Petróczi, Andrea; Ocampo, Jorge A Vela; Shah, Iltaf; Jenkinson, Carl; New, Rachael; James, Ricky A; Taylor, Glenn; Naughton, Declan P
2015-10-14
2,4-Dinitrophenol (DNP) poses serious health-risks to humans. The aims of this three-stage multidisciplinary project were, for the first time, to assess the risks to the general public from fraudulent sale of or adulteration/contamination with DNP; and to investigate motives, reasons and risk-management among DNP-user bodybuilders and avid exercisers. Using multiple search-engines and guidance for Internet research, online retailers and bodybuilding forums/blogs were systematically explored for availability of DNP, advice offered on DNP use and user profiles. Ninety-eight pre-workout and weight-loss supplements were purchased and analysed for DNP using liquid-chromatography-mass-spectrometry. Psychosocial variables were captured in an international sample of 35 DNP users (26.06 ± 6.10 years, 94.3 % male) with an anonymous, semi-qualitative self-reported survey. Although an industrial chemical, evidence from the Internet showed that DNP is sold 'as is', in capsules or tablets to suit human consumption, and is used 'uncut'. Analytical results confirmed that DNP is not on the supplement market disguised under fictitious supplement names, but infrequently was present as contaminant in some supplements (14/98) at low concentration (<100mcg/kg). Users make conscious and 'informed' decisions about DNP; are well-prepared for the side-effects and show nonchalant attitude toward self-experimentation with DNP. Steps are often taken to ensure that DNP is genuine. Personal experience with performance- and appearance enhancing substances appears to be a gateway to DNP. Advice on DNP and experiences are shared online. The significant discrepancy between the normative perception and the actual visibility suggests that DNP use is-contrary to the Internet accounts-a highly concealed and lonesome activity in real life. Positive experiences with the expected weight-loss prevail over the negative experiences from side effects (all but two users considered using DNP again) and help with using DNP safely is considered preferable over scare-tactics. Legislation banning DNP sale for human consumption protects the general public but DNP is sold 'as is' and used 'uncut' by determined users who are not dissuaded from experimenting with DNP based on health threats. Further research with stakeholders' active participation is imperative for targeted, proactive public health policies and harm-reduction measures for DNP, and other illicit supplements.
Webster, R O; Lawrence, D A
1979-01-01
The cytophilic binding of immune complexes by peritoneal exudate cells (PEC) from adjuvant-stimulated guinea-pigs was studied using 125I-labelled guinea-pig IgG1, IgG2 and IgM antibodies to the dinitrophenyl (DNP) group. The influence of hapten density upon cytophilic activity was studied by the addition of DNP-conjugated antigens to antibody in 2-200 molar ratios of DNP:antibody. Only IgG2 binding was enhanced by immune complex formation, and the increased binding of IgG2 anti-DNP was dependent on the number of DNP determinants per antigen molecule. Cytophilic activity with epsilon-DNP-L-lysine (DNP-LYS), alpha,epsilon-di-DNP-L-lysine (DNP-LYS-DNP), or DNP1-8-BSA was no greater than that seen in the absence of hapten. Increased cytophilic binding was noted only with DNP20-41-BSA. The binding of IgG2 and IgG2 anti-DNP:DNP-bovine serum albumin (BSA) complexes was inhibited by monomeric IgG2. The relative cytophilic capacities of guinea-pig immunoglobulins appeared as follows: IgG greater than IgG1 greater than IgM. IgG1 and IgM binding of DNP conjugates did not enhance their cytophilic activity; therefore, IgG1 and IgM cytophilic binding to PEC was considered biologically insignificant. This investigation provides further evidence that cytophilic binding of immune complexes to macrophages is due to the co-operative action of multiple Fc sites rather than a conformational change in the IgG2 antibodies, and serum proteins, notably complement components, can alter the binding and/or phagocytosis of IgG2 anti-DNP:DNP-BSA complexes. PMID:86509
RECEPTORS ON IMMUNOCOMPETENT CELLS
Davie, Joseph M.; Paul, William E.
1971-01-01
Nonimmunized guinea pigs possess rare lymphocytes which bind sufficient 2,4-dinitrophenyl-guinea pig albumin-125I (DNP-GPA) to their surface to be detected by short-term radioautography. The cells occur in the lymph nodes, spleen, peripheral blood, and bone marrow with a frequency of ∼40/100,000 lymphocytes, but are absent from the thymus. The receptors of these cells are largely specific for the haptenic group (ε-DNP-L-lysine) as shown by inhibition of DNP-GPA-125I binding with ε-DNP-L-lysine and with DNP bovine serum albumin (DNP-BSA). Furthermore, these cells specifically adsorb to agarose beads to which either DNP-GPA, DNP-BSA, or DNP-keyhole limpet hemocyanin (KLH) has been covalently linked. This hapten specific depletion of DNP-GPA-125I antigen-binding cells (ABC) correlates with a similar diminution in the capacity of adsorbed populations to transfer primary responsiveness to DNP-KLH to irradiated syngeneic recipients. Fluoresceinated anti-immunoglobulin binds to the surface of some guinea pig lymphocytes, and all DNP-GPA-125I ABC, as shown by a double-label technique. The great majority of DNP-GPA ABC and human γ-globulin ABC possess surface Ig molecules of the γ2 heavy chain class. Preincubation of cell suspensions with anti-γ2 antibody markedly diminishes the number of DNP-GPA-125I ABC which are detected, strongly suggesting that the receptors of these cells are immunoglobulin molecules, most of which possess γ2 heavy chains. The specificity characteristics of DNP-GPA-125I ABC are strikingly different from those of cells mediating a cellular immune response to DNP-GPA, indicating major differences in the specificity and nature of the receptors of these cell types. PMID:4934503
The DNP project: Quandaries for nursing scholars.
Dols, Jean Dowling; Hernández, Christina; Miles, Heather
In the evolving Doctor of Nursing Practice (DNP) movement, there continues to be a lack of agreement about the final scholarly project. This study identifies and describes the faculty practices and challenges related to the DNP project across the United States. In a descriptive research study, 90 DNP program directors responded to an online survey describing the environment of the DNP program with emphasis on the final scholarly project. According to the respondents, 87% of faculty are somewhat or very dissatisfied with the DNP project. Elements that may contribute to the dissatisfaction are the reported lack of faculty knowledge of evidence-based practice and quality improvement, lack of consensus on the DNP project, lack of faculty resources for DNP projects, challenges with clinical sites for the DNP project, and students' scholarly writing skills. It is imperative to have academic/practice faculty oriented to DNP concepts; achieve consensus on the project title, type, depth, and outcomes; and have an ongoing dialog regarding DNP project design, execution, and challenges. Project implementation models need to be appropriate for the escalating DNP enrollment. Program support related to institutional review board relationships, student writing and statistical skills, and program-practice site partnerships are needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi
2016-01-01
Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (~2–90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the “DNP power curve”, i.e. the microwave (MW) power dependence of DNP enhancement, the “DNP spectrum”, i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 – 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers. PMID:26920839
NASA Astrophysics Data System (ADS)
Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi
2016-03-01
Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3 T) and cryogenic temperatures (∼2-90 K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers.
Siaw, Ting Ann; Leavesley, Alisa; Lund, Alicia; Kaminker, Ilia; Han, Songi
2016-03-01
Solid-state dynamic nuclear polarization (DNP) at higher magnetic fields (>3T) and cryogenic temperatures (∼ 2-90K) has gained enormous interest and seen major technological advances as an NMR signal enhancing technique. Still, the current state of the art DNP operation is not at a state at which sample and freezing conditions can be rationally chosen and the DNP performance predicted a priori, but relies on purely empirical approaches. An important step towards rational optimization of DNP conditions is to have access to DNP instrumental capabilities to diagnose DNP performance and elucidate DNP mechanisms. The desired diagnoses include the measurement of the "DNP power curve", i.e. the microwave (MW) power dependence of DNP enhancement, the "DNP spectrum", i.e. the MW frequency dependence of DNP enhancement, the electron paramagnetic resonance (EPR) spectrum, and the saturation and spectral diffusion properties of the EPR spectrum upon prolonged MW irradiation typical of continuous wave (CW) DNP, as well as various electron and nuclear spin relaxation parameters. Even basic measurements of these DNP parameters require versatile instrumentation at high magnetic fields not commercially available to date. In this article, we describe the detailed design of such a DNP instrument, powered by a solid-state MW source that is tunable between 193 and 201 GHz and outputs up to 140 mW of MW power. The quality and pathway of the transmitted and reflected MWs is controlled by a quasi-optics (QO) bridge and a corrugated waveguide, where the latter couples the MW from an open-space QO bridge to the sample located inside the superconducting magnet and vice versa. Crucially, the versatility of the solid-state MW source enables the automated acquisition of frequency swept DNP spectra, DNP power curves, the diagnosis of MW power and transmission, and frequency swept continuous wave (CW) and pulsed EPR experiments. The flexibility of the DNP instrument centered around the QO MW bridge will provide an efficient means to collect DNP data that is crucial for understanding the relationship between experimental and sample conditions, and the DNP performance. The modularity of this instrumental platform is suitable for future upgrades and extensions to include new experimental capabilities to meet contemporary DNP needs, including the simultaneous operation of two or more MW sources, time domain DNP, electron double resonance measurements, pulsed EPR operation, or simply the implementation of higher power MW amplifiers. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Voight, Rebecca W.
2012-01-01
The purpose of this quantitative descriptive study was to explore the perceptions of DNP administrators regarding the extent acupuncture and acupressure are addressed in DNP curricula. Five research questions were addressed: 1. What are the perspectives of DNP program administrators regarding acupuncture and acupressure? 2. What are the…
Dinitrophenyl-reactive immunoglobulins in the serum of normal bowfin, Amia calva
Bradshaw, Claire; Sigel, M. M.
1972-01-01
The sera from unimmunized bowfin agglutinate a large variety of red cells. Although they precipitate DNP-BSA they manifest only slight agglutinating capacity for DNP-coated cells. 15S immunoglobulin isolated by DEAE-cellulose chromatography followed by Sephadex G-200 gel filtration possessed a high level of broad reactivity towards unmodified DNP-coated cells, whereas the 7S immunoglobulin isolated by this procedure was inactive. However, following precipitation of whole serum with DNP-BSA both molecules could be recovered in a form which demonstrated specificity for DNP, in that both precipitated DNP-BSA and agglutinated DNP-coated cells but not unmodified cells. The mechanism of activation of the 7S molecule is not known but the data suggest that this immunoglobulin is divalent. ImagesFIG. 3FIG. 4 PMID:4624342
From Metacognition to Practice Cognition: The DNP e-Portfolio to Promote Integrated Learning.
Anderson, Kelley M; DesLauriers, Patricia; Horvath, Catherine H; Slota, Margaret; Farley, Jean Nelson
2017-08-01
Educating Doctor of Nursing Practice (DNP) students for an increasingly complex health care environment requires novel applications of learning concepts and technology. A deliberate and thoughtful process is required to integrate concepts of the DNP program into practice paradigm changes to subsequently improve students' abilities to innovate solutions to complex practice problems. The authors constructed or participated in electronic portfolio development inspired by theories of metacognition and integrated learning. The objective was to develop DNP student's reflection, integration of concepts, and technological capabilities to foster the deliberative competencies related to the DNP Essentials and the foundations of the DNP program. The pedagogical process demonstrates how e-portfolios adapted into the doctoral-level curriculum for DNP students can address the Essentials and foster the development of metacognitive capabilities, which translates into practice changes. The authors suggest that this pedagogical approach has the potential to optimize reflective and deliberative competencies among DNP students. [J Nurs Educ. 2017;56(8):497-500.]. Copyright 2017, SLACK Incorporated.
Biosensors from conjugated polyelectrolyte complexes
Wang, Deli; Gong, Xiong; Heeger, Peter S.; Rininsland, Frauke; Bazan, Guillermo C.; Heeger, Alan J.
2002-01-01
A charge neutral complex (CNC) was formed in aqueous solution by combining an orange light emitting anionic conjugated polyelectrolyte and a saturated cationic polyelectrolyte at a 1:1 ratio (per repeat unit). Photoluminescence (PL) from the CNC can be quenched by both the negatively charged dinitrophenol (DNP) derivative, (DNP-BS−), and positively charged methyl viologen (MV2+). Use of the CNC minimizes nonspecific interactions (which modify the PL) between conjugated polyelectrolytes and biopolymers. Quenching of the PL from the CNC by the DNP derivative and specific unquenching on addition of anti-DNP antibody (anti-DNP IgG) were observed. Thus, biosensing of the anti-DNP IgG was demonstrated. PMID:11756675
Fast passage dynamic nuclear polarization on rotating solids
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frederic; Akbey, Ümit; Hovav, Yonatan; Vega, Shimon; Oschkinat, Hartmut; Feintuch, Akiva
2012-11-01
Magic Angle Spinning (MAS) Dynamic Nuclear Polarization (DNP) has proven to be a very powerful way to improve the signal to noise ratio of NMR experiments on solids. The experiments have in general been interpreted considering the Solid-Effect (SE) and Cross-Effect (CE) DNP mechanisms while ignoring the influence of sample spinning. In this paper, we show experimental data of MAS-DNP enhancements of 1H and 13C in proline and SH3 protein in glass forming water/glycerol solvent containing TOTAPOL. We also introduce a theoretical model that aims at explaining how the nuclear polarization is built in MAS-DNP experiments. By using Liouville space based simulations to include relaxation on two simple spin models, {electron-nucleus} and {electron-electron-nucleus}, we explain how the basic MAS-SE-DNP and MAS-CE-DNP processes work. The importance of fast energy passages and short level anti-crossing is emphasized and the differences between static DNP and MAS-DNP is explained. During a single rotor cycle the enhancement in the {electron-electron-nucleus} system arises from MAS-CE-DNP involving at least three kinds of two-level fast passages: an electron-electron dipolar anti-crossing, a single quantum electron MW encounter and an anti-crossing at the CE condition inducing nuclear polarization in- or decrements. Numerical, powder-averaged, simulations were performed in order to check the influence of the experimental parameters on the enhancement efficiencies. In particular we show that the spinning frequency dependence of the theoretical MAS-CE-DNP enhancement compares favorably with the experimental 1H and 13C MAS-DNP enhancements of proline and SH3.
Fast passage dynamic nuclear polarization on rotating solids.
Mentink-Vigier, Frederic; Akbey, Umit; Hovav, Yonatan; Vega, Shimon; Oschkinat, Hartmut; Feintuch, Akiva
2012-11-01
Magic Angle Spinning (MAS) Dynamic Nuclear Polarization (DNP) has proven to be a very powerful way to improve the signal to noise ratio of NMR experiments on solids. The experiments have in general been interpreted considering the Solid-Effect (SE) and Cross-Effect (CE) DNP mechanisms while ignoring the influence of sample spinning. In this paper, we show experimental data of MAS-DNP enhancements of (1)H and (13)C in proline and SH3 protein in glass forming water/glycerol solvent containing TOTAPOL. We also introduce a theoretical model that aims at explaining how the nuclear polarization is built in MAS-DNP experiments. By using Liouville space based simulations to include relaxation on two simple spin models, {electron-nucleus} and {electron-electron-nucleus}, we explain how the basic MAS-SE-DNP and MAS-CE-DNP processes work. The importance of fast energy passages and short level anti-crossing is emphasized and the differences between static DNP and MAS-DNP is explained. During a single rotor cycle the enhancement in the {electron-electron-nucleus} system arises from MAS-CE-DNP involving at least three kinds of two-level fast passages: an electron-electron dipolar anti-crossing, a single quantum electron MW encounter and an anti-crossing at the CE condition inducing nuclear polarization in- or decrements. Numerical, powder-averaged, simulations were performed in order to check the influence of the experimental parameters on the enhancement efficiencies. In particular we show that the spinning frequency dependence of the theoretical MAS-CE-DNP enhancement compares favorably with the experimental (1)H and (13)C MAS-DNP enhancements of proline and SH3. Copyright © 2012 Elsevier Inc. All rights reserved.
[Model antigens and their significance for occupational dermatology].
Schwartze, G; Lübbe, D; Wozniak, K D
1989-07-01
By means of epicutaneous tests we studied the contact hypersensitivity to DNP-amino acids in individuals sensitized to dinitrochlorobenzene (DNCB). We found a high incidence of positive skin responses to DNP-glycine, di-DNP-L-cystine, and DNP-L-alpha-alanine, but only in some cases DNP-beta-alanine induced skin reactivity. The results are discussed both in connection with the influence of varying molecular sizes and chemical structure on the immunological reactivity and the possibility to develop a beta-alanine containing protective ointment against protein-reactive haptens.
Cutaneous drug toxicity from 2,4-dinitrophenol (DNP): Case report and histological description.
Le, Patricia; Wood, Benjamin; Kumarasinghe, Sujith Prasad
2015-11-01
The use of 2,4-dinitrophenol (DNP) has regained popularity as a weight loss aid in the last two decades due to increased marketing to bodybuilders and the increasing availability of this banned substance via the Internet. 2,4-DNP is a drug of narrow therapeutic index and toxicity results in hyperthermia, diaphoresis, tachycardia, tachypnoea and possible cardiac arrest and death. Skin toxicity from 2,4-DNP has not been reported since the 1930s. We report a case of a 21-year-old bodybuilding enthusiast who presented with a toxic exanthem after taking 2,4-DNP, and describe the first skin biopsy findings in a case of 2,4-DNP toxicity. © 2014 The Australasian College of Dermatologists.
Shimon, Daphna; Feintuch, Akiva; Goldfarb, Daniella; Vega, Shimon
2014-04-14
To study the solid state (1)H-DNP mechanism of the biradical TOTAPOL under static conditions the frequency swept DNP enhancement spectra of samples containing 20 mM and 5 mM TOTAPOL were measured as a function of MW irradiation time and temperature. We observed that under static DNP conditions the biradical TOTAPOL behaves similar to the monoradical TEMPOL, in contrast to MAS DNP where TOTAPOL is considerably more effective. As previously done for TEMPOL, the TOTAPOL DNP spectra were analyzed taking a superposition of a basic SE-DNP lineshape and a basic CE-DNP lineshape with different amplitudes. The analysis of the steady state DNP spectra showed that the SE was dominant in the 6-10 K range and the CE was dominant above 10 K. DNP spectra obtained as a function of MW irradiation time allowed resolving the individual SE and CE buildup times. At low temperatures the SE buildup time was faster than the CE buildup time and at all temperatures the CE buildup time was close to the nuclear spin-lattice relaxation time, T1n. Polarization calculations involving nuclear spin-diffusion for a model system of one electron and many nuclei suggested that the shortening of the T1n for increasing temperatures is the reason why the SE contribution to the overall enhancement was reduced.
