Science.gov

Sample records for dnapl mass removal

  1. Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.

    PubMed

    Johnston, C D; Davis, G B; Bastow, T P; Woodbury, R J; Rao, P S C; Annable, M D; Rhodes, S

    2014-08-01

    Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions

  2. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  3. Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones.

    PubMed

    Suchomel, Eric J; Pennell, Kurt D

    2006-10-01

    Although in situ remediation technologies have been used to aggressively treat dense nonaqueous phase liquid (DNAPL) source zones, complete contaminant removal or destruction is rarely achieved. To evaluate the effects of partial source zone mass removal on dissolved-phase contaminant flux, four experiments were conducted in a two-dimensional aquifer cell that contained a tetrachloroethene (PCE) source zone and down-gradient plume region. Initial source zone PCE saturation distributions, quantified using a light transmission system, were expressed in terms of a ganglia-to-pool ratio (GTP), which ranged from 0.16 (13.8% ganglia) to 1.6 (61.5% ganglia). The cells were flushed sequentially with a 4% (wt.) Tween 80 surfactant solution to achieve incremental PCE mass removal, followed by water flooding until steady-state mass discharge and plume concentrations were established. In all cases, the GTP ratio decreased with increasing mass removal, consistent with the observed preferential dissolution of PCE ganglia and persistence of high-saturation pools. In the ganglia-dominated system (GTP = 1.6), greater than 70% mass removal was required before measurable reductions in plume concentrations and mass discharge were observed. For pool-dominated source zones (GTP < 0.3), substantial reductions (>50%) in mass discharge were realized after only 50% mass removal.

  4. A framework for assessing risk reduction due to DNAPL mass removal from low permeability soils

    SciTech Connect

    Freeze, R.A.; McWhorter, D.B.

    1996-08-01

    Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a framework for quantifying the degree to which risk is reduced as mass is removed from shallow, saturated, low-permeability, dual-porosity, DNAPL source zones. Risk is defined in terms of meeting an alternate concentration level (ACL) at a compliance well in an aquifer underlying the source zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downstream water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phases (dissolved, sorbed, free product). Due to the uncertainties in currently-available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making risk-reduction calculations for specific technologies. Despite the qualitative nature of the exercise, results imply that very high mass-removal efficiencies are required to achieve significant long-term risk reduction with technology, applications of finite duration. 17 refs., 7 figs., 6 tabs.

  5. Coupling Aggressive Mass Removal with Microbial Reductive Dechlorination for Remediation of DNAPL Source Zones: A Review and Assessment

    PubMed Central

    Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.

    2005-01-01

    The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838

  6. Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: a review and assessment.

    PubMed

    Christ, John A; Ramsburg, C Andrew; Abriola, Linda M; Pennell, Kurt D; Löffler, Frank E

    2005-04-01

    The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical-chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical-chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical-chemical source-zone treatment is coupled with reductive dechlorination.

  7. DNAPL mass transfer and permeability reduction during in situ chemical oxidation with permanganate

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-03-01

    This study utilized a series of laboratory experiments to examine the DNAPL mass removal rate and permeability reduction during ISCO using permanganate (MnO4-). Results show that MnO4- oxidation is effective in removing residual DNAPL from a porous medium. The DNAPL mass removal rate correlated positively with both the hydraulic stress and the oxidant load. A power relationship model of DNAPL mass removal under ISCO was proposed. Results also show that oxidation by-products CO2(g) and Mn oxide can cause pore plugging and flow by-passing. The reduction in hydraulic conductivity due to the Mn oxide precipitates was quantified. Hydraulic conductivity reduction as high as 80% was observed for oxidizing a small quantity of TCE.

  8. Predicting DNAPL mass discharge from pool-dominated source zones.

    PubMed

    Christ, John A; Ramsburg, C Andrew; Pennell, Kurt D; Abriola, Linda M

    2010-05-20

    Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery. PMID:20227132

  9. IMPACTS OF DNAPL MASS DEPLETION ON SOURCE STRENGTH

    EPA Science Inventory

    Implementation of remediation technologies at DNAPL contaminated sites has shown that large quantities of contaminants can be removed or degraded using in-situ heating, flushing or oxidation. The rate and magnitude of DNAPL removal is dependent upon site-specific and technology-...

  10. IMPACT OF DNAPL SOURCE TREATMENT ON CONTAMINANT MASS FLUX

    EPA Science Inventory

    Implementation of remediation technologies at DNAPL contaminated sites has shown that large quantities of contaminants can be removed or degraded using in-situ heating, flushing or oxidation. The rate and magnitude of DNAPL removal is dependent upon site-specific and technology-...

  11. Composition Dependent Evolution in Mass Flux from Binary Trichloroethene/Tetrachloroethene-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Walker, D. I.; Cápiro, N. L.; Granbery, E. K.; Pennell, K. D.

    2010-12-01

    In order to accurately predict the efficacy of subsurface remediation for sites contaminated with multicomponent dense non-aqueous phase liquids (DNAPLs), it is necessary to link changes in aqueous phase contaminant discharge with source composition and distribution. Dissolution from a binary 1:1 (molar) mixture of trichloroethene- (TCE) and tetrachloroethene- (PCE) DNAPL was measured in three separate 2-dimensional aquifer cells (100 x 48 x 1.4 cm) that were packed with different background media (1:1 mixture 20:30 and 40:50 mesh; 20:30 mesh and 40:50 mesh Accusand) and low permeability zones. Initial DNAPL source zone architectures were varied to yield ganglia to pool (GTP) ratios of 0.44, 1.56, and 1.72. Down-gradient plume evolution and DNAPL spatial distribution were measured every 5 pore volumes (PV) from side port samples and a light transmission system that allowed non-invasive measurement of volumetric DNAPL saturation and source descriptive metrics at a resolution of 0.03 to 0.08 mm2. Flux-averaged PCE and TCE effluent concentrations were measured every 0.7 PVs from a fully screened effluent chamber. To accelerate changes in source zone architecture and overall mass removal, two surfactant floods (4% w/w Tween 80) were completed after mass discharge from the source zone reached a steady state. Mass flux reductions for a given amount of DNAPL mass removed were found to correspond strongly to the molar composition of DNAPL in the source zone and the initial DNAPL saturation distribution metric (e.g., GTP). Percent reductions in mass flux from the aquifer cells with ganglia dominated architectures were 98 and 72% for TCE and PCE respectively, with a final overall NAPL source zone molar ratio of 0.49:0.51 TCE: PCE ; and 97 and 79% for TCE and PCE with molar ratios of 0.19:0.81 TCE:PCE. Reductions in mass flux from the pool dominated source zone were 90 and 53% for TCE and PCE with a final overall DNAPL source zone mole fraction of 0.26:0.74 TCE:PCE. These

  12. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.

    PubMed

    Page, John W E; Soga, Kenichi; Illangasekare, Tissa

    2007-12-01

    Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations. PMID:17706832

  13. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation.

    PubMed

    Page, John W E; Soga, Kenichi; Illangasekare, Tissa

    2007-12-01

    Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.

  14. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates.

    PubMed

    Li, X David; Schwartz, Franklin W

    2004-02-01

    In situ chemical oxidation (ISCO) schemes using MnO4- have been effective in destroying chlorinated organic solvents dissolved in ground water. Laboratory experiments and field pilot tests reveal that the precipitation of Mn oxide, one of the reaction products, causes a reduction of permeability, which can lead to flow bypassing and inefficiency of the scheme. Without a solution to this problem of plugging, it is difficult to remove DNAPL from the subsurface completely. In a companion paper, we showed with batch experiments that Mn oxide can be dissolved rapidly with certain organic acids. This study utilizes 2-D flow-tank experiments to examine the possibility of nearly complete DNAPL removal by ISCO with MnO4-, when organic acids are used to remove Mn oxide. The experiments were conducted in a small 2-D glass flow tank containing a lenticular silica-sand medium. Blue-dyed trichloroethylene (TCE) provided residual, the perched and pooled DNAPL. KMnO4 at 200 mg/l was flushed through the DNAPL horizontally. Once plugging reduced permeability and prevented further delivery of the oxidant, citric or oxalic acids were pumped into the flow tank to dissolve the Mn oxide precipitates. Organic ligands removed the Mn oxide precipitates relatively quickly, and permitted another cycle of MnO4- flooding. Cycles of MnO4-/acid flooding continued until all of the visible DNAPL was removed. The experiments were monitored with chemical analysis and visualization. A mass-balance calculation indicated that by the end of the experiments, all the DNAPL was removed. The results show also how heterogeneity adds complexity to initial redistribution of DNAPL, and to the efficiency of the chemical flooding. PMID:14734249

  15. DNAPL remediation with in situ chemical oxidation using potassium permanganate - II. Increasing removal efficiency by dissolving Mn oxide precipitates

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-02-01

    In situ chemical oxidation (ISCO) schemes using MnO 4- have been effective in destroying chlorinated organic solvents dissolved in ground water. Laboratory experiments and field pilot tests reveal that the precipitation of Mn oxide, one of the reaction products, causes a reduction of permeability, which can lead to flow bypassing and inefficiency of the scheme. Without a solution to this problem of plugging, it is difficult to remove DNAPL from the subsurface completely. In a companion paper, we showed with batch experiments that Mn oxide can be dissolved rapidly with certain organic acids. This study utilizes 2-D flow-tank experiments to examine the possibility of nearly complete DNAPL removal by ISCO with MnO 4-, when organic acids are used to remove Mn oxide. The experiments were conducted in a small 2-D glass flow tank containing a lenticular silica-sand medium. Blue-dyed trichloroethylene (TCE) provided residual, the perched and pooled DNAPL. KMnO 4 at 200 mg/l was flushed through the DNAPL horizontally. Once plugging reduced permeability and prevented further delivery of the oxidant, citric or oxalic acids were pumped into the flow tank to dissolve the Mn oxide precipitates. Organic ligands removed the Mn oxide precipitates relatively quickly, and permitted another cycle of MnO 4- flooding. Cycles of MnO 4-/acid flooding continued until all of the visible DNAPL was removed. The experiments were monitored with chemical analysis and visualization. A mass-balance calculation indicated that by the end of the experiments, all the DNAPL was removed. The results show also how heterogeneity adds complexity to initial redistribution of DNAPL, and to the efficiency of the chemical flooding.

  16. Timescales of DNAPL migration

    NASA Astrophysics Data System (ADS)

    Kueper, B.; Gerhard, J.; Reynolds, D.

    2003-04-01

    Dense, non-aqueous phase liquids such as chlorinated solvents, PCB oils, creosote, and coal tar are common soil and groundwater contaminants at sites throughout the world. Current source zone remediation approaches typically assume that the residual and pooled DNAPL of interest is no longer migrating. The motivation for partial mass removal from a DNAPL source zone varies from site to site, but is often motivated by the belief that mass removal will lead to shorter steady-state plumes, shorter longevity of the source zone, and possibly aquifer restoration in a reasonable period of time. This talk addresses the issue of DNAPL migration timescales, and illustrates that certain types of DNAPL in certain geological environments are likely still migrating at some sites. The implication of this is that remedial strategies may need to be aimed at source zone stabilization in the short term, not partial mass removal for the reasons outlined above. The timescales of DNAPL migration at a site are influenced by many factors, including fluid properties, capillary properties, relative permeability characteristics, boundary conditions, and the volume and nature of release. Accurate prediction of DNAPL migration timescales requires a model that properly accounts for both the entry and terminal pressures in the capillary pressure -- saturation constitutive relationship, and properly accounts for relative permeability characteristics. This talk will address the above issues, and will present the results of laboratory experiments and numerical simulations to illustrate the timescale of DNAPL migration in a variety of environments including fractured rock, fractured clay, and unconsolidated porous media.

  17. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer.

    PubMed

    Maji, R; Sudicky, E A

    2008-11-14

    The transfer of contaminant mass between the nonaqueous- and aqueous-phases is a process of central importance for the remediation of sites contaminated by dense nonaqueous-phase liquids (DNAPLs). This paper describes a comparison of the results obtained with various alternative DNAPL-aqueous-phase mass transfer models contained in the literature for predicting DNAPL source-zone depletion times in groundwater systems. These dissolution models were largely developed through laboratory column experiments. To gain insight into the implications of various representations of the local-scale kinetic as well as equilibrium DNAPL dissolution processes, aquifer heterogeneity and the complex architecture of a DNAPL source-zone, the aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are analyzed in a conditional stochastic framework. The hydrogeologic setting is a heterogeneous fluvial aquifer in Southwest Germany, referred to as the aquifer analog dataset, that was intensively characterized in three dimensions for hydrogeological parameters that include permeability, effective porosity, grain size, mineralogy and sorption coefficients. By embedding the various dissolution models into the compositional, multiphase flow model, CompFlow, the relative times predicted for complete depletion of a released DNAPL source due to natural dissolution are explored. Issues related to achieving environmental benefits through, for example, partial DNAPL-zone source removal via enhanced remedial technologies are also discussed. In this context, performance metrics in the form of peak aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are compared to each other. This is done for each of the alternative mass transfer models. A significant reduction in the fractional flux at a downstream location from the DNAPL source can be achieved by partial source-zone mass reduction; however, peak

  18. FIELD AND LABORATORY EVALUATION OF DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    The basic goal of DNAPL source treatment is to reduce health and environmental risks posed by the DNAPL contamination. Removing a sufficient mass of DNAPL to achieve concentration-based regulatory goals is difficult because of site hydrogeologic heterogeneity and uncertainties ab...

  19. Surfactant foam technology for in situ removal of heavy chlorinated compounds-DNAPLs.

    PubMed

    Maire, Julien; Coyer, Amandine; Fatin-Rouge, Nicolas

    2015-12-15

    The use of surfactant foam for the remediation of a saturated soil contaminated with a dense non-aqueous phase liquid (DNAPL) was investigated at bench-scale. Despite the presence of the DNAPL, high foam stability was obtained for a mixture of cocamidopropyl betaïne and dodecylsulfate at 0.05%. Foams were assessed in different injection conditions and were compared to commonly used remediation methods. Strong foams improved significantly the DNAPL recovery yield, which amounted up to 98%, owing to the propagation of a flat foam front, with low dissolution (<0.5 g l(-1)) and surfactant consumption (<10 g kg(-1) DNAPL recovered). The effects of important parameters (gas to liquid ratio, injection velocity, gas nature) and methods for foam production on pressure gradient (∇P), remediation efficiency and surfactant consumption were investigated. Even for low injection velocities (4×10(-4) ms(-1)), capillary numbers were high enough (∼8×10(-3)) to push the DNAPL efficiently. DNAPL lowered ∇P for foam propagation because of its destabilising effect. The use of CO2 as gas reduced the ∇Ps for foam propagation by 35%. ∇P were also decreased by 25% for gas to liquid ratios lower than 75%, whereas, DNAPL removal remained high. This technology should lower spreading risks and treatment costs.

  20. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification.

    PubMed

    Wang, Qiliang; Jeong, Seung-Woo; Choi, Heechul

    2012-04-30

    Direct trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) removal inside pore areas using nanoscale zerovalent iron (NZVI) and bimetallic nanoparticles were first investigated in a water-saturated porous glass micromodel. Effects of nitrate, aqueous ethanol co-solvent, humic substance, and elapsed time on TCE DNAPL removal using NZVI were studied by direct visualization. The removal efficiency was then quantified by directly measuring the remaining TCE DNAPL blobs area using an image analyzer. As ethanol content of co-solvent increased, TCE DNAPL removal by NZVI was also increased implying sequential TCE DNAPL removal mechanisms: as dissolved TCE was degraded by NZVI, TCE dissolution from TCE blobs would be then facilitated and the TCE blob areas would be eventually reduced. The presence of nitrate and humic substance hindered the NZVI reactivity for the TCE DNAPL removal. In contrast, the TCE DNAPL removal efficiency was enhanced using bimetallic nanoparticles in a short-term reaction by generating atomic hydrogen for catalytic hydro-dechlorination. However, all TCE DNAPL removal efficiencies reached the same level after long-term reaction using both NZVI and bimetallic nanoparticles. Direct TCE DNAPL observation clearly implied that TCE blobs existed for long time even though all TCE blobs were fully exposed to NZVI and bimetallic nanoparticles.

  1. Experimental study of the effects of DNAPL distribution on mass rebound.

    PubMed

    Wilking, Bart T; Rodriguez, Derrick R; Illangasekare, Tissa H

    2013-03-01

    The release of stored dissolved contaminants from low permeability zones contributes to plume persistence beyond the time when dense nonaqueous phase liquid (DNAPL) has completely dissolved. This is fundamental to successfully meeting acceptable low concentrations in groundwater that are driven by site-specific cleanup goals. The study goals were to assess the role of DNAPL entrapment morphology on mass storage and plume longevity. As controlled field studies are not feasible, two-dimensional (2D) test tanks were used to quantify the significance of mass loading processes from source dissolution and stored mass rebound. A simple two-layer soil domain representing a high permeable formation sand overlying a zone of lower permeability sand was used in the tests. DNAPL mass depletion through dissolution was monitored via X-ray photon attenuation, and effluent samples were used to monitor the plume. These data enabled analysis of the DNAPL distribution, the dissolved plume, and the dissolved phase distribution within the low permeability layer. Tests in an intermediate tank showed that mass storage contributes substantially to plume longevity. Detectable effluent concentrations persisted long after DNAPL depletion. The small tank results indicated that the DNAPL morphology influenced the flow field and caused distinctive transport mechanisms contributing to mass storage. Zones of high DNAPL saturation at the interface between the low and high permeability layers exhibited flow bypassing and diffusion dominated transport into the low permeability layer. In the absence of a highly saturated DNAPL zone near the soil interface the contaminant penetrated deeper into the low permeability layer caused by a combination of advection and diffusion.

  2. SERDP AND NRMRL SPONSOR FIELD TEST OF COSOLVENT-ENHANCED DNAPL REMOVAL

    EPA Science Inventory

    A field test of multicomponent cosolvent flooding for in-situ remediation of DNAPL source zones was conducted at the Dover National Test Site (DNTS) at Dover Air Force Base, Delaware, in July, 2001. The test was part of an Enhanced Source Removal (ESR) demonstration project fund...

  3. The use of mass depletion-mass flux reduction relationships during pumping to determine source zone mass of a reactive brominated-solvent DNAPL.

    PubMed

    Johnston, C D; Davis, G B; Bastow, T P; Annable, M D; Trefry, M G; Furness, A; Geste, Y; Woodbury, R J; Rao, P S C; Rhodes, S

    2013-01-01

    Mass depletion-mass flux relationships usually applied to a groundwater plume were established at field scale for groundwater pumped from within the source zone of a dense non-aqueous phase liquid (DNAPL). These were used as part of multiple lines of evidence in establishing the DNAPL source mass and architecture. Simplified source mass-dissolved concentration models including those described by exponential, power, and error functions as well as a rational mass equation based on the equilibrium stream tube approach were fitted to data from 285 days of source zone pumping (SZP) from a single well which removed 152 kg of dissolved organics from a multi-component, reactive brominated solvent DNAPL. The total molar concentration of the source compound, tetrabromoethane and its daughter products was used as a single measure of contaminant concentration to relate to source mass. A partitioning inter-well tracer test (PITT) conducted prior to the SZP provided estimates of groundwater travel times, enabling parameterisation of the models. After accounting for capture of the down-gradient dissolved plume, all models provided a good fit to the observed data. It was shown that differentiation between models would only emerge after appreciably more pumping from the source zone. The model fits were not particularly sensitive to the exponent parameters and variance of groundwater travel time. In addition, the multi-component nature of the DNAPL did not seem to affect the utility of the models for the period examined. Estimates of the DNAPL mass prior to the start of SZP from the models were greatest where the log of the variance of travel time was used explicitly in the source depletion models (mean 295kg) compared to where the associated power exponent and variance was fitted freely (mean 258 kg). The estimates of source mass were close to that of 220kg determined from the PITT. In addition to the PITT, multi-level groundwater sampling from within the source zone provided

  4. EVALUATIONS OF DNAPL REMEDIAL PERFORMANCE BASED ON FIELD MEASUREMENTS OF CONTAMINANT FLUX

    EPA Science Inventory

    Under a concentration-based regulatory framework, the benefits of conducting dense nonaqueous phase liquid (DNAPL) source-zone remediation are questionable because of the impracticality of complete DNAPL elimination at most sites. Removing a sufficient mass of DNAPL to achieve c...

  5. Density-surfactant-motivated removal of DNAPL trapped in dead-end fractures

    NASA Astrophysics Data System (ADS)

    Yeo, In Wook; Ji, Sung-Hoon; Lee, Kang-Kun

    2003-05-01

    Three kinds of experiments were conducted to test existing methods and develop an effective methodology for the remediation of DNAPL trapped in vertical dead-end fractures. A water-flushing method failed to remove TCE from vertical dead-end fractures where no fluid flow occurs. A water-flushing experiment implies that existing remediation methods, utilizing water-based remedial fluid such as surfactant-enhanced method, have difficulty in removing DNAPL trapped from the vertical downward dead-end fractures, because of no water flow through dead-end fractures, capillary, and gravity forces. Fluid denser than TCE was injected into the fracture network, but did not displace TCE from the vertical dead-end fractures. Based on the analysis of the experiments, the increase in the density of the dense fluid and the addition of surfactant to the dense fluid were suggested, and this composite dense fluid with surfactant effectively removed TCE from the vertical dead-end fractures.

  6. Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction.

    PubMed

    Hofstee, C; Gutiérrez Ziegler, C; Trötschler, O; Braun, J

    2003-12-01

    top of the fine sand was close to that of the pure DNAPL. In the coarser sand, the pressure gradients were sufficient to prevent downward migration of the DNAPL, but upward mobilization was minimal. The predominant removal mechanism in this case was the much slower solubilization.

  7. ANALYTICAL ASSESSMENT OF THE IMPACTS OF PARTIAL MASS DEPLETION IN DNAPL SOURCE ZONES (SAN FRANCISCO, CA)

    EPA Science Inventory

    Analytical solutions describing the time-dependent DNAPL source-zone mass and contaminant discharge rate are used as a flux-boundary condition in a semi-analytical contaminant transport model. These analytical solutions assume a power relationship between the flow-averaged sourc...

  8. Changes in contaminant mass discharge from DNAPL source mass depletion: evaluation at two field sites.

    PubMed

    Brooks, Michael C; Wood, A Lynn; Annable, Michael D; Hatfield, Kirk; Cho, Jaehyun; Holbert, Charles; Rao, P Suresh C; Enfield, Carl G; Lynch, Kira; Smith, Richard E

    2008-11-14

    Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, Washington. Passive Flux Meters (PFM) and a variation of the Integral Pumping Test (IPT) were used to measure fluxes in ten wells installed along a transect down-gradient of the trichloroethylene (TCE) source zone, and perpendicular to the mean groundwater flow direction. At both sites, groundwater and contaminant fluxes were measured before and after the source-zone treatment. The measured contaminant fluxes (J; ML(-2)T(-1)) were integrated across the well transect to estimate contaminant mass discharge (M(D); MT(-1)) from the source zone. Estimated M(D) before source treatment, based on both PFM and IPT methods, were approximately 76 g/day for TCE at the Hill AFB site; and approximately 640 g/day for TCE, and approximately 206 g/day for cis-dichloroethylene (DCE) at the Ft. Lewis site. TCE flux measurements made 1 year after source treatment at the Hill AFB site decreased to approximately 5 g/day. On the other hand, increased fluxes of DCE, a degradation byproduct of TCE, in tests subsequent to remediation at the Hill AFB site suggest enhanced microbial degradation after surfactant flooding. At the Ft. Lewis site, TCE mass discharge rates subsequent to remediation decreased to approximately 3 g/day for TCE and approximately 3 g/day for DCE approximately 1.8 years after remediation. At both field sites, PFM and IPT approaches provided comparable results for contaminant mass discharge rates, and show significant reductions (>90%) in TCE mass discharge as a result of DNAPL mass depletion from the source zone.

  9. CONTAMINANT FLUX RESPONSES TO THERMAL TREATMENT OF DNAPL SOURCE ZONES (ABSTRACT ONLY)

    EPA Science Inventory

    Contaminant flux is being proposed as a metric to help elucidate the benefits of DNAPL source-zone remedial efforts. While it is clear that aggressive remediation technologies can rapidly remove DNAPL mass, experience has shown that complete removal is often not practicable. H...

  10. Evaluating time-lapse ERT for monitoring DNAPL remediation via numerical simulation

    NASA Astrophysics Data System (ADS)

    Power, C.; Karaoulis, M.; Gerhard, J.; Tsourlos, P.; Giannopoulos, A.

    2012-12-01

    Dense non-aqueous phase liquids (DNAPLs) remain a challenging geoenvironmental problem in the near subsurface. Numerous thermal, chemical, and biological treatment methods are being applied at sites but without a non-destructive, rapid technique to map the evolution of DNAPL mass in space and time, the degree of remedial success is difficult to quantify. Electrical resistivity tomography (ERT) has long been presented as highly promising in this context but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites where the initial condition (DNAPL mass, DNAPL distribution, subsurface heterogeneity) is typically unknown. Recently, a new numerical model was presented that couples DNAPL and ERT simulation at the field scale, providing a tool for optimizing ERT application and interpretation at DNAPL sites (Power et al., 2011, Fall AGU, H31D-1191). The objective of this study is to employ this tool to evaluate the effectiveness of time-lapse ERT to monitor DNAPL source zone remediation, taking advantage of new inversion methodologies that exploit the differences in the target over time. Several three-dimensional releases of chlorinated solvent DNAPLs into heterogeneous clayey sand at the field scale were generated, varying in the depth and complexity of the source zone (target). Over time, dissolution of the DNAPL in groundwater was simulated with simultaneous mapping via periodic ERT surveys. Both surface and borehole ERT surveys were conducted for comparison purposes. The latest four-dimensional ERT inversion algorithms were employed to generate time-lapse isosurfaces of the DNAPL source zone for all cases. This methodology provided a qualitative assessment of the ability of ERT to track DNAPL mass removal for complex source zones in realistically heterogeneous environments. In addition, it provided a quantitative comparison between the actual DNAPL mass removed and that interpreted by ERT as a function of depth below

  11. MEASUREMENTS OF CAPILLARY PRESSURE-SATURATION RELATIONSHIPS AND DNAPL DISTRIBUTION IN SILICA SANDS USING LIGHT TRANSMISSION VISUALIZATION

    EPA Science Inventory

    This study is a part of an ongoing research project that aims at assessing the environmental benefits of partial DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL (modeled by PCE) architecture, mass removal and cont...

  12. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.

    PubMed

    Fagerlund, F; Illangasekare, T H; Phenrat, T; Kim, H-J; Lowry, G V

    2012-04-01

    While the capability of nanoscale zero-valent iron (NZVI) to dechlorinate organic compounds in aqueous solutions has been demonstrated, the ability of NZVI to remove dense non-aqueous phase liquid (DNAPL) from source zones under flow-through conditions similar to a field scale application has not yet been thoroughly investigated. To gain insight on simultaneous DNAPL dissolution and NZVI-mediated dechlorination reactions after direct placement of NZVI into a DNAPL source zone, a combined experimental and modeling study was performed. First, a DNAPL tetrachloroethene (PCE) source zone with emplaced NZVI was built inside a small custom-made flow cell and the effluent PCE and dechlorination byproducts were monitored over time. Second, a model for rate-limited DNAPL dissolution and NZVI-mediated dechlorination of PCE to its three main reaction byproducts with a possibility for partitioning of these byproducts back into the DNAPL was formulated. The coupled processes occurring in the flow cell were simulated and analyzed using a detailed three-dimensional numerical model. It was found that subsurface emplacement of NZVI did not markedly accelerate DNAPL dissolution or the DNAPL mass-depletion rate, when NZVI at a particle concentration of 10g/L was directly emplaced in the DNAPL source zone. To react with NZVI the DNAPL PCE must first dissolve into the groundwater and the rate of dissolution controls the longevity of the DNAPL source. The modeling study further indicated that faster reacting particles would decrease aqueous contaminant concentrations but there is a limit to how much the mass removal rate can be increased by increasing the dechlorination reaction rate. To ensure reduction of aqueous contaminant concentrations, remediation of DNAPL contaminants with NZVI should include emplacement in a capture zone down-gradient of the DNAPL source.

  13. Changes in Contaminant Mass Discharge from DNAPL Source Mass Depletion: Evaluation at Two Field Sites

    EPA Science Inventory

    Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, WA. Passive Flux Meters (PFM) and a va...

  14. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Illangasekare, Tissa H.; Kitanidis, Peter K.

    2014-02-01

    Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t2), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.

  15. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals.

    PubMed

    Liu, Yuan; Illangasekare, Tissa H; Kitanidis, Peter K

    2014-02-01

    Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t(2)), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.

  16. Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology.

    PubMed

    Glover, Kent C; Munakata-Marr, Junko; Illangasekare, Tissa H

    2007-02-15

    High-saturation pools of dense nonaqueous phase liquid (DNAPL) are long-term sources of groundwater contamination at many hazardous-waste sites. DNAPL pools consist of a high saturation zone with slow dissolution overlaid by a transition zone with lower saturations and more rapid dissolution. Effects of biological activity on pool dissolution must be understood to evaluate and implement bioremediation strategies. Bioenhanced dissolution of tetrachloroethene (PCE) in transition zones of high-saturation pools was investigated in a custom-designed 5-cm flow cell. Experiments were conducted to characterize mass transfer following DNAPL emplacement, with and without an active microbial culture capable of reductive dehalogenation. For average pool saturations < or = 0.55, mass transfer during biodegradation was enhanced by factors of 4-13, due primarily to high mass flux of PCE degradation products. However, at an average pool saturation of 0.74, mass transfer was enhanced by factors less than 1.5. Mass transfer was significantly greater from pools with an observable transition zone than without. Advective flow through multiphase transition zones enhanced dissolution and biological activity. These laboratory-scale experimental results suggest that biotechnologies may be effective remediation strategies for depletion of source zones within pool transition zones.

  17. Solubilization of DNAPLs by mixed surfactant: synergism and solubilization capacity.

    PubMed

    Zhao, Baowei; Zhu, Lizhong

    2006-08-25

    Efforts to remove the dense nonaqueous phase liquids (DNAPLs) in subsurface by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. In this paper, a synergistical solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS) in DNAPL/water systems was presented. Given 1:40 phase ratio of DNAPL:water (v/v), mixed TX100-SDBS exhibited significantly synergistical solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB), respectively, when the total surfactant concentration was up to 6000mg/L, i.e. the condition when solubilization by the mixture was better than those attainable with individual components by themselves. The synergistical extents depended on the initial ratios of TX100 to SDBS, the initial surfactant concentrations and the properties of DNAPLs. Given the total surfactant concentration, synergistical extents increased with the fraction of SDBS in mixed surfactant. On the contrary, did with the total surfactant concentration. The solubilization capacity by 3:1, 1:1 and 1:3 of mass ratio of TX100-SDBS were determined and compared with those by single ones. In the view of the mass solubilization ratio (SR), the mixed TX100-SDBS could solubilize more DNAPLs than single SDBS at given surfactant concentration. Reduction in partition of TX100 and synergistic solubilization were responsible for the significant solubilization extent of mixed system. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over the corresponding single surfactants for solubilization remediation of DNAPLs, which could decrease risks of driving the contaminants deeper into aquifers.

  18. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.

    PubMed

    Rivett, Michael O; Dearden, Rachel A; Wealthall, Gary P

    2014-12-01

    data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4tonnes per annum over a 16m(2) cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies. PMID:25444120

  19. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone

    NASA Astrophysics Data System (ADS)

    Rivett, Michael O.; Dearden, Rachel A.; Wealthall, Gary P.

    2014-12-01

    laboratory data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4 tonnes per annum over a 16 m2 cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies.

  20. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone.

    PubMed

    Rivett, Michael O; Dearden, Rachel A; Wealthall, Gary P

    2014-12-01

    data. DNAPL dissolution yielded heterogeneous dissolved-phase plumes of TCE and its dechlorination products that exhibited orders of magnitude local concentration variation. TCE solubility concentrations were relatively localised, but coincident with high saturation DNAPL lens source areas. Biotic dechlorination in the source zone area, however, caused cDCE to be the dominant dissolved-phase plume. The conservative tracer test usefully confirmed the continuity of a permeable gravel unit at depth through the source zone. Although this unit offered significant opportunity for DNAPL bypassing and decreased timeframes for dechlorination, it still transmitted a significant proportion of the contaminant flux. This was attributed to dissolution of DNAPL-mudstone aquitard associated sources at the base of the continuous gravel as well as contaminated groundwater from surrounding less permeable sand and gravel horizons draining into this permeable conduit. The cell extraction well provided an integrated metric of source zone dissolution yielding a mean concentration of around 45% TCE solubility (taking into account dechlorination) that was equivalent to a DNAPL mass removal rate of 0.4tonnes per annum over a 16m(2) cell cross sectional area of flow. This is a significant flux considering the source age and observed occurrence of much of the source mass within discrete lenses/pools. We advocate the need for further detailed field-scale studies on old DNAPL source zones that better resolve persistent pool/lens features and are of prolonged duration to assess the ageing of source zones. Such studies would further underpin the application of more surgical remediation technologies.

  1. Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high-resolution stochastic simulation

    NASA Astrophysics Data System (ADS)

    Koch, J.; Nowak, W.

    2015-02-01

    Improper storage and disposal of nonaqueous-phase liquids (NAPLs) has resulted in widespread contamination of the subsurface, threatening the quality of groundwater as a freshwater resource. The high frequency of contaminated sites and the difficulties of remediation efforts demand rational decisions based on a sound risk assessment. Due to sparse data and natural heterogeneities, this risk assessment needs to be supported by appropriate predictive models with quantified uncertainty. This study proposes a physically and stochastically coherent model concept to simulate and predict crucial impact metrics for DNAPL contaminated sites, such as contaminant mass discharge and DNAPL source longevity. To this end, aquifer parameters and the contaminant source architecture are conceptualized as random space functions. The governing processes are simulated in a three-dimensional, highly resolved, stochastic, and coupled model that can predict probability density functions of mass discharge and source depletion times. While it is not possible to determine whether the presented model framework is sufficiently complex or not, we can investigate whether and to which degree the desired model predictions are sensitive to simplifications often found in the literature. By testing four commonly made simplifications, we identified aquifer heterogeneity, groundwater flow irregularity, uncertain and physically based contaminant source zones, and their mutual interlinkages as indispensable components of a sound model framework.

  2. Natural and man-made controls on the performance of DNAPL-pump-and-treat systems -- A comparative case study

    SciTech Connect

    Losonsky, G.; Landry, G.R.; Valentine, R.M.

    1996-12-31

    Although the recovery of dense non-aqueous liquids (DNAPLs) using pump-and-treat technology generally does not achieve regulatory cleanup criteria for dissolved phase concentrations in groundwater, the technology is commonly used to achieve two alternate goals--to recover DNAPL mass and to prevent or slow down the spread of DNAPL pools. Both the physico-chemical characteristics of the DNAPL and the hydrogeologic characteristics of the subsurface determine the effectiveness of DNAPL pump-and-treat systems in achieving these goals. Physico-chemical characteristics include density, viscosity, interfacial tension, and solubility. Some of these parameters can change naturally over time, and some can be manipulated using enhanced recovery agents, such as steam or surfactants. Hydrogeologic characteristics include hydraulic conductivity, anisotropy, heterogeneity, fracture porosity, capillary pressure, and hydraulic gradients. The operation of a pump-and-treat system necessarily affects the hydraulic gradients and capillary pressures governing subsurface fluid flow at a DNAPL site. Both naturally occurring low-permeability zones and man-made, compacted clay liners influence DNAPL migration. The performance of a DNAPL pump-and-treat system changes with time. High mass removal may occur early in the operation of such a system, whereas DNAPL migration away from the recovery wells or even out of the pumped hydrostratigraphic unit may dominate later stages of operation of the system. A comparison of several interim corrective measures (ICM) pump-and-treat systems at a site in the Gulf Coast illustrates the combined effects of both natural and man-made controls on the performance of the DNAPL recovery systems.

  3. Diffusion of DNAPL Components into Low Permeability Soils

    NASA Astrophysics Data System (ADS)

    Ayral, D.; Demond, A. H.

    2013-12-01

    Hazardous waste sites contaminated with dense non-aqueous phase liquids (DNAPLs) have proven difficult to remediate. Even though DNAPLs may be removed from high permeability subsurface strata, the storage of compounds making up DNAPLs in low permeability strata constitutes a secondary source that contributes to a dissolved phase plume over an extended period of time. The movement of DNAPL constituents into and out of low permeable strata is considered to occur through diffusion. However, there are few experimentally measured effective diffusion coefficients for DNAPL components in low permeability soils. Thus, the effective diffusion coefficient is commonly estimated from the aqueous phase diffusion coefficient as a function of the porosity of the soil. This study presents measurements of effective diffusion coefficients of chlorinated solvents and an anionic surfactant dioctyl sodium sulfosuccinate (AOT) in silt and clay-silt mixtures. The experimental results are compared with estimated values to evaluate the performance of commonly used methods to estimate effective diffusion coefficients of DNAPL components. These estimation models generally suggest an increase in the effective diffusion coefficient with an increase in porosity. Yet, in low permeable soils with a substantial fraction of clay, the effective diffusion coefficient for chlorinated solutes decreases, although the porosity increases. Thus, calculations of the quantity of mass stored in low permeable strata may be in error if based on rates of diffusion calculated using such models. In addition to chlorinated solvents, DNAPLs often contain surfactants. The high molecular weight of these solutes results in problems when estimating their effective diffusion coefficient in low permeability soils, since commonly models were formulated for use with low molecular weight compounds. Furthermore, some clay minerals present in low permeable soils have a flexible structure which enables them to expand or

  4. Experimental Investigation of In-Situ Chemical Oxidation of Complex DNAPL Source Zones by Permanganate

    NASA Astrophysics Data System (ADS)

    Heiderscheidt, J. L.; Illangasekare, T. H.; Siegrist, R. L.

    2005-12-01

    changes to the flow pattern, with source zone configuration and soil property contrasts partly determining the effects. A pool with little or no residual around it, in a relatively homogeneous flow field, appeared to benefit from resulting MnO2 (s) pore-blocking that substantially reduced mass transfer from the pool with relatively little mass removed from the pool. On the other hand, a pool with residual around it (in a more complex heterogeneous flow field) appeared to undergo increased mass transfer as MnO2 (s) reduced permeability, complicating flow, and increasing mixing at the NAPL-water interface. Further, magnitude of increased PCE mass depletion during oxidation appeared to depend on PCE configuration (pool versus ganglia) and decreased as MnO2 (s) was formed and deposited at the DNAPL-water interface.

  5. Bioenhanced Dissolution of PCE from DNAPL Pools: Large Tank Experiments

    NASA Astrophysics Data System (ADS)

    Glover, K. C.; Illangasekare, T. H.; Munakata Marr, J.; Philippe, P.

    2006-12-01

    Long-term persistence of chlorinated DNAPL has driven interest in source-depletion technologies. Recent flow- cell experiments demonstrated that microbial reductive dehalogenation can significantly enhance dissolution of high saturation pools of DNAPL. Modeling of these experiments showed that bioenhanced mass transfer can be simulated by linking abiotic DNAPL dissolution with aqueous-phase biodegradation and solute transport. For many technologies, the scale of application affects DNAPL removal efficiency and downgradient mass flux. However, detailed characterization of processes at field scales rarely is possible. As described in this presentation, scale-dependency of bioenhanced mass transfer was characterized in detail by conducting dissolution experiments in large 2-D tanks packed with homogeneous or heterogeneous sand units. Biotic and abiotic dissolution experiments were conducted with DNAPL pools at a range of saturations. Key experimental results follow. (1) Mass flux from intermediate-scale sources was significantly enhanced by biological activity. Compared with results of flow-cell experiments at similar saturations and Darcy velocities, enhancement did not decline with increasing source volume. (2) Saturation transition zones at tops of pools were key zones of bioenhanced dissolution. Electron-donor advection within these zones promoted PCE degradation, lowering aqueous PCE concentrations, and enhancing dissolution gradients. (3) Biodegradation to DCE occurred in the vicinity of pools, followed by downgradient conversion to vinyl chloride and ethene. (4) Gas accumulation, associated with ethene and vinyl chloride production downstream and electron-donor consumption upstream of sources, was significant. (5) Though inoculation occurred solely within the source zone, dechlorinating microbes migrated rapidly into downgradient areas. After three months, microbe distribution was nearly uniform, regardless of porous media heterogeneity. These results suggest

  6. ALCOHOL FLUSHING FOR REMOVING DNAPL'S FROM CLAY AND SAND LAYERED AQUIFER SYSTEMS

    SciTech Connect

    N.J. Hayden; P. Padgett; C. Farrell; J. Diebold; X. Zhou; M. Hood

    1999-08-01

    Alcohol flushing, also called cosolvent flushing, is a relatively new in-situ remediation technology that shows promise for removing organic solvents from the soil and groundwater. Soil and groundwater contamination from organic solvents and petroleum products is one of the most serious and widespread environmental problems of our time. Most of the DOE facilities and inactive sites are experiencing soil and groundwater contamination from organic solvents. These water immiscible solvents have entered the subsurface from leaking underground storage tanks and piping, and from past waste handling and disposal practices such as leaking lagoons, holding ponds and landfills. In many cases, they have traveled hundreds of feet down into the saturated zone. If left in the soil, these chemicals may pose a significant environmental and human health risk. Alcohol flushing has potential for application to spilled solvents located deep within the saturated zone which are difficult if not impossible to remove by current remediation strategies, thus, greatly expediting restoration time, reducing total remediation cost and reducing risk.

  7. A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations.

    PubMed

    Schaerlaekens, Jan; Mertens, Jan; Van Linden, Jan; Vermeiren, Gert; Carmeliet, Jan; Feyen, Jan

    2006-08-10

    The occurrence of Dense Non-Aqueous Phase Liquid (DNAPL) contaminations in the subsurface is a threat for drinkwater resources in the western world. Surfactant-Enhanced Aquifer Remediation (SEAR) is widely considered as one of the most promising techniques to remediate DNAPL contaminations in-situ, be it with considerable additional costs compared to classical pump-and-treat remediations. A cost-effective design of the remediation set-up is therefore essential. In this work, a pilot SEAR test is executed at a DNAPL contaminated site in Belgium in order to collect data for the calibration of a multi-phase multi-component model. The calibrated model is used to assess a series of scenario-analyses for the full-scale remediation of the site. The remediation variables that were varied were the injection and extraction rate, the injection and extraction duration, and the surfactant injection concentrations. A constrained multi-objective optimization of the model was applied to obtain a Pareto set of optimal remediation strategies with different weights for the two objectives of the remediation: (i) the maximal removal of DNAPL and (ii) a total minimal cost. These Pareto curves can help decision makers to select an optimal remediation strategy in terms of cost and remediation efficiency. The Pareto front shows a considerable trade-off between the total remediation cost and the removed DNAPL mass.

  8. DNAPL Surface Chemistry: Its Impact on DNAPL Distribution in the Vadose Zone and its Manipulation to Enhance Remediation

    SciTech Connect

    Suan Power; Stefan Grimberg; Miles Denham

    2003-06-16

    The remediation of DNAPLs in subsurface environments is often limited by the heterogeneous distribution of the organic fluid. The fraction of DNAPL that is in the high conductivity regions of the subsurface can often be recovered relatively easily, although DNAPL in lower conductivity regions is much more difficult to extract, either through direct pumping or remediation measures based on interface mass transfer. The distribution of DNAPL within the vadose zone is affected by a complex interplay of heterogeneities in the porous matrix and the interfacial properties defining the interactions among all fluid and solid phases. Decreasing the interfacial tension between a DNAPL and water in the vadose zone could change the spreading of the DNAPL, thereby increase the surface area for mass transfer and the effectiveness of soil vapor extraction remediation.

  9. Characterization of DNAPL Using Fluorescence Techniques

    SciTech Connect

    Rossabi, J.; Nave, S.E.

    1998-03-01

    Dense non aqueous phase liquid (DNAPL) contaminants, comprised of chlorinated aliphatic compounds, are a major source of groundwater contamination at the Savannah River Site (SRS). To successfully remediate a site contaminated by DNAPLs, it is imperative that the slowly dissolving, non-aqueous phase source be found and removed. There are few technologies that can successfully and consistently detect DNAPLs in the subsurface either directly or by inferred measurements. Because of the use of chlorinated solvents to remove petroleum-based cutting oils and lubricants at SRS (and other manufacturing sites) in degreasing operations, waste solvents may contain small amounts of the oils and lubricants. This mixture will fluoresce when excited by light of wavelengths capable of being transmitted over optical fiber. Samples of DNAPL from the A/M area of SRS were analyzed to assess the possibilities of contaminant detection by fluorescence spectroscopy. The DNAPL sample exhibited a strong, distinct fluorescent spectrum when exposed to an appropriate excitation wavelength. A cone penetrometer-based, laser induced fluorescent system may be capable of providing direct detection of DNAPLs in the subsurface based on these results.

  10. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction.

    PubMed

    Yoon, Hongkyu; Oostrom, Mart; Wietsma, Thomas W; Werth, Charles J; Valocchi, Albert J

    2009-10-13

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing numerical and analytical model simulations with a detailed data set from a well-defined intermediate-scale flow cell experiment. The flow cell was packed with a fine-grained sand layer embedded in a coarse-grained sand matrix. A total of 499 mL CT was injected at the top of the flow cell and allowed to redistribute in the variably saturated system. A dual-energy gamma radiation system was used to determine the initial NAPL saturation profile in the fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during subsequent CT removal using SVE. Results show that CT mass was removed quickly in coarse-grained sand, followed by a slow removal from the fine-grained sand layer. Consequently, effluent gas concentrations decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. The long-term tailing was mainly due to diffusion from the fine-grained sand layer to the coarse-grained sand zone. An analytical solution for a one-dimensional advection and a first-order mass transfer model matched the tailing well with two fitting parameters. Given detailed knowledge of the permeability field and initial CT distribution, we were also able to predict the effluent concentration tailing and gas concentration profiles at sampling ports using a numerical simulator assuming equilibrium CT evaporation. The numerical model predictions were accurate within the uncertainty of independently measured or literature derived parameters. This study demonstrates that proper numerical modeling of CT removal through SVE can be achieved using equilibrium evaporation of NAPL if detailed fine-scale knowledge of the CT distribution and physical heterogeneity is incorporated into the model. However, CT removal could also be fit by a

  11. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction.

    PubMed

    Yoon, Hongkyu; Oostrom, Mart; Wietsma, Thomas W; Werth, Charles J; Valocchi, Albert J

    2009-10-13

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing numerical and analytical model simulations with a detailed data set from a well-defined intermediate-scale flow cell experiment. The flow cell was packed with a fine-grained sand layer embedded in a coarse-grained sand matrix. A total of 499 mL CT was injected at the top of the flow cell and allowed to redistribute in the variably saturated system. A dual-energy gamma radiation system was used to determine the initial NAPL saturation profile in the fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during subsequent CT removal using SVE. Results show that CT mass was removed quickly in coarse-grained sand, followed by a slow removal from the fine-grained sand layer. Consequently, effluent gas concentrations decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. The long-term tailing was mainly due to diffusion from the fine-grained sand layer to the coarse-grained sand zone. An analytical solution for a one-dimensional advection and a first-order mass transfer model matched the tailing well with two fitting parameters. Given detailed knowledge of the permeability field and initial CT distribution, we were also able to predict the effluent concentration tailing and gas concentration profiles at sampling ports using a numerical simulator assuming equilibrium CT evaporation. The numerical model predictions were accurate within the uncertainty of independently measured or literature derived parameters. This study demonstrates that proper numerical modeling of CT removal through SVE can be achieved using equilibrium evaporation of NAPL if detailed fine-scale knowledge of the CT distribution and physical heterogeneity is incorporated into the model. However, CT removal could also be fit by a

  12. Multi objective optimization of the setup of a surfactant-enhanced DNAPL remediation.

    PubMed

    Schaerlaekens, Jan; Carmeliet, Jan; Feyen, Jan

    2005-04-01

    Surfactant-enhanced aquifer remediation (SEAR) is widely considered a promising technique to remediate dense nonaqueous phase liquid (DNAPL) contaminations in-situ. The costs of a SEAR remediation are important and depend mostly on the setup of the remediation. Costs can be associated with the installation of injection and extraction wells, the required time of the remediation (and thus labor costs, lease of installations, and energy), the extracted water volume (the purification of the extracted water), and the injected surfactant amount. A cost-effective design of the remediation setup allows an optimal use of resources. In this work, a SEAR remediation was simulated for a hypothetical typical DNAPL contamination. A constrained multi-objective optimization of the model was applied to obtain a Pareto set of optimal remediation strategies with different weights for the two objectives of the remediation: (i) the maximal removal of DNAPL mass (ii) with a minimal total cost. A relatively sharp Pareto front was found, showing a considerable tradeoff between DNAPL removal and total remediation costs. These Pareto curves can help decision makers select an optimal remediation strategy in terms of cost and remediation efficiency depending on external constraints such as the available budget and obligatory remediation goals.

  13. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction

    SciTech Connect

    Yoon, Hongkyu; Oostrom, Martinus; Wietsma, Thomas W.; Werth, Charles J.; Valocchi, Albert J.

    2009-10-13

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing multiphase flow simulations with a detailed data set from a well-defined two-dimensional flow cell experiment. The flow cell was packed with two sandy soils including an embedded fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during SVE. A dual-energy gamma radiation system was used to measure an initial NAPL saturation profile in a fine-grained sand layer. Imaging result from a dual-energy gamma radiation system with dyed CT mark along CT migration was used to construct the distribution of initial NAPL saturation in the flow cell for input to numerical simulations. Gas concentration results and photographs during SVE were compared to simulation results using a continuum-based multiphase flow simulator, STOMP (Subsurface Transport Over Multiple Phases). The measured effluent gas concentration decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. CT mass was removed quickly in coarse sand, followed by a slow removal from the fine-grained sand layer. An analytical solution for a one-dimensional advection and first-order volatilization model matched the tailing well with two fitting parameters. However, given detailed knowledge of the permeability field and initial NAPL distribution, we can predict the tailing and gas concentration profiles at sampling ports using equilibrium NAPL volatilization. NAPL flow occurs in the presence of free NAPL, and must be accounted for to accurately predict NAPL removal during the SVE experiment. The model prediction was accurate within the uncertainty of the measured or literature derived parameters (i.e., dispersivity and soil parameters). This study provides insights into the physical mechanisms of NAPL removal from a low permeability zone, and use of

  14. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect

    Siegrist, R.L. |; Lowe, K.S.; Murdoch, L.D. |; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  15. DNAPL accumulation in wells and DNAPL recovery from wells: Model development and application to a laboratory study

    NASA Astrophysics Data System (ADS)

    Sleep, Brent E.; Beranger, Sandra; Reinecke, Stefan; Filion, Yves

    2015-11-01

    Dense nonaqueous phase liquid (DNAPL) accumulation and recovery from wells cannot be accurately modeled through typical pressure or flux boundary conditions due to gravity segregation of water and DNAPL in the wellbore, the effects of wellbore storage, and variations of wellbore inflow and outflow rates with depth, particularly in heterogeneous formations. A discrete wellbore formulation is presented for numerical modeling of DNAPL accumulation in observation wells and DNAPL removal from recovery wells. The formulation includes fluid segregation, changing water and DNAPL levels in the well and the corresponding changes in fluid storage in the wellbore. The method was added to a three-dimensional finite difference model (CompSim) for three phase (water, gas, DNAPL) flow. The model predictions are compared to three-dimensional pilot scale experiments of DNAPL (benzyl alcohol) infiltration, redistribution, recovery, and water flushing. Model predictions match experimental results well, indicating the appropriateness of the model formulation. Characterization of mixing in the extraction well is important for predicting removal of highly soluble organic compounds like benzyl alcohol. A sensitivity analysis shows that the incorporation of hysteresis is critical for accurate prediction. Among the multiphase flow and transport parameters required for modeling, results are most sensitive to soil intrinsic permeability.

  16. Bioenhanced DNAPL Dissolution: Understanding how Microbial Competition, Biostimulation, and Bioaugmentation Affect Source Zone Longevity

    NASA Astrophysics Data System (ADS)

    Becker, J. G.; Seagren, E. A.

    2006-12-01

    The presence of dense non-aqueous phase liquids (DNAPLs) at many chlorinated ethene-contaminated sites can greatly extend the time frames needed to reduce dissolved contaminants to regulatory levels using bioremediation. However, it has been demonstrated that mass removal from chlorinated ethene DNAPLs can potentially be enhanced through dehalorespiration of dissolved contaminants near the NAPL-water interface. Although promising, the amount of "bioenhancement" that can be achieved under optimal conditions is currently not known, and the real significance and engineering potential of this phenomenon currently are not well understood, in part because it can be influenced by a complex set of factors, including DNAPL properties, hydrodynamics, substrate concentrations, and microbial competition for growth substrates. In this study it is hypothesized that: (1) different chlorinated ethene-respiring strains may dominate within different zones of a contaminant plume emanating from a DNAPL source zone due to variations in substrate availability, and microbial competition for chlorinated ethenes and/or electron donors; and (2) the outcome of competitive interactions near the DNAPL source zone will affect the longevity of DNAPL source zones by influencing the degree of dissolution bioenhancement, while the outcome of competitive interactions further downgradient will determine the extent of contaminant dechlorination. To demonstrate the validity of the proposed hypothesis, a series of simple, "proof-of-concept," mathematical simulations evaluating the effects of competitive interactions on the distribution of dehalorespirers at the DNAPL-water interface, the dissolution of tetrachloroethene (PCE), and extent of PCE detoxification were performed in a model competition scenario, in which Dehalococcoides ethenogenes and another dehalorespirer (Desulfuromonas michiganensis) compete for the electron acceptor (PCE) and/or electron donor. The model domain for this evaluation

  17. THE MEASUREMENT AND USE OF CONTAMINANT FLUX FOR PERFORMANCE ASSESSMENT OF DNAPL REMEDIATION

    EPA Science Inventory

    A review is presented of both mass flux as a DNAPL remedial performance metric and reduction in mass flux as a remedial performance objective at one or more control planes down gradient of DNAPL source areas. The use of mass flux to assess remedial performance has been proposed ...

