoimmune arthritis

    PubMed Central

    Hashimoto, Motomu; Hirota, Keiji; Yoshitomi, Hiroyuki; Maeda, Shinji; Teradaira, Shin; Akizuki, Shuji; Prieto-Martin, Paz; Nomura, Takashi; Sakaguchi, Noriko; Köhl, Jörg; Heyman, Birgitta; Takahashi, Minoru; Fujita, Teizo; Mimori, Tsuneyo

    2010-01-01

    Activation of serum complement triggers Th17 cell–dependent spontaneous autoimmune disease in an animal model. In genetically autoimmune-prone SKG mice, administration of mannan or β-glucan, both of which activate serum complement, evoked Th17 cell–mediated chronic autoimmune arthritis. C5a, a chief component of complement activation produced via all three complement pathways (i.e., lectin, classical, and alternative), stimulated tissue-resident macrophages, but not dendritic cells, to produce inflammatory cytokines including IL-6, in synergy with Toll-like receptor signaling or, notably, granulocyte/macrophage colony-stimulating factor (GM-CSF). GM-CSF secreted by activated T cells indeed enhanced in vitro IL-6 production by C5a-stimulated macrophages. In vivo, C5a receptor (C5aR) deficiency in SKG mice inhibited the differentiation/expansion of Th17 cells after mannan or β-glucan treatment, and consequently suppressed the development of arthritis. Transfer of SKG T cells induced Th17 cell differentiation/expansion and produced arthritis in C5aR-sufficient recombination activating gene (RAG)−/− mice but not in C5aR-deficient RAG−/− recipients. In vivo macrophage depletion also inhibited disease development in SKG mice. Collectively, the data suggest that complement activation by exogenous or endogenous stimulation can initiate Th17 cell differentiation and expansion in certain autoimmune diseases and presumably in microbial infections. Blockade of C5aR may thus be beneficial for controlling Th17-mediated inflammation and autoimmune disease. PMID:20457757

  16. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease.

    PubMed

    Pandey, Manoj K; Burrow, Thomas A; Rani, Reena; Martin, Lisa J; Witte, David; Setchell, Kenneth D; Mckay, Mary A; Magnusen, Albert F; Zhang, Wujuan; Liou, Benjamin; Köhl, Jörg; Grabowski, Gregory A

    2017-03-02

    Gaucher disease is caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA1 mutations drive extensive accumulation of glucosylceramide (GC) in multiple innate and adaptive immune cells in the spleen, liver, lung and bone marrow, often leading to chronic inflammation. The mechanisms that connect excess GC to tissue inflammation remain unknown. Here we show that activation of complement C5a and C5a receptor 1 (C5aR1) controls GC accumulation and the inflammatory response in experimental and clinical Gaucher disease. Marked local and systemic complement activation occurred in GCase-deficient mice or after pharmacological inhibition of GCase and was associated with GC storage, tissue inflammation and proinflammatory cytokine production. Whereas all GCase-inhibited mice died within 4-5 weeks, mice deficient in both GCase and C5aR1, and wild-type mice in which GCase and C5aR were pharmacologically inhibited, were protected from these adverse effects and consequently survived. In mice and humans, GCase deficiency was associated with strong formation of complement-activating GC-specific IgG autoantibodies, leading to complement activation and C5a generation. Subsequent C5aR1 activation controlled UDP-glucose ceramide glucosyltransferase production, thereby tipping the balance between GC formation and degradation. Thus, extensive GC storage induces complement-activating IgG autoantibodies that drive a pathway of C5a generation and C5aR1 activation that fuels a cycle of cellular GC accumulation, innate and adaptive immune cell recruitment and activation in Gaucher disease. As enzyme replacement and substrate reduction therapies are expensive and still associated with inflammation, increased risk of cancer and Parkinson disease, targeting C5aR1 may serve as a treatment option for patients with Gaucher disease and, possibly, other lysosomal storage diseases.

  17. Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA

    SciTech Connect

    Tsodikov, Oleg V.; Biswas, Tapan

    2011-09-06

    An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.

  18. Molecular characterization and expression analysis of the complement factor I (CpFI) in the whitespotted bamboo shark (Chiloscyllium plagiosum).

    PubMed

    Wang, Ying; Chen, Biao; Ke, Yan; Wang, Conghui; Ye, Boping

    2014-10-01

    Complement factor I (FI) is a plasma serine proteinase that plays an essential role in the modulation of the complement cascade. In the presence of substrate modulating cofactors (Factor H, C4bp, CR1, etc), FI cleaves the activation products of C3 (i.e. C3b) and C4 (i.e. C4b) to limit complement activity. In this study, the full length cDNA of factor I (CpFI) is isolated from the liver of the whitespotted bamboo shark (Chiloscyllium plagiosum). The CpFI cDNA is 2326 bp in length, encoding a protein of 671 amino acids, which shares 72-80% identity with FI molecules of other sharks, higher than the teleosts (37-40%) and mammals (44-47%). The sequence alignment and comparative analysis indicates the FI proteins are well conserved, with the typical modular architecture and identical active sites throughout vertebrate evolution, suggesting the conserved function. However, the additional sequence present between the leader peptide (LP) and the factor I membrane attack complex (FIMAC) domain in other fishes is also found in CpFI, which consists of two kind of tandem repeats. Phylogenetic analysis suggests that CpFI belongs to the elasmobranch clade, in parallel with the higher vertebrates, to form a sister taxa to teleosts. Expression analysis revealed that CpFI is ubiquitously distributed in a variety of tissues, with the constitutive expression in liver, which might reflect the species-specific distribution patterns of FI. Together with earlier reports, the presence of FI in various sharks might suggest the existence of a well-developed complement regulation mechanism in cartilaginous fish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum.

    PubMed Central

    Falcone, D L; Tabita, F R

    1993-01-01

    A ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strain of Rhodospirillum rubrum that was incapable of photolithoautotrophic growth was constructed. Photoheterotrophic growth, however, was possible for the R. rubrum RubisCO deletion strain when oxidized carbon compounds such as malate were supplied. The R. rubrum RubisCO-deficient strain was not complemented to photolithoautotrophic growth by various R. rubrum DNA fragments that contain the gene encoding RubisCO, cbbM. When the R. rubrum cbbM deletion strain harbored plasmids containing R. rubrum DNA inserts with at least 2.0 kb preceding the translational start site of the cbbM gene, RubisCO activity and RubisCO antigen were detected. Lack of RubisCO expression was therefore not the cause for the failure to complement the cbbM mutant strain. Interestingly, DNA fragments encoding either of two complete Calvin-Benson-Bassham CO2- fixation (cbb) gene operons from Rhodobacter sphaeroides were able to complement the R. rubrum RubisCO deletion strain to photolithoautotrophic growth. The same R. rubrum DNA fragments that failed to complement the R. rubrum cbbM deletion strain successfully complemented the RubisCO deletion strain of R. sphaeroides, pointing to distinct differences in the regulation of metabolism and the genetics of photolithoautotrophic growth in these two organisms. A number of cbb genes were identified by nucleotide sequence analysis of the region upstream of cbbM. Included among these was an open reading frame encoding a cbbR gene showing a high degree of sequence similarity to known lysR-type CO2 fixation transcriptional activator genes. The placement and orientation of the cbbR transcriptional regulator gene in R. rubrum are unique. PMID:8349547

  20. Pasteurella pneumotropica Evades the Human Complement System by Acquisition of the Complement Regulators Factor H and C4BP

    PubMed Central

    Sahagún-Ruiz, Alfredo; Granados Martinez, Adriana Patricia; Breda, Leandro Carvalho Dantas; Fraga, Tatiana Rodrigues; Castiblanco Valencia, Mónica Marcela; Barbosa, Angela Silva; Isaac, Lourdes

    2014-01-01

    Pasteurella pneumotropica is an opportunist Gram negative bacterium responsible for rodent pasteurellosis that affects upper respiratory, reproductive and digestive tracts of mammals. In animal care facilities the presence of P. pneumotropica causes severe to lethal infection in immunodeficient mice, being also a potential source for human contamination. Indeed, occupational exposure is one of the main causes of human infection by P. pneumotropica. The clinical presentation of the disease includes subcutaneous abscesses, respiratory tract colonization and systemic infections. Given the ability of P. pneumotropica to fully disseminate in the organism, it is quite relevant to study the role of the complement system to control the infection as well as the possible evasion mechanisms involved in bacterial survival. Here, we show for the first time that P. pneumotropica is able to survive the bactericidal activity of the human complement system. We observed that host regulatory complement C4BP and Factor H bind to the surface of P. pneumotropica, controlling the activation pathways regulating the formation and maintenance of C3-convertases. These results show that P. pneumotropica has evolved mechanisms to evade the human complement system that may increase the efficiency by which this pathogen is able to gain access to and colonize inner tissues where it may cause severe infections. PMID:25347183

  1. The role of complement in age-related macular degeneration: heparan sulphate, a ZIP code for complement factor H?

    PubMed

    Langford-Smith, Alex; Keenan, Tiarnan D L; Clark, Simon J; Bishop, Paul N; Day, Anthony J

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in developed nations and has been associated with complement dysregulation in the central retina. The Y402H polymorphism in the complement regulatory protein factor H (CFH) can confer a >5-fold increased risk of developing AMD and is present in approximately 30% of people of European descent. CFH, in conjunction with other factors, regulates complement activation in host tissues, and the Y402H polymorphism has been found to alter the protein's specificity for heparan sulphate (HS) - a complex polysaccharide found ubiquitously in mammals. HS, which is present on the cell surface and also in the extracellular matrix, exhibits huge structural diversity due to variations in the level/pattern of sulphation, where particular structures may act as 'ZIP codes' for different tissue/cellular locations. Recent work has demonstrated that CFH contains two HS-binding domains that each recognize specific HS ZIP codes, allowing differential recognition of Bruch's membrane (in the eye) or the glomerular basement membrane (in the kidney). Importantly, the Y402H polymorphism impairs the binding of CFH to the HS in Bruch's membrane, which could result in increased complement activation and chronic local inflammation (in 402H individuals) and thereby contribute to AMD pathology.

  2. Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement.

    PubMed

    Mortensen, Sofia; Kidmose, Rune T; Petersen, Steen V; Szilágyi, Ágnes; Prohászka, Zoltan; Andersen, Gregers R

    2015-06-01

    Complement component C4 is a central protein in the classical and lectin pathways within the complement system. During activation of complement, its major fragment C4b becomes covalently attached to the surface of pathogens and altered self-tissue, where it acts as an opsonin marking the surface for removal. Moreover, C4b provides a platform for assembly of the proteolytically active convertases that mediate downstream complement activation by cleavage of C3 and C5. In this article, we present the crystal and solution structures of the 195-kDa C4b. Our results provide the molecular details of the rearrangement accompanying C4 cleavage and suggest intramolecular flexibility of C4b. The conformations of C4b and its paralogue C3b are shown to be remarkably conserved, suggesting that the convertases from the classical and alternative pathways are likely to share their overall architecture and mode of substrate recognition. We propose an overall molecular model for the classical pathway C5 convertase in complex with C5, suggesting that C3b increases the affinity for the substrate by inducing conformational changes in C4b rather than a direct interaction with C5. C4b-specific features revealed by our structural studies are probably involved in the assembly of the classical pathway C3/C5 convertases and C4b binding to regulators. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Molecular characterization and expression analysis of a complement component C3 in large yellow croaker (Larimichthys crocea).