Dynamic Nuclear Polarization and other magnetic ideas at EPFL.
Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey
2012-01-01
Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.
Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†
Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.
2015-01-01
Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524
Abdel-Wahhab, Khaled G; Daoud, Eitedal M; El Gendy, Aliaa; Mourad, Hagar H; Mannaa, Fathia A; Saber, Maha M
2018-03-12
Diabetic neuropathy (DN) is the highly occurred complication of diabetes mellitus; it has been defined as an event of peripheral nerve dysfunction characterized by pain, allodynia, hyperalgesia, and paraesthesia. The current study was conducted to evaluate the efficacy of low-level laser therapy (LLLT) in the management of neuropathy in diabetic rats. The used animals were divided into the following groups: negative control, streptozotocin-induced diabetic rats, and diabetic rats with peripheral neuropathy (DNP) and DNP treated with gabapentin or with LLLT. Behavioral tests were carried out through hotplate test for the determination of pain sensations and the Morris water maze test for spatial reference memory evaluation. Blood samples were collected at the end of treatment for biochemical determinations. In the current study, the latency of hind-paw lick decreased significantly when DNP are treated with gabapentin or LLLT. The Morris water maze test showed that LLLT treatment improved memory that deteriorated in DNP more than gabapentin do. The results of the biochemical study revealed that LLLT could not affect the level of beta-endorphin that decreased in DNP but significantly decreased S100B that rose in DNP. PGE2 and cytokines IL-1β, IL-10, and TNF-α showed significant increase in DNP compared with control group. The gabapentin administration or LLLT application significantly reversed the levels of the mentioned markers towards the normal values of the controls. Levels of serum MDA and nitric oxide increased significantly in the DNP but rGSH showed significant decrease. These markers were improved significantly when the DNP were treated with gabapentin or LLLT. The treatment with gabapentin or LLLT significantly decreased the raised level in total cholesterol in DNP but could not decrease the elevated level of triglycerides, while LDL cholesterol decreased significantly in DNP treated with gabapentin but not affected by LLLT. Values of serum alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), urea, and creatinine increased significantly in the DPN and diabetic rats without peripheral neuropathy (PN) compared with control group. The treatment of DNP with gabapentin induced significant increases in ALAT and ASAT activities but LLLT treatment induced significant decreases in ALAT and ASAT activities as compared with DNP group. Neither gabapentin nor LLLT could improve the elevated levels of serum urea and creatinine in the DNP. It could be concluded that LLLT is more safe and effective than gabapentin in the management of neuropathy in diabetic rats.
Kallianpur, Asha R.; Jia, Peilin; Ellis, Ronald J.; Zhao, Zhongming; Bloss, Cinnamon; Wen, Wanqing; Marra, Christina M.; Hulgan, Todd; Simpson, David M.; Morgello, Susan; McArthur, Justin C.; Clifford, David B.; Collier, Ann C.; Gelman, Benjamin B.; McCutchan, J. Allen; Franklin, Donald; Samuels, David C.; Rosario, Debralee; Holzinger, Emily; Murdock, Deborah G.; Letendre, Scott; Grant, Igor
2014-01-01
HIV sensory neuropathy and distal neuropathic pain (DNP) are common, disabling complications associated with combination antiretroviral therapy (cART). We previously associated iron-regulatory genetic polymorphisms with a reduced risk of HIV sensory neuropathy during more neurotoxic types of cART. We here evaluated the impact of polymorphisms in 19 iron-regulatory genes on DNP in 560 HIV-infected subjects from a prospective, observational study, who underwent neurological examinations to ascertain peripheral neuropathy and structured interviews to ascertain DNP. Genotype-DNP associations were explored by logistic regression and permutation-based analytical methods. Among 559 evaluable subjects, 331 (59%) developed HIV-SN, and 168 (30%) reported DNP. Fifteen polymorphisms in 8 genes (p<0.05) and 5 variants in 4 genes (p<0.01) were nominally associated with DNP: polymorphisms in TF, TFRC, BMP6, ACO1, SLC11A2, and FXN conferred reduced risk (adjusted odds ratios [ORs] ranging from 0.2 to 0.7, all p<0.05); other variants in TF, CP, ACO1, BMP6, and B2M conferred increased risk (ORs ranging from 1.3 to 3.1, all p<0.05). Risks associated with some variants were statistically significant either in black or white subgroups but were consistent in direction. ACO1 rs2026739 remained significantly associated with DNP in whites (permutation p<0.0001) after correction for multiple tests. Several of the same iron-regulatory-gene polymorphisms, including ACO1 rs2026739, were also associated with severity of DNP (all p<0.05). Common polymorphisms in iron-management genes are associated with DNP and with DNP severity in HIV-infected persons receiving cART. Consistent risk estimates across population subgroups and persistence of the ACO1 rs2026739 association after adjustment for multiple testing suggest that genetic variation in iron-regulation and transport modulates susceptibility to DNP. PMID:25144566
Politi, Lucia; Vignali, Claudia; Polettini, Aldo
2007-01-01
A liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis of biological fluids (blood, urine, gastric content, and bile) collected at autopsy in a case of suspected 2,4-dinitrophenol (DNP) fatal poisoning allowed the determination of DNP and its known metabolites (2-amino-4-nitrophenol and nitro-4-aminophenol). The tentative identification of three conjugated metabolites (DNP glucuronide, DNP sulfate, and 2-amino-4-nitrophenol glucuronide) could be made on the basis of their pseudomolecular ion, isotopic and fragmentation patterns, and retention characteristics. Another DNP metabolite reported in the literature, 2,4-diaminophenol, was not detected in the samples. Postmortem blood concentrations were 48.4 mg/L for DNP and 1.2 mg/L for 2-amino-4-nitrophenol. Gas chromatography-MS screening and quantification in postmortem blood revealed the presence of toxic concentrations of citalopram and its desmethylated metabolite (0.58 and 0.40 mg/L, respectively) and therapeutic or lower than therapeutic levels of olanzapine (0.04 mg/L), desalkylflurazepam (0.02 mg/L), and nordazepam (0.01 mg/L). Based on LC-MS-MS results and on available literature data on DNP poisonings, it was concluded that DNP poisoning played a contributing role, together with citalopram, in the cause of death.
Assembly and performance of a 6.4 T cryogen-free dynamic nuclear polarization system.
Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Wang, Qing; Lumata, Lloyd
2017-09-01
We report on the assembly and performance evaluation of a 180-GHz/6.4 T dynamic nuclear polarization (DNP) system based on a cryogen-free superconducting magnet. The DNP system utilizes a variable-field superconducting magnet that can be ramped up to 9 T and equipped with cryocoolers that can cool the sample space with the DNP assembly down to 1.8 K via the Joule-Thomson effect. A homebuilt DNP probe insert with top-tuned nuclear magnetic resonance coil and microwave port was incorporated into the sample space in which the effective sample temperature is approximately 1.9 K when a 180-GHz microwave source is on during DNP operation. 13 C DNP of [1- 13 C] acetate samples doped with trityl OX063 and 4-oxo-TEMPO in this system have resulted in solid-state 13 C polarization levels of 58 ± 3% and 18 ± 2%, respectively. The relatively high 13 C polarization levels achieved in this work have demonstrated that the use of a cryogen-free superconducting magnet for 13 C DNP is feasible and in fact, relatively efficient-a major leap to offset the high cost of liquid helium consumption in DNP experiments. Copyright © 2017 John Wiley & Sons, Ltd.
Hypogammaglobulinaemia in nephrotic rats is attributable to hypercatabolism of IgG.
Beaman, M; Oldfield, S; MacLennan, I C; Michael, J; Adu, D
1988-01-01
The effect of the nephrotic syndrome induced by puromycin aminonucleoside (PA) in rats on specific antibody responses to 2,4 dinitrophenyl (DNP) conjugated to either spider crab haemocyanin (MSH), a T cell-dependent antigen, or hydroxyethyl starch (HES), a T cell-independent type 2 antigen were studied. The serum IgG anti-DNP levels following immunization with both antigens were reduced in nephrotic animals compared with controls while IgM anti-DNP antibody titres were higher. The half-life of IgG anti-DNP antibodies passively transferred into non-immunized nephrotic rats was markedly reduced while the half-life of anti-DNP antibodies of the IgM class was comparable to that in controls. Low serum IgG and elevated IgM levels were seen in nephrotic animals compared to controls. Antibody-forming cells specific for DNP were demonstrated by immunohistology on rat spleens and the numbers of both IgG and IgM-producing cells were found to be significantly increased (P less than 0.05) in nephrotic animals in response to both DNP-HES and DNP-MSH. These data indicate that in nephrotic rats the alteration seen in the serum immunoglobulin levels is not attributable to reduced antibody production but increased catabolism of serum IgG antibodies. PMID:3233791
Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria
2016-03-01
Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.
Dynamic Nuclear Polarization NMR in Human Cells Using Fluorescent Polarizing Agents.
Albert, Brice J; Gao, Chukun; Sesti, Erika L; Saliba, Edward P; Alaniva, Nicholas; Scott, Faith J; Sigurdsson, Snorri Th; Barnes, Alexander B
2018-06-20
Solid-state nuclear magnetic resonance (NMR) enables atomic resolution characterization of molecular structure and dynamics within complex heterogeneous samples, but it is typically insensitive. Dynamic nuclear polarization (DNP) increases NMR signal intensity by orders of magnitude and can be performed in combination with magic angle spinning (MAS) for sensitive, high-resolution spectroscopy. Here we report MAS DNP experiments, for the first time, within intact human cells with >40-fold DNP enhancement and a sample temperature below 6 K. In addition to cryogenic MAS results below 6 K, we also show in-cell DNP enhancements of 57-fold at 90 K. In-cell DNP is demonstrated using biradicals and sterically-shielded monoradicals as polarizing agents. A novel trimodal polarizing agent is introduced for DNP, which contains a nitroxide biradical, a targeting peptide for cell penetration, and a fluorophore for subcellular localization with confocal microscopy. The fluorescent polarizing agent provides in-cell DNP enhancements of 63-fold at a concentration of 2.7 mM. These experiments pave the way for structural characterization of biomolecules in an endogenous cellular context.
Creating effective scholarly posters: a guide for DNP students.
Christenbery, Thomas L; Latham, Tiffany G
2013-01-01
Dissemination of scholarly project outcomes is an essential component of Doctor of Nursing Practice (DNP) education. This article provides guidelines for professional poster development and presentation as well as suggestions for integrating poster development as part of the DNP curriculum. This article was prepared by reviewing both theoretical and research-based literature regarding professional poster development. Evidence indicates that poster presentations at professional conferences are an excellent venue for DNP students to successfully share the results of their scholarly projects. For posters to be both well perceived and received at conferences, certain guidelines must be followed regarding poster development. Guidelines include emphasizing a consistent message, clear focus, logical format, and esthetically pleasing design. Poster development guidelines and strategies need to be taught early and regularly throughout the DNP student's education. DNP scholarly projects provide forward-looking solutions to some of society's most formidable healthcare challenges. The dissemination of knowledge gleaned from the DNP scholarly projects is vital to 21st century global health. Effective poster presentations are critical to the dissemination of scholarly knowledge. ©2012 The Author(s) Journal compilation ©2012 American Association of Nurse Practitioners.
Solvent signal suppression for high-resolution MAS-DNP
NASA Astrophysics Data System (ADS)
Lee, Daniel; Chaudhari, Sachin R.; De Paëpe, Gaël
2017-05-01
Dynamic nuclear polarization (DNP) has become a powerful tool to substantially increase the sensitivity of high-field magic angle spinning (MAS) solid-state NMR experiments. The addition of dissolved hyperpolarizing agents usually results in the presence of solvent signals that can overlap and obscure those of interest from the analyte. Here, two methods are proposed to suppress DNP solvent signals: a Forced Echo Dephasing experiment (FEDex) and TRAnsfer of Populations in DOuble Resonance Echo Dephasing (TRAPDORED) NMR. These methods reintroduce a heteronuclear dipolar interaction that is specific to the solvent, thereby forcing a dephasing of recoupled solvent spins and leaving acquired NMR spectra free of associated resonance overlap with the analyte. The potency of these methods is demonstrated on sample types common to MAS-DNP experiments, namely a frozen solution (of L-proline) and a powdered solid (progesterone), both containing deuterated glycerol as a DNP solvent. The proposed methods are efficient, simple to implement, compatible with other NMR experiments, and extendable past spectral editing for just DNP solvents. The sensitivity gains from MAS-DNP in conjunction with FEDex or TRAPDORED then permits rapid and uninterrupted sample analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frédéric A.; Reinig, Regina R.; Slowing, Igor I.
2015-11-20
We study the effects of the deuteration of biradical polarizing agents on the efficiency of dynamic nuclear polarization (DNP) via the cross-effect. To this end, we synthesized a series of bTbK and TOTAPol biradicals with systematically increased deuterium substitution. The deuteration increases the radicals' relaxation time, thus contributing to a higher saturation factor and larger DNP enhancement, and reduces the pool of protons within the so-called spin diffusion barrier. Notably, we report that full or partial deuteration leads to improved DNP enhancement factors in standard samples, but also slows down the build-up of hyperpolarization. Improvements in DNP enhancements factors ofmore » up to 70% and time savings of up to 38% are obtained upon full deuteration. As a result, it is foreseen that this approach may be applied to other DNP polarizing agents thus enabling further sensitivity improvements.« less
Cao, Wei; Wang, Wei David; Xu, Hai-Sen; Sergeyev, Ivan V; Struppe, Jochem; Wang, Xiaoling; Mentink-Vigier, Frederic; Gan, Zhehong; Xiao, Ming-Xing; Wang, Lu-Yao; Chen, Guo-Peng; Ding, San-Yuan; Bai, Shi; Wang, Wei
2018-06-06
Rapid progress has been witnessed in the past decade in the fields of covalent organic frameworks (COFs) and dynamic nuclear polarization (DNP). In this contribution, we bridge these two fields by constructing radical-embedded COFs as promising DNP agents. Via polarization transfer from unpaired electrons to nuclei, DNP realizes significant enhancement of NMR signal intensities. One of the crucial issues in DNP is to screen for suitable radicals to act as efficient polarizing agents, the basic criteria for which are homogeneous distribution and fixed orientation of unpaired electrons. We therefore envisioned that the crystalline and porous structures of COFs, if evenly embedded with radicals, may work as a new "crystalline sponge" for DNP experiments. As a proof of concept, we constructed a series of proxyl-radical-embedded COFs (denoted as PR( x)-COFs) and successfully applied them to achieve substantial DNP enhancement. Benefiting from the bottom-up and multivariate synthetic strategies, proxyl radicals have been covalently reticulated, homogeneously distributed, and rigidly embedded into the crystalline and mesoporous frameworks with adjustable concentration ( x%). Excellent performance of PR( x)-COFs has been observed for DNP 1 H, 13 C, and 15 N solid-state NMR enhancements. This contribution not only realizes the direct construction of radical COFs from radical monomers, but also explores the new application of COFs as DNP polarizing agents. Given that many radical COFs can therefore be rationally designed and facilely constructed with well-defined composition, distribution, and pore size, we expect that our effort will pave the way for utilizing radical COFs as standard polarizing agents in DNP NMR experiments.
In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frédéric A.; Sadow, Aaron; Pruski, Marek
Numerical calculations of enhancement factors offered by dynamic nuclear polarization in solids under magic angle spinning (DNP-MAS) were performed to determine the optimal EPR parameters for a dinitroxide polarizing agent. We found that the DNP performance of a biradical is more tolerant to the relative orientation of the two nitroxide moieties than previously thought. In general, any condition in which the gyy tensor components of both radicals are perpendicular to one another is expected to have near-optimal DNP performance. These results highlight the important role of the exchange coupling, which can lessen the sensitivity of DNP performance to the inter-radicalmore » distance, but also lead to lower enhancements when the number of atoms in the linker becomes less than three. Finally, the calculations showed that the electron T1e value should be near 500μs to yield optimal performance. Importantly, the newest polarizing agents already feature all of the qualities of the optimal polarizing agent, leaving little room for further improvement. Further research into DNP polarizing agents should then target non-nitroxide radicals, as well as improvements in sample formulations to advance high-temperature DNP and limit quenching and reactivity.« less
In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?
Perras, Frédéric A.; Sadow, Aaron; Pruski, Marek
2017-06-09
Numerical calculations of enhancement factors offered by dynamic nuclear polarization in solids under magic angle spinning (DNP-MAS) were performed to determine the optimal EPR parameters for a dinitroxide polarizing agent. We found that the DNP performance of a biradical is more tolerant to the relative orientation of the two nitroxide moieties than previously thought. In general, any condition in which the gyy tensor components of both radicals are perpendicular to one another is expected to have near-optimal DNP performance. These results highlight the important role of the exchange coupling, which can lessen the sensitivity of DNP performance to the inter-radicalmore » distance, but also lead to lower enhancements when the number of atoms in the linker becomes less than three. Finally, the calculations showed that the electron T1e value should be near 500μs to yield optimal performance. Importantly, the newest polarizing agents already feature all of the qualities of the optimal polarizing agent, leaving little room for further improvement. Further research into DNP polarizing agents should then target non-nitroxide radicals, as well as improvements in sample formulations to advance high-temperature DNP and limit quenching and reactivity.« less
Nelson, Joan M; Cook, Paul F; Raterink, Ginger
2013-01-01
The past several years have seen explosive growth in the number of doctor of nursing practice (DNP) degree programs offered by colleges of nursing in the United States. Through a process of trial and error since 2005, the faculty at the University of Colorado, College of Nursing, have revised the course structure and procedures related to the DNP capstone project to improve the quality and usefulness of these student projects. Efforts have focused on educating and involving all nursing faculty in the DNP capstone process, distinguishing between competencies for our PhD and DNP projects, clearly aligning the DNP capstone project with quality improvement methods rather than with research, working with our campus institutional review board to clarify regulatory review requirements for quality improvement studies, developing a review committee to oversee DNP students' projects, and structuring our sequential course requirements to encourage students' professional presentations and publications. Our current capstone process reflects 7 years of iterative work, which we summarize in this article in hopes that it will help institutions currently in the process of developing a DNP program. Copyright © 2013 Elsevier Inc. All rights reserved.
Carprofen-induced oxidative stress in mitochondria of the colonic mucosa of the dog.