  18. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    SciTech Connect

    McCarty, Perry L.; Spormann, Alfred M.; Criddle, Craig S.

    2001-06-01

    The anaerobic biodegradation of chlorinated solvents is of great interest both for natural attenuation and for engineered remediation of these hazardous contaminants in groundwater. Compounds to be studied are carbon tetrachloride (CT) and the chlorinated ethenes, tetrachloroethene (PCE), trichloroethene (TCE) cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC). The chlorinated solvents often are present as dense non-aqueous-phase liquids (DNAPLs), which are difficult to remove. Biodegradation of DNAPLs was previously thought not possible because of toxicity, but recent evidence indicates that under the right conditions, biodegradation is possible. Anaerobic biodegradation of DNAPLs is the major subject of this research. The specific objectives of this multi-investigator effort are: (1) Evaluate the potential for chlorinated solvent biodegradation near DNAPLs, (2) Provide a molecular understanding of the biological mechanisms involved, (3) Determine cellular components involved in carbon tetrachloride transformation by Pseudomonas stutzeri strain KC without chloroform formation.

  19. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    SciTech Connect

    McCarty, Perry L.; Spormann, Alfred M.; Criddle, Craig S.

    2003-06-01

    The anaerobic biodegradation of chlorinated solvents is of great interest both for natural attenuation and for engineered remediation of these hazardous contaminants in groundwater. Compounds to be studied are carbon tetrachloride (CT) and the chlorinated ethenes, tetrachloroethene (PCE), trichloroethene (TCE) cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC). The chlorinated solvents often are present as dense non-aqueous-phase liquids (DNAPLs), which are difficult to remove. Biodegradation of DNAPLs was previously thought not possible because of toxicity, but recent evidence indicates that under the right conditions, biodegradation is possible. Anaerobic biodegradation of DNAPLs is the major subject of this research. The specific objectives of this multi-investigator effort are: (1) Evaluate the potential for chlorinated solvent biodegradation near DNAPLs, (2) Provide a molecular understanding of the biological mechanisms involved, (3) Determine cellular components involved in carbon tetrachloride transformation by Pseudomonas stutzeri strain KC without chloroform formation.

  20. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    SciTech Connect

    McCarty, Perry L.; Spormann, Alfred M.; Criddle, Craig S.

    2002-06-01

    The anaerobic biodegradation of chlorinated solvents is of great interest both for natural attenuation and for engineered remediation of these hazardous contaminants in groundwater. Compounds to be studied are carbon tetrachloride (CT) and the chlorinated ethenes, tetrachloroethene (PCE), trichloroethene (TCE) cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC). The chlorinated solvents often are present as dense non-aqueous-phase liquids (DNAPLs), which are difficult to remove. Biodegradation of DNAPLs was previously thought not possible because of toxicity, but recent evidence indicates that under the right conditions, biodegradation is possible. Anaerobic biodegradation of DNAPLs is the major subject of this research. The specific objectives of this multi-investigator effort are: (1) Evaluate the potential for chlorinated solvent biodegradation near DNAPLs, (2) Provide a molecular understanding of the biological mechanisms involved, (3) Determine cellular components involved in carbon tetrachloride transformation by Pseudomonas stutzeri strain KC without chloroform formation.

  1. Numerical simulation of DNAPL emissions and remediation in a fractured dolomitic aquifer.

    PubMed

    McLaren, Robert G; Sudicky, Edward A; Park, Young-Jin; Illman, Walter A

    2012-08-01

    This study presents a numerical model of a large aqueous phase plume of a mixture of chlorinated solvents that has penetrated the fractured dolomitic bedrock near Smithville, Ontario, Canada several decades ago which, since 1989 has been hydraulically controlled by a pump-and-treat remediation system. A multiphase compositional model CompFlow is first applied to simulate the migration of DNAPLs in a discretely fractured porous medium with hydrostratigraphy representing the Smithville site. Results from CompFlow are used to estimate the pure-phase DNAPL distribution in the discrete fractures and rock matrix. Next, CompFlow results are employed to define the source term for a regional-scale transport simulation using HydroGeoSphere (HGS) by treating the layered, fractured dolomitic rocks as an equivalent porous continuum. Transport simulations are conducted both prior to and after the operation of the pump-and-treat system. Results reveal that considerable agreement with the observed mass removal data and TCE plume can be achieved by modifying the composition of the DNAPL source and by reducing the hydraulic conductivity (K) in the source zone region to account for preferential flow around it. Our transport model results support the conceptual model of TCE contamination which posits a mixed source (2 to 4%) of DNAPL with limited contact with actively flowing groundwater that is undergoing equilibrium dissolution. Model results also reveal that the pump-and-treat system has neither been effective in stabilizing the plume nor removing a significant amount of contaminant mass, but that the stability of the plume is instead due to first-order degradation.

  2. Characterizing long-term contaminant mass discharge and the relationship between reductions in discharge and reductions in mass for DNAPL source areas.

    PubMed

    Brusseau, M L; Matthieu, D E; Carroll, K C; Mainhagu, J; Morrison, C; McMillan, A; Russo, A; Plaschke, M

    2013-06-01

    The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d over five years. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon the initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The

  3. FLUX-BASED METHODS FOR DNAPL REMEDIATION DESIGN AND ASSESSMENT

    EPA Science Inventory

    One tool that has been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit area per unit time) and mass discharge (mass per unit time) measurements. These measurements, when collected across one or more control planes located down grad...

  4. Natural remobilization of multicomponent DNAPL pools due to dissolution.

    PubMed

    Roy, J W; Smith, J E; Gillham, R W

    2002-12-01

    Mixtures of dense nonaqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. If the components have different solubilities then dissolution will alter the composition of the remaining DNAPL. We theorized that a multicomponent DNAPL pool may become mobile due to the natural dissolution process. In this study, we focused on two scenarios: (1) a DNAPL losing light component(s), with the potential for downward migration; and (2) a DNAPL losing dense component(s), with the potential for upward migration following transformation into a less dense than water nonaqueous phase liquid (LNAPL). We considered three binary mixtures of common groundwater contaminants: benzene and tetrachloroethylene (PCE), PCE and dichloromethane (DCM), and DCM and toluene. A number of physical properties that control the retention and transport of DNAPL in porous media were measured for the mixtures, namely: density, interfacial tension, effective solubility, and viscosity. All properties except density exhibited nonlinear relationships with changing molar ratio of the DNAPL. To illustrate the potential for natural remobilization, we modelled the following two primary mechanisms: the reduction in pool height as mass is lost by dissolution, and the changes in fluid properties with changing molar ratio of the DNAPL. The first mechanism always reduces the capillary pressure in the pool, while the second mechanism may increase the capillary pressure or alter the direction of the driving force. The difference between the rate of change of each determines whether the potential for remobilization increases or decreases. Static conditions and horizontal layering were assumed along with a one-dimensional, compositional modelling approach. Our results indicated that for initial benzene/PCE ratios greater than 25:75, the change in density was sufficiently faster than the decline in pool height to promote DNAPL

  5. Comparison of Chlorinated Ethenes DNAPL Reductive Dechlorination by Indigenous and Evanite culture with Surfactant Tween-80

    NASA Astrophysics Data System (ADS)

    Kwon, S.; Hong, S.; Kim, R.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

    2010-12-01

    Although many innovative technologies have been developed to enhance remediation of chlorinated ethenes(e.g. tetrachloroethene[PCE], trichloroethene[TCE])DNAPL source zones, they have been ineffective in reducing contaminant concentration to regulatory end points. Thus, combination of surfactant flushing process that removes significant contaminant mass with microbial reductive dechlorination, posttreatment "polishing step" to control the remaining DNAPL that may serve as a source of reducing equivalents and stimulate the dechlorinating bacterial communities may be an attractive remediation process alternatively. Microcosm studies were conducted to explore chlorinated ethenes, PCE/TCE of 3 ~ 30 mg/L dechlorination by indigenous microbial communities from TCE DNAPL source zones of Korea and Evanite culture in the presence of Tween-80 of 10 ~ 5,000 mg/L. In the microcosms for indigenous microbial communities, by-products(e.g. c-DCE, vinyl chloride) of reductive dechlorination of PCE/TCE were not detected. This results suggest dechlorinating bacteria might be not exist or high concentration of chlorinated ethenes inhibit activity of dechlorinating bacteria in indigenous microbial communities. But VFAs like acetate, methane and hydrogen gas from fermentation of Tween-80 were detected. So Tween-80 might estimated to serve as a source of reducing equivalents. To evaluate the dechlorinating ability of Evanite-culture, we added Evanite-culture to the microcosms for indigenous bacteria and monitored by-products of reductive dechlorination of PCE/TCE and VFAs and hydrogen gas.

  6. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    PubMed

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity. PMID:23697993

  7. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns

    NASA Astrophysics Data System (ADS)

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~ 75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity.

  8. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.

    PubMed

    Harkness, Mark; Fisher, Angela

    2013-08-01

    The interaction between emulsified vegetable oil (EVO) and trichloroethylene (TCE) dense non-aqueous phase liquid (DNAPL) was observed using two soil columns and subsequent reductive dechlorination of TCE was monitored over a three year period. Dyed TCE DNAPL (~75 g) was emplaced in one column (DNAPL column), while the second was DNAPL-free (plume column). EVO was added to both columns and partitioning of the EVO into the TCE DNAPL was measured and quantified. TCE (1.9 mM) was added to the influent of the plume column to simulate conditions down gradient of a DNAPL source area and the columns were operated independently for more than one year, after which they were connected in series. Initially limited dechlorination of TCE to cDCE was observed in the DNAPL column, while the plume column supported complete reductive dechlorination of TCE to ethene. Upon connection and reamendment of the plume column with EVO, near saturation levels of TCE from the effluent of the DNAPL column were rapidly dechlorinated to c-DCE and VC in the plume column; however, this high rate dechlorination produced hydrochloric acid which overwhelmed the buffering capacity of the system and caused the pH to drop below 6.0. Dechlorination efficiency in the columns subsequently deteriorated, as measured by the chloride production and Dehalococcoides counts, but was restored by adding sodium bicarbonate buffer to the influent groundwater. Robust dechlorination was eventually observed in the DNAPL column, such that the TCE DNAPL was largely removed by the end of the study. Partitioning of the EVO into the DNAPL provided significant operational benefits to the remediation system both in terms of electron donor placement and longevity.

  9. DNAPL SITE EVALUATION - Project Summary

    EPA Science Inventory

    Dense nonaqueous-phase liquids (DNAPLs), especially chlorinated solvents, are among the most prevalent subsurface contaminants identified in ground-water supplies and at waste disposal sites. There are several site-characterization issues specific to DNAPL sites including (a) the...

  10. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study.

    PubMed

    Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng

    2016-02-01

    During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.

  11. Migration of pollutants in groundwater. VI. Flushing of DNAPL droplets/ganglia.

    PubMed

    Kayano, S; Wilson, D J

    1993-05-01

    Models for describing the flushing of DNAPL from contaminated aquifers are developed, and the dependence of the calculated cleanup times on the model parameters is explored. Diffusion transport from isolated DNAPL droplets, from low-permeability porous spherical domains containing distributed DNAPL droplets, and from low-permeability porous planar lamellae containing distributed DNAPL is analyzed, and the resulting expressions then coupled with the equations for advective transport of dissolved VOC by means of natural uniform flow and a system of injection and recovery wells generating a two-dimensional flow field. The models are readily run on currently available microcomputers. The results of computations with the models are consistent with the severe tailing and slow rates of remediation which are generally observed when DNAPLs are removed by flushing.

  12. Evaluating four-dimensional time-lapse electrical resistivity tomography for monitoring DNAPL source zone remediation.

    PubMed

    Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios

    2014-07-01

    Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation.

  13. Integration of Flux-Based Methods and Triad Principles for DNAPL Site Management, Part II: Review of Flux Measurement Methods

    EPA Science Inventory

    Managing dense nonaqueous phase liquid (DNAPL) contaminated sites continues to be among the most pressing environmental problems currently faced. One approach that has recently been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit ar...

  14. Laboratory evidence of natural remobilization of multicomponent DNAPL pools due to dissolution.

    PubMed

    Roy, J W; Smith, J E; Gillham, R W

    2004-10-01

    Mixtures of dense non-aqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. In general, the components of higher solubility are removed more quickly, thus altering the composition of the remaining DNAPL, and possibly leading to changes in its physical properties. Through the development of a simple compositional model, Roy et al. [J. Contam. Hydrol. 2002 (59) 163] showed that preferential dissolution of a mixed DNAPL could potentially result in changes in density and interfacial tension that could subsequently lead to remobilization of an initially static DNAPL pool. The laboratory experiments presented in this next paper provide a proof-of-concept for the previously presented theory, demonstrating and quantifying this process of remobilization. In addition, the experiments provide a data set for evaluation of the model presented by Roy et al. [J. Contam. Hydrol. 2002 (59) 163]. In the four experiments, a DNAPL pool comprised of tetrachloroethene and benzene was created as an open pool overlying glass beads within a water-saturated 2-D flow box. Experiments included rectangular and triangular pools. In each of the experiments, remobilization (as breakthrough) was observed more than 2 weeks after formation of the initial pool. During each experiment, the pool height declined as mass was lost by dissolution, while sampling indicated a decrease in the mole fraction of benzene, the more soluble component. Small protuberances formed along the bottom of the pool as its composition changed with time and the displacement pressure was achieved for various pore throats. Eventually one of the protuberances extended further, forming a finger (breakthrough). In general, the pool emptied as the finger proceeded further into the beads. It was also shown theoretically and experimentally that remobilization will occur sooner for pools with a triangular (pointing down), rather than rectangular

  15. COMPATIBILITY OF BENTONITE AND DNAPLS

    EPA Science Inventory

    The compatibility of dense non-aqueous phase liquids (DNAPLs), trichloroethylene (TCE), methylene chloride (MC), and creosote with commercially available sodium bentonite pellets was evaluated using stainless steel, double-ring, falling-head permeameters. The Hydraulic conductiv...

  16. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone.

    PubMed

    Cápiro, Natalie L; Löffler, Frank E; Pennell, Kurt D

    2015-11-01

    Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0±1.3 and 4.0±1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥155 μM) and ethene (≥65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate

  17. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone.

    PubMed

    Cápiro, Natalie L; Löffler, Frank E; Pennell, Kurt D

    2015-11-01

    Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0±1.3 and 4.0±1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥155 μM) and ethene (≥65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate

  18. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone

    NASA Astrophysics Data System (ADS)

    Cápiro, Natalie L.; Löffler, Frank E.; Pennell, Kurt D.

    2015-11-01

    Effective treatment of sites contaminated with dense non-aqueous phase liquids (DNAPLs) requires detailed understanding of the microbial community responses to changes in source zone strength and architecture. Changes in the spatial and temporal distributions of the organohalide-respiring Dehalococcoides mccartyi (Dhc) strains and Geobacter lovleyi strain SZ (GeoSZ) were examined in a heterogeneous tetrachloroethene- (PCE-) DNAPL source zone within a two-dimensional laboratory-scale aquifer flow cell. As part of a combined remedy approach, flushing with 2.3 pore volumes (PVs) of 4% (w/w) solution of the nonionic, biodegradable surfactant Tween® 80 removed 55% of the initial contaminant mass, and resulted in a PCE-DNAPL distribution that contained 51% discrete ganglia and 49% pools (ganglia-to-pool ratio of 1.06). Subsequent bioaugmentation with the PCE-to-ethene-dechlorinating consortium BDI-SZ resulted in cis-1,2-dichloroethene (cis-DCE) formation after 1 PV (ca. 7 days), while vinyl chloride (VC) and ethene were detected 10 PVs after bioaugmentation. Maximum ethene yields (ca. 90 μM) within DNAPL pool and ganglia regions coincided with the detection of the vcrA reductive dehalogenase (RDase) gene that exceeded the Dhc 16S rRNA genes by 2.0 ± 1.3 and 4.0 ± 1.7 fold in the pool and ganglia regions, respectively. Dhc and GeoSZ cell abundance increased by up to 4 orders-of-magnitude after 28 PVs of steady-state operation, with 1 to 2 orders-of-magnitude increases observed in close proximity to residual PCE-DNAPL. These observations suggest the involvement of these dechlorinators the in observed PCE dissolution enhancements of up to 2.3 and 6.0-fold within pool and ganglia regions, respectively. Analysis of the solid and aqueous samples at the conclusion of the experiment revealed that the highest VC (≥ 155 μM) and ethene (≥ 65 μM) concentrations were measured in zones where Dhc and GeoSZ were predominately attached to the solids. These findings demonstrate

  19. DNAPL Extraction/Oleofilter Test Report

    SciTech Connect

    White, R.M.; Hazel, C.

    1997-11-03

    A short term, low flow DNAPL extraction test was performed from May 29 - 30, 1997, to gather additional information about the possibility of using monitoring well MSB-3D to recover source contamination from the M-Area Aquifer. Although no visible, free phase material was recovered, the groundwater did contain perchloroethylene (PCE) at and above aqueous solubility. Improvements in the pumping configuration were identified for future trials. Prior to final treatment in the M1 air stripper, the groundwater was passed through an Oleofiltration system to evaluate its capability as a treatment technology. The Oleofilter uses a combination of conventional gravity assisted separation with coalescing plates and a final polishing filter using proprietary coated granules to remove hydrocarbons. Although free phase DNAPL was not processed through the Oleofilter, the groundwater containing high levels of dissolved PCE was treated efficiently. Initially the Oleofilter removed 99 percent of the PCE. As the test progressed, this removal rate decreased to 83 percent as the granules became loaded with PCE. Longer term testing, perhaps with periodic backflushing, is required to determine the effective granule capacity.

  20. Forehead Mass Removal by Endoscopic Approach.

    PubMed

    Jung, Soyeon; Jung, Sung Won; Koh, Sung Hoon; Lim, Hyoseob

    2016-03-01

    Patients with forehead mass have a cosmetic problem because the forehead is an important first impression. Conventional skin approach results in visible scar even though surgeons designed the incision along the relaxed skin tension line1. Since Onishi introduced the technique for endoscopic approach in 1995, endoscopic surgery has become rapidly popular in the field of plastic surgery. Endoscopic approach to the forehead mass by small incision on the scalp behind hair line is big advantageous for leaving less ugly scar on the forehead. All procedures need to be identified under the endoscopic visualization. When it was completed, the mass was pulled out. The authors also used the osteotome or rasp when it was the osteoma. The forehead and scalp were applied compressive dressing to prevent hematoma and swelling for 2 days. The cosmesis was excellent because they have no visible scar on the forehead. Endoscopic approaching technique is getting popular and commonly used during the cosmetic surgery because it has many advantages. This method also, however, has difficulties to remove large-sized mass and to perform caudal dissection, and for increased operative times. Furthermore, there are complication of incomplete removal, hematoma, and swelling. The proper candidate is the patient with smooth forehead, with a mobile and soft mass, with a propensity for keloid formation, or hypertrophic scarring. Endoscopic technique is not only advantageous but also disadvantageous. That is why surgeon's selection is more important. PMID:26967101

  1. Transition probability/Markov chain analyses of DNAPL source zones and plumes.

    PubMed

    Maji, R; Sudicky, E A; Panday, S; Teutsch, G

    2006-01-01

    At sites where a dense nonaqueous phase liquid (DNAPL) was spilled or released into the subsurface, estimates of the mass of DNAPL contained in the subsurface from core or monitoring well data, either in the nonaqueous or aqueous phase, can be highly uncertain because of the erratic distribution of the DNAPL due to geologic heterogeneity. In this paper, a multiphase compositional model is applied to simulate, in detail, the DNAPL saturations and aqueous-phase plume migration in a highly characterized, heterogeneous glaciofluvial aquifer, the permeability and porosity data of which were collected by researchers at the University of Tübingen, Germany. The DNAPL saturation distribution and the aqueous-phase contaminant mole fractions are then reconstructed by sampling the data from the forward simulation results using two alternate approaches, each with different degrees of sampling conditioning. To reconstruct the DNAPL source zone architecture, the aqueous-phase plume configuration, and the contaminant mass in each phase, one method employs the novel transition probability/Markov chain approach (TP/MC), while the other involves a traditional variogram analysis of the sampled data followed by ordinary kriging. The TP/MC method is typically used for facies and/or hydraulic conductivity reconstruction, but here we explore the applicability of the TP/MC method for the reconstruction of DNAPL source zones and aqueous-phase plumes. The reconstructed geometry of the DNAPL source zone, the dissolved contaminant plume, and the estimated mass in each phase are compared using the two different geostatistical modeling approaches and for various degrees of data sampling from the results of the forward simulation. It is demonstrated that the TP/MC modeling technique is robust and accurate and is a preferable alternative compared to ordinary kriging for the reconstruction of DNAPL saturation patterns and dissolved-phase contaminant plumes.

  2. Self potential observations during DNAPL dissolution

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Slater, L.; Kulessa, B.; Russell, C.; Kalin, R.; Ferguson, A.; Graber, J.

    2006-05-01

    Dense non aqueous phase liquids (DNAPLs) are a major environmental problem and are considered to be long term heavy contaminant sources in the subsurface. Accurate monitoring of DNAPL breakdown is required to monitor remediation efforts. We aim to evaluate the efficiency of geophysical methods to monitor DNAPL remediation. Toward this goal we performed self potential (SP) measurements on laboratory columns packed with DNAPL contaminated sand undergoing (a) biodegradation, and (b) abiotic DNAPL dissolution. Geochemical monitoring showed higher concentration of dissolved DNAPL byproducts in the abiotic columns; the use of HgCl2 as a biocide probably increased the rates of DNAPL dissolution in the abiotic columns. The concentration of DNAPL byproducts is significantly lower in the biotic columns due to microbial activity since DNAPL degrading bacteria within the column consume the breakdown products. SP responses are significantly higher (~ 90 mV) in the abiotic columns; in the microbial active columns SP values remain steady with a value ~ 10 mV. High SP signals (up to 110 mV) are associated with DNAPL byproduct concentration gradients within the abiotic columns and exhibit a temporal behavior that mimics total organic carbon concentrations. Although microbial activity in organic rich contaminated areas has been associated with strong negative SP anomalies our results show that positive SP anomalies can also be generated in contaminated areas in the absence of any microbial activity. We discuss a possible SP source mechanism and the implications in geophysical monitoring of DNAPL remedial processes.

  3. Solubilization of DNAPLs by mixed surfactant: reduction in partitioning losses of nonionic surfactant.

    PubMed

    Zhao, Baowei; Zhu, Lizhong; Yang, Kun

    2006-02-01

    Efforts to remediate the dense nonaqueous phase liquids (DNAPLs) by mobilizing them face with risks of driving the contaminants deeper into aquifer zones. This spurs research for modifying the approach for in situ remediation. In this paper, a novel solubilization of DNAPLs by mixed nonionic and anionic surfactant, Triton X-100 (TX100) and sodium dodecylbenzene sulfonate (SDBS), was presented and compared with those by single ones. Given 1:40 phase ratio of DNAPL:water (v/v) and the total surfactant concentration from 0.2 to 10gl(-1), mixed TX100-SDBS at the total mass ratios of 3:1, 1:1 and 1:3 exhibited significant solubilization for the DNAPLs, trichloroethene (TCE), chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB). The solubilization extent by mixed TX100-SDBS was much larger than by single TX100 and even larger than by single SDBS at the ratios of 1:1 and 1:3, respectively. TX100 partitioning into the organic phase dictated the solubilization extent. The TX100 losses into TCE, CB and 1,2-DCB phases were more than 99%, 97% and 97% when single TX100 was used. With SDBS alone, no SDBS partitioned into DNAPLs was observed and in mixed systems, SDBS decreased greatly the partition loss of TX100 into DNAPLs. The extent of TX100 partition decreased with increasing the amount of SDBS. The mechanism for reduction of TX100 partition was discussed. TX100 and SDBS formed mixed micelles in the solution phase. The inability of SDBS to partition into DNAPLs and the mutual affinity of SDBS and TX100 in the mixed micelle controlled the partitioning of TX100 into DNAPL phase. The work presented here demonstrates that mixed nonionic-anionic surfactants would be preferred over single surfactants for solubilization remediation of DNAPLs, which could avoid risks of driving the contaminants deeper into aquifers and decrease the surfactant loss and remediation cost.

  4. Reductive dechlorination of trichloroethene DNAPL source zones: source zone architecture versus electron donor availability

    NASA Astrophysics Data System (ADS)

    Krol, M.; Kokkinaki, A.; Sleep, B.

    2014-12-01

    The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.

  5. [Laboratory Investigation of DNAPL Migration Behavior and Distribution at Varying Flow Velocities Based on Light Transmission Method].

    PubMed

    Gao, Yan-wei; Zheng, Fei; Shi, Xiao-qing; Sun, Yuan-yuan; Xu, Hong-xia; Wu, Ji-chun

    2015-07-01

    The migration and distribution of dense non-aqueous phase liquid (DNAFL) in subsurtace are attectea ny many factors. We selected PCE as the substitute contaminant, and performed several well-controlled two-dimensional sandbox experiments to investigate the effect of flow velocity on DNAPL infiltration and redistribution. Light transmission method (LTM) was used to monitor the transport process of DNAPL in the sandbox and quantitatively measure DNAPL saturation. The spatial moments based on measured DNAPL saturation were used to describe the average spatial behavior of DNAPL plume at various times. Experimental results showed a strong correlation between results obtained by LTM and the known amounts of DNAPL added into the sandbox (R2 >0.98). The LTM accurately reflected the infiltration and redistribution processes. The results of DNAPL saturation and first moment (mass center) showed that the increased velocity promoted not only lateral but also vertical migration, leading to an inclined percolation path. Also vertical migration reacted more sensitive to flow velocity. The second moment (spread variance) showed that the increased velocity promoted lateral and vertical spread, increasing the pollution scope. The histogram of DNAPL saturation showed a unimodal distribution at low flow velocity, but showed a bimodal distribution at lager flow velocity, and the distance between two peaks became higher with the increasing flow velocity.

  6. Removal of Carbon Tetrachloride from a Layered Porous Medium by Means of Soil Vapor Extraction Enhanced by Desiccation and Water Table Reduction

    SciTech Connect

    Oostrom, Mart; Dane, Jacob H.; Wietsma, Thomas W.

    2005-11-14

    A two-dimensional flow cell experiment was conducted to study the removal of the carbon tetrachloride component of a DNAPL mixture from a layered porous medium through soil vapor extraction (SVE) with moist and dry air. A dual-energy gamma radiation system was used at various times to non-intrusively determine fluid saturations. The mixture, which contained the volatile organic carbon tetrachloride, mimics the DNAPL disposed at the Hanford Site in Washington State. The flow cell, which is 100 cm long, 75 cm high and 5.5 cm wide, was packed with two sloped coarse sand and two sloped silt layers in an otherwise uniform matrix of medium-grained sand. A V-shaped fine sand layer was placed at the bottom of the flow cell to prevent DNAPL from exiting the flow cell. The water table was located 2 cm from the bottom, creating variably saturated conditions. A 500-mL spill was introduced at the top of the flow cell from a small source area. It was observed that the DNAPL largely by-passed the silt layers but easily moved into the coarse sand layers. Residual DNAPL was formed in the medium-grained sand matrix. The DNAPL caused a distinct reduction of the capillary fringe. Most of the DNAPL ended up in a pool on top of the V-shaped fine sand. Through four treatments with moist air soil vapor extraction, most residual carbon tetrachloride was removed from the medium-grained matrix and the coarse sand layers. However, soil vapor extraction with moist air was not able to remove the carbon tetrachloride from the silt layers and the pool. Through a water table reduction and subsequent soil vapor extraction with dry air, the carbon tetrachloride in the silt layers and the pool was effectively removed. Based on gamma measurements and carbon tetrachloride vapor concentration data, it was estimated that after the final remediation treatment, almost 90% of the total mass was removed.

  7. Radio frequency heating for in-situ remediation of DNAPL

    SciTech Connect

    Kasevich, R.S.

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  8. DNAPL invasion into a partially saturated dead-end fracture

    SciTech Connect

    gwsu@lbl.gov

    2004-06-17

    The critical height for DNAPL entry into a partially watersaturated, dead-end fracture is derived and compared to laboratoryobservations. Experiments conducted in an analog, parallel-plate fracturedemonstrate that DNAPL accumulates above the water until the height ofthe DNAPL overcomes the sum of the capillary forces at the DNAPL-airinterface and at the DNAPL-water interface. These experiments also showthat DNAPL preferentially enters the water at locations where DNAPL haspreviously entered, and the entry heights for these subsequent entriesare lower than the heights measured for the initial invasion. The wettingcontact angle at the DNAPL-water interface becomes larger at thelocations where the DNAPL has already entered the water because ofresidual DNAPL on the fracture walls, which results in lowering thecritical entry height at those locations. The experiments alsodemonstrate that a DNAPL lens can remain nearly immobile above the waterfor a period of time before eventually redistributing itself and enteringthe water.

  9. Simultaneous optimization of dense non-aqueous phase liquid (DNAPL) source and contaminant plume remediation.

    PubMed

    Mayer, Alex; Endres, Karen L

    2007-05-14

    A framework is developed for simultaneous, optimal design of groundwater contaminant source removal and plume remediation strategies. The framework allows for varying degrees of effort and cost to be dedicated to source removal versus plume remediation. We have accounted for the presence of physical heterogeneity in the DNAPL source, since source heterogeneity controls mass release into the plume and the efficiency of source removal efforts. We considered high and low estimates of capital and operating costs for chemical flushing removal of the source, since these are expected to vary form site to site. Using the lower chemical flushing cost estimates, it is found that the optimal allocation of funds to source removal or plume remediation is sensitive to the degree of heterogeneity in the source. When the time elapsed between the source release and the implementation of remediation was varied, it was found that, except for the longest elapsed time (50,000 days), a combination of partial source removal and plume remediation was most efficient. When first-order, dissolved contaminant degradation was allowed, source removal was found to be unnecessary for the cases where the degradation rate exceeded intermediate values of the first-order rate constant. Finally, it was found that source removal became more necessary as the degree of aquifer heterogeneity increased.

  10. Test plan for single well injection/extraction characterization of DNAPL

    SciTech Connect

    Looney, B.B.; Jerome, K.M.; Burdick, S.; Rossabi, J.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1995-12-01

    Soils and groundwater beneath an abandoned Process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLS, or dense non aqueous Phase liquids. Technologies targeted at the efficient characterization or removal of DNAPL are not currently proven. For example, most DNAPL studies rely on traditional soil and water sampling and the fortuitous observation of immiscible solvent. Once DNAPL is identified, soil excavation (which is only applicable to small contained spill sites) is the only ``proven`` cleanup method. New cleanup approaches based on enhanced removal by surfactants and/or alcohols have been proposed and tested at the pilot scale. As described below, carefully designed experiments similar to the enhanced removal methods may provide important characterization information on DNAPLs.

  11. Complex Electrical Resistivity for Monitoring DNAPL Contamination

    SciTech Connect

    Stephen R. Brown; David Lesmes; John Fourkas

    2003-09-12

    Nearly all Department of Energy (DOE) facilities have landfills and buried waste areas. Of the various contaminants present at these sites, dense non-aqueous phase liquids (DNAPL) are particularly hard to locate and remove. There is an increasing need for external or non-invasive sensing techniques to locate DNAPLs in the subsurface and to track their spread and monitor their breakdown or removal by natural or engineered means. G. Olhoeft and colleagues have published several reports based on laboratory studies using the complex resistivity method which indicate that organic solvents, notably toluene, PCE, and TCE, residing in clay-bearing soils have distinctive electrical signatures. These results have suggested to many researchers the basis of an ideal new measurement technique for geophysical characterization of DNAPL pollution. Encouraged by these results we proposed to bring the field measurement of complex resistivity as a means of pollution characterization from the conceptual stage to practice. We planned to document the detectability of clay-organic solvent interactions with geophysical measurements in the laboratory, develop further understanding of the underlying physical and chemical mechanisms, and then apply these observations to develop field techniques. As with any new research endeavor we note the extreme importance of trying to reproduce the work of previous researchers to ensure that any effects observed are due to the physical phenomena occurring in the specimen and not due to the particular experimental apparatus or method used. To this end, we independently designed and built a laboratory system, including a sample holder, electrodes, electronics, and data analysis software, for the measurement of the complex electrical resistivity properties of soil contaminated with organic solvents. The capabilities and reliability of this technique were documented. Using various standards we performed measurement accuracy, repeatability, and noise immunity

  12. Steam injection for in-situ remediation of DNAPLs in low permeability media

    SciTech Connect

    Sleep, B.

    1996-08-01

    The potential for remediation of dense, nonaqueous phase liquid (DNAPL) contamination by steam injection is investigated, including the advantages and disadvantages of the technology. The primary advantage is the significant enhancement of removal rates through steam distillation. The disadvantages are related to the lack of field experience with the technology and difficulties related to steam override and channeling in heterogeneous soils. The problems related to steam injection in low permeability fractured clay are examined, and removal times and costs are postulated for a hypothetical DNAPL contamination scenario. It is concluded that steam injection has significant potential for remediation of DNAPL in fractured clay soils, but there is significant uncertainty in predictions of the performance of steam injection in these soils. 13 refs., 4 figs., 1 tab.

  13. Application of 4D resistivity image profiling to detect DNAPLs plume.

    NASA Astrophysics Data System (ADS)

    Liu, H.; Yang, C.; Tsai, Y.

    2008-12-01

    iron nanoparticles with pumps water remediation ways. The survey lines use the same length and the same position of the different time observation. The survey lines monitors the iron nanoparticles and pollution flow direction with remediation effect. By used the iron nanoparticles and pumping water remediation ways, the DNAPL plumes had eminent changed. Iron nanoparticles granule is smaller than the micron iron, Therefore the reaction rate was quite quick at the iron nanoparticles and pumps, but the ferric oxide can cause the electronic resistivity to elevate produces after the response. Pumps water rectifies may remove the ferric oxide to cause the electronic resistivity to reduce. The iron nanoparticles and pollution response is extremely obviously of the Resistivity Image Profile.

  14. Characterization of DNAPL Source Zone Architecture and Prediction of Associated Plume Response: Progress and Perspectives

    NASA Astrophysics Data System (ADS)

    Abriola, L. M.; Pennell, K. D.; Ramsburg, C. A.; Miller, E. L.; Christ, J.; Capiro, N. L.; Mendoza-Sanchez, I.; Boroumand, A.; Ervin, R. E.; Walker, D. I.; Zhang, H.

    2012-12-01

    It is now widely recognized that the distribution of contaminant mass will control both the evolution of aqueous phase plumes and the effectiveness of many source zone remediation technologies at sites contaminated by dense nonaqueous phase liquids (DNAPLs). Advances in the management of sites containing DNAPL source zones, however, are currently hampered by the difficulty associated with characterizing subsurface DNAPL 'architecture'. This presentation provides an overview of recent research, integrating experimental and mathematical modeling studies, designed to improve our ability to characterize DNAPL distributions and predict associated plume response. Here emphasis is placed on estimation of the most information-rich DNAPL architecture metrics, through a combination of localized in situ tests and more readily available plume transect concentration observations. Estimated metrics will then serve as inputs to an upscaled screening model for prediction of long term plume response. Machine learning techniques were developed and refined to identify a variety of source zone metrics and associated confidence intervals through the processing of down gradient concentration data. Estimated metrics include the volumes and volume percentages of DNAPL in pools and ganglia, as well as their ratio (pool fraction). Multiphase flow and transport simulations provided training data for model development and assessment that are representative of field-scale DNAPL source zones and their evolving plumes. Here, a variety of release and site heterogeneity (sequential Gaussian permeability) conditions were investigated. Push-pull tracer tests were also explored as a means to provide localized in situ observations to refine these metric estimates. Here, two-dimensional aquifer cell experiments and mathematical modeling were used to quantify upscaled interphase mass transfer rates and the interplay between injection and extraction rates, local source zone architecture, and tracer

  15. ENHANCED MOBILITY OF DENSE NONAQUEOUS-PHASE LIQUIDS (DNAPLs) USING DISSOLVED HUMIC ACIDS

    SciTech Connect

    EDWIN S. OLSON; JOHN R. GALLAGHER; MARC D. KURZ

    1998-10-01

    The specific objectives of this subtask are as follows: � Evaluate the suitability of using humic acids to enhance the solubility and mobility of DNAPL contaminants sorbed to soils. � Evaluate the toxicity and bioavailablity of the DNAPLs to biodegrading microorganisms. To meet the first objective, the Energy & Environmental Research Center (EERC) evaluated a set of humic acids (two) with different chemical compositions and polarities for the following: � Ability of the humates to mobilize/solubilize selected (three) DNAPLs � Mobilization/solubilization in batch soil�water experiments (one soil) � Removal rate via biotreatment with a well-established active microbial culture. The second objective was met by evaluating the inhibiting effects of a leonardite-derived humic acid on active microbial populations.

  16. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Jawitz, James W.

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important

  17. SYNTHESIS REPORT ON FIVE DENSE, NONAQUEOUS-PHASE LIQUID (DNAPL) REMEDIATION PROJECTS

    EPA Science Inventory

    Dense non-aqueous phase liquid (DNAPL) poses a difficult problem for subsurface remediation because it serves as a continuing source to dissolved phase ground water contamination and is difficult to remove from interstitial pore space or bedrock fractures in the subsurface. Numer...

  18. Physics of DNAPL migration and remediation in the presence of heterogeneities. 1998 annual progress report

    SciTech Connect

    Conrad, S.; Glass, R.J.

    1998-06-01

    'The goal of the research is to develop a fundamental quantitative understanding of the role of physical heterogeneities on DNAPL migration and remediation in aquifers. Such understanding is critical to cost effectively identify the location of the subsurface zone of contamination and design remediation schemes focused on removing the source of the contamination, the DNAPL itself. To reach this goal, the following objectives for the proposed research are defined: Objective 1: Develop fundamental understanding of the physics of DNAPL migration processes within heterogeneous porous media: (a) Conduct a suite of two-dimensional thin slab physical experiments within controlled and systematically varied heterogeneous porous media at scales up to one meter. Vary system parameters to consider a range of capillary and bond numbers within these heterogeneous porous structures. (b) Develop a new DNAPL migration model based on an Up-scaling of Invasion Percolation (UIP) to model the migration process. Compare the model predictions to experimental results. Accomplishing objective 1 provides a series of experiments against which the authors will be able to evaluate the validity of existing multi-phase flow theory as formulated in both percolation codes and in continuum flow codes. These experimental results will also provide new insights into DNAPL migration behavior. Development of the UIP model will provide an exciting alternative to continuum multi-phase flow codes since UIP offers several advantages for modeling DNAPL migration. The UIP model is fast, allowing for: (1) modeling in three dimensions; (2) the incorporation of much more geologic detail; and, (3) its use in probabilistic modeling by way of Monte Carlo techniques. In addition, the UIP code requires much less input data and it can handle density-driven fingering, a process known to occur with DNAPLs. Objective 2: Develop fundamental understanding of the physics of DNAPL remediation processes within heterogeneous

  19. RELATIONSHIP BETWEEN MASS FLUX REDUCTION AND SOURCE-ZONE MASS REMOVAL: ANALYSIS OF FIELD DATA

    PubMed Central

    DiFilippo, Erica L.

    2010-01-01

    The magnitude of contaminant mass flux reduction associated with a specific amount of contaminant mass removed is a key consideration for evaluating the effectiveness of a source-zone remediation effort. Thus, there is great interest in characterizing, estimating, and predicting relationships between mass flux reduction and mass removal. Published data collected for several field studies were examined to evaluate relationships between mass flux reduction and source-zone mass removal. The studies analyzed herein represent a variety of source-zone architectures, immiscible-liquid compositions, and implemented remediation technologies. There are two general approaches to characterizing the mass-flux-reduction/mass-removal relationship, end-point analysis and time-continuous analysis. End-point analysis, based on comparing masses and mass fluxes measured before and after a source-zone remediation effort, was conducted for 21 remediation projects. Mass removals were greater than 60% for all but three of the studies. Mass flux reductions ranging from slightly less than to slightly greater than one-to-one were observed for the majority of the sites. However, these single-snapshot characterizations are limited in that the antecedent behavior is indeterminate. Time-continuous analysis, based on continuous monitoring of mass removal and mass flux, was performed for two sites, both for which data were obtained under water-flushing conditions. The reductions in mass flux were significantly different for the two sites (90% vs. ~8%) for similar mass removals (~40%). These results illustrate the dependence of the mass-flux-reduction/mass-removal relationship on source-zone architecture and associated mass-transfer processes. Minimal mass flux reduction was observed for a system wherein mass removal was relatively efficient (ideal mass transfer and displacement). Conversely, a significant degree of mass flux reduction was observed for a site wherein mass removal was inefficient

  20. FIELD ASSESSMENT OF MULTIPLE DNAPL REMEDIATION TECHNIQUES

    EPA Science Inventory

    Five DNAPL remediation technologies were evaluated in constructed test cells at the Dover National Test Site, Dover AFB, Delaware. The technologies were cosolvent solubilization, cosolvent mobilization, surfactant solubilization, complex sugar flushing and air sparging/soil vapor...

  1. Does increasing the temperature induce DNAPL migration?

    EPA Science Inventory

    Tetrachloroethylene, trichloroethylene, and chlorobenzene have been identified as contaminants in groundwater and are sometimes called Dense Non-Aqueous Phase Liquids (DNAPL). Thermal methods for remediation of contaminated soils and groundwater rely on raising the temperature o...

  2. Impact of DNAPL contact on the structure of smectitic clay materials.

    PubMed

    Ayral, Derya; Otero, Margarita; Goltz, Mark N; Demond, Avery H

    2014-01-01

    Smectitic clays have a flexible structure that may be impacted by contact with dense nonaqueous phase liquids (DNAPLs) present at hazardous waste sites. Measurements of the basal spacing of air-dry clays contacted with pure chlorinated solvents and chlorinated DNAPL wastes showed that the intraparticle spacing is similar to that in air. Basal spacings of water-saturated clays contacted with pure chlorinated solvents are similar to those in contact with water, even after extended equilibration times (300 d). In contrast, contact with chlorinated DNAPL wastes reduced the basal spacing of water-saturated sodium smectites in a relatively short time frame, resulting in cracks that were as large as 1mm in aperture. The penetration of these wastes into the intraparticle spacing of clay and the resultant cracking may contribute to the accumulation of chlorinated compounds in clay layers observed in the field and the extended remediation times associated with this mass storage.

  3. Time-Dependent Interfacial Properties and DNAPL Mobility

    SciTech Connect

    Tuck, D.M.

    1999-03-10

    Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.

  4. Processes affecting soil and groundwater contamination by DNAPL in low-permeability media

    SciTech Connect

    McWhorter, D.B.

    1996-08-01

    This paper is one of a set of focus papers intended to document the current knowledge relevant to the contamination and remediation of soils and ground water by dense, nonaqueous phase liquids (DNAPL). The emphasis is on low permeability media such as fractured clay and till and unconsolidated, stratified formations. Basic concepts pertaining to immiscible-fluid mixtures are described and used to discuss such aspects as DNAPL transport, dissolved-phase transport, and equilibrium mass distributions. Several implications for remediation are presented. 27 refs., 8 figs., 4 tabs.

  5. High-resolution experiments on chemical oxidation of DNAPL in variable-aperture fractures

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar; Detwiler, Russell L.; Jones, Trevor

    2015-04-01

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. We present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were quantified for each experiment. The integrated mass transfer rate from the TCE phase for all experiments exhibited three time regimes: an early-time regime with slower mass transfer rates limited by low specific interfacial area; an intermediate-time regime with higher mass transfer rates resulting from breakup of large TCE blobs, which greatly increases specific interfacial area; and a late-time regime with low mass transfer rates due to the deposition of MnO2 precipitates. In two experiments, mass balance analyses suggested that TCE mass removal rates exceeded the maximum upper bound mass removal rates derived by assuming that oxidation and dissolution are the only mechanisms for TCE mass removal. We propose incomplete oxidation by permanganate and TCE solubility enhancement by intermediate reaction products as potential mechanisms to explain this behavior. We also speculate that some intermediate reaction products with surfactant-like properties may play a role in lowering the TCE-water interfacial tension, thus causing breakup of large TCE blobs. Our quantitative experimental measurements will be useful in the context of developing accurate computational models for chemical oxidation of TCE in fractures.

  6. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  7. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones.

    PubMed

    Seyedabbasi, Mir Ahmad; Newell, Charles J; Adamson, David T; Sale, Thomas C

    2012-06-01

    The relative contribution of dense non-aqueous phase liquid (DNAPL) dissolution versus matrix diffusion processes to the longevity of chlorinated source zones was investigated. Matrix diffusion is being increasingly recognized as an important non-DNAPL component of source behavior over time, and understanding the persistence of contaminants that have diffused into lower permeability units can impact remedial decision-making. In this study, a hypothetical DNAPL source zone architecture consisting of several different sized pools and fingers originally developed by Anderson et al. (1992) was adapted to include defined low permeability layers. A coupled dissolution-diffusion model was developed to allow diffusion into these layers while in contact with DNAPL, followed by diffusion out of these same layers after complete DNAPL dissolution. This exercise was performed for releases of equivalent masses (675 kg) of three different compounds, including chlorinated solvents with solubilities ranging from low (tetrachloroethene (PCE)), moderate (trichloroethene (TCE)) to high (dichloromethane (DCM)). The results of this simple modeling exercise demonstrate that matrix diffusion can be a critical component of source zone longevity and may represent a longer-term contributor to source longevity (i.e., longer time maintaining concentrations above MCLs) than DNAPL dissolution alone at many sites. For the hypothetical TCE release, the simulation indicated that dissolution of DNAPL would take approximately 38 years, while the back diffusion from low permeability zones could maintain the source for an additional 83 years. This effect was even more dramatic for the higher solubility DCM (97% of longevity due to matrix diffusion), while the lower solubility PCE showed a more equal contribution from DNAPL dissolution vs. matrix diffusion. Several methods were used to describe the resulting source attenuation curves, including a first-order decay model which showed that half-life of

  8. Long-term ground penetrating radar monitoring of a small volume DNAPL release in a natural groundwater flow field.

    PubMed

    Hwang, Yong Keun; Endres, Anthony L; Piggott, Scott D; Parker, Beth L

    2008-04-01

    An earlier field experiment at Canadian Forces Base Borden by Brewster and Annan [Geophysics 59 (1994) 1211] clearly demonstrated the capability of ground penetrating radar (GPR) reflection profiling to detect and monitor the formation of DNAPL layers in the subsurface. Their experiment involved a large volume release (770 L) of tetrachloroethylene into a portion of the sand aquifer that was hydraulically isolated from groundwater flow by sheet pile walls. In this study, we evaluated the ability of GPR profiling to detect and monitor much smaller volume releases (50 L). No subsurface confining structure was used in this experiment; hence, the DNAPL impacted zone was subjected to the natural groundwater flow regime. This condition allowed us to geophysically monitor the DNAPL mass loss over a 66 month period. Reflectivity variations on the GPR profiles were used to infer the presence and evolution of the solvent layers. GPR imaging found significant reflectivity increases due to solvent layer formation during the two week period immediately after the release. These results demonstrated the capacity of GPR profiling for the detection and monitoring of lesser volume DNAPL releases that are more representative of small-scale industrial spills. The GPR imaged solvent layers subsequently reduced in both areal extent and reflectivity after 29 months and almost completely disappeared by the end of the 66 month monitoring period. Total DNAPL mass estimates based on GPR profiling data indicated that the solvent mass was reduced to 34%-36% of its maximum value after 29 months; only 4%-9% of the solvent mass remained in the study area after 66 months. These results are consistent with independent hydrogeological estimates of remaining DNAPL mass based on the downgradient monitoring of the dissolved solvent phase. Hence, we have concluded that the long-term GPR reflectivity changes of the DNAPL layers are likely the result from the dissolution of chlorinated solvents residing

  9. Removal of carbon tetrachloride from a layered porous medium by means of soil vapor extraction enhanced by desiccation and water table reduction

    SciTech Connect

    Oostrom, Mart; Dane, J H.; Wietsma, Thomas W.

    2005-11-16

    A two-dimensional flow cell experiment was conducted to study the removal of the carbon tetrachloride component of a DNAPL mixture from a layered porous medium through soil vapor extraction (SVE) with moist and dry air. A dual-energy gamma radiation system was used at various times to non-intrusively determine fluid saturations. The mixture, which contained the volatile organic carbon tetrachloride, mimics the DNAPL disposed at the Hanford Site in Washington State. The flow cell, which is 100 cm long, 75 cm high and 5.5 cm wide, was packed with two sloped coarse sand and two sloped silt layers in an otherwise uniform matrix of medium-grained sand. A V-shaped fine sand layer was placed at the bottom of the flow cell to prevent DNAPL from exiting the flow cell. The water table was located 2 cm from the bottom, creating variably saturated conditions. A 500-mL spill was introduced at the top of the flow cell from a small source area. It was observed that the DNAPL largely by-passed the silt layers but easily moved into the coarse sand layers. Residual DNAPL was formed in the medium-grained sand matrix. The DNAPL caused a distinct reduction of the capillary fringe. Most of the DNAPL ended up in a pool on top of the V-shaped fine sand. Through four treatments with moist air soil vapor extraction, most residual carbon tetrachloride was removed from the medium-grained matrix and the coarse sand layers. However, soil vapor extraction with moist air was not able to remove the carbon tetrachloride from the silt layers and the pool. Through a water table reduction and subsequent soil vapor extraction with dry air, the carbon tetrachloride in the silt layers and the pool was effectively removed. Based on gamma measurements and carbon tetrachloride vapor concentration data, it was estimated that after the final remediation treatment, almost 90% of the total mass was removed. Key Words: DNAPL; soil vapor extraction; desiccation; remediation

  10. Nasal mass removal in the koala (Phascolarctos cinereus).

    PubMed

    Bercier, Marjorie; Wynne, Janna; Klause, Stephen; Stadler, Cynthia K; Gorow, April; Pye, Geoffrey W

    2012-12-01

    Nasal masses in the koala (Phascolarctos cinereus) are not uncommon and can be challenging to diagnose and treat. Differential diagnoses for nasal masses in the koala are cryptococcal granulomas, nasal polyps, nasal adenocarcinoma, and osteochondromatosis. This report describes successful surgical approaches for two adult koalas with nasal masses and includes photodocumentation and description of the anatomy of the koala nasal passages from the postmortem transverse sectioning of a normal koala head. Surgical removal of the nasal masses in these koalas resulted in a rapid resolution of clinical signs.

  11. Electroosmosis remediation of DNAPLS in low permeability soils

    SciTech Connect

    Ho, S V.

    1996-08-01

    Electroosmosis is the movement of water through a soil matrix induced by a direct current (DC) electric field. The technique has been used since the 1930s for dewatering and stabilizing fine-grained soils. More recently, electroosmosis has been considered as an in-situ method for soil remediation in which water is injected into the soil at the anode region to flush the contaminants to the cathode side for further treatment or disposal. The major advantage of electroosmosis is its inherent ability to move water uniformly through clayey, silty soils at 100 to 1000 times faster than attainable by hydraulic means, and with very low energy usage. Drawbacks of electroosmosis as a stand-alone technology include slow speed, reliance on solubilizing the contaminants into the groundwater for removal, potentially an unstable process for long term operation, and necessary additional treatment and disposal of the collected liquid. Possible remediation applications of electroosmosis for DNAPLs would be primarily in the removal of residual DNAPLs in the soil pores by electroosmotic flushing. The future of electroosmosis as a broad remedial method lies in how well it can be coupled with complementary technologies. Examples include combining electroosmosis with vacuum extraction, with surfactant usage to deal with non-aqueous phase liquids (NAPLs) through enhanced solubilization or mobilization, with permeability enhancing methods (hydrofracturing, pneumatic fracturing, etc.) to create recovery zones, and with in-situ degradation zones to eliminate aboveground treatment. 33 refs., 1 fig., 1 tab.

  12. Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion.

    PubMed

    Lee, Young-Chul; Kwon, Tae-Soon; Yang, Jung-Seok; Yang, Ji-Won

    2007-02-01

    Emulsion-based remediation with biodegradable vegetable oils was investigated as an alternative technology for the treatment of subsurface DNAPLs (dense non-aqueous phase liquids) such as TCE (trichloroethylene) and PCE (perchloroethylene). Corn and olive oil emulsions obtained by homogenization at 8000rpm for 15min were used. The emulsion droplets prepared with corn and olive oil gave a similar size distribution (1-10microm) and almost all of initially injected oil, >90%, remained in a dispersed state. In batch experiments, 2% (v/v) oil emulsion could adsorb up to 11,000ppm of TCE or 18,000ppm of PCE without creating a free phase. Results of one-dimensional column flushing studies indicated that contaminants with high aqueous solubility could be efficiently removed by flushing with vegetable oil emulsions. Removal efficiencies exceeded 98% for TCE and PCE with both corn and olive oil emulsions. The results of this study show that flushing with biodegradable oil emulsion can be used for the remediation of groundwater contaminated by DNAPLs.