    PubMed

    Wang, Hailing; Qi, Pengzhi; Guo, Baoying; Li, Jiji; He, Jianyu; Wu, Changwen; Gul, Yasmeen

    2015-02-01

    The complement system has been discovered in invertebrates and vertebrates, and plays a crucial role in the innate defense against common pathogens. Complement component 3 is a key molecule in the complement system, whose activation is essential for all the important functions performed by this system. In this study, the complete C3 cDNA sequence was isolated from the large yellow croaker (Larimichthys crocea), which was high similarity to other complement C3. We reported the primary sequence, tissue expression profile, polypeptide domain architecture and phylogenetic analysis of L. crocea complement component C3 (L.c-C3) gene. Its open reading frame (ORF) is 4962 bp and encodes for 1653 amino acids with a putative signal peptide of 23 amino acid residues. The deduced amino acid sequence showed that L.c-C3 has conserved residues and domains known to be crucial for C3 function. Phylogenetic analysis showed that L. crocea was closely related to Miichthys miiuy. The mRNA expressions of L.c-C3 was detectable at different tissues. L.c-C3 was expressed in a wide range of adult tissues, it showed highest expression in the liver. But the different developmental stages from fertilized egg to newborn larvae of the large yellow croaker the highest expression levels of L.c-C3 gene were not found. Bacterial challenge experiments showed that the levels of L.c-C3 mRNA expression were up-regulated in the liver, spleen and brain of adult large yellow croaker respectively. The results showed that L.c-C3 mRNA expression in the large yellow croaker is influenced by bacterial stress and L.c-C3 might play an important role in immunity mechanisms. This study will further increase our understanding of the function of L.c-C3 and molecular mechanism of innate immunity in teleosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids.

    PubMed

    D'Aurelio, Marilena; Gajewski, Carl D; Lenaz, Giorgio; Manfredi, Giovanni

    2006-07-01

    Mitochondrial DNA (mtDNA) mutations cause heterogeneous disorders in humans. MtDNA exists in multiple copies per cell, and mutations need to accumulate beyond a critical threshold to cause disease, because coexisting wild-type mtDNA can complement the genetic defect. A better understanding of the molecular determinants of functional complementation among mtDNA molecules could help us shedding some light on the mechanisms modulating the phenotypic expression of mtDNA mutations in mitochondrial diseases. We studied mtDNA complementation in human cells by fusing two cell lines, one containing a homoplasmic mutation in a subunit of respiratory chain complex IV, COX I, and the other a distinct homoplasmic mutation in a subunit of complex III, cytochrome b. Upon cell fusion, respiration is recovered in hybrids cells, indicating that mitochondria fuse and exchange genetic and protein materials. Mitochondrial functional complementation occurs frequently, but with variable efficiency. We have investigated by native gel electrophoresis the molecular organization of the mitochondrial respiratory chain in complementing hybrid cells. We show that the recovery of mitochondrial respiration correlates with the presence of supramolecular structures (supercomplexes) containing complexes I, III and IV. We suggest that critical amounts of complexes III or IV are required in order for supercomplexes to form and provide mitochondrial functional complementation. From these findings, supercomplex assembly emerges as a necessary step for respiration, and its defect sets the threshold for respiratory impairment in mtDNA mutant cells.

  5. Plasma complement and vascular complement deposition in patients with coronary artery disease with and without inflammatory rheumatic diseases.

    PubMed

    Shields, Kelly J; Mollnes, Tom Eirik; Eidet, Jon Roger; Mikkelsen, Knut; Almdahl, Sven M; Bottazzi, Barbara; Lyberg, Torstein; Manzi, Susan; Ahearn, Joseph M; Hollan, Ivana

    2017-01-01

    Inflammatory rheumatic diseases (IRD) are associated with accelerated coronary artery disease (CAD), which may result from both systemic and vascular wall inflammation. There are indications that complement may be involved in the pathogenesis of CAD in Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). This study aimed to evaluate the associations between circulating complement and complement activation products with mononuclear cell infiltrates (MCI, surrogate marker of vascular inflammation) in the aortic media and adventitia in IRDCAD and non-IRDCAD patients undergoing coronary artery bypass grafting (CABG). Furthermore, we compared complement activation product deposition patterns in rare aorta adventitial and medial biopsies from SLE, RA and non-IRD patients. We examined plasma C3 (p-C3) and terminal complement complexes (p-TCC) in 28 IRDCAD (SLE = 3; RA = 25), 52 non-IRDCAD patients, and 32 IRDNo CAD (RA = 32) from the Feiring Heart Biopsy Study. Aortic biopsies taken from the CAD only patients during CABG were previously evaluated for adventitial MCIs. The rare aortic biopsies from 3 SLE, 3 RA and 3 non-IRDCAD were assessed for the presence of C3 and C3d using immunohistochemistry. IRDCAD patients had higher p-TCC than non-IRDCAD or IRDNo CAD patients (p<0.0001), but a similar p-C3 level (p = 0.42). Circulating C3 was associated with IRD duration (ρ, p-value: 0.46, 0.03). In multiple logistic regression analysis, IRD remained significantly related to the presence and size of MCI (p<0.05). C3 was present in all tissue samples. C3d was detected in the media of all patients and only in the adventitia of IRD patients (diffuse in all SLE and focal in one RA). The independent association of IRD status with MCI and the observed C3d deposition supports the unique relationship between rheumatic disease, and, in particular, SLE with the complement system. Exaggerated systemic and vascular complement activation may accelerate CVD, serve as a CVD

  6. Plasma complement and vascular complement deposition in patients with coronary artery disease with and without inflammatory rheumatic diseases

    PubMed Central

    2017-01-01

    Purpose Inflammatory rheumatic diseases (IRD) are associated with accelerated coronary artery disease (CAD), which may result from both systemic and vascular wall inflammation. There are indications that complement may be involved in the pathogenesis of CAD in Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). This study aimed to evaluate the associations between circulating complement and complement activation products with mononuclear cell infiltrates (MCI, surrogate marker of vascular inflammation) in the aortic media and adventitia in IRDCAD and non-IRDCAD patients undergoing coronary artery bypass grafting (CABG). Furthermore, we compared complement activation product deposition patterns in rare aorta adventitial and medial biopsies from SLE, RA and non-IRD patients. Methods We examined plasma C3 (p-C3) and terminal complement complexes (p-TCC) in 28 IRDCAD (SLE = 3; RA = 25), 52 non-IRDCAD patients, and 32 IRDNo CAD (RA = 32) from the Feiring Heart Biopsy Study. Aortic biopsies taken from the CAD only patients during CABG were previously evaluated for adventitial MCIs. The rare aortic biopsies from 3 SLE, 3 RA and 3 non-IRDCAD were assessed for the presence of C3 and C3d using immunohistochemistry. Results IRDCAD patients had higher p-TCC than non-IRDCAD or IRDNo CAD patients (p<0.0001), but a similar p-C3 level (p = 0.42). Circulating C3 was associated with IRD duration (ρ, p-value: 0.46, 0.03). In multiple logistic regression analysis, IRD remained significantly related to the presence and size of MCI (p<0.05). C3 was present in all tissue samples. C3d was detected in the media of all patients and only in the adventitia of IRD patients (diffuse in all SLE and focal in one RA). Conclusion The independent association of IRD status with MCI and the observed C3d deposition supports the unique relationship between rheumatic disease, and, in particular, SLE with the complement system. Exaggerated systemic and vascular complement activation may

  7. Development of Word Order in German Complement-Clause Constructions: Effects of Input Frequencies, Lexical Items, and Discourse Function

    ERIC Educational Resources Information Center

    Brandt, Silke; Lieven, Elena; Tomasello, Michael

    2010-01-01

    We investigate the development of word order in German children's spontaneous production of complement clauses. From soon after their second birthday, young German children use both verb final complements with complementizers and verb-second complements without complementizers. By their third birthday they use both kinds of complement clauses with…

  8. Complement Factor H Binds to Human Serum Apolipoprotein E and Mediates Complement Regulation on High Density Lipoprotein Particles.

    PubMed

    Haapasalo, Karita; van Kessel, Kok; Nissilä, Eija; Metso, Jari; Johansson, Tiira; Miettinen, Sini; Varjosalo, Markku; Kirveskari, Juha; Kuusela, Pentti; Chroni, Angelika; Jauhiainen, Matti; van Strijp, Jos; Jokiranta, T Sakari

    2015-11-27

    The alternative pathway of complement is an important part of the innate immunity response against foreign particles invading the human body. To avoid damage to host cells, it needs to be efficiently down-regulated by plasma factor H (FH) as exemplified by various diseases caused by mutations in its domains 19-20 (FH19-20) and 5-7 (FH5-7). These regions are also the main interaction sites for microbial pathogens that bind host FH to evade complement attack. We previously showed that inhibition of FH binding by a recombinant FH5-7 construct impairs survival of FH binding pathogens in human blood. In this study we found that upon exposure to full blood, the addition of FH5-7 reduces survival of, surprisingly, also those microbes that are not able to bind FH. This effect was mediated by inhibition of complement regulation and subsequently enhanced neutrophil phagocytosis by FH5-7. We found that although FH5-7 does not reduce complement regulation in the actual fluid phase of plasma, it reduces regulation on HDL particles in plasma. Using affinity chromatography and mass spectrometry we revealed that FH interacts with serum apolipoprotein E (apoE) via FH5-7 domains. Furthermore, binding of FH5-7 to HDL was dependent on the concentration of apoE on the HDL particles. These findings explain why the addition of FH5-7 to plasma leads to excessive complement activation and phagocytosis of microbes in full anticoagulated blood. In conclusion, our data show how FH interacts with apoE molecules via domains 5-7 and regulates alternative pathway activation on plasma HDL particles.

  9. The role of complement in C3 glomerulopathy.

    PubMed

    Zipfel, Peter F; Skerka, Christine; Chen, Qian; Wiech, Thorsten; Goodship, Tim; Johnson, Sally; Fremeaux-Bacchi, Veronique; Nester, Clara; de Córdoba, Santiago Rodríguez; Noris, Marina; Pickering, Matthew; Smith, Richard

    2015-09-01

    C3 glomerulopathy describes a spectrum of disorders with glomerular pathology associated with C3 cleavage product deposition and with defective complement action and regulation (Fakhouri et al., 2010; Sethi et al., 2012b). Kidney biopsies from these patients show glomerular accumulation or deposition of C3 cleavage fragments, but no or minor deposition of immunoglobulins (Appel et al., 2005; D'Agati and Bomback, 2012; Servais et al., 2007; Sethi and Fervenza, 2011). At present the current situation asks for a better definition of the underlining disease mechanisms, for precise biomarkers, and for a treatment for this disease. The complement system is a self activating and propelling enzymatic cascade type system in which inactive, soluble plasma components are activated spontaneously and lead into an amplification loop (Zipfel and Skerka, 2009). Activation of the alternative pathway is spontaneous, occurs by default, and cascade progression leads to amplification by complement activators. The system however is self-controlled by multiple regulators and inhibitors, like Factor H that control cascade progression in fluid phase and on surfaces. The activated complement system generates a series of potent effector components and activation products, which damage foreign-, as well as modified self cells, recruit innate immune cells to the site of action, coordinate inflammation and the response of the adaptive immune system in form of B cells and T lymphocytes (Kohl, 2006; Medzhitov and Janeway, 2002; Ogden and Elkon, 2006; Carroll, 2004; Kemper and Atkinson, 2007; Morgan, 1999; Muller-Eberhard, 1986; Ricklin et al., 2010). Complement controls homeostasis and multiple reactions in the vertebrate organism including defense against microbial infections (Diaz-Guillen et al., 1999; Mastellos and Lambris, 2002; Nordahl et al., 2004; Ricklin et al., 2010). In consequence defective control of the spontaneous self amplifying cascade or regulation is associated with numerous