Snow, Lynne A; McConnico, Rebecca S; Morgan, Timothy W; Hartmann, Erica; Davidson, Jacqueline R; Hosgood, Giselle
2014-07-01
The purpose of the study was to compare the conductance and mannitol permeability of canine colonic mucosa in response to carprofen or 2,4-dinitrophenol (DNP) with or without tempol pretreatment. Ten colonic mucosa sections per dog were mounted in Ussing chambers. Treatments were done in duplicate. Mucosa was exposed to carprofen (200 μg/mL) or DNP (0.25 mM), both with and without tempol (1 mM) pretreatment. Conductance was calculated every 15 min for 240 min. Mannitol flux was calculated over 3 consecutive 60-minute periods. Histology or electron microscopy was done after exposure. Conductance over time, mannitol flux, frequency of histologic categories, and electron microscopic changes were analyzed for treatment effects. The mean ± standard deviation (SD) conductance over time for carprofen or DNP-treated colons was not significantly different from control regardless of tempol pretreatment. Period 3 mannitol fluxes for carprofen and DNP-treated colon were not significantly different, but were greater than control. Period 3 mannitol flux for tempol + carprofen was significantly less than tempol + DNP-treated colon. Sloughing of cells and erosions were seen in the mucosa of carprofen-treated colon. Mitochondrial damage was seen more often in carprofen-treated than DNP-treated or control colon. Tempol pretreatment resulted in more ruptured mitochondria in the carprofen-treated colon; however, other mitochondrial changes were not significantly affected by tempol pretreatment in either carprofen or DNP treated colon. Treatment with carprofen or DNP increased the mannitol flux, but pretreatment with tempol mitigated the carprofen effect. It is apparent that structural mitochondrial damage occurs in the canine colonic mucosa after carprofen and DNP exposure.
Carprofen-induced oxidative stress in mitochondria of the colonic mucosa of the dog
Snow, Lynne A.; McConnico, Rebecca S.; Morgan, Timothy W.; Hartmann, Erica; Davidson, Jacqueline R.; Hosgood, Giselle
2014-01-01
The purpose of the study was to compare the conductance and mannitol permeability of canine colonic mucosa in response to carprofen or 2,4-dinitrophenol (DNP) with or without tempol pretreatment. Ten colonic mucosa sections per dog were mounted in Ussing chambers. Treatments were done in duplicate. Mucosa was exposed to carprofen (200 μg/mL) or DNP (0.25 mM), both with and without tempol (1 mM) pretreatment. Conductance was calculated every 15 min for 240 min. Mannitol flux was calculated over 3 consecutive 60-minute periods. Histology or electron microscopy was done after exposure. Conductance over time, mannitol flux, frequency of histologic categories, and electron microscopic changes were analyzed for treatment effects. The mean ± standard deviation (SD) conductance over time for carprofen or DNP-treated colons was not significantly different from control regardless of tempol pretreatment. Period 3 mannitol fluxes for carprofen and DNP-treated colon were not significantly different, but were greater than control. Period 3 mannitol flux for tempol + carprofen was significantly less than tempol + DNP-treated colon. Sloughing of cells and erosions were seen in the mucosa of carprofen-treated colon. Mitochondrial damage was seen more often in carprofen-treated than DNP-treated or control colon. Tempol pretreatment resulted in more ruptured mitochondria in the carprofen-treated colon; however, other mitochondrial changes were not significantly affected by tempol pretreatment in either carprofen or DNP treated colon. Treatment with carprofen or DNP increased the mannitol flux, but pretreatment with tempol mitigated the carprofen effect. It is apparent that structural mitochondrial damage occurs in the canine colonic mucosa after carprofen and DNP exposure. PMID:24982549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, S.K.; Gier, M.J.
1990-09-01
Experiments were conducted to study populations of indigenous microorganisms capable of mineralizing 2,4-dinitrophenol (DNP) in two soils. Previous kinetic analyses indicated the presence of two coexisting populations of DNP-mineralizing microorganisms in a forest soil (soil 1). Studies in which eucaryotic and procaryotic inhibitors were added to this soil indicated that both populations were bacterial. Most-probable-number counts with media containing different concentrations of DNP indicated that more bacteria could mineralize low concentrations of DNP than could metabolize high concentrations of it. Enrichments with varying concentrations of DNP and various combinations of inhibitors consistently resulted in the isolation of the same twomore » species of bacteria from soil 1. This soil contained a large number and variety of fungi, but no fungi capable of mineralizing DNP were isolated. The two bacterial isolates were identified as a Janthinobacterium sp. and a Rhodococcus sp. The Janthinobacterium sp. had a low {mu}{sub max} and a low K{sub m} for DNP mineralization, whereas the Rhodococcus sp. had much higher values for both parameters. These differences between the two species of bacteria were similar to differences seen when soil was incubated with different concentrations of DNP. Values for {mu}{sub max} from soil incubations were similar to {mu}{sub max} values obtained in pure culture studies. In contrast, K{sub s} and K{sub m} values showed greater variation between soil and pure culture studies.« less
Low-Temperature Dynamic Nuclear Polarization at 9.4 Tesla With a 30 Milliwatt Microwave Source
Thurber, Kent R.; Yau, Wai-Ming; Tycko, Robert
2010-01-01
Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 Tesla (400 MHz resonant frequency for 1H, 264 GHz for electron spins in organic radicals) in the 7–80 K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to 1H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of 1H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the 1H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80 K. PMID:20392658
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [T-2-2009] Foreign-Trade Zone Subzone 33E--Mount Pleasant, PA; Temporary/ Interim Manufacturing Authority; DNP IMS America Corporation (Thermal Transfer...) authority, on behalf of DNP IMS America Corporation to manufacture thermal transfer ribbon printer rolls...
THz Dynamic Nuclear Polarization NMR
Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.
2013-01-01
Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915
A Taxonomy of Attacks on the DNP3 Protocol
NASA Astrophysics Data System (ADS)
East, Samuel; Butts, Jonathan; Papa, Mauricio; Shenoi, Sujeet
Distributed Network Protocol (DNP3) is the predominant SCADA protocol in the energy sector - more than 75% of North American electric utilities currently use DNP3 for industrial control applications. This paper presents a taxonomy of attacks on the protocol. The attacks are classified based on targets (control center, outstation devices and network/communication paths) and threat categories (interception, interruption, modification and fabrication). To facilitate risk analysis and mitigation strategies, the attacks are associated with the specific DNP3 protocol layers they exploit. Also, the operational impact of the attacks is categorized in terms of three key SCADA objectives: process confi- dentiality, process awareness and process control. The attack taxonomy clarifies the nature and scope of the threats to DNP3 systems, and can provide insights into the relative costs and benefits of implementing mitigation strategies.
Fenton-treated functionalized diamond nanoparticles as gene delivery system.
Martín, Roberto; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo
2010-01-26
When raw diamond nanoparticles (Dnp, 7 nm average particle size) obtained from detonation are submitted to harsh Fenton-treatment, the resulting material becomes free of amorphous soot matter and the process maintains the crystallinity, reduces the particle size (4 nm average particle size), increases the surface OH population, and increases water solubility. All these changes are beneficial for subsequent Dnp covalent functionalization and for the ability of Dnp to cross cell membranes. Fenton-treated Dnps have been functionalized with thionine and the resulting sample has been observed in HeLa cell nuclei. A triethylammonium-functionalized Dnp pairs electrostatically with a plasmid having the green fluorescent protein gene and acts as gene delivery system permitting the plasmid to cross HeLa cell membrane, something that does not occur for the plasmid alone without assistance of polycationic Dnp.
The spin-temperature theory of dynamic nuclear polarization and nuclear spin-lattice relaxation
NASA Technical Reports Server (NTRS)
Byvik, C. E.; Wollan, D. S.
1974-01-01
A detailed derivation of the equations governing dynamic nuclear polarization (DNP) and nuclear spin lattice relaxation by use of the spin temperature theory has been carried to second order in a perturbation expansion of the density matrix. Nuclear spin diffusion in the rapid diffusion limit and the effects of the coupling of the electron dipole-dipole reservoir (EDDR) with the nuclear spins are incorporated. The complete expression for the dynamic nuclear polarization has been derived and then examined in detail for the limit of well resolved solid effect transitions. Exactly at the solid effect transition peaks, the conventional solid-effect DNP results are obtained, but with EDDR effects on the nuclear relaxation and DNP leakage factor included. Explicit EDDR contributions to DNP are discussed, and a new DNP effect is predicted.
The doctor of nursing practice and nursing education: highlights, potential, and promise.
Danzey, Ida Maria; Ea, Emerson; Fitzpatrick, Joyce J; Garbutt, Susan J; Rafferty, Margaret; Zychowicz, Michael E
2011-01-01
The success of the doctor of nursing practice (DNP) programs have exceeded everyone's expectations and resulted in increased interest in doctoral education in nursing. A shortage of doctorally prepared nurse educators continues to plague the profession and has a severe impact on the ability of schools of nursing to educate future generations of nurses. As a terminal degree in nursing practice, there is little focus on DNP graduates who are prepared as educators. To remedy this deficit, this article will therefore discuss and highlight (a) the significant potential of the DNP to mitigate the current nursing faculty shortage and to close the practice-education gap, (b) the specialized role of DNP graduates as educators and leaders in nursing education, and (c) the implications of the DNP for nursing scholarship. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhu, Shuang-Fei; Zhang, Shu-Hai; Gou, Rui-Jun; Han, Gang; Wu, Chun-Lei; Ren, Fu-de
2017-11-24
The effects of the molar ratio, temperature, and solvent on the formation of the cocrystal explosive DNP/CL-20 were investigated using molecular dynamics (MD) simulation. The cocrystal structure was predicted through Monte Carlo (MC) simulation and using first-principles methods. The results showed that the DNP/CL-20 cocrystal might be more stable in the molar ratio 1:1 near to 318 K, and the most probable cocrystal crystallizes in the triclinic crystal system with the space group P[Formula: see text]. Cocrystallization was more likely to occur in methanol and ethanol at 308 K as a result of solvent effects. The optimized structure and the reduced density gradient (RDG) of the DNP/CL-20 complex confirmed that the main driving forces for cocrystallization were a series of hydrogen bonds and van der Waals forces. Analyses of the trigger bonds, the charges on the nitro groups, the electrostatic surface potential (ESP), and the free space per molecule in the cocrystal lattice were carried out to further explore their influences on the sensitivity of CL-20. The results indicated that the DNP/CL-20 complex tended to be more stable and insensitive than pure CL-20. Moreover, an investigation of the detonation performance of the DNP/CL-20 cocrystal indicated that it possesses high power. Graphical abstract DNP/CL-20 cocrystal models with different molar ratios were investigated at different temperatures using molecular dynamics (MD) simulation methods. Binding energies and mechanical properties were probed to determine the stability and performance of each cocrystal model. Solvated DNP/CL-20 models were established by adding solvent molecules to the cocrystal surface. The binding energies of the models in various solvents were calculated in order to identify the most suitable solvent and temperature for preparing the cocrystal explosive DNP/CL-20.
Study on the aerobic biodegradability and degradation kinetics of 3-NP; 2,4-DNP and 2,6-DNP.
She, Zonglian; Xie, Tian; Zhu, Yingjie; Li, Leilei; Tang, Gaifeng; Huang, Jian
2012-11-30
Four biodegradability tests (BOD(5)/COD ratio, production of carbon dioxide, relative oxygen uptake rate and relative enzymatic activity) were used to determine the aerobic biodegradability of 3-nitrophenol (3-NP), 2,4-dinitrophenol (2,4-DNP) and 2,6-dinitrophenol (2,6-DNP). Furthermore, biodegradation kinetics of the compounds was investigated in sequencing batch reactors both in the presence of glucose (co-substrate) and with nitrophenol as the sole carbon source. Among the three tested compounds, 3-NP showed the best biodegradability while 2,6-DNP was the most difficult to be biodegraded. The Haldane equation was applied to the kinetic test data of the nitrophenols. The kinetic constants are as follows: the maximum specific degradation rate (K(max)), the saturation constants (K(S)) and the inhibition constants (K(I)) were in the range of 0.005-2.98 mg(mgSS d)(-1), 1.5-51.9 mg L(-1) and 1.8-95.8 mg L(-1), respectively. The presence of glucose enhanced the degradation of the nitrophenols at low glucose concentrations. The degradation of 3-NP was found to be accelerated with the increasing of glucose concentrations from 0 to 660 mg L(-1). At high (1320-2000 mg L(-1)) glucose concentrations, the degradation rate of 3-NP was reduced and the K(max) of 3-NP was even lower than the value obtained in the absence of glucose, suggesting that high concentrations of co-substrate could inhibit 3-NP biodegradation. At 2,4-DNP concentration of 30 mg L(-1), the K(max) of 2,4-DNP with glucose as co-substrate was about 30 times the value with 2,4-DNP as sole substrate. 2,6-DNP preformed high toxicity in the case of sole carbon source degradation and the kinetic data was hardly obtained. Copyright © 2012 Elsevier B.V. All rights reserved.
Exploring matrix effects on photochemistry of organic aerosols
Lignell, Hanna; Hinks, Mallory L.; Nizkorodov, Sergey A.
2014-01-01
This work explores the effect of the environment on the rate of photolysis of 2,4-dinitrophenol (24-DNP), an important environmental toxin. In stark contrast to the slow photolysis of 24-DNP in an aqueous solution, the photolysis rate is increased by more than an order of magnitude for 24-DNP dissolved in 1-octanol or embedded in secondary organic material (SOM) produced by ozonolysis of α-pinene. Lowering the temperature decreased the photolysis rate of 24-DNP in SOM much more significantly than that of 24-DNP in octanol, with effective activation energies of 53 kJ/mol and 12 kJ/mol, respectively. We discuss the possibility that the increasing viscosity of the SOM matrix constrains the molecular motion, thereby suppressing the hydrogen atom transfer reaction to the photo-excited 24-DNP. This is, to our knowledge, the first report of a significant effect of the matrix, and possibly viscosity, on the rate of an atmospheric photochemical reaction within SOM. It suggests that rates of photochemical processes in organic aerosols will depend on both relative humidity and temperature and thus altitude. The results further suggest that photochemistry in SOM may play a key role in transformations of atmospheric organics. For example, 24-DNP and other nitro-aromatic compounds should readily photodegrade in organic particulate matter, which has important consequences for predicting their environmental fates and impacts. PMID:25201953
Liu, Chenglong; Tao, Jia; Wu, Hui; Yang, Yixin; Chen, Qiang; Deng, Zeyu; Liu, Jiandi; Xu, Changshui
2017-01-01
Diabetic neuropathic pain (DNP), one of the early symptoms of diabetic neuropathy, relates to metabolic disorders induced by high blood glucose, neurotrophic vascular ischemia and hypoxia, and autoimmune factors. This study was aimed at exploring the effects of long noncoding RNA (lncRNA) BC168687 siRNA on DNP mediated by P2X 7 receptor on SGCs in DRG of rats. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats, the expression levels of P2X 7 mRNA and protein in the DRG, and nitric oxide (NO) in the serum were, respectively, detected in our study. Our experimental results showed that the level of BC168687 mRNA in DNP group was markedly higher than that of control group; the MWT and TWL of DNP + BC168687 si group were significantly increased, and the expression levels of P2X 7 in DRG and the concentrations of NO in serum of DNP + BC168687 si group were decreased compared to those of the DNP group. In conclusion, lncRNA BC168687 may participate in the pathogenesis of DNP mediated by P2X 7 receptor, which will provide a novel way for the study of the pathogenesis of diabetes mellitus complicated with neuropathic pain and its prevention and treatment.
Low-temperature dynamic nuclear polarization at 9.4 T with a 30 mW microwave source.
Thurber, Kent R; Yau, Wai-Ming; Tycko, Robert
2010-06-01
Dynamic nuclear polarization (DNP) can provide large signal enhancements in nuclear magnetic resonance (NMR) by transfer of polarization from electron spins to nuclear spins. We discuss several aspects of DNP experiments at 9.4 T (400 MHz resonant frequency for (1)H, 264 GHz for electron spins in organic radicals) in the 7-80K temperature range, using a 30 mW, frequency-tunable microwave source and a quasi-optical microwave bridge for polarization control and low-loss microwave transmission. In experiments on frozen glycerol/water doped with nitroxide radicals, DNP signal enhancements up to a factor of 80 are observed (relative to (1)H NMR signals with thermal equilibrium spin polarization). The largest sensitivity enhancements are observed with a new triradical dopant, DOTOPA-TEMPO. Field modulation with a 10 G root-mean-squared amplitude during DNP increases the nuclear spin polarizations by up to 135%. Dependencies of (1)H NMR signal amplitudes, nuclear spin relaxation times, and DNP build-up times on the dopant and its concentration, temperature, microwave power, and modulation frequency are reported and discussed. The benefits of low-temperature DNP can be dramatic: the (1)H spin polarization is increased approximately 1000-fold at 7 K with DNP, relative to thermal polarization at 80K. (c) 2010 Elsevier Inc. All rights reserved.
Elliott, Naomi; Farnum, Karen; Beauchesne, Michelle
2016-01-01
Although graduates of doctor of nursing practice (DNP) programs are expected to demonstrate competence in advanced clinical scholarship, mentoring, and leadership, little is published about how team debate on a global health care topic supports DNP student learning and skill development. This article reports on an illuminative evaluation of DNP student learning experiences of team debate in the context of a 2-week international school program in Ireland. A focused illuminative evaluation approach involving a cohort of seven DNP students, who had participated in an international school team debate, was used. Data were collected using a Web-based qualitative questionnaire designed to elicit in-depth reflective accounts of DNP students' learning experiences. Content analysis revealed that team debate on a global health care topic enhanced learning in relation to fostering critical thinking and critical appraisal skills; encouraging teamwork; providing opportunities for mentoring, relationship building, and socialization into profession; and, from the DNP student perspective, increasing knowledge and global understanding of health care. This evaluation provides insights for nurse educators into the benefits of introducing team debate as a group activity to enhancing scholarly inquiry and mentoring skills of DNP students. Further research to evaluate team debate in other nurse education programs is needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-20
... Manufacturing Authority; Foreign-Trade Subzone 33E; DNP IMS America Corporation (Thermal Transfer Ribbon Printer..., grantee of FTZ 33, has requested an expansion of the scope of manufacturing authority on behalf of DNP IMS... scope of manufacturing authority under zone procedures to include activity related to thermal transfer...