  13. Controlled release, blind test of DNAPL remediation by ethanol flushing.

    PubMed

    Brooks, Michael C; Annable, Michael D; Rao, P Suresh C; Hatfield, Kirk; Jawitz, James W; Wise, William R; Wood, A Lynn; Enfield, Carl G

    2004-04-01

    A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedial mechanism was enhanced dissolution based on the phase behavior of the water-ethanol-PCE system. Based on the knowledge of the actual PCE volume introduced into the cell, it was estimated that 83 L of PCE were present at the start of the test. Over a 40-day period, 64% of the PCE was removed by flushing the cell with an alcohol solution of approximately 70% ethanol and 30% water. High removal efficiencies at the end of the test indicated that more PCE could have been removed had it been possible to continue the demonstration. The ethanol solution extracted from the cell was recycled during the test using activated carbon and air stripping treatment. Both of these treatment processes were successful in removing PCE for recycling purposes, with minimal impact on the ethanol content in the treated fluids. Results from pre- and post-flushing partitioning tracer tests overestimated the treatment performance. However, both of these tracer tests missed significant amounts of the PCE present, likely due to inaccessibility of the PCE. The tracer results suggest that some PCE was inaccessible to the ethanol solution which led to the inefficient PCE removal rates observed. The flux-averaged aqueous PCE concentrations measured in the post-flushing tracer test were reduced by a factor of 3 to 4 in the extraction wells that showed the highest PCE removal compared to those concentrations in the pre-flushing tracer test.

  14. Controlled release, blind test of DNAPL remediation by ethanol flushing

    NASA Astrophysics Data System (ADS)

    Brooks, Michael C.; Annable, Michael D.; Rao, P. Suresh C.; Hatfield, Kirk; Jawitz, James W.; Wise, William R.; Wood, A. Lynn; Enfield, Carl G.

    2004-04-01

    A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedial mechanism was enhanced dissolution based on the phase behavior of the water-ethanol-PCE system. Based on the knowledge of the actual PCE volume introduced into the cell, it was estimated that 83 L of PCE were present at the start of the test. Over a 40-day period, 64% of the PCE was removed by flushing the cell with an alcohol solution of approximately 70% ethanol and 30% water. High removal efficiencies at the end of the test indicated that more PCE could have been removed had it been possible to continue the demonstration. The ethanol solution extracted from the cell was recycled during the test using activated carbon and air stripping treatment. Both of these treatment processes were successful in removing PCE for recycling purposes, with minimal impact on the ethanol content in the treated fluids. Results from pre- and post-flushing partitioning tracer tests overestimated the treatment performance. However, both of these tracer tests missed significant amounts of the PCE present, likely due to inaccessibility of the PCE. The tracer results suggest that some PCE was inaccessible to the ethanol solution which led to the inefficient PCE removal rates observed. The flux-averaged aqueous PCE concentrations measured in the post-flushing tracer test were reduced by a factor of 3 to 4 in the extraction wells that showed the highest PCE removal compared to those concentrations in the pre-flushing tracer test.

  15. Interpreting DNAPL saturations in a laboratory-scale injection using one- and two-dimensional modeling of GPR Data

    USGS Publications Warehouse

    Johnson, R.H.; Poeter, E.P.

    2005-01-01

    Ground-penetrating radar (GPR) is used to track a dense non-aqueous phase liquid (DNAPL) injection in a laboratory sand tank. Before modeling, the GPR data provide a qualitative image of DNAPL saturation and movement. One-dimensional (1D) GPR modeling provides a quantitative interpretation of DNAPL volume within a given thickness during and after the injection. DNAPL saturation in sublayers of a specified thickness could not be quantified because calibration of the 1D GPR model is nonunique when both permittivity and depth of multiple layers are unknown. One-dimensional GPR modeling of the sand tank indicates geometric interferences in a small portion of the tank. These influences are removed from the interpretation using an alternate matching target. Two-dimensional (2D) GPR modeling provides a qualitative interpretation of the DNAPL distribution through pattern matching and tests for possible 2D influences that are not accounted for in the 1D GPR modeling. Accurate quantitative interpretation of DNAPL volumes using GPR modeling requires (1) identification of a suitable target that produces a strong reflection and is not subject to any geometric interference; (2) knowledge of the exact depth of that target; and (3) use of two-way radar-wave travel times through the medium to the target to determine the permittivity of the intervening material, which eliminates reliance on signal amplitude. With geologic conditions that are suitable for GPR surveys (i.e., shallow depths, low electrical conductivities, and a known reflective target), the procedures in this laboratory study can be adapted to a field site to delineate shallow DNAPL source zones.

  16. How to Use Removable Mass Storage Memory Devices

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2004-01-01

    Mass storage refers to the variety of ways to keep large amounts of information that are used on a computer. Over the years, the removable storage devices have grown smaller, increased in capacity, and transferred the information to the computer faster. The 8" floppy disk of the 1960s stored 100 kilobytes, or about 60 typewritten, double-spaced…

  17. Removal of the samarium isobaric interference from promethium mass analysis

    SciTech Connect

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1988-02-01

    Resonance ionization mass spectroscopy (RIMS) is used to eliminate isobaric interference when determining the isotopic abundances of an element. In this application, RIMS is applied to the determination of promethium with the removal of samarium interference. In particular, promethium-147 is separated form samarium-147 and samarium-152.

  18. DNAPL transport through macroporous, clayey till columns

    SciTech Connect

    Joergensen, P.R. |; Broholm, K.; Sonnenborg, T.O.; Arvin, E.

    1998-07-01

    This paper provides the first experimental determination of the rates and distribution of transport of a dense, nonaqueous phase liquid (DNAPL) through a naturally bioporous and fractured clayey till deposit. Until now, assessment of DNAPL behavior in this type of deposit has relied on theoretical studies. Predictions of DNAPL transport have proven to be uncertain as a result of difficulties in measuring critical parameters such as DNAPL entry pressure and flow behavior in response to natural fracture/biopore apertures and the degree of interconnection of these structures. In the present investigation, the migration of free product trichloroethylene (TCE) was studied by means of two undisturbed clayey till columns under in situ effective soil stress conditions. The experiments revealed that transport of TCE was restricted to biopores in one column and fractures in another column, bypassing the low-permeability clayey matrix. Effective porosities of the columns, i.e., biopores and fractures, were two to three orders of magnitude lower than total porosities, i.e., macropores and matrix. Single phase water flow rates through the columns at water-saturated conditions followed a linear relationship with hydraulic gradient. TCE flow could not be predicted from the single-phase calculations because of nonlinearity observed between applied TCE injection heads and resulting TCE flow. TCE flow rates were 24 and 10.3 m/day at TCE gradients of 1.18 and 0.91, respectively. The observed flow rates indicate that in cases where vertical biopores or fractures fully penetrate clayey till aquitards, a low-viscosity DNAPL may quickly enter underlying aquifers. The experiments further indicate that 100 liters of a low-viscosity DNAPL are sufficient to contaminate approximately 25 to 100 m{sup 3} of till material because of the small effective porosity constituted by the biopores and fractures.

  19. AN EXPERIMENTAL ASSESSMENT OF THE IMPACTS OF PARTIAL DNAPL SOURCE ZONE DELETION USING SPARGING AS A REMEDIATION TECHNIQUE

    EPA Science Inventory

    The contamination of the subsurface environment by dense non-aqueous phase liquids (DNAPL) is a wide-spread problem that poses a significant threat to soil and groundwater quality. Implementing different remediation techniques can lead to the removal of a high fraction of the DNA...

  20. MASS-REMOVAL AND MASS-FLUX-REDUCTION BEHAVIOR FOR IDEALIZED SOURCE ZONES WITH HYDRAULICALLY POORLY-ACCESSIBLE IMMISCIBLE LIQUID

    SciTech Connect

    Brusseau, M. L.; Difilippo, Erica L.; marble, justin C.; Oostrom, Mart

    2008-04-01

    A series of flow-cell experiments was conducted to investigate aqueous dissolution and mass-removal behavior for systems wherein immiscible liquid was non-uniformly distributed in physically heterogeneous source zones. The study focused specifically on characterizing the relationship between mass flux reduction and mass removal for systems for which immiscible liquid is poorly accessible to flowing water. Two idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. The results showed that significant reductions in mass flux occurred at relatively moderate mass-removal fractions for all systems. Conversely, minimalmass flux reduction occurred until a relatively large fraction of mass (>80%) was removed for the control experiment, which was designed to exhibit ideal mass removal. In general, mass flux reduction was observed to follow an approximately one-to-one relationship with mass removal. Two methods for estimating mass-flux-reduction/mass-removal behavior, one based on system-indicator parameters (ganglia-to-pool ratio) and the other a simple mass-removal function, were used to evaluate the measured data. The results of this study illustrate the impact of poorly accessible immiscible liquid on mass-removal and mass-flux processes, and the difficulties posed for estimating mass-flux-reduction/mass-removal behavior.

  1. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  2. CONTROLLED RELEASE, BLIND TEST OF DNAPL REMEDIATION BY ETHANOL FLUSHING

    EPA Science Inventory

    A dense nonaqueous phase liquid (DNAPL) source zone was established within a sheet-pile
    isolated cell through a controlled release of perchloroethylene (PCE) to evaluate DNAPL
    remediation by in-situ cosolvent flushing. Ethanol was used as the cosolvent, and the main remedia...

  3. Laboratory investigation of DNAPL migration in porous media.

    PubMed

    Luciano, Antonella; Viotti, Paolo; Papini, Marco Petrangeli

    2010-04-15

    Laboratory experiments have been carried out with and without groundwater flow in a two-dimensional laboratory-scale tank to assess the influence of layered media and hydraulic gradient on DNAPL infiltration and redistribution processes. Hydrofluoroether has been used as DNAPL and glass beads have been utilized as porous medium. An image analysis procedure has been used to determine saturation distribution during infiltration and redistribution processes. This method allows quantitative time dependent full fields mapping of the DNAPL saturation, as well as the monitoring of DNAPL saturation variation. By means of performed experiments important information were obtained about the migration and redistribution process, the infiltration and migration velocity, the characteristics of migration body. The experimental results show that the hydraulic gradient promotes the infiltration process, increasing the infiltration rate. It hampers DNAPL spread and fingering bringing to a reduction of residual DNAPL and it also promotes the DNAPL redistribution, and it reduces the amount remaining at residual saturation. Furthermore the hydraulic gradient promotes downward and down-gradient migration. DNAPL migration in the direction of water flow, can be considered important due to significant errors in the location of sources in the case of high gradients and high aquifer thicknesses, and for high water flow velocities, such as those which can be expected during pumping actions in water supply or in remediation activities.

  4. Field test of single well DNAPL characterization using alcohol injection/extraction

    SciTech Connect

    Jerome, K.M.; Looney, B.B.; Rhoden, M.L.; Riha, B.; Burdick, S.

    1996-10-29

    Soils and groundwater beneath an abandoned process sewer line in the A/M Area of the Savannah River Site (SRS) contain elevated levels of volatile organic compounds, specifically trichloroethylene (TCE) and tetrachloroethylene (PCE), two common chlorinated solvents. These compounds have low aqueous solubilities, thus when released to the subsurface in sufficient quantity, tend to exist as immiscible fluids or nonaqueous phase liquids (NAPLs). Because chlorinated solvents are also denser than water, they are referred to by the acronym DNAPLs, or dense non-aqueous phase liquids. Technologies targeted at efficient characterization or removal of DNAPL are not currently proven. The authors performed injection/extraction characterization tests in six existing wells in A/M Area. Water concentrations for TCE and/or PCE in these wells ranged from 0% to 100% of solubility. For each test, small amounts of solubilizing solution were used to try to confirm or deny the presence or absence of DNAPL in the immediate vicinity of the well screen.

  5. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (DNAPL CONFERENCE)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  6. Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution.

    PubMed

    Yang, Yanru; McCarty, Perry L

    2002-08-01

    Tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) can act as a persistent groundwater contamination source for decades. Biologically enhanced dissolution of pure PCE DNAPL has potential for reducing DNAPL longevity as indicated previously (Environ. Sci. Technol. 2000, 34, 2979). Reported here are expanded studies to evaluate donor substrates that offer different remediation strategies for bioenhanced DNAPL dissolution, including pentanol (soluble substrate, fed continuously), calcium oleate (insoluble substrate, placed in column initially by alternate pumping of sodium oleate and calcium chloride), and olive oil (mixed with PCE and placed in column initially). Compared with a no-substrate column control, the DNAPL dissolution rate was enhanced about three times when directly coupled with biological transformation. The major degradation product formed was cDCE, but significant amounts of VC and ethene were also found with some columns. Extensive methanogenesis, which reduced PCE transformation, occurred in both the pentanol-fed and oleate-amended columns, but not in the olive-oil-amended column, suggesting that methanogens managed to colonize column niches where PCE DNAPL was not present. Detrimental methane production in the pentanol-fed column was nearly eliminated by presaturating the feed solution with PCE. These results suggest potential DNAPL remediation strategies to enhance dehalogenation while controlling competitive methanogenic utilization of donor substrates.

  7. The fundamentals and futures of removable mass storage alternatives

    NASA Technical Reports Server (NTRS)

    Kempster, Linda

    1993-01-01

    This article reflects my view of how the storage products have been introduced into the marketplace, where they came from, and where others will continue to come from in the future. My corporate goal is to be a resource for those searching for removable solutions to mass storage problems. My introduction to optical storage occurred a few months before signing a non-disclosure agreement with FileNet on 8 Aug. 1983. By 87 or 88, as the optical craze was getting more popular, I started looking for similar or complementary storage technologies. I am still looking and my research is constantly turning up new entrants into this field. Due to the scope of the coverage in this field, this article does not dwell on any single technology. The goal is to provide information that is not compiled in any other single source and focus on facts that are not commonly known. I have provided a few baseline assumptions to ensure the mathematical calculations remain consistent: (1) hard-copy 8.5 in x 11 in documents which are scanned at 200 dots per inch (dpi) and compressed at a ratio of 10:1 result in a document image which requires an average of 50 Kilobytes (KB) of storage; (2) an average ASCII page requires 2 KB of storage; (3) an average flle cabinet drawer can hold 2500 pieces of paper; (4) one GB of storage can hold an average of 20,000 document images (a reel of 6250 tape holds 180 Megabytes (MB)).

  8. FIELD EVALUATION OF DNAPL EXTRACTION TECHNOLOGIES: PROJECT OVERVIEW

    EPA Science Inventory

    Five DNAPL remediation technologies were evaluated at the Dover National Test Site, Dover AFB, Delaware. The technologies were cosolvent solubilization, cosolvent mobilization, surfactant solubilization, complex sugar flushing and air sparging/soil vapor extraction. The effectiv...

  9. Remediation of DNAPL pools using dense brine barrier strategies.

    PubMed

    Hill, E H; Moutier, M; Alfaro, J; Miller, C T

    2001-07-15

    Although dense nonaqueous phase liquid (DNAPL) pools are an important source of groundwater contamination, little experimental data have been generated to develop a mature level of understanding of the problem, and few strategies specifically aimed at remediation have been advanced. We discuss the dominant importance of these features in subsurface systems, present novel two- and three-dimensional heterogeneous experimental systems, and show results from two evolving strategies for remediating DNAPL pools. These strategies involve the joint use of a dense brine barrier and controlled mobilization of trapped DNAPL using small-volume surfactant flushes. These experiments demonstrate a controlled, substantial reduction of entrapped DNAPL in both two- and three-dimensional heterogeneous domains, using less than a single pore volume of flushing solution in some cases.

  10. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    SciTech Connect

    Buchanan, M.V.

    2000-07-20

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis.

  11. Transport with Bimolecular Reactions: Applications to In-Situ Chemical Oxidation of DNAPLs by Permanganate in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud

    Chemical oxidation of dense nonaqueous-phase liquids (DNAPLs) by permanganate has emerged as an effective remediation strategy in fractured rock. Our objectives in this research were to carry out a sequence of experimental, computational and theoretical tasks aimed at improving current understanding of permanganate oxidation in fractured rock systems, and also develop modeling tools that can be used for preliminary design of oxidation schemes at field sites. Our research focused on both free-phase entrapped DNAPL in variable-aperture fractures and dissolved DNAPL in the rock matrix. In the first section of our research, we present high-resolution experimental investigations in transparent analog variable-aperture fractures to improve understanding of chemical oxidation of residual entrapped trichloroethylene (TCE) in fractures. Four experiments were performed with different permanganate concentrations, flow rates, and initial TCE phase geometry. The initial aperture field and evolving entrapped-phase geometry were measured quantitatively. We present results on the time-evolution of fracture-scale TCE consumption and DNAPL removal rates for all the experiments. In the next part of this work, we developed theoretical understanding of the reaction front dynamics in the case of chemical oxidation of aqueous-phase DNAPL within fracture-matrix system, backed up by numerical simulations. We also consider the influence of NOD consumption and contaminant sorption to solid aquifer materials in our models. Based on the results from this task we are able to propose simple strategies for remediation design (e.g. the time needed to degrade DNAPL inside the fracture-matrix system and the permanganate injection pattern) for a given set of conditions. Our numerical simulations of diffusion with bimolecular reaction in the rock matrix demonstrated a transition in the spatially integrated reaction rate - increasing with time initially, and transitioning to a decrease with time. We

  12. A media maniac's guide to removable mass storage media

    NASA Technical Reports Server (NTRS)

    Kempster, Linda S.

    1996-01-01

    This paper addresses at a high level, the many individual technologies available today in the removable storage arena including removable magnetic tapes, magnetic floppies, optical disks and optical tape. Tape recorders represented below discuss logitudinal, serpantine, logitudinal serpantine,and helical scan technologies. The magnetic floppies discussed will be used for personal electronic in-box applications.Optical disks still fill the role for dense long-term storage. The media capacities quoted are for native data. In some cases, 2 KB ASC2 pages or 50 KB document images will be referenced.

  13. Electromagnetic Detection and Digital Visualization of Dnapl Contaminants in a Two-Dimmensional Soilbed

    NASA Astrophysics Data System (ADS)

    Serrano, M. F.; Padilla, I. Y.; Rodriguez, R.

    2007-05-01

    Uncharacterized underground contamination at hundreds of thousands of sites in the United States poses major risks to public health. Excessive remediation cost of these sites and failure to achieve acceptable clean up levels are attributed to inadequate detection and monitoring of contaminants in underground systems. Electromagnetic technology and imaging systems may offer practical and cost effective technologies to detect and monitor contamination and enhance remediation practices. Cross Well Radar (CWR) is an innovative, semi-noninvasive technique that has proven valuable in detecting changes in electromagnetic properties when materials of different dielectric characteristics are present in underground environments. It may, therefore, serve to locate and monitor contaminants of differing dielectric properties in underground systems. The overall goal of our research is to evaluate the applicability of CWR technologies to detect, image and monitor the distribution of Dense Non-Aqueous Phase Liquids (DNAPLs) under variable saturation and flow conditions. Validation of this technology is conducted through powerful image analysis techniques, which can discriminate between regions of different amounts of contaminants. Experimental work involves placing transmitting and receiving loop antennas in a 2D SoilBED at preset locations, and measuring their transmission and reflection characteristics in the presence and absence of DNAPLs. Simultaneous acquisition of visible images is taken with a camera. The response of the antennas is compared with colorimetric indices developed for different mass concentrations. The indices are obtained through the application of the classification MatLab Toolboxs developed by CenSSIS. A 2D SoilBed system has been developed to evaluate two modes of concurrent detection and monitoring technologies: Cross Well Radar and Image Analysis (IA). Both technologies are applied concurrently in the SoilBed system during DNAPL transport experiments

  14. Steam and ET-DSP combined for DNAPL remediation: full-scale site restoration at Young-Rainey Star Center

    SciTech Connect

    Heron, Gorm; Carroll, Steven; Sowers, Hank; McGee, Bruce; Juhlin, Randall; Daniel, Joe; Ingle, David S.

    2004-05-01

    In March of 2003, the United States Department of Energy (DOE) completed a full-scale nonaqueous-phase liquid (NAPL) remediation of Area A of the Northeast Site at the Young-Rainey STAR Center, Largo, Florida. The site was contaminated with approximately 2,300 kg (5,000 lbs) of NAPL constituents such as TCE, cis-1,2-DCE, methylene chloride, toluene, and petroleum hydrocarbons. The site was remediated by SteamTech using a combination of steam-enhanced extraction and electrical resistance heating during operations lasting 4.5 months. After the target volume had been heated to or near boiling temperatures, pressure cycles were used to increase the mass removal rates. Each de-pressurization cycle led to large increases in the vapor phase recovery, until a final phase of diminishing returns was reached. Post-operational sampling at randomly selected locations showed the concentrations of all contaminants of concern (COC) to be well below the remedial goals. The majority of the groundwater samples were below maximum contaminant level (MCL) for all the contaminants of concern. The overall mass balance showed that about 0.5 kg (1 pound) of VOCs remained in the remedial volume, and showed remedial efficiencies of between 99.85 and 99.99 percent for the four chemicals of concern. This is the first full-scale demonstration of complete source removal at a DNAPL site. Since the post-operational sampling shows all concentrations to be below or close to groundwater MCLs, the thermal remedy may be satisfactory for site closure without a polishing phase.

  15. Phase I Field Test Results of an Innovative DNAPL Remediation Technology: The Hydrophobic Lance

    SciTech Connect

    Tuck, D.M.

    1999-01-28

    An innovative technology for recovery of pure phase DNAPL was deployed in the subsurface near the M-Area Settling Basin, continuing the support of the A/M Area Ground Water Corrective Action Program (per Part B requirements). This technology, the Hydrophobic Lance, operates by placing a neutral/hydrophobic surface (Teflon) in contact with the DNAPL. This changes the in situ conditions experienced by the DNAPL, allowing it to selectively drain into a sump from which it can be pumped. Collection of even small amounts of DNAPL can save years of pump-and-treat operation because of the generally low solubility of DNAPL components.

  16. The vapor-phase multi-stage CMD test for characterizing contaminant mass discharge associated with VOC sources in the vadose zone: Application to three sites in different lifecycle stages of SVE operations.

    PubMed

    Brusseau, M L; Mainhagu, J; Morrison, C; Carroll, K C

    2015-08-01

    Vapor-phase multi-stage contaminant mass discharge (CMD) tests were conducted at three field sites to measure mass discharge associated with contaminant sources located in the vadose zone. The three sites represent the three primary stages of the soil vapor extraction (SVE) operations lifecycle-pre/initial-SVE, mid-lifecycle, and near-closure. A CMD of 32g/d was obtained for a site at which soil vapor SVE has been in operation for approximately 6years, and for which mass removal is currently in the asymptotic stage. The contaminant removal behavior exhibited for the vapor extractions conducted at this site suggests that there is unlikely to be a significant mass of non-vapor-phase contaminant (e.g., DNAPL, sorbed phase) remaining in the advective domains, and that most remaining mass is likely located in poorly accessible domains. Given the conditions for this site, this remaining mass is hypothesized to be associated with the low-permeability (and higher water saturation) region in the vicinity of the saturated zone and capillary fringe. A CMD of 25g/d was obtained for a site wherein SVE has been in operation for several years but concentrations and mass-removal rates are still relatively high. A CMD of 270g/d was obtained for a site for which there were no prior SVE operations. The behavior exhibited for the vapor extractions conducted at this site suggest that non-vapor-phase contaminant mass (e.g., DNAPL) may be present in the advective domains. Hence, the asymptotic conditions observed for this site most likely derive from a combination of rate-limited mass transfer from DNAPL (and sorbed) phases present in the advective domain as well as mass residing in lower-permeability ("non-advective") regions. The CMD values obtained from the tests were used in conjunction with a recently developed vapor-discharge tool to evaluate the impact of the measured CMDs on groundwater quality.

  17. Synergistic, ultrafast mass storage and removal in artificial mixed conductors.

    PubMed

    Chen, Chia-Chin; Fu, Lijun; Maier, Joachim

    2016-08-11

    Mixed conductors-single phases that conduct electronically and ionically-enable stoichiometric variations in a material and, therefore, mass storage and redistribution, for example, in battery electrodes. We have considered how such properties may be achieved synergistically in solid two-phase systems, forming artificial mixed conductors. Previously investigated composites suffered from poor kinetics and did not allow for a clear determination of such stoichiometric variations. Here we show, using electrochemical and chemical methods, that a melt-processed composite of the 'super-ionic' conductor RbAg4I5 and the electronic conductor graphite exhibits both a remarkable silver excess and a silver deficiency, similar to those found in single-phase mixed conductors, even though such behaviour is not possible in the individual phases. Furthermore, the kinetics of silver uptake and release is very fast. Evaluating the upper limit set by interfacial ambipolar diffusion reveals chemical diffusion coefficients that are even higher than those achieved for sodium chloride in bulk liquid water. These results could potentially stimulate systematic research into powerful, even mesoscopic, artificial mixed conductors. PMID:27510217

  18. Synergistic, ultrafast mass storage and removal in artificial mixed conductors

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chin; Fu, Lijun; Maier, Joachim

    2016-08-01

    Mixed conductors—single phases that conduct electronically and ionically—enable stoichiometric variations in a material and, therefore, mass storage and redistribution, for example, in battery electrodes. We have considered how such properties may be achieved synergistically in solid two-phase systems, forming artificial mixed conductors. Previously investigated composites suffered from poor kinetics and did not allow for a clear determination of such stoichiometric variations. Here we show, using electrochemical and chemical methods, that a melt-processed composite of the ‘super-ionic’ conductor RbAg4I5 and the electronic conductor graphite exhibits both a remarkable silver excess and a silver deficiency, similar to those found in single-phase mixed conductors, even though such behaviour is not possible in the individual phases. Furthermore, the kinetics of silver uptake and release is very fast. Evaluating the upper limit set by interfacial ambipolar diffusion reveals chemical diffusion coefficients that are even higher than those achieved for sodium chloride in bulk liquid water. These results could potentially stimulate systematic research into powerful, even mesoscopic, artificial mixed conductors.

  19. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  20. SIMULATION OF DNAPL DISTRIBUTION RESULTING FROM MULTIPLE SOURCES

    EPA Science Inventory

    A three-dimensional and three-phase (water, NAPL and gas) numerical simulator, called NAPL, was employed to study the interaction between DNAPL (PCE) plumes in a variably saturated porous media. Several model verification tests have been performed, including a series of 2-D labo...

  1. THE IMPACT OF PARTIAL DNAPL SOURCE ZONE REMEDIATION

    EPA Science Inventory

    Dense non-aqueous phase liquids (DNAPL) constitute a long-term source of groundwater contamination and a significant effort is usually required to treat these contaminated waters and bring them back to maximum contaminant level (MCL) required by the regulatory authorities.
    Fi...

  2. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  3. A case study of DNAPL remediation in northeastern Brazil.

    PubMed

    Daus, A D; Kent, B; Bianchi Mosquera, G C

    2001-09-01

    Aquifer restoration in the United States is recognized as a technically challenging objective when dense non-aqueous phase liquids (DNAPLs) are present (1). In fact, only a few aquifers impacted by DNAPLs have been restored. Factors that have typically contributed to the lack of successful aquifer restoration include the chemical properties of the DNAPL, the physical properties of the aquifer, the absence of cost-effective technologies, and an incomplete or inaccurate development of a conceptual hydrogeological model for the site. In Latin America, environmental studies historically have been related to biological quality of surface water and groundwater. Recently, the U.S. and Canada have experienced an increased influx of foreign students and professionals interested in studying specialized courses in environmental engineering, or participating in conferences. This exposure to current topics has strengthened the awareness of these professionals regarding groundwater contamination from gasoline-derived compounds and chlorinated solvents. As a result of this increased awareness, Latin American hydrogeologists and environmental regulators have been able to recognize the potential problems that could result from DNAPL spills that may impact groundwater and have learned to approach them using locally available technology and resources. A case study of such an example is presented below.

  4. The outcome of supernovae in massive binaries; removed mass, and its separation dependence

    SciTech Connect

    Hirai, Ryosuke; Sawai, Hidetomo; Yamada, Shoichi

    2014-09-01

    The majority of massive stars are formed in binary systems. It is hence reasonable to expect that most core-collapse supernovae (CCSNe) take place in binaries and the existence of a companion star may leave some imprints in observed features. Having this in mind, we have conducted two-dimensional hydrodynamical simulations of the collisions of CCSNe ejecta with the companion star in an almost-equal-mass (∼10 M {sub ☉}) binary to find out possible consequences of such events. In particular we pay attention to the amount of mass removed and its dependence on the binary separation. In contrast to the previous surmise, we find that the companion mass is stripped not by momentum transfer but by shock heating. Up to 25% of the original mass can be removed for the closest separations and the removed mass decreases as M {sub ub}∝a {sup –4.3} with the binary separation a. By performing some experimental computations with artificially modified densities of incident ejecta, we show that if the velocity of ejecta is fixed, the density of incident ejecta is the single important parameter that actually determines the removed mass as M{sub ub}∝ρ{sub ej}{sup 1.4}. On the other hand, another set of simulations with modified velocities of incident ejecta demonstrate that the strength of the forward shock, which heats up the stellar material and causes the mass loss of the companion star, is actually the key parameter for the removed mass.

  5. The role of mass removal mechanisms in the onset of ns-laser induced plasma formation

    SciTech Connect

    Autrique, D.; Clair, G.; L'Hermite, D.; Alexiades, V.; Bogaerts, A.; Rethfeld, B.

    2013-07-14

    The present study focuses on the role of mass removal mechanisms in ns-laser ablation. A copper sample is placed in argon, initially set at standard pressure and temperature. Calculations are performed for a 6 ns laser pulse with a wavelength of 532 nm and laser fluences up to 10 J/cm{sup 2}. The transient behavior in and above the copper target is described by a hydrodynamic model. Transmission profiles and ablation depths are compared with experimental results and similar trends are found. Our calculations reveal an interesting self-inhibiting mechanism: volumetric mass removal in the supercritical region triggers plasma shielding and therefore stops proceeding. This self-limiting process indicates that volumetric mass removal does not necessarily result in large ablation depths.

  6. The role of mass removal mechanisms in the onset of ns-laser induced plasma formation

    NASA Astrophysics Data System (ADS)

    Autrique, D.; Clair, G.; L'Hermite, D.; Alexiades, V.; Bogaerts, A.; Rethfeld, B.

    2013-07-01

    The present study focuses on the role of mass removal mechanisms in ns-laser ablation. A copper sample is placed in argon, initially set at standard pressure and temperature. Calculations are performed for a 6 ns laser pulse with a wavelength of 532 nm and laser fluences up to 10 J/cm2. The transient behavior in and above the copper target is described by a hydrodynamic model. Transmission profiles and ablation depths are compared with experimental results and similar trends are found. Our calculations reveal an interesting self-inhibiting mechanism: volumetric mass removal in the supercritical region triggers plasma shielding and therefore stops proceeding. This self-limiting process indicates that volumetric mass removal does not necessarily result in large ablation depths.

  7. Two-dimensional DNAPL migration affected by groundwater flow in unconfined aquifer.

    PubMed

    Kamon, Masashi; Endo, Kazuto; Kawabata, Junichi; Inui, Toru; Katsumi, Takeshi

    2004-07-01

    The dense non-aqueous phase liquid (DNAPL) migration process was experimentally investigated in a laboratory-scale tank (150 cm width, 82.5 cm height, and 15 cm depth) to assess a site characterization on DNAPL contamination below a groundwater table. The heterogeneous ground of the tank model consisted of Toyoura sand (hydraulic conductivity, k = 1.5 x 10(-2) cm/s for void ratio, e = 0.62) and silica #7 sand (k = 2.3 x 10(-3) cm/s for e = 0.72). A series of experiments was carried out with or without lateral groundwater flow. Hydrofluoroether was used as a representative DNAPL. The main results obtained in this study are as follows: (1) the DNAPL plume does not invade into the less permeable soil layer with higher displacement pressure head; (2) the DNAPL plume migrates faster with lateral groundwater flow than without it; (3) lateral groundwater flow does not affect lateral DNAPL migration; rather, it promotes downward migration; and (4) pore DNAPL pressure without groundwater flow is higher than that with it. The above experimental results were compared with numerical analysis. The fundamental behaviors of DNAPL source migration observed experimentally are expected to be useful for assessing the characteristics of two-dimensional DNAPL migration in an aquifer.

  8. Biodegradation of Chlorinated Solvents: Reactions near DNAPL and Enzyme Function

    SciTech Connect

    McCarty, P. L.; Spormann, Alfred M.; Criddle, Craig, S.

    2003-12-11

    Chlorinated solvents are among the most widespread groundwater contaminants in the country, contamination which is also among the most difficult and expensive for remediation. These solvents are biodegradable in the absence of oxygen, but this biodegradation requires both a food source for the organisms (electron donor) and the presence of chlorinated solvent biodegrading organisms. These two requirements are present naturally at some contamination sites, leading to natural attenuation of the solvents. If one or both requirements are absent, then engineered bioremediation either through addition of an external electron donor or through bioaugmentation with appropriate microorganisms, or both, may be used for site remediation. The most difficult case for cleanup is when a large residual of undissolved chlorinated solvents are present, residing as dense -non-aqueous-phase- liquid ( DNAPL). A major focus of this study was on the potential for biodegradation of the solvents when pre sent as DNAPL where concentrations are very high and potential for toxicity to microorganisms exist. Another focus was on a better understanding of the biological mechanisms involved in chlorinated solvent biodegradation . These studies were directed towards the chlorinated solvents, trichloroethene (TCE), tetrachloroethene or perchloroethene (PCE), and carbon tetrachloride (CT). The potential for biodegradation of TCE and PCE DNAPL was clearly demonstrated in this research. From column soil studies and batch studies we found there to be a clear advantage in focusing efforts at bioremediation near the DNAPL. Here, chlorinated solvent concentrations are the highest, both because of more favorable reaction kinetics and because such high solvent concentrations are toxic to microorganisms, such as methanogens, which compete with dehalogenators for the electron donor. Additionally, biodegradation near a PCE DNAPL results in an enhanced dissolution rate for the chlorinated solvent, by factors of

  9. BENCH-SCALE VISUALIZATION OF DNAPL REMEDIATION PROCESSES IN ANALOG HETEROGENEOUS AQUIFERS: SURFACTANT FLOODS, AND IN SITU OXIDATION USING PERMANGANATE

    EPA Science Inventory

    We have conducted well-controlled DNAPL remediation experiments using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Photographs and digital image analysis illustrate previously unobserved interactions b...

  10. Release of contaminants from a heterogeneously fractured low permeability unit underlying a DNAPL source zone.

    PubMed

    Dearden, R A; Noy, D J; Lelliott, M R; Wilson, R; Wealthall, G P

    2013-10-01

    The invasion of DNAPL into fractured low permeability deposits results in the formation of secondary source zones that represent a long-term source of VOCs to adjacent aquifers. We present data from a site underlain by a fractured mudstone contaminated with TCE DNAPL that was poised for release following remediation of the overlying aquifer. Observations of contaminant distributions and fracture networks from the site and a nearby mudstone exposure respectively, enabled prediction of the imminent aquifer recontamination. The fractures, likely formed by gypsum dissolution, were characterised by fracture apertures and spacings that ranged from 0.01 to 49 mm and 0.047 to 3.37 m (10th and 90th percentile values) respectively. Numerical model results show that prediction of outward mass flux in the first year was highly variable (8 to 32 g/m²/d for an initial constant concentration with depth profile) and dependent on both the fracture spacing and aperture and the contaminant distribution. However after 1 year, assuming a heterogeneous distribution of fractures, mass flux was predictable within a narrow range of values (at 20 years; 0.04-0.08 g/m²/d). Similar results were obtained from more typical fracture networks with spacings of 0.1 to 0.5 m and apertures of 10 to 100 μm. These results suggest that when considering potential recontamination in a bounding aquifer, fracture characterisation may not be necessary and instead the focus should be on determining the surface area contributing contaminant mass to an aquifer, the contaminant concentration depth profiles, the hydraulic properties of the receiving aquifer and the elapsed time since aquifer remediation. PMID:24119249

  11. Release of contaminants from a heterogeneously fractured low permeability unit underlying a DNAPL source zone.

    PubMed

    Dearden, R A; Noy, D J; Lelliott, M R; Wilson, R; Wealthall, G P

    2013-10-01

    The invasion of DNAPL into fractured low permeability deposits results in the formation of secondary source zones that represent a long-term source of VOCs to adjacent aquifers. We present data from a site underlain by a fractured mudstone contaminated with TCE DNAPL that was poised for release following remediation of the overlying aquifer. Observations of contaminant distributions and fracture networks from the site and a nearby mudstone exposure respectively, enabled prediction of the imminent aquifer recontamination. The fractures, likely formed by gypsum dissolution, were characterised by fracture apertures and spacings that ranged from 0.01 to 49 mm and 0.047 to 3.37 m (10th and 90th percentile values) respectively. Numerical model results show that prediction of outward mass flux in the first year was highly variable (8 to 32 g/m²/d for an initial constant concentration with depth profile) and dependent on both the fracture spacing and aperture and the contaminant distribution. However after 1 year, assuming a heterogeneous distribution of fractures, mass flux was predictable within a narrow range of values (at 20 years; 0.04-0.08 g/m²/d). Similar results were obtained from more typical fracture networks with spacings of 0.1 to 0.5 m and apertures of 10 to 100 μm. These results suggest that when considering potential recontamination in a bounding aquifer, fracture characterisation may not be necessary and instead the focus should be on determining the surface area contributing contaminant mass to an aquifer, the contaminant concentration depth profiles, the hydraulic properties of the receiving aquifer and the elapsed time since aquifer remediation.

  12. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  13. Summary and Status of DNAPL Characterization and Remediation Activities in the A/M-Area, Savannah River Site

    SciTech Connect

    Vangelas, K.M.

    2001-03-02

    This report summarizes historical A/M-Area DNAPL activities and data, and presents the overall A/M-Area strategy flowchart, the status work for each DNAPL source zone (or potential source zone), and future A/M-Area DNAPL plans.

  14. Chronocoulometry for quantitative control of mass removal in micro-structures and sensors

    NASA Astrophysics Data System (ADS)

    Nowakowski, B. K.; Smith, S. T.; Pratt, J. R.; Shaw, G. A.

    2012-10-01

    In this work, tungsten wires have been etched in a KOH electrolyte solution. Based on the oxidation state of the electrolytic dissolution reaction's product and time integration of the Faradaic current produced during the reaction, this method is capable of providing a direct measurement of the change in mass of a structure from anodic dissolution. To assess the application of this process for controlled mass removal spanning sub-micrograms to milligrams, two experimental studies and accompanying uncertainty analyses have been undertaken. In the first of these, 5 tungsten wires of length 30 mm were used to remove mass values ranging from 50 to 350 μg. Uncertainty estimates indicate relative combined standard uncertainties of less than 0.3% in the mass changes determined from the measurement of Faradaic current. Comparison of the mass change determined using the electrolytic method, and using a precision ultra-microbalance agreed within this uncertainty. The charge-based method was then applied to modify the dynamic characteristics of a quartz tuning fork oscillator. In these experiments, tungsten fiber attached to one tine of the oscillator was etched in 5 μg increments up to 120 μg of total removed mass. In general, frequency shifts of 2.8 Hz.μg-1 were observed, indicating sub-microgram resolution for the characterization of probes based on frequency shift and charge-based mass measurement. Taken together, this study provides the basis for a precision method for determining changes in mass based on electrical measurements from an electrochemical system. The utility of this technique is demonstrated through controlled modification of the dynamic properties of a mechanical oscillator.

  15. Chronocoulometry for quantitative control of mass removal in micro-structures and sensors

    SciTech Connect

    Nowakowski, B. K.; Smith, S. T.; Pratt, J. R.; Shaw, G. A.

    2012-10-15

    In this work, tungsten wires have been etched in a KOH electrolyte solution. Based on the oxidation state of the electrolytic dissolution reaction's product and time integration of the Faradaic current produced during the reaction, this method is capable of providing a direct measurement of the change in mass of a structure from anodic dissolution. To assess the application of this process for controlled mass removal spanning sub-micrograms to milligrams, two experimental studies and accompanying uncertainty analyses have been undertaken. In the first of these, 5 tungsten wires of length 30 mm were used to remove mass values ranging from 50 to 350 {mu}g. Uncertainty estimates indicate relative combined standard uncertainties of less than 0.3% in the mass changes determined from the measurement of Faradaic current. Comparison of the mass change determined using the electrolytic method, and using a precision ultra-microbalance agreed within this uncertainty. The charge-based method was then applied to modify the dynamic characteristics of a quartz tuning fork oscillator. In these experiments, tungsten fiber attached to one tine of the oscillator was etched in 5 {mu}g increments up to 120 {mu}g of total removed mass. In general, frequency shifts of 2.8 Hz{center_dot}{mu}g{sup -1} were observed, indicating sub-microgram resolution for the characterization of probes based on frequency shift and charge-based mass measurement. Taken together, this study provides the basis for a precision method for determining changes in mass based on electrical measurements from an electrochemical system. The utility of this technique is demonstrated through controlled modification of the dynamic properties of a mechanical oscillator.

  16. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.

    PubMed

    Parker, Beth L; Cherry, John A; Chapman, Steven W

    2004-10-01

    -dominated nature of the profiles indicates that the aquitard provides long-term protection of the underlying aquifer from contamination from this DNAPL zone. Simulations of long-term migration of the TCE solute front indicate breakthrough to the lower aquifer at 1200 years for the no advection scenario and at 500 years if the strong downward hydraulic gradient persists. However, even after breakthrough, the mass flux through the aquitard to the underlying aquifer remains relatively low, and when considered in terms of potential impacts to pumping wells, concentrations are not expected to increase significantly above present-day MCLs. The use of contaminant profiles of different time and distance scales, in addition to hydraulic data, dramatically improves the ability to assess aquitard integrity, and provides improved transport parameter values for estimating contaminant arrival times and fluxes. The apparent lack of deep preferential pathways for TCE migration, such as open fractures, is probably due to the softness of the silty aquitard deposit and minimal physical or chemical weathering of the aquitard provides long-term protection of the underlying aquifer from contamination from this DNAPL zone. Simulations of long-term migration of the TCE solute front indicate breakthrough to the lower aquifer at 1200 years for the no advection scenario and at 500 years if the strong downward hydraulic gradient persists. However, even after the breakthrough, the mass flux through the aquitard to the underlying aquifer remains relatively low, and when considered in terms of potential impacts to pumping wells , concentrations are not expected to increase significantly above present-day MCLs. The use of contaminant profiles of different time and distance scales, in addition to hydraulic data, dramatically improves the ability to assess aquitard integrity, and provides improved transport parameter values for estimating contaminant arrival times and fluxes. The apparent lack of deep preferential

  17. Development and application of a screening model for evaluating bioenhanced dissolution in DNAPL source zones.

    PubMed

    Phelan, Thomas J; Abriola, Linda M; Gibson, Jenny L; Smits, Kathleen M; Christ, John A

    2015-12-01

    In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations. PMID:26484479

  18. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Chris; Brooks, Kathleen; Coon, Christina; O'Hara, Suzanne; Krug, Thomas; Major, David; Yoon, Sam; Gavaskar, Arun; Holdsworth, Thomas

    2004-01-01

    This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nano-scale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, non-aqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (V005) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.

  19. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Chris; Brooks, Kathleen; Coon, Christina; O'Hara, Suzanne; Krug, Thomas; Major, David; Yoon, Woong-Sang; Gavaskar, Arun; Holdsworth, Thomas

    2005-01-01

    This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nanoscale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, nonaqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (VOCs) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.

  20. Development and application of a screening model for evaluating bioenhanced dissolution in DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Phelan, Thomas J.; Abriola, Linda M.; Gibson, Jenny L.; Smits, Kathleen M.; Christ, John A.

    2015-12-01

    In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations.

  1. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron.

    PubMed

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Chris; Brooks, Kathleen; Coon, Christina; O'Hara, Suzanne; Krug, Thomas; Major, David; Yoon, Woong-Sang; Gavaskar, Arun; Holdsworth, Thomas

    2005-03-01

    This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nanoscale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, nonaqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (VOCs) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.

  2. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  3. Geochemical effects on metals following permanganate oxidation of DNAPLs.

    PubMed

    Crimi, Michelle L; Siegrist, Robert L

    2003-01-01

    The application of in situ chemical oxidation for dense, nonaqueous phase liquid (DNAPL) remediation requires delivery of substantial levels of oxidant chemicals into the subsurface to degrade target DNAPLs and to satisfy natural oxidant demand. This practice can raise questions regarding changes in subsurface conditions, yet information regarding potential effects, especially at the field scale, has been lacking. This paper describes an evaluation of the effects on metals associated with in situ chemical oxidation using potassium permanganate at Launch Complex 34 (LC34), Cape Canaveral Air Station, Florida. At LC34, high concentrations of permanganate (1 to 2 wt%) were injected into the subsurface as part of a demonstration of DNAPL remediation technologies. In a companion experimental effort at the Colorado School of Mines, field samples were characterized and laboratory batch and mini-column studies were completed to assess effects of permanganate oxidation on metals in the subsurface one year after completion of the field demonstration. Results indicated there was potential for long-term immobilization of a portion of introduced manganese and no treatment-induced loss in subsurface permeability due to deposition of manganese oxides particles, which are a product of the oxidation reactions. Permanganate treatment did cause elevated manganese, chromium, and nickel concentrations in site ground water within the treated region. Some of these metals effects can be attenuated during downgradient flow through uncontaminated and untreated aquifer sediments.

  4. Field scale DNAPLs transport under nonequilibrium sorption conditions.

    PubMed

    Ahmed, Ashraf A; Chen, Daoyi

    2006-01-01

    The purpose of this work is to study the desorption of dense nonaqueous phase liquids (DNAPLs), TCE in particular, from solid particles in field scale heterogeneous aquifers upon their remediation. A computer program, capable of simulating the fate and transport of NAPLs in porous media, has been developed to work under nonequilibrium sorption conditions. The model has been applied to a field scale site at Hill Air Force Base, Utah, which has been contaminated by DNAPLs. The simulated domain was 155 ft (47.25 m) long, 60 ft (18.29 m) wide, and 15.5 ft (4.72 m) thick. This thickness represents only the saturated zone of the aquifer. Changes in permeability, grain size distribution, and sorptive properties throughout the site have been incorporated into the model. Immediately after the aquifer cleanup, the DNAPL concentration in the aqueous phase was assumed to be zero, and this was considered the start-off time for the simulation. Results show that, with an increase in time, the TCE diffused out of the solid particles, forming a plume. The rate of contaminant diffusion was observed to be very fast at the start, followed by a very slow stage, with a number of years required for substantial desorption of the contaminant from the solid particles. There were local variations in contaminant concentration in the fluid phase across the site due to aquifer heterogeneity. A comparison between numerical results and water samples taken from the site after the end of the cleanup operation is also presented.

  5. Application of an Optimal Search Strategy for the DNAPL Source Identification to a Field Site in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Longting, M.; Ye, S.; Wu, J.

    2014-12-01

    Identification and removing the DNAPL source in aquifer system is vital in rendering remediation successful and lowering the remediation time and cost. Our work is to apply an optimal search strategy introduced by Zoi and Pinder[1], with some modifications, to a field site in Nanjing City, China to define the strength, and location of DNAPL sources using the least samples. The overall strategy uses Monte Carlo stochastic groundwater flow and transport modeling, incorporates existing sampling data into the search strategy, and determines optimal sampling locations that are selected according to the reduction in overall uncertainty of the field and the proximity to the source locations. After a sample is taken, the plume is updated using a Kalman filter. The updated plume is then compared to the concentration fields that emanate from each individual potential source using fuzzy set technique. The comparison followed provides weights that reflect the degree of truth regarding the location of the source. The above steps are repeated until the optimal source characteristics are determined. Considering our site case, some specific modifications and work have been done as follows. K random fields are generated after fitting the measurement K data to the variogram model. The locations of potential sources that are given initial weights are targeted based on the field survey, with multiple potential source locations around the workshops and wastewater basin. Considering the short history (1999-2010) of manufacturing optical brightener PF at the site, and the existing sampling data, a preliminary source strength is then estimated, which will be optimized by simplex method or GA later. The whole algorithm then will guide us for optimal sampling and update as the investigation proceeds, until the weights finally stabilized. Reference [1] Dokou Zoi, and George F. Pinder. "Optimal search strategy for the definition of a DNAPL source." Journal of Hydrology 376.3 (2009): 542

  6. Organic Dye Effects on DNAPL Entry Pressure in Water Saturated Porous Media

    SciTech Connect

    Iversen, G.M.

    2001-10-02

    One of three diazo dyes with the same fundamental structure have been used in most studies of DNAPL behavior in porous media to stain the NAPL: Sudan III, Sudan IV, or Oil-Red-O. The dyes are generally implicitly assumed to not influence DNAPL behavior. That assumption was tested using simple entry pressure experiments.

  7. MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...

  8. Characterization of DNAPL from the U.S. DOE Savannah River Site.

    PubMed

    Dou, Wenqian; Omran, Kamel; Grimberg, Stefan J; Denham, Miles; Powers, Susan E

    2008-04-01

    The composition of chlorinated hydrocarbon DNAPLs (dense non-aqueous phase liquids) from field sites can be substantially different than the material originally purchased for use as a solvent. Waste management practices at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) included co-disposal of a wide range of organic and inorganic wastes. In 1991, a clear, orange-colored DNAPL was found in two wells near the SRS M-area settling basin. Waste effluent from the fuel and target fabrication facilities that were discharged to this settling basin included acids, caustics, metals and chlorinated solvents. The characterization of the SRS DNAPL suggests that numerous constituents partitioned into the DNAPL during its use as a solvent, co-disposal and ultimate migration through the subsurface. Trace constituents in the DNAPL include metals, from processing operations or co-disposal practices and subsurface minerals, high molecular weight hydrocarbons and alkyl esters, and acids. This complex mixture results in DNAPL-water interfacial properties that are substantially different than would be expected from a simple mixture of PCE and TCE. Under conditions when there is a high DNAPL to water volume ratio, a semi-rigid film accumulates on water droplets suspended in the DNAPL. It is concluded that the array of precipitated metal species comprising this film contributes to the interfacial tension that is over an order of magnitude lower than expected for a "clean" PCE/TCE mixture.

  9. THE MEASUREMENT AND USE OF CONTAMINANT FLUX AS AN ASSESSMENT TOOL FOR DNAPL REMEDIAL PERFORMANCE

    EPA Science Inventory

    Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...

  10. DOES FIELD DATA SHOW DOWNWARD MOBILIZATION OF DNAPL DURING THERMAL REMEDIATION?

    EPA Science Inventory

    The question of will DNAPLs be mobilized downward during thermal remediation has been asked many times. Indeed, downward mobilization of DNAPLs during steam injection has been observed in the lab. The mechanism for this downward mobilization was the concentration of the contami...

  11. DOES FIELD DATA SHOW DOWNWARD MOBILIZATION OF DNAPL DURING THERMAL REMEDIATION? (ABSTRACT)

    EPA Science Inventory

    The question of will DNAPLs be mobilized downward during thermal remediation has been asked many times. Indeed, downward mobilization of DNAPLs during steam injection has been observed in the lab. The mechanism for this downward mobilization was the concentration of the contami...

  12. Assessment and Delineation of DNAPL Source Zones at Hazardous Waste Sites

    EPA Science Inventory

    This document provides a framework to assess the presence of DNAPL in the subsurface and for delineating the spatial extent of a DNAPL source zone. Direct and indirect site investigation methods are discussed, as well as their applicability in unconsolidated deposits and fracture...

  13. Mass transport in physical and biological BTEX removal in a sandy aquifer

    SciTech Connect

    Sturman, P.J.; Cunningham, A.B.; Niehaus, S.L.; Wolfram, J.H.

    1995-12-31

    Injection of oxygen and nutrient-amended water facilitated alkylbenzene biodegradation in a sandy aquifer. Pumping recovery wells and air-stripping groundwater further hastened contaminant removal downgradient from the source area. High monitoring well density allowed calculation of a contaminant mass balance using contour plots developed with Surfer{reg_sign} software. Physical removal (air-stripping) and in situ attenuation appear equally responsible for contaminant removal within this aquifer. Dissolved oxygen data implicate biodegradation as the responsible in situ mechanism with a good stoichiometric fit to BTEX attenuation data. Selective plating confirmed the presence of hydrocarbon-degrading bacteria. Calculations indicate desorption is a major source for recontamination of site groundwater. Contaminant reduction is most pronounced immediately downgradient from reinjection wells. Advective transport and mixing of oxygen in the contaminated zone, rather than microbial kinetics, appears to limit in situ contaminant attenuation.

  14. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate.

    PubMed

    Butchart, N; Scaife, A A

    2001-04-12

    Chlorofluorocarbons (CFCs), along with bromine compounds, have been unequivocally identified as being responsible for most of the anthropogenic destruction of stratospheric ozone. With curbs on emissions of these substances, the recovery of the ozone layer will depend on their removal from the atmosphere. As CFCs have no significant tropospheric removal process, but are rapidly photolysed above the lower stratosphere, the timescale for their removal is set mainly by the rate at which air is transported from the troposphere into the stratosphere. Using a global climate model we predict that, in response to the projected changes in greenhouse-gas concentrations during the first half of the twenty-first century, this rate of mass exchange will increase by 3% per decade. This increase is due to more vigorous extra-tropical planetary waves emanating from the troposphere. We estimate that this increase in mass exchange will accelerate the removal of CFCs to an extent that recovery to levels currently predicted for 2050 and 2080 will occur 5 and 10 years earlier, respectively.

  15. Removal of mercury contamination on primary mass standards by hydrogen plasma and thermal desorption

    NASA Astrophysics Data System (ADS)

    Fuchs, P.; Marti, K.; Russi, S.