  10. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    PubMed Central

    Helegbe, Gideon K; Goka, Bamenla Q; Kurtzhals, Joergen AL; Addae, Michael M; Ollaga, Edwin; Tetteh, John KA; Dodoo, Daniel; Ofori, Michael F; Obeng-Adjei, George; Hirayama, Kenji; Awandare, Gordon A; Akanmori, Bartholomew D

    2007-01-01

    Background Severe anaemia (SA), intravascular haemolysis (IVH) and respiratory distress (RD) are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT) and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ) and the regulatory proteins [complement receptor 1 (CD35) and decay accelerating factor (CD55)] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb) levels and RD were investigated. Results Of the 484 samples tested, 131(27%) were positive in DCT, out of which 115/131 (87.8%) were positive for C3d alone while 16/131 (12.2%) were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p < 0.001). DCT correlated significantly with RD (β = -304, p = 0.006), but multiple regression analysis revealed that, Hb (β = -0.341, p = 0.012) and coma (β = -0.256, p = 0.034) were stronger predictors of RD than DCT (β = 0.228, p = 0.061). DCT was also not associated with IVH, p = 0.19, while spleen size was inversely correlated with Hb (r = -402, p = 0.001). Flow cytometry showed similar mean fluorescent intensity (MFI) values of CD35, CD55 and C3bαβ levels on the surfaces of RBC in patients and asymptomatic controls (AC). However, binding of C3bαβ correlated significantly with CD35 or CD55 (p < 0.001). Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In

  11. Intergenic complementation truncation mutants of cyclin-dependent kinase.

    PubMed

    Bitter, G A; Tsai, M M; Putzke, A P; Leong, K

    2000-03-01

    The Saccharomyces cerevisiae genes PHO80 and PHO85 encode, respectively, a cyclin and cyclin-dependent kinase, which negatively regulate PHO5 gene transcription by phosphorylating the transcription activator Pho4p. Cyclin-dependent kinases (CDKs) are highly conserved proteins, both within and between species. It was previously demonstrated, using reporter genes activated in yeast by Pho4p, that hybrid proteins in which over two-thirds of Pho85p were replaced with the homologous region from human Cdk2 retained the function of native Pho85p with respect to promoter repression. In the present study, various truncated forms of the hybrid human-yeast CDKs were tested for function. Surprisingly, truncations in which significant portions of the C-terminal region of the 291-residue hybrid CDK were deleted retained activity. Genes encoding human Cdk2 proteins which terminated after amino acids 151, 140, 130, 120 and 90 each complement a chromosomal pho85 gene disruption in which the HIS3 gene is inserted at codon 49. Truncated Cdk2 proteins containing less than 60 amino acids failed to complement the pho85::HIS3 gene disruption. Although the functional C-terminal truncations disrupt the ATP-binding and active sites of Cdk2, reporter gene repression mediated by these truncated proteins is apparently due to phosphorylation of Pho4p, since a gene in which the essential lysine codon at position 33 was converted to an arginine codon does not complement the chromosomal gene disruption. The human Cdk2 truncations were demonstrated to function through intergenic complementation. The intact Cdk2-Pho85 hybrid CDK complemented the pho85 mutation in yeast strains in which the entire PHO85 coding region was deleted from chromosome XVI. The C-terminal Cdk2 truncations, however, were non-functional in these strains and thus dependent for activity on the pho85 coding region which remained in the mutant pho85::HIS3 chromosomal locus. These genetic results are consistent with a model

  12. Field Deployable DNA analyzer

    SciTech Connect

    Wheeler, E; Christian, A; Marion, J; Sorensen, K; Arroyo, E; Vrankovich, G; Hara, C; Nguyen, C

    2005-02-09

    This report details the feasibility of a field deployable DNA analyzer. Steps for swabbing cells from surfaces and extracting DNA in an automatable way are presented. Since enzymatic amplification reactions are highly sensitive to environmental contamination, sample preparation is a crucial step to make an autonomous deployable instrument. We perform sample clean up and concentration in a flow through packed bed. For small initial samples, whole genome amplification is performed in the packed bed resulting in enough product for subsequent PCR amplification. In addition to DNA, which can be used to identify a subject, protein is also left behind, the analysis of which can be used to determine exposure to certain substances, such as radionuclides. Our preparative step for DNA analysis left behind the protein complement as a waste stream; we determined to learn if the proteins themselves could be analyzed in a fieldable device. We successfully developed a two-step lateral flow assay for protein analysis and demonstrate a proof of principle assay.

  13. Complement-dependent antibody cytotoxicity test of chicken antibody with duck complement used against cells of a Marek's disease lymphoma-derived cell line (MSB-1).

    PubMed

    Sugimoto, C; Kodama, H; Mikami, T

    1979-01-01

    Complement-dependent antibody cytotoxicity (CDAC) against cells of a lymphoblastoid cell line (MSB-1) derived from Marek's disease lymphoma was investigated in a chicken antibody system using complements from several animal species. Cytotoxicity was seldom observed when rabbit, guinea pig, or chicken complements were used in the presence of hyperimmune chicken serum against MSB-1. With duck complement, however, cytotoxicity was always observed. Therefore, duck complement appears to be suitable for assay of hyperimmune chicken serum against MSB-1 cells by the CDAC test.

  14. MCM-GINS and MCM-MCM interactions in vivo visualised by bimolecular fluorescence complementation in fission yeast

    PubMed Central

    Akman, Gökhan; MacNeill, Stuart A

    2009-01-01

    Background Each of the three individual components of the CMG complex (Cdc45, MCM and GINS) is essential for chromosomal DNA replication in eukaryotic cells, both for the initiation of replication at origins and also for normal replication fork progression. The MCM complex is a DNA helicase that most likely functions as the catalytic core of the replicative helicase, unwinding the parental duplex DNA ahead of the moving replication fork, whereas Cdc45 and the GINS complex are believed to act as accessory factors for MCM. Results To investigate interactions between components of the CMG complex, we have used bimolecular fluorescence complementation (BiFC) in the fission yeast Schizosaccharomyces pombe for the first time, to analyse protein-protein interactions between GINS and MCM subunits expressed from their native chromosomal loci. We demonstrate interactions between GINS and MCM in the nuclei of exponentially-growing fission yeast cells and on chromatin in binucleate S-phase cells. In addition we present evidence of MCM-MCM interactions in diploid fission yeast cells. As with GINS-MCM interactions, MCM-MCM interactions also occur on chromatin in S-phase cells. Conclusion Bimolecular fluorescence complementation can be used in fission yeast to visualise interactions between two of the three components of the CMG complex, offering the prospect that this technique could in the future be used to allow studies on replication protein dynamics in living S. pombe cells. PMID:19228417

  15. Free Energy Gap and Statistical Thermodynamic Fidelity of DNA Codes (Postprint)

    DTIC Science & Technology

    2007-01-01

    reverse-complement unless otherwise stated. For strand x, let Nx denote its complement. A (perfect) Watson - Crick duplex is the joining of complement...is possible for complementary sequences to form a non-perfectly aligned duplex, we will call any x W Nx duplex a Watson - Crick (WC) duplex. Two...DATES COVERED (From - To) 4. TITLE AND SUBTITLE FREE ENERGY GAP AND STATISTICAL THERMODYNAMIC FIDELITY OF DNA CODES 5a. CONTRACT NUMBER FA8750-07

  16. Animal venoms/toxins and the complement system.

    PubMed

    Tambourgi, Denise V; van den Berg, Carmen W

    2014-10-01

    Nature is a wealthy source of agents that have been shown to be beneficial to human health, but nature is also a rich source of potential dangerous health damaging compounds. This review will summarise and discuss the agents from the animal kingdom that have been shown to interact with the human complement (C) system. Most of these agents are toxins found in animal venoms and animal secretions. In addition to the mechanism of action of these toxins, their contribution to the field of complement, their role in human pathology and the potential benefit to the venomous animal itself will be discussed. Potential therapeutic applications will also be discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Schizophrenia risk from complex variation of complement component 4.

    PubMed

    Sekar, Aswin; Bialas, Allison R; de Rivera, Heather; Davis, Avery; Hammond, Timothy R; Kamitaki, Nolan; Tooley, Katherine; Presumey, Jessy; Baum, Matthew; Van Doren, Vanessa; Genovese, Giulio; Rose, Samuel A; Handsaker, Robert E; Daly, Mark J; Carroll, Michael C; Stevens, Beth; McCarroll, Steven A

    2016-02-11

    Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.

  18. Complements Spurned: Our Experience with Atypical Hemolytic Uremic Syndrome

    PubMed Central

    Nagar, Vidya S.; Chaterjee, Rudrarpan; Sood, Ankita; Sajjan, Basavaraj; Kaushik, Aniruddha; Vyahalkar, Sameer V.

    2017-01-01

    Atypical hemolytic uremic syndrome (aHUS) is a rare disorder resulting from a dysregulated activation of the alternative pathway of the complement system. It results in significant morbidity and mortality if not diagnosed and treated promptly. It lends itself to myriad renal and extrarenal manifestations, all potentially disabling. Eculizumab, a monoclonal antibody to complement C5 is now the widely accepted norm for treatment. However, in resource-limited settings, plasma exchange if instituted early may be as beneficial. We report a case of aHUS treated with extended plasma exchange with excellent results. Critical care monitoring is essential for the management of the disease in view of a tendency to develop multiple complications. Long-term immunosuppression may be successful in maintaining remission. PMID:28250608

  19. Formation of prostanoids during intravascular complement activation in the rabbit.

    PubMed Central

    Bult, H.; Herman, A. G.; Laekeman, G. M.; Rampart, M.

    1985-01-01

    Plasma concentrations of 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha) and thromboxane B2 (TXB2) were measured by radioimmunoassay in arterial blood before and after injections of the complement activator, cobra venom factor (CVF). During the control period, the concentration of 6-oxo-PGF1 alpha, which gives the sum of prostacyclin plus 6-oxo-PGF1 alpha, and TXB2 were, respectively, less than 20 pg ml-1 and 70 +/- 15 pg ml-1. Intravenous injections of CVF induced dose-dependent, reversible elevations in the plasma levels of both prostanoids. The time courses for the increases of 6-oxo-PGF1 alpha and TXB2 paralleled the arterial hypotension and thrombocytopenia, suggesting the existence of a causal relationship between these parameters. The results further support our hypothesis that complement-dependent formation of arachidonic acid metabolites contributes to some of the haemodynamic and haematological changes occurring during endotoxin shock. PMID:3884074

  20. Schizophrenia risk from complex variation of complement component 4

    PubMed Central

    Sekar, Aswin; Bialas, Allison R.; de Rivera, Heather; Davis, Avery; Hammond, Timothy R.; Kamitaki, Nolan; Tooley, Katherine; Presumey, Jessy; Baum, Matthew; Van Doren, Vanessa; Genovese, Giulio; Rose, Samuel A.; Handsaker, Robert E.; Daly, Mark J.; Carroll, Michael C.; Stevens, Beth; McCarroll, Steven A.