Enhancement of allergic responses in vivo and in vitro by butylated hydroxytoluene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaki, Kouya; Taneda, Shinji; Yanagisawa, Rie
2007-09-01
The effect of butylated hydroxytoluene (BHT), which is used widely as an antioxidant, on IgE-dependent allergic responses in vivo and in vitro was investigated. For in vivo study, passive cutaneous anaphylaxis (PCA) was elicited in rats by i.d. injection of anti-DNP IgE and 48 h later by i.v. injection of DNP-HSA. BHT was i.p. given immediately after anti-DNP IgE injection. For in vitro studies, the rat mast cell line RBL2H3 sensitized with monoclonal anti-dinitrophenol (DNP) IgE was challenged with the multivalent antigen DNP-human serum albumin (DNP-HSA) in the presence or absence of BHT. {beta}-Hexosaminidase and histamine released from RBL2H3 cells,more » as indicators of degranulation of the cells, the concentration of intracellular Ca{sup 2+}, the level of phosphorylated-Akt, and global tyrosine phosphorylation as indicators of mast cell activation, were measured. The results showed that BHT given to anti-DNP IgE-sensitized rats augmented DNP-specific PCA in a dose-dependent manner. In the presence of BHT, IgE-induced releases of {beta}-hexosaminidase and histamine from RBL2H3 cells were increased. BHT also further elevated IgE-mediated increased concentrations of intracellular Ca{sup 2+} and the levels of phosphorylated-Akt, but did not affect global tyrosine phosphorylation, in RBL2H3 cells. Moreover, the PI3K inhibitor LY294002 inhibited IgE-dependent degranulation and its enhancement by BHT. These findings indicate that BHT may upregulate PCA by enhancing mast cell degranulation associated with enhancements of intracellular Ca{sup 2+} concentration and PI3K activation, suggesting that BHT might affect allergic diseases such as allergic rhinitis and asthma.« less
Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V.; Hong, Mei
2016-01-01
Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~4 fold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390
13 C dynamic nuclear polarization using isotopically enriched 4-oxo-TEMPO free radicals.
Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Lumata, Lloyd
2016-12-01
The nitroxide-based free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of 15 N and/or 2 H isotopic labeling of 4-oxo-TEMPO free radical on 13 C DNP of 3 M [1- 13 C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for 13 C DNP: 4-oxo-TEMPO, 4-oxo-TEMPO- 15 N, 4-oxo-TEMPO-d 16 and 4-oxo-TEMPO- 15 N,d 16 . Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the 13 C DNP efficiency of these 15 N and/or 2 H-enriched 4-oxo-TEMPO free radicals are relatively the same compared with 13 C DNP performance of the regular 4-oxo-TEMPO. Furthermore, when fully deuterated glassing solvents were used, the 13 C DNP signals of these samples all doubled in the same manner, and the 13 C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4-oxo-TEMPO free radicals have negligible effects on the 13 C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Martín, Roberto; Menchón, Cristina; Apostolova, Nadezda; Victor, Victor M; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo
2010-11-23
Diamond nanoparticles (DNPs) obtained by explosive detonation have become commercially available. These commercial DNPs can be treated under Fenton conditions (FeSO(4) and H(2)O(2) at acidic pH) to obtain purer DNP samples with a small average particle size (4 nm) and a large population of surface OH groups (HO-DNPs). These Fenton-treated HO-DNPs have been used as a support of gold and platinum nanoparticles (≤2 nm average size). The resulting materials (Au/HO-DNP and Pt/HO-DNP) exhibit a high antioxidant activity against reactive oxygen species induced in a hepatoma cell line. In addition to presenting good biocompatibility, Au/HO- and Pt/HO-DNP exhibit about a two-fold higher antioxidant activity than glutathione, one of the reference antioxidant systems. The most active material against cellular oxidative stress was Au/HO-DNP.
Kaminker, Ilia; Han, Songi
2018-06-07
Dynamic nuclear polarization (DNP) takes center stage in nuclear magnetic resonance (NMR) as a tool to amplify its signal by orders of magnitude through the transfer of polarization from electron to nuclear spins. In contrast to modern NMR and electron paramagnetic resonance (EPR) that extensively rely on pulses for spin manipulation in the time domain, the current mainstream DNP technology exclusively relies on monochromatic continuous wave (CW) irradiation. This study introduces arbitrary phase shaped pulses that constitute a train of coherent chirp pulses in the time domain at 200 GHz (7 T) to dramatically enhance the saturation bandwidth and DNP performance compared to CW DNP, yielding up to 500-fold in NMR signal enhancements. The observed improvement is attributed to the recruitment of additional electron spins contributing to DNP via the cross-effect mechanism, as experimentally confirmed by two-frequency pump-probe electron-electron double resonance (ELDOR).
Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals
NASA Astrophysics Data System (ADS)
Katz, Itai; Blank, Aharon
2015-12-01
Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.
Continuous-wave Submillimeter-wave Gyrotrons
Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.
2007-01-01
Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605
NASA Astrophysics Data System (ADS)
Li, Xiaosong; Du, Nan; Li, Haijun; Long, Shan; Chen, Dianjun; Zhou, Feifan; Xu, Yuanyuan; Wang, Fuli; Chen, Wei R.
2017-02-01
To evaluate the efficacy and safety of photothermal with dinitrophenyl hapten (DNP) for patients with malignant melanoma (MM), Patients with pathology confirmed stage III or IV MM were enrolled. Seventy-two patients were randomized into two groups, DNP alone group (n=36) and DNP plus photothermal therapy group (n=36). The results showed that the patients in the combination treatment group had longer median progression-free survival time (19.0m vs. 12.0m, p=0.007). No severe adverse events were observed in both groups. Thus, the combination of photothermal therapy and DNP maybe a new therapeutic strategy for patients with advanced MM.
Improved strategies for DNP-enhanced 2D 1 H-X heteronuclear correlation spectroscopy of surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Perras, Frederic A.; Chaudhary, Umesh
We demonstrate that dynamic nuclear polarization (DNP)-enhanced 1H-X heteronuclear correlation (HETCOR) measurements of hydrogen-rich surface species are better accomplished by using proton-free solvents. This approach notably prevents HETCOR spectra from being obfuscated by the solvent-derived signals otherwise present in DNP measurements. Additionally, in the hydrogen-rich materials studied here, which included functionalized mesoporous silica nanoparticles and metal organic frameworks, the use of proton-free solvents afforded higher sensitivity gains than the commonly used solvents containing protons. Here, we also explored the possibility of using a solvent-free sample formulation and the feasibility of indirect detection in DNP-enhanced HETCOR experiments.
Improved strategies for DNP-enhanced 2D 1 H-X heteronuclear correlation spectroscopy of surfaces
Kobayashi, Takeshi; Perras, Frederic A.; Chaudhary, Umesh; ...
2017-08-12
We demonstrate that dynamic nuclear polarization (DNP)-enhanced 1H-X heteronuclear correlation (HETCOR) measurements of hydrogen-rich surface species are better accomplished by using proton-free solvents. This approach notably prevents HETCOR spectra from being obfuscated by the solvent-derived signals otherwise present in DNP measurements. Additionally, in the hydrogen-rich materials studied here, which included functionalized mesoporous silica nanoparticles and metal organic frameworks, the use of proton-free solvents afforded higher sensitivity gains than the commonly used solvents containing protons. Here, we also explored the possibility of using a solvent-free sample formulation and the feasibility of indirect detection in DNP-enhanced HETCOR experiments.
Truncated Cross Effect Dynamic Nuclear Polarization: An Overhauser Effect Doppelgänger.
Equbal, Asif; Li, Yuanxin; Leavesley, Alisa; Huang, Shengdian; Rajca, Suchada; Rajca, Andrzej; Han, Songi
2018-05-03
The discovery of a truncated cross-effect (CE) in dynamic nuclear polarization (DNP) NMR that has the features of an Overhauser-effect DNP (OE-DNP) is reported here. The apparent OE-DNP, where minimal μw power achieved optimum enhancement, was observed when doping Trityl-OX063 with a pyrroline nitroxide radical that possesses electron-withdrawing tetracarboxylate substituents (tetracarboxylate-ester-pyrroline or TCP) in vitrified water/glycerol at 6.9 T and at 3.3 to 85 K, in apparent contradiction to expectations. While the observations are fully consistent with OE-DNP, we discover that a truncated cross-effect ( tCE) is the underlying mechanism, owing to TCP's shortened T 1e . We take this observation as a guideline and demonstrate that a crossover from CE to tCE can be replicated by simulating the CE of a narrow-line (Trityl-OX063) and a broad-line (TCP) radical pair, with a significantly shortened T 1e of the broad-line radical.
Kobayashi, Takeshi; Perras, Frederic A.; Goh, Tian Wei; ...
2016-06-06
Ultrawideline dynamic nuclear polarization (DNP)-enhanced 195Pt solid-state NMR (SSNMR) spectroscopy and theoretical calculations are used to determine the coordination of atomic Pt species supported within the pores of metal–organic frameworks (MOFs). The 195Pt SSNMR spectra, with breadths reaching 10,000 ppm, were obtained by combining DNP with broadbanded cross-polarization and CPMG acquisition. Although the DNP enhancements in static samples are lower than those typically observed under magic-angle spinning conditions, the presented measurements would be very challenging using the conventional SSNMR methods. The DNP-enhanced ultrawideline NMR spectra served to separate signals from cis- and trans-coordinated atomic Pt 2+ species supported on themore » UiO-66-NH 2 MOF. Here, the data revealed a dominance of kinetic effects in the formation of Pt 2+ complexes and the thermodynamic effects in their reduction to nanoparticles. A single cis-coordinated Pt 2+ complex was confirmed in MOF-253.« less
Optimal sample formulations for DNP SENS: The importance of radical-surface interactions
Perras, Frederic A.; Wang, Lin-Lin; Manzano, J. Sebastian; ...
2017-11-15
The efficacy of dynamic nuclear polarization (DNP) surface-enhanced NMR spectroscopy (SENS) is reviewed for alumina, silica, and ordered mesoporous carbon (OMC) materials, with vastly different surface areas, as a function of the biradical concentration. Importantly, our studies show that the use of a “one-size-fits-all” biradical concentration should be avoided when performing DNP SENS experiments and instead an optimal concentration should be selected as appropriate for the type of material studied as well as its surface area. In general, materials with greater surface areas require higher radical concentrations for best possible DNP performance. This result is explained with the use ofmore » a thermodynamic model wherein radical-surface interactions are expected to lead to an increase in the local concentration of the polarizing agent at the surface. We also show, using plane-wave density functional theory calculations, that weak radical-surface interactions are the cause of the poor performance of DNP SENS for carbonaceous materials.« less
Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR
2015-01-01
We show how dynamic nuclear polarization (DNP) enhanced solid-state NMR spectroscopy can be used to characterize polymorphs and solvates of organic solids. We applied DNP to three polymorphs and one hydrated form of the asthma drug molecule theophylline. For some forms of theophylline, sample grinding and impregnation with the radical-containing solution, which are necessary to prepare the samples for DNP, were found to induce polymorphic transitions or desolvation between some forms. We present protocols for sample preparation for solid-state magic-angle spinning (MAS) DNP experiments that avoid the polymorphic phase transitions in theophylline. These protocols include cryogrinding, grinding under inert atmosphere, and the appropriate choice of the impregnating liquid. By applying these procedures, we subsequently demonstrate that two-dimensional correlation experiments, such as 1H–13C and 1H–15N HETCOR or 13C–13C INADEQUATE, can be obtained at natural isotopic abundance in reasonable times, thus enabling more advanced structural characterization of polymorphs. PMID:26393368
Many-body kinetics of dynamic nuclear polarization by the cross effect
NASA Astrophysics Data System (ADS)
Karabanov, A.; Wiśniewski, D.; Raimondi, F.; Lesanovsky, I.; Köckenberger, W.
2018-03-01
Dynamic nuclear polarization (DNP) is an out-of-equilibrium method for generating nonthermal spin polarization which provides large signal enhancements in modern diagnostic methods based on nuclear magnetic resonance. A particular instance is cross-effect DNP, which involves the interaction of two coupled electrons with the nuclear spin ensemble. Here we develop a theory for this important DNP mechanism and show that the nonequilibrium nuclear polarization buildup is effectively driven by three-body incoherent Markovian dissipative processes involving simultaneous state changes of two electrons and one nucleus. We identify different parameter regimes for effective polarization transfer and discuss under which conditions the polarization dynamics can be simulated by classical kinetic Monte Carlo methods. Our theoretical approach allows simulations of the polarization dynamics on an individual spin level for ensembles consisting of hundreds of nuclear spins. The insight obtained by these simulations can be used to find optimal experimental conditions for cross-effect DNP and to design tailored radical systems that provide optimal DNP efficiency.
Kocasarac, Can; Yigit, Yavuz; Sengul, Erkan; Sakalar, Yildirim Beyazit
2018-04-01
To assess changes in choroidal thickness (CT) in diabetes patients with and without diabetic nephropathy using enhanced depth imaging spectral domain optical coherence tomography (EDI-OCT). Thirty-five type 2 diabetes patients with a diagnosis of diabetic nephropathy (DNP) in nephrology department and 35 type 2 diabetes patients without nephropathy (non-DNP) were included in our prospective study consecutively. The control group comprised 34 healthy individuals. CT measurements were recorded under the fovea and at 1500 µm from the foveal center in the nasal and temporal sides. The study parameters also included age, refractive error, axial length, intraocular pressure, HbA1c, glomerular filtration rate and proteinuria amount. The subfoveal, temporal and nasal choroidal thickness was noted to be thinner in patients with DNP compared with non-DNP and normal subjects (p < 0.05). However, CT measurements did not show any difference between the healthy and non-DNP group. CT decreases significantly in diabetic patients when diabetic nephropathy accompanies diabetes mellitus.
Evaluating resilience of DNP3-controlled SCADA systems against event buffer flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Guanhua; Nicol, David M; Jin, Dong
2010-12-16
The DNP3 protocol is widely used in SCADA systems (particularly electrical power) as a means of communicating observed sensor state information back to a control center. Typical architectures using DNP3 have a two level hierarchy, where a specialized data aggregator device receives observed state from devices within a local region, and the control center collects the aggregated state from the data aggregator. The DNP3 communication between control center and data aggregator is asynchronous with the DNP3 communication between data aggregator and relays; this leads to the possibility of completely filling a data aggregator's buffer of pending events, when a relaymore » is compromised or spoofed and sends overly many (false) events to the data aggregator. This paper investigates how a real-world SCADA device responds to event buffer flooding. A Discrete-Time Markov Chain (DTMC) model is developed for understanding this. The DTMC model is validated by a Moebius simulation model and data collected on real SCADA testbed.« less
Kosugi, Shingo; Kiyoshi, Keiji; Oba, Takahiro; Kusumoto, Kenichi; Kadokura, Toshimori; Nakazato, Atsumi; Nakayama, Shunichi
2014-01-01
We isolated 2,4-dinitrophenol (DNP)-resistant sake yeast strains by UV mutagenesis. Among the DNP-resistant mutants, we focused on strains exhibiting high malic acid and low acetic acid production. The improved organic acid composition is unlikely to be under the control of enzyme activities related to malic and acetic acid synthesis pathways. Instead, low mitochondrial activity was observed in DNP-resistant mutants, indicating that the excess pyruvic acid generated during glycolysis is not metabolized in the mitochondria but converted to malic acid in the cytosol. In addition, the NADH/NAD(+) ratio of the DNP-resistant strains was higher than that of the parental strain K901. These results suggest that the increased NADH/NAD(+) ratio together with the low mitochondrial activity alter the organic acid composition because malic acid synthesis requires NADH, while acetic acid uses NAD(+). Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Ito, Shinji; Hyodo, Fuminori
2016-02-19
Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. The relative locational relationship of spectral peaks in the DNP spectra between the AFR (520 and 525 MHz), (14)N-labeled carbamoyl-PROXYL ((14)N-CmP) (526.5 MHz), and Oxo63 (522 MHz) was different from that in the X-band ESR spectra, but were similar to that in the 300-MHz ESR spectra. The ratio of DNP enhancement to radical concentration for the AFR was higher than those for (14)N-CmP, Oxo63, and flavin semiquinone radicals. The spectroscopic DNP properties observed for the AFR were essentially the same as those for AFR mediated by pyrroloquinoline quinone. Moreover, we made a success of in vivo DNP-MR imaging of the CoQ0-mediated AFR which was administered by the subcutaneous and oral injections as an imaging probe.
Keltner, John R.; Fennema-Notestine, Christine; Vaida, Florin; Wang, Dongzhe; Franklin, Donald R.; Dworkin, Robert H.; Sanders, Chelsea; McCutchan, J. Allen; Archibald, Sarah L.; Miller, David J.; Kesidis, George; Cushman, Clint; Kim, Sung Min; Abramson, Ian; Taylor, Michael J.; Theilmann, Rebecca J.; Julaton, Michelle D.; Notestine, Randy J.; Corkran, Stephanie; Cherner, Mariana; Duarte, Nichole A.; Alexander, Terry; Robinson-Papp, Jessica; Gelman, Benjamin B.; Simpson, David M.; Collier, Ann C.; Marra, Christina M.; Morgello, Susan; Brown, Greg; Grant, Igor; Atkinson, J. Hampton; Jernigan, Terry L.; Ellis, Ronald J.