    2013-02-01

    The removal of a high mercury contamination on a Pt reference mass by thermal desorption was studied directly by x-ray photoemission spectroscopy (XPS). Subsequently the contamination mechanism was investigated. Samples of PtIr and AuPt exposed to vapour of mercury in air were studied using XPS and gravimetric mass determination. We find an extremely rapid mercury contamination which takes place within minutes and reaches an initial equilibrium state after 2 h to 4 h. Roughly 1 to 2 monolayers of mercury adsorbs directly on the metal surface. A natural contamination of carbon and oxygen compounds is at the top. Due to the accumulation of mercury, we find a gain in mass which corresponds to 20 µg to 26 µg for a PtIr standard. XPS data from a historical Pt standard give strong evidence for further average mercury accumulation of (1.3 ± 0.1) µg/year during a period of more than a century. This can be explained by a two-step mechanism presented in this study. The speed of contamination depends on the initial surface conditions. Polishing activates the surface and results in an enhanced accumulation of mercury. Natural contamination by C and O can delay but not prevent contamination. We further demonstrate that the mercury contamination can be removed by both hydrogen plasma and thermal desorption. The removal of mercury by hydrogen plasma can directly be attributed to the synthesis of gaseous mercury dihydrides at low pressures.

  16. IN-SITU CHEMICAL OXIDATION - DNAPL MASS REDUCTION TECHNOLOGY

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) is a rapidly developing technology used at hazardous waste sites where oxidants and complimentary reagents are injected into the subsurface to transform organic contaminants into less toxic byproducts. This technology is being used at new sites ...

  17. Time scales of DNAPL migration in sandy aquifers examined via numerical simulation

    SciTech Connect

    Gerhard, J.I.; Pang, T.; Kueper, B.H.

    2007-03-15

    The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10{sup -3} cm/s. In contrast to this, the release of 20 drums of coal tar {rho}{sub D} = 1061 kg/m{sup 3}, {mu}{sub D} = 0.161 Pa(.)s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.

  18. Selenium removal and mass balance in a constructed flow-through wetland system.

    PubMed

    Gao, S; Tanji, K K; Lin, Z Q; Terry, N; Peters, D W

    2003-01-01

    A field study on the removal of Se from agricultural subsurface drainage was conducted from May 1997 to February 2001 in the Tulare Lake Drainage District (TLDD) of San Joaquin Valley, California. A flow-through wetland system was constructed consisting of ten 15- x 76-m unlined cells that were continuously flooded and planted with either a monotype or combination of plants, including sturdy bulrush [Schoenoplectus robustus (Pursh) M.T. Strong], baltic rush (Juncus balticus Willd.), smooth cordgrass (Spartina alterniflora Loisel.), rabbitsfoot grass [Polypogon monspeliensis (L.) Desf.], salt-grass lDistichlis spicata (L.) Greene], cattail (Typha latifolia L.), tule [Schoenoplectus acutus (Muhl. ex Bigelow) A. Löve & D. Löve], and widgeon grass (Ruppia maritima L.). One cell had no vegetation planted. The objectives of this research were to evaluate Se removal efficiency of each wetland cell and to carry out a mass balance on Se. The inflow drainage water to the cells had average annual Se concentrations of 19 to 22 microg L(-1) dominated by selenate [Se(VI), 95%]. Average weekly water residence time varied from about 3 to 15 d for Cells 1 through 7 (target 7 d), 19 to 33 d for Cells 8 and 9 (target 21 d), and 13 to 18 d for Cell 10 (target 14 d). Average weekly Se concentration ratios of outflow to inflow ranged from 0.45 to 0.79 and mass ratio (concentration x water volume) from 0.24 to 0.52 for year 2000, that is, 21 to 55% reduction in Se concentration and 48 to 76% Se removal in mass by the wetland, respectively. The nonvegetated cell showed the least Se removal both in concentration and in mass. The global mass balance showed that on the average about 59% of the total inflow Se was retained within the cells and Se outputs were outflow (35%), seepage (4%), and volatilization (2%). Independent measurements of the Se retained in the cells totaled 53% of the total Se inflow: 33% in the surface (0-20 cm) sediment, 18% in the organic detrital layer above the

  19. Right Ventricle Mass Removal from Tricuspid Valve Apparatus: An Unusual Thromboembolic Complication of Severe Ketoacidosis.

    PubMed

    Haponiuk, Ireneusz; Chojnicki, Maciej; Paczkowski, Konrad; Kosiak, Wojciech; Jaworski, Radosław; Steffens, Mariusz; Szofer-Sendrowska, Aneta; Gierat-Haponiuk, Katarzyna; Tomaszewski, Marek

    2016-01-01

    The presence of a pathologic mass in the right ventricle (RV) may lead to hemodynamic consequences and to a life-threatening incident of pulmonary embolism. The diagnosis of an unstable thrombus in the right heart chamber usually necessitates intensive treatment to dissolve or remove the pathology. We present a report of an unusual complication of severe ketoacidosis: thrombus in the right ventricle, removed from the tricuspid valve (TV) apparatus. A four-year-old boy was diagnosed with diabetes mellitus (DM) type I de novo. During hospitalization, a 13.9 × 8.4 mm tumor in the RV was found in a routine cardiac ultrasound. The patient was referred for surgical removal of the floating lesion from the RV. The procedure was performed via midline sternotomy with extracorporeal circulation (ECC) and mild hypothermia. Control echocardiography showed complete tumor excision with normal atrioventricular valves and heart function. Surgical removal of the thrombus from the tricuspid valve apparatus was effective, safe, and a definitive therapy for thromboembolic complication of pediatric severe ketoacidosis. PMID:27146235

  20. Effects of Gravity and Aperture Statistics on DNAPL Entrapment in Fractures

    NASA Astrophysics Data System (ADS)

    Beattie, J. A.; Cianflone, S.; Dickson, S. E.

    2014-12-01

    Dense non-aqueous phase liquids (DNAPLs) are an important class of groundwater contaminants. Their migration pathways are particularly difficult to locate in fractured rock aquifers, which are abundant in North America. Over one million people in Southern Ontario alone obtain their drinking water from the Silurian dolostone bedrock. Once a DNAPL is trapped in an aquifer, it becomes a long-term threat to the source water quality. It is imperative to be able to locate and quantify trapped DNAPL to implement appropriate remedial strategies. This study quantifies volumetric DNAPL entrapment utilizing an invasion percolation (IP) approach to simulate the imbibition of water in a DNAPL-saturated fracture. The relationship between the volumetric fraction of trapped DNAPL, aperture field statistics and fracture orientation was investigated by varying a number of parameters; overall, 34,560 simulation were completed. The standard deviation (σb) and mean (μb) of the apertures were varied from 0.01-0.3 mm and 0.5-1.5 mm, respectively. The standard deviation (σz) and correlation length (λz) of the mid aperture field were varied from 0.01-10mm and 5-50mm, respectively. Fracture orientation was varied from 60o above (super-horizontal) to 60o below (sub-horizontal) horizontal.The results demonstrate that: 1) fractures oriented sub-horizontally permit the complete drainage of DNAPL, though this does not occur for horizontal and super-horizontal fractures; 2) when the coefficient of variation (COV) is larger than 0.1 the fracture orientation has little effect on the volumetric ratio of DNAPL entrapped; and 3) increasing standard deviation of the mid aperture field increases the range of the volumetric ratio of trapped DNAPL.

  1. Quantification of Dialytic Removal and Extracellular Calcium Mass Balance during a Weekly Cycle of Hemodialysis

    PubMed Central

    Wojcik-Zaluska, Alicja; Ksiazek, Andrzej; Zaluska, Wojciech

    2016-01-01

    Objectives The removal of calcium during hemodialysis with low calcium concentration in dialysis fluid is generally slow, and the net absorption of calcium from dialysis fluid is often reported. The details of the calcium transport process during dialysis and calcium mass balance in the extracellular fluid, however, have not been fully studied. Methods Weekly cycle of three dialysis sessions with interdialytic breaks of 2-2-3 days was monitored in 25 stable patients on maintenance hemodialysis with calcium concentration in dialysis fluid of 1.35 mmol/L. Total and ionic calcium were frequently measured in blood and dialysate. The volume of fluid compartments was measured by bioimpedance. Results Weekly dialytic removal of 12.79 ± 8.71 mmol calcium was found in 17 patients, whereas 9.48 ± 8.07 mmol calcium was absorbed per week from dialysis fluid in 8 patients. Ionic calcium was generally absorbed from dialysis fluid, whereas complexed calcium (the difference of total and ionic calcium in dialysis fluid) was removed from the body. The concentration of total calcium in plasma increased slightly during dialysis. The mass of total and ionic calcium in extracellular fluid decreased during dialysis in patients with the dialytic removal of calcium from the body and did not change in patients with the absorption of calcium from dialysis fluid. Conclusions We conclude that about one third of patients on dialysis with calcium 1.35 mmol/L in dialysis fluid may absorb calcium from dialysis fluid and therefore individual prescriptions of calcium concentration in dialysis fluid should be considered for such patients. PMID:27073861

  2. Transport, Targeting, and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents

    SciTech Connect

    Gregory V. Lowry; Sara Majetich; Krzysztof Matyjaszewski; David Sholl; Robert Tilton

    2006-12-27

    Dense Non-Aqueous Phase Liquid (DNAPL) such as trichloroethylene act as long term sources of groundwater contaminants and are difficult and expensive to remediate. DNAPL-contaminated sites are a significant financial liability for the Department of Energy and the private sector. The objective of this study was to engineer reactive Fe-based nanoparticles with specialized polymeric coatings to make them mobile in the subsurface and to provide them with an affinity for the DNAPL/water interface. The synthesis, characterization, and reactivity/mobility of the engineered particles, and a molecular dynamic model that predicts their behavior at the DNPAL/water interface are described in this report.

  3. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    SciTech Connect

    Das, Kallol Johnson, Harley T.; Freund, Jonathan B.

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  4. Use of an Intermediate-Scale Tank to Study Strategies for Modified NZVI Emplacement for Effective Treatment of DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Mittal, M.; Phenrat, T.; Fagerlund, F.; Kim, H.; Cihan, A.; Lowry, G. V.

    2009-12-01

    Dense non-aqueous phase liquid (DNAPL) sources act as long term sources of ground water contamination. Emplacing modified nano-scale zero valent iron (NZVI) particles in the source zone and area immediately downstream of the source zone may serve the dual purpose of reducing the mass transfer from entrapped DNAPL and reductive dechlorination of the dissolved mass, thus reducing the total mass loading to the plume. Placement of NZVI is expected to alter porosity resulting in flow bypassing which may reduce treatment efficiency. The magnitude of this reduction will depend on the NZVI mass emplacement and its distribution. Another issue of concern is whether DNAPL mass rebounds if the emplaced NZVI is oxidized. In an ongoing study, the basic processes of NZVI reactivity and mass flux reduction were investigated in small cells, columns and tanks. To understand these processes and upscale them to larger systems, a series of experiments were conducted in a two-dimensional intermediate scale tank. This paper presents the results from one of these experiments that focused on evaluating the effects of emplacing the modified NZVI particles in the source zone with the DNAPL and to intercept the dissolved plume immediately down gradient of the source with the goal of evaluating and quantifying the net mass flux loading to the plume. A 5 cm x 5 cm PCE source zone in a coarse sand lens embedded in a finer sand matrix was created in an intermediate scale tank 2.4 m x 1.2 m x 0.55 m. The mass flux generation from source zone and the plume configuration were monitored using aqueous samples extracted at 4 vertical arrays containing 9 ports in each. Polymer coated NZVI particles were injected 7.5 cm downstream of the source zone creating a reactive zone of 14 cm x 14 cm x 5.5 cm such that the particles blanketed the PCE source zone. Dissolved PCE concentrations were monitored after NZVI injection using the same vertical sampling array. Dechlorination byproducts were monitored to

  5. Migration and Entrapment of DNAPLs in Heterogeneous Systems: Impact of Waste and Porous Medium Composition

    SciTech Connect

    Linda M. Abriola; Avery H. Demond

    2005-01-10

    Dense nonaqueous phase liquids (DNAPLs) pose a significant threat to soil and groundwater at Department of Energy (DOE) sites. Evidence suggests that subsurface wettability variations are present at many of these sites as a result of spatical and temporal variations in aqueous phase chemistry, contaminant aging, mineralogy and organic matter. The presence of such heterogeneity may significantly influence DNAPL migration and entrapment in the saturated zone.

  6. Interpreting DNAPL saturations in a laboratory-scale injection with GPR data and direct core measurements

    USGS Publications Warehouse

    Johnson, Raymond H.; Poeter, Eileen P.

    2003-01-01

    Ground penetrating radar (GPR) is used to track a dense non-aqueous phase liquid (DNAPL) injection in a laboratory sand tank. Before data reduction, GPR data provide a qualitative measure of DNAPL saturation and movement. One-dimensional (1D) GPR modeling provides a quantitative interpretation of DNAPL volume within a given thickness during and after the injection. This is confirmed qualitatively by visual inspection of cores and two-dimensional GPR modeling. DNAPL saturation in sub-layers of that thickness could not be quantified because calibration of the 1D GPR model is non-unique when both permittivity and depth of multiple layers are unknown. Accurate quantitative interpretation of DNAPL volumes using 1D GPR modeling requires: 1) identification of a suitable target that produces a strong reflection and is not subject to any multidimensional interference; 2) knowledge of the exact depth of that target; and 3) use of two-way radar-wave travel times through the medium to the target to determine the permittivity of the intervening material, which eliminates reliance upon reflection amplitude. With geologic conditions that are suitable for GPR surveys (i.e., shallow depths and low electrical conductivities), the procedures in this laboratory study can be adapted to a field site to identify DNAPL source zones after a release has occurred.

  7. Electrical Impedance Tomography at the A-014 Outfall for Detection of DNAPL

    SciTech Connect

    Daily, W; Ramirez, A

    2003-05-28

    Some laboratory studies (e.g., Olheoft, unpublished report 2001) have shown that the low frequency electrical properties of some soil minerals contaminated by dense non-aqueous phase liquid (DNAPL) may be sufficiently unique to make it possible to use electrical impedance tomography (EIT) to differentiate normal electrical heterogeneities of the subsurface from DNAPL contamination. The goal of this work is to determine if electrical impedance measurements of the soil and groundwater at a contaminated site can be used to detect the presence and map the distribution of DNAPL. The strategy for achieving this goal is to predict the presence and location of DNAPL from an appropriately processed data set taken at the A-014 outfall site at Savannah River Site, which is suspected of near-surface contamination, and then to compare those predictions with results of sample analysis from the same region. Complete agreement between the predictions and the sampling data will be strong (but not conclusive) evidence that DNAPL contamination alters the subsurface materials in a way that can be detected and mapped using low frequency electrical methods. A total lack of agreement will be interpreted to mean that electrical methods cannot at this time be used to locate contamination. The results will be used to make funding decisions about continuing development of EIT for DNAPL detection.

  8. Movement and Remediation of a Volatile, Multicomponent DNAPL in a Variably-Saturated, Heterogeneous Porous Medium

    NASA Astrophysics Data System (ADS)

    Oostrom, M.; Dane, J. H.; Wietsma, T. W.

    2004-12-01

    An intermediate-scale flow cell experiment was conducted to study the behavior of a multicomponent DNAPL at structural interfaces and subsequent remediation using two different forms of the soil vapor extraction (SVE) technique. The flow cell (100-cm long, 5-cm wide, and 80 cm high), was packed under saturated conditions with sloped layers of Hanford silt and coarse sand, embedded in a matrix of a medium-grained laboratory sand. After packing, the water table was lowered to 2 cm above the bottom of the flow cell to establish variably saturated conditions. A finite amount of a volatile multicomponent DNAPL, mimicking the organic liquid disposed at the Hanford Site, was then injected from a small source zone. The infiltration and redistribution processes were visually recorded. In addition, a dual-energy gamma radiation system was used to determine DNAPL and water saturation at more than 1000 locations. Results indicate that lateral spreading of the DNAPL is greatly enhanced by the heterogeneities. The silt layers, by virtue of their substantial non-wetting fluid entry pressures and high water saturations, completely diverted the DNAPL laterally. The relatively dry coarse-sand layers forced some of the DNAPL to move laterally but also allowed some infiltration.

  9. Numerical Modeling for Integrated Design of a DNAPL Partitioning Tracer Test

    NASA Astrophysics Data System (ADS)

    McCray, J. E.; Divine, C. E.; Dugan, P. J.; Wolf, L.; Boving, T.; Louth, M.; Brusseau, M. L.; Hayes, D.

    2002-12-01

    Partitioning tracer tests (PTTs) are commonly used to estimate the location and volume of nonaqueous-phase liquids (NAPLs) at contaminated groundwater sites. PTTs are completed before and after remediation efforts as one means to assess remediation effectiveness. PTT design is complex. Numerical models are invaluable tools for designing a PTT, particularly for designing flow rates and selecting tracers to ensure proper tracer breakthrough times, spatial design of injection-extraction wells and rates to maximize tracer capture, well-specific sampling density and frequency, and appropriate tracer-chemical masses. Generally, the design requires consideration of the following factors: type of contaminant; distribution of contaminant at the site, including location of hot spots; site hydraulic characteristics; measurement of the partitioning coefficients for the various tracers; the time allotted to conduct the PTT; evaluation of the magnitude and arrival time of the tracer breakthrough curves; duration of the tracer input pulse; maximum tracer concentrations; analytical detection limits for the tracers; estimation of the capture zone of the well field to tracer ensure mass balance and to limit residual tracer concentrations left in the subsurface; effect of chemical remediation agents on the PTT results, and disposal of the extracted tracer solution. These design principles are applied to a chemical-enhanced remediation effort for a chlorinated-solvent dense NAPL (DNAPL) site at Little Creek Naval Amphibious Base in Virginia Beach, Virginia. For this project, the hydrology and pre-PTT contaminant distribution were characterized using traditional methods (slug tests, groundwater and soil concentrations from monitoring wells, and geoprobe analysis), as well as membrane interface probe analysis. Additional wells were installed after these studies. Partitioning tracers were selected based on the primary DNAPL contaminants at the site, expected NAPL saturations

  10. ASSESSMENT OF A SIMPLE FUNCTION TO EVALUATE THE RELATIONSHIP BETWEEN MASS FLUX REDUCTION AND MASS REMOVAL FOR ORGANIC-LIQUID CONTAMINANTED SOURCE ZONES

    PubMed Central

    DiFilippo, Erica L.

    2011-01-01

    The efficacy of a simple mass-removal function for characterizing mass-flux-reduction/mass-removal behavior for organic-liquid contaminated source zones was evaluated using data obtained from a series of flow-cell experiments. The standard function, which employs a constant exponent, could not adequately reproduce the non-singular (multi-step) behavior exhibited by the measured data. Allowing the exponent to change as a function of mass removal (as the organic-liquid distribution and relative permeability change) produced non-singular relationships similar to those exhibited by the measured data. Four methods were developed to characterize the variability of the exponent through correlation to measurable system parameters. Key factors that mediate the magnitude of mass flux (dilution and source accessibility) were accounted for using measures of source zone cross-sectional area, ganglia-to-pool (GTP) ratio, and relative permeability. The two methods that incorporated only the ganglia-to-pool ratio produced adequate simulations of the observed behavior for early stages of mass removal, but not for later stages. The method that incorporated parameters accounting for the source zone cross-sectional area (i.e., measure of system dilution) and source accessibility (GTP ratio and relative permeability) provided the most representative simulations of the observed data. PMID:21262552

  11. The Impact of Well-Field Configuration and Permeability Heterogeneity on Contaminant Mass Removal and Plume Persistence

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Brusseau, M. L.

    2015-12-01

    The purpose of this study is to investigate the effects of well-field hydraulics and permeability heterogeneity on mass-removal efficiency for systems comprising large groundwater contaminant plumes. A three-dimensional (3D) numerical model was used to simulate the impact of different well-field configurations on pump-and-treat mass removal for heterogeneous domains. The relationship between reduction in contaminant mass discharge (CMDR) and mass removal (MR) was used as the metric to examine remediation efficiency. The impacts of well-field configuration on mass removal behavior is attributed to mass-transfer constraints associated with regions of low flow, which can be muted by the influence of permeability heterogeneity. These impacts are reflected in the associated CMDR-MR profiles. Systems whose CDMR-MR profiles are below the 1:1 relationship line are associated with more efficient well-field configurations. The impact of domain heterogeneity on mass-removal effectiveness was investigated in terms of both variance and correlation scale of the random permeability distributions and indexed by the CMDR-MR relationship. Data collected from pump-and-treat operations conducted in a section of the Tucson International Airport Area (TIAA) federal Superfund site were used as a case study. The comparison between simulated and measured site data supports the general validity of the numerical model, and results from the case study are consistent with the conclusions of the theoretical study. These results illustrate that the CMDR-MR relationship can be an effective way to quantify the impacts of different factors on mass-removal efficiency.

  12. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    DOE PAGES

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts andmore » noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.« less

  13. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    NASA Astrophysics Data System (ADS)

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin S.; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-12-01

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm employs an analytical approach to identify and remove artifacts from the data, decreasing the likelihood of false identifications in subsequent data processing. Following application of the algorithm, IMS-MS measurement sensitivity is greatly increased and artifacts that previously limited the utility of applying the Hadamard transform to IMS are avoided. [Figure not available: see fulltext.

  14. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-05-06

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  15. On-line electrodialytic salt removal in electrospray ionization mass spectrometry of proteins.

    PubMed

    Chen, Yongjing; Mori, Masanobu; Pastusek, Amanda C; Schug, Kevin A; Dasgupta, Purnendu K

    2011-02-01

    Salts and buffers, commonly used in isolation and stabilization of biological analytes, have a deleterious effect on electrospray ionization mass spectrometry (ESI-MS). Excessive concentrations of salts lead to ion suppression and adduct formation, which mask or complicate ion signals. In this work, we describe a salt remover (SR), configured as a three-compartment flow-through system, where the central compartment is separated from the outer compartments by a cation-exchange membrane (CEM) and an anion-exchange membrane (AEM). One platinum electrode is placed in each of the outer compartments, where water or electrolyte is flowing. The CEM electrode is held at a negative potential relative to the AEM side; cations/anions migrate by electrophoresis to the CEM/AEM receiver liquids, respectively. Proteins have poorer electrophoretic mobility relative to the buffer components, permitting removal of the salt. The salt-free proteins proceed to the ESI source. The capillary scale SR (internal volume 2.5 μL) described here effectively desalted continuous flows of NaCl solutions (200 mequiv/L at 1 μL/min, equivalent to a flux of 200 nequiv/min with 88% efficiency) and achieved >99.8% salt removal with 154 mM NaCl (isotonic saline) at 1 μL/min. With optimized current, >80% of concurrently present 20 μM protein was transmitted. Desalting efficiency and analyte loss was evaluated with different salt concentration and flow rate combinations under different applied current. Good-quality ESI-MS spectra of cytochrome c, myoglobin, and lysozyme as test proteins in a saline solution, passed through the SR, are demonstrated. PMID:21162592

  16. A Comparative Study of Mass Removal Loads for a Range of Stormwater Treatment Strategies

    NASA Astrophysics Data System (ADS)

    Avellaneda, P. M.; Houle, J. J.; Roseen, R. M.; Ballestero, T. P.

    2005-05-01

    When evaluating performance efficiencies for stormwater BMPs, there are significant challenges with regards to normalizing the variations in design, and hydraulic and hydrological conditions. There can be significant variations that must be considered such as rainfall intensity and duration, influent quality, watershed characteristics, loading functions, antecedent dry period, and maintenance. This study assessed mass removal loads for different stormwater management measures, all located in the same facility. The research facility is unique because it enables monitoring of 12 different treatment devices in parallel. For this purpose, a 9-acre commuter parking lot at the University of New Hampshire was chosen to provide runoff. There are three classes of devices examined at the site, conventional structural Best Management Practices (BMP), Low Impact Development (LID) designs, and manufactured devices. These include a subsurface gravel wetland, a detention pond, a sand filter, a bioretention system, a vegetated swale, and 7 different manufactured devices. Flow was evenly distributed and piped to each stormwater treatment. An on-site rain gauge provided rainfall data and samples of stormwater influent and effluent (for each stormwater treatment) were collected during monitoring rainfall events between August (2004) and April (2005). Temperature, dissolved oxygen and conductivity were measured continuously. Runoff constituents such as TSS, TP, TN, Cu, metals, nutrients and bacteria were measured in temporal water samples for each monitoring rainfall event. Results are presented as both concentration and Event Mean Concentrations (EMCs) to evaluate mass load removal. The watershed rainfall-runoff pattern was investigated as well as a statistical analysis to determine whether or not the differences between inflow and effluent water quality parameters were statistically significant. Earlier results have shown significant differences in the effluent water quality

  17. A gas chromatography-mass spectrometry method to monitor detergents removal from a membrane protein sample.

    PubMed

    Shi, Chaowei; Han, Fang; Xiong, Ying; Tian, Changlin

    2009-12-01

    In membrane protein biochemical and structural studies, detergents are used to mimic membrane environment and maintain functional, stable conformation of membrane proteins in the absence of lipid bilayers. However, detergent concentration, esp. molar ratio of membrane protein to detergent is usually unknown. Here, a gas chromatography-mass spectrometry selected ion monitoring (GC-MS-SIM) method was developed to quantify four detergents which are frequently used in membrane protein structural studies. To remove excessive detergents, a filtered centrifugation using Centricon tubes was applied. A membrane protein Ig-Beta fragment in four different detergent micelles was exemplified. Detergent concentrations in the upper and lower fraction of the Centricon tube were measured after each round of centrifugation. The results were very consistent to basic properties of detergent micelles in aqueous solvents. Therefore, coupling of GC-MS-SIM and detergent removal by Centricon tubes, detergents concentration, esp. molar ratio of membrane protein to detergent could be controlled, which will expedite membrane protein structural and biochemical studies.

  18. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    SciTech Connect

    Yoo, Jong Hyun

    2000-05-20

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 {approx} 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  19. DOE-EMSP Final Report: Characterization of Changes in Colloid and DNAPL Affecting Surface Chemistry and Remediation

    SciTech Connect

    Susan E. Powers; Stefan J. Grimberg; Miles Denham

    2007-02-07

    The waste disposal to the M-area basin and A-14 outfall at the Savannah River Department of Energy facility in Aiken SC (USA) included a wide variety of inorganic aqueous flows and organic solvents in the form of dense non-aqueous phase liquids (DNAPL). The DNAPL has migrated through the subsurface resulting in widespread groundwater contamination. The goal of this research was to identify and quantify processes that could have affected the migration and remediation of the DNAPL in the subsurface. It was hypothesized that the variety of waste disposed at this site could have altered the mineral, microbial and DNAPL properties at this site relative to other DNAPL sites. The DNAPL was determined to have a very low interfacial tension and is suspected to be distributed in fine grained media, thereby reducing the effectiveness of soil vapor extraction remediation efforts. Although the DNAPL is primarily comprised of tetrachloroethene and trichloroethane, it also contains organic acids and several heavy metals. Experimental results suggest that iron from the aqueous and DNAPL phases undergoes precipitation and dechlorination reactions at the DNAPL-water interface, contributing to the low interfacial tension and acidity of the DNAPL. Biological activity in the contaminated region can also contribute to the low interfacial tension. PCE degrading bacteria produce biosurfactants and adhere to the DNAPL-water interface when stressed by high tetrachloroethene or low dissolved oxygen concentrations. The presence of iron can reduce the interfacial tension by nearly an order of magnitude, while the PCE degraders reduced the interfacial tension by nearly 50%. Abiotic changes in the mineral characteristics were not found to be substantially different between contaminated and background samples. The research completed here begins to shed some insight into the complexities of DNAPL fate and migration at sites where co-disposal of many different waste products occurred. Quantifying

  20. Ensemble of Surrogates-based Optimization for Identifying an Optimal Surfactant-enhanced Aquifer Remediation Strategy at Heterogeneous DNAPL-contaminated Sites

    NASA Astrophysics Data System (ADS)

    Lu, W., Sr.; Xin, X.; Luo, J.; Jiang, X.; Zhang, Y.; Zhao, Y.; Chen, M.; Hou, Z.; Ouyang, Q.

    2015-12-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  1. Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Lu, Wenxi; Hou, Zeyu; Zhao, Haiqing; Na, Jin

    2015-11-01

    The purpose of this study was to identify an optimal surfactant-enhanced aquifer remediation (SEAR) strategy for aquifers contaminated by dense non-aqueous phase liquid (DNAPL) based on an ensemble of surrogates-based optimization technique. A saturated heterogeneous medium contaminated by nitrobenzene was selected as case study. A new kind of surrogate-based SEAR optimization employing an ensemble surrogate (ES) model together with a genetic algorithm (GA) is presented. Four methods, namely radial basis function artificial neural network (RBFANN), kriging (KRG), support vector regression (SVR), and kernel extreme learning machines (KELM), were used to create four individual surrogate models, which were then compared. The comparison enabled us to select the two most accurate models (KELM and KRG) to establish an ES model of the SEAR simulation model, and the developed ES model as well as these four stand-alone surrogate models was compared. The results showed that the average relative error of the average nitrobenzene removal rates between the ES model and the simulation model for 20 test samples was 0.8%, which is a high approximation accuracy, and which indicates that the ES model provides more accurate predictions than the stand-alone surrogate models. Then, a nonlinear optimization model was formulated for the minimum cost, and the developed ES model was embedded into this optimization model as a constrained condition. Besides, GA was used to solve the optimization model to provide the optimal SEAR strategy. The developed ensemble surrogate-optimization approach was effective in seeking a cost-effective SEAR strategy for heterogeneous DNAPL-contaminated sites. This research is expected to enrich and develop the theoretical and technical implications for the analysis of remediation strategy optimization of DNAPL-contaminated aquifers.

  2. Hydraulic/partitioning tracer tomography for DNAPL source zone characterization: small-scale sandbox experiments.

    PubMed

    Illman, Walter A; Berg, Steven J; Liu, Xiaoyi; Massi, Antonio

    2010-11-15

    Dense nonaqueous phase liquids (DNAPL) are prevalent at a large number of sites throughout the world. The variable release history, unstable flow, and geologic heterogeneity make the spatial distribution of DNAPLs complex. This causes difficulties in site remediation contributing to long-term groundwater contamination for decades to centuries. We present laboratory experiments to demonstrate the efficacy of Sequential Successive Linear Estimator (SSLE) algorithm that images DNAPL source zones. The algorithm relies on the fusion of hydraulic and partitioning tracer tomography (HPTT) to derive the best estimate of the K heterogeneity, DNAPL saturation (S(N)) distribution, and their uncertainty. The approach is nondestructive and can be applied repeatedly. Results from our laboratory experiments show that S(N) distributions compare favorably with DNAPL distributions observed in the sandbox but not so with local saturation estimates from core samples. We also found that the delineation of K heterogeneity can have a large impact on computed S(N) distributions emphasizing the importance of accurate delineation of hydraulic heterogeneity.

  3. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-12-01

    This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume

  4. The Vapor-phase Multi-stage CMD Test for Characterizing Contaminant Mass Discharge Associated with VOC Sources in the Vadose Zone: Application to Three Sites in Different Lifecycle Stages of SVE Operations

    PubMed Central

    Brusseau, M.L.; Mainhagu, J.; Morrison, C.; Carroll, K.C.

    2015-01-01

    Vapor-phase multi-stage contaminant mass discharge (CMD) tests were conducted at three field sites to measure mass discharge associated with contaminant sources located in the vadose zone. The three sites represent the three primary stages along the soil vapor extraction (SVE) operations lifecycle- pre/initial-SVE, mid-lifecycle, and near-closure. A CMD of 32 g/d was obtained for a site at which soil vapor SVE has been in operation for approximately 6 years, and for which mass removal is currently in the asymptotic stage. The contaminant removal behavior exhibited for the vapor extractions conducted at this site suggests that there is unlikely to be a significant mass of non-vapor-phase contaminant (e.g., DNAPL, sorbed phase) remaining in the advective domains, and that most remaining mass is likely located in poorly accessible domains. Given the conditions for this site, this remaining mass is hypothesized to be associated with the low-permeability (and higher water saturation) region in the vicinity of the saturated zone and capillary fringe. A CMD of 25 g/d was obtained for a site wherein SVE has been in operation for several years but concentrations and mass-removal rates are still relatively high. A CMD of 270 g/d was obtained for a site for which there were no prior SVE operations. The behavior exhibited for the vapor extractions conducted at this site suggest that non-vapor-phase contaminant mass (e.g., DNAPL) may be present in the advective domains. Hence, the asymptotic conditions observed for this site most likely derive from a combination of rate-limited mass transfer from DNAPL (and sorbed) phases present in the advective domain as well as mass residing in lower-permeability (“non-advective”) regions. The CMD values obtained from the tests were used in conjunction with a recently developed vapor-discharge tool to evaluate the impact of the measured CMDs on groundwater quality. PMID:26047819

  5. The vapor-phase multi-stage CMD test for characterizing contaminant mass discharge associated with VOC sources in the vadose zone: Application to three sites in different lifecycle stages of SVE operations.

    PubMed

    Brusseau, M L; Mainhagu, J; Morrison, C; Carroll, K C

    2015-08-01

    Vapor-phase multi-stage contaminant mass discharge (CMD) tests were conducted at three field sites to measure mass discharge associated with contaminant sources located in the vadose zone. The three sites represent the three primary stages of the soil vapor extraction (SVE) operations lifecycle-pre/initial-SVE, mid-lifecycle, and near-closure. A CMD of 32g/d was obtained for a site at which soil vapor SVE has been in operation for approximately 6years, and for which mass removal is currently in the asymptotic stage. The contaminant removal behavior exhibited for the vapor extractions conducted at this site suggests that there is unlikely to be a significant mass of non-vapor-phase contaminant (e.g., DNAPL, sorbed phase) remaining in the advective domains, and that most remaining mass is likely located in poorly accessible domains. Given the conditions for this site, this remaining mass is hypothesized to be associated with the low-permeability (and higher water saturation) region in the vicinity of the saturated zone and capillary fringe. A CMD of 25g/d was obtained for a site wherein SVE has been in operation for several years but concentrations and mass-removal rates are still relatively high. A CMD of 270g/d was obtained for a site for which there were no prior SVE operations. The behavior exhibited for the vapor extractions conducted at this site suggest that non-vapor-phase contaminant mass (e.g., DNAPL) may be present in the advective domains. Hence, the asymptotic conditions observed for this site most likely derive from a combination of rate-limited mass transfer from DNAPL (and sorbed) phases present in the advective domain as well as mass residing in lower-permeability ("non-advective") regions. The CMD values obtained from the tests were used in conjunction with a recently developed vapor-discharge tool to evaluate the impact of the measured CMDs on groundwater quality. PMID:26047819

  6. Permanganate Treatment of DNAPLs in Reactive Barriers and Source Zone Flooding Schemes - Final Report

    SciTech Connect

    Schwartz, F.W.

    2000-10-01

    This study provides a detailed process-level understanding of the oxidative destruction of the organic contaminant emphasizing on reaction pathways and kinetics. A remarkable rise in the MnO{sup {minus}} consumption rate with TCA and PCE mixtures proves that the phase transfer catalysts have the ability to increase oxidation rate of DNAPLs either in pure phase or mixtures and that there is significant potential for testing the catalyzed scheme under field conditions. Secondly, as an attempt to enhance the oxidation of DNAPL, we are trying to exploit cosolvency effects, utilizing various alcohol-water mixtures to increase DNAPL solubilization. Preliminary results of cosolvency experiments indicate the enhancement in the transfer of nonaqueous phase TCE to TBA-water solution and the rate of TCE degradation in aqueous phase.

  7. Effects of soil layering and interfacial tension on DNAPL migration in subsurface environments

    SciTech Connect

    Singletary, M.A.; Pennell, K.D.; Ramsburg, A.

    1999-07-01

    A series of tetrachloroethene (PCE) infiltration experiments was conducted in 2-dimensional aquifer cells to investigate the effects of soil layering and interfacial tension on dense non-aqueous phase liquid (DNAPL) infiltration and entrapment in saturated environments. The aquifer cells were packed with a background medium, 20--30 mesh Ottawa sand, and a single low-permeability layer, consisting of either F-70 Ottawa sand or Wurtsmith aquifer material, located near the center of the cell. PCE was introduced approximately 5 cm below the water table at a constant flow rate of 0.05 ml/min. The results of these experiments demonstrate the dramatic effects that interfacial tension reduction can have on DNAPL flow and entrapment in layered subsurface systems. These findings also have implications during field implementation of surfactant enhanced aquifer remediation (SEAR), in which low interfacial tension surfactant formulations may lead to DNAPL migration into fine layers or previously uncontaminated regions of an aquifer.

  8. In Situ Oxidation and Associated Mass-Flux-Reduction/Mass-Removal Behavior for Systems with Organic Liquid Located in Lower-Permeability Sediments

    SciTech Connect

    Marble, justin C.; Carroll, Kenneth C.; Janousek, Hilary; Brusseau, M. L.

    2010-07-21

    The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment.

  9. In situ oxidation and associated mass-flux-reduction/mass-removal behavior for systems with organic liquid located in lower-permeability sediments.

    PubMed

    Marble, Justin C; Carroll, Kenneth C; Janousek, Hilary; Brusseau, Mark L

    2010-09-20

    The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment.

  10. Comparison of dechlorination rates for field DNAPL vs synthetic samples: effect of sample matrix

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Sakulchaicharoen, N.; Herrera, J. E.

    2015-12-01

    Nanometals have received significant attention in recent years due to their ability to rapidly destroy numerous priority source zone contaminants in controlled laboratory studies. This has led to great optimism surrounding nanometal particle injection for insitu remediation. Reported dechlorination rates vary widely among different investigators. These differences have been ascribed to differences in the iron types (granular, micro, or nano-sized iron), matrix solution chemistry and the morphology of the nZVI surface. Among these, the effects of solution chemistry on rates of reductive dechlorination of various chlorinated compounds have been investigated in several short-term laboratory studies. Variables investigated include the effect of anions or groundwater solutes such as SO4-2, Cl-, NO3-, pH, natural organic matters (NOM), surfactant, and humic acid on dechlorination reaction of various chlorinated compounds such as TCE, carbon tetrachloride (CT), and chloroform (CF). These studies have normally centered on the assessment of nZVI reactivity toward dechlorination of an isolated individual contaminant spiked into a ground water sample under ideal conditions, with limited work conducted using real field samples. In this work, the DNAPL used for the dechlorination study was obtained from a contaminatied site. This approach was selected to adequately simulate a condition where the nZVI suspension was in direct contact with DNAPL and to isolate the dechlorination activity shown by the nZVI from the groundwater matrix effects. An ideal system "synthetic DNAPL" composed of a mixture of chlorinated compounds mimicking the composition of the actual DNAPL was also dechlorinated to evaluate the DNAPL "matrix effect" on NZVI dechlorination activity. This approach allowed us to evaluate the effect of the presence of different types of organic compounds (volatile fatty acids and humic acids) found in the actual DNAPL on nZVI dechlorination activity. This presentation will

  11. Cost optimization of DNAPL source and plume remediation under uncertainty using a semi-analytic model.

    PubMed

    Cardiff, Michael; Liu, Xiaoyi; Kitanidis, Peter K; Parker, Jack; Kim, Ungtae

    2010-04-01

    Dense non-aqueous phase liquid (DNAPL) spills represent a potential long-term source of aquifer contamination, and successful low-cost remediation may require a combination of both plume management and source treatment. In addition, substantial uncertainty exists in many of the parameters that control field-scale behavior of DNAPL sources and plumes. For these reasons, cost optimization of DNAPL cleanup needs to consider multiple treatment options and their associated costs while also gauging the influence of prediction uncertainty on expected costs. In this paper, we present a management methodology for field-scale DNAPL source and plume management under uncertainty. Using probabilistic methods, historical data and prior information are combined to produce a set of equally likely realizations of true field conditions (i.e., parameter sets). These parameter sets are then used in a simulation-optimization framework to produce DNAPL cleanup solutions that have the lowest possible expected net present value (ENPV) cost and that are suitably cautious in the presence of high uncertainty. For simulation, we utilize a fast-running semi-analytic field-scale model of DNAPL source and plume evolution that also approximates the effects of remedial actions. The degree of model prediction uncertainty is gauged using a restricted maximum likelihood method, which helps to produce suitably cautious remediation strategies. We test our methodology on a synthetic field-scale problem with multiple source architectures, for which source zone thermal treatment and electron donor injection are considered as remedial actions. The lowest cost solution found utilizes a combination of source and plume remediation methods, and is able to successfully meet remediation constraints for a majority of possible scenarios. Comparisons with deterministic optimization results show that not taking into account uncertainty can result in optimization strategies that are not aggressive enough and result

  12. Online Matrix Removal Platform for Coupling Gel-Based Separations to Whole Protein Electrospray Ionization Mass Spectrometry

    PubMed Central

    Kim, Ki Hun; Compton, Philip D.; Tran, John C.; Kelleher, Neil L.

    2015-01-01

    A fractionation method called gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) has been used to dramatically increase the number of proteins identified in top-down proteomic workflows; however, the technique involves the use of sodium dodecyl sulfate (SDS), a surfactant that interferes with electrospray ionization. Therefore, an efficient removal of SDS is absolutely required prior to mass analysis. Traditionally, methanol/chloroform precipitation and spin columns have been used, but they lack reproducibility and are difficult to automate. Therefore, we developed an in-line matrix removal platform to enable the direct analysis of samples containing SDS and salts. Only small molecules like SDS permeate a porous membrane and are removed in a manner similar to cross-flow filtration. With this device, near-complete removal of SDS is accomplished within 5 min and proteins are subsequently mobilized into a mass spectrometer. The new platform was optimized for the analysis of GELFrEE fractions enriched for histones extracted from human HeLa cells. All four core histones and their proteoforms were detected in a single spectrum by high-resolution mass spectrometry. The new method versus protein precipitation/resuspension showed 2- to 10-fold improved signal intensities, offering a clear path forward to improve proteome coverage and the efficiency of top-down proteomics. PMID:25836738

  13. Influence of flow velocity and spatial heterogeneity on DNAPL migration in porous media: insights from laboratory experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Gao, Yanwei; Sun, Yuanyuan; Shi, Xiaoqing; Xu, Hongxia; Wu, Jichun

    2015-12-01

    Understanding the migration of dense non-aqueous phase liquids (DNAPLs) in complex subsurface systems is important for evaluating contamination source zones and designing remediation schemes after spill events. Six sandbox experiments were performed to explore the individual effect of flow velocity, and the combined effect of flow velocity and layered lenses on a DNAPL (PCE) migration in porous media. DNAPL saturation was measured using a light transmission system, and saturation distribution was quantified by spatial moments. The experimental results show that large flow velocity significantly promotes lateral and vertical migration of the low-viscosity DNAPL, while when layered lenses exist, the infiltration rate decreases and horizontal spread increases. Migration processes were numerically simulated, and the modelling results tested against experimental results. Furthermore, migration of DNAPLs with different viscosities was simulated to explore the combined effects of flow velocity and geological heterogeneity. Simulation results show that enhanced heterogeneity makes low-viscosity DNAPLs migrate along preferential pathways, resulting in irregular DNAPL morphology. Layered lenses combined with heterogeneity complicate the effect of flow velocity on the migration of low-viscosity DNAPLs by changing percolation paths. Results also demonstrate that flow velocity exhibits relatively little influence on the migration of medium/high-viscosity DNAPLs, which is predominantly controlled by viscosity and heterogeneity. Enhanced heterogeneity has a larger effect on migration behavior. Findings indicate that the migration paths and position of the source zone could change significantly, due to the combined effect of groundwater flow velocity and geological heterogeneity; thus, comprehensive hydrogeological investigation is needed to characterize the source zone.

  14. Mass Spectrum Analysis of Gas Emitted during Organic Contaminant Removal from a Metal Surface with an Arc in Low Vacuum

    SciTech Connect

    Sugimoto, Masaya; Takeda, Koichi

    2006-05-05

    The gas emitted during organic contaminant removal from a metal surface with an arc in low vacuum is investigated using a quadrupole mass spectrometer. The experimental results show that fragment molecules of the contaminant material, which are created by the decomposition of the contaminant material, exist in the emitted gas. The decomposition rate of the contaminant increased with the treatment current, which indicates that the decomposition occurs not in the cathode spot, but in the arc column.

  15. ENHANCED CONTACT OF COSOLVENT AND DNAPL IN POROUS MEDIA BY CONCURRENT INJECTION OF COSOLVENT AND AIR

    EPA Science Inventory

    Remediation of sites contaminated by dense nonaqueous phase liquids (DNAPLS) is a major
    environmental problem and cosolvent flooding is proposed as a remedial alternative. The
    efficacy of cosolvent flooding is a function of the degree of mixing between the injected
    remed...

  16. A SCREENING MODEL FOR SIMULATING DNAPL FLOW AND TRANSPORT IN POROUS MEDIA: THEORETICAL DEVELOPMENT

    EPA Science Inventory

    There exists a need for a simple tool that will allow us to analyze a DNAPL contamination scenario from free-product release to transport of soluble constituents to downgradient receptor wells. The objective of this manuscript is to present the conceptual model and formulate the ...

  17. Physics of DNAPL migration and remediation in the presence of heterogeneities. 1997 annual progress report

    SciTech Connect

    Conrad, S.; Glass, R.

    1997-01-01

    'The authors are in the process of conducting well-controlled laboratory experiments to better understand the physics of DNAPL migration and remediation in the presence of heterogeneities. These experiments are being used to develop and test an upscaled percolation model, a new approach for modeling DNAPL migration. In addition, numerical simulators under current use in evaluating remediation techniques will be compared against the remediation experiments. They are making use of their unique experimental capabilities in the Subsurface Flow and Transport Processes Laboratory at Sandia to conduct controlled, systematic, repeatable experiments that first consider the physics of DNAPL migration in initially water-saturated, heterogeneous porous media and then evaluate the efficacy of a suite of promising remediation techniques for remediating DNAPLs from heterogeneous aquifers. The results of the migration experiments are being used to test and continue development of new modeling approaches based on upscaled percolation theory developed by us. The remediation experiments include visual and quantitative measures of each remediation technique''s performance. The results of the remediation experiments will be used to test, for the first time, within heterogeneous media, the quantitative performance of remediation design codes (two-phase flow codes that incorporate compositional models).'

  18. Transport, Targeting and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents

    SciTech Connect

    Lowry, Gregory V.; Majetich, Sara; Sholl, David; Tilton, Robert D.; Matyjaszewski, Krzysztof; Liu, Yueqiang; Sarbu, Traian; Almusallam, Abdulwahab; Redden, George D.; Meakin, Paul; Rollins, Harry W.

    2004-03-31

    Recently, laboratory and field studies have demonstrated that zero-valent iron nanoparticles (colloids) can rapidly transform dissolved chlorinated organic solvents into non-toxic compounds. This technology also has the potential to address Dense Non- Aqueous Phase Liquid (DNAPL) contamination, one of DOE's primary contamination problems. This project develops and tests polymer-modified reactive nanoscale Fe0 particles for in situ delivery to chlorinated solvents that are present as DNAPLs in the subsurface. The surfaces of reactive Fe0-based nanoparticles are modified with amphiphilic block copolymers to maintain a stable suspension of the particles in water for transport in a porous matrix and to create an affinity for the water-DNAPL interface. Ultimately this will provide an improved technology to locate and eliminate DNAPL, a recalcitrant and persistent source for groundwater contamination by chlorinated solvents. Candidate polymers have been synthesized and attached to 20 nm SiO2 particles using Atom Transfer Radical Polymerization (ATRP). The physical properties (hydrodynamic radius, stability, TCE-water partitioning behavior, mobility in a porous matrix) of these nanostructures have been determined. The particles (dp {approx}102 nm) are water soluble and partition to the TCE-water interface. The physical and chemical properties (e.g. oxide phase and thickness) of Fe0 nanoparticles synthesized using different techniques and the effects of these properties on particle reactivity and efficiency have been evaluated. Numerical models (Brownian Dynamics) have been developed to predict the aqueous diffusivities of these particle-polymer nanostructures.

  19. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  20. MONITOIRNG OF A CONTROLLED DNAPL SPILL USING A PROTOTYPE DIELECTRIC LOGGING TOOL

    EPA Science Inventory

    The U. S. Geological Survey (USGS) utilized their prototype dielectric logging tool to monitor a controlled Dense Non-Aqueous Phase Liquid (DNAPL) spill into a large tank located at the University of California Richmond Field Station (RFS) containing multiple sand and clayey sand...

  1. Characterizing The Microbial Community In A TCE DNAPL Site: SABRE Column And Field Studies

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project is evaluating accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. In support of a field scale pilot test, column studies were conducted to design the system and ob...

  2. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (Battelle Conference)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) was conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island, SC. The EZVI technology was developed at the University of Central Fl...

  3. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON (BATTELLE PRESENTATION)

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The EZVI technology was developed at the University of Central ...

  4. FIELD EVALUATION OF THE TREATMENT OF DNAPL USING EMULSIFIED ZERO-VALENT IRON

    EPA Science Inventory

    A pilot scale field demonstration of dense non-aqueous phase liquids (DNAPL) treatment using emulsified zero-valent iron (EZVI) is being conducted at Parris Island Marine Corps Recruit Depot (MCRD), Parris Island SC. The demonstration is being conducted by Geosyntec, the Nationa...

  5. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground-water contamination by nonaqueous phase liquids poses one of the greatest remedial challenges In the field of environmental engineering. Denser-than-water nonaqueous phase liquids (DNAPLs) are especially problematic due to their tow water solubility, high density, and capi...

  6. EVALUATION OF TECHNOLOGIES FOR IN SITU CLEANUP OF DNAPL CONTAMINATED SITES

    EPA Science Inventory

    Ground water contamination by non-aqueous phase liquids poses one of the greatest remedial challenges in the field of environmental engineering. Denser-than-water non-aqueous phase liquids (DNAPLs) are especially problematic due to their low water solubility, high density, an...

  7. THE DNAPL REMEDIATION CHALLENGE: IS THERE A CASE FOR SOURCE DEPLETION?

    EPA Science Inventory

    Releases of Dense Non-Aqueous Phase Liquids (DNAPLs) at a large number of public and private sector sites in the United States pose significant challenges in site remediation and long-term site management. Extensive contamination of groundwater occurs as a result of significant ...

  8. Spatial And Temporal Distribution Of Microbial Communities In A TCE DNAPL Site: SABRE Field Studies

    EPA Science Inventory

    The SABRE (Source Area BioREmediation) project was conducted to evaluate accelerated anaerobic bioremediation of chlorinated solvents in areas of high concentration, such as DNAPL source areas. To study performance of this technology, a test cell was constructed with a longitudi...

  9. Bisphenol-A removal in various wastewater treatment processes: operational conditions, mass balance, and optimization.

    PubMed

    Guerra, P; Kim, M; Teslic, S; Alaee, M; Smyth, S A

    2015-04-01

    Bisphenol-A (BPA) was analyzed in 499 liquid and 347 solid samples collected from twenty-five wastewater treatment plants (WWTPs) to investigate parameters affecting BPA occurrence, removal, and fate. Lagoons, chemically-assisted primary treatment, secondary treatment, and advanced treatment processes were included. Median BPA concentrations in influent and final effluent were 400 ng/L and 150 ng/L, respectively. Median removal efficiencies ranged from 1 to 77%. Respective median BPA levels in primary sludge, secondary biological sludge, and biosolids were 230, 260, and 460 ng/g with digested biosolids having the highest concentrations. The biological aerated filter and membrane bioreactor processes showed the best performance, while chemically-assisted primary treatment achieved the lowest removal. Biodegradation and sorption contributing to BPA removal were influenced by operational conditions: hydraulic retention time (HRT), solids retention time (SRT), and mixed liquor suspended solids (MLSS). The influence of HRT, SRT, and MLSS in the bioreactor was stronger during cold temperatures. In order to achieve above 80% removal, the required conditions for HRT, SRT, and MLSS were 13 h, 7 days, and 1600 mg/L during summer (median temperature 19 °C) and 13 h, 17 days, and 5300 mg/L during winter (median temperature 10 °C); indicating that longer SRT and higher MLSS were needed during winter. BPA's sorption tendency to sludge was strongly influenced by the degree of nitrification and HRT. PMID:25684568

  10. DNAPL Mobility in Heterogeneous Porous Media: Sensitivity of Migration Times to Source Characteristics and Release Location Parameters

    NASA Astrophysics Data System (ADS)

    Pang, T.; Gerhard, J. I.; Kueper, B. H.

    2004-12-01

    This study examined the factors the influence the time required for a release of dense nonaqueous phase liquid (DNAPL) to cease migrating through heterogeneous porous media below the watertable. Using numerical simulation, the temporal and spatial sensitivity of DNAPL migration was evaluated for four DNAPL source characteristics - nonwetting fluid type (i.e., density and viscosity), interfacial tension (IFT), source strength, and volume released - and for three release location parameters - mean permeability, porosity, and hydraulic gradient. The study was conducted using the multiphase code DNAPL3D whose constitutive relationships were developed, and validated, for DNAPL migration in both space and time. All numerical simulations employed a single correlated random permeability field and identical boundary and source conditions to the base case, except for systematic variation of the parameter under investigation. It was found that all of the parameters examined had a significant spatial effect on the final DNAPL migration pattern, either on the overall volume of subsurface invaded (e.g., direct correlation to volume released) or on the amount of lateral spreading (e.g., direct correlation to IFT). However, only two of the parameters were found to have a significant effect on the time required to achieve the final, stable distribution of DNAPL pools and residual. Migration rates were very sensitive to DNAPL type, with predicted cessation times ranging from 30 days for the high mobility fluid tetrachloroethylene (PCE) to over 1000 years for the low mobility fluid coal tar. These simulations reveal that while density primarily influences the spatial extent of penetration and viscosity primarily influences penetration rate, the two effects are not independent due to interactions with site-specific heterogeneity. In addition, the mean permeability of the heterogeneous domain was found to be significant, with increases in mean k corresponding to decreases in both

  11. Estimating the Extent and Thickness of DNAPL within the A/M Area of the Savannah River Site

    SciTech Connect

    Jackson, D.G.; Payne, T.H.; Looney, B.B.; Rossabi, J.