    2016-01-01

    Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia’s strongest genetic association at a population level involves variation in the Major Histocompatibility Complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to recognize. We show here that schizophrenia’s association with the MHC locus arises in substantial part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles promoted widely varying levels of C4A and C4B expression and associated with schizophrenia in proportion to their tendency to promote greater expression of C4A in the brain. Human C4 protein localized at neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals affected with schizophrenia. PMID:26814963

  1. Extra-Renal Manifestations of Complement-Mediated Thrombotic Microangiopathies

    PubMed Central

    Hofer, Johannes; Rosales, Alejandra; Fischer, Caroline; Giner, Thomas

    2014-01-01

    Thrombotic microangiopathies (TMA) are rare but severe disorders, characterized by endothelial cell activation and thrombus formation leading to hemolytic anemia, thrombocytopenia, and organ failure. Complement over activation in combination with defects in its regulation is described in an increasing number of TMA and if primary for the disease denominated as atypical hemolytic-uremic syndrome. Although TMA predominantly affects the renal microvasculature, extra-renal manifestations are observed in 20% of patients including involvement of the central nerve system, cardiovascular system, lungs, skin, skeletal muscle, and gastrointestinal tract. Prompt diagnosis and treatment initiation are therefore crucial for the prognosis of disease acute phase and the long-term outcome. This review summarizes the available evidence on extra-renal TMA manifestations and discusses the role of acute and chronic complement activation by highlighting its complex interaction with inflammation, coagulation, and endothelial homeostasis. PMID:25250305

  2. Cytolytic effects of the complement cleavage product, C3a.

    PubMed Central

    Ferluga, J.; Schorlemmer, H. U.; Baptista, L. C.; Allison, A. C.

    1976-01-01

    Purified C3a, a cleavage product of the third component of complement,was incubated with various cell types of human and mouse origin. All the tumour cell types tested were lysed by low concentrations of C3a, whereas normal human lymphocytes were relatively resistant. No lysis was produced by C3 or C3b. The possible role of C3a in immunity against tumours is discussed. PMID:827304

  3. Complement depletion aggravates Staphylococcus aureus septicaemia and septic arthritis

    PubMed Central

    Sakiniene, E; Bremell, T; Tarkowski, A

    1999-01-01

    The aim of the study was to assess the role of the complement system in Staphylococcus aureus arthritis and septicaemia. The murine model of haematogenously acquired septic arthritis was used, injecting intravenously toxic shock syndrome toxin-1 (TSST-1), producing S. aureus LS-1. Complement was depleted using cobra venom factor (CVF). Evaluation of arthritis was performed clinically and histopathologically. In addition, the effect of complement depletion on the phagocytic activity of leucocytes was assessed in vivo and in vitro. Six days after inoculation of S. aureus the prevalence of arthritis in decomplemented mice was three-fold higher than that in controls (91% versus 25%). The clinical severity of arthritis at the end of the experiment, expressed as arthritic index, was 7.3 and 1.9, respectively. These findings were confirmed by histological index of synovitis as well as of cartilage and/or bone destruction being significantly higher in decomplemented mice than in controls (9.8 ± 1.7 versus 4.9 ± 1.2, P < 0.05; and 7.9 ± 1.7 versus 3.0 ± 0.9, P < 0.05, respectively). Also, the septicaemia-induced mortality was clearly higher in decomplemented mice compared with the controls. CVF treatment significantly reduced in vivo polymorphonuclear cell-dependent inflammation induced by subcutaneous injection of olive oil and mirroring the capacity of polymorphonuclear cells (PMNC) to migrate and/or extravasate. Besides, the decomplementation procedure significantly impaired phagocytic activity of peripheral blood leucocytes in vitro, since the number of phagocytes being able to ingest bacteria decreased by 50% when the cells were maintained in decomplemented serum compared with those in intact serum. The conclusion is that complement depletion aggravates the clinical course of S. aureus arthritis and septicaemia, possibly by a combination of decreased migration/extravasation of PMNC and an impairment of phagocytosis. PMID:9933426

  4. Generalized complement operators and applications in some semirings

    SciTech Connect

    Bijev, G.

    2013-12-18

    Generalized complement operators on the semiring of all Boolean matrices as semilattice homomorphisms are considered. Some applications in solving equations on the set Bn of all binary relations are developed. In particular the structure of B3 is investigated by computer methods. Specific properties of the subsemigroup generated by all irregular relations in B3 are found. Stochastic experiments on the monoid Bn were made. The frequency of irregular elements as well as those of solvable equations depending on n is examined.

  5. Roles of antibodies and complement in phagocytic killing of enterococci.

    PubMed Central

    Arduino, R C; Murray, B E; Rakita, R M

    1994-01-01

    The contributions of complement and antibodies to polymorphonuclear leukocyte (PMN)-mediated killing of enterococci were investigated with pooled normal human serum (PNHS) or immune human sera (IHS) from patients with serious enterococcal infections. Each IHS containing antienterococcal antibodies demonstrated by enzyme-linked immunosorbent assay and Western blotting (immunoblotting) was examined with the enterococcus strain isolated from the same patient. PNHS promoted PMN-mediated killing of enterococci similar to that for IHS. PMN-mediated killing was consistently abrogated after preopsonization with heat-inactivated PNHS, but some heat-inactivated IHS supported neutrophil bactericidal activity. Inhibition of the classical pathway of complement by chelation of either PNHS or IHS with Mg-EGTA [Mg-ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid] did not alter PMN-mediated killing, suggesting that activation of the alternative pathway of complement is sufficient to promote killing of enterococci by PMNs. PMN-mediated killing assays were also performed with normal rabbit serum and immune rabbit serum against enterococci. Preopsonization with heat-inactivated immune rabbit serum resulted in PMN-mediated killing of enterococci, which was ablated after adsorption of the serum with the same isolate used for immunization. The influence of different phenotypic enterococcal traits on neutrophil-mediated killing was also investigated. Similar kinetics of killing were observed for derivatives of Enterococcus faecalis strains regardless of resistance to antimicrobial agents or production of beta-lactamase, hemolysin, gelatinase, or surface proteins involved in the aggregative response to pheromones. In summary, PMN-mediated killing of enterococci appears to depend primarily on complement activation by either the classical or the alternative pathway. Human antienterococcal antibodies generated during infection variably promoted neutrophil bactericidal

  6. Effect of Nanoparticles on Complement System in Cell Culture Model

    DTIC Science & Technology

    2006-09-15

    30cm length was clamped and dipped in 70% ethanol for 30s. Umbilical cord (vein) was washed with PBS to remove blood. Collagenase/dispase solution...were written for the complement activation and cytotoxicity tests. For the purpose of the project the primary cultures of human umbilical cord ...7 Primary endothelial cells isolated from human umbilical veins Aseptically taken umbilical cord , preferably abort 20

  7. Effects of complement suppression on xenograft survival in hyperacute rejection.

    PubMed

    Mukai, S; Orihashi, K; Sueda, T; Kajihara, H; Matsuura, Y

    1999-03-01

    To examine the significance of complement in discordant cardiac xenograft rejection, morphological changes in the rejection reaction were investigated following administration of FUT-175 (FUT), an anticomplement reagent. Guinea pigs were the cardiac donors, and Wistar rats were the recipients. Four groups of rats were constituted as follows: Group 0 was the control group. FUT of 40 mg/kg was injected intraperitoneally in group I. It was followed by continuous intravenous infusion (20 and 40 mg/kg/hr) in groups II and III. In one series, the effects of FUT on complement suppression was examined. In the FUT groups of rats (groups I to III), the serum levels of CH50 and ACH50 were measured at 0, 1, 2 and 4 hr following injection of FUT. In the second series of rats with identical treatments, the graft heart beating time following cardiac transplantation was measured. Cardiac transplantation into untreated rats was also performed as a control (group 0). In another series, the graft hearts in the FUT groups were extracted after 15, 30, 60 and 90 min of coronary reperfusion for morphological examination with scanning electron microscopy. The complement levels decreased significantly in the FUT-treated rats in a dose-dependent manner. Although the graft heart beating times in the FUT-treated groups were significantly longer than in group 0 (103, 106, and 112 min versus 14.7 min, p < 0.01), there was no significant difference in the graft heart beating time or in the morphological changes among the three FUT groups. Our results suggest the presence of factors other than complements contribute to the cardiac xenograft rejection.

  8. Complement pathway biomarkers and age-related macular degeneration

    PubMed Central

    Gemenetzi, M; Lotery, A J

    2016-01-01

    In the age-related macular degeneration (AMD) ‘inflammation model', local inflammation plus complement activation contributes to the pathogenesis and progression of the disease. Multiple genetic associations have now been established correlating the risk of development or progression of AMD. Stratifying patients by their AMD genetic profile may facilitate future AMD therapeutic trials resulting in meaningful clinical trial end points with smaller sample sizes and study duration. PMID:26493033

  9. Allelic Variants of Complement Genes Associated with Dense Deposit Disease

    PubMed Central

    Abrera-Abeleda, Maria Asuncion; Nishimura, Carla; Frees, Kathy; Jones, Michael; Maga, Tara; Katz, Louis M.; Zhang, Yuzhou

    2011-01-01

    The alternative pathway of the complement cascade plays a role in the pathogenesis of dense deposit disease (DDD). Deficiency of complement factor H and mutations in CFH associate with the development of DDD, but it is unknown whether allelic variants in other complement genes also associate with this disease. We studied patients with DDD and identified previously unreported sequence alterations in several genes in addition to allelic variants and haplotypes common to patients with DDD. We found that the likelihood of developing DDD increases with the presence of two or more risk alleles in CFH and C3. To determine the functional consequence of this finding, we measured the activity of the alternative pathway in serum samples from phenotypically normal controls genotyped for variants in CFH and C3. Alternative pathway activity was higher in the presence of variants associated with DDD. Taken together, these data confirm that DDD is a complex genetic disease and may provide targets for the development of disease-specific therapies. PMID:21784901

  10. Therapeutic inhibition of the alternative complement pathway attenuates chronic EAE.

    PubMed

    Hu, Xianzhen; Holers, V Michael; Thurman, Joshua M; Schoeb, Trent R; Ramos, Theresa N; Barnum, Scott R

    2013-07-01

    Previous studies from our laboratory using complement-mutant mice demonstrated that the alternative pathway is the dominant activation pathway responsible for complement-mediated pathology in demyelinating disease. Using a well-characterized inhibitory monoclonal antibody (mAb 1379) directed against mouse factor B, we assessed the therapeutic value of inhibiting the alternative complement pathway in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Administration of anti-factor B antibody to mice prior to the onset of clinical signs of active EAE had no affect on the onset or acute phase of disease, but significantly attenuated the chronic phase of disease resulting in reduced cellular infiltration, inflammation and demyelination in antibody-treated mice. Attenuation of the chronic phase of disease was long lasting even though antibody administration was terminated shortly after disease onset. Chronic disease was also attenuated in transferred EAE when anti-factor B antibody was administered before or after disease onset. Similar levels of disease attenuation were observed in transferred EAE using MOG-specific encephalitogenic T cells. These studies demonstrate the therapeutic potential for inhibition of factor B in the chronic phase of demyelinating disease, where treatment options are limited.

  11. Therapeutic Inhibition of the Alternative Complement Pathway Attenuates Chronic EAE

    PubMed Central

    Hu, Xianzhen; Holers, V. Michael; Thurman, Joshua M.; Schoeb, Trent R.; Ramos, Theresa N; Barnum, Scott R.