2014-01-01
Despite modern antiretroviral therapy, HIV-associated sensory neuropathy affects over 50% of HIV patients. The clinical expression of HIV neuropathy is highly variable: many individuals report few symptoms, but about half report distal neuropathic pain (DNP), making it one of the most prevalent, disabling and treatment-resistant complications of HIV disease. The presence and intensity of pain is not fully explained by the degree of peripheral nerve damage, making it unclear why some patients do, and others do not, report pain. To better understand central nervous system contributions to HIV DNP, we performed a cross-sectional analysis of structural magnetic resonance imaging (MRI) volumes in 241 HIV-infected participants from an observational multi-site cohort study at five US sites (CNS HIV Antiretroviral Treatment Effects Research Study, CHARTER). The association between DNP and the structural imaging outcomes was investigated using both linear and nonlinear (Gaussian Kernel support vector) multivariable regression, controlling for key demographic and clinical variables. Severity of DNP symptoms was correlated with smaller total cerebral cortical gray matter volume (R = −0.24; p = 0.004). Understanding the mechanisms for this association between smaller total cortical volumes and DNP may provide insight into HIV DNP chronicity and treatment-resistance. PMID:24549970
Cortez, IbDanelo; Bulavin, Dmitry V.; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T
2018-01-01
A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38αAF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38αAF/+) and kinase activity. As a result, aged DN-p38αAF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer’s disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual’s relative risk. In the present study, we evaluated aged DN-p38αAF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38αAF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38αAF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38αAF/+, we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38αAF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. PMID:27765672
Schlagowski, A I; Singh, F; Charles, A L; Gali Ramamoorthy, T; Favret, F; Piquard, F; Geny, B; Zoll, J
2014-02-15
The effects of mitochondrial uncoupling on skeletal muscle mitochondrial adaptation and maximal exercise capacity are unknown. In this study, rats were divided into a control group (CTL, n = 8) and a group treated with 2,4-dinitrophenol, a mitochondrial uncoupler, for 28 days (DNP, 30 mg·kg(-1)·day(-1) in drinking water, n = 8). The DNP group had a significantly lower body mass (P < 0.05) and a higher resting oxygen uptake (Vo2, P < 0.005). The incremental treadmill test showed that maximal running speed and running economy (P < 0.01) were impaired but that maximal Vo2 (Vo2max) was higher in the DNP-treated rats (P < 0.05). In skinned gastrocnemius fibers, basal respiration (V0) was higher (P < 0.01) in the DNP-treated animals, whereas the acceptor control ratio (ACR, Vmax/V0) was significantly lower (P < 0.05), indicating a reduction in OXPHOS efficiency. In skeletal muscle, DNP activated the mitochondrial biogenesis pathway, as indicated by changes in the mRNA expression of PGC1-α and -β, NRF-1 and -2, and TFAM, and increased the mRNA expression of cytochrome oxidase 1 (P < 0.01). The expression of two mitochondrial proteins (prohibitin and Ndufs 3) was higher after DNP treatment. Mitochondrial fission 1 protein (Fis-1) was increased in the DNP group (P < 0.01), but mitofusin-1 and -2 were unchanged. Histochemical staining for NADH dehydrogenase and succinate dehydrogenase activity in the gastrocnemius muscle revealed an increase in the proportion of oxidative fibers after DNP treatment. Our study shows that mitochondrial uncoupling induces several skeletal muscle adaptations, highlighting the role of mitochondrial coupling as a critical factor for maximal exercise capacities. These results emphasize the importance of investigating the qualitative aspects of mitochondrial function in addition to the amount of mitochondria.
Cortez, IbDanelo; Bulavin, Dmitry V; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T
2017-03-30
A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38α AF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38α AF/+ ) and kinase activity. As a result, aged DN-p38α AF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer's disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual's relative risk. In the present study, we evaluated aged DN-p38α AF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38α AF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38α AF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38α AF/+ , we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38α AF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Xue-hong; Jiang, Jiu-kun; Lu, Yuan-qiang
2015-08-01
The intoxications caused by 2,4-dinitrophenol (2,4-DNP), even death, have been frequently reported in recent years. This study aims to investigate the dynamic changes of plasma toxin concentration and explore the clinical value of resin hemoperfusion (HP) in the treatment of patients with acute 2,4-DNP poisoning. We reported 16 cases of acute 2,4-DNP poisoning through occupational exposure due to ignoring the risk of poisoning. The blood samples were collected from the 14 survivors. According to the different treatments of resin HP, the survivors were divided into routine HP (n=5) and intensive HP (n=9) groups. Ultra high performance liquid chromatography/ tandem mass spectroscopy (UPLC-MS/MS) was used to detect the 2,4-DNP concentration in plasma in this study. The 14 survivors recovered very well after treatment. The initial plasma 2,4-DNP concentrations (C1) of survivors ranged from 0.25 to 41.88 µg/ml (mean (12.56±13.93) µg/ml). A positive correlation existed between initial plasma 2,4-DNP concentration (C1) and temperature. The elimination of 2,4-DNP was slow and persistent, and the total clearance rates of plasma toxin from the 1st to 3rd day (R3), the 3rd to 7th day (R3-7), and the 1st to 7th day (R7), were only (53.03±14.04)%, (55.25±10.50)%, and (78.29±10.22)%, respectively. The plasma toxin was cleared up to 25 d after poisoning in most of the patients. The R3, R3-7, and R7 in the intensive HP group were all apparently higher than those in the routine HP group, with statistical significance (P<0.05). Simultaneously, the elimination half-life (t1/2) of 2,4-DNP in the intensive HP group was apparently shorter than that in the routine HP group, with statistical significance (P<0.05). The clinicians should be aware of this slow and persistent process in the elimination of plasma 2,4-DNP. Higher initial plasma toxin concentration resulted in a more severe fever for the patient. According to the limited data, longer and more frequent resin HP may accelerate to eliminate the poison.
Bleasdale, Emma E; Thrower, Sam N; Petróczi, Andrea
2018-01-01
2,4-Dinitrophenol (2,4-DNP) is an effective but highly dangerous fat burner, not licensed for human consumption. Death cases reported for 2,4-DNP overdose, particularly among young adults, have raised concerns about the ineffective regulatory control, lack of education and risks associated with impurity, and the unknown concentration of 2,4-DNP purchased on the Internet. Using a sequential mixed method design and based on a hypothetical scenario as if 2,4-DNP was a licensed pharmaceutical drug, first we conducted a qualitative study to explore what product attributes people consider when buying a weight-loss aid. Focus group interviews with six females and three males (mean age = 21.6 ± 1.8 years) were audiorecorded, transcribed verbatim, and subjected to thematic analysis. Sixteen attributes were identified for the Best-Worst Scale (BWS) in the quantitative survey with 106 participants (64% female, mean age = 27.1 ± 11.9 years), focusing on 2,4-DNP. Demographics, weight satisfaction, and risk for eating disorder data were collected. In contrast to experienced users such as bodybuilders, our study participants approached 2,4-DNP cautiously. Attributes of 2,4-DNP as a hypothetical weight-loss drug comprised a range of desirable and avoidable features. Of the 16 selected attributes, BWS suggested that long-term side effects were the most and branding was the least important attribute. Effectiveness and short-term side effects were also essential. Those in the >25 year group showed least concerns for legality. Neutral BWS scores for cost, treatment, degree of lifestyle changes required, and specificity required for the hypothetical weight-loss drug to be effective were likely caused by disagreement about their importance among the participants, not indifference. With advances in research, 2,4-DNP as a pharmaceutical drug in the future for treating neurodegenerative diseases and potentially for weight loss is not inconceivable. Caution is warranted for interpreting the BWS scores. Owing to the difference in what data represent at individual vs. population levels, with pooled data, the method correctly identifies attributes by which most people are satisfied but misrepresents attributes that are individually very important but not universally agreed. Whilst this may be an advantage in marketing applications, it limits the utility of BWS as a research tool.
Ainsworth, Neha Prasad; Vargo, Elisabeth Julie; Petróczi, Andrea
2018-02-01
2,4-Dinitrophenol (2,4-DNP) is a compound with multiple industrial purposes. Currently unlicensed for human consumption, it is used by the gym-going population for drastic, short-term body fat loss. Nonetheless, physiological mechanisms can lead to potentially fatal hyperthermia. Reported fatal incidents have caused concern and highlighted the need for intervention. Understanding decision-making leading to 2,4-DNP use alongside the perceived outgroup attitudes is vital to forming effective harm minimisation policies targeting current and potential users. First-hand accounts from this elusive population are scarce. Fourteen novel and experienced users (13 male, 1 female) were recruited via "snowballing" techniques. Semi-structured interviews were conducted, comprising 28 questions. Thematic content analysis was conducted using 37 codes. Four characteristic themes emerged: 1. Users considered the Internet to be a crucial multifunctional resource directly impacting their 2,4-DNP use. 2. Users "respected" 2,4-DNP, proactively taking harm reduction measures. 3. Attitudinal polarisation towards 2,4-DNP within the gym-going community was consistent in all accounts. 4. Users perceived outgroup populations to have inherently negative attitudes towards their use. These themes fell under the all-encompassing theme of "being in control". For the first time, this study offers a rich detail of attitudes toward 2,4-DNP use by giving a collective voice to users. The element of control over every aspect of the users' life appears to be a significant contributor to the successful risk-management of 2,4-DNP use. In the absence of an established safe upper limit and effective regulatory control, education is critical to harm minimisation. Copyright © 2017 Elsevier B.V. All rights reserved.
35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsh, David A.; Rossini, Aaron J.; Emsley, Lyndon
In this paper, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms. 35Cl SSNMR central-transition powder patterns of chloride ions are typically tens to hundreds of kHz in breadth, and most cannot be excited uniformly with high-power rectangular pulses or acquired under conditions of magic-angle spinning (MAS). Herein, we demonstrate the combination of DNP and 1H– 35Cl broadband adiabatic inversion crossmore » polarization (BRAIN-CP) experiments for the acquisition of high quality wideline spectra of APIs under static sample conditions, and obtain signals up to 50 times greater than in spectra acquired without the use of DNP at 100 K. We report a new protocol, called spinning-on spinning-off (SOSO) acquisition, where MAS is applied during part of the polarization delay to increase the DNP enhancements and then the MAS rotation is stopped so that a wideline 35Cl NMR powder pattern free from the effects of spinning sidebands can be acquired under static conditions. This method provides an additional two-fold signal enhancement compared to DNP-enhanced SSNMR spectra acquired under purely static conditions. DNP-enhanced 35Cl experiments are used to characterize APIs in bulk and dosage forms with Cl contents as low as 0.45 wt%. These results are compared to DNP-enhanced 1H– 13C CP/MAS spectra of APIs in dosage forms, which are often hindered by interfering signals arising from the binders, fillers and other excipient materials.« less
35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients
Hirsh, David A.; Rossini, Aaron J.; Emsley, Lyndon; ...
2016-08-24
In this paper, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms. 35Cl SSNMR central-transition powder patterns of chloride ions are typically tens to hundreds of kHz in breadth, and most cannot be excited uniformly with high-power rectangular pulses or acquired under conditions of magic-angle spinning (MAS). Herein, we demonstrate the combination of DNP and 1H– 35Cl broadband adiabatic inversion crossmore » polarization (BRAIN-CP) experiments for the acquisition of high quality wideline spectra of APIs under static sample conditions, and obtain signals up to 50 times greater than in spectra acquired without the use of DNP at 100 K. We report a new protocol, called spinning-on spinning-off (SOSO) acquisition, where MAS is applied during part of the polarization delay to increase the DNP enhancements and then the MAS rotation is stopped so that a wideline 35Cl NMR powder pattern free from the effects of spinning sidebands can be acquired under static conditions. This method provides an additional two-fold signal enhancement compared to DNP-enhanced SSNMR spectra acquired under purely static conditions. DNP-enhanced 35Cl experiments are used to characterize APIs in bulk and dosage forms with Cl contents as low as 0.45 wt%. These results are compared to DNP-enhanced 1H– 13C CP/MAS spectra of APIs in dosage forms, which are often hindered by interfering signals arising from the binders, fillers and other excipient materials.« less
Wan, Fa-Ping; Bai, Yang; Kou, Zhen-Zhen; Zhang, Ting; Li, Hui; Wang, Ya-Yun; Li, Yun-Qing
2017-01-01
Opiate analgesia in the spinal cord is impaired in diabetic neuropathic pain (DNP), but until now the reason is unknown. We hypothesized that it resulted from a decreased inhibition of substance P (SP) signaling within the dorsal horn of the spinal cord. To investigate this possibility, we evaluated the effects of endomorphin-2 (EM2), an endogenous ligand of the μ-opioid receptor (MOR), on SP release within lamina I of the spinal dorsal horn (SDH) in rats with DNP. We established the DNP rat model and compared the analgesic efficacy of EM2 between inflammation pain and DNP rat models. Behavioral results suggested that the analgesic efficacy of EM2 was compromised in the condition of painful diabetic neuropathy. Then, we measured presynaptic SP release induced by different stimulating modalities via neurokinin-1 receptor (NK1R) internalization. Although there was no significant change in basal and evoked SP release between control and DNP rats, EM2 failed to inhibit SP release by noxious mechanical and thermal stimuli in DNP but not in control and inflammation pain model. We also observed that EM2 decreased the number of FOS-positive neurons within lamina I of the SDH but did not change the amount of FOS/NK1R double-labeled neurons. Finally, we identified a remarkable decrease in MORs within the primary afferent fibers and dorsal root ganglion (DRG) neurons by Western blot (WB) and immunohistochemistry (IHC). Taken together, these data suggest that reduced presynaptic MOR expression might account for the loss of the inhibitory effect of EM2 on SP signaling, which might be one of the neurobiological foundations for decreased opioid efficacy in the treatment of DNP. PMID:28119567
Functional antigen binding by the defective B cells of CBA/N mice.
Snippe, H; Merchant, B; Lizzio, E F; Inman, J K
1982-01-01
CBA/N mice have an X-linked B cell defect which prevents them from responding to nonmitogenic thymic independent (TI-2) antigens such as dinitrophenylated DNP-Ficoll (1,2). The F1 male progeny of CBA/N female mice express the same defect. Spleen cell suspensions from such defective mice (CBA/N X C3H/HeN F1 males) could not respond to DNP-Ficoll following in vitro immunization and subsequent transfer into irradiated, syngeneic, F1 male recipients as expected. In contrast, normal CBA/N X C3H/HeN F1 female spleen cells could respond and effect a "rescue"; they mounted strong plaque-forming cell responses 7 days after in vitro exposure to DNP-Ficoll and subsequent transfer into irradiated F1 male recipients. Defective F1 male spleen cells, however, could bind significant quantities of 125I-DNP-Ficoll after in vitro exposure. Extensive washing of these spleen cells could not reverse this binding. Such DNP-Ficoll-exposed and washed F1 male spleen cells could, after transfer, aid normal untreated F1 female cells in their rescue function. The defective F1 male spleen cells could convey immunogenic quantities of DNP-Ficoll to the "rescuing" F1 female cells. Mitomycin treatment of F1 male cells did not interfere with their conveyor function. Goat anti-mouse mu serum impeded the passive antigen conveyor function of defective F1 male cells as did prior exposure to high concentrations of free DNP hapten. Our data support the view that the B cell defect of CBA/N X C3H/HeN F1 male mice does not relate to antigen binding, but rather to an inability to be effectively triggered by certain cell-bound polymeric antigens.
NASA Astrophysics Data System (ADS)
Horii, Fumitaka; Idehara, Toshitaka; Fujii, Yutaka; Ogawa, Isamu; Horii, Akifumi; Entzminger, George; Doty, F. David
2012-07-01
A dynamic nuclear polarization (DNP)-enhanced cross-polarization/magic-angle spinning (DNP/CP/MAS) NMR system has been developed by combining a 200 MHz Chemagnetics CMX-200 spectrometer operating at 4.7 T with a high-power 131.5 GHz Gyrotron FU CW IV. The 30 W sub-THz wave generated in a long pulse TE _{{41}}^{{(1)}} mode with a frequency of 5 Hz was successfully transmitted to the modified Doty Scientific low-temperature CP/MAS probe through copper smooth-wall circular waveguides. Since serious RF noises on NMR signals by arcing in the electric circuit of the probe and undesired sample heating were induced by the continuous sub-THz wave pulse irradiation with higher powers, the on-off sub-THz wave pulse irradiation synchronized with the NMR detection was developed and the appropriate setting of the irradiation time and the cooling time corresponding to the non-irradiation time was found to be very effective for the suppression of the arcing and the sample heating. The attainable maximum DNP enhancement was more than 30 folds for C1 13 C-enriched D-glucose dissolved in the frozen medium containing mono-radical 4-amino-TEMPO. The first DNP/CP/MAS 13 C NMR spectra of poly(methyl methacrylate) (PMMA) sub-micron particles were obtained at the dispersed state in the same frozen medium, indicating that DNP-enhanced 1H spins effectively diffuse from the medium to the PMMA particles through their surface and are detected as high-resolution 13 C spectra in the surficial region to which the 1H spins reach. On the basis of these results, the possibility of the DNP/CP/MAS NMR characterization of the surface structure of nanomaterials including polymer materials was discussed.
In vivo functional analysis of polyglutamic acid domains in recombinant bone sialoprotein.
Wazen, Rima M; Tye, Coralee E; Goldberg, Harvey A; Hunter, Graeme K; Smith, Charles E; Nanci, Antonio
2007-01-01
Bone sialoprotein (BSP) is an anionic phosphoprotein expressed in mineralizing connective tissues that binds to hydroxyapatite and nucleates its formation in vitro. Two polyglutamic acid regions (poly [E]) are believed to participate in these activities. The aim of this study was to evaluate the contribution of these acidic regions to the binding of prokaryote recombinant BSP (prBSP(E)) within an actual in vivo environment. Full-length prBSP(E) and prBSP(E) in which the poly [E] domains were replaced by polyalanine (prBSP(A)) were tagged with dinitrophenol (DNP). Tagged preparations comprised intact molecules and some fragmented forms. They were infused through a surgically created hole in the bone of rat hemimandibles and detected using immunogold labeling with anti-DNP antibodies. prBSP(E)-DNP was consistently immunodetected along exposed mineralized bone surfaces and osteocyte canaliculi at the surgical site. Few gold particles were observed on these surfaces when prBSP(A)-DNP was infused. Quantitative analyses showed significant differences in labeling between prBSP(E)-DNP (5.04 +/- 0.73 particles/micro m2) and prBSP(A)-DNP (1.37 +/- 0.35 particles/micro m2). These results indicate that poly [E] domains influence binding of prBSP(E) to surfaces presenting a mixture of mineral and proteins bathed by tissue fluids and suggest that they may similarly mediate the interaction of native BSP in the bone environment.
Defining and describing capacity issues in U.S. Doctor of Nursing Practice programs.
Minnick, Ann F; Norman, Linda D; Donaghey, Beth
2013-01-01
Recent calls to expand the number of U.S. Doctors of Nursing Practice (DNPs) raises questions about programs' capacities, content and requirements, and their ability to expand. This paper aims to describe (1) key aspects of DNP program capacities that may provide direction for DNP program expansion plans, the timing of such expansion and program QI efforts; and (2) the impact of the DNP on faculty resources for research doctoral programs. A survey of all U.S. DNP programs (n = 130; response rate 72%) was conducted in 2011 based on previously tested items. Reviews of Web sites of nonresponding schools provided some data from all programs. Ratios of students to faculty active in advanced practice (AP) and in QI (QI) were high (AP 11.0:1, SD 10.1; QI 20.2:1, SD 17.0 respectively). There was wide variation in scholarly requirements (0-4: 50% of program had none) and program committee composition (1-5; mode=2). Almost all responding schools that offered PhD and DNP programs reported assigning research-active or potentially research-active faculty in both programs. The ability to expand programs while maintaining quality may be compromised by capacity issues. Addressing demand issues through the alignment of program requirements with societal and employment requirements may provide directions for addressing current DNP capacity issues. Copyright © 2013 Elsevier Inc. All rights reserved.