    1996-12-20

    The objective of this study is to refine the current conceptual model for the extent, character, and thickness of DNAPL contamination in the A/M Area. The evaluation is based upon historical records of operations and waste management and on detailed screening of historical groundwater concentrations against solubility limits. The topology of the Green Clay confining zone is used as the primary factor determining DNAPL pool thickness and resulting migration paths.

  12. Development of a clusterwise-linear-regression-based forecasting system for characterizing DNAPL dissolution behaviors in porous media.

    PubMed

    Wang, S; Huang, G H; He, L

    2012-09-01

    Groundwater contamination by dense non-aqueous phase liquids (DNAPLs) has become an issue of great concern in many industrialized countries due to their serious threat to human health. Dissolution and transport of DNAPLs in porous media are complicated, multidimensional and multiphase processes, which pose formidable challenges for investigation of their behaviors and implementation of effective remediation technologies. Numerical simulation models could help gain in-depth insight into complex mechanisms of DNAPLs dissolution and transport processes in the subsurface; however, they were computationally expensive, especially when a large number of runs were required, which was considered as a major obstacle for conducting further analysis. Therefore, proxy models that mimic key characteristics of a full simulation model were desired to save many orders of magnitude of computational cost. In this study, a clusterwise-linear-regression (CLR)-based forecasting system was developed for establishing a statistical relationship between DNAPL dissolution behaviors and system conditions under discrete and nonlinear complexities. The results indicated that the developed CLR-based forecasting system was capable not only of predicting DNAPL concentrations with acceptable error levels, but also of providing a significance level in each cutting/merging step such that the accuracies of the developed forecasting trees could be controlled. This study was a first attempt to apply the CLR model to characterize DNAPL dissolution and transport processes. PMID:22789814

  13. Development of a clusterwise-linear-regression-based forecasting system for characterizing DNAPL dissolution behaviors in porous media.

    PubMed

    Wang, S; Huang, G H; He, L

    2012-09-01

    Groundwater contamination by dense non-aqueous phase liquids (DNAPLs) has become an issue of great concern in many industrialized countries due to their serious threat to human health. Dissolution and transport of DNAPLs in porous media are complicated, multidimensional and multiphase processes, which pose formidable challenges for investigation of their behaviors and implementation of effective remediation technologies. Numerical simulation models could help gain in-depth insight into complex mechanisms of DNAPLs dissolution and transport processes in the subsurface; however, they were computationally expensive, especially when a large number of runs were required, which was considered as a major obstacle for conducting further analysis. Therefore, proxy models that mimic key characteristics of a full simulation model were desired to save many orders of magnitude of computational cost. In this study, a clusterwise-linear-regression (CLR)-based forecasting system was developed for establishing a statistical relationship between DNAPL dissolution behaviors and system conditions under discrete and nonlinear complexities. The results indicated that the developed CLR-based forecasting system was capable not only of predicting DNAPL concentrations with acceptable error levels, but also of providing a significance level in each cutting/merging step such that the accuracies of the developed forecasting trees could be controlled. This study was a first attempt to apply the CLR model to characterize DNAPL dissolution and transport processes.

  14. Dissolved plume attenuation with DNAPL source remediation, aqueous decay and volatilization--analytical solution, model calibration and prediction uncertainty.

    PubMed

    Parker, Jack C; Park, Eungyu; Tang, Guoping

    2008-11-14

    A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay, partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario, which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues.

  15. Dissolved plume attenuation with DNAPL source remediation, aqueous decay and volatilization--analytical solution, model calibration and prediction uncertainty.

    PubMed

    Parker, Jack C; Park, Eungyu; Tang, Guoping

    2008-11-14

    A vertically-integrated analytical model for dissolved phase transport is described that considers a time-dependent DNAPL source based on the upscaled dissolution kinetics model of Parker and Park with extensions to consider time-dependent source zone biodecay, partial source mass reduction, and remediation-enhanced source dissolution kinetics. The model also considers spatial variability in aqueous plume decay, which is treated as the sum of aqueous biodecay and volatilization due to diffusive transport and barometric pumping through the unsaturated zone. The model is implemented in Excel/VBA coupled with (1) an inverse solution that utilizes prior information on model parameters and their uncertainty to condition the solution, and (2) an error analysis module that computes parameter covariances and total prediction uncertainty due to regression error and parameter uncertainty. A hypothetical case study is presented to evaluate the feasibility of calibrating the model from limited noisy field data. The results indicate that prediction uncertainty increases significantly over time following calibration, primarily due to propagation of parameter uncertainty. However, differences between the predicted performance of source zone partial mass reduction and the known true performance were reasonably small. Furthermore, a clear difference is observed between the predicted performance for the remedial action scenario versus that for a no-action scenario, which is consistent with the true system behavior. The results suggest that the model formulation can be effectively utilized to assess monitored natural attenuation and source remediation options if careful attention is given to model calibration and prediction uncertainty issues. PMID:18502537

  16. Anesthetic management of right atrial mass removal and pulmonary artery thrombectomy in a patient with primary antiphospholipid antibody syndrome.

    PubMed

    Rawat, S K S; Mehta, Yatin; Vats, Mayank; Mishra, Yugal; Khurana, Poonam; Trehan, Naresh

    2010-01-01

    Antiphospholipid antibody syndrome (APLAS) characterises a clinical condition of arterial and venous thrombosis associated with phospholipids directed antibodies. APLAS occurs in 2% of the general population. However, one study demonstrated that 7.1% of hospitalised patients were tested positive for at least one of the three anticardiolipin antibody idiotype. Antiphospholipid antibodies often inhibit phospholipids dependent coagulation in vitro and interfere with laboratory testing of hemostasis. Therefore, the management of anticoagulation during cardiopulmonary bypass can be quite challenging in these patients. Here, we present a case of right atrial mass removal and pulmonary thrombectomy in a patient of APLAS. PMID:20075534

  17. Apparatus for passive removal of subsurface contaminants and mass flow measurement

    DOEpatents

    Jackson, Dennis G.; Rossabi, Joseph; Riha, Brian D.

    2003-07-15

    A system for improving the Baroball valve and a method for retrofitting an existing Baroball valve. This invention improves upon the Baroball valve by reshaping the interior chamber of the valve to form a flow meter measuring chamber. The Baroball valve sealing mechanism acts as a rotameter bob for determining mass flow rate through the Baroball valve. A method for retrofitting a Baroball valve includes providing static pressure ports and connecting a measuring device, to these ports, for measuring the pressure differential between the Baroball chamber and the well. A standard curve of nominal device measurements allows the mass flow rate to be determined through the retrofitted Baroball valve.

  18. Determination of arsenic in gold by flow injection inductively coupled plasma mass spectrometry with matrix removal by reductive precipitation

    NASA Astrophysics Data System (ADS)

    Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.

    1996-12-01

    Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.

  19. IN-SITU THERMAL TREATMENT SYSTEM PERFORMANCE AND MASS REMOVAL METRICS AT FORT LEWIS

    EPA Science Inventory

    The EGDY is the source of a potentially expanding three mile long TCE plume in a sole source drinking water aquifer. Thermal remediation is being employed to reduce source mass loading to the dissolved phase aquifer plume and reduce the time to reach site cleanup goals. This is...

  20. Experimental and numerical investigation of DNAPL infiltration and spreading in a 2-D sandbox by means of light transmission method

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Shi, X.; Wu, J.; Gao, Y. W.

    2013-12-01

    Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often referred to as dense non-aqueous phase liquids (DNAPLs). Accuracy description of the spreading behavior and configuration for subsurface DNAPL migration is important, especially favourable for design effective remediation strategies. In this study, a 2-D experiment was conducted to investigate the infiltration behavior and spatial distribution of PCE in saturated porous media. Accusand 20/30 mesh sand (Unimin, Le Sueur, MN) was used as the background medium with two 70/80 and 60/70 mesh lenses embedded to simulate heterogeneous conditions. Dyed PCE of 100 ml was released into the flow cell at a constant rate of 2ml/min using a Harvard Apparatus syringe pump with a 50 ml glass syringe for two times, and 5 ml/min water was continuously injected through the inlet at the left side of the sandbox, while kept the same effluent rate at right side to create hydrodynamic condition. A light transmission (LT) system was used to record the migration of PCE and determine the saturation distribution of PCE in the sandbox experiment with a thermoelectrically air-cooled charged-coupled device (CCD) camera. All images were processed using MATLAB to calculate thickness-averaged PCE saturation for each pixel. Mass balance was checked through comparing injected known mounts of PCE with that calculated from LT analysis. Results showed that LT method is effective to delineate PCE migration pathways and quantify the saturation distribution. The relative errors of total PCE volumes calculated by LT analysis at different times were within 15% of the injected PCE volumes. The simulation are conducted using the multiphase modeling software T2VOC, which calibrated by the LT analysis results of three recorded time steps to fit with the complete spatial-temporal distribution of the PCE saturation. Model verification was then performed using the other eight recorded time

  1. Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern.

    PubMed

    Martel, Richard; Hébert, Alain; Lefebvre, René; Gélinas, Pierre; Gabriel, Uta

    2004-11-01

    Soil washing with micellar solutions is a promising alternative for the remediation of DNAPL source zones. As with any flushing technology, the success of soil washing with micellar solutions depends in a very large part on the ability of the solution to contact the contaminant (sweep efficiency) and then on the efficiency of contaminant removal once this contact is made (displacement efficiency). We report here on a field test where a micellar solution was used to recover a DNAPL in an open five-spot pattern in which polymer solutions were also injected before and after the washing solution to improve sweep efficiency. The washing solution formulation was optimised in the laboratory prior to the test to obtain good dissolution capacity. For a high-concentration and low-volume soil flushing remediation test such as the one performed (0.8 pore volumes of actual washing solution injected), slug sizing of the washing solution is critical. It was evaluated by an analytical solution. In a five-spot pattern, the displacement efficiency of the washing solution was observed to vary in the porous medium as a function of the radial distance from the injection well because: (1) the volume of the washing solution flowing through a section of the test cell changes (maximum close to the injection well and minimal at the pumping wells); (2) the in situ velocity changes (maximum at the wells and minimum between the wells) and; (3) the contact time of the washing solution with the NAPL changes as a function of the distance from the injection well. The relative importance of the recovery mechanisms, mobilisation and dissolution, was also observed to vary in the test cell. The reduced velocity increased the contact time of the washing solution with the DNAPL enhancing its dissolution, but the decrease of the capillary number caused less mobilisation. The washing process is much more extensive around the injection well. The use of an injection-pumping pattern allowing a complete sweep

  2. Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands.

    PubMed

    Seeger, Eva M; Reiche, Nils; Kuschk, Peter; Borsdorf, Helko; Kaestner, Matthias

    2011-10-01

    To perform a general assessment of treatment efficiency, a mass balance study was undertaken for two types of constructed wetlands (CWs), planted gravel filters and plant root mat systems, for treating VOC (benzene; MTBE) polluted groundwater under field conditions. Contaminant fate was investigated in the respective water, plant, and atmosphere compartments by determining water and atmospheric contaminant loads and calculating contaminant plant uptake, thereby allowing for an extended efficiency assessment of CWs. Highest total VOC removal was achieved during summer, being pronounced for benzene compared to MTBE. According to the experimental results and the calculations generated by the balancing model, degradation in the rhizosphere and plant uptake accounted for the main benzene removal processes, of 76% and 13% for the gravel bed CW and 83% and 11% for the root mat system. Volatilization flux of benzene and MTBE was low (<5%) for the gravel bed CW, while in the root mat system direct contact of aqueous and gaseous phases favored total MTBE volatilization (24%). With this applied approach, we present detailed contaminant mass balances that allow for conclusive quantitative estimation of contaminant elimination and distribution processes (e.g., total, surface, and phytovolatilization, plant uptake, rhizodegradation) in CWs under field conditions.

  3. Refinement of the Kansas City Plant site conceptual model with respect to dense non-aqueous phase liquids (DNAPL)

    SciTech Connect

    Korte, N.E.; Hall, S.C.; Baker, J.L.

    1995-10-01

    This document presents a refinement of the site conceptual model with respect to dense non-aqueous phase liquid (DNAPL) at the US Department of Energy Kansas City Plant (KCP). This refinement was prompted by a review of the literature and the results of a limited study that was conducted to evaluate whether pools of DNAPL were present in contaminated locations at the KCP. The field study relied on the micropurge method of sample collection. This method has been demonstrated as a successful approach for obtaining discrete samples within a limited aquifer zone. Samples were collected at five locations across 5-ft well screens located at the base of the alluvial aquifer at the KCP. The hypothesis was that if pools of DNAPL were present, the dissolved concentration would increase with depth. Four wells with highly contaminated groundwater were selected for the test. Three of the wells were located in areas where DNAPL was suspected, and one where no DNAPL was believed to be present. The results demonstrated no discernible pattern with depth for the four wells tested. A review of the data in light of the available technical literature suggests that the fine-grained nature of the aquifer materials precludes the formation of pools. Instead, DNAPL is trapped as discontinuous ganglia that are probably widespread throughout the aquifer. The discontinuous nature of the DNAPL distribution prevents the collection of groundwater samples with concentrations approaching saturation. Furthermore, the results indicate that attempts to remediate the aquifer with conventional approaches will not result in restoration to pristine conditions because the tortuous groundwater flow paths will inhibit the efficiency of fluid-flow-based treatments.

  4. Modeling GPR data to interpret porosity and DNAPL saturations for calibration of a 3-D multiphase flow simulation

    USGS Publications Warehouse

    Sneddon, Kristen W.; Powers, Michael H.; Johnson, Raymond H.; Poeter, Eileen P.

    2002-01-01

    Dense nonaqueous phase liquids (DNAPLs) are a pervasive and persistent category of groundwater contamination. In an effort to better understand their unique subsurface behavior, a controlled and carefully monitored injection of PCE (perchloroethylene), a typical DNAPL, was performed in conjunction with the University of Waterloo at Canadian Forces Base Borden in 1991. Of the various geophysical methods used to monitor the migration of injected PCE, the U.S. Geological Survey collected 500-MHz ground penetrating radar (GPR) data. These data are used in determining calibration parameters for a multiphase flow simulation. GPR data were acquired over time on a fixed two-dimensional surficial grid as the DNAPL was injected into the subsurface. Emphasis is on the method of determining DNAPL saturation values from this time-lapse GPR data set. Interactive full-waveform GPR modeling of regularized field traces resolves relative dielectric permittivity versus depth profiles for pre-injection and later-time data. Modeled values are end members in recursive calculations of the Bruggeman-Hanai-Sen (BHS) mixing formula, yielding interpreted pre-injection porosity and post-injection DNAPL saturation values. The resulting interpreted physical properties of porosity and DNAPL saturation of the Borden test cell, defined on a grid spacing of 50 cm with 1-cm depth resolution, are used as observations for calibration of a 3-D multiphase flow simulation. Calculated values of DNAPL saturation in the subsurface at 14 and 22 hours after the start of injection, from both the GPR and the multiphase flow modeling, are interpolated volumetrically and presented for visual comparison.

  5. Mass of chlorinated volatile organic compounds removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996-2010

    USGS Publications Warehouse

    Lacombe, Pierre J.

    2011-01-01

    Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.

  6. A mechanism of basal spacing reduction in sodium smectitic clay materials in contact with DNAPL wastes.

    PubMed

    Ayral-Cinar, Derya; Otero-Diaz, Margarita; Demond, Avery H

    2016-09-01

    There has been concern regarding the possible attack of clays in aquitards, slurry walls and landfill liners by dense nonaqueous phase liquid (DNAPL) wastes, resulting in cracking. Despite the fact that a reduction in basal spacing in sodium smectitic clay materials has been linked to cracking, no plausible mechanism by which this reduction occurs in contact with waste DNAPLs has been formulated. To elucidate a mechanism, screening studies were conducted that showed that the combination of an anionic surfactant (AOT), a nonionic surfactant (TritonX-100) and a chlorinated solvent, tetrachloroethylene (PCE), could replicate the basal spacing reduction and cracking behavior of water-saturated bentonite caused by two waste DNAPLs obtained from the field. FTIR measurements of this system showed a displacement of the HOH bending band of water symptomatic of desiccation. Sorption measurements showed that the uptake of AOT by bentonite increased eight fold in the presence of TritonX-100 and PCE. The evidence presented here supports a mechanism of syneresis, involving the extraction of water from the interlayer space of the clay through the synergistic sorption of a nonionic and anionic surfactant mixture. It is speculated that the solvation of water in reverse micellar aggregates is the process driving the syneresis.

  7. A mechanism of basal spacing reduction in sodium smectitic clay materials in contact with DNAPL wastes.

    PubMed

    Ayral-Cinar, Derya; Otero-Diaz, Margarita; Demond, Avery H

    2016-09-01

    There has been concern regarding the possible attack of clays in aquitards, slurry walls and landfill liners by dense nonaqueous phase liquid (DNAPL) wastes, resulting in cracking. Despite the fact that a reduction in basal spacing in sodium smectitic clay materials has been linked to cracking, no plausible mechanism by which this reduction occurs in contact with waste DNAPLs has been formulated. To elucidate a mechanism, screening studies were conducted that showed that the combination of an anionic surfactant (AOT), a nonionic surfactant (TritonX-100) and a chlorinated solvent, tetrachloroethylene (PCE), could replicate the basal spacing reduction and cracking behavior of water-saturated bentonite caused by two waste DNAPLs obtained from the field. FTIR measurements of this system showed a displacement of the HOH bending band of water symptomatic of desiccation. Sorption measurements showed that the uptake of AOT by bentonite increased eight fold in the presence of TritonX-100 and PCE. The evidence presented here supports a mechanism of syneresis, involving the extraction of water from the interlayer space of the clay through the synergistic sorption of a nonionic and anionic surfactant mixture. It is speculated that the solvation of water in reverse micellar aggregates is the process driving the syneresis. PMID:27343864

  8. Mixed region reactors for in situ treatment of DNAPL contaminated low permeability media

    SciTech Connect

    West, O.R.; Siegrist, R.L.

    1996-08-01

    Fine-textured soils and sediments contaminated by dense non-aqueous phase liquids (DNAPLs) present a significant environmental restoration challenge. An emerging approach to rapid in situ treatment within low permeability media involves the use of soil mixing to create mixed region reactors wherein biological or physical/chemical treatment processes can be employed. In cohesive soils, mixing breaks up the original soil structure and produces soil aggregates or clods separated by interaggregate void spaces. These void spaces create preferential flow paths for more efficient extraction of contaminants from the soil matrix or more rapid diffusion of treatment agents into the soil aggregates. This enhancement technology has been most successfully used with vapor stripping. However, other technologies can also be coupled with soil mixing including chemical degradation, biodegradation and solidification. The application of this technology to DNAPL-contaminated low permeability media appears promising but requires further experiments and models that can simulate the movement of DNAPLs in mixed regions. 11 refs., 6 figs.

  9. Vacuum-enhanced pumping to improve DNAPL recovery in a confined aquifer

    SciTech Connect

    Reisinger, H.J.; Mountain, S.A.; Hubbard, P. Jr.; Carlson, K.; Montney, P.A.

    1995-12-31

    Dense, nonaqueous-phase liquids (DNAPLs) in the form of chlorinated solvents have been used in various phases of US industry for many years. As a result of their use prior to the advent of standardized handling and disposal regulations, they have found their way into the environment at many active and inactive industrial sites. Because of their unique physiochemical characteristics, DNAPLs present unique challenges in the site remediation process. At one such site in the northeast US, dichloromethane, or methylene chloride, entered a confined aquifer from underground storage tanks (USTs) and became subject to environmental remediation. The initial remediation approach was conventional groundwater extraction and treatment via physical separation and diffused aeration. The expansion of the dichloromethane plume resulted in the need for improved DNAPL recovery and dissolved-phase hydraulic control. Through conceptual analysis and pilot testing, vacuum-enhanced dual-phase recovery was determined to be a feasible remedial alternative. Vacuum-enhanced recovery, using a custom-designed pump, was implemented in this confined aquifer, increasing the volume of methylene chloride impacted groundwater recovered by a factor of nearly three, and hydraulic control of the plume was realized.

  10. In situ vertical circulation column: Containment system for small-scale DNAPL field experiments

    SciTech Connect

    Sorel, D.; Cherry, J.A.; Lesage, S.

    1998-12-31

    The in situ vertical circulation column (ISVCC) is a cylindrical containment system consisting of an instrumented steel cylinder used for experimental ground water studies in sandy aquifers. Vertical flow is imposed inside the ISVCC. Although vertical wells are an option, the ISVCC installed in the Borden Aquifer is instrumented with horizontal wells and monitoring ports to avoid creating vertical preferential flow paths. Pure phase DNAPL (tetrachloroethene and 1,1,1-trichloroethane) was slowly pumped into two ports in the center of the column. Following this DNAPL injection, an aqueous solution of vitamin B{sub 12} and reduced titanium was circulated through the column to promote degradation of the solvents. Processes observed in the ISVCC included DNAPL distribution, dissolution, and degradation, and geochemical evolution of the aquifer. The ISVCC provides a convenient means for testing in situ technologies in the experimental stage or for selection of proven technologies to find the most effective at a specific site. It is inexpensive, easy to install, and maximizes control over flow distribution in a heterogeneous aquifer. Its application will be restricted where low hydraulic conductivity beds are present in the aquifer.

  11. Removing costs from the health care supply chain: lessons from mass retail.

    PubMed

    Agwunobi, John; London, Paul A

    2009-01-01

    Improved supply-chain management and high-volume purchasing have benefited other industries. This same approach could also reduce health care costs. Streamlining layers in the supply chain and using purchasing volume to reduce prices can save money and may improve care. Providing access to in-store health clinics and low-cost generic drugs are examples of how this approach is being tested by mass retailers. We examine lessons learned from these and similar initiatives and identify opportunities to cut the costs of generic and name-brand drugs, medical supplies, over-the-counter remedies, and vision care. PMID:19738249

  12. Characterization Activities to Determine the Extent of DNAPL in the Vadose Zone at the A-014 Outfall of A/M Area

    SciTech Connect

    Jackson, D.G.

    2000-09-05

    The purpose of this investigation was to perform characterization activities necessary to confirm the presence and extent of DNAPL in the shallow vadose zone near the headwaters of the A-014 Outfall. Following the characterization, additional soil vapor extraction wells and vadose monitoring probes were installed to promote and monitor remediation activities in regions of identified DNAPL.

  13. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite.

    PubMed

    Canup, Robin M

    2010-12-16

    The origin of Saturn's rings has not been adequately explained. The current rings are more than 90 to 95 per cent water ice, which implies that initially they were almost pure ice because they are continually polluted by rocky meteoroids. In contrast, a half-rock, half-ice mixture (similar to the composition of many of the satellites in the outer Solar System) would generally be expected. Previous ring origin theories invoke the collisional disruption of a small moon, or the tidal disruption of a comet during a close passage by Saturn. These models are improbable and/or struggle to account for basic properties of the rings, including their icy composition. Saturn has only one large satellite, Titan, whereas Jupiter has four large satellites; additional large satellites probably existed originally but were lost as they spiralled into Saturn. Here I report numerical simulations of the tidal removal of mass from a differentiated, Titan-sized satellite as it migrates inward towards Saturn. Planetary tidal forces preferentially strip material from the satellite's outer icy layers, while its rocky core remains intact and is lost to collision with the planet. The result is a pure ice ring much more massive than Saturn's current rings. As the ring evolves, its mass decreases and icy moons are spawned from its outer edge with estimated masses consistent with Saturn's ice-rich moons interior to and including Tethys.

  14. Origin of Saturn's rings and inner moons by mass removal from a lost Titan-sized satellite.

    PubMed

    Canup, Robin M

    2010-12-16

    The origin of Saturn's rings has not been adequately explained. The current rings are more than 90 to 95 per cent water ice, which implies that initially they were almost pure ice because they are continually polluted by rocky meteoroids. In contrast, a half-rock, half-ice mixture (similar to the composition of many of the satellites in the outer Solar System) would generally be expected. Previous ring origin theories invoke the collisional disruption of a small moon, or the tidal disruption of a comet during a close passage by Saturn. These models are improbable and/or struggle to account for basic properties of the rings, including their icy composition. Saturn has only one large satellite, Titan, whereas Jupiter has four large satellites; additional large satellites probably existed originally but were lost as they spiralled into Saturn. Here I report numerical simulations of the tidal removal of mass from a differentiated, Titan-sized satellite as it migrates inward towards Saturn. Planetary tidal forces preferentially strip material from the satellite's outer icy layers, while its rocky core remains intact and is lost to collision with the planet. The result is a pure ice ring much more massive than Saturn's current rings. As the ring evolves, its mass decreases and icy moons are spawned from its outer edge with estimated masses consistent with Saturn's ice-rich moons interior to and including Tethys. PMID:21151108

  15. Microbial removal of alkanes from dilute gaseous waste streams: kinetics and mass transfer considerations.

    PubMed

    Barton, J W; Klasson, K T; Koran, L J; Davison, B H

    1997-01-01

    Treatment of dilute gaseous hydrocarbon waste streams remains a current need for many industries, particularly as increasingly stringent environmental regulations and oversight force emission reduction. Biofiltration systems hold promise for providing low-cost alternatives to more traditional, energy-intensive treatment methods such as incineration and adsorption. Elucidation of engineering principles governing the behavior of such systems, including mass transfer limitations, will broaden their applicability. Our processes exploit a microbial consortium to treat a mixture of 0.5% n-pentane and 0.5% isobutane in air. Since hydrocarbon gases are sparingly soluble in water, good mixing and high surface area between the gas and liquid phases are essential for biodegradation to be effective. One liquid-continuous columnar bioreactor was operated for more than 30 months with continued degradation of n-pentane and isobutane as sole carbon and energy sources. The maximum degradation rate observed in this gas-recycle system was 2 g of volatile organic compounds (VOC)/(m3.h). A trickle-bed bioreactor was operated continuously for over 24 months to provide a higher surface area (using a structured packing) with increased rates. Degradation rates consistently achieved were approximately 50 g of VOC/(m3.h) via single pass in this gas-continuous columnar system. Effective mass transfer coefficients comparable to literature values were also measured for this reactor; these values were substantially higher than those found in the gas-recycle reactor. Control of biomass levels was implemented by limiting the level of available nitrogen in the recirculating aqueous media, enabling long-term stability of reactor performance. PMID:9413140

  16. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.

    PubMed

    Yoon, Hongkyu; Werth, Charles J; Valocchi, Albert J; Oostrom, Mart

    2008-08-20

    An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impacts of water and NAPL saturation distribution, NAPL-type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at later time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.

  17. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction

    SciTech Connect

    Yoon, Hongkyu; Werth, Charlie; Valocchi, Albert J.; Oostrom, Martinus

    2008-09-26

    An existing multiphase flow simulator was modified in order to determine the effects of four mechanisms on NAPL mass removal in a strongly layered heterogeneous vadose zone during soil vapor extraction (SVE): a) NAPL flow, b) diffusion and dispersion from low permeability zones, c) slow desorption from sediment grains, and d) rate-limited dissolution of trapped NAPL. The impact of water and NAPL saturation distribution, NAPL type (i.e., free, residual, or trapped) distribution, and spatial heterogeneity of the permeability field on these mechanisms were evaluated. Two different initial source zone architectures (one with and one without trapped NAPL) were considered and these architectures were used to evaluate seven different SVE scenarios. For all runs, slow diffusion from low permeability zones that gas flow bypassed was a dominant factor for diminished SVE effectiveness at later times. This effect was more significant at high water saturation due to the decrease of gas-phase relative permeability. Transverse dispersion contributed to fast NAPL mass removal from the low permeability layer in both source zone architectures, but longitudinal dispersion did not affect overall mass removal time. Both slow desorption from sediment grains and rate-limited mass transfer from trapped NAPL only marginally affected removal times. However, mass transfer from trapped NAPL did affect mass removal at late time, as well as the NAPL distribution. NAPL flow from low to high permeability zones contributed to faster mass removal from the low permeability layer, and this effect increased when water infiltration was eliminated. These simulations indicate that if trapped NAPL exists in heterogeneous porous media, mass transfer can be improved by delivering gas directly to zones with trapped NAPL and by lowering the water content, which increases the gas relative permeability and changes trapped NAPL to free NAPL.

  18. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling.

    PubMed

    Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J S

    2014-06-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other

  19. Normalization Approaches for Removing Systematic Biases Associated with Mass Spectrometry and Label-Free Proteomics

    SciTech Connect

    Callister, Stephen J.; Barry, Richard C.; Adkins, Joshua N.; Johnson, Ethan T.; Qian, Weijun; Webb-Robertson, Bobbie-Jo M.; Smith, Richard D.; Lipton, Mary S.

    2006-02-01

    Central tendency, linear regression, locally weighted regression, and quantile techniques were investigated for normalization of peptide abundance measurements obtained from high-throughput liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR MS). Arbitrary abundances of peptides were obtained from three sample sets, including a standard protein sample, two Deinococcus radiodurans samples taken from different growth phases, and two mouse striatum samples from control and methamphetamine-stressed mice (strain C57BL/6). The selected normalization techniques were evaluated in both the absence and presence of biological variability by estimating extraneous variability prior to and following normalization. Prior to normalization, replicate runs from each sample set were observed to be statistically different, while following normalization replicate runs were no longer statistically different. Although all techniques reduced systematic bias, assigned ranks among the techniques revealed significant trends. For most LC-FTICR MS analyses, linear regression normalization ranked either first or second among the four techniques, suggesting that this technique was more generally suitable for reducing systematic biases.

  20. Removal of sodium dodecyl sulfate from protein samples prior to matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Puchades, M; Westman, A; Blennow, K; Davidsson, P

    1999-01-01

    Sodium dodecyl sulfate (SDS) is widely used for protein solubilization and for separation of proteins by SDS polyacrylamide gel electrophoresis (SDS-PAGE). However, SDS interferes with other techniques used for characterization of proteins, such as mass spectrometry (MS) and amino acid sequencing. In this paper, we have compared three procedures to remove SDS from proteins, including chloroform/methanol/water extraction (C/M/W), cold acetone extraction and desalting columns, in order to find a rapid and reproducible procedure that provides sufficient reduction of SDS and high recovery rates for proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A 1000-fold reduction of SDS concentration and a protein recovery at approximately 50% were obtained with the C/M/W procedure. The cold acetone procedure gave a 100-fold reduction of SDS and a protein recovery of approximately 80%. By using desalting columns, the removal of SDS was 100-fold, with a protein recovery of nearly 50%. Both the C/M/W and the cold acetone methods provided sufficient reduction of SDS, high recovery rates of protein and allowed the acquisition of MALDI spectra. The use of n-octyl-beta-D-glucopyranoside in the protein sample preparation enhanced the MALDI signal for protein samples containing more than 2 10(-4)% SDS, after the C/M/W extraction. Following the cold acetone procedure, the use of n-octylglucoside was found to be necessary in order to obtain spectra, but they were of lower quality than those obtained with the C/M/W method, probably due to higher residual amounts of SDS. PMID:10209872

  1. Nitrate removal in two relict oxbow urban wetlands: a 15N mass-balance approach

    NASA Astrophysics Data System (ADS)

    Harrison, M. D.; Groffman, P. M.; Mayer, P. M.; Kaushal, S.

    2012-12-01

    A mass-balance approach was used to directly determine the flow of 15NO3- to plants, algae, and sediments,with unaccounted for 15N assumed to be denitrified. During the summer, plant and algal uptake accounted for 42%, of the added 15NO3 - in oxbow 1, less than 1% remained in the water column and 57% was unaccounted for. In oxbow 2 during the summer, plant and algal uptake accounted for 63% of the added 15NO3 -, with 1% remaining in the water column and 38% unaccounted for. During the early spring, plant and algal uptake were much lower in both oxbows, ranging from 0.05 to 13.3% of the 15N added, with 97 and 87% was unaccounted for in oxbow 1 and 2, respectively. The amount of unaccounted for 15N was equivalent to estimated areal denitrification rates of 12 and 6 mg N m-2 d-1 in the summer and 78 and 15 mg N m-2 d-1 in the spring, in oxbow 1 and oxbow 2, respectively. However, the uncertainty of these estimates is high as it was difficult to detect accumulation of 15N in the sediments which could have accounted for a very large percentage of the added 15N. Our results suggest that the two relict oxbow wetlands are sinks for NO3 - during both summer and spring. Plane view of Ox1 (A) and Ox2 (B) wetlands with closed contour intervals (color scale) and surrounding stream and upland elevations (labeled in black) located at Minebank Run, near Glen Arms, MD. 15N enrichment (atom %) of measured N pools prior to (Day 0) and after (Day 5) the end of the experiment in July 2009 and April 2010 for Ox1 and Ox2. Values are mean atom % (n = 2 algae, macrophytes and sediment; n = 6 for water samples).

  2. DEMONSTRATION OF PILOT-SCALE PREVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. I. SPIRAL WOUND MEMBRANE MODULES

    EPA Science Inventory

    During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...

  3. Material Property Estimation for Direct Detection of DNAPL using Integrated Ground-Penetrating Radar Velocity, Imaging and Attribute Analysis

    SciTech Connect

    John H. Bradford; Stephen Holbrook; Scott B. Smithson

    2004-12-09

    The focus of this project is direct detection of DNAPL's specifically chlorinated solvents, via material property estimation from multi-fold surface ground-penetrating radar (GPR) data. We combine state-of-the-art GPR processing methodology with quantitative attribute analysis and material property estimation to determine the location and extent of residual and/or pooled DNAPL in both the vadose and saturated zones. An important byproduct of our research is state-of-the-art imaging which allows us to pinpoint attribute anomalies, characterize stratigraphy, identify fracture zones, and locate buried objects.

  4. Sampling results, DNAPL monitoring well GW-727, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Quarterly report, 1995

    SciTech Connect

    1996-05-01

    In January 1990, dense, non aqueous phase liquids (DNAPLs) were discovered at a depth of approximately 274 feet below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. A major task in the work plan calls for the construction and installation of five multiport wells. This report summarizes purging and sampling activities for one of these multiport wells, GW-727, and presents analytical results for GW- 727. This report summarizes purging and sampling activities for GW-727 and presents analytical results for GW-727.

  5. Determination of trace impurities in high purity gold by inductively coupled plasma mass spectrometry with prior matrix removal by electrodeposition

    NASA Astrophysics Data System (ADS)

    Sun, Y. C.; Hsieh, C. H.; Lin, T. S.; Wen, J. C.

    2000-09-01

    A novel method for the determination of 11 trace impurities (Be, Mg, Cr, Mn, Ni, Cu, Zn, Ag, Pd, Sn and Pb) in high purity gold with a combination of electrochemical deposition separation and inductively coupled plasma mass spectrometric measurement was investigated. In the present study, an efficient separation procedure was developed to remove the gold matrix by the electrodepositon method on the basis of the difference in reduction potential of gold and the other trace impurities. The effects of deposition potential, deposition time and composition of the electrolyte on the separation efficiency were studied. According to our experimental results, most impurities, except for silver, can remain in the electrolyte and the interference from gold can be completely removed through the application of electrodeposition at suitable potential. To achieve simultaneous separation of silver from the gold matrix, a unique complexation reaction between silver ions and ammonia ions was successfully employed to alter the reduction potential of silver ion. By way of a suitable adjustment of the deposition potential and the composition of electrolytes, the spike recoveries of 11 interesting impurities were found to be in the range of 85-105%. The limit of detection (based on the 3-σ criterion) of these elements was 10 -1-10 -2 μg g -1. The applicability of the proposed method has also been validated by the analysis of high purity gold reference materials (FAU9 and FAU11, Royal Canadian Mint). Comparing with the certified values, the recoveries of interesting elements were found to be in the range of 82-118% through the use of proposed method.

  6. A miniaturised electron ionisation time-of-flight mass spectrometer that uses a unique helium ion removal pulsing technique specifically for gas analysis.

    PubMed

    Qing, Jiang; Huang, Zhengxu; Zhang, Yan; Zhu, Hui; Tan, Guobin; Gao, Wei; Yang, Peng-yuan

    2013-06-21

    A miniaturised reflectron time-of-flight mass spectrometer combined with an electron ionisation ion source has been developed for the analysis of gases. An entirely new helium ion removal pulsing technique in this mass spectrometer is used to achieve an improved performance for the first time. The helium carrier gas, which enters into the source along with the gaseous sample, is simultaneously ionised and then orthogonally introduced into the time-of-fight mass analyser. Once the relatively light helium ions in the ion packet become extremely close to the reflectron plate (B-plate for short in this article), a modulated pulse is instantaneously applied on the B-plate and a negative reflectron voltage is set to the B-plate and lasts for a very short period, during which all the helium ions are directly bumped into the B-plate and subsequently removed. The helium ion removal pulsing technique can efficiently avoid saturation of the micro-channel plate caused by too many helium ions. A compact and durable instrument is designed, which has a mass resolving resolution greater than 400 FWHM for online gas analysis. The technology may also be further developed to remove other ions for TOF mass spectrometry.

  7. Engineered Natural Geosorbents for In Situ Immobilization of DNAPLs and Heavy Metals

    SciTech Connect

    Walter J. Weber; Gordon M. Fair; Earnest Boyce

    2006-12-01

    Extensive subsurface contamination by dense non-aqueous phase liquid (DNAPL) organic solvents and heavy metals is common place at many DOE facilities. Poor performances and excessive costs have made traditional technologies and approaches less than satisfactory for remediation of such sites. It is increasingly apparent that marginal improvements in conventional methods and approaches will not suffice for clean up of many contaminated DOE sites. Innovative approaches using new and/or existing technologies in more efficient and cost-effective ways are thus urgently required.

  8. High-field FT-ICR mass spectrometry and NMR spectroscopy to characterize DOM removal through a nanofiltration pilot plant.

    PubMed

    Cortés-Francisco, Nuria; Harir, Mourad; Lucio, Marianna; Ribera, Gemma; Martínez-Lladó, Xavier; Rovira, Miquel; Schmitt-Kopplin, Philipe; Hertkorn, Norbert; Caixach, Josep

    2014-12-15

    Ultrahigh resolution Fourier transform ion cyclotron mass spectrometry and nuclear magnetic resonance spectroscopy were combined to evaluate the molecular changes of dissolved organic matter (DOM) through an ultrafiltration-nanofiltration (UF-NF) pilot plant, using two dissimilar NF membranes tested in parallel. The sampling was performed on seven key locations within the pilot plant: pretreated water, UF effluent, UF effluent after addition of reagents, permeate NF 1, permeate NF 2, brine NF 1 and brine NF 2, during two sampling campaigns. The study showed that there is no significant change in the nature of DOM at molecular level, when the water was treated with UF and/or with the addition of sodium metabisulfite and antiscaling agents. However, enormous decrease of DOM concentration was observed when the water was treated on the NF membranes. The NF process preferentially removed compounds with higher oxygen and nitrogen content (more hydrophilic compounds), whereas molecules with longer pure aliphatic chains and less content of oxygen were the ones capable of passing through the membranes. Moreover, slight molecular selectivity between the two NF membranes was also observed.

  9. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    ERIC Educational Resources Information Center

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  10. Demonstration of ISCO Treatment of a DNAPL Source Zone at Launch Complex 34 in Cape Canaveral Air Station, FL

    EPA Science Inventory

    The Interagency DNAPL Consortium (IDC) was formally established in 1999 by the U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (U.S. EPA), Department of Defense (DoD), and National Aeronautics and Space Administration as a vehicle for marshalling the resourc...

  11. Dip-angle influence on areal DNAPL recovery by co-solvent flooding with and without pre-flooding.

    PubMed

    Boyd, Glen R; Li, Minghua; Husserl, Johana; Ocampo-Gómez, Ana M

    2006-01-10

    A two-dimensional (2D) laboratory model was used to study effects of gravity on areal recovery of a representative dense non-aqueous phase liquid (DNAPL) contaminant by an alcohol pre-flood and co-solvent flood in dipping aquifers. Recent studies have demonstrated that injection of alcohol and co-solvent solutions can be used to reduce in-situ the density of DNAPL globules and displace the contaminant from the source zone. However, contact with aqueous alcohol reduces interfacial tension and causes DNAPL swelling, thus facilitating risk of uncontrolled downward DNAPL migration. The 2D laboratory model was operated with constant background gradient flow and a DNAPL spill was simulated using tetrachloroethene (PCE). The spill was dispersed to a trapped, immobile PCE saturation by a water flood. Areal PCE recovery was studied using a double-triangle well pattern to simulate a remediation scheme consisting of an alcohol pre-flood using aqueous isobutanol ( approximately 10% vol.) followed by a co-solvent flood using a solution of ethylene glycol (65%) and 1-propanol (35%). Experiments were conducted with the 2D model oriented in the horizontal plane and compared to experiments at the 15 degrees and 30 degrees dip-angle orientations. Injection was applied either in the downward or upward direction of flow. Experimental results were compared to theoretical predictions for flood front stability and used to evaluate effects of gravity on areal PCE recovery. Sensitivity experiments were performed to evaluate effects of the alcohol pre-flood on PCE areal recovery. For experiments conducted with the alcohol pre-flood and the 2D model oriented in the horizontal plane, results indicate that 89-93% of source zone PCE was recovered. With injection oriented downward, results indicate that areal PCE recovery was 70-77% for a 15 degrees dip angle and 57-59% for a 30 degrees dip angle. With injection oriented upward, results indicate that areal PCE recovery was 57-60% at the 30

  12. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  13. Determination of migration pathways of DNAPL and dissolved phase volatile organic compounds in heterogeneous aquifer systems

    SciTech Connect

    Lamb, B. ); Prucha, R.

    1993-10-01

    Before an effective ground-water extraction system can be designed, it is essential to determine the distribution of chemicals of concern in ground-water and preferential pathways for chemical migration. At the study site, determining the chemical migration pathways and spatial distribution of chemicals are complicated by the presence of halogenated volatile organic compounds (VOCs) and dense nonaqueous phase liquids (DNAPL) coupled with the heterogeneous nature of the aquifer. DNAPL is denser than ground water and therefore sinks due to gravity while the dissolved components tend to be dominated by regional ground-water advective flow. The study area is a former industrial site. The aquifer is a low permeability unit with thin lenses of sandy material. Dissolved phase chemicals preferentially migrate in these sand units. To determine pathways for the migration of chemicals both laterally and horizontally, borehole lithologic data, hydraulic data, and chemical data were synthesized into a computer database and used as input for graphical illustrations using computer aided drafting (CAD). The CAD software was also used to provide the basis for 2-D and 3-D visualization to interpret field data which aided in development of a detailed conceptual site model and in construction of a numerical ground-water flow model for the site.

  14. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    PubMed

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability.

  15. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    PubMed

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. PMID:27450259

  16. Dissolution of an emplaced source of DNAPL in a natural aquifer setting.

    PubMed

    Rivett, Michael O; Feenstra, Stanley

    2005-01-15

    Field-scale dissolution of a multicomponent DNAPL (dense nonaqueous-phase liquid) source intentionally emplaced below the water table is evaluated in a well-characterized natural aquifer setting. The block-shaped source contained 23 kg of a trichloromethane, trichloroethene, and perchloroethene mixture homogeneously distributed at 5% saturation of pore space. Dissolution was monitored for 3 yr via down-gradient samplers (1-m fence) and occasional intra-source sampling. Although intra-source equilibrium dissolution was shown and endorsed by supporting modeling and literature lab data, less than equilibrium concentrations were predominantly monitored in the 1-m fence. This was ascribed to significant by-passing of the source by groundwater flow due to its low permeability relative to the aquifer and associated dilution of concentrations emitted from the source. Heterogeneous source dissolution occurred despite the relative homogeneity of the source and aquifer and was ascribed to dissolution fingering, which has not been previously field-demonstrated. Bulk bypass of groundwater flow around the source zone caused slow dissolution rates, with 77% of the source remaining after 3 yr and a projected longevity of approximately 25 yr. Observed dissolution fingering would have significantly increased longevity as it increasingly caused intra-source bypass of remaining DNAPL. Our dissolution interpretations were endorsed by additional data collected after 6 yr during source remediation via permanganate oxidation.

  17. The efficiency evaluation of in situ remediation performed around the source zone of DNAPL contaminated site, Wonju, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Lee, S. H.; Lee, K. K.

    2014-12-01

    The location of DNAPL source and distribution of contaminant plume at an industrial complex, Wonju, Korea, was examined based on the combined results of seasonal impact analysis, historical approach, radon tracer approach, and chemical fingerprinting conducted from 2009 to 2013 (Yang et al., 2013). With regard to the amount of contaminants discharged at this study site, there is no exact information on disposal. Therefore, various remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treatment have been performed to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. Also, dissolved TCE concentration and mass of residual TCE in the initial stage of disposal were estimated to evaluate the efficiency of in situ remediation. The remediation efficiency according to the remediation actions was evaluated by tracing a time-series of plume evolution and estimating the temporal mass discharge at three transects (Source, Transec-1, Transect-2) which was assigned along the groundwater flow path. From results of periodically monitored TCE concentration at main source zone, the TCE level (15.74 mg/L) before the remediation dramatically decreased up to 0.56 mg/L at the end of year 2012 due to the effect of remediation. During the intensive remediation period from 2012 to 2013, the early average mass discharge (26.58 g/day) at source transect was decreased to average 4.99 g/day. Especially, in case of surfactant flushing test which was conducted to eliminate the residual TCE, the efficiency of surfactant flushing test was evaluated using the recovery rate of chloride ion which was used as tracer. The results for recovery rate of chloride ion show that test wells observed the slow recovery rate represented more effective dissolution of TCE than wells showing the rapid recovery rate. By using the source zone monitoring data and analytical solution, initial

  18. Stochastic Approach for Modeling of DNAPL Migration in Heterogeneous Aquifers: Model Development and Experimental Data Generation

    NASA Astrophysics Data System (ADS)

    Dean, D. W.; Illangasekare, T. H.; Turner, A.; Russell, T. F.

    2004-12-01

    Modeling of the complex behavior of DNAPLs in naturally heterogeneous subsurface formations poses many challenges. Even though considerable progress have been made in developing improved numerical schemes to solve the governing partial differential equations, most of these methods still rely on deterministic description of the processes. This research explores the use of stochastic differential equations to model multiphase flow in heterogeneous aquifers, specifically the flow of DNAPLs in saturated soils. The models developed are evaluated using experimental data generated in two-dimensional test systems. A fundamental assumption used in the model formulation is that the movement of a fluid particle in each phase is described by a stochastic process and that the positions of all fluid particles over time are governed by a specific law. It is this law, which we seek to determine. The approach results in a nonlinear stochastic differential equation describing the position of the non-wetting phase fluid particle. The nonlinearity in the stochastic differential equation arises because both the drift and diffusion coefficients depend on the volumetric fraction of the phase, which in turn depends on the position of the fluid particles in the problem domain. The concept of a fluid particle is central to the development of the proposed model. Expressions for both saturation and volumetric fraction are developed using this concept of fluid particle. Darcy's law and the continuity equation are used to derive a Fokker-Planck equation governing flow. The Ito calculus is then applied to derive a stochastic differential equation(SDE) for the non-wetting phase. This SDE has both drift and diffusion terms which depend on the volumetric fraction of the non-wetting phase. Standard stochastic theories based on the Ito calculus and the Wiener process and the equivalent Fokker-Planck PDE's are typically used to model diffusion processes. However, these models, in their usual form

  19. The Use of Molecular and Genomic Techniques Applied to Microbial Diversity, Community Structure, and Activities at DNAPL and Metal Contaminated Sites

    EPA Science Inventory

    A wide variety of in situ subsurface remediation strategies have been developed to mitigate contamination by chlorinated solvent dense non-aqueous phase liquids (DNAPLS) and metals. Geochemical methods include: zerovalent iron emplacement, various electrolytic applications, elec...

  20. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes.

  1. [Analysis of rice leaves proteomes by liquid chromatography-tandem, mass spectrometry based on the purification using a novel affinity detergent removal spin column].

    PubMed

    Cao, Xiaolin; Gong, Jiadi; Chen, Mingxue; Yu, Shasha; Bian, Yingfang; Cao, Zhaoyun

    2014-11-01

    A purification method was established for the analysis of proteomes in rice leaves based on a novel detergent removal spin column (DRSC). The proteins were extracted by phenol protein extraction method followed by sodium dodecyl sulfate (SDS) lysis. The lysate was purified by the detergent removal spin column and the enzymolytic peptides were detected by the nanoflow liquid chromatography-hybrid linear trap quadrupole orbitrap mass spectrometry (nanoLC-LTQ/Orbitrap). In terms of SDS removal efficiencies and protein identification, the method of DRSC was compared with those of filter aided sample preparation (FASP) and acetone precipitation. As a result, there were good efficiencies ( > 95%) of SDS removal for the three methods. With the DRSC purification strategy, 563 proteins were identified from rice leaves, while only 196 and 306 proteins were identified by FASP and acetone precipitation procedures respectively, in spite of certain complementarities among these identified proteins by the three methods. DRSC is suitable for proteins with various relative molecular masses and pI values. However, there were similar losses of proteins with different relative molecular masses and pI values with the other two methods. Using the established method, 588 proteins were identified by once injection analysis. According to the molecular functions, 296 proteins with at least two identified peptides can be classified into eight categories with binding activity, enzyme activity, transporter activity, inhibitor activity, structural constitute, catalytic activity, other and unknown functions. The method provides technical reference for conducting rice proteomes. PMID:25764651

  2. Sampling results, DNAPL monitoring well GW-726, Oak Ridge Y-12 plant, Oak Ridge, Tennessee. Quarterly report, April 1, 1994--September 30, 1994.

    SciTech Connect

    1995-12-31

    In January 1990, dense, non aqueous phase liquids (DNAPLs) were discovered at a depth of approximately 274 foot below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. This report summarizes purging and sampling activities for one of these multiport wells, GW-726, and presents analytical results for GW-726.

  3. Biological degradation of dense nonaqueous phase liquids (DNAPLs)

    SciTech Connect

    Ensley, B.; Strong-Gunderson, J.M.; Palumbo, A.V.

    1996-08-01

    In situ bioremediation is a very attractive, safe and efficient method of not only removing, but eliminating hazardous compounds from the environment. However, the quickest and most efficient method of restoring a hazardous waste site would be to link several remediation processes. In situ biodegradation can involve the addition of nutrients, oxygen, electron donors, electron acceptors, organisms or all the above. These amendments can be introduced and coupled to a variety of other technologies such as permeability enhancements, chemical treatments and/or physical processes. In addition to in situ technologies, bioremediation in bioreactors is an efficient tool facilitating mineralization of contaminants. Overall, biodegradation has a significant potential to increase the rate of site restoration and decrease overall costs. 37 refs., 2 figs.

  4. Removal of ordering ambiguity for a class of position dependent mass quantum systems with an application to the quadratic Liénard type nonlinear oscillators

    SciTech Connect

    Chithiika Ruby, V.; Senthilvelan, M.; Lakshmanan, M.; Chandrasekar, V. K.

    2015-01-15

    We consider the problem of removal of ordering ambiguity in position dependent mass quantum systems characterized by a generalized position dependent mass Hamiltonian which generalizes a number of Hermitian as well as non-Hermitian ordered forms of the Hamiltonian. We implement point canonical transformation method to map one-dimensional time-independent position dependent mass Schrödinger equation endowed with potentials onto constant mass counterparts which are considered to be exactly solvable. We observe that a class of mass functions and the corresponding potentials give rise to solutions that do not depend on any particular ordering, leading to the removal of ambiguity in it. In this case, it is imperative that the ordering is Hermitian. For non-Hermitian ordering, we show that the class of systems can also be exactly solvable and is also shown to be iso-spectral using suitable similarity transformations. We also discuss the normalization of the eigenfunctions obtained from both Hermitian and non-Hermitian orderings. We illustrate the technique with the quadratic Liénard type nonlinear oscillators, which admit position dependent mass Hamiltonians.

  5. Nitrate removal under different ecological remediation measures in Taihu Lake: a 15N mass-balance approach.

    PubMed

    Liu, Dandan; Li, Zhengkui; Zhang, Wanguang

    2014-12-01

    Ecological remediation is an important measure for the protection of lake water quality in removing nutrients, such as nitrate (NO3 (-)). In this study, four bioremediation processes (bare sediment, immobilized nitrogen cycling bacteria (INCB) added, Elodea nuttallii added, E. nuttallii-INCB assemblage) were operated at a lab to elucidate the effect of macrophyte appearance and INCB addition on NO3 (-) removal and achieve the optimal processes for biomediation. (15) N-NO3 solution was added to microcosms to identify the key nitrogen transformation processes responsible for NO3 (-) removal. Results showed that nitrate removal was significantly enhanced after the addition of INCB and E. nuttallii. In the treatments with INCB added, E. nuttallii added, and INCB and E. nuttallii-INCB assemblage, nitrate removal ratio achieved 94.74, 98.76, and 99.15 %, respectively. In contrast, only 23.47 % added nitrate was removed in the control. Plant uptake and denitrification played an important role in nitrogen removal. The water quality was substantially improved by the addition of INCB and macrophyte that can accelerate denitrification and promote nitrogen assimilation of plants. The results indicated that plant uptake and microbial denitrification were key processes for nitrate removal. PMID:25053286

  6. SATURATION MEASUREMENT OF IMMISCIBLE FLUIDS IN 2-D STATIC SYSTEMS: VALIDATION BY LIGHT TRANSMISSION VISUALIZATION (SAN FRANCISCO, CA)

    EPA Science Inventory

    This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...