    2013-01-01

    Previous studies from our laboratory using complement-mutant mice demonstrated that the alternative pathway is the dominant activation pathway responsible for complement-mediated pathology in demyelinating disease. Using a well-characterized inhibitory monoclonal antibody (mAb 1379) directed against mouse factor B, we assessed the therapeutic value of inhibiting the alternative complement pathway in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Administration of anti-factor B antibody to mice prior to the onset of clinical signs of active EAE had no affect on the onset or acute phase of disease, but significantly attenuated the chronic phase of disease resulting in reduced cellular infiltration, inflammation and demyelination in antibody-treated mice. Attenuation of the chronic phase of disease was long lasting even though antibody administration was terminated shortly after disease onset. Chronic disease was also attenuated in transferred EAE when anti-factor B antibody was administered before or after disease onset. Similar levels of disease attenuation were observed in transferred EAE using MOG-specific encephalitogenic T cells. These studies demonstrate the therapeutic potential for inhibition of factor B in the chronic phase of demyelinating disease, where treatment options are limited. PMID:23337717

  12. [The practical assessment of complement involvement in anaphylactoid reactions].

    PubMed

    Watkins, J

    1982-01-01

    While no single test is entirely satisfactory for the investigation of anaphylactoid response to intravenous anaesthetic drugs, changes in plasma chemistry are particularly easy to measure and may be carried out at centres remote from the clinical incident. Analysis should be carried out on a sequence of blood samples taken into EDTA over the 24 hours following such reaction. Few reactions are classical Type I, IgE antibody mediated, reactions and most involved the complement proteins in some specific manner. By measuring changes in the levels and activity of the complement proteins, particularly C3, C4 and C5, between samples, it is possible to deduce the likely mechanism of a reaction and thus to advise more wisely on future treatment of the patient. Although levels of any plasma protein may be readily measured by single radial immunodiffusion (Mancini technique) using appropriate specific antisera, one assessment of complement activity (degree of conversion) has until now largely been restricted to technically exacting Laurell immunoelectrophoresis. Two simple immunoelectrophoretic techniques are described here which do not require such expertise.

  13. Humoral immunity and complement effector mechanisms after lung transplantation.

    PubMed

    Budding, K; van de Graaf, E A; Otten, H G

    2014-10-01

    Lung transplantation (LTx) is the final treatment option for patients with endstage lung diseases including chronic obstructive pulmonary disease, cystic fibrosis, and interstitial lung disease. Survival after LTx is severely hampered by the development of the bronchiolitis obliterans syndrome (BOS) which is hallmarked by excessive fibrosis and scar tissue formation leading to small airway obliteration and eventually organ failure. The pathophysiology of BOS is incompletely understood. During the past years both anti-HLA and non-HLA antibodies have been identified that correlate with transplantation outcome. Also, the involvement of autoimmunity on BOS progression has been demonstrated, including autoantigens Type V collagen and K-alpha tubulin. Both allo- and autoantibodies binding to its respective antigen trigger the binding of C1q and sequential complement activation which can lead to either cell damage or activation, both processes which fit into the current model of BOS pathogenesis. In this review we will discuss both HLA, non-HLA and autoantibodies associated with disease progression, but also elaborate on the subsequent complement effector mechanisms, complement regulation, and the potential influence of regulatory mechanisms on graft survival. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Complement Interaction with Trypanosomatid Promastigotes in Normal Human Serum

    PubMed Central

    Domínguez, Mercedes; Moreno, Inmaculada; López-Trascasa, Margarita; Toraño, Alfredo

    2002-01-01

    In normal human serum (NHS), axenic promastigotes of Crithidia, Phytomonas, and Leishmania trigger complement activation, and from 1.2 to 1.8 × 105 C3 molecules are deposited per promastigote within 2.5 min. In Leishmania, promastigote C3 binding capacity remains constant during in vitro metacyclogenesis. C3 deposition on promastigotes activated through the classical complement pathway reaches a 50% maximum after ∼50 s, and represents >85% of total C3 bound. In C1q- and C2-deficient human sera, promastigotes cannot activate the classical pathway (CP) unless purified C1q or C2 factors, respectively, are supplemented, demonstrating a requirement for CP factor in promastigote C3 opsonization. NHS depleted of natural anti-Leishmania antibodies cannot trigger promastigote CP activation, but IgM addition restores C3 binding. Furthermore, Leishmania binds natural antibodies in ethylenediaminetetracetic acid (EDTA)-treated NHS; after EDTA removal, promastigote-bound IgM triggers C3 deposition in natural antibody-depleted NHS. Serum collectins and pentraxins thus do not participate significantly in NHS promastigote C3 opsonization. Real-time kinetic analysis of promastigote CP-mediated lysis indicates that between 85–95% of parasites are killed within 2.5 min of serum contact. These data indicate that successful Leishmania infection in man must immediately follow promastigote transmission, and that Leishmania evasion strategies are shaped by the selective pressure exerted by complement. PMID:11854358

  15. Lamprey variable lymphocyte receptors mediate complement-dependent cytotoxicity.

    PubMed

    Wu, Fenfang; Chen, Liyong; Liu, Xin; Wang, Huaying; Su, Peng; Han, Yinglun; Feng, Bo; Qiao, Xu; Zhao, Jing; Ma, Ning; Liu, Huijie; Zheng, Zhen; Li, Qingwei

    2013-02-01

    An alternative adaptive-immune system is present in the most basal vertebrates--lampreys and hagfish--the only surviving jawless vertebrates. These eel-like fish use leucine-rich repeat-based receptors for Ag recognition instead of the Ig-based receptors used in jawed vertebrates. We report that in Japanese lamprey (Lampetra japonica), variable lymphocyte receptor (VLR)B interacts with C1q and C3 proteins to mediate complement-dependent cytotoxicity for bacteria and tumor cells. The immune-based lysis involves deposition of VLRB and C1q-like protein complex on the surface of target cells, activation of C3, and ultimate disruption of cell wall integrity. The demonstration of functional interaction between VLRB and complement components in lamprey provides evidence for the emergence of cooperative innate and adaptive-immune responses at a pivotal point in vertebrate evolution, before or in parallel with the evolution of Ig-based Abs and the classical complement-activation pathway.

  16. Free radicals upregulate complement expression in rabbit isolated heart.

    PubMed

    Tanhehco, E J; Yasojima, K; McGeer, P L; Washington, R A; Lucchesi, B R

    2000-07-01

    Both free radicals and complement activation can injure tissue. Our study determined whether free radicals alter complement production by the myocardium. Isolated hearts from New Zealand White rabbits were perfused on a Langendorff apparatus and exposed to xanthine (X; 100 microM) plus xanthine oxidase (XO; 8 mU/ml) (X/XO). The free radical-generating system significantly (P < 0.05) increased C1q and also increased C1r, C3, C8, and C9 transcription compared with controls. Immunohistological examination revealed augmented membrane attack complex deposition on X/XO-treated tissue. X/XO-treated hearts also exhibited significant (P < 0.05) increases in coronary perfusion pressure and left ventricular end-diastolic pressure and a decrease in left-ventricular developed pressure. N-(2-mercaptopropionyl)-glycine (3 mM), in conjunction with the superoxide dismutase mimetic SC-52608 (100 microM), significantly (P < 0.05) reduced the upregulation of C1q, C1r, C3, C8, and C9 mRNA expression elicited by X/XO. The antioxidants also ameliorated the deterioration in function caused by X/XO. Local complement activation may represent a mechanism by which free radicals mediate tissue injury.

  17. Preconditioning reduces myocardial complement gene expression in vivo.

    PubMed

    Tanhehco, E J; Yasojima, K; McGeer, P L; McGeer, E G; Lucchesi, B R

    2000-09-01

    This investigation examined the effect of preconditioning in an in vivo model of ischemia-reperfusion injury. Anesthetized New Zealand White rabbits underwent 30 min of regional myocardial ischemia followed by 2 h of reperfusion. Hearts preconditioned with two cycles of 5 min ischemia-10 min reperfusion (IPC) or with the ATP-sensitive K (K(ATP)) channel opener, diazoxide (10 mg/kg), exhibited significantly (P < 0.05) smaller infarcts compared with control. These treatments also significantly (P < 0.001 to P < 0.05) reduced C1q, C1r, C3, C8, and C9 mRNA in the areas at risk (AAR). The K(ATP) channel blocker 5-hydroxydecanoate (5-HD; 10 mg/kg) attenuated infarct size reduction elicited by IPC and diazoxide treatment. 5-HD partially reversed the decrease in complement expression caused by IPC but not diazoxide. There were no significant differences in complement gene expression in the nonrisk regions and livers of all groups. Western blot analysis revealed that IPC also reduced membrane attack complex expression in the AAR. The data demonstrate that preconditioning significantly decreases reperfusion-induced myocardial complement expression in vivo.

  18. Early Intra-Articular Complement Activation in Ankle Fractures

    PubMed Central

    Salzmann, Gian M.; Niemeyer, Philipp; Guo, Renfeng

    2014-01-01

    Cytokine regulation possibly influences long term outcome following ankle fractures, but little is known about synovial fracture biochemistry. Eight patients with an ankle dislocation fracture were included in a prospective case series and matched with patients suffering from grade 2 osteochondritis dissecans (OCD) of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture and collection of effusion were only significantly associated with synovial aggrecan and C5b-9 levels (P < 0.001). Furthermore, synovial expressions of both proteins correlated with each other (P < 0.001). Although IL-1β expression was relatively low, intra-articular levels correlated with C5a (P < 0.01) and serological C-reactive protein concentrations 2 days after surgery (P < 0.05). Joint effusions were initially dominated by neutrophils, but the portion of monocytes constantly increased reaching 50% at day 6 after fracture (P < 0.02). Whereas aggrecan and IL-1β concentrations were not different in fracture and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P < 0.01). Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures. PMID:24967368

  19. Complement Membrane Attack and Tumorigenesis: A SYSTEMS BIOLOGY APPROACH.

    PubMed

    Towner, Laurence D; Wheat, Richard A; Hughes, Timothy R; Morgan, B Paul

    2016-07-15

    Tumor development driven by inflammation is now an established phenomenon, but the role that complement plays remains uncertain. Recent evidence has suggested that various components of the complement (C) cascade may influence tumor development in disparate ways; however, little attention has been paid to that of the membrane attack complex (MAC). This is despite abundant evidence documenting the effects of this complex on cell behavior, including cell activation, protection from/induction of apoptosis, release of inflammatory cytokines, growth factors, and ECM components and regulators, and the triggering of the NLRP3 inflammasome. Here we present a novel approach to this issue by using global gene expression studies in conjunction with a systems biology analysis. Using network analysis of MAC-responsive expression changes, we demonstrate a cluster of co-regulated genes known to have impact in the extracellular space and on the supporting stroma and with well characterized tumor-promoting roles. Network analysis highlighted the central role for EGF receptor activation in mediating the observed responses to MAC exposure. Overall, the study sheds light on the mechanisms by which sublytic MAC causes tumor cell responses and exposes a gene expression signature that implicates MAC as a driver of tumor progression. These findings have implications for understanding of the roles of complement and the MAC in tumor development and progression, which in turn will inform future therapeutic strategies in cancer. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Killing of Gyrodactylus salaris (Platyhelminthes, Monogenea) mediated by host complement.