Edwards, Joellen; Rayman, Kathleen; Diffenderfer, Sandra; Stidham, April
2016-01-01
At least 111 schools and colleges of nursing across the nation provide both PhD and DNP programs (AACN, 2014a). Collaboration between nurses with doctoral preparation as researchers (PhD) and practitioners (DNP) has been recommended as essential to further the profession; that collaboration can begin during the educational process. The purpose of this paper is to describe the development and implementation of successful DNP and PhD program collaboration, and to share the results of that collaboration in an educational setting. Faculty set strategic goals to maximize the effectiveness and efficiency of both new DNP and existing PhD programs. The goals were to promote collaboration and complementarity between the programs through careful capstone and dissertation differentiation, complementary residency activities, joint courses and inter-professional experiences; promote collegiality in a blended on-line learning environment through shared orientation and intensive on-campus sessions; and maximize resources in program delivery through a supportive organizational structure, equal access to technology support, and shared faculty responsibilities as appropriate to terminal degrees. Successes such as student and faculty accomplishments, and challenges such as managing class size and workload, are described. Collaboration, collegiality and the sharing of resources have strengthened and enriched both programs and contributed to the success of students, faculty. These innovative program strategies can provide a solid foundation for DNP and PhD collaboration. Copyright © 2016 Elsevier Inc. All rights reserved.
Krumholz, L.R.; Suflita, J.M.
1997-01-01
We evaluated the susceptibility of 2,4-dinitrophenol (2,4-DNP) and 2,4-diaminophenol to anaerobic biodegradation in aquifer slurries. Aquifer microorganisms depleted 2,4-DNP at rates of 25, 9 and 0.4 μM/day under methanogenic, sulfate-reducing and nitrate-reducing conditions, respectively. Rates of abiotic, 2,4-DNP loss in autoclaved control incubations were 7.2, 6.2 and 0.95 μM/day respectively. Abiotic, 2,4-DNP reduction was especially important as the first step in its transformation. 2-Amino-4-nitrophenol was produced by this process, but this compound was further metabolized in methanogenic and sulfate-reducing aquifer slurries. This partially reduced compound persisted in autoclaved controls and in the nitrate-reducing aquifer slurries. Aquifer slurries incubated with either 2,4-DNP or 2,4-diaminophenol produced methane when incubated with no other electron acceptor suggesting that mineralization had occurred under these conditions. In parallel experiments, aquifer slurries amended with 2,6-dinitrophenol or picric acid did not produce methane at levels above the substrate unamended controls.
NASA Astrophysics Data System (ADS)
Ivády, Viktor; Szász, Krisztián; Falk, Abram L.; Klimov, Paul V.; Christle, David J.; Janzén, Erik; Abrikosov, Igor A.; Awschalom, David D.; Gali, Adam
2015-09-01
Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.
Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun
2014-01-01
Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11)C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. The distribution of (11)C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight = 220 ± 8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11)C-DNP (45.0 ± 10.7 MBq). The whole-body distribution of the (11)C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11)C-DNP in the body (following the liver) (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3), respectively), indicating that the distribution of (11)C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. We demonstrated the whole-body distribution of (11)C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11)C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.
Protein-nucleotide contacts in motor proteins detected by DNP-enhanced solid-state NMR.
Wiegand, Thomas; Liao, Wei-Chih; Ong, Ta Chung; Däpp, Alexander; Cadalbert, Riccardo; Copéret, Christophe; Böckmann, Anja; Meier, Beat H
2017-11-01
DNP (dynamic nuclear polarization)-enhanced solid-state NMR is employed to directly detect protein-DNA and protein-ATP interactions and identify the residue type establishing the intermolecular contacts. While conventional solid-state NMR can detect protein-DNA interactions in large oligomeric protein assemblies in favorable cases, it typically suffers from low signal-to-noise ratios. We show here, for the oligomeric DnaB helicase from Helicobacter pylori complexed with ADP and single-stranded DNA, that this limitation can be overcome by using DNP-enhanced spectroscopy. Interactions are established by DNP-enhanced 31 P- 13 C polarization-transfer experiments followed by the recording of a 2D 13 C- 13 C correlation experiment. The NMR spectra were obtained in less than 2 days and allowed the identification of residues of the motor protein involved in nucleotide binding.
Vier, Juliane; Gerhard, Monika; Wagner, Hermann; Häcker, Georg
2004-01-01
Signalling through the death receptor CD95 induces apoptosis by formation of a signalling complex at the cell membrane and subsequent caspase-8 and caspase-3-activation. Treatment of Jurkat T cells with protonophores across the mitochondrial membrane such as 2,4-dinitrophenol (DNP) enhances the death-inducing capacity of CD95. In this study, we show that this enhancement is due to the specific acceleration of caspase-8-processing and activation at the CD95-receptor. DNP-treatment did not affect NF-kappaB-induction by CD95. Immunoprecipitation experiments showed that the amounts of the adapter FADD/MORT1 and pro-caspase-8 at the CD95-receptor were not altered by DNP. Subcellular fractionation studies revealed that the amount of mature caspase-8 but not pro-caspase at the membrane was increased following CD95-stimulation in the presence of DNP. As a consequence of caspase-activation, c-FLIP-levels in the cytosol decreased. In Jurkat cells overexpressing c-FLIPS, DNP was still able to enhance caspase-activation. The enhancing capacity of DNP was seen in some cell lines (Jurkat, CEM and HeLa) but not in SKW6 cells and was also found in mitogen-stimulated human T cells. Furthermore, the enhancement extended to TRAIL-induced caspase-activation. Thus, a mechanism exists by which caspase-8-activation can be accelerated at death receptors and this mechanism can be triggered by targeting mitochondrial oxidative phosphorylation.
Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques
Majmudar, Maulik D.; Yoo, Jeongsoo; Keliher, Edmund J.; Truelove, Jessica; Iwamoto, Yoshiko; Sena, Brena; Dutta, Partha; Borodovsky, Anna; Fitzgerald, Kevin; Di Carli, Marcelo; Libby, Peter; Anderson, Daniel G.; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias
2013-01-01
Rationale Myeloid cell content in atherosclerotic plaques associates with rupture and thrombosis. Thus, imaging of lesional monocyte and macrophages (Mo/Mϕ) could serve as a biomarker of disease progression and therapeutic intervention. Objective To noninvasively assess plaque inflammation with dextran nanoparticle-facilitated hybrid PET/MR imaging. Methods and Results Using clinically approved building blocks, we systematically developed 13nm polymeric nanoparticles consisting of crosslinked short chain dextrans which were modified with desferoxamine for zirconium-89 radiolabeling (89Zr-DNP) and a near infrared fluorochrome (VT680) for microscopic and cellular validation. Flow cytometry of cells isolated from excised aortas showed DNP uptake predominantly in Mo/Mϕ (76.7%) and lower signal originating from other leukocytes such as neutrophils and lymphocytes (11.8% and 0.7%, p<0.05 versus Mo/Mϕ). DNP colocalized with the myeloid cell marker CD11b on immunohistochemistry. PET/MRI revealed high uptake of 89Zr-DNP in the aortic root of ApoE−/− mice (standard uptake value, ApoE−/− mice versus wild type controls, 1.9±0.28 versus 1.3±0.03, p<0.05), corroborated by ex vivo scintillation counting and autoradiography. Therapeutic silencing of the monocyte-recruiting receptor CCR2 with siRNA decreased 89Zr-DNP plaque signal (p<0.05) and inflammatory gene expression (p<0.05). Conclusions Hybrid PET/MR imaging with a 13nm DNP enables noninvasive assessment of inflammation in experimental atherosclerotic plaques and reports on therapeutic efficacy of anti-inflammatory therapy. PMID:23300273
Fluorimetric assay of the neurotensin-degrading metalloendopeptidase, endopeptidase 24.16.
Dauch, P; Barelli, H; Vincent, J P; Checler, F
1991-12-01
Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp (Mcc = 3-carboxy-7-methoxycoumarin; Dnp = dinitrophenyl), a quenched fluorimetric substrate originally designed as a probe to measure Pz-peptidase (also called endopeptidase 24.15), was examined as a putative substrate of the neurotensin-degrading neutral metalloendopeptidase, endopeptidase 24.16. During the purification of endopeptidase 24.16 the neurotensin(1-10) and neurotensin(11-13) formation due to this enzyme was coeluted with Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp-hydrolysing activity. By both fluorimetric and h.p.l.c. analyses, we observed that the latter activity was dose-dependently and completely abolished by neurotensin with an IC50 value (2.6 microM) that closely corresponds to the affinity of purified endopeptidase 24.16 for neurotensin (Km = 2.5 microM). Furthermore, Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp hydrolysis was inhibited by a series of dipeptides with a rank of order of potencies that parallels that observed in competition experiments of tritiated neurotensin hydrolysis by brain and intestinal endopeptidase 24.16. Altogether, these data clearly demonstrate that, in addition to Pz-peptidase, Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp also behaves as a substrate of endopeptidase 24.16, with a Km of about 26 microM. In addition, we show that, even in crude membrane preparations, Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp behaves as a useful tool to monitor and accurately quantify endopeptidase 24.16.
Corzilius, Björn; Michaelis, Vladimir K; Penzel, Susanne A; Ravera, Enrico; Smith, Albert A; Luchinat, Claudio; Griffin, Robert G
2014-08-20
The study of inorganic crystalline materials by solid-state NMR spectroscopy is often complicated by the low sensitivity of heavy nuclei. However, these materials often contain or can be prepared with paramagnetic dopants without significantly affecting the structure of the crystalline host. Dynamic nuclear polarization (DNP) is generally capable of enhancing NMR signals by transferring the magnetization of unpaired electrons to the nuclei. Therefore, the NMR sensitivity in these paramagnetically doped crystals might be increased by DNP. In this paper we demonstrate the possibility of efficient DNP transfer in polycrystalline samples of [Co(en)3Cl3]2·NaCl·6H2O (en = ethylenediamine, C2H8N2) doped with Cr(III) in varying concentrations between 0.1 and 3 mol %. We demonstrate that (1)H, (13)C, and (59)Co can be polarized by irradiation of Cr(III) with 140 GHz microwaves at a magnetic field of 5 T. We further explain our findings on the basis of electron paramagnetic resonance spectroscopy of the Cr(III) site and analysis of its temperature-dependent zero-field splitting, as well as the dependence of the DNP enhancement factor on the external magnetic field and microwave power. This first demonstration of DNP transfer from one paramagnetic metal ion to its diamagnetic host metal ion will pave the way for future applications of DNP in paramagnetically doped materials or metalloproteins.
2015-01-01
The study of inorganic crystalline materials by solid-state NMR spectroscopy is often complicated by the low sensitivity of heavy nuclei. However, these materials often contain or can be prepared with paramagnetic dopants without significantly affecting the structure of the crystalline host. Dynamic nuclear polarization (DNP) is generally capable of enhancing NMR signals by transferring the magnetization of unpaired electrons to the nuclei. Therefore, the NMR sensitivity in these paramagnetically doped crystals might be increased by DNP. In this paper we demonstrate the possibility of efficient DNP transfer in polycrystalline samples of [Co(en)3Cl3]2·NaCl·6H2O (en = ethylenediamine, C2H8N2) doped with Cr(III) in varying concentrations between 0.1 and 3 mol %. We demonstrate that 1H, 13C, and 59Co can be polarized by irradiation of Cr(III) with 140 GHz microwaves at a magnetic field of 5 T. We further explain our findings on the basis of electron paramagnetic resonance spectroscopy of the Cr(III) site and analysis of its temperature-dependent zero-field splitting, as well as the dependence of the DNP enhancement factor on the external magnetic field and microwave power. This first demonstration of DNP transfer from one paramagnetic metal ion to its diamagnetic host metal ion will pave the way for future applications of DNP in paramagnetically doped materials or metalloproteins. PMID:25069794
Fluorimetric assay of the neurotensin-degrading metalloendopeptidase, endopeptidase 24.16.
Dauch, P; Barelli, H; Vincent, J P; Checler, F
1991-01-01
Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp (Mcc = 3-carboxy-7-methoxycoumarin; Dnp = dinitrophenyl), a quenched fluorimetric substrate originally designed as a probe to measure Pz-peptidase (also called endopeptidase 24.15), was examined as a putative substrate of the neurotensin-degrading neutral metalloendopeptidase, endopeptidase 24.16. During the purification of endopeptidase 24.16 the neurotensin(1-10) and neurotensin(11-13) formation due to this enzyme was coeluted with Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp-hydrolysing activity. By both fluorimetric and h.p.l.c. analyses, we observed that the latter activity was dose-dependently and completely abolished by neurotensin with an IC50 value (2.6 microM) that closely corresponds to the affinity of purified endopeptidase 24.16 for neurotensin (Km = 2.5 microM). Furthermore, Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp hydrolysis was inhibited by a series of dipeptides with a rank of order of potencies that parallels that observed in competition experiments of tritiated neurotensin hydrolysis by brain and intestinal endopeptidase 24.16. Altogether, these data clearly demonstrate that, in addition to Pz-peptidase, Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp also behaves as a substrate of endopeptidase 24.16, with a Km of about 26 microM. In addition, we show that, even in crude membrane preparations, Mcc-Pro-Leu-Gly-Pro-D-Lys-Dnp behaves as a useful tool to monitor and accurately quantify endopeptidase 24.16. PMID:1747117
Perras, Frederic A.; Chaudhary, Umesh; Slowing, Igor I.; ...
2016-05-06
Dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly being used as a tool for the atomic-level characterization of surface sites. DNP surface-enhanced SSNMR spectroscopy of materials has, however, been limited to studying relatively receptive nuclei, and the particularly rare 17O nuclide, which is of great interest for materials science, has not been utilized. We demonstrate that advanced 17O SSNMR experiments can be performed on surface species at natural isotopic abundance using DNP. We use 17O DNP surface-enhanced 2D SSNMR to measure 17O{ 1H} HETCOR spectra as well as dipolar oscillations on a series of thermally treatedmore » mesoporous silica nanoparticle samples having different pore diameters. These experiments allow for a nonintrusive and unambiguous characterization of hydrogen bonding and dynamics at the surface of the material; no other single experiment can give such details about the interactions at the surface. Lastly, our data show that, upon drying, strongly hydrogen-bonded surface silanols, whose motions are greatly restricted by the interaction when compared to lone silanols, are selectively dehydroxylated.« less
Kemp, Thomas F; Dannatt, Hugh R W; Barrow, Nathan S; Watts, Anthony; Brown, Steven P; Newton, Mark E; Dupree, Ray
2016-04-01
A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to (1)H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Mathematical Modeling and Data Analysis of NMR Experiments using Hyperpolarized 13C Metabolites
Pagès, Guilhem; Kuchel, Philip W.
2013-01-01
Rapid-dissolution dynamic nuclear polarization (DNP) has made significant impact in the characterization and understanding of metabolism that occurs on the sub-minute timescale in several diseases. While significant efforts have been made in developing applications, and in designing rapid-imaging radiofrequency (RF) and magnetic field gradient pulse sequences, very few groups have worked on implementing realistic mathematical/kinetic/relaxation models to fit the emergent data. The critical aspects to consider when modeling DNP experiments depend on both nuclear magnetic resonance (NMR) and (bio)chemical kinetics. The former constraints are due to the relaxation of the NMR signal and the application of ‘read’ RF pulses, while the kinetic constraints include the total amount of each molecular species present. We describe the model-design strategy we have used to fit and interpret our DNP results. To our knowledge, this is the first report on a systematic analysis of DNP data. PMID:25114541
Using implementation science as the core of the doctor of nursing practice inquiry project.
Riner, Mary E
2015-01-01
New knowledge in health care needs to be implemented for continuous practice improvement. Doctor of nursing practice (DNP) programs are designed to increase clinical practice knowledge and leadership skills of graduates. This article describes an implementation science course developed in a DNP program focused on advancing graduates' capacity for health systems leadership. Curriculum and course development are presented, and the course is mapped to depict how the course objectives and assignments were aligned with DNP Essentials. Course modules with rational are described, and examples of how students implemented assignments are provided. The challenges of integrating this course into the life of the school are discussed as well as steps taken to develop faculty for this capstone learning experience. This article describes a model of using implementation science to provide DNP students an experience in designing and managing an evidence-based practice change project. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanisms of Dynamic Nuclear Polarization in Insulating Solids
Can, T.V.; Ni, Q.Z.; Griffin, R.G.
2015-01-01
Dynamic nuclear polarization (DNP) is a technique used to enhance signal intensities in NMR experiments by transferring the high polarization of electrons to their surrounding nuclei. The past decade has witnessed a renaissance in the development of DNP, especially at high magnetic fields, and its application in several areas including biophysics, chemistry, structural biology and materials science. Recent technical and theoretical advances have expanded our understanding of established experiments: for example, the cross effect DNP in samples spinning at the magic angle. Furthermore, new experiments suggest that our understanding of the Overhauser effect and its applicability to insulating solids needs to be re-examined. In this article, we summarize important results of the past few years and provide quantum mechanical explanations underlying these results. We also discuss future directions of DNP and current limitations, including the problem of resolution in protein spectra recorded at 80–100 K. PMID:25797002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Wang, Lin-Lin; Manzano, J. Sebastian
The efficacy of dynamic nuclear polarization (DNP) surface-enhanced NMR spectroscopy (SENS) is reviewed for alumina, silica, and ordered mesoporous carbon (OMC) materials, with vastly different surface areas, as a function of the biradical concentration. Importantly, our studies show that the use of a “one-size-fits-all” biradical concentration should be avoided when performing DNP SENS experiments and instead an optimal concentration should be selected as appropriate for the type of material studied as well as its surface area. In general, materials with greater surface areas require higher radical concentrations for best possible DNP performance. This result is explained with the use ofmore » a thermodynamic model wherein radical-surface interactions are expected to lead to an increase in the local concentration of the polarizing agent at the surface. We also show, using plane-wave density functional theory calculations, that weak radical-surface interactions are the cause of the poor performance of DNP SENS for carbonaceous materials.« less
Dissolution DNP for in vivo preclinical studies
NASA Astrophysics Data System (ADS)
Comment, Arnaud
2016-03-01
The tremendous polarization enhancement afforded by dissolution dynamic nuclear polarization (DNP) can be taken advantage of to perform preclinical in vivo molecular and metabolic imaging. Following the injection of molecules that are hyperpolarized via dissolution DNP, real-time measurements of their biodistribution and metabolic conversion can be recorded. This technology therefore provides a unique and invaluable tool for probing cellular metabolism in vivo in animal models in a noninvasive manner. It gives the opportunity to follow and evaluate disease progression and treatment response without requiring ex vivo destructive tissue assays. Although its considerable potential has now been widely recognized, hyperpolarized magnetic resonance by dissolution DNP remains a challenging method to implement for routine in vivo preclinical measurements. The aim of this article is to provide an overview of the current state-of-the-art technology for preclinical applications and the challenges that need to be addressed to promote it and allow its wider dissemination in the near future.