  7. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for Task 4 site evaluation, Task 5 seismic reflection design and acquisition, and Task 6 seismic reflection processing and interpretation on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. During this reporting period the project had an ASME peer review. The findings and recommendation of the review panel, as well at the project team response to comments, are in Appendix A. After the SUBCON midyear review in Albuquerque, NM and the peer review it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. Under the rescope of the project, Task 4 would be performed at the Charleston Navy Weapons Station, Charleston, SC and not at the Dynamic Underground Stripping (DUS) project at SRS. The project team had already completed Task 4 at the M-area seepage basin, only a few hundred yards away from the DUS site. Because the geology is the same, Task 4 was not necessary. However, a Vertical Seismic Profile (VSP) was conducted in one well to calibrate the geology to the seismic data. The first deployment to the DUS Site (Tasks 5 and 6) has been completed. Once the steam has been turned off these tasks will be performed again to compare the results to the pre-steam data. The results from the first deployment to the DUS site indicated a seismic amplitude anomaly at the location and depths of the known high concentrations of DNAPL. The deployment to another site with different geologic conditions was supposed to occur during this reporting period. The first site selected was DOE Paducah, Kentucky. After almost eight months of negotiation, site access was denied requiring the selection of another site

  8. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for part of Task 4 (site evaluation), on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The Second deployment site is the Department of Defense (DOD) Charleston Navy Weapons Station, Solid Waste Management Unit 12 (SWMU-12) Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Base upon the review of existing data and due to the shallow target depth the project team has collected three Vertical Seismic Profiles (VSP) and experimental reflection line. At the time of preparing this report VSP data and experimental reflection line data has been collected and has have preliminary processing on the data sets.

  9. Density-modified displacement for DNAPL source zone remediation: density conversion and recovery in heterogeneous aquifer cells.

    PubMed

    Ramsburg, C Andrew; Pennell, Kurt D

    2002-07-15

    Low interfacial tension (IFT) displacement (mobilization) of nonaqueous phase liquids (NAPLs) offers potential as an efficient remediation technology for contaminated aquifer source zones. However, displacement of dense NAPLs (DNAPLs) is problematic due to the tendency for downward migration and redistribution of the mobilized DNAPL. To overcome this limitation, a density-modified displacement method (DMD) was developed, which couples in situ density conversion of DNAPLs via alcohol partitioning with low IFT NAPL displacement and recovery. The objective of this work was to evaluate the DMD method for two representative DNAPLs, chlorobenzene (CB) and trichloroethene (TCE). Laboratory-scale experiments were conducted in a two-dimensional (2-D) cell, configured to represent a heterogeneous unconfined aquifer system containing low permeability lenses. After release and redistribution of either CB- or TCE-NAPL, the 2-D aquifer cells were flushed with a 6% (wt) n-butanol aqueous solution to achieve DNAPL to light NAPL conversion, followed by a low IFT surfactant solution consisting of 4% (4:1) Aerosol MA/Aerosol OT + 20% n-butanol + 500 mg/L CaCl2. Visual observations and experimental measurements demonstrated that in situ density conversion and immiscible displacement of both CB and TCE were successful. Effluent NAPL densities ranged from 0.96 to 0.90 g/mL for CB and from 0.95 to 0.92 g/mL for TCE, while aqueous phase densities remained above 0.96 g/L. Density conversion of CB and TCE was achieved after flushing with 1.2 and 4.9 pore vol of 6% n-butanol solution, respectively. Recoveries of 90% CB and 85% TCE were realized after flushing with 1.2 pore vol of the low IFT surfactant solution, which was followed by a 1 pore vol posttreatment water flood. Surfactant and n-butanol recoveries ranged from 75 to 96% based on effluent concentration data. The observed minimal mobilization during the n-butanol density conversion preflood and near complete mobilization during the

  10. Three-Dimensional Printing as an Interdisciplinary Communication Tool: Preparing for Removal of a Giant Renal Tumor and Atrium Neoplastic Mass.

    PubMed

    Golab, Adam; Slojewski, Marcin; Brykczynski, Miroslaw; Lukowiak, Magdalena; Boehlke, Marek; Matias, Daniel; Smektala, Tomasz

    2016-01-01

    Three-dimensional (3D) printing involves preparing 3D objects from a digital model. These models can be used to plan and practice surgery. We used 3D printing to plan for a rare complicated surgery involving the removal of a renal tumor and neoplastic mass, which reached the heart atrium. A printed kidney model was an essential element of communication for physicians with different specializations. PMID:27585198

  11. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    PubMed

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability. PMID:27450342

  12. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    PubMed

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability.

  13. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    SciTech Connect

    Murdoch, L.; Slack, B.

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminants in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.

  14. Ultrasonic properties of granular media saturated with DNAPL/water mixtures

    NASA Astrophysics Data System (ADS)

    Ajo-Franklin, J. B.; Geller, J. T.; Harris, J. M.

    2007-04-01

    We present the results of four experiments investigating the ultrasonic properties of granular materials partially saturated with trichloroethylene (TCE), a dense non-aqueous contaminant. P-wave velocity measurements were made under in situ effective stress conditions using a pulse transmission cell at ~250 kHz. Two synthetic samples and two natural aquifer cores were fully saturated with water and then subjected to an axial injection of TCE. The resulting measurements show reductions in P-wave velocity of up to 15% due to contaminant saturation. A theoretical model combining Gassmann fluid substitution and Hill's equation was used to estimate the effects of DNAPL saturation; this model underpredicted observed reductions in velocity at high TCE saturations. A linear relationship, expressed in terms of volumetric contaminant fraction, provided an excellent empirical fit to the laboratory measurements.

  15. Aquifer washing by micellar solutions: 2. DNAPL recovery mechanisms for an optimized alcohol surfactant solvent solution

    NASA Astrophysics Data System (ADS)

    Martel, Richard; Lefebvre, René; Gélinas, Pierre J.

    1998-03-01

    A large sand column experiment is used to illustrate the principles of complex organic contaminants (DNAPL) recovery by a chemical solution containing an alcohol ( n-butanol), a surfactant (Hostapur SAS), and two solvents ( d-limonene and toluene). The washing solution is pushed by viscous polymer solutions to keep the displacement stable. The main NAPL recovery mechanisms identified are: (1) immiscible displacement by oil saturation increase (oil swelling), oil viscosity reduction, interfacial tension lowering, and relative permeability increase; (2) miscible NAPL displacement by solubilization. Most of the NAPL was recovered in a Winsor, type II system ahead of the washing solution. The 0.8 pore volume (PV) of alcohol-surfactant-solvent solution injected recovered more than 89% of the initial residual DNAPL saturation (0.195). Winsor system types were determined by visual observation of phases and confirmed by electrical resistivity measurements of phases and water content measurements in the oleic phase. Viscosity and density lowering of the oleic phase was made using solvents and alcohol transfer from the washing solution. Small sand column tests are performed to check different rinsing strategies used to minimize washing solution residual ingredients which can be trapped in sediments. An alcohol/surfactant rinsing solution without solvent, injected behind the washing solution, minimizes solvent trapping in sediments. More than five pore volumes of polymer solution and water must be injected after the rinsing solution to decrease alcohol and SAS concentrations in sediments to an acceptable level. To obtain reasonable trapped surfactant concentrations in sediments, the displacement front between the rinsing solution and the subsequent the following polymer solution has to be stable.

  16. Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.

    PubMed

    Philips, Jo; Maes, Nele; Springael, Dirk; Smolders, Erik

    2013-04-01

    Acidification due to microbial dechlorination of trichloroethene (TCE) can limit the bio-enhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). This study related the dissolution enhancement of a TCE DNAPL to the pH buffer capacity of the medium and the type of electron donor used. In batch systems, dechlorination was optimal at pH7.1-7.5, but was completely inhibited below pH6.2. In addition, dechlorination in batch systems led to a smaller pH decrease at an increasing pH buffer capacity or with the use of formate instead of lactate as electron donor. Subsequently, bio-enhanced TCE DNAPL dissolution was quantified in diffusion-cells with a 5.5 cm central sand layer, separating a TCE DNAPL layer from an aqueous top layer. Three different pH buffer capacities (2.9 mM-17.9 mM MOPS) and lactate or formate as electron donor were applied. In the lactate fed diffusion-cells, the DNAPL dissolution enhancement factor increased from 1.5 to 2.2 with an increase of the pH buffer capacity. In contrast, in the formate fed diffusion-cells, the DNAPL dissolution enhancement factor (2.4±0.3) was unaffected by the pH buffer capacity. Measurement of the pore water pH confirmed that the pH decreased less with an increased pH buffer capacity or with formate instead of lactate as electron donor. These results suggest that the significant impact of acidification on bio-enhanced DNAPL dissolution can be overcome by the amendment of a pH buffer or by applying a non acidifying electron donor like formate.

  17. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece.

    PubMed

    Papageorgiou, Myrsini; Kosma, Christina; Lambropoulou, Dimitra

    2016-02-01

    A comprehensive study, which contains the seasonal occurrence, removal, mass loading and environmental risk assessment of 55 multi-class pharmaceuticals and personal care products (PPCPs), took place in the wastewater treatment plant (WWTP) of Volos, Greece. A one year monitoring study was performed and the samples were collected from the influent and the effluent of the WWTP. Solid phase extraction was used for the pre-concentration of the samples followed by an LC-DAD-ESI/MS analysis. Positive samples were further confirmed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The maximum concentrations of the PPCPs varied between 21 ng/L and 15,320 ng/L in the influents and between 18 ng/L and 9965 ng/L in the effluents. The most commonly detected PPCPs were the diuretic furosemide, the beta-blockers atenolol and metoprolol, the analgesics paracetamol, nimesulide, salicylic acid and diclofenac and the psychomotor stimulant caffeine. The removal efficiencies ranged between negative and high removal rates, demonstrating that the WWTP is not able to efficiently remove the complex mixture of PPCPs. The estimated mass loads ranged between 5.1 and 3513 mg/day/1000 inhabitants for WWTP influent and between 4.1 to 2141 mg/day/1000 inhabitants for WWTP effluent. Finally, environmental risk assessment has been regarded a necessary part of the general research. According to the results produced from the calculation of the risk quotient on three trophic levels, the anti-inflammatory drug diclofenac and the antibiotics, trimethoprim and ciprofloxacin, identified to be of high potential environmental risk for acute toxicity, while diclofenac also for chronic toxicity. PMID:26613513

  18. Sampling results, DNAPL monitoring well GW-729, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Annual report

    SciTech Connect

    Drier, R.B.; Caldanaro, A.J.

    1996-12-01

    This document, Sampling Results, DNAPL Monitoring Well G W-729, Third Quarter FY 1995 through Third Quarter FY 1996, was performed under Work Breakdown Structure 1.4.12.1.1.02 (Activity Data Sheet 2312, `Bear Creek Valley`). This document provides the Environmental Restoration Program with groundwater concentrations for nonradionuclides in the vicinity of the Y-12 Burial Grounds. These data can be used to determine reference concentrations for intermediate and deep groundwater systems.

  19. Dense Nonaqueous-Phase Liquid Architecture in Fractured Bedrock: Implications for Treatment and Plume Longevity.

    PubMed

    Schaefer, Charles E; White, Erin B; Lavorgna, Graig M; Annable, Michael D

    2016-01-01

    Partitioning tracer testing was performed in discrete intervals within a fractured bedrock tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) source area to assess the fracture flow field and DNAPL architecture. Results confirmed that the partitioning tracer testing was able to identify and quantify low levels of residual DNAPL along flow paths in hydraulically conductive fractures. DNAPL fracture saturations (Sn) ranged from undetectable to 0.007 (DNAPL volume/fracture volume). A comparison of the fracture flow field to the DNAPL distribution indicated that the highest value of Sn was observed in the least transmissive fracture (or fracture zone). Application of a simple ambient dissolution model showed that the DNAPL present in this low transmissivity zone would persist longer than the DNAPL present in more transmissive fractures and would persist for 200 years (in the absence of any degradation reactions). Assessment of PCE mass distribution between the rock matrix and fractures showed that, due to the presence of DNAPL, the rock matrix accounted for less than 10% of the total PCE mass. The evaluation of PCE concentration profiles in the rock matrix and the estimated diffusional flux from the rock matrix suggest that the elevated PCE groundwater concentrations observed in the fractures likely are due to the presence of the residual DNAPL sources and that removal of the residual DNAPL sources within the fractures would result in a significant decrease in dissolved PCE concentrations in the source area.

  20. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Tom J. Temples; Jerome Eyer

    2001-05-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a 14 month proof of concept study to determine the location and distribution of subsurface Dense Nonaqueous Phase Liquid (DNAPL) carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, Department of Energy (DOE) Hanford Site, Washington by use of two-dimensional high resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are a noninvasive means towards site characterization and direct free-phase DNAPL detection. This report covers the results of Task 3 and change of scope of Tasks 4-6. Task 1 contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task 2 is the design and acquisition of 2-D seismic reflection data designed to image areas of probable high concentration of DNAPL. Task 3 is the processing and interpretation of the 2-D data. Task 4, 5, and 6 were designing, acquiring, processing, and interpretation of a three dimensional seismic survey (3D) at the Z-9 crib area at 200 west area, Hanford.

  1. Sampling results, DNAPL monitoring well GW-790, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, first-third quarter, FY 1995

    SciTech Connect

    1996-05-01

    In January 1990, dense, non aqueous phase liquids (DNAPLs) were discovered at a depth of approximately 274 ft. below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. To date, free-phase DNAPL contamination has been encountered in GW-625 (the discovery well), and is suspected to occur in GW-628 and GW-629. In addition, groundwater from GW-117 shows levels of volatile organic compounds suggestive of a dissolved contaminant plume. Results of the preliminary DNAPL investigation are presented in detail, and a work plan for assessment and characterization of the DNAPL is presented. A major task in the work plan calls for the construction and installation of five multipart wells. These wells (GW-726, GW-727, GW-729, GW-730, GW-730 and GW- 790) were constructed and instrumented with multipart components from August, 1991 to April, 1993. Subsequently, purging and sampling activities were started in each well. This report summarizes purging and sampling activities for GW-790 and presents analytical results for GW-790.

  2. Mass transfer study on the electrochemical removal of copper ions from synthetic effluents using reticulated vitreous carbon.

    PubMed

    Britto-Costa, Pedro H; Ruotolo, Luís Augusto M

    2013-01-01

    Porous electrodes have been successfully used for metal electrodeposition from diluted aqueous solution due to their high porosity and specific surface area, which lead to high mass transfer rates. This work studies the mass transfer of copper electrodeposition on reticulated vitreous carbon in a flow reactor without membrane. The flow configuration, otherwise the filter-press electrochemical reactors, was designed in order to minimize the pressure drop. The mass transfer coefficient was determined by voltammetric and galvanostatic electrodeposition. In the voltammetric experiments a Luggin capillary was used to measure the current-potential curves and to determine the limiting current (and, consequently, the mass transfer coefficient). In the galvanostatic experiments the concentration-time curves were obtained and considering a limiting current kinetics model, the mass transfer coefficient (k(m)) was determined for different flow velocities. The results showed that both methods give similar values of k(m), thus the voltammetric method can be recommended because it is faster and simpler. Finally, the reactor performance was compared with others from literature, and it was observed that the proposed reactor design has high Sherwood numbers similar to other reactor configurations using membranes and reticulated vitreous carbon electrodes.

  3. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China.

    PubMed

    Sun, Qian; Li, Mingyue; Ma, Cong; Chen, Xiangqiang; Xie, Xiaoqing; Yu, Chang-Ping

    2016-01-01

    The occurrence and fate of 48 pharmaceuticals and personal care products (PPCPs) in three wastewater treatment plants (WWTPs) located in different urbanization areas in Xiamen, China was investigated over one year. Results showed that PPCPs were widely detected, but the major PPCPs in the influent, effluent, and sludge were different. Spatial and seasonal variations of PPCP levels in the influent and sludge were observed. The removal efficiencies for most PPCPs were similar among the three WWTPs, although they employed different biological treatment processes. Furthermore, the mass loadings per inhabitant of most pharmaceuticals had a positive correlation with the urbanization levels, indicating that most pharmaceutical usage was higher in the urban core compared to the suburban zones. The total mass loadings of all the 48 PPCPs in the effluent and waste sludge showed close proportions, which suggested the importance of proper waste sludge disposal to prevent a large quantity of PPCPs from entering the environment. PMID:26552527

  4. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China.

    PubMed

    Sun, Qian; Li, Mingyue; Ma, Cong; Chen, Xiangqiang; Xie, Xiaoqing; Yu, Chang-Ping

    2016-01-01

    The occurrence and fate of 48 pharmaceuticals and personal care products (PPCPs) in three wastewater treatment plants (WWTPs) located in different urbanization areas in Xiamen, China was investigated over one year. Results showed that PPCPs were widely detected, but the major PPCPs in the influent, effluent, and sludge were different. Spatial and seasonal variations of PPCP levels in the influent and sludge were observed. The removal efficiencies for most PPCPs were similar among the three WWTPs, although they employed different biological treatment processes. Furthermore, the mass loadings per inhabitant of most pharmaceuticals had a positive correlation with the urbanization levels, indicating that most pharmaceutical usage was higher in the urban core compared to the suburban zones. The total mass loadings of all the 48 PPCPs in the effluent and waste sludge showed close proportions, which suggested the importance of proper waste sludge disposal to prevent a large quantity of PPCPs from entering the environment.

  5. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: dissolved-plume retardation.

    PubMed

    Rivett, Michael O; Allen-King, Richelle M

    2003-10-01

    A natural gradient emplaced-source (ES) controlled field experiment was conducted at the Borden aquifer research site, Ontario, to study the transport of dissolved plumes emanating from residual dense nonaqueous-phase liquid (DNAPL) source zones. The specific objective of the work presented here is to determine the effects of solute and co-solute concentrations on sorption and retardation of dissolved chlorinated solvent-contaminant plumes. The ES field experiment comprised a controlled emplacement of a residual multicomponent DNAPL below the groundwater table and intensive monitoring of dissolved-phase plumes of trichloromethane (TCM), trichloroethylene (TCE), and perchloroethylene (PCE) plumes continuously generated in the aquifer down gradient from gradual source dissolution. Estimates of plume retardation (and dispersion) were obtained from 3-D numerical simulations that incorporated transient source input and flow regimes monitored during the test. PCE, the most retarded solute, surprisingly exhibited a retardation factor approximately 3 times lower than observed in a previous Borden tracer test by Mackay et al. [Water Resour. Res. 22 (1986) 2017] conducted approximately 150 m away. Also, an absence of temporal trend in PCE retardation contrasted with the previous Borden test. Supporting laboratory studies on ES site core indicated that sorption was nonlinear and competitive, i.e. reduced sorption of PCE was observed in the presence of TCE. Consideration of the effects of relatively high co-solute (TCE) concentration (competitive sorption) in addition to PCE concentration effects (nonlinear sorption) was necessary to yield laboratory-based PCE retardation estimates consistent with the field plume values. Concentration- and co-solute-based sorption and retardation analysis was also applied to the previous low-concentration pulse injection test of Mackay et al. [Water Resour. Res. 22 (1986) 2017] and was able to successfully predict the temporal field

  6. Mass removal and low-concentration tailing of trichloroethene in freshly-amended, synthetically-aged, and field-contaminated aquifer material.

    PubMed

    Johnson, G R; Norris, D K; Brusseau, M L

    2009-04-01

    This study investigates the effect of contaminant aging on the sorption/desorption and transport of trichloroethene in a low organic-carbon content aquifer material, comparing mass removal and long-term, low-concentration elution tailing for field-contaminated, synthetically-aged (contact times of approximately four years), and freshly-amended aquifer material. Elution of trichloroethene exhibited extensive low-concentration tailing, despite minimal retention of trichloroethene by the aquifer material. The observed nonideal transport behavior of trichloroethene is attributed primarily to rate-limited sorption/desorption, with a smaller contribution from nonlinear sorption. It is hypothesized that interaction with physically condensed carbonaceous material, comprising 61% of the aquifer material's organic-carbon content, mediates the retention behavior of trichloroethene. The elution behavior of trichloroethene for the field-contaminated and aged treatments was essentially identical to that observed for the fresh treatments. In addition, the results of three independent mass-balance analyses, total mass eluted, solvent-extraction analysis of residual sorbed mass, and aqueous-phase concentration rebounds following stop-flow experiments, showed equivalent recoveries for the aged and fresh treatments. These results indicate that long-term contaminant aging did not significantly influence the retention and transport of trichloroethene in this low organic-carbon aquifer material.

  7. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load.

    PubMed

    Seeger, Eva M; Maier, Uli; Grathwohl, Peter; Kuschk, Peter; Kaestner, Matthias

    2013-02-01

    For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.3, dispersion number = 0.04, Péclet number = 23). The hydroponic plant root mat revealed lower N and pronounced dispersion tendencies, whereby an elevated water table considerably impaired flow characteristics and treatment efficiencies. Highest mass removals were achieved by the plant root mat at low level: 98% (544 mg m⁻² d⁻¹), 78% (54 mg m⁻² d⁻¹) and 74% (893 mg m⁻² d⁻¹) for benzene, MTBE and ammonium-nitrogen, respectively. Within the CWs the flow behavior was depth-dependent, with the planting and the position of the outlet tube being key factors resulting in elevated flow rate and contaminant flux immediately below the densely rooted porous media zone in the planted CW, and fast bottom flow in the unplanted reference.

  8. Mapping Contaminant Remediation with Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Power, C.; Tsourlos, P.; Karaoulis, M.; Giannopoulos, A.; Soupios, P. M.; Simyrdanis, K.

    2014-12-01

    The remediation of sites contaminated with industrial chemicals - specifically dense non-aqueous phase liquids (DNAPLs) like coal tar and chlorinated solvents - represents a major geoenvironmental challenge. Remediation activities would benefit from a non-destructive technique to map the evolution of DNAPL mass in space and time. Electrical resistivity tomography (ERT) has long-standing potential in this context but has not yet become a common tool at DNAPL sites. This work evaluated the potential of time-lapse ERT for mapping DNAPL mass reduction in real time during remediation. Initially, a coupled DNAPL-ERT numerical model was developed for exploring this potential at the field scale, generating realistic DNAPL scenarios and predicting the response of an ERT survey. Also, new four-dimensional (4D) inversion algorithms were integrated for tracking DNAPL removal over time. 4D ERT applied at the surface for mapping an evolving DNAPL distribution was first demonstrated in a laboratory experiment. Independent simulation of the experiment demonstrated the reliability of the DNAPL-ERT model for simulating real systems. The model was then used to explore the 4D ERT approach at the field scale for a range of realistic DNAPL remediation scenarios. The approach showed excellent potential for mapping shallow DNAPL changes. However, remediation at depth was not as well resolved. To overcome this limitation, a new surface-to-horizontal borehole (S2HB) ERT configuration is proposed. A second laboratory experiment was conducted that demonstrated that S2HB ERT does better resolve changes in DNAPL distribution relative to surface ERT, particularly at depth. The DNAPL-ERT model was also used to demonstrate the improved mapping of S2HB ERT for field scale DNAPL scenarios. Overall, this work demonstrates that, with these innovations, ERT exhibits significant potential as a real time, non-destructive geoenvironmental remediation site monitoring tool.

  9. Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware.

    PubMed

    Childs, Jeffrey; Acosta, Edgar; Annable, Michael D; Brooks, Michael C; Enfield, Carl G; Harwell, Jeffrey H; Hasegawa, Mark; Knox, Robert C; Rao, P Suresh C; Sabatini, David A; Shiau, Ben; Szekeres, Erika; Wood, A Lynn

    2006-01-01

    This study reports on a surfactant-based flood for tetrachloroethylene (PCE) removal from a control test cell at the Dover National Test Site. The surfactant formulation (sodium dihexyl sulfosuccinate (Aerosol-MA or AMA), isopropanol and calcium chloride) was able to achieve a high concentration of PCE in swollen micelles (supersolubilization) without vertical PCE migration. The hydraulic system included eight screened wells that were operated in both vertical circulation and line drive configurations. After 10 pore volumes of flushing, the overall PCE removal was 68% (65% of which corresponded to the surfactant flooding alone). In addition, the residual PCE saturation was reduced from 0.7% to 0.2%, and the concentration of PCE in the groundwater was reduced from 37-190 mg/L before the flushing to 7.3 mg/L after flooding. Recycling the surfactant solution reduced the required surfactant mass (and thus cost, and waste) by 90%. Close to 80% of the total PCE removal was obtained during the first five pore volumes which were operated in an upward vertical circulation flow scheme. No free oil phase was observed during the test. Further analysis of multilevel sampler data suggests that most of the trapped oil remaining in the cell was likely localized in secluded regions of the aquifer, which helps explain the lower PCE groundwater concentration after remedial activities. In summary, this field study demonstrated the feasibility of surfactant-enhanced remediation to reduce the mass in the source zone and significantly reduce the PCE aqueous concentration and therefore the risk associated with the contaminant plume.

  10. Nitrogen removal and mass balance in newly-formed Myriophyllum aquaticum mesocosm during a single 28-day incubation with swine wastewater treatment.

    PubMed

    Liu, Feng; Zhang, Shunan; Wang, Yi; Li, Yong; Xiao, Runlin; Li, Hongfang; He, Yang; Zhang, Miaomiao; Wang, Di; Li, Xi; Wu, Jinshui

    2016-01-15

    The aim of this research was to assess the applicability of Myriophyllum (M.) aquaticum for swine wastewater treatment. Nitrogen (N) removal processes were investigated in M. aquaticum mesocosms with swine wastewater (SW), 50% diluted swine wastewater (50% SW), and two strengths of synthetic wastewater, 200 mg [Formula: see text] L(-1) (200 [Formula: see text] ) and 400 mg [Formula: see text] L(-1) (400 [Formula: see text] ). During a 28-day incubation period, the average [Formula: see text] and TN removal rates were 99.8% and 94.2% for 50% SW and 99.8% and 93.8% for SW, which were greater than 86.5% and 83.7% for 200 [Formula: see text] , and 73.7% and 74.1% for 400 [Formula: see text] , respectively. A maximum areal total nitrogen (TN) removal rate of 157.8 mg N m(-2) d(-1) was found in M. aquaticum mesocosms with SW. During the incubation period, the observed dynamics of [Formula: see text] concentrations in water and gene copy numbers of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), nirK and nirS in soil unraveled strong nitrification and denitrification processes occurring in M. aquaticum mesocosms with swine wastewater. The N mass balance analysis indicated that plant uptake and soil N accumulation accounted for 17.9-42.2% and 18.0-43.8% of the initial TN load, respectively. The coupled nitrification and denitrification process was calculated to account for, on average, 36.8% and 62.8% of TN removal for 50% SW and SW, respectively. These findings demonstrated that the N uptake by M. aquaticum contributed to a considerable proportion of N removal. In particular, the activities of ammonia-oxidizing and denitrification microbes responsible for nitrification and denitrification processes in M. aquaticum mesocosm accelerated [Formula: see text] and TN removal from swine wastewater.

  11. Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009-2015: constraining wet removal rates and emission strengths from East Asia

    NASA Astrophysics Data System (ADS)

    Kanaya, Yugo; Pan, Xiaole; Miyakawa, Takuma; Komazaki, Yuichi; Taketani, Fumikazu; Uno, Itsushi; Kondo, Yutaka

    2016-08-01

    Long-term (2009-2015) observations of atmospheric black carbon (BC) mass concentrations were performed using a continuous soot-monitoring system (COSMOS) at Fukue Island, western Japan, to provide information on wet removal rate constraints and the emission strengths of important source regions in East Asia (China and others). The annual average mass concentration was 0.36 µg m-3, with distinct seasonality; high concentrations were recorded during autumn, winter, and spring and were caused by Asian continental outflows, which reached Fukue Island in 6-46 h. The observed data were categorized into two classes, i.e., with and without a wet removal effect, using the accumulated precipitation along a backward trajectory (APT) for the last 3 days as an index. Statistical analysis of the observed ΔBC / ΔCO ratios was performed to obtain information on the emission ratios (from data with zero APT only) and wet removal rates (including data with nonzero APTs). The estimated emission ratios (5.2-6.9 ng m-3 ppb-1) varied over the six air mass origin areas; the higher ratios for south-central East China (30-35° N) than for north-central East China (35-40° N) indicated the relative importance of domestic emissions and/or biomass burning sectors. The significantly higher BC / CO emission ratios adopted in the bottom-up Regional Emission inventory in Asia (REAS) version 2 (8.3-23 ng m-3 ppb-1) over central East China and Korea needed to be reduced at least by factors of 1.3 and 2.8 for central East China and Korea, respectively, but the ratio for Japan was reasonable. The wintertime enhancement of the BC emission from China, predicted by REAS2, was verified for air masses from south-central East China but not for those from north-central East China. Wet removal of BC was clearly identified as a decrease in the ΔBC / ΔCO ratio against APT. The transport efficiency (TE), defined as the ratio of the ΔBC / ΔCO ratio with precipitation to that without precipitation, was

  12. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Wilkinson, P. B.; Wealthall, G. P.; Loke, M. H.; Dearden, R.; Wilson, R.; Allen, D.; Ogilvy, R. D.

    2010-10-01

    Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents.

  13. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation.

    PubMed

    Chambers, J E; Wilkinson, P B; Wealthall, G P; Loke, M H; Dearden, R; Wilson, R; Allen, D; Ogilvy, R D

    2010-10-21

    Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents.

  14. Influence of Wettability on Dense Nonaqueous Phase Liquid (DNAPL) Capillary Hysteresis Behavior and Relative Permeability in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Ocarroll, D. M.; Polityka, C. A.; Phelan, T. J.; Abriola, L. M.

    2003-04-01

    Alhough it is commonly assumed that subsurface soils are completely water-wet, variations in wettability are likely in the contaminated subsurface. Dense nonaqueous phase liquids (DNAPLs) have often been released as part of acidic or basic mixtures containing surface active compounds. These mixtures can render subsurface soils intermediate to organic-wet. In addition natural soils have a variety of wetting characteristics. This works explores the effects of solid wettability on capillary pressure/saturation and relative permeability/saturation constitutive relationships for DNAPL/water systems. Tetrachloroethene (PCE) is used as a representative DNAPL in these experiments. A series of capillary pressure/saturation experiments and multistep column outflow experiments were conducted to estimate capillary retention and relative permeability functions for PCE in media with various wetting properties. Relative permeability/saturation parameters were quantified utilizing a multiphase flow simulator coupled with an inverse optimization routine. The optimization routine minimizes the square difference between experimental and simulated outflow by varying the constitutive parameters. Capillary pressure/saturation data, generated in small pressure cell experiments, facilitate independent verification of the retention functions fit to the multistep outflow experiments. Primary drainage, imbibition, and scanning curves are presented for water, intermediate and organic-wet F35/F50/F70/F110 sand. The utility of using Leverett scaling, in conjunction with independently measured contact angles, to scale primary drainage curves is assessed for these sands. Finally, results from the outflow experiments indicate that traditional capillary-based predictive models fail to capture observed relative permeability behavior at endpoint saturations.

  15. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites.

    PubMed

    Qin, X S; Huang, G H; Chakma, A; Chen, B; Zeng, G M

    2007-08-01

    Widespread use of dense non-aqueous phase liquids (DNAPLs) such as TCE and PCE has resulted in contamination of enormous valuable groundwater resources and become high-priority environmental problems. However, experiences from the past decades have demonstrated that DNAPL-contaminated sites were difficult to investigate and challenging to remediate. In this study, a simulation-based process optimization system was developed through integrating a multidimensional simulator, a multivariate statistical tool and an optimization model within a general framework for supporting decisions of surfactant-enhanced aquifer remediation (SEAR). A 3D multiphase and multi-component subsurface model was first provided to simulate SEAR process; dual-response surface models were then established to build a bridge between remediation actions and system performance; a nonlinear optimization model was then formulated for identifying optimal operating conditions for SEAR operations. The results in simulating a typical PCE spill event and the associated SEAR remediation operations in a heterogeneous subsurface indicated that SEAR would be capable of cleaning up the contaminated aquifer with improved efficiencies and cost-effectiveness compared with direct pump-and-treat actions. The regression-analysis results demonstrated that the proposed dual-response surface models were able to predict system responses under given operating conditions. The optimization results demonstrated that the developed simulation-optimization approach was effective in seeking cost-effective SEAR strategies for DNAPL-contaminated sites. With the developed method, optimum operation conditions under various environmental and economic considerations could be compiled into a database that would supports further studies of on-site process-control with injection and extraction rates being the main control variables.

  16. Testing of Performance of a Scroll Pump in Support of Improved Vapor Phase Catalytic Ammonia Removal (VPCAR) Mass Reduction

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kraft, Thomas G.; Yee, Glenda F.; Jankovsky, Amy L.; Flynn, Michael

    2006-01-01

    This paper describes the results of ground testing of a scroll pump with a potential of being a substitute for the current vacuum pump of the Vapor Phase Catalytic Ammonia Reduction (VPCAR). Assessments of the pressure-time, pump-down time, pump power and the pump noise were made for three configurations of the pump the first of which was without the gas ballast, the second with the gas ballast installed but not operating and the third with the gas ballast operating. The tested scroll pump exhibited optimum characteristics given its mass and power requirements. The pump down time required to reach a pressure of 50 Torr ranged from 60 minutes without the ballast to about 120 minutes with the gas ballast operational. The noise emission and the pump power were assessed in this paper as well.

  17. Mass loading and removal of select illicit drugs in two wastewater treatment plants in New York State and estimation of illicit drug usage in communities through wastewater analysis.

    PubMed

    Subedi, Bikram; Kannan, Kurunthachalam

    2014-06-17

    Sewage epidemiology is a rapidly expanding field that can provide information on illicit drug usage in communities, based on the measured concentrations in samples from wastewater treatment plants (WWTPs). In this study, select illicit drugs (six drugs and eight metabolites) were determined on a daily basis for a week in wastewater, suspended particulate matter (SPM), and sludge from two WWTPs in the Albany area in New York State. The WWTP that served a larger population (∼100 000, with a flow rate of 83 300 m(3)/d) showed 3.2 (methadone) to 51 (3,4-methylenedioxyamphetamine; MDA) times higher mass flows of illicit drugs than did the WWTP that served a smaller population (∼15 000, with a flow rate of 6850 m(3)/d). The consumption rate of target illicit drugs in the communities served by the two WWTPs was estimated to range from 1.67 to 3510 mg/d/1000 people. Between the dissolved and particulate phases, the fraction of methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), amphetamine, and MDA sorbed to SPM ranged from 34.3% to 41.1% of the total mass in the waste stream. The removal efficiencies of illicit drugs from the two WWTPs ranged from 4% (norcocaine) to 99% (cocaine); however, methamphetamine, methadone, and EDDP showed a negative removal in WWTPs. The environmental emission of illicit drugs from WWTP discharges was calculated to range from 0.38 (MDEA) to 67.5 (EDDP) mg/d/1000 people. Other markers such as caffeine, paraxanthine, nicotine, and cotinine were found to predict the concentrations of select illicit drugs in raw wastewater (r(2) = 0.20-0.79; p ≤ 0.029).

  18. Simultaneous detection of perchlorate and bromate using rapid high-performance ion exchange chromatography-tandem mass spectrometry and perchlorate removal in drinking water.

    PubMed

    West, Danielle M; Mu, Ruipu; Gamagedara, Sanjeewa; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Burken, Joel G; Shi, Honglan

    2015-06-01

    Perchlorate and bromate occurrence in drinking water causes health concerns due to their effects on thyroid function and carcinogenicity, respectively. The purpose of this study was threefold: (1) to advance a sensitive method for simultaneous rapid detection of perchlorate and bromate in drinking water system, (2) to systematically study the occurrence of these two contaminants in Missouri drinking water treatment systems, and (3) to examine effective sorbents for minimizing perchlorate in drinking water. A rapid high-performance ion exchange chromatography-tandem mass spectrometry (HPIC-MS/MS) method was advanced for simultaneous detection of perchlorate and bromate in drinking water. The HPIC-MS/MS method was rapid, required no preconcentration of the water samples, and had detection limits for perchlorate and bromate of 0.04 and 0.01 μg/L, respectively. The method was applied to determine perchlorate and bromate concentrations in total of 23 selected Missouri drinking water treatment systems during differing seasons. The water systems selected include different source waters: groundwater, lake water, river water, and groundwater influenced by surface water. The concentrations of perchlorate and bromate were lower than or near to method detection limits in most of the drinking water samples monitored. The removal of perchlorate by various adsorbents was studied. A cationic organoclay (TC-99) exhibited effective removal of perchlorate from drinking water matrices.

  19. Demonstration of Resistive Heating Treatment of DNAPL Source Zone at Launch Complex 34 in Cape Canaveral Air Force Station, Florida, Final Innovative Technology Evaluation Report

    EPA Science Inventory

    The Interagency DNAPL Consortium (IDC) was formally established in 1999 by the U.S. Department of Energy, U.S. Environmental Protection Agency, the U.S. Department of Defense, and the National Aeronautics and Space Administration. The IDC performed five remediation techniques: ...

  20. Demonstration of Steam Injection/Extraction Treatment of a DNAPL Source Zone at Launch Complex 34 in Cape Canaveral Air Force Station, Final Innovative Technology Evaluation Report

    EPA Science Inventory

    The Interagency DNAPL Consortium (IDC) was formally established in 1999 by the U.S. Department of Energy, U.S. Environmental Protection Agency, the U.S. Department of Defense, and the National Aeronautics and Space Administration. The IDC performed five remediation techniques: ...

  1. THE VELOCITY OF DNAPL FINGERING IN WATER-SATURATED POROUS MEDIA LABORATORY EXPERIMENTS AND A MOBILE-IMMOBILE-ZONE MODEL. (R826157)

    EPA Science Inventory

    Dense nonaqueous phase liquids (DNAPLs) are immiscible with water and can give rise to highly fingered fluid distributions when infiltrating through water-saturated porous media. In this paper, a conceptual mobile¯immobile¯zone (MIZ) model is pr...

  2. Sampling results, DNAPL Monitoring Well GW-730, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, First and Second Quarter, FY 1995

    SciTech Connect

    1996-05-01

    The purpose of this document is to provide initial groundwater sampling results form multiport wells constructed around the Y-12 Burial Grounds. These wells were constructed in response to discovery of free phase DNAPL at the Burial Grounds. Results in this report provide contaminate monitoring information and, where appropriate, information for groundwater reference concentrations.

  3. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    EPA Science Inventory

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  4. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of product layer on mass transfer.

    PubMed

    Li, Yuzhong; Tong, Huiling; Zhuo, Yuqun; Chen, Changhe; Xu, Xuchang

    2006-07-01

    Sulfur dioxide (SO2) and trace elements are all pollutants derived from coal combustion. This study relates to the simultaneous removal of sulfur and trace selenium dioxide (SeO2) by calcium oxide (CaO) adsorption in the medium temperature range, especially the mass transfer effect of sulfate product layer on trace elements. Through experiments on CaO adsorbing different concentrations of SO2 gases, conclusions can be drawn that although the product layer introduces extra mass transfer resistance into the sorbent-gas reaction process, the extent of CaO adsorption ability loss due to this factor decreases with decreasing SO2 concentration. When the gas concentration is at trace level, the loss of CaO adsorption ability can be neglected. Subsequent experiments on CaO adsorbing trace SeO2 gas suggest that the sulfate product layer, whether it is thick or thin, has no obvious effect on the CaO ability to adsorb trace SeO2 gas.

  5. In-situ biochemical remediation of chlorinated organic compounds present as DNAPL using vitamin B12 and reduced titanium

    SciTech Connect

    Lesage, S.; Sorel, D.; Cherry, J.A.

    1995-12-31

    The feasibility of using a biochemical treatment for the cleanup of DNAPL solvents in the saturated zone was tested using an in-situ large vertical column. Laboratory column studies have shown that a mixture of vitamin B12 and titanium citrate pumped through a column containing 100 {mu}L of tetrachloroethene can completely dissolve and degrade the residual to ethene in a few days. A vertical test column, 80 cm in diameter was installed within a sheet-pile cell isolating a portion of aquifer at CFB Borden. An equimolar mixture of tetrachloroethene and 1,1,1-trichloroethane was injected below the water table to form a residual DNAPL. The injection withdrawal system was operated in an upward flow mode over a 2 m height. In order for the reaction to be proceed, the in-situ pH must be greater than 7 and the Eh lower than -480 mV. The redox of the aquifer and the formation of reaction products was monitored on site, through 8 side pods equipped with stainless steel tubing terminated with 40 {mu}m porous cups, installed at different heights in the test column. The volatile products at the withdrawal well were monitored on-line by dynamic headspace analysis/gas chromatography.

  6. Numerical Modeling Analysis of Hydrodynamic and Microbial Controls on DNAPL Pool Dissolution and Detoxification: Dehalorespirers in Co-culture

    SciTech Connect

    Wesseldyke, Eric S.; Becker, Jennifer G.; Seagren, Eric A.; Mayer, Alex S.; Zhang, Changyong

    2015-04-01

    Dissolution of dense non-aqueous phase liquid (DNAPL) contaminants like tetrachloroethene (PCE) can be “bioenhanced” via biodegradation, which increases the concentration gradient at the DNAPL–water interface. Model simulations were used to evaluate the impact of ecological interactions between different dehalorespiring strains and hydrodynamics on the bioenhancement effect and the extent of PCE dechlorination. Simulations were performed using a two-dimensional coupled flow-transport model, with a DNAPL pool source and two microbial species, Dehalococcoides mccartyi 195 and Desulfuromonas michiganensis, which compete for electron acceptors (e.g., PCE), but not for their electron donors. Under biostimulation, low vx conditions, D. michiganensis alone significantly enhanced dissolution by rapidly utilizing aqueous-phase PCE. In co-culture under these conditions, D. mccartyi 195 increased this bioenhancement modestly and greatly increased the extent of PCE transformation. Although D. michiganensis was the dominant population under low velocity conditions, D. mccartyi 195 dominated under high velocity conditions due to bioclogging effects.

  7. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    NASA Astrophysics Data System (ADS)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    microbial cultures. The microorganisms responsible for biosurfactant production was isolated and identified as Pseudomonas Sp (designated as Pseudomonas Sp ANBIOSURF-1, Gene bank no: FJ930079), Pseudomonas stutzeri (MTCC 10033), Pseudomonas Sp (MTCC 10032) from groundwater, soil and municipal sewage sludge enrichments respectively. This study confirms that biosurfactants can be produced under anaerobic conditions and also in sufficient quantities. The cultures were also able to cometabolically degrade PCE to Ethylene. The isolated microorganisms can be used for remediation of DNAPL contaminated sites by in-situ biosurfactant production.

  8. The application of phospholipid removal columns and ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry for quantification of multi-class antibiotics in aquaculture samples.

    PubMed

    Reinholds, Ingars; Pugajeva, Iveta; Perkons, Ingus; Bartkevics, Vadims

    2016-09-01

    In this study a robust and sensitive method based on a proposed sample purification procedure, using zirconia-coated Phree™ columns and analysis by ultra-high performance liquid chromatography with triple quadrupole tandem mass spectrometry are presented for the assessment of multi-class antibiotics in farmed fish species. The sample preparation procedure benefited from combined precipitation of proteins and selective removal of phospholipids by Phree™ columns, resulting in a high sensitivity of the method (LOQ 0.3-9mgkg(-1)). The in-house validation results (precision, repeatability, decision limit CCα, detection capability CCβ, etc.) indicate that the elaborated method is fully suitable for the analysis of the main classes of antibiotics in accordance with the European Union (EU) Commission Decision 2002/657/EC. The method was applied to the analysis of antibiotics in trout and sturgeon samples obtained from the local inland aquacultures in Latvia. The results revealed the presence of two antibiotics (enrofloxacin and trimethoprim) in 12 out of the 20 analysed fish samples at concentrations (0.33-12.2μgkg(-1)) below the MRLs, thus causing no acute risks to consumers.

  9. Geochemical reactions resulting from in situ oxidation of PCE-DNAPL by KMnO4 in a sandy aquifer.

    PubMed

    Nelson, M D; Parker, B L; Al, T A; Cherry, J A; Loomer, D

    2001-03-15

    Although the potential for KMnO4 to destroy chlorinated ethenes in situ was first recognized more than a decade ago, the geochemical processes that accompany the oxidation have not previously been examined. In this study, aqueous KMnO4 solutions (10-30 g/L) were injected into an unconfined sand aquifer contaminated by the dense non-aqueous-phase liquid (DNAPL) tetrachloroethylene (PCE). The effects of the injections were monitored using depth-specific, multilevel groundwater samplers, and continuous cores. Two distinct geochemical zones evolved within several days after injection. In one zone where DNAPL is present, reactions between KMnO4 and dissolved PCE resulted in the release of abundant chloride and hydrogen ions to the water. Calcite and dolomite dissolved, buffering the pH in the range of 5.8-6.5, releasing Ca, Mg, and CO2 to the pore water. In this zone, the aqueous Ca/Cl concentration ratio is close to 5:12, consistent with the following reaction for the oxidation of PCE in a carbonate-rich aquifer: 3C2Cl4 + 5CaCO3(s) + 4KMnO4 + 2H+ --> 11CO2 + 4MnO2(s) + H2O + 12Cl- + 5Ca2+ + 4K+. In addition to Mg from dolomite dissolution, increases in the concentration of Mg as well as Na may result from exchange with K at cation-exchange sites. In the second zone, where lesser amounts of PCE were present, KMnO4 persisted in the aquifer for more than 14 months, and the porewater pH increased graduallyto between 9 and 10 as a resultof reaction between KMnO4 and H2O. A small increase in SO4 concentrations in the zones invaded by KMnO4 suggests that KMnO4 injections caused oxidation of sulfide minerals. There are important benefits of carbonate mineral buffering during DNAPL remediation by in situ oxidation. In a carbonate-buffered system, Mn(VII) is reduced to Mn(IV) and is immobilized in the groundwater by precipitating as insoluble manganese oxide. Energy-dispersive X-ray spectroscopy analyses of the manganese oxide coatings on aquifer mineral grains have detected the

  10. Restricted access supramolecular solvents for removal of matrix-induced ionization effects in mass spectrometry: Application to the determination of Fusarium toxins in cereals.

    PubMed

    García-Fonseca, Sergio; Rubio, Soledad

    2016-02-01

    Ion suppression/enhancement caused by matrix effects continues being a major concern in liquid chromatography-mass spectrometry (LC-MS). This research explores the ability of a supramolecular solvent (SUPRAS) made up of inverted hexagonal aggregates of oleic acid to behave as a liquid with restricted access properties (SUPRAS-RAM). Fusarium toxins in cereals were extracted with the oleic acid-based SUPRAS-RAM prior to their quantification by LC-electrospray ionization (ESI)-ion trap-MS (LC-ESI-IT-MS) in order to investigate the capability of this solvent to remove or reduce ionization suppression and/or enhancement in the analysis of complex samples by MS. The method involved the vortex-shaking of 300 mg of cereal with 600 μL of the SUPRAS-RAM for 15 min, centrifugation for separation of the supernatant and quantitation by LC-ESI-IT-MS. Macromolecules such as proteins and carbohydrates were excluded from extraction by chemical and physical mechanisms. Extraction of analytes and sample clean-up were thus carried out in a single step. No evaporation of the extracts was needed. Method detection limits for the legislated Fusarium toxins [i.e. deoxynivalenol (DON), zearalenone (ZEA) and fumonisins B1 (FB1) and B2 (FB2)] were 15 μg kg(-1) for DON and ZEA and 8 μg kg(-1) for fumonisins. These values were far below the maximum levels set by the European Commission for these toxins in foodstuffs. The method was successfully applied to the determination of these toxins in wheat and maize harvested in the South of Spain. No contamination of Fusarium toxins was found in samples at detectable levels. Recoveries in spiked samples were in the range 87-105%, with relative standard deviations between 1 and 7%. The use of the oleic acid-based SUPRAS-RAM effectively removed matrix interferences and allowed reliable quantitation of Fusarium toxins in cereals using solvent-based calibration.

  11. Liquid chromatography mass spectrometry determination of perfluoroalkyl acids in environmental solid extracts after phospholipid removal and on-line turbulent flow chromatography purification.

    PubMed

    Mazzoni, M; Polesello, S; Rusconi, M; Valsecchi, S

    2016-07-01

    An on-line TFC (Turbulent Flow Chromatography) clean up procedures coupled with UHPLC-MS/MS (Ultra High Performance Liquid Chromatography Mass Spectrometry) multi-residue method was developed for the simultaneous determination of 8 perfluroalkyl carboxylic acids (PFCA, from 5 to 12 carbon atoms) and 3 perfluoroalkyl sulfonic acids (PFSA, from 4 to 8 carbon atoms) in environmental solid matrices. Fast sample preparation procedure was based on a sonication-assisted extraction with acetonitrile. Phospholipids in biological samples were fully removed by an off-line SPE purification before injection, using HybridSPE(®) Phospholipid Ultra cartridges. The development of the on-line TFC clean-up procedure regarded the choice of the stationary phase, the optimization of the mobile phase composition, flow rate and injected volume. The validation of the optimized method included the evaluation of matrix effects, accuracy and reproducibility. Signal suppression in the analysis of fortified extracts ranged from 1 to 60%, and this problem was overcome by using isotopic dilution. Since no certified reference materials were available for PFAS in these matrices, accuracy was evaluated by recoveries on spiked clam samples which were 98-133% for PFCAs and 40-60% for PFSAs. MLDs and MLQs ranged from 0.03 to 0.3ngg(-1) wet weight and from 0.1 to 0.9ngg(-1) wet weight respectively. Repeatability (intra-day precision) and reproducibility (inter-day precision) showed RSD from 3 to 13% and from 4 to 27% respectively. Validated on-line TFC/UHPLC-MS/MS method has been applied for the determination of perfluoroalkyl acids in different solid matrices (sediment, fish, bivalves and bird yolk). PMID:27237594

  12. Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill

    SciTech Connect

    Studer, J.E.; Mariner, P.; Jin, M.

    1996-05-01

    Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

  13. In situ, field-scale evaluation of surfactant-enhanced DNAPL recovery using a single-well, ``push-pull'' test

    SciTech Connect

    Istok, J.D.; Field, J.A.

    1999-10-01

    The overall goal of this project was to further develop the single-well, ``push-pull'' test method as a feasibility assessment and site-characterization tool for studying the fundamental fate and transport behavior of injected surfactants and their ability to solubilize and mobilize dense nonaqueous phase liquids (DNAPLs) in the subsurface. The specific objectives were to develop a modified push-pull test for use in identifying and quantifying the effects of sorption, precipitation, and biodegradation on the fate and transport of injected surfactants, use the developed test method to quantify the effects of these processes on the ability of injected surfactants to solubilize and mobilize residual phase trichloroethane (TCE), and demonstrate the utility of the developed test method for performing site characterization and feasibility studies for surfactant-enhanced DNAPL recovery systems in the field. The results from the intermediate-scale laboratory experiments conducted for this project indicate that the single-well, push-pull test method can provide quantitative information on the effectiveness of injected surfactants in enhancing DNAPL solubilization in natural aquifer sediments. Specifically, the results of this research demonstrate the ability of the single-well, push-pull test to characterize the behavior of multi-component surfactants in the presence of natural aquifer sediment under laboratory and in-situ field conditions.

  14. Use of combined air sparging and soil vacuum extraction (AS/SVE) and groundwater recovery and treatment as remedial alternatives for dissolved DNAPL recovery

    SciTech Connect

    Sturdivant, R. Jr.; Fulton, G.A. Jr.; Bains, F.E.

    1995-10-01

    Corrective action has been implemented to address a dissolved dense non-aqueous phase liquid (DNAPL) plume in the vicinity of a former waste impoundment at the Paxon Polymer Company facility, located north of Baton Rouge, Louisiana. Assessment activities focused on the characterization of the geologic and hydrologic properties of the sediments underlying the area of investigation and the impact of the dissolved DNAPL plume to the soils and groundwater. Geologic characterization revealed that the facility is underlain by Quaternary age sediments consisting of mixtures of fine-grained sands, silt, and clay. Two hydrologic units were identified within the shallow sediments which are referred to as the Upper Permeable Zone and Second Permeable Zone. The investigation focused on the impacted soils and groundwater of the Upper and Second Permeable Zones. The Upper and Second Permeable Zones were characterized hydrologically to determine the most applicable remedial alternative for addressing the dissolved DNAPL plume. Pilot tests consisting of soil vacuum extraction (SVE), combined air sparging with SVE (AS/SVE), and groundwater recovery were performed. Evaluation of these remedial technology alternatives resulted in the selection of the combined AS/SVE system alternative for the Upper Permeable Zone and the groundwater recovery alternative for the Second Permeable Zone. Recovered off-gas from the combined AS/SVE treatment system from the Upper Permeable Zone is treated through use of a granular activated carbon unit, while recovered groundwater form the Second Permeable Zone is treated by use of a low-profile air stripper.

  15. The Migration and Entrapment of DNAPLs in Physically and Chemically Heterogeneous Porous Media - Final Report - 09/15/1996 - 09/15/2000

    SciTech Connect

    Abriola, L. M.; Demond, A. H.