    PubMed

    Harris, P D; Soleng, A; Bakke, T A

    1998-08-01

    Gyrodactylus salaris, an important pathogen of Atlantic salmon Salmo salar, has been shown to be highly sensitive to factors in host serum and mucus, being killed rapidly (50% within 1 h) by serum at a dilution of 1:200. The time needed for killing was inversely proportional to serum concentration. Similar effects were noted using host mucus, which contained approximately 1/20th of the anti-Gyrodactylus activity of serum. Serum activity was abolished completely by heating at 45 degrees C for 30 min, and by addition of EDTA, but not by EGTA + 1 mM magnesium ions. Activity was not dependent on whether the serum was from infected or naive fishes, nor was it species specific. Attempts to pre-coat parasites in salmon anti-Gyrodactylus antibodies also failed to enhance the activity of fresh serum. These observations suggest that killing is due to the complement system of the host, acting via the alternate pathway. G. salaris appears to be exceptionally sensitive to complement, being killed at concentrations which could be experienced in vivo. The role of complement in the protection of fishes against gyrodactylid infection therefore deserves further investigation.

  1. Complement activation in chromosome 13 dementias. Similarities with Alzheimer's disease.

    PubMed

    Rostagno, Agueda; Revesz, Tamas; Lashley, Tammaryn; Tomidokoro, Yasushi; Magnotti, Laura; Braendgaard, Hans; Plant, Gordon; Bojsen-Møller, Marie; Holton, Janice; Frangione, Blas; Ghiso, Jorge

    2002-12-20

    Chromosome 13 dementias, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with neurodegeneration and cerebrovascular amyloidosis, with striking neuropathological similarities to Alzheimer's disease (AD). Despite the structural differences among the amyloid subunits (ABri in FBD, ADan in FDD, and Abeta in AD), these disorders are all characterized by the presence of neurofibrillary tangles and parenchymal and vascular amyloid deposits co-localizing with markers of glial activation, suggestive of local inflammation. Proteins of the complement system and their pro-inflammatory activation products are among the inflammation markers associated with AD lesions. Immunohistochemistry of FBD and FDD brain sections demonstrated the presence of complement activation components of the classical and alternative pathways as well as the neo-epitope of the membrane attack complex. Hemolytic experiments and enzyme-linked immunosorbent assays specific for the activation products iC3b, C4d, Bb, and C5b-9 indicated that ABri and ADan are able to fully activate the complement cascade at levels comparable to those generated by Abeta1-42. ABri and ADan specifically bound C1q with high affinity and formed stable complexes in physiological conditions. Activation proceeds approximately 70-75% through the classical pathway while only approximately 25-30% seems to occur through the alternative pathway. The data suggest that the chronic inflammatory response generated by the amyloid peptides in vivo might be a contributing factor for the pathogenesis of FBD and FDD and, in more general terms, to other neurodegenerative conditions.

  2. Ligation of complement receptor 1 increases erythrocyte membrane deformability.

    PubMed

    Glodek, Aleksandra M; Mirchev, Rossen; Golan, David E; Khoory, Joseph A; Burns, Jennie M; Shevkoplyas, Sergey S; Nicholson-Weller, Anne; Ghiran, Ionita C

    2010-12-23

    Microbes as well as immune complexes and other continuously generated inflammatory particles are efficiently removed from the human circulation by red blood cells (RBCs) through a process called immune-adherence clearance. During this process, RBCs use complement receptor 1 (CR1, CD35) to bind circulating complement-opsonized particles and transfer them to resident macrophages in the liver and spleen for removal. We here show that ligation of RBC CR1 by antibody and complement-opsonized particles induces a transient Ca(++) influx that is proportional to the RBC CR1 levels and is inhibited by T1E3 pAb, a specific inhibitor of TRPC1 channels. The CR1-elicited RBC Ca(++) influx is accompanied by an increase in RBC membrane deformability that positively correlates with the number of preexisting CR1 molecules on RBC membranes. Biochemically, ligation of RBC CR1 causes a significant increase in phosphorylation levels of β-spectrin that is inhibited by preincubation of RBCs with DMAT, a specific casein kinase II inhibitor. We hypothesize that the CR1-dependent increase in membrane deformability could be relevant for facilitating the transfer of CR1-bound particles from the RBCs to the hepatic and splenic phagocytes.

  3. Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality

    PubMed Central

    Mori, Matteo; Ponce-de-León, Miguel; Peretó, Juli; Montero, Francisco

    2016-01-01

    Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate. PMID:27774085

  4. Complement depletion with humanised cobra venom factor: efficacy in preclinical models of vascular diseases.

    PubMed

    Vogel, Carl-Wilhelm; Fritzinger, David C; Gorsuch, W Brian; Stahl, Gregory L

    2015-03-01

    The complement system is an intrinsic part of the immune system and has important functions in both innate and adaptive immunity. On the other hand, inadvertent or misdirected complement activation is also involved in the pathogenesis of many diseases, contributing solely or significantly to tissue injury and disease development. Multiple approaches to develop pharmacological agents to inhibit complement are currently being pursued. We have developed a conceptually different approach of not inhibiting but depleting complement, based on the complement-depleting activities of cobra venom factor (CVF), a non-toxic cobra venom component with structural and functional homology to complement component C3. We developed a humanised version of CVF by creating human complement component C3 derivatives with complement-depleting activities of CVF (humanised CVF) as a promising therapeutic agent for diseases with complement pathogenesis. Here we review the beneficial therapeutic effect of humanised CVF in several murine models of vascular diseases such as reperfusion injury.

  5. Complement-triggered pathways orchestrate regenerative responses throughout phylogenesis

    PubMed Central

    Mastellos, Dimitrios C.; DeAngelis, Robert A.; Lambris, John D.

    2014-01-01

    Adult tissue plasticity, cell reprogramming, and organ regeneration are major challenges in the field of modern regenerative medicine. Devising strategies to increase the regenerative capacity of tissues holds great promise for dealing with donor organ shortages and low transplantation outcomes and also provides essential impetus to tissue bioengineering approaches for organ repair and replacement. The inherent ability of cells to reprogram their fate by switching into an embryonic-like, pluripotent progenitor state is an evolutionary vestige that in mammals has been retained mostly in fetal tissues and persists only in a few organs of the adult body. Tissue regeneration reflects the capacity of terminally differentiated cells to re-enter the cell cycle and proliferate in response to acute injury or environmental stress signals. In lower vertebrates, this regenerative capacity extends to several organs and remarkably culminates in precise tissue patterning, through cellular transdifferentiation and complex morphogenetic processes that can faithfully reconstruct entire body parts. Many lessons have been learned from robust regeneration models in amphibians such as the newt and axolotl. However, the dynamic interactions between the regenerating tissue, the surrounding stroma, and the host immune response, as it adapts to the actively proliferating tissue, remain ill-defined. The regenerating zone, through a sequence of distinct molecular events, adopts phenotypic plasticity and undergoes rigorous tissue remodeling that, in turn, evokes a significant inflammatory response. Complement is a primordial sentinel of the innate immune response that engages in multiple inflammatory cascades as it becomes activated during tissue injury and remodeling. In this respect, complement proteins have been implicated in tissue and organ regeneration in both urodeles and mammals. Distinct complement-triggered pathways have been shown to modulate critical responses that promote tissue

  6. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity

    PubMed Central

    Andre, Greiciely O.; Converso, Thiago R.; Politano, Walter R.; Ferraz, Lucio F. C.; Ribeiro, Marcelo L.; Leite, Luciana C. C.; Darrieux, Michelle

    2017-01-01

    The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement. PMID:28265264

  7. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity.

    PubMed

    Andre, Greiciely O; Converso, Thiago R; Politano, Walter R; Ferraz, Lucio F C; Ribeiro, Marcelo L; Leite, Luciana C C; Darrieux, Michelle

    2017-01-01

    The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.

  8. Microsatellite Organization in the B Chromosome and A Chromosome Complement in Astyanax (Characiformes, Characidae) Species.

    PubMed

    Piscor, Diovani; Parise-Maltempi, Patricia P

    2016-01-01

    The organization of microsatellites in B and sex chromosomes has been linked to chromosomal evolution in a number of animal groups. Here, the chromosomal organizations of (CA)15, (GA)15, (CG)15, (GACA)4, and (GATA)8 microsatellites were examined in several Astyanax species with different diploid numbers: Astyanax mexicanus (2n = 50 + 1 B chromosome), A. altiparanae (2n = 50), A. marionae (2n = 48), A. fasciatus (2n = 46), and A. schubarti (2n = 36). The (CA)15 and (GA)15 microsatellites were dispersed across the chromosomes of A. altiparanae and A. fasciatus but were also observed as clusters (CA and GA for A. altiparanae, and CA for A. fasciatus). In A. marionae and A. schubarti, the (CA)15 and (GA)15 microsatellites were dispersed but were also observed as clustered signals and coincident with heterochromatic regions. In all 4 of these species, the (CG)15 and (GACA)4 microsatellites were dispersed across chromosomes, and the (GATA)8 microsatellite was co-localized with 5S rDNA. In A. mexicanus, the (CA)15, (GA)15, (CG)15, (GATA)8, and (GACA)4 microsatellites were weakly detected and dispersed across the chromosomes of the A complement. On the B chromosome, signals for the different microsatellites were weak, strong, absent, weak, and absent, respectively. The distribution of microsatellites and the locational relationship between microsatellites and 5S rDNA are discussed, and a possible evolutionary pathway is proposed for microsatellites in Astyanax.

  9. Complementation of Yeast Genes with Human Genes as an Experimental Platform for Functional Testing of Human Genetic Variants.

    PubMed

    Hamza, Akil; Tammpere, Erik; Kofoed, Megan; Keong, Christelle; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Hieter, Philip

    2015-11-01

    While the pace of discovery of human genetic variants in tumors, patients, and diverse populations has rapidly accelerated, deciphering their functional consequence has become rate-limiting. Using cross-species complementation, model organisms like the budding yeast, Saccharomyces cerevisiae, can be utilized to fill this gap and serve as a platform for testing human genetic variants. To this end, we performed two parallel screens, a one-to-one complementation screen for essential yeast genes implicated in chromosome instability and a pool-to-pool screen that queried all possible essential yeast genes for rescue of lethality by all possible human homologs. Our work identified 65 human cDNAs that can replace the null allele of essential yeast genes, including the nonorthologous pair yRFT1/hSEC61A1. We chose four human cDNAs (hLIG1, hSSRP1, hPPP1CA, and hPPP1CC) for which their yeast gene counterparts function in chromosome stability and assayed in yeast 35 tumor-specific missense mutations for growth defects and sensitivity to DNA-damaging agents. This resulted in a set of human-yeast gene complementation pairs that allow human genetic variants to be readily characterized in yeast, and a prioritized list of somatic mutations that could contribute to chromosome instability in human tumors. These data establish the utility of this cross-species experimental approach. Copyright © 2015 by the Genetics Society of America.

  10. Genetic control of the alternative pathway of complement in humans and age-related macular degeneration.

    PubMed

    Hecker, Laura A; Edwards, Albert O; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H; Brown, William L; Charbel Issa, Peter; Scholl, Hendrik P; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E; Bailey, Kent R; Oppermann, Martin

    2010-01-01

    Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues.

  11. Molecular and expression analysis of complement component C5 in the nurse shark (Ginglymostoma cirratum) and its predicted functional role.

    PubMed

    Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L

    2009-07-01

    We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5' and 3' UTRs of 35 bp and 79 bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences shows that GcC5

  12. Molecular and expression analysis of complement component C5 in the nurse shark (Ginglymostoma cirratum) and its predicted functional role

    PubMed Central

    Graham, Matthew; Shin, Dong-Ho; Smith, Sylvia L.