Peptide conjugated polymeric nanoparticles as a carrier for targeted delivery of docetaxel.
Kulhari, Hitesh; Pooja, Deep; Shrivastava, Shweta; V G M, Naidu; Sistla, Ramakrishna
2014-05-01
The aim of this research work was to develop Bombesin peptide (BBN) conjugated, docetaxel loaded nanocarrier for the treatment of breast cancer. Docetaxel loaded nanoparticles (DNP) were prepared by solvent evaporation method using sodium cholate as surfactant. BBN was conjugated to DNP surface through covalent bonding. Both DNP and BBN conjugated DNP (BDNP) were characterized by various techniques such as dynamic light scattering, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and thermogravimetric analysis. The particle diameter and zeta potential of BDNP were 136±3.95 nm and -10.8±2.7 mV, respectively. The change in surface charge and FTIR studies confirmed the formation of amide linkage between BBN and DNP. AFM analysis showed that nanoparticles were spherical in shapes. In nanoparticles, docetaxel was present in its amorphous form as confirmed by DSC and PXRD analysis and was stable during the thermal studies. The formulations showed the sustained release of DTX over the period of 120 h. During cellular toxicity assay in gastrin releasing peptide receptor positive breast cancer cells (MDA-MB-231), BDNP were found to be 12 times more toxic than pure DTX and Taxotere. The IC50 value for DTX, Taxotere, DNP and BDNP was >375, >375, 142.23 and 35.53 ng/ml, respectively. The above studies showed that Bombesin conjugated nanocarrier system could be a promising carrier for active targeting of anticancer drugs in GRP receptor over expressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Lefticariu, Liliana; Sutton, Stephen R; Bender, Kelly S; Lefticariu, Mihai; Pentrak, Martin; Stucki, Joseph W
2017-01-01
Pollutants in acid mine drainage (AMD) are usually sequestered in neoformed nano- and micro-scale particles (nNP) through precipitation, co-precipitation, and sorption. Subsequent biogeochemical processes may control nNP stability and thus long-term contaminant immobilization. Mineralogical, chemical, and microbiological data collected from sediments accumulated over a six-year period in a coal-mine AMD treatment system were used to identify the pathways of contaminant dynamics. We present evidence that detrital nano- and micron-scale particles (dNP), composed mostly of clay minerals originating from the partial weathering of coal-mine waste, mediated biogeochemical processes that catalyzed AMD contaminant (1) immobilization by facilitating heterogeneous nucleation and growth of nNP in oxic zones, and (2) remobilization by promoting phase transformation and reductive dissolution of nNP in anoxic zones. We found that dNP were relatively stable under acidic conditions and estimated a dNP content of ~0.1g/L in the influent AMD. In the AMD sediments, the initial nNP precipitates were schwertmannite and poorly crystalline goethite, which transformed to well-crystallized goethite, the primary nNP repository. Subsequent reductive dissolution of nNP resulted in the remobilization of up to 98% of S and 95% of Fe accompanied by the formation of a compact dNP layer. Effective treatment of pollutants could be enhanced by better understanding the complex, dynamic role dNP play in mediating biogeochemical processes and contaminant dynamics at coal-mine impacted sites. Copyright © 2016 Elsevier B.V. All rights reserved.
Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field
NASA Astrophysics Data System (ADS)
Thurber, Kent R.; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J. R.
2018-04-01
Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants.
The ethics curriculum for doctor of nursing practice programs.
Peirce, Anne Griswold; Smith, Jennifer A
2008-01-01
Ethical questions dealt with by nurses who have Doctor of Nursing Practice (DNP) degrees include traditional bioethical questions, but also business and legal ethics. Doctorally prepared nurses are increasingly in positions to make ethical decisions rather than to respond to decisions made by others. The traditional master's-degree advanced practice nursing curriculum does not address the extended expertise and decision-making skills needed by DNP practitioners as they face these new types of ethical dilemmas. We propose that a curricular framework that addresses clinical, research, business, and legal ethics is needed by all DNP students.
Doctor of Nursing Practice: The Role of the Advanced Practice Nurse.
Walker, Deborah Kirk; Polancich, Shea
2015-11-01
To explore the evolution and emerging roles of the Doctor of Nursing Practice (DNP) Advanced Practice Nurse (APN). Published peer reviewed literature, cancer-related professional resources, and Web-based resources. The DNP education has prepared the APN for process improvement initiatives, providing quality care, and evidence-based practice translation, which are critical with the emerging trends in this complex health care environment. DNP-prepared APNs have the opportunity to impact oncology care across the cancer trajectory, in various settings, and in various innovative roles as entrepreneurs. Copyright © 2015 Elsevier Inc. All rights reserved.
Informatics Essentials for DNPs.
Jenkins, Melinda L
2018-01-01
Doctor of Nursing Practice (DNP) programs are proliferating around the US as advanced practice nursing programs evolve to build capacity by adding content on professional leadership, policy, and quality improvement to the traditional clinical content. One of the eight "Essentials" for DNP education is "Information systems/technology and patient care technology for the improvement and transformation of health care."[1] A required graduate course was revised and updated in 2017 to provide a foundation in clinical informatics for DNPs, as well as for nursing informatics specialists. Components of the online course, assignments, and free online resources linked to the DNP Essentials are described in this paper.
Optimization of 13C dynamic nuclear polarization: isotopic labeling of free radicals
NASA Astrophysics Data System (ADS)
Niedbalski, Peter; Parish, Christopher; Kiswandi, Andhika; Lumata, Lloyd
Dynamic nuclear polarization (DNP) is a physics technique that amplifies the nuclear magnetic resonance (NMR) signals by transferring the high polarization of the electrons to the nuclear spins. Thus, the choice of free radical is crucial in DNP as it can directly affect the NMR signal enhancement levels, typically on the order of several thousand-fold in the liquid-state. In this study, we have investigated the efficiency of four variants of the well-known 4-oxo-TEMPO radical (normal 4-oxo-TEMPO plus its 15N-enriched and/or perdeuterated variants) for use in DNP of an important metabolic tracer [1-13C]acetate. Though the variants have significant differences in electron paramagnetic resonance (EPR) spectra, we have found that changing the composition of the TEMPO radical through deuteration or 15N doping yields no significant difference in 13C DNP efficiency at 3.35 T and 1.2 K. On the other hand, deuteration of the solvent causes a significant increase of 13C polarization that is consistent over all the 4-oxo-TEMPO variants. These findings are consistent with the thermal mixing model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.
Impact of Gd3+ doping and glassing solvent deuteration on 13C DNP at 5 Tesla
NASA Astrophysics Data System (ADS)
Kiswandhi, Andhika; Lama, Bimala; Niedbalski, Peter; Goderya, Mudrekh; Long, Joanna; Lumata, Lloyd
Dynamic nuclear polarization (DNP) is a technique which can be used to amplify signals in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) by several thousand-fold. The most commonly available DNP system typically operates at the W-band field or 3.35 T, at which it has been shown that 13C NMR signal can be enhanced by deuteration and Gd3+ doping. In this work, we have investigated the applicability of these procedures at 5 T. Our results indicate that the deuteration of the glassing matrix still yields an enhancement of 13C DNP when 4-oxo-TEMPO free radical is used. The effect is attributed to the lower heat load of the deuterons compared to protons. An addition of a trace amount of Gd3+ gives a modest enhancement of the signal when trityl OX063 is used, albeit with a less pronounced relative enhancement compared to the results obtained at 3.35 T. The results suggest that the enhancement obtained via Gd3+ doping may become saturated at higher field. These results will be discussed using a thermodynamic model of DNP. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Andreas, Loren B.; Barnes, Alexander B.; Corzilius, Björn; Chou, James J.; Miller, Eric A.; Caporini, Marc; Rosay, Melanie; Griffin, Robert G
2013-01-01
We demonstrate the use of dynamic nuclear polarization (DNP) to elucidate ligand binding to a membrane protein using dipolar recoupling magic angle spinning (MAS) NMR. In particular, we detect drug binding in the proton transporter M218–60 from influenza A using recoupling experiments at room temperature and with cryogenic DNP. The results indicate that the pore binding site of rimantadine is correlated with previously reported widespread chemical shift changes, suggesting functional binding in the pore. Futhermore, the 15N labeled ammonium of rimantadine was observed near A30 13Cβ and G34 13Cα suggesting a possible hydrogen bond to A30 Carbonyl. Cryogenic DNP was required to observe the weaker external binding site(s) in a ZF-TEDOR spectrum. This approach is generally applicable, particularly for weakly bound ligands, in which case the application of MAS NMR dipolar recoupling requires the low temperatures to quench dynamic exchange processes. For the fully protonated samples investigated, we observed DNP signal enhancements of ~10 at 400 MHz using only 4–6 mM of the polarizing agent TOTAPOL. At 600 MHz and with DNP, we measured a distance between the drug and the protein to a precision of 0.2 Å. PMID:23480101
A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies
NASA Astrophysics Data System (ADS)
Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.
2012-10-01
We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).
A 140 GHz Pulsed EPR/212 MHz NMR Spectrometer for DNP Studies
Smith, Albert A.; Corzilius, Björn; Bryant, Jeffrey A.; DeRocher, Ronald; Woskov, Paul P.; Temkin, Richard J.; Griffin, Robert G.
2012-01-01
We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz (1H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE011 resonator acts as both an NMR coil and microwave resonator, and a double balanced (1H, 13C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = ½ electron spins, 100 kHz on 1H, and 50 kHz on 13C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (>3 T). PMID:22975246
Wang, Jun-Hui; Zuo, Shu-Rong; Luo, Jian-Ping
2017-04-10
Dendrobium nobile Lindl., an epiphytic herb distributed in the Southeast Asia, is used as a tonic and antipyretic herbal medicine in China. In this study, a water-soluble acidic heteropolysaccharide, DNP-W4, containing mannose, glucose, galactose, xylose, rhamnose, and galacturonic acid, in the molar ratios of 1.0:4.9:2.5:0.5:1.0:0.9, was obtained from the stems of Dendrobium nobile Lindl. Using methylation analysis, partial acid hydrolysis, pectolyase treatment, NMR, and ESI-MS, the structure of DNP-W4 was elucidated. The obtained data indicated that DNP-W4 was a complex heteropolysaccharide and possessed a backbone composed of (1→4)-linked β-d-Glcp, (1→6)-linked β-d-Glcp, and (1→6)-linked β-d-Galp, with substitutes at O-4/6 of Glcp residues and O-3 of Galp. The branches of DNP-W4 were composed of terminal Manp, (1→6)-linked β-d-Manp, (1→3)-linked β-d-Glcp, β-d-Glcp, β-d-Galp, (1→4)-linked α-d-GalAp, (1→2)-linked α-L-Rhap, and Xylp. DNP-W4 had little immunological activities, but its derivatives had immuno-stimulating activities to some extent.
NASA Astrophysics Data System (ADS)
Jain, Sheetal K.; Mathies, Guinevere; Griffin, Robert G.
2017-10-01
Dynamic nuclear polarization (DNP) is theoretically able to enhance the signal in nuclear magnetic resonance (NMR) experiments by a factor γe/γn, where γ 's are the gyromagnetic ratios of an electron and a nuclear spin. However, DNP enhancements currently achieved in high-field, high-resolution biomolecular magic-angle spinning NMR are well below this limit because the continuous-wave DNP mechanisms employed in these experiments scale as ω0-n where n ˜ 1-2. In pulsed DNP methods, such as nuclear orientation via electron spin-locking (NOVEL), the DNP efficiency is independent of the strength of the main magnetic field. Hence, these methods represent a viable alternative approach for enhancing nuclear signals. At 0.35 T, the NOVEL scheme was demonstrated to be efficient in samples doped with stable radicals, generating 1H NMR enhancements of ˜430. However, an impediment in the implementation of NOVEL at high fields is the requirement of sufficient microwave power to fulfill the on-resonance matching condition, ω0I = ω1S, where ω0I and ω1S are the nuclear Larmor and electron Rabi frequencies, respectively. Here, we exploit a generalized matching condition, which states that the effective Rabi frequency, ω1S e f f, matches ω0I. By using this generalized off-resonance matching condition, we generate 1H NMR signal enhancement factors of 266 (˜70% of the on-resonance NOVEL enhancement) with ω1S/2π = 5 MHz. We investigate experimentally the conditions for optimal transfer of polarization from electrons to 1H both for the NOVEL mechanism and the solid-effect mechanism and provide a unified theoretical description for these two historically distinct forms of DNP.
Bagal, Manisha V; Lele, Bhagyashree J; Gogate, Parag R
2013-09-01
Sonochemical removal of 2,4-dinitrophenol (DNP) has been investigated using ultrasonic bath, with an operating capacity of 7 L, fitted with a large transducer with longitudinal vibrations having a 1 kW rated power output and operating frequency of 25 kHz. It has been revealed from calorimetric studies that maximum power is dissipated at a capacity of 7 L. The concentration of DNP has been monitored with an objective of evaluation of the efficacy of ultrasonic reactor in combination with process intensifying approaches for the removal of DNP. The effect of operating pH and additives such as hydrogen peroxide and ferrous iron activated persulfate on the extent of removal of DNP has been investigated. It has been observed that the extent of removal is greater at lower pH (pH 2.5 and 4) than at higher pH (pH 10). The combined treatment strategies such as ultrasound (US)/Fenton, US/advanced Fenton and US/CuO/H2O2 have also been investigated with an objective of obtaining complete removal of DNP using hybrid treatment strategies. The extent of removal has been found to increase significantly in US/Fenton process (98.7%) as compared to that using US alone (5.8%) which demonstrates the efficacy of the combined process. First order kinetics has been fitted for all the approaches investigated in the work. Calculations of cavitational yield indicated the superiority of the reactor design as compared to the conventional ultrasonic horn type reactors. The main intermediates formed during the process of removal of DNP have been identified. Copyright © 2013 Elsevier B.V. All rights reserved.
Hogewoning, Cornelis R C; Elzevier, Henk W; Pelger, Rob C M; Bekker, Milou D; DeRuiter, Marco C
2015-08-01
One of the methods to treat post radical prostatectomy stress urinary incontinence is the AdVance (American Medical Systems, Minnetonka, MN, USA) male sling procedure. During this procedure, the somatic innervation of the penis may be at risk for injury. Six AdVance procedures were performed in six donated bodies at the Anatomy and Embryology Department of the Leiden University Medical Centre. The pelves were dissected and the shortest distance between the sling and the dorsal nerve of the penis (DNP) was documented. The aim of this study was to describe the anatomical relation between the AdVance male sling and penile nerves based on the dissection of six adult male pelves. The AdVance male sling procedure was conducted in six donated male bodies. After placement, the pelves were dissected and the shortest distance between sling and the DNP was documented. The main outcome measure was the distance between the AdVance male sling and the DNP. The mean distance of the sling to the DNP was 4.1 mm and was found situated directly next to the nerve (distance 0 mm) in 4 out of 12 (33%) hemipelves. The distance of the sling to the obturator neurovascular bundle was 30 mm or more in all six bodies. Damage to the DNP caused by the AdVance male sling procedure appears to be an extremely rare complication, which has not been described in current literature. The proximity of the AdVance to the DNP could, however, pose a risk that should be taken into consideration by physicians and patients when opting for surgery. © 2015 International Society for Sexual Medicine.
Bainbridge, Jacquelyn; De Backer, Marc; Eckhardt, Klaus; Tennigkeit, Frank; Bongardt, Sabine; Sen, David; Werhahn, Konrad J; Shaibani, Aziz; Faught, Edward
2017-12-01
To assess the safety profile of lacosamide monotherapy in elderly (≥65 years) subjects with diabetic neuropathic pain (DNP). Of 1,863 DNP subjects in double-blind, randomized, placebo-controlled trials of lacosamide monotherapy (NCT00861445, NCT00235469, NCT00238524, NCT00135109, NCT00350103), 502 were elderly. Safety data from elderly subjects were compared with that of younger subjects (<65 years) within these DNP trials. It should be noted that lacosamide is approved for the treatment of focal (partial-onset) seizures; it is not approved/recommended for the treatment of DNP. Overall, cardiovascular diseases were prevalent in the DNP population, as was the use of cardiac, blood pressure, diabetes, and cholesterol-lowering medications among both young and elderly subjects. The most frequently reported adverse events (AEs) for lacosamide monotherapy (200, 400, and 600 mg/day combined) in elderly versus younger subjects were dizziness (16.2% vs. 13.2%), nausea (10.0% vs. 9.4%), and headache (8.0% vs. 8.7%). Incidences of cardiac disorder AEs were higher in elderly versus younger subjects receiving placebo (6.2% vs. 3.9%), lacosamide 200 (4.8% vs. 3.3%), lacosamide 400 (7.0% vs. 4.1%), and lacosamide 600 mg/day (7.7% vs. 4.0%). Discontinuation rates because of any AE in the elderly versus younger subjects were similar for placebo (8.8% vs. 7.0%) and lacosamide 200 mg/day (9.6% vs. 11.9%) and higher for lacosamide 400 (25.1% vs. 10.8%) and lacosamide 600 mg/day (52.7% vs. 28.3%). Lacosamide monotherapy was well tolerated in elderly subjects with DNP, with an overall AE profile consistent with that reported in epilepsy trials.
Design and characterization of a W-band system for modulated DNP experiments.