    2000-09-15

    Hazardous dense nonaqueous phase liquids (DNAPLs), such as chlorinated solvents, are slightly water soluble and pose a serious threat to soil and groundwater supplies in many portions of the United States. The migration and entrapment of DNAPLs in the subsurface environment is typically believed to be controlled by physical heterogeneities; i.e, layers and lenses of contrasting soil texture. The rationale for this assumption is that capillarity, as determined by the soil texture, is the dominant transport mechanism. Capillarity also depends on interfacial tension and medium wettability. Interfacial tension and medium wettability may be spatially and temporally dependent due to variations in aqueous phase chemistry, contaminant aging, and/or variations in mineralogy and organic matter distributions. Such chemical heterogeneities have largely been ignored to date, even though they are known to have dramatic effects on the hydraulic property relations. Numerical multiphase flow and transport models typically assume that solids are water-wet and that interfacial tension is constant. The primary objective of this research is to investigate the influence of coupled physical and chemical heterogeneities on the migration and entrapment of DNAPLs. This objective will be accomplished through a combination of laboratory and numerical experiments. Laboratory experiments will be conducted to examine: (i) aqueous phase chemistry effects on medium wettability and interfacial tension; and (ii) relative permeability-saturation-capillary pressure relations for chemically heterogeneous systems. An important objective of this research is to modify a two-dimensional multiphase flow and transport model to account for chemically and physically heterogeneous systems. This numerical simulator will be used in conjunction with independently measured parameters to simulate two-dimensional DNAPL infiltration experiments. Comparisons of simulated and laboratory data will provide a means to

  16. CONCURRENT INJECTION OF COSOLVENT AND AIR FOR ENHANCED PCE REMOVAL

    EPA Science Inventory

    The goal of this study was to use preferential flow of air to improve the dynamics of cosolvent displacement in order to enhance DNAPL displacement and dissolution. The concurrent injection of cosolvent and air was evaluated in a glass micromodel for a DNAPL remediation technolog...

  17. Laboratory determination of gas-side mass transfer coefficients applicable to soil-venting systems for removing petroleum hydrocarbons from vadose-zone soils. Master's thesis

    SciTech Connect

    Van Valkenburg, M.E.

    1991-01-01

    Contamination of the subsurface environment by organic solvents has become a national problem. The EPA's Superfund list (40 CFR Part 300, 1990) continues to grow, with continual discovery of new hazardous waste sites. Various techniques are employed to remediate these sites, including excavation and removal of the contaminated soil for proper disposal, pumping and treatment of contaminated ground water and an organic phase if present, containment by slurried soil-bentonite cut-off barriers, in situ biological treatment of the organic wastes, and vadose zone soil venting for gas absorption of volatiles. Each technique, or combination, may have merit at a given site. The soil venting process, an inexpensive but relatively successful technique for removal of contaminants from the vadose (unsaturated) zone, is the focus of the research.

  18. Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Removal, mass balances and fate in groundwater of TNT and RDX.

    PubMed

    Best, E P; Sprecher, S L; Larson, S L; Fredrickson, H L; Bader, D F

    1999-06-01

    Phytoremediation of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater using constructed wetlands is a potentially economical remediation alternative. To evaluate Explosives removal and fate was evaluated using hydroponic batch incubations of plant and substrate treatments with explosives-contaminated groundwater amended with [U-14C]-TNT or [U-14C]-RDX. Plants and substrates were collected from a small-scale wetland constructed for explosives removal, and groundwater originated from a local aquifer at the Milan Army Ammunition Plant. The study surveyed three aquatic, four wetland plant species and two substrates in independent incubations of 7 days with TNT and 13 days with RDX. Parent compounds and transformation products were followed using 14C and chemical (HPLC) analyses. Mass balance of water, plants, substrates and air was determined. It was demonstrated that TNT disappeared completely from groundwater incubated with plants, although growth of most plants except parrot-feather was low in groundwater amended to contain 1.6 to 3.4 mg TNT L-1. Highest specific removal rates were found in submersed plants in water star-grass and in all emergent plants except wool-grass. TNT declined less with substrates, and least in controls without plants. Radiolabel was present in all plants after incubation. Mineralization to 14CO2 was very low, and evolution into 14C-volatile organics negligible. RDX disappeared less rapidly than TNT from groundwater. Growth of submersed plants was normal, but that of emergent plants reduced in groundwater amended to contain 1.5 mg RDX L-1. Highest specific RDX removal rates were found in submersed plants in elodea, and in emergent plants in reed canary grass. RDX failed to disappear with substrates. Mineralization to 14CO2 was low, but relatively higher than in the TNT experiment. Evolution into 14C-volatile organics was negligible. Important considerations for using certain aquatic and wetland

  19. Numerical and experimental investigation of the impact of organic chemical mixtures on DNAPL migration and distribution in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Oostrom, M.; Wietsma, T. W.; Valocchi, A. J.; Werth, C. J.

    2009-12-01

    Two intermediate-scale flow cell experiments were conducted in order to account for the impact of organic chemical mixtures and wastewater properties on dense non-aqueous phase liquid (DNAPL) migration and distribution in a layered vadose zone. The flow cell was packed with two sandy soils including an embedded fine sand lens. For the two experiments, pure carbon tetrachloride (CT) and an organic mixture containing CT and three different surface-active chemicals were injected at the top of the flow cell, respectively. Numerous photos and video images were taken, and a dual-energy gamma radiation system was used to measure initial and final NAPL saturation profiles in the flow cell. For both cases, the NAPL front reached the top interface of coarse- and fine-grained sands very quickly. After the NAPL front reached the bottom of the fine lens, the pure CT quickly penetrated through the bottom of fine lens, resulting in multiple fingers at the interface of fine and coarse sands, while the mixture moved horizontally at the bottom of the fine lens without penetrating, resulting in higher NAPL saturations in the fine lens. Continuum-based multiphase flow simulation results predicted that the pure CT would penetrate through the bottom of the fine lens, while the mixture would not. Simulation results indicate that higher density, lower viscosity, and higher surface tension values for pure CT relative to the mixture can increase the total NAPL pressure of pure CT at the interface of the fine lens when the CT front reaches the bottom of the fine lens, resulting in overcoming the capillary barrier effect at the interface. However, simulations significantly under-predicted the amount of CT penetrating through the fine lens. The effect of water saturation and chemical properties on finger formation will be discussed. The effect of organic and aqueous phase properties on NAPL distribution at the field scale will be also explored through a case study.

  20. In situ, field scale evaluation of surfactant enhanced DNAPL recovery using a single-well, push-pull test. 1998 annual progress report

    SciTech Connect

    Istok, J.D.

    1998-06-01

    'The overall goal of this project is to develop the single-well, push-pull test method as a new site characterization and feasibility assessment tool for studying the fundamental fate and transport behavior of injected surfactants and their ability to solubilize and mobilize dense nonaqueous phase liquids (DNAPLs) in the subsurface. The specific objectives are: (1) to develop a modified push-pull test for use in identifying and quantifying the effects of sorption, precipitation, and biodegradation on the fate and transport of injected surfactants, (2) to use the developed test method to quantify the effects of these processes on the ability of injected surfactants to solubilize and mobilize residual phase trichloroethylene, and (3) to demonstrate the utility of the developed test method for performing site characterization and feasibility studies for surfactant enhanced DNAPL recovery systems. This report summarizes work as of June 1, 1998 (after 20 months of a 36-month project); laboratory and field work as been successfully completed for all three objectives.'

  1. Enhanced aqueous dissolution of a DNAPL source to characterize the source strength function

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Schaefer, Charles E.; Ault, Timothy D.; Cho, Jaehyun; Jawitz, James W.

    2014-11-01

    Simplified analytical solutions, developed as source strength functions (SSFs), are capable of describing the temporal dissolution of nonaqueous phase liquids in groundwater, which is useful for predicting source longevity and can serve as a guide for remedial activities. Here, SSF parameters were estimated by fitting enhanced aqueous dissolution data from a flow cell consisting of three injection and four extraction wells to analytical dissolution models (power law model (PLM) and equilibrium streamtube model (EST)) at a trichloroethene (TCE) contaminated site, Alameda Point, California. Both the PLM and the EST model were able to characterize the observed aqueous TCE dissolution during enhanced water flooding. Additional field activities conducted at the site included soil core collection, a recirculated partitioning tracer test, passive flux meter transects, and push-pull tracer tests. The additional site characterization data were used to independently estimate the observed SSF parameters using information such as the TCE mass, distribution and porous media heterogeneity. The exponential decay model (a subset of the PLM) accurately predicted the enhanced dissolution, likely because the site was significantly aged (most of the mass in the plume rather than in the source zone) or middle stage, and the mass in the source zone could be approximately estimated. The EST tracer-based model, when combined with data from the recirculated partitioning tracer test, soil cores, and the push-pull tracer test, was capable of accurately predicting the observed aqueous dissolution. The mass in the source zone and the fraction of contaminated flowpaths were the most important site characteristics, requiring the greatest accuracy to predict aqueous dissolution. Establishing steady state dissolution was essential to provide a more accurate estimate of the fraction contaminated and high resolution data from soil cores in the source zone were needed to estimate the mass present.

  2. Hydraulic head data from the DNAPL monitoring wells GW-726, GW-727, GW-729, GW-730, and GW-790 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Third quarter FY 1992 through second quarter FY 1996

    SciTech Connect

    Drier, R.B.; Caldanaro, A.J.

    1997-02-01

    In January 1990, dense nonaqueous-phase liquids (DNAPLs) were discovered at a depth of approximately 274 ft below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. Detailed results of the preliminary DNAPL investigation are presented in Haase and King (1990a), and a work plan for assessment and characterization of the DNAPL is presented in Haase and King (1990b). A major task in the work plan calls for the construction and installation of five multiport wells. This report summarizes fluid pressure monitoring activities for the five multiport wells. The report includes a discussion of data collection and processing, and presents the data in the form of hydraulic head graphs. The report does not include interpretation of (1) flow paths, (2) aquifer characteristics, or (3) spatial synthesis of data. As funding and need arises, these topics will be addressed in future reports. To date, a series of fluid pressure measurements have been collected from each of the five Westbay-instrumented multiport wells that were built to quantify groundwater characteristics in the vicinity of a DNAPL plume. These measurements have been converted to hydraulic head, and the results are presented graphically in this report. It is recommended that future tasks use this data to support technically sound environmental remediation decisions. For example, these data can be used to design a remediation strategy or can be used to evaluate and rate a variety of remediation strategies.

  3. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be

  4. Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach.

    PubMed

    Dridi, Lotfi; Pollet, Ingrid; Razakarisoa, Olivier; Schäfer, Gerhard

    2009-06-26

    In this paper, we discuss the results of a Partitioning Interwell Tracer Test (PITT) performed in a large scale experiment with a well-defined TCE spill, and present a novel combined analytical-numerical inverse modelling approach using measured concentration profiles within a TCE plume to predict the distribution of the DNAPL in a virtual vertical plane of the source. The proposed inverse modelling approach assumes local thermodynamic equilibrium of the distribution of TCE between the NAPL phase and the aqueous phase and no decay or sorption of the dissolved TCE concentrations downstream of the spill area. The analytical part of the inverse modelling approach contains two steps. As a first step, the location of the contaminant in a virtual vertical plane of a porous medium is fixed by using measured concentration profiles and considering the dissolution of the organic phase under equilibrium conditions. In the second step, the volume of contaminant entrapped in the source cells is estimated. A multiphase advective-dispersive transport model is used in the final step to adjust the volumes quantified in the second step. The predictions are highly dependent on the quantity and quality of the data in space and time. From the PITT-breakthrough curves measured at the pumping well, a mean TCE saturation in the sweep zone of 0.0004 was derived, which is very low compared to that determined at the local scale. In a second analysis, tracer breakthrough curves available at measuring points placed closely downstream and upstream of the presumed source zone, were used to explain why the globally obtained DNAPL saturation was very low compared to the "real", locally evaluated TCE saturations in the source zone. This was principally caused by the overall travel time compared to the short travel time of the tracers in the source zone. Another reason is that due to bypassing, only part of the volume of tracer injected had been in contact and had eventually interacted with the

  5. Tick removal.

    PubMed

    Roupakias, S; Mitsakou, P; Nimer, A Al

    2011-03-01

    Ticks are blood feeding external parasites which can cause local and systemic complications to human body. A lot of tick-borne human diseases include Lyme disease and virus encephalitis, can be transmitted by a tick bite. Also secondary bacterial skin infection, reactive manifestations against tick allergens, and granuloma's formation can be occurred. Tick paralysis is a relatively rare complication but it can be fatal. Except the general rules for tick bite prevention, any tick found should be immediately and completely removed alive. Furthermore, the tick removal technique should not allow or provoke the escape of infective body fluids through the tick into the wound site, and disclose any local complication. Many methods of tick removal (a lot of them are unsatisfactory and/or dangerous) have been reported in the literature, but there is very limited experimental evidence to support these methods. No technique will remove completely every tick. So, there is not an appropriate and absolutely effective and/or safe tick removal technique. Regardless of the used tick removal technique, clinicians should be aware of the clinical signs of tick-transmitted diseases, the public should be informed about the risks and the prevention of tick borne diseases, and persons who have undergone tick removal should be monitored up to 30 days for signs and symptoms. PMID:21710824

  6. Tick removal

    MedlinePlus

    ... are small, insect-like creatures that live in woods and fields. They attach to you as you ... your clothes and skin often while in the woods. After returning home: Remove your clothes. Look closely ...

  7. Tattoo removal.

    PubMed

    Adatto, Maurice A; Halachmi, Shlomit; Lapidoth, Moshe

    2011-01-01

    Over 50,000 new tattoos are placed each year in the United States. Studies estimate that 24% of American college students have tattoos and 10% of male American adults have a tattoo. The rising popularity of tattoos has spurred a corresponding increase in tattoo removal. Not all tattoos are placed intentionally or for aesthetic reasons though. Traumatic tattoos due to unintentional penetration of exogenous pigments can also occur, as well as the placement of medical tattoos to mark treatment boundaries, for example in radiation therapy. Protocols for tattoo removal have evolved over history. The first evidence of tattoo removal attempts was found in Egyptian mummies, dated to have lived 4,000 years BC. Ancient Greek writings describe tattoo removal with salt abrasion or with a paste containing cloves of white garlic mixed with Alexandrian cantharidin. With the advent of Q-switched lasers in the late 1960s, the outcomes of tattoo removal changed radically. In addition to their selective absorption by the pigment, the extremely short pulse duration of Q-switched lasers has made them the gold standard for tattoo removal.

  8. Tattoo removal.

    PubMed

    Adatto, Maurice A; Halachmi, Shlomit; Lapidoth, Moshe

    2011-01-01

    Over 50,000 new tattoos are placed each year in the United States. Studies estimate that 24% of American college students have tattoos and 10% of male American adults have a tattoo. The rising popularity of tattoos has spurred a corresponding increase in tattoo removal. Not all tattoos are placed intentionally or for aesthetic reasons though. Traumatic tattoos due to unintentional penetration of exogenous pigments can also occur, as well as the placement of medical tattoos to mark treatment boundaries, for example in radiation therapy. Protocols for tattoo removal have evolved over history. The first evidence of tattoo removal attempts was found in Egyptian mummies, dated to have lived 4,000 years BC. Ancient Greek writings describe tattoo removal with salt abrasion or with a paste containing cloves of white garlic mixed with Alexandrian cantharidin. With the advent of Q-switched lasers in the late 1960s, the outcomes of tattoo removal changed radically. In addition to their selective absorption by the pigment, the extremely short pulse duration of Q-switched lasers has made them the gold standard for tattoo removal. PMID:21865802

  9. Characterization of TCE DNAPL and Dissolved Phase Transport in Karst Media

    NASA Astrophysics Data System (ADS)

    Carmona, M.; Padilla, I. Y.

    2015-12-01

    Trichloroethylene (TCE) contaminated sites are a threat to the environment and human health. Of particular concerns is the contamination of karst groundwater systems (KGWSs). Their heterogeneous character, rapid flow through conduits, high permeability zones, and strong storage capacity in the rock porous-matrix pose a high risk of exposure over large areas and temporal scales. To achieve effective remedial actions for TCE removal, it is important to understand and quantify the fate and transport process of trichloroethylene in these systems. This research studies the fate, transport, and distribution of TCE Non-Aqueous Phase Liquids (NAPLs) and associated dissolved species in KGWSs. Experiments are conducted in a karstified limestone physical model, a limestone rock mimicking a saturated confined karst aquifer. After injecting TCE solvent into a steady groundwater flow field, samples are taken spatially and temporally and analyzed for TCE NAPL and dissolved phases. Data analysis shows the rapid detection of TCE NAPL and high aqueous concentrations along preferential pathway, even at distances far away from the injection point. Temporal distribution curves exhibit spatial variations related to the limestone rock heterogeneity. Rapid response to TCE concentrations is associated with preferential flow paths. Slow response with long tailing indicates rate-limited diffusive transport in the rock matrix. Overall, results indicate that karstified limestone has a high capacity to rapidly transport pure and dissolved TCE along preferential flow paths, and to store and slowly release TCE over long periods of time.

  10. Field Testing of Bimetallic Nanoscale Particle Technology for In-Situ Groundwater Treatment of a Fractured Rock DNAPL Zone

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Walata, L.; Nash, R.; Gheorghiu, F.; Glazier, R.; Venkatakrishnan, R.

    2003-04-01

    This study has been carried out as part of the Corrective Measure Study (CMS) at a property owned by GlaxoSmithKline in Research Triangle Park, North Carolina, USA. The study area is located in the Durham subbasin of the Deep River Triassic Basin and is underlain by interbedded siltstone and sandstone sequences. Groundwater underlying portions of the site has been impacted by historical industrial activities conducted by previous owners; groundwater contaminants consist mainly of chlorinated volatile organic compounds. Golder conducted an initial review of potentially applicable remediation technologies and retained the Bimetallic Nanoscale Particle (BNP) technology for further evaluation. BNP consists of nanoscale particles (~ 60 nm) of zero valent iron (Fe0) with a trace coating of noble metal catalyst (palladium). The rapid destruction of a wide range of recalcitrant contaminants is based on a surface-catalyzed redox process where the contaminant serves as an electron acceptor and BNP as the electron donor and can be accomplished either in situ or ex situ (Wei-xian Zhang, 1997, 1999, 2000). This study presents the field demonstration of the BNP effectiveness to treat in-situ chlorinated VOCs in a complex fractured bedrock aquifer setting. During the field pilot test 11 kilograms of BNP mixed in water-based slurry were injected into the shallow bedrock groundwater suspected to contain dense non-aqueous phase liquids (DNAPLs). The results of the test indicated rapid treatment of chlorinated VOCs 7 m to 14 m around the injection well. In addition, the oxidation-reduction potential (ORP) and dissolved oxygen (DO) values have decreased and persisted at very low levels of -450 millivolts and less than 0.001 milligrams per liter, respectively, indicating favorable conditions for reductive dechlorination. Interpretation of pre- and post-test data on the in-situ microbiological community in the test area indicate that the changes in ORP and DO have resulted in inhibition

  11. Method for Ultratrace Level (241)Am Determination in Large Soil Samples by Sector Field-Inductively Coupled Plasma Mass Spectrometry: With Emphasis on the Removal of Spectral Interferences and Matrix Effect.

    PubMed

    Wang, Zhongtang; Zheng, Jian; Cao, Liguo; Tagami, Keiko; Uchida, Shigeo

    2016-07-19

    A new method using sector field-inductively coupled plasma mass spectrometry (SF-ICPMS) was developed for the determination of (241)Am in large soil samples to provide realistic soil-plant transfer parameter data for dose assessment of nuclear waste disposal plans. We investigated four subjects: extraction behaviors of interfering elements (Bi, Tl, Hg, Pb, Hf, and Pt) on DGA resin (normal type, abbreviated as DGA-N); soil matrix element removal (Mg, Fe, Al, K, Na) using Fe(OH)3, CaF2, and CaC2O4 coprecipitations; Am and rare earth elements (REEs) separation on DGA-N and TEVA resins; and optimization of SF-ICPMS (equipped with a high efficiency nebulizer (HEN)) for Am determination. Our method utilized concentrated HNO3 to leach Am from 2 to 20 g soil samples. The CaC2O4 coprecipitation was used to remove major metals in soil and followed by Am/interfering elements separation using the proposed UTEVA + DGA-N procedure. After a further separation of REEs on TEVA resin, (241)Am was determined by HEN-SF-ICPMS. This method eliminated the matrix effect in ICPMS (241)Am measurement for large soil samples. The high decontamination factors (DFs) of interfering elements enable their thorough removal, and in particular, the DF of Pu (7 × 10(5)) was the highest ever reported in (241)Am studies; thus, this method is capable of analyzing (241)Pu-contaminated Fukushima Daiichi Nuclear Power Plant (FDNPP) sourced soil samples. A low detection limit of 0.012 mBq g(-1) for (241)Am was achieved. The chemical recovery of Am (76-82%) was stable for soil samples. This method can be employed for the low level (241)Am determination in large size soil samples that are contaminated with (241)Pu. PMID:27322003

  12. Removal of high-salinity matrices through polymer-complexation-ultrafiltration for the detection of trace levels of REEs using inductively coupled plasma mass spectrometry.

    PubMed

    Duan, Hualing; Lin, Jijun; Gong, Zhenbin; Huang, Jiahua; Yang, Shifeng

    2015-10-01

    The polymer-complexation-ultrafiltration (PCUF) technique was applied to separate trace levels of rare earth elements (REEs), including scandium, yttrium and the lanthanides, from high-salinity matrices prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS). The REEs were converted into REE-polymer complexes using the water-soluble polymer polyacrylic acid (PAA) at a specified pH, retained on the ultrafiltration membrane of centrifugal filter units, and finally eluted using diluted nitric acid to achieve separation from matrices with relatively high levels of various inorganic ions, such as sodium, potassium, calcium, magnesium, and chlorine ions. Numerous factors affecting the PCUF efficiency were optimized. The optimal conditions included the addition of 30 mg L(-1) of PAA, a pH of 7.5, a reaction time of 40 min at room temperature, and 5.0 mL of 3% nitric acid (v/v) eluent. Under these conditions, the analytes were quantitatively separated and recovered, with a resulting relative standard deviation (RSD) of less than 4.0% (0.05 µg L(-1), n=5) and standard addition recoveries between 89.2% (La) and 95.8% (Sm) for matrices of various salinities. The blank samples for the method ranged from 0.0003 µg L(-1) (Dy) to 0.0031 µg L(-1) (Sc), and the limits of quantification (LOQs, 10σ) were between 0.0006 µg L(-1) (Dy) and 0.0026 µg L(-1) (Sc). Furthermore, the salinity of the sample exhibited no effect on the REE-polymer complex formation process. Finally, the method was successfully applied for the determination of trace levels of dissolved Sc, Y, and lanthanides in coastal and estuarine seawater samples. PMID:26078161

  13. Remediation of DNAPL source zones with granular iron: laboratory and field tests.

    PubMed

    Wadley, Sharon L S; Gillham, Robert W; Gui, Lai

    2005-01-01

    Degradation of dissolved chlorinated solvents using granular iron is an established in situ technology. This paper reports on investigations into mixing iron and bentonite with contaminated soil for in situ containment and degradation of dense nonaqueous phase liquid source zones. In the laboratory, hypovials containing soil, water, bentonite, iron, and free-phase trichloroethene (TCE) were assembled. Periodic measurement of TCE, chloride, and degradation products showed progressive degradation of TCE to nondetectable levels. Subsequently, a demonstration was conducted at Canadian Forces Base Borden near Alliston, Ontario, Canada, where, in 1991, a portion of the surficial aquifer was isolated and free-phase tetrachloroethene (PCE) was introduced. Using a drill rig equipped with large-diameter mixing blades, three mixed zones were prepared containing 0%, 5%, and 10% granular iron by volume. The bentonite was added to serve as a lubricant to facilitate injection of the iron and to isolate the contaminated zone. Analysis of core samples showed reasonably uniform distributions of iron through the mixed zones. Monitoring over a 13-month period following installation showed, relative to the control, a decline in PCE concentrations to virtually nondetectable values. Reaction rates in the laboratory tests were similar to those reported in the literature, while the rate in the field test was substantially lower. The lower rate may be a consequence of mass transfer limitations under the static conditions of the field test. Results indicate that mixing iron and bentonite into source zones may be an effective means of source-zone remediation, with the particular advantage of being relatively immune to effects of geologic heterogeneity.

  14. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: creation of the emplaced-source and overview of dissolved plume development.

    PubMed

    Rivett, M O; Feenstra, S; Cherry, J A

    2001-05-01

    A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates

  15. Measuring NAPL-Water Interfacial Areas to Evaluate the Effectiveness of In-Situ Chemical Oxidation for DNAPL-Contaminated Source Zones: A Two-Dimensional Flow Cell Study

    NASA Astrophysics Data System (ADS)

    Li, M.; Brusseau, M. L. L.; Yan, N.; Wan, L.

    2015-12-01

    In-situ chemical oxidation (ISCO) using persulfate was employed to remediate a flow cell contaminated with a model dense nonaqueous-phase liquid (DNAPL), trichloroethene (TCE). The flow cell was packed homogeneously with 359 μm diameter natural sand. Dyed TCE DNAPL was naturally distributed in the flow cell. Fe2+-activated persulfate (5 mM) was used for ISCO. Interfacial partitioning tracer tests (IPTT) were conducted before and after ISCO to measure NAPL-water interfacial area, using sodium dodecyl benzenesulfonate (SDBS, 35mg/L) as the tracer. The change in interfacial area was examined as influenced by ISCO remediation. The interfacial areas measured for this two-dimensional system are compared to previously reported values obtained from one-dimensional column experiments.

  16. Removal of BrO₃⁻ from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry.

    PubMed

    Naushad, Mu; Khan, Mohammad R; ALOthman, Zeid A; AlSohaimi, Ibrahim; Rodriguez-Reinoso, Francisco; Turki, Turki M; Ali, Rahmat

    2015-10-01

    Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 (-)). The concentration of BrO3 (-) was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 (-) adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g(-1). The adsorption kinetics of BrO3 (-) adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

  17. Removal of BrO₃⁻ from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry.

    PubMed

    Naushad, Mu; Khan, Mohammad R; ALOthman, Zeid A; AlSohaimi, Ibrahim; Rodriguez-Reinoso, Francisco; Turki, Turki M; Ali, Rahmat

    2015-10-01

    Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 (-)). The concentration of BrO3 (-) was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 (-) adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g(-1). The adsorption kinetics of BrO3 (-) adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results. PMID:26040265

  18. Radionuclide removal

    SciTech Connect

    Sorg, T.J.

    1991-01-01

    The U.S. Environmental Protection Agency proposed new and revised regulations on radionuclide contaminants in drinking water in June 1991. During the 1980's, the Drinking Water Research Division, USEPA conducted a research program to evaluate various technologies to remove radium, uranium and radon from drinking water. The research consisted of laboratory and field studies conducted by USEPA, universities and consultants. The paper summarizes the results of the most significant projects completed. General information is also presented on the general chemistry of the three radionuclides. The information presented indicates that the most practical treatment methods for radium are ion exchange and lime-soda softening and reverse osmosis. The methods tested for radon are aeration and granular activated carbon and the methods for uranium are anion exchange and reverse osmosis.

  19. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 1. Site description and contaminant source mass reduction.

    PubMed

    Fjordbøge, Annika S; Riis, Charlotte; Christensen, Anders G; Kjeldsen, Peter

    2012-10-01

    Field investigations on the effects of ZVI-Clay soil mixing were conducted at a small DNAPL source zone with PCE as the parent compound. In a one-year monitoring program, soil samples were collected at three horizontal sampling planes (2.5, 5.0 and 7.5m bgs.). PCE was found to have a pseudo first-order degradation half-life of 47days resulting in more than 99% depletion of the source mass after one year. The main degradation product was ethene, while only low concentrations of the primarily biotic sequential degradation products (cDCE, VC) were detected. The soil mixing resulted in more homogeneous vertical conditions, while the horizontal homogenization was very limited. Iron was delivered in the full targeted depth with an average iron enrichment of 3.1%, and an average decline in the oxidation-reduction potential of more than 500mV. Due to the applied top-down addition of ZVI, the iron content decreased from 4.6% to 2.1% on average over a depth of 5m; hence, there is a potential for optimization of the delivery method. Most in situ technologies are limited by subsurface heterogeneities, whereby the successful dispersion of geological units and contaminants holds great promise for remediation of DNAPL source zones with ZVI-Clay soil mixing. PMID:23010546

  20. ZVI-Clay remediation of a chlorinated solvent source zone, Skuldelev, Denmark: 1. Site description and contaminant source mass reduction

    NASA Astrophysics Data System (ADS)

    Fjordbøge, Annika S.; Riis, Charlotte; Christensen, Anders G.; Kjeldsen, Peter

    2012-10-01

    Field investigations on the effects of ZVI-Clay soil mixing were conducted at a small DNAPL source zone with PCE as the parent compound. In a one-year monitoring program, soil samples were collected at three horizontal sampling planes (2.5, 5.0 and 7.5 m bgs.). PCE was found to have a pseudo first-order degradation half-life of 47 days resulting in more than 99% depletion of the source mass after one year. The main degradation product was ethene, while only low concentrations of the primarily biotic sequential degradation products (cDCE, VC) were detected. The soil mixing resulted in more homogeneous vertical conditions, while the horizontal homogenization was very limited. Iron was delivered in the full targeted depth with an average iron enrichment of 3.1%, and an average decline in the oxidation-reduction potential of more than 500 mV. Due to the applied top-down addition of ZVI, the iron content decreased from 4.6% to 2.1% on average over a depth of 5 m; hence, there is a potential for optimization of the delivery method. Most in situ technologies are limited by subsurface heterogeneities, whereby the successful dispersion of geological units and contaminants holds great promise for remediation of DNAPL source zones with ZVI-Clay soil mixing.

  1. Adrenal lymphangioma removed by a retroperitoneoscopic procedure.

    PubMed

    Liu, Ben; Li, Yanyuan; Wang, Shuo

    2013-02-01

    We report a case of an adrenal lymphangioma removed by retroperitoneal laparoscopy. A 45-year-old female was referred to the urological ward for an adrenal mass that was incidentally detected by ultrasound examination one month earlier. An abdominal ultrasonography (US) scan revealed a 3.0 cm anechoic cystic mass, while a computed tomography (CT) scan revealed a 3.0×2.7 cm left adrenal cystic mass, which was suspected to be an adrenal cyst. The patient underwent retroperitoneoscopic removal of the tumor. Pathological evaluation revealed a cystic lymphangioma in the left adrenal gland.

  2. ENHANCED SOURCE REMOVAL OF NONAQUEOUS PHASE LIQUID CONTAMINANTS BY CHEMICAL-BASED FLOODING

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLs) such as gasoline and halogenated solvents (trichloroethylene (TCE) and teterachloroethylene (PCE), etc) enter the subsurface after a spill, or from leaking underground storage tanks. The presence of residual dense nonaqueous phase liquids (DNAPL) ...

  3. ENHANCED SOURCE REMOVAL USING IN-SITU CHEMICAL FLUSHING

    EPA Science Inventory

    Dense non-aqueous phase liquids (DNAPL) have been identified as a major impediment to the cleanup of many contaminated sites. Conventional ground water remediation methods such as pump-and-treat have proven ineffective at these sites. As a result, alternative remediation approach...

  4. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.

    PubMed

    Yoon, Hongkyu; Valocchi, Albert J; Werth, Charles J

    2007-03-20

    The amount, location, and form of NAPL in contaminated vadose zones are controlled by the spatial distribution of water saturation and soil permeability, the NAPL spill scenario, water infiltration events, and vapor transport. To evaluate the effects of these processes, we used the three-phase flow simulator STOMP, which includes a new permeability-liquid saturation-capillary pressure (k-S-P) constitutive model. This new constitutive model considers three NAPL forms: free, residual, and trapped. A 2-D vertical cross-section with five stratigraphic layers was assumed, and simulations were performed for seven cases. The conceptual model of the soil heterogeneity was based upon the stratigraphy at the Hanford carbon tetrachloride (CT) spill site. Some cases considered co-disposal of NAPL with large volumes of wastewater, as also occurred at the Hanford CT site. In these cases, the form and location of NAPL were most strongly influenced by high water discharge rates and NAPL evaporation to the atmosphere. In order to investigate the impact of heterogeneity, the hydraulic conductivity within the lower permeability layer was modeled as a realization of a random field having three different classes. For six extreme cases of 100 realizations, the CT mass that reached the water table varied by a factor of two, and was primarily controlled by the degree of lateral connectivity of the low conductivity class within the lowest permeability layer. The grid size at the top boundary had a dramatic impact on NAPL diffusive flux just after the spill event when the NAPL was present near the ground surface. NAPL evaporation with a fine grid spacing at the top boundary decreased CT mass that reached the water table by 74%, compared to the case with a coarse grid spacing, while barometric pumping had a marginal effect for the case of a continuous NAPL spill scenario considered in this work. For low water infiltration rate scenarios, the distribution of water content prior to a NAPL

  5. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.

    PubMed

    Yoon, Hongkyu; Valocchi, Albert J; Werth, Charles J

    2007-03-20

    The amount, location, and form of NAPL in contaminated vadose zones are controlled by the spatial distribution of water saturation and soil permeability, the NAPL spill scenario, water infiltration events, and vapor transport. To evaluate the effects of these processes, we used the three-phase flow simulator STOMP, which includes a new permeability-liquid saturation-capillary pressure (k-S-P) constitutive model. This new constitutive model considers three NAPL forms: free, residual, and trapped. A 2-D vertical cross-section with five stratigraphic layers was assumed, and simulations were performed for seven cases. The conceptual model of the soil heterogeneity was based upon the stratigraphy at the Hanford carbon tetrachloride (CT) spill site. Some cases considered co-disposal of NAPL with large volumes of wastewater, as also occurred at the Hanford CT site. In these cases, the form and location of NAPL were most strongly influenced by high water discharge rates and NAPL evaporation to the atmosphere. In order to investigate the impact of heterogeneity, the hydraulic conductivity within the lower permeability layer was modeled as a realization of a random field having three different classes. For six extreme cases of 100 realizations, the CT mass that reached the water table varied by a factor of two, and was primarily controlled by the degree of lateral connectivity of the low conductivity class within the lowest permeability layer. The grid size at the top boundary had a dramatic impact on NAPL diffusive flux just after the spill event when the NAPL was present near the ground surface. NAPL evaporation with a fine grid spacing at the top boundary decreased CT mass that reached the water table by 74%, compared to the case with a coarse grid spacing, while barometric pumping had a marginal effect for the case of a continuous NAPL spill scenario considered in this work. For low water infiltration rate scenarios, the distribution of water content prior to a NAPL

  6. Peptide mass fingerprinting.

    PubMed

    Thiede, Bernd; Höhenwarter, Wolfgang; Krah, Alexander; Mattow, Jens; Schmid, Monika; Schmidt, Frank; Jungblut, Peter R

    2005-03-01

    Peptide mass fingerprinting by MALDI-MS and sequencing by tandem mass spectrometry have evolved into the major methods for identification of proteins following separation by two-dimensional gel electrophoresis, SDS-PAGE or liquid chromatography. One main technological goal of proteome analyses beside high sensitivity and automation was the comprehensive analysis of proteins. Therefore, the protein species level with the essential information on co- and post-translational modifications must be achieved. The power of peptide mass fingerprinting for protein identification was described here, as exemplified by the identification of protein species with high molecular masses (spectrin alpha and beta), low molecular masses (elongation factor EF-TU fragments), splice variants (alpha A crystallin), aggregates with disulfide bridges (alkylhydroperoxide reductase), and phosphorylated proteins (heat shock protein 27). Helpful tools for these analyses were the use of the minimal protein identifier concept and the software program MS-Screener to remove mass peaks assignable to contaminants and neighbor spots.

  7. Phenol removal pretreatment process

    DOEpatents

    Hames, Bonnie R.

    2004-04-13

    A process for removing phenols from an aqueous solution is provided, which comprises the steps of contacting a mixture comprising the solution and a metal oxide, forming a phenol metal oxide complex, and removing the complex from the mixture.

  8. Turbomachinery debris remover

    DOEpatents

    Krawiec, Donald F.; Kraf, Robert J.; Houser, Robert J.

    1988-01-01

    An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

  9. Wart remover poisoning

    MedlinePlus

    ... Remover Panscol Paplex Ultra PediaPatch Sal-Acid Sal-Plant Salacid Salactic Film Trans-Plantar Trans-Ver-Sal ... you to do so. Flush the eyes with water and remove any medicine that remains on the ...

  10. Atrial mass: a myxoma?

    PubMed

    Chatzis, Andrew C; Kostopanagiotou, Kostas; Kousi, Theofili; Mitropoulos, Fotios

    2016-08-01

    A middle-aged woman with a history of resected colorectal cancer and receiving chemotherapy presented with a right atrial mass and the provisional diagnosis of myxoma supported by echocardiography, computed tomography, and magnetic resonance imaging. Successful surgical removal revealed organized thrombus instead. Atrial thrombus may be mistaken for myxoma and long-term intracardiac indwelling catheters can be thrombogenic. PMID:27525099

  11. Graphitic packing removal tool

    SciTech Connect

    Meyers, K.E.; Kolsun, G.J.

    1996-12-31

    Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  12. Graphitic packing removal tool

    DOEpatents

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  13. Graphitic packing removal tool

    DOEpatents

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  14. Final Technical Report EMSP 70045 Investigation of Pore Scale Processes That Affect Soil Vapor Extraction

    SciTech Connect

    Valocchi, Albert J.; Werth, Charles W.; Webb, Andrew W.

    2004-12-10

    Dense nonaqueous phase liquid (DNAPL) contamination in the vadose zone is a significant problem at Department of Energy sites. Soil vapor extraction (SVE) is commonly used to remediate DNAPLs from the vadose zone. In most cases, a period of high recovery has been followed by a sustained period of low recovery. This behavior has been attributed to multiple processes including slow interphase mass transfer, retarded vapor phase transport, and diffusion from unswept zones of low permeability. This research project used a combination of laboratory experimentation and mathematical modeling to determine how these various processes interact to limit the removal of DNAPL components in heterogeneous porous media during SVE. Our results were applied to scenarios typical of the carbon tetrachloride spill zone at the Hanford Site. Our results indicate that: (a) the initial distribution of the spilled DNAPL (i.e., the spill-zone architecture) has a major influence upon the performance of any subsequent SVE operations; (b) while the pattern of higher and lower conductivity soil zones has an important impact upon spill zone architecture, soil moisture distribution plays an even larger role when there are large quantities of co-disposed waste-water (as in the Hanford scenario); (c) depending upon soil moisture dynamics, liquid DNAPL that is trapped by surrounding water is extremely difficult to remove by SVE; (d) natural barometric pumping can remove a large amount of the initial DNAPL mass for spills occurring close to the land surface, and hence the initial spilled inventory will be over-estimated if this process is neglected.

  15. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  16. Anthralin stain removal.

    PubMed

    Wang, J C; Krazmien, R J; Dahlheim, C E; Patel, B

    1986-11-01

    Results of an anthralin stain removal study on white 65% polyester/35% cotton, white 100% polyester, white 100% cotton, a white shower curtain, white tile with crevice, and white ceramic shower tile are reported. An optimum stain removal technic was developed by using a 10-minute soak in full-strength chlorine bleach (Good Measure or Clorox) followed by a water rinse and air drying. This technic completely removed all stains of 24-hour duration from the test fabrics. The stain removal test on shower curtains, floor tiles, and ceramic shower tiles was also discussed.

  17. Device for removing blackheads

    DOEpatents

    Berkovich, Tamara

    1995-03-07

    A device for removing blackheads from pores in the skin having a elongated handle with a spoon shaped portion mounted on one end thereof, the spoon having multiple small holes piercing therethrough. Also covered is method for using the device to remove blackheads.

  18. Skin lesion removal

    MedlinePlus

    ... focused on a very small area. The laser heats the cells in the area being treated until they "burst." There are several types of lasers. Each laser has specific uses. Laser excision can remove: Benign or pre- ...

  19. Improving precursor removal

    SciTech Connect

    Spencer, C.M.; Collins, M.R.

    1995-12-01

    The purpose of this work was to determine whether dissolved organic carbon (DOC) could be feasibly removed by diatomaceous earth (DE) precoat filters amended with powdered activated carbon or anionic resin. In the first series of experiments, various precoat configurations of DE size, amendment type and concentration, and precoat weight were evaluated for their initial removals of dissolved organic matter and turbidity from a synthetic raw water source. In the second series of experiments, various body feed compositions were tested for their ability to maintain or improve the turbidity and organic carbon removal achieved by the optimum precoat while head loss through the filter was kept to a minimum. Amending the DE filter with a strong-base anionic resin in the precoat and body feed achieved significant removals of UV absorbance and DOC (> 50%) with excellent turbidity reduction and acceptable head loss development.

  20. Hardware removal - extremity

    MedlinePlus

    There are several reasons why hardware is removed: Pain from the hardware Infection Allergic reaction to hardware To prevent problems with growing bones in young people Nerve damage Broken hardware Bones that did not heal and join properly

  1. Laparoscopic Adrenal Gland Removal

    MedlinePlus

    ... adrenal tumors that appear malignant. What are the Advantages of Laparoscopic Adrenal Gland Removal? In the past, ... of procedure and the patients overall condition. Common advantages are: Less postoperative pain Shorter hospital stay Quicker ...

  2. Removing Hair Safely

    MedlinePlus

    ... the skin, and into the hair follicle. An electric current travels down the wire and destroys the hair ... a period of time. Tweezer epilators also use electric current to remove hair. The tweezers grasp the hair ...

  3. Asbestos Removal Case History.

    ERIC Educational Resources Information Center

    Haney, Stanley J.

    1986-01-01

    The engineer for a California school district describes the asbestos removal from the ceilings of El Camino High School. Discusses forming a design team, use of consultants, specifications, relations with contractors, and staff notification. (MLF)

  4. Paint removal using lasers

    NASA Astrophysics Data System (ADS)

    Liu, Katherine; Garmire, Elsa

    1995-07-01

    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 107 in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m2 area of paint 14 mu m thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power.

  5. Paint removal using lasers.

    PubMed

    Liu, K; Garmire, E

    1995-07-20

    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 10(7) in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m(2) area of paint 14 µm thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power.

  6. Reactor for removing ammonia

    DOEpatents

    Luo, Weifang; Stewart, Kenneth D.

    2009-11-17

    Disclosed is a device for removing trace amounts of ammonia from a stream of gas, particularly hydrogen gas, prepared by a reformation apparatus. The apparatus is used to prevent PEM "poisoning" in a fuel cell receiving the incoming hydrogen stream.

  7. Mildew remover poisoning

    MedlinePlus

    ... level of consciousness and lack of responsiveness) Stupor SKIN Burns Irritation Necrosis (holes) in the skin or underlying ... Fluids through a vein (IV) Surgical removal of burned skin (skin debridement) Washing of the skin (irrigation). Perhaps ...

  8. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  9. Laser hair removal pearls.

    PubMed

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal. PMID:18330794

  10. Laser hair removal pearls.

    PubMed

    Tierney, Emily P; Goldberg, David J

    2008-03-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal.

  11. Mass loss

    NASA Technical Reports Server (NTRS)

    Goldberg, Leo

    1987-01-01

    Observational evidence for mass loss from cool stars is reviewed. Spectra line profiles are used for the derivation of mass-loss rates with the aid of the equation of continuity. This equation implies steady mass loss with spherical symmetry. Data from binary stars, Mira variables, and red giants in globular clusters are examined. Silicate emission is discussed as a useful indicator of mass loss in the middle infrared spectra. The use of thermal millimeter-wave radiation, Very Large Array (VLA) measurement of radio emission, and OH/IR masers are discussed as a tool for mass loss measurement. Evidence for nonsteady mass loss is also reviewed.

  12. Space Station trash removal system

    NASA Technical Reports Server (NTRS)

    Petro, Andrew J. (Inventor)

    1993-01-01

    A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.

  13. Characterisation of dense non-aqueous phase liquids of coal tar using comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Gauchotte-Lindsay, Caroline; McGregor, Laura; Richards, Phil; Kerr, Stephanie; Glenn, Aliyssa; Thomas, Russell; Kalin, Robert

    2013-04-01

    Comprehensive two-dimensional gas chromatography (GCxGC) is a recently developed analytical technique in which two capillary columns with different stationary phases are placed in series enabling planar resolution of the analytes. The resolution power of GCxGC is one order of magnitude higher than that of one dimension gas chromatography. Because of its high resolution capacity, the use of GCxGC for complex environmental samples such as crude oils, petroleum derivatives and polychlorinated biphenyls mixtures has rapidly grown in recent years. We developed a one-step method for the forensic analysis of coal tar dense non-aqueous phase liquids (DNAPLs) from former manufactured gas plant (FMGP) sites. Coal tar is the by-product of the gasification of coal for heating and lighting and it is composed of thousands of organic and inorganic compounds. Before the boom of natural gases and oils, most towns and cities had one or several manufactured gas plants that have, in many cases, left a devastating environmental print due to coal tar contamination. The fate of coal tar DNAPLs, which can persist in the environment for more than a hundred years, is therefore of crucial interest. The presented analytical method consists of a unique clean-up/ extraction stage by pressurized liquid extraction and a single analysis of its organic chemical composition using GCxGC coupled with time of flight mass spectrometry (TOFMS). The chemical fingerprinting is further improved by derivatisation by N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) of the tar compounds containing -OH functions such as alcohols and carboxylic acids. We present here how, using the logical order of elution in GCxGC-TOFMS system, 1) the identification of never before observed -OH containing compounds is possible and 2) the isomeric selectivity of an oxidation reaction on a DNAPL sample can be revealed. Using samples collected at various FMGP sites, we demonstrate how this GCxGC method enables the simultaneous

  14. Abdominal mass

    MedlinePlus

    Mass in the abdomen ... care provider make a diagnosis. For example, the abdomen can be divided into four areas: Right-upper ... pain or masses include: Epigastric -- center of the abdomen just below the rib cage Periumbilical -- area around ...

  15. Arsenic removal from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  16. Laser hair removal.

    PubMed

    Wanner, Molly

    2005-01-01

    Since 1996, there have been numerous advances in hair laser removal that utilize melanin as a chromophore. All of the devices on the market may be used in patients with light skin (phototypes I-III) and yield hair reduction near 75%. The ruby (694 nm) laser, alexandrite (755 nm) laser, and diode (810 nm) laser, as well as intense pulsed light are commonly used devices for hair laser removal. The long-pulsed Nd:YAG (1064 nm) laser represents the safest device for hair removal in dark-skinned patients because of its long wavelength, although the diode laser, alexandrite laser, and intense pulse light may be used. For treatment of light hair, combination radiofrequency and optical devices as well as photodynamic therapy are under investigation. PMID:16229722

  17. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  18. Optimising Laser Tattoo Removal

    PubMed Central

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha

    2015-01-01

    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  19. Drum lid removal tool

    DOEpatents

    Pella, Bernard M.; Smith, Philip D.

    2010-08-24

    A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

  20. Quickly Removable Valve

    NASA Technical Reports Server (NTRS)

    Robbins, John S.

    1988-01-01

    Unit removed with minimal disturbance. Valve inlet and outlet ports adjacent to each other on same side of valve body. Ports inserted into special manifold on fluid line. Valve body attached to manifold by four bolts or, alternatively, by toggle clamps. Electromechanical actuator moves in direction parallel to fluid line to open and close valve. When necessary to clean valve, removed simply by opening bolts or toggle clamps. No need to move or separate ports of fluid line. Valve useful where disturbance of fluid line detrimental or where fast maintenance essential - in oil and chemical industries, automotive vehicles, aircraft, and powerplants.

  1. Removable foam encapsulants

    SciTech Connect

    Wischmann, K.B.

    1982-01-01

    This paper describes the use of two different expandable bead foams as solvent removable encapsulants; specifically they are polystyrene (STYROPOR BF-414, BASF Wyandotte) and a styrenemaleic anhydride copolymer (DYTHERM X214, ARCO/Polymers). These expandable bead foams are commercially available and normally used in insulating applications. However, they have been adapted to the unusual task of encapsulating sophisticated and expensive electronic hardware which requires a rework capability. The respective foams processing, resultant properties and removal methods are discussed in detail in this paper.

  2. Arsenic removal by coagulation

    SciTech Connect

    Scott, K.N.; Green, J.F.; Do, H.D.; McLean, S.J.

    1995-04-01

    This study evaluated the removal of naturally occurring arsenic in a full-scale (106-mgd) conventional treatment plant. When the source water was treated with 3--10 mg/L of ferric chloride or 6, 10, or 20 mg/L of alum, arsenic removal was 81--96% (ferric chloride) and 23--71% (alum). Metal concentrations in the sludge produced during this study were below the state`s current hazardous waste levels at all coagulant dosages. No operational difficulties were encountered.

  3. Removable feedwater sparger assembly

    DOEpatents

    Challberg, Roy C.

    1994-01-01

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith.

  4. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1990-01-01

    An automatic dross removal apparatus is disclosed for removing dross from the surface of a solder bath in an automated electric component handling system. A rotatable wiper blade is positioned adjacent the solder bath which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit causes a motor to rotate the wiper arm one full rotational cycle each time a pulse is received from a robot controller as a component approaches the solder bath.

  5. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1992-01-01

    An automatic dross removal apparatus (10) is disclosed for removing dross from the surface of a solder bath (22) in an automated electric component handling system. A rotatable wiper blade (14) is positioned adjacent the solder bath (22) which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit (34) causes a motor (32) to rotate the wiper arm (14) one full rotational cycle each time a pulse is received from a robot controller (44) as a component approaches the solder bath (22).

  6. Removable feedwater sparger assembly

    DOEpatents

    Challberg, R.C.

    1994-10-04

    A removable feedwater sparger assembly includes a sparger having an inlet pipe disposed in flow communication with the outlet end of a supply pipe. A tubular coupling includes an annular band fixedly joined to the sparger inlet pipe and a plurality of fingers extending from the band which are removably joined to a retention flange extending from the supply pipe for maintaining the sparger inlet pipe in flow communication with the supply pipe. The fingers are elastically deflectable for allowing engagement of the sparger inlet pipe with the supply pipe and for disengagement therewith. 8 figs.

  7. Plate removal following orthognathic surgery.

    PubMed

    Little, Mhairi; Langford, Richard Julian; Bhanji, Adam; Farr, David

    2015-11-01

    The objectives of this study are to determine the removal rates of orthognathic plates used during orthognathic surgery at James Cook University Hospital and describe the reasons for plate removal. 202 consecutive orthognathic cases were identified between July 2004 and July 2012. Demographics and procedure details were collected for these patients. Patients from this group who returned to theatre for plate removal between July 2004 and November 2012 were identified and their notes were analysed for data including reason for plate removal, age, smoking status, sex and time to plate removal. 3.2% of plates were removed with proportionally more plates removed from the mandible than the maxilla. 10.4% of patients required removal of one or more plate. Most plates were removed within the first post-operative year. The commonest reasons for plate removal were plate exposure and infection. The plate removal rates in our study are comparable to those seen in the literature.

  8. Meta-analysis of nitrogen removal in riparian buffers.

    PubMed

    Mayer, Paul M; Reynolds, Steven K; McCutchen, Marshall D; Canfield, Timothy J

    2007-01-01

    Riparian buffers, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and reducing nitrogen loads entering water bodies. Riparian buffer width is thought to be positively related to nitrogen removal effectiveness by influencing nitrogen retention or removal. We surveyed the scientific literature containing data on riparian buffers and nitrogen concentration in streams and groundwater to identify trends between nitrogen removal effectiveness and buffer width, hydrological flow path, and vegetative cover. Nitrogen removal effectiveness varied widely. Wide buffers (>50 m) more consistently removed significant portions of nitrogen entering a riparian zone than narrow buffers (0-25 m). Buffers of various vegetation types were equally effective at removing nitrogen but buffers composed of herbaceous and forest/herbaceous vegetation were more effective when wider. Subsurface removal of nitrogen was efficient, but did not appear to be related to buffer width, while surface removal of nitrogen was partly related to buffer width. The mass of nitrate nitrogen removed per unit length of buffer did not differ by buffer width, flow path, or buffer vegetation type. Our meta-analysis suggests that buffer width is an important consideration in managing nitrogen in watersheds. However, the inconsistent effects of buffer width and vegetation on nitrogen removal suggest that soil type, subsurface hydrology (e.g., soil saturation, groundwater flow paths), and subsurface biogeochemistry (organic carbon supply, nitrate inputs) also are important factors governing nitrogen removal in buffers.

  9. Condensate removal device

    DOEpatents

    Maddox, James W.; Berger, David D.

    1984-01-01

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  10. Gallbladder removal - laparoscopic

    MedlinePlus

    ... is pumped into your belly to expand the space. This gives the surgeon more room to see and work. The gallbladder is then removed using the laparoscope and other instruments. An x-ray called a cholangiogram may be done during ...

  11. Removing Welding Fumes

    NASA Technical Reports Server (NTRS)

    Moore, Lloyd J.; Hall, Vandel L.

    1987-01-01

    Portable exhaust duct for machining and welding shops removes oil mist, dust, smoke, and fumes. Duct used with shop exhaust system, inlets of which placed at various convenient locations in shop floor. Flanged connector on underside of wheeled base links flexible tube to exhaust system under floor. Made especially for welding in room with low ceiling.

  12. Laser tattoo removal.

    PubMed

    Adrian, R M; Griffin, L

    2000-04-01

    The availability of Q-switched ruby Nd:YAG and alexandrite lasers has revolutionized the treatment of tattoos. These modalities offer significant advantages over all previously available treatments and are currently the standard of care for the cosmetic removal of unwanted tattoos.