    2009-01-01

    We present the complete cDNA sequence of shark (Ginglymostoma cirratum) pro-C5 and its molecular characterization with a descriptive analysis of the structural elements necessary for its potential functional role as a potent mediator of inflammation (fragment C5a) and initiator molecule (fragment C5b) for the assembly of the membrane attack complex (MAC) upon activation by C5 convertase. In mammals the three complement activation cascades, the classical, alternative and lectin pathways, converge at the activation of C3, a pivotal complement protein. It is, however, the subsequent activation of the next complement component, C5, which is the focal point at which the initiation of the terminal lytic pathway takes place and involves the stepwise assembly of the MAC. The effector cytolytic function of complement occurs with the insertion of MAC into target membranes causing dough-nut like holes and cell leakage. The lytic activity of shark complement results in structurally similar holes in target membranes suggesting the assembly of a shark MAC that likely involves a functional analogue of C5. The composition of shark MAC remains unresolved and to date conclusive evidence has been lacking for shark C5. The gene has not been cloned nor has the serum protein been characterized for any elasmobranch species. This report is the first to confirm the presence of C5 homologue in the shark. GcC5 is remarkably similar to human C5 in overall structure and domain arrangement. The GcC5 cDNA measured 5160-bp with 5′ and 3′ UTRs of 35bp and 79bp, respectively. Structural analysis of the derived protein sequence predicts a molecule that is a two-chain structure which lacks a thiolester bond and contains a C5 convertase cleavage site indicating that activation will generate two peptides, akin to C5b and C5a. The putative GcC5 molecule also contains the C-terminal C345C/Netrin module that characterizes C3, C4 and C5. Multiple alignment of deduced amino acid sequences show that GcC5

  13. Antibody-mediated rejection despite inhibition of terminal complement.

    PubMed

    Bentall, Andrew; Tyan, Dolly B; Sequeira, Flavia; Everly, Matthew J; Gandhi, Manish J; Cornell, Lynn D; Li, Han; Henderson, Nicole A; Raghavaiah, Suresh; Winters, Jeffrey L; Dean, Patrick G; Stegall, Mark D

    2014-12-01

    Terminal complement blockade has been shown to decrease the incidence of early acute antibody-mediated rejection (eAMR) in the first month after positive cross-match kidney transplant recipients, yet some patients still develop eAMR. The current study investigated possible mechanisms of eAMR despite eculizumab treatment. Of the 26 patients treated with eculizumab, two developed clinical eAMR and another patient developed histologic signs of eAMR without graft dysfunction ('subclinical eAMR'). Twenty-three did not have histologic injury on early surveillance biopsies. All 26 patients had therapeutic levels of eculizumab and showed complete blockade of complement in hemolytic assays. High levels of donor-specific alloantibody (DSA) including total IgG, IgG3, and C1q+ DSA were present in patients with and without eAMR, and none correlated well with eAMR. In contrast, IgM DSA was present in only four patients after transplantation: the two patients with clinical eAMR, one patient with subclinical AMR, and one patient without eAMR (P = 0.006 correlation with eAMR). Both clinical eAMR episodes were easily treated with plasma exchange which removed IgM more completely and rapidly than IgG, resulting in normalization of function and histology. These data suggest a possible role of antidonor IgM DSA in the pathogenesis of eAMR in patients treated with terminal complement blockade (ClinicalTrials.gov Identifier: NCT00670774). © 2014 Steunstichting ESOT.

  14. Activation of the Alternative Complement Pathway by Fungal Melanins

    PubMed Central

    Rosas, Á. L.; MacGill, R. S.; Nosanchuk, J. D.; Kozel, T. R.; Casadevall, A.

    2002-01-01

    Melanins are complex biological pigments formed by the oxidative polymerization of phenolic and/or indolic compounds. These pigments have been implicated in the pathogenesis of some microbial infections, malignancies, degenerative disorders, and autoimmune diseases. Recent studies have demonstrated that melanins have antigenic and anti-inflammatory properties. These findings led us to further explore the interaction of melanins with the immune system. Melanin particles (“ghosts”) were isolated from in vitro-melanized Cryptococcus neoformans cells and Aspergillus niger conidia and then incubated in normal human serum containing 125I-labeled complement C3. The results demonstrated deposition of C3 fragments onto the melanin ghosts as early as 1 min after incubation, with maximum deposition occurring after 12 min for C. neoformans-derived melanin ghosts and after 25 min for A. niger-derived melanin ghosts. The blocking of classical pathway activation did not affect the kinetics or total deposition of C3 onto the melanin ghosts, indicating that melanins activate complement through the alternative pathway. Immunofluorescence analysis of lungs from BALB/c mice injected intratracheally with C. neoformans-derived melanin ghosts demonstrated deposition of C3 fragments onto the ghosts. Small granulomas were also observed surrounding the ghosts. However, melanization of the C. neoformans cell wall did not alter the kinetics or total deposition of C3 fragments onto the fungal cells. The finding that melanin surfaces can activate the complement system suggests a potential mechanism for the pathogenesis of some degenerative and/or autoimmune processes that involve melanized cells as well as another potential role for melanin in the virulence of melanin-producing microorganisms. PMID:11777844

  15. Semisynthetic tRNA complement mediates in vitro protein synthesis.

    PubMed

    Cui, Zhenling; Stein, Viktor; Tnimov, Zakir; Mureev, Sergey; Alexandrov, Kirill

    2015-04-08

    Genetic code expansion is a key objective of synthetic biology and protein engineering. Most efforts in this direction are focused on reassigning termination or decoding quadruplet codons. While the redundancy of genetic code provides a large number of potentially reassignable codons, their utility is diminished by the inevitable interaction with cognate aminoacyl-tRNAs. To address this problem, we sought to establish an in vitro protein synthesis system with a simplified synthetic tRNA complement, thereby orthogonalizing some of the sense codons. This quantitative in vitro peptide synthesis assay allowed us to analyze the ability of synthetic tRNAs to decode all of 61 sense codons. We observed that, with the exception of isoacceptors for Asn, Glu, and Ile, the majority of 48 synthetic Escherichia coli tRNAs could support protein translation in the cell-free system. We purified to homogeneity functional Asn, Glu, and Ile tRNAs from the native E. coli tRNA mixture, and by combining them with synthetic tRNAs, we formulated a semisynthetic tRNA complement for all 20 amino acids. We further demonstrated that this tRNA complement could restore the protein translation activity of tRNA-depleted E. coli lysate to a level comparable to that of total native tRNA. To confirm that the developed system could efficiently synthesize long polypeptides, we expressed three different sequences coding for superfolder GFP. This novel semisynthetic translation system is a powerful tool for tRNA engineering and potentially enables the reassignment of at least 9 sense codons coding for Ser, Arg, Leu, Pro, Thr, and Gly.

  16. Complement activation associated with polysorbate 80 in beagle dogs.

    PubMed

    Qiu, Shidong; Liu, Zhaohua; Hou, Li; Li, Yuanyuan; Wang, Jiao; Wang, Hong; Du, Wu; Wang, Wenfang; Qin, Yizhuo; Liu, Zhaoping

    2013-01-01

    Polysorbate 80 (Tween® 80) is the most extensively used surfactant in parenteral drug formulation. Its application as an adjunct for intravenous drug administration is approved by the Food and Drug Administration. However, severe hypersensitive reactions, which are typical non-immune anaphylactic reactions (pseudoallergy) characterized by the release of histamine and unvaried IgE antibodies, have been associated with Tween® 80. In order to explore the non-immune anaphylactic mechanisms of Tween® 80, we performed in vivo experiments to assess the changes in physiological and hematologic indicators after intravenous injection of Tween® 80 into dogs. Tween® 80 induced the release of histamine, and a 2-fold increase in SC5b-9, 2.5-fold increase in C4d, 1.3-fold increase in Bb, while IgE remained unchanged. It also produced changes in pulmonary pressure, systemic pressure and ECG. In in vitro experiments, Tween® 80 was incubated with dog serum in the presence of an inhibitor of complement activation (EGTA/Mg(2+)). Under these conditions, Tween® 80 increased the contents of C4d and Bb. The results of this study reveal that Tween® 80 can cause cardiopulmonary distress in dogs and activate the complement system through classical and alternative pathways as indicated in both in vivo and in vitro preparations. Moreover, they demonstrate the utility of the beagle dog as an animal model for the study of complement activation-related pseudoallergy. These findings raise concerns with regard to the indiscriminate use of Tween® 80 in clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  18. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the...

  19. 21 CFR 866.5250 - Complement C2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  20. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  1. 21 CFR 866.5250 - Complement C 2 inhibitor (inactivator) immunological test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the reagents used to measure by immunochemical techniques the complement C1 inhibitor (a plasma protein) in serum. Complement C1 inhibitor occurs normally in plasma and blocks the action of the C1...

  2. Complement inhibiting properties of dragon's blood from Croton draco.

    PubMed

    Tsacheva, Ivanka; Rostan, Joerg; Iossifova, Tania; Vogler, Bernhard; Odjakova, Mariela; Navas, Hernan; Kostova, Ivanka; Kojouharova, Michaela; Kraus, Wolfgang

    2004-01-01

    The latex of Croton draco, its extracts and several latex components have been investigated for their influence on both classical (CP) and alternative (AP) activation pathways of the complement system using a hemolytic assay. The best inhibition was found for the classical pathway. The latex, ethyl acetate and ethyl ether extracts exhibited extremely high inhibition on the CP (94, 90 and 77%, respectively) at a concentration of 1 mg/ml. The flavonoid myricitrin, the alkaloid taspine and the cyclopeptides P1 and P2 showed high inhibition on CP (83, 91, 78 and 63%, respectively) at a concentration of 0.9 mM.

  3. Mouse embryos' fusion for the tetraploid complementation assay.

    PubMed

    Gertsenstein, Marina

    2015-01-01

    Production of the germline-competent chimeras using genetically modified ES cell lines is an essential step in the establishment of novel mouse models. In addition chimeras provide a powerful tool to study the cell lineage and to analyze complex phenotypes of mutant mice. Mouse chimeras with tetraploid embryos are used to rescue extraembryonic defects, to analyze an impact of gene function on specific lineage, to study the interaction between embryonic and extraembryonic tissues, and to produce mutant embryos and mice for the phenotype analysis. Tetraploid embryos are generated by the fusion of two blastomeres of the mouse embryo. The applications of tetraploid complementation assay and the protocol are described below.

  4. [Role of complement system in the pathogenesis of AMD].

    PubMed

    Machalińska, Anna; Karczewicz, Danuta

    2009-01-01

    Age related macular degeneration (AMD), is the leading cause of blindness in individuals over age 50 years old. The pathogenesis of AMD is still not well understood with both genetic and environmental factors known to influence susceptibility to this condition. Data accumulated in the last decade implicate the chronic inflammatory processes as playing an important role in the progression of AMD. According to the recent findings, complement system is suggested to be a triggering point of the initiation of pathologic inflammatory response in the development and clinical course of AMD.

  5. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    SciTech Connect

    Moulton, J.D.; Ascher, U.M.; Morel, J.E.

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  6. Quaternions, hexadecanions and the Schur complement in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mizrahi, Salomon S.; de Oliveira, Marcos C.