  13. Laser tattoo removal.

    PubMed

    Adrian, R M; Griffin, L

    2000-04-01

    The availability of Q-switched ruby Nd:YAG and alexandrite lasers has revolutionized the treatment of tattoos. These modalities offer significant advantages over all previously available treatments and are currently the standard of care for the cosmetic removal of unwanted tattoos. PMID:10812518

  14. Lacrosse Helmet Facemask Removal

    PubMed Central

    Bradney, Debbie A; Bowman, Thomas G

    2013-01-01

    Context Facemask removal (FMR) is required to access the airway of a catastrophically injured football or ice hockey athlete. However, the best method of caring for the helmeted lacrosse athlete with suspected catastrophic injury remains unclear. Objective To evaluate the effects of sex and grip strength on the speed and ease of use of various FMR methods across different lacrosse helmet types. Design Cross-sectional study. Setting Athletic training laboratory. Patients or Other Participants Fourteen athletic trainers (7 men, 7 women). Intervention(s) Removal method (cordless screwdriver [CSD], Face Mask Extractor 2 [FMX], pruner, Trainer's Angel [TA]), helmet type (Cascade CPX, Cascade Pro7, Riddell Revolution, Brine Triumph, Warrior Venom), and sex. Main Outcome Measure(s) Facemask removal time and participant-reported ease of use of the removal method (6-point Likert scale). Results We found a 2-way interaction for removal method and sex only for the ease-of-use scores (F3,246 = 4.67, P = .01). A main effect for removal method for time (F3,200 = 19.41, P < .001) and ease of use (F3,200 = 53.78, P < .001) was seen. The fastest times (32.32 ± 11.70 seconds) and highest ease-of-use scores (4.94 ± 0.30) were recorded for the CSD. We noted a main effect for helmet type only for time (F4,200 = 5.34, P < .001), with the fastest removal times (72.75 ± 74.67 seconds) recorded for the CPX. We discovered a main effect for sex only for time (F1,200 = 17.57, P < .001), with slower times recorded for women (115.51 ± 110.80 seconds) than men (75.71 ± 83.87 seconds). We found correlations between FMR time and grip strength only when using the FMX (r = −0.40, P = .001), pruner (r = −0.26, P = .04), and TA (r = −0.26, P = .047). Conclusions Based on our results, FMR of lacrosse helmets should be attempted with a CSD. We recommend carrying a pruner as a backup cutting tool in case the CSD fails, practicing FMR regularly, and inspecting helmets for faulty hardware to

  15. Automatic alkaloid removal system.

    PubMed

    Yahaya, Muhammad Rizuwan; Hj Razali, Mohd Hudzari; Abu Bakar, Che Abdullah; Ismail, Wan Ishak Wan; Muda, Wan Musa Wan; Mat, Nashriyah; Zakaria, Abd

    2014-01-01

    This alkaloid automated removal machine was developed at Instrumentation Laboratory, Universiti Sultan Zainal Abidin Malaysia that purposely for removing the alkaloid toxicity from Dioscorea hispida (DH) tuber. It is a poisonous plant where scientific study has shown that its tubers contain toxic alkaloid constituents, dioscorine. The tubers can only be consumed after it poisonous is removed. In this experiment, the tubers are needed to blend as powder form before inserting into machine basket. The user is need to push the START button on machine controller for switching the water pump ON by then creating turbulence wave of water in machine tank. The water will stop automatically by triggering the outlet solenoid valve. The powders of tubers are washed for 10 minutes while 1 liter of contaminated water due toxin mixture is flowing out. At this time, the controller will automatically triggered inlet solenoid valve and the new water will flow in machine tank until achieve the desire level that which determined by ultra sonic sensor. This process will repeated for 7 h and the positive result is achieved and shows it significant according to the several parameters of biological character ofpH, temperature, dissolve oxygen, turbidity, conductivity and fish survival rate or time. From that parameter, it also shows the positive result which is near or same with control water and assuming was made that the toxin is fully removed when the pH of DH powder is near with control water. For control water, the pH is about 5.3 while water from this experiment process is 6.0 and before run the machine the pH of contaminated water is about 3.8 which are too acid. This automated machine can save time for removing toxicity from DH compared with a traditional method while less observation of the user. PMID:24783795

  16. Neutrino mass

    SciTech Connect

    Bowles, T.J.

    1994-04-01

    The existence of a finite neutrino mass would have important consequences in particle physics, astrophysics, and cosmology. Experimental sensitivities have continued to be pushed down without any confirmed evidence for a finite neutrino mass. Yet there are several observations of discrepancies between theoretical predictions and observations which might be possible indications of a finite neutrino mass. Thus, extensive theoretical and experimental work is underway to resolve these issues.

  17. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  18. Investigations in gallium removal

    SciTech Connect

    Philip, C.V.; Pitt, W.W.; Beard, C.A.

    1997-11-01

    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  19. Pneumatic soil removal tool

    DOEpatents

    Neuhaus, J.E.

    1992-10-13

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs.

  20. Pneumatic soil removal tool

    DOEpatents

    Neuhaus, John E.

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  1. Inertial Mass

    ERIC Educational Resources Information Center

    King, Kenneth P.

    2007-01-01

    The inertial balance is one device that can help students to quantify the quality of inertia--a body's resistance to a change in movement--in more generally understood terms of mass. In this hands-on activity, students use the inertial balance to develop a more quantitative idea of what mass means in an inertial sense. The activity also helps…

  2. KKG Group Paraffin Removal

    SciTech Connect

    Schulte, Ralph

    2001-12-01

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.

  3. Facilities removal working group

    SciTech Connect

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  4. Laser removal of tattoos.

    PubMed

    Tammaro, A; Fatuzzo, G; Narcisi, A; Abruzzese, C; Caperchi, C; Gamba, A; Parisella, F R; Persechino, S

    2012-01-01

    In Western countries the phenomenon of "tattooing" is expanding and tattoos are considered a new fashion among young people. In this paper we briefly trace the history of tattooing, the techniques used, the analysis of pigments used, and their possible adverse reactions. We also carried out a review of the international literature on the use of Q-switched laser in tattoo removal and its complications, and we describe our experience in the use of this technique. PMID:22697088

  5. Sulphur dioxide removal process

    SciTech Connect

    Flintoff, J.F.

    1980-06-10

    Sodium sulfate is purged from a sulfur dioxide removal system involving contact of a sulfur dioxide-containing gas with a solution containing sodium sulfite to absorb sulfur dioxide from the gas. The spent absorbing solution is regenerated by desorbing sulfur dioxide, and recycled for further use. To avoid an unduly large build-up of sulfate in the system, a portion of the absorbing-desorbing medium, e.g., spent absorbing solution, containing sodium sulfate, a relatively large amount of sodium bisulfite, and generally a minor amount of sodium sulfite, is treated to precipitate solids containing sodium sulfate in a concentration which is greater on a dry basis than would otherwise be obtained in the absorption-desorption cycle. The concentration of sodium sulfate in the precipitated solids is increased by providing a portion of the precipitated sodium sulfate-containing solids, e.g., about 25 to 75 weight percent, in solution in the absorbing-desorbing medium treated for sulfate removal. Preferably, sulfate removal is accomplished by reducing the amount of water in the portion of the absorbing-desorbing medium treated so that only sufficient solids are precipitated from said medium to comprise up to about 10, or up to about 20, weight percent of the medium.

  6. Integration of traditional and innovative characterization techniques for flux-based assessment of dense non-aqueous phase liquid (DNAPL) sites.

    PubMed

    Basu, Nandita B; Suresh, P; Rao, C; Poyer, Irene C; Nandy, Subhas; Mallavarapu, Megharaj; Naidu, Ravi; Davis, Greg B; Patterson, Bradley M; Annable, Michael D; Hatfield, Kirk

    2009-04-01

    Key attributes of the source zone and the expanding dissolved plume at a trichloroethene (TCE) site in Australia were evaluated using trends in groundwater monitoring data along with data from on-line volatile organic compound (VOC) samplers and passive flux meters (PFMs) deployed in selected wells. These data indicate that: (1) residual TCE source mass in the saturated zone, estimated using two innovative techniques, is small ( approximately 10 kg), which is also reflected in small source mass discharge ( approximately 3 g/day); (2) the plume is disconnecting, based on TCE concentration contours and TCE fluxes in wells along a longitudinal transect; (3) there is minimal biodegradation, based on TCE mass discharge of approximately 6 g/day at a plume control plane approximately 175 m from source, which is also consistent with aerobic geochemical conditions observed in the plume; and (4) residual TCE in the vadose zone provides episodic inputs of TCE mass to the plume during infiltration/recharge events. TCE flux data also suggest that the small residual TCE source mass is present in the low-permeability zones, thus making source treatment difficult. Our analysis, based on a synthesis of the archived data and new data, suggests that source treatment is unwarranted, and that containment of the large TCE plume (approximately 1.2 km long, approximately 0.3 km wide; 17 m deep; approximately 2000-2500 kg TCE mass) or institutional controls, along with a long-term flux monitoring program, might be necessary. The flux-based site management approach outlined in this paper provides a novel way of looking beyond the complexities of groundwater contamination in heterogeneous domains, to make intelligent and informed site decisions based on strategic measurement of the appropriate metrics.

  7. Scrotal masses

    MedlinePlus

    ... The scrotum is the sac that contains the testicles. ... Symptoms include: Enlarged scrotum Painless or painful testicle lump ... If the scrotal mass is part of the testicle, it has a higher risk of being cancerous. ...

  8. Mass Deacidification.

    ERIC Educational Resources Information Center

    Harris, Carolyn

    1979-01-01

    Reviews methods being developed for mass deacidification of books to prevent deterioration of paper. The use of diethyl zinc, liquified gas, and morpholine, and the advantages, disadvantages, and cost of each are considered. A 26-item bibliography is included. (JD)

  9. IN SITU ENHANCED SOURCE REMOVAL

    EPA Science Inventory

    This html report describes and compares the performance of in situ technologies designed to accelerate the removal of organic contaminants from unconsolidated soils and aquifers. The research was conducted through the Enhanced Source Removal (ESR) Program within the Subsurface Pr...

  10. Removable cleanable antireflection shield

    NASA Astrophysics Data System (ADS)

    Task, H. L.

    1985-01-01

    A replaceable anti-reflection shield for the glare surface beneath the windscreen an aircraft is described which comprises a flexible panel of light absorbing material, such as black cloth, velvet, canvas or plastic, of size and configuration corresponding to that of the glare surface for placement on and conformance to the contour of the glare surface beneath the windscreen, and peripheral attaching means such as adhesive strips, snaps. Velcro strips, suction cups, or similar devices, on the flexible panel for detachably securing the peripheral edges of the panel to the glare surface. Whereby the panel is easily removed for cleaning or replacement.

  11. Esthetic removable partial dentures.

    PubMed

    Ancowitz, Stephen

    2004-01-01

    This article provides information regarding the many ways that removable partial dentures (RPDs) may be used to solve restorative problems in the esthetic zone without displaying metal components or conspicuous acrylic resin flanges. The esthetic zone is defined and described, as are methods for recording it. Six dental categories are presented that assist the dentist in choosing a variety of RPD design concepts that may be used to avoid metal display while still satisfying basic principles of RPDs. New materials that may be utilized for optimal esthetics are presented and techniques for contouring acrylic resin bases and tinting denture bases are described.

  12. Hot Oil Removes Wax

    NASA Technical Reports Server (NTRS)

    Herzstock, James J.

    1991-01-01

    Mineral oil heated to temperature of 250 degrees F (121 degrees C) found effective in removing wax from workpieces after fabrication. Depending upon size and shape of part to be cleaned of wax, part immersed in tank of hot oil, and/or interior of part flushed with hot oil. Pump, fittings, and ancillary tooling built easily for this purpose. After cleaning, innocuous oil residue washed off part by alkaline aqueous degreasing process. Serves as relatively safe alternative to carcinogenic and environmentally hazardous solvent perchloroethylene.

  13. Mower/Litter Removal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Burg Corporation needed to get more power out of the suction system in their Vac 'N Bag grass mower/litter remover. The president submitted a problem statement to the Marshall Space Flight Center Technology Transfer Office, which devised a way to guide heavier items of trash to a point where suction was greatest, and made changes to the impeller and the exhaust port, based on rocket propulsion technology. The improved system is used by highway departments, city governments and park authorities, reducing work time by combining the tasks of grass cutting and vacuuming trash and grass clippings.

  14. Engine Removal Projection Tool

    SciTech Connect

    Ferryman, Thomas A.; Matzke, Brett D.; Wilson, John E.; Sharp, Julia L.; Greitzer, Frank L.

    2005-06-02

    The US Navy has over 3500 gas turbine engines used throughout the surface fleet for propulsion and the generation of electrical power. Past data is used to forecast the number of engine removals for the next ten years and determine engine down times between removals. Currently this is done via a FORTRAN program created in the early 1970s. This paper presents results of R&D associated with creating a new algorithm and software program. We tested over 60 techniques on data spanning 20 years from over 3100 engines and 120 ships. Investigated techniques for the forecast basis including moving averages, empirical negative binomial, generalized linear models, Cox regression, and Kaplan Meier survival curves, most of which are documented in engineering, medical and scientific research literature. We applied those techniques to the data, and chose the best algorithm based on its performance on real-world data. The software uses the best algorithm in combination with user-friendly interfaces and intuitively understandable displays. The user can select a specific engine type, forecast time period, and op-tempo. Graphical displays and numerical tables present forecasts and uncertainty intervals. The technology developed for the project is applicable to other logistic forecasting challenges.

  15. Mercury removal sorbents

    DOEpatents

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  16. Cadmium removal in a biosorption column

    SciTech Connect

    Volesky, B.; Prasetyo, I. . Dept. of Chemical Engineering)

    1994-05-01

    New biosorbent material derived from a ubiquitous brown marine alga Ascophyllum nodosum has been examined in packed-bed flow-through sorption columns. It effectively removed 10 mg/L of cadmium down to 1.5 ppb levels in the effluent, representing 99.985% removal. The experimental methodology used was based on the early Bohart and Adams sorption model, resulting in quantitative determination of the characteristic process parameters which can be used for performance comparison and process design. An average metal loading of the biosorbent (N[sub 0]) determined was 30 mg Cd/g, corresponding closely to that observed for the batch equilibrium metal concentration of 10 mg Cd/L. The critical bed depth (D[sub min]) for the potable water effluent quality standard varied with the column feed flow rate from 20 to 50 cm. The sorption column mass transfer and dispersion coefficients were determined, which are also required for solving the sorption model equations.

  17. Plasma polymer-functionalized silica particles for heavy metals removal.

    PubMed

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  18. Active Debris Removal and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.

  19. Plasma polymer-functionalized silica particles for heavy metals removal.

    PubMed

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals. PMID:25603034

  20. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  1. SPECS: Orbital debris removal

    NASA Astrophysics Data System (ADS)

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  2. Geothermal hydrogen sulfide removal

    SciTech Connect

    Urban, P.

    1981-04-01

    UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

  3. Rubber stopper remover

    SciTech Connect

    Stitt, Robert R.

    1994-01-01

    A device for removing a rubber stopper from a test tube is mountable to an upright wall, has a generally horizontal splash guard, and a lower plate spaced parallel to and below the splash guard. A slot in the lower plate has spaced-apart opposing edges that converge towards each other from the plate outer edge to a narrowed portion, the opposing edges shaped to make engagement between the bottom of the stopper flange and the top edge of the test tube to wedge therebetween and to grasp the stopper in the slot narrowed portion to hold the stopper as the test tube is manipulated downwardly and pulled from the stopper. The opposing edges extend inwardly to adjoin an opening having a diameter significantly larger than that of the stopper flange.

  4. Ingrown toenail removal.

    PubMed

    Zuber, Thomas J

    2002-06-15

    Ingrown toenail is a common problem resulting from various etiologies including improperly trimmed nails, hyperhidrosis, and poorly fitting shoes. Patients commonly present with pain in the affected nail but with progression, drainage, infection, and difficulty walking occur. Excision of the lateral nail plate combined with lateral matricectomy is thought to provide the best chance for eradication. The lateral aspect of the nail plate is removed with preservation of the remaining healthy nail plate. Electrocautery ablation is then used to destroy the exposed nail-forming matrix, creating a new lateral nail fold. Complications of the procedure include regrowth of a nail spicule secondary to incomplete matricectomy and postoperative nail bed infection. When performed correctly, the procedure produces the greatest success in the treatment of ingrown nails. Basic soft tissue surgery and electrosurgery experience are prerequisites for learning the technique. PMID:12086244

  5. MASS SPECTROMETRY

    DOEpatents

    Nier, A.O.C.

    1959-08-25

    A voltage switching apparatus is described for use with a mass spectrometer in the concentratron analysis of several components of a gas mixture. The system automatically varies the voltage on the accelerating electrode of the mass spectrometer through a program of voltages which corresponds to the particular gas components under analysis. Automatic operation may be discontinued at any time to permit the operator to manually select any desired predetermined accelerating voltage. Further, the system may be manually adjusted to vary the accelerating voltage over a wide range.

  6. Phenol removal by supported liquid membranes

    SciTech Connect

    Zha, F.F.; Fane, A.G.; Fell, C.J.D.

    1994-11-01

    This paper examines the application of the supported liquid membrane (SLM) to phenol removal. n-Decanol was proven to be a suitable membrane liquid. The phenol transfer kinetics through the SLMs is quantitatively estimated according to models based on the resistance-in-series concept. The models can be modified to describe the performance of decayed SLMs and thereby provide insight into the effect of membrane liquid loss and penetration of aqueous solutions on the phenol flux. An experimental method is described for the measurement of mass transfer coefficients in the bulk phases using the well-characterized Anopore membrane.

  7. On the mass of 40 Eri B

    NASA Technical Reports Server (NTRS)

    Koester, Detlev; Weidemann, Volker

    1991-01-01

    New observations of the gravitational redshift of 40 Eri B are combined with the recent improvement in the parallax determination to derive a mass of 0.53 + or - 0.04 solar masses for the white dwarf. This is much closer to the typical value for white dwarfs, and is consistent with mass-radius relations, but inconsistent with the astrometric mass determination (0.43 + 0.02 solar masses). While the error of the astrometric mass determination might be larger than usually assumed, a discrepancy remains, which cannot be explained. If the high mass could be confirmed, it would remove 40 Eri B as a case in favor of the merging hypothesis for the explanation of the existence of low-mass white dwarfs.

  8. Wastewater treatment by soil infiltration: Long-term phosphorus removal.

    PubMed

    Eveborn, David; Kong, Deguo; Gustafsson, Jon Petter

    2012-10-01

    Phosphorus (P) leaching from on-site wastewater treatment systems may contribute to eutrophication. In developed countries the most common on-site treatment technique is septic systems with soil infiltration. However, the current knowledge about long term P removal in soil treatment systems is not well developed and the data used for estimation of P losses from such systems are unreliable. In this study we sampled four filter beds from community-scale soil treatment systems with an age of between 14 and 22years to determine the long-term P removal and to investigate the chemical mechanisms behind the observed removal. For one site the long-term P removal was calculated using a mass balance approach. After analysis of the accumulated P, it was estimated that on average 12% of the long-term P load had been removed by the bed material. This indicates a low overall capacity of soil treatment systems to remove phosphorus. Batch experiments and chemical speciation modelling indicated that calcium phosphate precipitation was not an important long-term P removal mechanism, with the possible exception of one of the sites. More likely, the P removal was induced by AlPO(4) precipitation and/or sorption to poorly ordered aluminium compounds, as evidenced by strong relationships between oxalate-extractable Al and P. PMID:22982614

  9. Wastewater treatment by soil infiltration: Long-term phosphorus removal

    NASA Astrophysics Data System (ADS)

    Eveborn, David; Kong, Deguo; Gustafsson, Jon Petter

    2012-10-01

    Phosphorus (P) leaching from on-site wastewater treatment systems may contribute to eutrophication. In developed countries the most common on-site treatment technique is septic systems with soil infiltration. However, the current knowledge about long term P removal in soil treatment systems is not well developed and the data used for estimation of P losses from such systems are unreliable. In this study we sampled four filter beds from community-scale soil treatment systems with an age of between 14 and 22 years to determine the long-term P removal and to investigate the chemical mechanisms behind the observed removal. For one site the long-term P removal was calculated using a mass balance approach. After analysis of the accumulated P, it was estimated that on average 12% of the long-term P load had been removed by the bed material. This indicates a low overall capacity of soil treatment systems to remove phosphorus. Batch experiments and chemical speciation modelling indicated that calcium phosphate precipitation was not an important long-term P removal mechanism, with the possible exception of one of the sites. More likely, the P removal was induced by AlPO4 precipitation and/or sorption to poorly ordered aluminium compounds, as evidenced by strong relationships between oxalate-extractable Al and P.

  10. Difficulties encountered removing locked plates

    PubMed Central

    Raja, S; Imbuldeniya, AM; S, Garg; Groom, G

    2012-01-01

    INTRODUCTION Locked plates are commonly used to obtain fixation in periarticular and comminuted fractures. Their use has also gained popularity in repairing fractures in osteoporotic bone. These plates provide stable fixation and promote biological healing. Over the last 3 years, we have used over 150 locked plates with varying success to fix periarticular fractures involving mainly the knee and ankle. In this study, we report our clinical experience and the difficulties encountered when removing locked plates in adult patients with a variety of indications including implant failure, infection, non-union and a palpable symptomatic implant. METHODS A retrospective analysis was performed of patients enrolled prospectively into a database. Included in the study were 36 consecutive adult patients who each underwent the procedure of locked plate removal in a single inner city level 1 trauma centre. Data collected included primary indication for fixation, indication for implant removal, time of the implant in situ, grade of operating surgeon and difficulties encountered during the procedure. RESULTS Implant removal was associated with a complication rate of 47%. The major problems encountered were difficulty in removing the locked screws and the implant itself. A total of ten cold welded screws were found in eight cases. Removal was facilitated by high speed metal cutting burrs and screw removal sets in all but one case, where a decision was made to leave the plate in situ. CONCLUSIONS The majority of studies investigating implant removal and problems encountered in doing so report a relatively high complication rate. With the advent of locking plates and their growing popularity, difficulties are now being seen intra-operatively when removing them. There is a paucity of data, however, specifically directed at locking plate removal. We recommend that surgeons should be aware of the potential complications while removing locked plates. Fluoroscopic control and all

  11. Sulfur dioxide removal process

    SciTech Connect

    Sliger, A.G.; O'Donnell, J.J.; Northup, A.H. Jr.

    1987-01-06

    A process is described for removing sulfur dioxide from a gas stream with a buffered, aqueous thiosulfate/polythionate solution which comprises: (a) introducing sulfur dioxide-containing gas, recovered hydrogen sulfide, and a buffered, aqueous, lean thiosulfate/polythionate solution to an SO/sub 2/-gas/liquid contacting zone; (b) recovering cleaned gas and a buffered, aqueous, enriched thiosulfate/polythionate solution from the SO/sub 2/-gas/liquid contacting zone; (c) introducing the recovered, enriched solution to a regeneration zone; (d) introducing externally supplied hydrogen sulfide to the regeneration zone to react a portion of the recovered, enriched solution therein to form a slurry of elemental sulfur in a buffered, aqueous, lean thiosulfate/polythionate solution; (e) recovering unreacted excess hydrogen sulfide from the regeneration zone for use in step (a); and (f) withdrawing the slurry from the regeneration zone, separating elemental sulfur from the slurry, and recovering the buffered, aqueous, lean thiosulfate/polythionate solution for use in step (a).

  12. Mechanochemical removal of carbamazepine.

    PubMed

    Samara, Mohamed; Nasser, Ahmed; Mingelgrin, Uri

    2016-10-01

    Carbamazepine (CBZ) is a drug used for treating epilepsy, neuropathic pain, schizophrenia and bipolar disorder. Its widespread use is indicated by its listing in the WHO's Model List of Essential Medicines. The accumulation of CBZ in various environmental compartments, specifically in crops irrigated with treated effluent or grown on soils containing biosolids, is often reported. Being a persistent PPCP (a pharmaceutical and personal care product), developing procedures to remove CBZ is of great importance. In the present study, the breakdown of CBZ by surface reactions in contact with various minerals was attempted. While Al-montmorillonite enhanced CBZ disappearance without the need to apply mechanical force, the efficiency of magnetite in enhancing the disappearance increased considerably upon applying such force. Ball milling with magnetite generated a virtually complete disappearance of CBZ (∼94% of the applied CBZ disappeared after milling for 30 min). HPLC, LC/MS and FTIR were employed in an attempt to elucidate the rate of disappearance and degradation mechanisms of CBZ. A small amount of the hydrolysis product iminostilbene was identified by LC/MS and the breaking off of carbamic acid from the fused rings skeleton of CBZ was indicated by FTIR spectroscopy, confirming the formation of iminostilbene. PMID:27389944

  13. Mass Spectrometry for the Masses

    ERIC Educational Resources Information Center

    Persinger, Jared D.; Hoops, Geoffrey, C.; Samide, Michael J.

    2004-01-01

    A simple, qualitative experiment is developed for implementation, where the gas chromatography-mass spectrometry (GC-MS) plays an important role, into the laboratory curriculum of a chemistry course designed for nonscience majors. This laboratory experiment is well suited for the students as it helps them to determine the validity of their…

  14. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL PLANTS

    EPA Science Inventory

    This report documents a long term performance study of two iron removal water treatment plants to remove arsenic from drinking water sources. Performance information was collected from one system located in midwest for one full year and at the second system located in the farwest...

  15. Modeling marine surface microplastic transport to assess optimal removal locations

    NASA Astrophysics Data System (ADS)

    Sherman, Peter; van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the impact on ecosystems, using plankton growth as a proxy. The simulations show that the optimal removal locations are primarily located off the coast of China and in the Indonesian Archipelago for both scenarios. Our estimates show that 31% of the modeled microplastic mass can be removed by 2025 using 29 plastic collectors operating at a 45% capture efficiency from these locations, compared to only 17% when the 29 plastic collectors are moored in the North Pacific garbage patch, between Hawaii and California. The overlap of ocean surface microplastics and phytoplankton growth can be reduced by 46% at our proposed locations, while sinks in the North Pacific can only reduce the overlap by 14%. These results are an indication that oceanic plastic removal might be more effective in removing a greater microplastic mass and in reducing potential harm to marine life when closer to shore than inside the plastic accumulation zones in the centers of the gyres.

  16. 7 CFR 2902.24 - Graffiti and grease removers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biobased content of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product... remove automotive, industrial, or kitchen soils and oils, including grease, paint, and other...

  17. 7 CFR 3201.24 - Graffiti and grease removers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... biobased content of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product... formulated to remove automotive, industrial, or kitchen soils and oils, including grease, paint, and...

  18. 7 CFR 2902.24 - Graffiti and grease removers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... biobased content of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product... remove automotive, industrial, or kitchen soils and oils, including grease, paint, and other...

  19. 7 CFR 3201.24 - Graffiti and grease removers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biobased content of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product... formulated to remove automotive, industrial, or kitchen soils and oils, including grease, paint, and...

  20. 7 CFR 3201.24 - Graffiti and grease removers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... biobased content of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a percent of the weight (mass) of the total organic carbon in the finished product... formulated to remove automotive, industrial, or kitchen soils and oils, including grease, paint, and...

  1. Thermal treatment for chlorine removal from coal

    SciTech Connect

    Muchmore, C.B.

    1991-01-01

    It is the goal of this research to provide the technical basis for development of a process to remove chlorine from coal prior to combustion, based on a thermal treatment process. Through a bench scale study, mechanisms will be investigated, reaction rate constants and activation energies determined, and energy and mass balances performed. The recovery of the chlorine removed from the coal as a markable by-product, calcium chloride suitable for use as a road deicer, will be investigated using a novel absorption/crystallization device. The investigation of recovery of the chlorine as calcium chloride would also be applicable to the waste stream generated by a water leaching process, as well as the thermal process which is being investigated here. Although chlorine removal and utilization are the major thrusts of this research, data will also be obtained on the behavior during heating under controlled conditions of several other trace elements of growing concern (mercury, selenium etc.) since the enactment of the Clean Air Act Amendments last November.

  2. Nitrogen removal in recirculated duckweed ponds system.

    PubMed

    Benjawan, L; Koottatep, T

    2007-01-01

    Duckweed-based ponds (DWBPs) have the potential for nitrogen (N) removal from wastewater; however, operational problems such as duckweed die-off regularly occur. In this study, effluent recirculation was applied to the DWBPs to solve the above problem as well as to investigate N removal mechanisms. Two pilot scale recirculated DWBPs were employed to treat municipal wastewater. The average removal efficiencies for TN, TKN and NH4-N were 75%, 89% and 92%, respectively at TN loading of 1.3 g/m2.d and were 73%, 74% and 76%, respectively at TN loading of 3.3 g/m2.d. The effluent of the system under both operational conditions had stable quality and met the effluent standard. Duckweed die-off was not observed during the study, which proves the system stability and effluent recirculation which is thought to be a reason. N-mass balance revealed that nitrification-denitrification and duckweed uptake play major roles in these recirculated DWBPs. The rates of nitrification-denitrification were increased as TN loading was higher, which might be an influence from an abundance of N and a suitable condition. The rates of N uptake by duckweed were found similar and did not depend on the higher TN loading applied, as the duckweed has limited capacity to assimilate it.

  3. MASS SEPARATORS

    DOEpatents

    Oppenheimer, F.; Bell, J.W.

    1959-02-17

    An improvement in the mounting arrangement for the ion source within the vacuum tank of a calutron is presented. The entire source is supported by the vacuum envelope through the medium of a bracket secured to a removable face plate. The bracket forms a supporting platform that is generally transverse to the magnetic field. The ion generator is mounted on a pedestal-type insulator supported on the bracket, and the hot leads are brought into the vacuum envelope through a tubular elbow connected to the vacuum envelope, having the axis of its outer opening aligned with the magnetic field at which point a bushing-type insulator is employed. With this arrangement thc ion source is maintained at a positive potential with respect to the vacuum tank and the problem of electron bombardment of the insulator is considerably reduced.

  4. Plasma polymerized allylamine coated quartz particles for humic acid removal.

    PubMed

    Jarvis, Karyn L; Majewski, Peter

    2012-08-15

    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  5. Chlorinated ethene source remediation: lessons learned.

    PubMed

    Stroo, Hans F; Leeson, Andrea; Marqusee, Jeffrey A; Johnson, Paul C; Ward, C Herb; Kavanaugh, Michael C; Sale, Tom C; Newell, Charles J; Pennell, Kurt D; Lebrón, Carmen A; Unger, Marvin

    2012-06-19

    Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often released as dense nonaqueous phase liquids (DNAPLs). These contaminants are difficult to remediate, particularly their source zones. This review summarizes the progress made in improving DNAPL source zone remediation over the past decade, and is structured to highlight the important practical lessons learned for improving DNAPL source zone remediation. Experience has shown that complete restoration is rare, and alternative metrics such as mass discharge are often useful for assessing the performance of partial restoration efforts. Experience also has shown that different technologies are needed for different times and locations, and that deliberately combining technologies may improve overall remedy performance. Several injection-based technologies are capable of removing a large fraction of the total contaminant mass, and reducing groundwater concentrations and mass discharge by 1 to 2 orders of magnitude. Thermal treatment can remove even more mass, but even these technologies generally leave some contamination in place. Research on better delivery techniques and characterization technologies will likely improve treatment, but managers should anticipate that source treatment will leave some contamination in place that will require future management.

  6. Screw/stud removal tool

    NASA Technical Reports Server (NTRS)

    Daniels, K.; Herrick, D. E.; Rothermel, L.

    1980-01-01

    Tool removes stubborn panheaded screws or studs where conventional tools would be either too weak or inconvenient to use. Screws with damaged heads or slots can also be removed this way. Tool can be worked with one hand and easily fits limited-access and blind areas. It can be made in various sizes to fit different screwheads.

  7. TREATMENT CONSIDERATIONS FOR MICROBIAL REMOVAL

    EPA Science Inventory

    This presentation will focus on filtration and related processes for removing microbes from drinking water. In recent years, the emphsis on the need to remove microbes from drinking water has increased. This increased concern was brought about partly by documented waterborne dise...

  8. Barnacle removal process and product

    SciTech Connect

    Richmond, T.L.

    1984-07-24

    Barnacles from marine vessels are removed by spraying the surfaces thereof with a mixture the active ingredients of which are a hydrocarbon liquid oil; a surfactant; alcohol; a metal hypochlorite; and an alkyl, dialkyl benzyl ammonium salt. After the solution has been applied to the surfaces for about 20 minutes, the barnacles are removed by power spraying the surfaces with water.

  9. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  10. Laser assisted graffiti paints removing

    NASA Astrophysics Data System (ADS)

    Novikov, B. Y.; Chikalev, Y. V.; Shakhno, E. A.

    2010-07-01

    It's hard to imagine a modern city view without some drawings and inscriptions, usually called "graffiti". Traditional cleaning methods do not suit modern requirements. Investigation of possibilities of laser assisted paints removing is described in this article. The conditions for removing different paints from different surfaces were defined.

  11. Laser assisted graffiti paints removing

    NASA Astrophysics Data System (ADS)

    Novikov, B. Y.; Chikalev, Y. V.; Shakhno, E. A.

    2011-02-01

    It's hard to imagine a modern city view without some drawings and inscriptions, usually called "graffiti". Traditional cleaning methods do not suit modern requirements. Investigation of possibilities of laser assisted paints removing is described in this article. The conditions for removing different paints from different surfaces were defined.

  12. MASS SPECTROMETRY

    DOEpatents

    Friedman, L.

    1962-01-01

    method is described for operating a mass spectrometer to improve its resolution qualities and to extend its period of use substantially between cleanings. In this method, a small amount of a beta emitting gas such as hydrogen titride or carbon-14 methane is added to the sample being supplied to the spectrometer for investigation. The additive establishes leakage paths on the surface of the non-conducting film accumulating within the vacuum chamber of the spectrometer, thereby reducing the effect of an accumulated static charge on the electrostatic and magnetic fields established within the instrument. (AEC)

  13. Contamination removal by ion sputtering

    NASA Astrophysics Data System (ADS)

    Shaw, Christopher G.

    1990-11-01

    Experimental investigations are described for ion-beam sputtering and RF-plasma sputtering to determine the effectiveness of the methods for removing contaminants from an optical surface. The effects of ion-beam sputtering are tested with an ion gun and measured by mounting a 5-MHz quartz-crystal microbalance on a sample holder and simulating spacecraft contamination. RF-plasma sputtering involves the application of an alternating electric field to opposing electrodes immersed in a low density gas, and is tested with the same setup. The energy dependence of the sputtering yields is measured to determine whether the different contaminants are removed and whether the mirror surface is affected. Ion-beam sputtering removes all contaminants tested, but also affects the mirror surface at high energies. When the correct DC bias is applied, RF sputtering can remove the contaminants without removing the metal-mirror surface.

  14. Laser assisted hair-removal.

    PubMed

    Choudhary, S; Elsaie, M L; Nouri, K

    2009-10-01

    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the hair follicle by targeting melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Laser hair removal is achieved through follicular unit destruction based on selective photothermolysis. The principle of selective photothermolysis predicts that the thermal injury will be restricted to a given target if there is sufficient selective absorption of light and the pulse duration is shorter than the thermal relaxation time of the target. This review will focus on the mechanisms of laser assisted hair removal and provide an update on the newer technologies emerging in the field of lasers assisted hair removal.

  15. Modeling binder removal in ceramic compacts

    NASA Astrophysics Data System (ADS)

    Incledon, Matthew L.

    Binder is often added to ceramic systems to provide mechanical strength to the green bodies during processing. The binder removal sequence for an individual system is difficult to predict due to the thermal reaction and mass transport of the volatile products. The objective of this work is to use computational methods to predict the kinetics of binder removal as a function of composition, particle size, pore size and tortuosity, temperature, body size and shape, etc.. The model will be used to predict the composition, temperature, and pore pressure as a function of time, position within the body, and heating sequence parameters. This will provide the ability to predict optimum heating sequences that minimize processing time and energy input while avoiding harmful high internal pressures and temperatures. Since there are many binder systems in use, a few specific cases will be considered. TGA (thermogravimetric analysis) of binders will be used to measure kinetics parameters that are inputs for the computational model. A framework will be developed to assess the binder removal sequence for a binder and ceramic system. The input for the model, computed in COMSOL Multiphysics, will be determined through analysis of TGA weight loss data and green body characterization. A set of tools will be presented that assist in the fitting of the TGA data, including the binder degrading into multiple species, higher order reactions, parallel and series reactions, etc.. The use of these ideas and tools will allow the modeler to better predict the heating sequence required for a ceramic and binder system to successfully remove all binder material.

  16. Layer modeling of zinc removal from metallic mixture of waste printed circuit boards by vacuum distillation.

    PubMed

    Gao, Yujie; Li, Xingang; Ding, Hui

    2015-08-01

    A layer model was established to elucidate the mechanism of zinc removal from the metallic mixture of waste printed circuit boards by vacuum distillation. The removal process was optimized by response surface methodology, and the optimum operating conditions were the chamber pressure of 0.1Pa, heating temperature of 923K, heating time of 60.0min, particle size of 70 mesh (0.212mm) and initial mass of 5.25g. Evaporation efficiency of zinc, the response variable, was 99.79%, which indicates that the zinc can be efficiently removed. Based on the experimental results, a mathematical model, which bears on layer structure, evaporation, mass transfer and condensation, interprets the mechanism of the variable effects. Especially, in order to reveal blocking effect on the zinc removal, the Blake-Kozeny-Burke-Plummer equation was introduced into the mass transfer process. The layer model can be applied to a wider range of metal removal by vacuum distillation.

  17. Biosurfactant-enhanced removal of residual hydrocarbon from soil

    NASA Astrophysics Data System (ADS)

    Bai, Guiyun; Brusseau, Mark L.; Miller, Raina M.

    1997-02-01

    An anionic monorhamnolipid biosurfactant produced by Pseudomonas aeruginosa was investigated for its potential to remove residual hexadecane from sand columns. In a series of column experiments, residual hexadecane saturation was established by pumping 14C-hexadecane into water-saturated sand columns and then flushing with water at a velocity of 25 cm h -1. Monorhamnolipid solutions of varying concentration were then applied to the columns at a velocity of 15 cm H -1 to remove the residual hexadecane. Of the rhamnolipid concentrations tested, which ranged from 40 to 1500 mg l -1, the optimal concentration for residual removal was 500 mg l -1, approximately ten times the critical micelle concentration (cmc). Approximately 84% of the residual was removed from the column packed with {20}/{30} mesh sand, and 22% was removed from the {40}/{50} mesh column. The primary mechanism for residual removal was mobilization (displacement and dispersion), whereas solubilization was found to be insignificant. The performance of monorhamnolipid was compared with that of two synthetic surfactant solutions on a mass basis (500 mg l -1) for the {40}/{50} mesh sand. Sodium dodecyl sulfate (0.2 X cmc), and polyoxyethylene (20) sorbitan monooleate (38 × cmc), removed 0% and 6.1% of the residual saturation, respectively.

  18. A new removable airway stent

    PubMed Central

    Amundsen, Tore; Sørhaug, Sveinung; Leira, Håkon Olav; Tyvold, Stig Sverre; Langø, Thomas; Hammer, Tommy; Manstad-Hulaas, Frode; Mattsson, Erney

    2016-01-01

    Background Malignant airway obstruction is a feared complication and will most probably occur more frequently in the future because of increasing cancer incidence and increased life expectancy in cancer patients. Minimal invasive treatment using airway stents represents a meaningful and life-saving palliation. We present a new removable airway stent for improved individualised treatment. Methods To our knowledge, the new airway stent is the world's first knitted and uncovered self-expanding metal stent, which can unravel and be completely removed. In an in vivo model using two anaesthetised and spontaneously breathing pigs, we deployed and subsequently removed the stents by unravelling the device. The procedures were executed by flexible bronchoscopy in an acute and a chronic setting – a ‘proof-of-principle’ study. Results The new stent was easily and accurately deployed in the central airways, and it remained fixed in its original position. It was easy to unravel and completely remove from the airways without clinically significant complications. During the presence of the stent in the chronic study, granulation tissue was induced. This tissue disappeared spontaneously with the removal. Conclusions The new removable stent functioned according to its purpose and unravelled easily, and it was completely removed without significant technical or medical complications. Induced granulation tissue disappeared spontaneously. Further studies on animals and humans are needed to define its optimal indications and future use. PMID:27608269

  19. Arsenic removal by ferric chloride

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.; Liang, S.

    1996-04-01

    Bench-scale studies were conducted in model freshwater systems to investigate how various parameters affected arsenic removal during coagulation with ferric chloride and arsenic adsorption onto preformed hydrous ferric oxide. Parameters included arsenic oxidation state and initial concentration, coagulant dosage or adsorbent concentration, pH, and the presence of co-occurring inorganic solutes. Comparison of coagulation and adsorption experiments and of experimental results with predictions based on surface complexation modeling demonstrated that adsorption is an important (though not the sole) mechanism governing arsenic removal during coagulation. Under comparable conditions, better removal was observed with arsenic(V) [As(V)] than with arsenic(III) [As(III)] in both coagulation and adsorption experiments. Below neutral pH values, As(III) removal-adsorption was significantly decreased in the presence of sulfate, whereas only a slight decrease in As(V) removal-adsorption was observed. At high pH, removal-adsorption of As(V) was increased in the presence of calcium. Removal of As(V) during coagulation with ferric chloride is both more efficient and less sensitive than that of As(III) to variations in source water composition.

  20. Arrhythmia management after device removal.

    PubMed

    Nishii, Nobuhiro

    2016-08-01

    Arrhythmic management is needed after removal of cardiac implantable electronic devices (CIEDs). Patients completely dependent on CIEDs need temporary device back-up until new CIEDs are implanted. Various methods are available for device back-up, and the appropriate management varies among patients. The duration from CIED removal to implantation of a new CIED also differs among patients. Temporary pacing is needed for patients with bradycardia, a wearable cardioverter defibrillator (WCD) or catheter ablation is needed for patients with tachyarrhythmia, and sequential pacing is needed for patients dependent on cardiac resynchronization therapy. The present review focuses on arrhythmic management after CIED removal. PMID:27588151

  1. Enhanced coagulation for arsenic removal

    SciTech Connect

    Cheng, R.C.; Liang, S.; Wang, H.C.; Beuhler, M.D. )

    1994-09-01

    The possible use of enhanced coagulation for arsenic removal was examined at the facilities of a California utility in 1992 and 1993. The tests were conducted at bench, pilot, and demonstration scales, with two source waters. Alum and ferric chloride, with cationic polymer, were investigated at various influence arsenic concentrations. The investigators concluded that for the source waters tested, enhanced coagulation could be effective for arsenic removal and that less ferric chloride than alum, on a weight basis, is needed to achieve the same removal.

  2. Enhancement of the natural organic matter removal from drinking water by nanofiltration.

    PubMed

    Matilainen, A; Liikanen, R; Nyström, M; Lindqvist, N; Tuhkanen, T

    2004-03-01

    Finnish surface waters are abundant in natural organic matter. Natural organic matter can be removed from drinking water in a water treatment process by coagulation and filtration. The standard treatment operations are not able to remove the smallest molar mass fraction of organic matter and the intermediate molar mass matter is only partly removed. The removal of residual natural organic matter from drinking water by nanofiltration was evalueted in this study. Three different nanofiltration membranes were compared in filtering six pre-treated surface waters. The total organic carbon content of the feed waters varied from 2.0 to 4.2 mg l(-1). Other water quality parameters measured were conductivity, alkalinity, hardness, UV-absorbance, SUVA, E2/E3 value and molecular size distribution by high-performance size-exclusion chromatography. The natural organic matter removal efficiencies of the membranes were good and varied between 100% and 49%, and between 85% and 47% according to molecular size distribution and total organic carbon measurements, respectively. Removal of different molecular size fractions varied from 100% to 56%, 100% to 54% and 88% to 19%, regarding high molar mass, intermediate molar mass and low molar mass organic matter, respectively. The Desal-5 DL membrane produced the highest natural organic matter removals.

  3. Cherokee Removal and American Politics.

    ERIC Educational Resources Information Center

    Grinde, Donald.

    1987-01-01

    Presents a brief history of the Cherokee Nation, from its first contact with De Soto in 1540 through Andrew Jackson's presidency. Concludes that the Cherokee removal clearly illustrates the shallowness of Jacksonian democratic principles. (JDH)

  4. Can Acne Scars Be Removed?

    MedlinePlus

    ... Can I Help a Friend Who Cuts? Can Acne Scars Be Removed? KidsHealth > For Teens > Can Acne ... eliminarse las marcas de acne? Different Types of Acne Scars from acne can seem like double punishment — ...

  5. Paint removal activities in Canada

    NASA Astrophysics Data System (ADS)

    Foster, Terry

    1993-03-01

    Paint removal activities currently under way in Canada include: research and development of laser paint stripping; development and commercialization of a new blasting medium based on wheat starch; commercialization of a new blasting medium and process using crystalline ice blasting for paint removal and surface cleaning; and the development of automated and robotic systems for paint stripping applications. A specification for plastic media blasting (PMB) of aircraft and aircraft components is currently being drafted by NDHQ for use by the Canadian Armed Forces (CAF) and contractors involved in coating removal for the CAF. Defense Research Establishment Pacific (DREP) is studying the effects of various blast media on coating removal rates, and minimizing the possibility of damage to substrates other than aluminum such as graphite epoxy composite and Kevlar. The effects of plastic media blasting on liquid penetrant detection of fatigue cracks is also under investigation.

  6. Inked and Regretful: Removing Tattoos

    MedlinePlus

    ... used to remove tattoos. FDA has cleared for marketing several types of lasers as light-based, prescription ... Mehmet Kosoglu, Ph.D., who reviews applications for marketing clearances of laser-devices. back to top Lasers ...

  7. Spleen removal - laparoscopic - adults - discharge

    MedlinePlus

    Recovering from laparoscopic spleen removal usually takes several weeks. You may have some of these symptoms as ... should go away over several days to a week. A sore throat from the breathing tube that ...

  8. Article removal device for glovebox

    DOEpatents

    Guyer, R.H.; Leebl, R.G.

    1973-12-01

    An article removal device for a glovebox is described comprising a conduit extending through a glovebox wall which may be closed by a plug within the glovebox, and a fire-resistant container closing the outer end of the conduit and housing a removable container for receiving pyrophoric or otherwise hazardous material without disturbing the interior environment of the glovebox or adversely affecting the environment outside of the glovebox. (Official Gazette)

  9. [Acrylic resin removable partial dentures].

    PubMed

    de Baat, C; Witter, D J; Creugers, N H J

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.

  10. Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae.

    PubMed

    Abargues, M R; Ferrer, J; Bouzas, A; Seco, A

    2013-12-01

    The aim of this study was to assess the effect of light, oxygen and microalgae on micropollutants removal. The studied micropollutants were 4-(1,1,3,3-tetramethylbutyl)phenol (OP), technical-nonylphenol (t-NP), 4-n-nonylphenol (4-NP), Bisphenol-A (BPA). In order to study the effect of the three variables on the micropollutants removal, a factorial design was developed. The experiments were carried out in four batch reactors which treated the effluent of an anaerobic membrane bioreactor. The gas chromatography mass spectrometry was used for the measurement of the micropollutants. The results showed that light, oxygen and microalgae affected differently to the degradation ratios of each micropollutant. The results showed that under aerated conditions removal ratios higher than 91% were achieved, whereas for non-aerated conditions the removal ratios were between 50% and 80%, except for 4-NP which achieved removal ratios close to 100%. Besides, mass balance showed that the degradation processes were more important than the sorption processes. PMID:24096281

  11. Electrostatic Dust Detection and Removal for ITER

    SciTech Connect

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  12. Reaction mechanism of dicofol removal by cellulase.

    PubMed

    Wang, Ziyuan; Yang, Ting; Zhai, Zihan; Zhang, Boya; Zhang, Jianbo

    2015-10-01

    It remains unclear whether dicofol should be defined as a persistent organic pollutant. Its environmental persistence has gained attention. This study focused on its degradation by cellulase. Cellulase was separated using a gel chromatogram, and its degradation activity towards dicofol involved its endoglucanase activity. By analyzing the kinetic parameters of cellulase reacting with mixed substrates, it was shown that cellulase reacted on dicofol and carboxyl methyl cellulose through two different active centers. Thus, the degradation of dicofol was shown to be an oxidative process by cellulase. Next, by comparing the impacts of tert-butyl alcohol (a typical OH free-radical inhibitor) on the removal efficiencies of dicofol under both cellulase and Fenton reagent systems, it was shown that the removal of dicofol was initiated by OH free radicals produced by cellulase. Finally, 4,4'-dichloro-dibenzophenone and chloride were detected using gas chromatography mass spectrometry and ion chromatography analysis, which supported our hypothesis. The reaction mechanism was analyzed and involved an attack by OH free radicals at the orthocarbon of dicofol, resulting in the degradation product 4,4'-dichloro-dibenzophenone. PMID:26456602

  13. Reaction mechanism of dicofol removal by cellulase.

    PubMed

    Wang, Ziyuan; Yang, Ting; Zhai, Zihan; Zhang, Boya; Zhang, Jianbo

    2015-10-01

    It remains unclear whether dicofol should be defined as a persistent organic pollutant. Its environmental persistence has gained attention. This study focused on its degradation by cellulase. Cellulase was separated using a gel chromatogram, and its degradation activity towards dicofol involved its endoglucanase activity. By analyzing the kinetic parameters of cellulase reacting with mixed substrates, it was shown that cellulase reacted on dicofol and carboxyl methyl cellulose through two different active centers. Thus, the degradation of dicofol was shown to be an oxidative process by cellulase. Next, by comparing the impacts of tert-butyl alcohol (a typical OH free-radical inhibitor) on the removal efficiencies of dicofol under both cellulase and Fenton reagent systems, it was shown that the removal of dicofol was initiated by OH free radicals produced by cellulase. Finally, 4,4'-dichloro-dibenzophenone and chloride were detected using gas chromatography mass spectrometry and ion chromatography analysis, which supported our hypothesis. The reaction mechanism was analyzed and involved an attack by OH free radicals at the orthocarbon of dicofol, resulting in the degradation product 4,4'-dichloro-dibenzophenone.

  14. Removal of metallic iron on oxide slags

    SciTech Connect

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  15. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  16. Removing Pubic Hair (For Young Women)

    MedlinePlus

    ... the-counter “depilatories” or cream hair removers: This method of hair removal is painless, but it’s important ... the cloth strip is quickly pulled off. This method of hair removal usually stings (when the cloth ...

  17. How Effective are Existing Arsenic Removal Techniques

    EPA Science Inventory

    This presentation will summarize the system performance results of the technologies demonstrated in the arsenic demonstration program. The technologies include adsorptive media, iron removal, iron removal with iron additions, iron removal followed by adsorptive media, coagulatio...

  18. High removal rate laser-based coating removal system

    DOEpatents

    Matthews, Dennis L.; Celliers, Peter M.; Hackel, Lloyd; Da Silva, Luiz B.; Dane, C. Brent; Mrowka, Stanley

    1999-11-16

    A compact laser system that removes surface coatings (such as paint, dirt, etc.) at a removal rate as high as 1000 ft.sup.2 /hr or more without damaging the surface. A high repetition rate laser with multiple amplification passes propagating through at least one optical amplifier is used, along with a delivery system consisting of a telescoping and articulating tube which also contains an evacuation system for simultaneously sweeping up the debris produced in the process. The amplified beam can be converted to an output beam by passively switching the polarization of at least one amplified beam. The system also has a personal safety system which protects against accidental exposures.

  19. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers

    SciTech Connect

    Parker, John C; Park, Eungyu

    2004-05-18

    This study investigates field-scale DNAPL dissolution kinetics using high-resolution numerical simulations of DNAPL releases and dissolved phase transport. A percolation model is employed to simulate the distribution of TCE within 10 × 10 × 10 m source zones with spatially heterogeneous aquifer properties following a release event. Distributed aquifer properties and DNAPL saturations are utilized to simulate coupled groundwater flow and long-term dissolved phase transport. Grid-scale dissolution rates are computed based on published bench-scale relationships. Effective field-scale mass transfer coefficients are computed from simulated TCE fluxes at the downstream source zone boundary. Heterogeneity in groundwater velocity and DNAPL distributions leads to field-scale mass transfer coefficients that are much lower than laboratory-scale values. Field-scale mass transfer coefficients are observed to vary in direct proportion to the mean groundwater velocity, in contrast to laboratory studies that indicate proportionality with velocity to a power of ~0.7. Computed field-scale mass transfer coefficients vary approximately in proportion to relative DNAPL mass raised to an empirical depletion exponent, which is <1 for laterally extensive DNAPL lenses and >1 for more randomly oriented residual DNAPL regions. The former DNAPL geometries exhibit slow reductions in source concentration and contaminant flux with time as mass depletion proceeds. The latter DNAPL geometries exhibit significant and steady declines in source concentration and contaminant flux with time as depletion occurs.

  20. Overview of paint removal methods

    NASA Astrophysics Data System (ADS)

    Foster, Terry

    1995-04-01

    With the introduction of strict environmental regulations governing the use and disposal of methylene chloride and phenols, major components of chemical paint strippers, there have been many new environmentally safe and effective methods of paint removal developed. The new methods developed for removing coatings from aircraft and aircraft components include: mechanical methods using abrasive media such as plastic, wheat starch, walnut shells, ice and dry ice, environmentally safe chemical strippers and paint softeners, and optical methods such as lasers and flash lamps. Each method has its advantages and disadvantages, and some have unique applications. For example, mechanical and abrasive methods can damage sensitive surfaces such as composite materials and strict control of blast parameters and conditions are required. Optical methods can be slow, leaving paint residues, and chemical methods may not remove all of the coating or require special coating formulations to be effective. As an introduction to environmentally safe and effective methods of paint removal, this paper is an overview of the various methods available. The purpose of this overview is to introduce the various paint removal methods available.