    2013-03-01

    We review the mathematical object invented by Sir William Rowan Hamilton, which he called quaternion, and we study its association with the matrix structure known as complement of Schur. We analyze the positivity of quaternions when represented by 2 × 2 matrices. We extend this very concept to the larger mathematical object, which generalizes the quaternion, the hexadecanion, which we shall define and use. We apply Schur's method to a quantum state that describes a beam of particles characterized by discrete degrees of freedom, the internal parity and the spin, as proposed by Lee and Yang (1956 Phys. Rev. 104 822).

  7. Eosinophil granule cationic proteins regulate the classical pathway of complement.

    PubMed Central

    Weiler, J M; Edens, R E; Bell, C S; Gleich, G J

    1995-01-01

    Major basic protein, the primary constituent of eosinophil granules, regulates the alternative and classical pathways of complement. Major basic protein and other eosinophil granule cationic proteins, which are important in mediating tissue damage in allergic disease, regulate the alternative pathway by interfering with C3b interaction with factor B to assemble an alternative pathway C3 convertase. In the present study, eosinophil peroxidase, eosinophil cationic protein and eosinophil-derived neurotoxin, as well as major basic protein, were examined for capacity to regulate the classical pathway. Eosinophil peroxidase, eosinophil cationic protein and major basic protein inhibited formation of cell-bound classical pathway C3 convertase (EAC1,4b,2a), causing 50% inhibition of complement-mediated lysis at about 0.19, 0.75 and 0.5 micrograms/10(7) cellular intermediates, respectively. Eosinophil-derived neurotoxin had no activity on this pathway of complement. The eosinophil granule proteins were examined for activity on the formation of the membrane attack complex. Major basic protein and eosinophil cationic protein had no activity on terminal lysis. In contrast, eosinophil peroxidase inhibited lysis of EAC1,4b,2a,3b,5b, but had only minimal activity on later events in complement lysis. These polycations were then examined to determine the site(s) at which they regulated the early classical pathway. Eosinophil granule polycationic proteins: (1) reduced the Zmax at all time points but had only minimal effect on the Tmax during the formation of the classical pathway C3 convertase (EAC1,4b,2a); (2) inhibited formation of EAC1,4b,2a proportional to C4 but independent of C2 concentration; (3) inhibited fluid phase formation of C1,4b,2a, as reflected by a decrease in C1-induced consumption of C2 over time; and (4) inhibited C1 activity over time without a direct effect on either C4 or C2. These observations suggest that polycations regulate the early classical pathway by

  8. Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003

    PubMed Central

    Valenzuela, Nicole M.; Thomas, Kimberly A.; Mulder, Arend; Parry, Graham C.; Panicker, Sandip; Reed, Elaine F.

    2017-01-01

    Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. PMID:28640789

  9. A Gammaherpesvirus Complement Regulatory Protein Promotes Initiation of Infection by Activation of Protein Kinase Akt/PKB

    PubMed Central

    Steer, Beatrix; Adler, Barbara; Jonjic, Stipan; Stewart, James P.; Adler, Heiko

    2010-01-01

    Background Viruses have evolved to evade the host's complement system. The open reading frames 4 (ORF4) of gammaherpesviruses encode homologs of regulators of complement activation (RCA) proteins, which inhibit complement activation at the level of C3 and C4 deposition. Besides complement regulation, these proteins are involved in heparan sulfate and glycosaminoglycan binding, and in case of MHV-68, also in viral DNA synthesis in macrophages. Methodology/Principal Findings Here, we made use of MHV-68 to study the role of ORF4 during infection of fibroblasts. While attachment and penetration of virions lacking the RCA protein were not affected, we observed a delayed delivery of the viral genome to the nucleus of infected cells. Analysis of the phosphorylation status of a variety of kinases revealed a significant reduction in phosphorylation of the protein kinase Akt in cells infected with ORF4 mutant virus, when compared to cells infected with wt virus. Consistent with a role of Akt activation in initial stages of infection, inhibition of Akt signaling in wt virus infected cells resulted in a phenotype resembling the phenotype of the ORF4 mutant virus, and activation of Akt by addition of insulin partially reversed the phenotype of the ORF4 mutant virus. Importantly, the homologous ORF4 of KSHV was able to rescue the phenotype of the MHV-68 ORF4 mutant, indicating that ORF4 is functionally conserved and that ORF4 of KSHV might have a similar function in infection initiation. Conclusions/Significance In summary, our studies demonstrate that ORF4 contributes to efficient infection by activation of the protein kinase Akt and thus reveal a novel function of a gammaherpesvirus RCA protein. PMID:20657771

  10. Mutants deleted in the agnogene of simian virus 40 define a new complementation group.

    PubMed Central

    Mertz, J E; Murphy, A; Barkan, A

    1983-01-01

    Analysis of the DNA sequence of the late leader region of simian virus 40 indicates that it might encode a 61-amino acid, highly basic protein, LP-1. Mutants deleted in this region are viable, but they produce infectious progeny more slowly than wild-type virus in established monkey cells. On the basis of the rates of appearance and the sizes of mixed plaques formed after cotransfections with pairs of mutants, we found that mutants defective in the synthesis of LP-1 complementation was also observed in infections with virions and was bidirectional. Therefore, these mutants define a new complementation group, group G. In addition, a protein of the appropriate molecular weight for LP-1 (approximately 8 X 10(3) ) was synthesized by wild-type virus-infected cells but not by mock-infected or group G gene mutant-infected cells. This protein, whose identity has been established definitively by Jay et al. (Nature (London) 291:346-349, 1981), was synthesized at a high rate at late times after infection, was present predominantly in the cytoplasmic fraction of cells, possessed a fairly short half-life, and was absent from mature virions. Once formed, virions of group G gene mutants behaved biologically and physically like virions of wild-type virus. On the basis of these findings and other known properties of LP-1 and mutants defective in LP-1 synthesis, we hypothesize that LP-1 functions to facilitate virion assembly, possibly by serving as a nonreusable scaffolding protein. Images PMID:6296443

  11. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    PubMed

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m(2) was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  12. Molecular heterogeneity in deficiency of complement protein C2 type I.

    PubMed Central

    Wang, X; Circolo, A; Lokki, M L; Shackelford, P G; Wetsel, R A; Colten, H R

    1998-01-01

    Deficiency of the complement protein C2 (C2D), one of the most common genetic deficiencies of the complement system, is associated with rheumatological disorders and increased susceptibility to infection. Two types of C2D have been recognized, each in the context of specific major histocompatibility complex (MHC) haplotypes; type I, a deletion, frameshift and premature stop codon resulting in absence of detectable C2 protein synthesis, and type II, missense mutations resulting in a block in secretion of C2 proteins. Analysis of C2 expression in a child with C2 deficiency, a MHC haplotype different from those associated with type I or II C2D, and recurrent infections revealed additional molecular heterogeneity among C2 deficient patients. No detectable C2 protein was synthesized in the child's fibroblasts under conditions supporting C2 synthesis and secretion in normals and the child's C2 mRNA was reduced to 42% of normal. Nucleotide sequencing of RT-PCR fibroblast mRNA and genomic DNA revealed a type I C2 deficiency (28 base-pair deletion) on one allele and a previously unrecognized two base-pair deletion in exon 2 on the other. Expression of the closely linked factor B gene was markedly decreased (Bf mRNA 25% of normal), though Bf was up-regulated appropriately by interferon-gamma and the flanking sequence containing the Bf promoter was normal in this C2-deficient patient. Moreover, the concentration of Bf protein was normal in the patient's plasma. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:9616367

  13. DNA Nanotechnology

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masateru; Kawai, Tomoji

    2002-11-01

    DNA is one candidate of promising molecules for molecular electronic devices, since it has the double helix structure with pi-electron bases for electron transport, the address at 0.4 nm intervals, and the self-assembly. Electrical conductivity and nanostructure of DNA and modified DNA molecules are investigated in order to research the application of DNA in nanoelectronic devices. It has been revealed that DNA is a wide-gap semiconductor in the absence of doping. The conductivity of DNA has been controlled by chemical doping, electric field doping, and photo-doping. It has found that Poly(dG)[middle dot]Poly(dC) has the best conductivity and can function as a conducting nanowire. The pattern of DNA network is controlled by changing the concentration of the DNA solution.

  14. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  15. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  16. Is complement good, bad, or both? New functions of the complement factors associated with inflammation mechanisms in the central nervous system.

    PubMed

    Tahtouh, Muriel; Croq, Françoise; Lefebvre, Christophe; Pestel, Joël

    2009-09-01

    The complement system is well known as an enzyme cascade that helps to defend against infections. Indeed, this ancestral system bridges innate and adaptive immunity. Its implication in diseases of the central nervous system (CNS), has led to an increased number of studies. Complement activation in the CNS has been generally considered to contribute to tissue damage. However, recent studies suggest that complement may be neuroprotective, and can participate in maintenance and repair of the adult brain. Here, we will review this dual role of complement proteins and some of their functional interactions with part of the chemokine and cytokine network associated with the protection of CNS integrity.

  17. The Emerging Role of Complement Lectin Pathway in Trypanosomatids: Molecular Bases in Activation, Genetic Deficiencies, Susceptibility to Infection, and Complement System-Based Therapeutics

    PubMed Central

    Evans-Osses, Ingrid; de Messias-Reason, Iara; Ramirez, Marcel I.

    2013-01-01

    The innate immune system is evolutionary and ancient and is the pivotal line of the host defense system to protect against invading pathogens and abnormal self-derived components. Cellular and molecular components are involved in recognition and effector mechanisms for a successful innate immune response. The complement lectin pathway (CLP) was discovered in 1990. These new components at the complement world are very efficient. Mannan-binding lectin (MBL) and ficolin not only recognize many molecular patterns of pathogens rapidly to activate complement but also display several strategies to evade innate immunity. Many studies have shown a relation between the deficit of complement factors and susceptibility to infection. The recently discovered CLP was shown to be important in host defense against protozoan microbes. Although the recognition of pathogen-associated molecular patterns by MBL and Ficolins reveal efficient complement activations, an increase in deficiency of complement factors and diversity of parasite strategies of immune evasion demonstrate the unsuccessful effort to control the infection. In the present paper, we will discuss basic aspects of complement activation, the structure of the lectin pathway components, genetic deficiency of complement factors, and new therapeutic opportunities to target the complement system to control infection. PMID:23533355

  18. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    PubMed Central

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  19. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    PubMed

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  20. The PYR1 gene of the plant pathogenic fungus Colletotrichum graminicola: selection by intraspecific complementation and sequence analysis.

    PubMed

    Rasmussen, J B; Panaccione, D G; Fang, G C; Hanau, R M

    1992-10-01

    A spontaneous uridine-requiring auxotroph of Colletotrichum graminicola was recovered by selection for resistance to 5-fluoro-orotic acid. The auxotroph lacked orotate phosphoribosyl transferase (OPRTase) and was complemented with a clone from a cosmid library of C. graminicola DNA. A 3.1 kb HindIII-SalI fragment was subcloned from the cosmid and it could efficiently transform the auxotrophic strain to uridine prototrophy and integrate by site-specific recombination. This DNA fragment contains an open reading frame that is similar to OPRTase genes of the fungi Sordaria macrospora, Trichoderma reesei, Podospora anserina, and Saccharomyces cerevisiae. Based on the sequence similarities and the ability to restore uridine prototrophy, we conclude that the fragment contains the C. graminicola gene for OPRTase, which we have named PYR1. Our results demonstrate that cloning by complementation is feasible in C. graminicola, that the gene for OPRTase from C. graminicola can be useful as a selectable marker in transformation of the fungus, and that the OPRTase gene product is similar to OPRTase from other fungi.