Guy, Mallory L; Zhu, Lihuang; Ramanathan, Chandrasekhar
2015-12-01
Magnetic-field and microwave-frequency modulated DNP experiments have been shown to yield improved enhancements over conventional DNP techniques, and even to shorten polarization build-up times. The resulting increase in signal-to-noise ratios can lead to significantly shorter acquisition times in signal-limited multi-dimensional NMR experiments and pave the way to the study of even smaller sample volumes. In this paper we describe the design and performance of a broadband system for microwave frequency- and amplitude-modulated DNP that has been engineered to minimize both microwave and thermal losses during operation at liquid helium temperatures. The system incorporates a flexible source that can generate arbitrary waveforms at 94GHz with a bandwidth greater than 1GHz, as well as a probe that efficiently transmits the millimeter waves from room temperature outside the magnet to a cryogenic environment inside the magnet. Using a thin-walled brass tube as an overmoded waveguide to transmit a hybrid HE11 mode, it is possible to limit the losses to 1dB across a 2GHz bandwidth. The loss is dominated by the presence of a quartz window used to isolate the waveguide pipe. This performance is comparable to systems with corrugated waveguide or quasi-optical components. The overall excitation bandwidth of the probe is seen to be primarily determined by the final antenna or resonator used to excite the sample and its coupling to the NMR RF coil. Understanding the instrumental limitations imposed on any modulation scheme is key to understanding the observed DNP results and potentially identifying the underlying mechanisms. We demonstrate the utility of our design with a set of triangular frequency-modulated DNP experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
Rodríguez, Mario; Ramos-Ortíz, Gabriel; Maldonado, José Luis; Herrera-Ambriz, Víctor M; Domínguez, Oscar; Santillan, Rosa; Farfán, Norberto; Nakatani, Keitaro
2011-09-01
Macroscopic single crystals of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol (DNP) were obtained from slow cooling of chloroform or dichlorometane saturated solutions at controlled temperature. X-ray diffraction analysis showed that this compound crystallizes in a noncentrosymmetric space group (P2(1)2(1)2(1)). Thermal analysis was performed and indicated that the crystals are stable until 260 °C. Second-order nonlinear optical properties of DNP were experimentally investigated in solution through EFISH technique and in solid state through the Kurtz-Perry powder technique. Crystals of compound DNP exhibited a second-harmonic signals 39 times larger than of the technologically useful potassium dihydrogenphosphate (KDP) under excitation at infrared wavelengths. In addition, the second-order nonlinear optical properties of DNP were also studied at visible wavelengths through the photorefractive effect and applied to demonstrate dynamic holographic reconstruction. Copyright © 2011 Elsevier B.V. All rights reserved.
Al-Mutairi, Nayef Z
2011-11-01
Wastewater treatment systems using simultaneous adsorption and biodegradation processes have been successful in treating toxic pollutants present in industrial wastewater. The goal of this investigation was to assess the effectiveness of date seeds in reducing the toxic effects of 2,4-dinitrophenol (DNP) on activated sludge microorganisms. Two identical sequencing batch reactors (SBRs) (4-L glass vessel), each with a 3.5-L working volume, were used. The initial DNP concentrations in the reactor were 50, 75, 100, 250, and 500 mg/L. The reactor amended with date seeds was capable of degrading DNP at significantly greater rates (11 +/- 2.5 mg/L x h) than the control SBR (4 +/- 1.2 mg/L x h) at a 95% confidence level. Date seeds can be added to the mixed liquor of activated sludge treatment plants to remove high concentrations of DNP from wastewater, to protect the treatment plant against toxic components in the influent and enhance the settling characteristics of the mixed liquor.
Oka, T; Fujimoto, M; Nagasaka, R; Ushio, H; Hori, M; Ozaki, H
2010-02-01
IgE-targeting therapy could provide significant progress in the treatment of allergic inflammation. In this study, we examined the effect of cycloartenyl ferulate (cycloartenol ferulic acid ester; CAF), a natural product from rice bran oil-derived gamma-oryzanol, on allergic reaction. When CAF and gamma-oryzanol were injected intradermally with anti-DNP IgE into the dorsal skin of rats, the passive cutaneous anaphylaxis reaction induced by DNP-HSA was attenuated. CAF and gamma-oryzanol also inhibited the degranulation of DNP-IgE sensitized RBL-2H3 mast cells stimulated with anti-DNP-HSA. IgE conjugated with CAF could not be detected by anti-IgE antibody in the ELISA analysis. Although incubation of IgE with CAF did not decrease the amount of IgE, it was possible to precipitate IgE by centrifugation. These results demonstrate that CAF captures IgE, prevents it from binding to FcepsilonRI, and attenuates mast cell degranulation. Copyright 2009 Elsevier GmbH. All rights reserved.
Piveteau, Laura; Ong, Ta-Chung; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Kovalenko, Maksym V
2015-11-04
Understanding the chemistry of colloidal quantum dots (QDs) is primarily hampered by the lack of analytical methods to selectively and discriminately probe the QD core, QD surface and capping ligands. Here, we present a general concept for studying a broad range of QDs such as CdSe, CdTe, InP, PbSe, PbTe, CsPbBr3, etc., capped with both organic and inorganic surface capping ligands, through dynamic nuclear polarization (DNP) surface enhanced NMR spectroscopy. DNP can enhance NMR signals by factors of 10-100, thereby reducing the measurement times by 2-4 orders of magnitude. 1D DNP enhanced spectra acquired in this way are shown to clearly distinguish QD surface atoms from those of the QD core, and environmental effects such as oxidation. Furthermore, 2D NMR correlation experiments, which were previously inconceivable for QD surfaces, are demonstrated to be readily performed with DNP and provide the bonding motifs between the QD surfaces and the capping ligands.
High-field dynamic nuclear polarization in aqueous solutions.
Prandolini, M J; Denysenkov, V P; Gafurov, M; Endeward, B; Prisner, T F
2009-05-06
Unexpected high DNP enhancements of more than 10 have been achieved in liquid water samples at room temperature and magnetic fields of 9.2 T (corresponding to 400 MHz (1)H NMR frequency and 260 GHz EPR frequency). The liquid samples were polarized in situ using a double-resonance structure, which allows simultaneous excitation of NMR and EPR transitions and achieves significant DNP enhancements at very low incident microwave power of only 45 mW. These results demonstrate the first important step toward the application of DNP to high-resolution NMR, increasing the sensitivity on biomolecules with small sample volumes and at physiologically low concentrations.
Kerosene/Water/2,4-Dinitrophenol.
ERIC Educational Resources Information Center
Whyman, Derek
1986-01-01
Background information/theory, procedures used, and typical results obtained are discussed for a system in which kerosene, water, and 2,4-dinitrophenol (DNP) are used to demonstrate the principles of liquid-liquid extraction in a Graesser rotary contractor. The DNP is almost equal between the two disimilar solvents. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frédéric A.; Boteju, Kasuni C.; Slowing, Igor I.
In this work, we utilize direct 17O DNP for the characterization of non-protonated oxygens in heterogeneous catalysts. The optimal sample preparation and population transfer approach for 17O direct DNP experiments performed on silica surfaces is determined and applied to the characterization of Zr- and Y-based mesoporous silica-supported single-site catalysts.
Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.
Thurber, Kent R; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J R
2018-04-01
Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13 C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T 1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14 N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants. Published by Elsevier Inc.
Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.
Utsumi, Hideo; Hyodo, Fuminori
2015-01-01
Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.
Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min
2017-01-01
German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma. PMID:28775364
Lim, Sangho; Ho Sohn, Jung; Koo, Ja-Hyun; Park, Jung-Won; Choi, Je-Min
2017-08-04
German cockroaches are major household allergens that can trigger allergic airway inflammatory diseases with sensitive T-cell responses. Although the use of immune modulatory biologics, such as antibodies, to mediate allergic responses has recently been examined, only systemic administration is available because of the size limitations on intranasal administration. Here we utilized a cell-permeable peptide, dNP2, to deliver the cytoplasmic domain of cytotoxic T-lymphocyte antigen-4 (ctCTLA-4) through the airway epithelium to modulate Th2 responses in a German cockroach extract (GCE)-induced allergic airway inflammation model. The intranasal delivery efficiency of the dNP2-dTomato protein to the lungs was higher in GCE-induced asthmatic lung parenchymal cells compared to the sham cells. Intranasal administration of the dNP2-ctCTLA-4 protein inhibited airway hyper-responsiveness and reduced airway inflammation and remodeling, including goblet cell metaplasia and collagen deposition around the bronchi. The number of infiltrated cells, including eosinophils, and the levels of IL-4, IL-5, IL-13 and IFN-γ in the lungs were significantly reduced, presumably owing to inhibition of Th2 differentiation. However, intranasal administration of CTLA4-Ig did not inhibit airway inflammation. These results collectively suggest that dNP2-ctCTLA-4 is an efficient intranasally applicable candidate biologic for treating allergic asthma.
Simplified THz Instrumentation for High-Field DNP-NMR Spectroscopy
Sirigiri, Jagadishwar R.
2012-01-01
We present an alternate simplified concept to irradiate a nuclear magnetic resonance sample with terahertz (THz) radiation for dynamic nuclear polarization (DNP) experiments using the TE01 circular waveguide mode for transmission of the THz power and the illumination of the DNP sample by either the TE01 or TE11 mode. Using finite element method and 3D electromagnetic simulations we demonstrate that the average value of the transverse magnetic field induced by the THz radiation and responsible for the DNP effect using the TE11 or the TE01 mode are comparable to that generated by the HE11 mode and a corrugated waveguide. The choice of the TE11/TE01 mode allows the use of a smooth-walled, oversized waveguide that is easier to fabricate and less expensive than a corrugated waveguide required for transmission of the HE11 mode. Also, the choice of the TE01 mode can lead to a simplification of gyrotron oscillators that operate in the TE0n mode, by employing an on-axis rippled-wall mode converter to convert the TE0n mode into the TE01 mode either inside or outside of the gyrotron tube. These novel concepts will lead to a significant simplification of the gyrotron, the transmission line and the THz coupler, which are the three main components of a DNP system. PMID:22977293
Lingwood, Mark D.; Siaw, Ting Ann; Sailasuta, Napapon; Ross, Brian D.; Bhattacharya, Pratip; Han, Songi
2016-01-01
We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed −15 fold DNP signal enhancement with respect to the unenhanced 1H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP hyperpolarization of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 Tesla. PMID:20541445
Shahzad, Khurrum; Bock, Fabian; Al-Dabet, Moh'd Mohanad; Gadi, Ihsan; Nazir, Sumra; Wang, Hongjie; Kohli, Shrey; Ranjan, Satish; Mertens, Peter R; Nawroth, Peter P; Isermann, Berend
2016-10-10
While a plethora of studies support a therapeutic benefit of Nrf2 activation and ROS inhibition in diabetic nephropathy (dNP), the Nrf2 activator bardoxolone failed in clinical studies in type 2 diabetic patients due to cardiovascular side effects. Hence, alternative approaches to target Nrf2 are required. Intriguingly, the tetracycline antibiotic minocycline, which has been in clinical use for decades, has been shown to convey anti-inflammatory effects in diabetic patients and nephroprotection in rodent models of dNP. However, the mechanism underlying the nephroprotection remains unknown. Here we show that minocycline protects against dNP in mouse models of type 1 and type 2 diabetes, while caspase -3,-6,-7,-8 and -10 inhibition is insufficient, indicating a function of minocycline independent of apoptosis inhibition. Minocycline stabilizes endogenous Nrf2 in kidneys of db/db mice, thus dampening ROS-induced inflammasome activation in the kidney. Indeed, minocycline exerts antioxidant effects in vitro and in vivo, reducing glomerular markers of oxidative stress. Minocycline reduces ubiquitination of the redox-sensitive transcription factor Nrf2 and increases its protein levels. Accordingly, minocycline mediated Nlrp3 inflammasome inhibition and amelioration of dNP are abolished in diabetic Nrf2 -/- mice. Taken together, we uncover a new function of minocycline, which stabilizes the redox-sensitive transcription factor Nrf2, thus protecting from dNP.
Klaus, G G; Phillips, J M; Humphrey, J H; Dresser, D W; Cross, A M
1976-06-01
Dinitrophenylated polysucrose (DNP-Ficoll) elicits T cell-independent IgM anti-DNP antibody formation in mice. This antigen also elicits a heterogeneous IgG1 and IgG2 anti-DNP response, which is operationally as T-independent as the IgM response. However, a concomitant graft-versus-host reaction markedly enhances the IgG response (allogeneic effect). These results confirm those of others, indicating that a certain proportion of the precursors of IgG-producing cells can be triggered by some T-independent antigens. However, our results suggest that even with such antigens optimal triggering of IgG precursors requires T cell help.
A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.
Halse, Meghan E; Callaghan, Paul T
2008-12-01
Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Perras, Frederic A.; Murphy, Anna
Dynamic nuclear polarization (DNP) is used to enhance the (ultra)wideline 207Pb solid-state NMR spectra of lead compounds of relevance in the preservation of cultural heritage objects. The DNP SSNMR experiments enabled, for the first time, the detection of the basic lead carbonate phase of the lead white pigment by 207Pb SSNMR spectroscopy. Variable-temperature experiments revealed that the short T'2 relaxation time of the basic lead carbonate phase hinders the acquisition of the NMR signal at room temperature. We additionally observe that the DNP enhancement is twice as large for lead palmitate (a lead soap, which is a degradation product implicatedmore » in the visible deterioration of lead-based oil paintings), than it is for the basic lead carbonate. As a result, this enhancement has allowed us to detect the formation of a lead soap in an aged paint film by 207Pb SSNMR spectroscopy; which may aid in the detection of deterioration products in smaller samples removed from works of art.« less
Kobayashi, Takeshi; Perras, Frederic A.; Murphy, Anna; ...
2017-02-17
Dynamic nuclear polarization (DNP) is used to enhance the (ultra)wideline 207Pb solid-state NMR spectra of lead compounds of relevance in the preservation of cultural heritage objects. The DNP SSNMR experiments enabled, for the first time, the detection of the basic lead carbonate phase of the lead white pigment by 207Pb SSNMR spectroscopy. Variable-temperature experiments revealed that the short T'2 relaxation time of the basic lead carbonate phase hinders the acquisition of the NMR signal at room temperature. We additionally observe that the DNP enhancement is twice as large for lead palmitate (a lead soap, which is a degradation product implicatedmore » in the visible deterioration of lead-based oil paintings), than it is for the basic lead carbonate. As a result, this enhancement has allowed us to detect the formation of a lead soap in an aged paint film by 207Pb SSNMR spectroscopy; which may aid in the detection of deterioration products in smaller samples removed from works of art.« less
NMR of insensitive nuclei enhanced by dynamic nuclear polarization.
Miéville, Pascal; Jannin, Sami; Helm, Lothar; Bodenhausen, Geoffrey
2011-01-01
Despite the powerful spectroscopic information it provides, Nuclear Magnetic Resonance (NMR) spectroscopy suffers from a lack of sensitivity, especially when dealing with nuclei other than protons. Even though NMR can be applied in a straightforward manner when dealing with abundant protons of organic molecules, it is very challenging to address biomolecules in low concentration and/or many other nuclei of the periodic table that do not provide as intense signals as protons. Dynamic Nuclear Polarization (DNP) is an important technique that provides a way to dramatically increase signal intensities in NMR. It consists in transferring the very high electron spin polarization of paramagnetic centers (usually at low temperature) to the surrounding nuclear spins with appropriate microwave irradiation. DNP can lead to an enhancement of the nuclear spin polarization by up to four orders of magnitude. We present in this article some basic concepts of DNP, describe the DNP apparatus at EPFL, and illustrate the interest of the technique for chemical applications by reporting recent measurements of the kinetics of complexation of 89Y by the DOTAM ligand.
DNP System Output Volume Reduction Using Inert Fluids
Peterson, Eric T; Gordon, Jeremy W; Erickson, Matthew G; Fain, Sean B; Rowland, Ian J
2011-01-01
Purpose To present a method for significantly increasing the concentration of a hyperpolarized compound produced by a commercial DNP polarizer, enabling the polarization process to be more suitable for pre-clinical applications. Materials and Methods Using a HyperSense® DNP polarizer, we have investigated the combined use of perfluorocarbon and water to warm and dissolve the hyperpolarized material from the polarization temperature of 1.4 K to produce material at temperatures suitable for injection. Results By replacing 75% of the water in the dissolution volume with a chemically and biologically inert liquid that is immiscible with water, the injection volume can be reduced fourfold Rapid separation of the water and perfluorocarbon mixture enables the aqueous layer containing polarized material to be easily and rapidly collected. Conclusion The approach provides a significantly increased concentration of compound in a volume for injection that is more appropriate for small animal studies. This is demonstrated for 13C labeled pyruvic acid and 13C labeled succinate, but may be applied to the majority of nuclei and compounds hyperpolarized by the DNP method. PMID:21448970
Resonance-inclined optical nuclear spin polarization of liquids in diamond structures
NASA Astrophysics Data System (ADS)
Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.
2016-02-01
Dynamic nuclear polarization (DNP) of molecules in a solution at room temperature has the potential to revolutionize nuclear magnetic resonance spectroscopy and imaging. The prevalent methods for achieving DNP in solutions are typically most effective in the regime of small interaction correlation times between the electron and nuclear spins, limiting the size of accessible molecules. To solve this limitation, we design a mechanism for DNP in the liquid phase that is applicable for large interaction correlation times. Importantly, while this mechanism makes use of a resonance condition similar to solid-state DNP, the polarization transfer is robust to a relatively large detuning from the resonance due to molecular motion. We combine this scheme with optically polarized nitrogen-vacancy (NV) center spins in nanodiamonds to design a setup that employs optical pumping and is therefore not limited by room temperature electron thermal polarization. We illustrate numerically the effectiveness of the model in a flow cell containing nanodiamonds immobilized in a hydrogel, polarizing flowing water molecules 4700-fold above thermal polarization in a magnetic field of 0.35 T, in volumes detectable by current NMR scanners.
DNP enhanced NMR with flip-back recovery
NASA Astrophysics Data System (ADS)
Björgvinsdóttir, Snædís; Walder, Brennan J.; Pinon, Arthur C.; Yarava, Jayasubba Reddy; Emsley, Lyndon
2018-03-01
DNP methods can provide significant sensitivity enhancements in magic angle spinning solid-state NMR, but in systems with long polarization build up times long recycling periods are required to optimize sensitivity. We show how the sensitivity of such experiments can be improved by the classic flip-back method to recover bulk proton magnetization following continuous wave proton heteronuclear decoupling. Experiments were performed on formulations with characteristic build-up times spanning two orders of magnitude: a bulk BDPA radical doped o-terphenyl glass and microcrystalline samples of theophylline, L-histidine monohydrochloride monohydrate, and salicylic acid impregnated by incipient wetness. For these systems, addition of flip-back is simple, improves the sensitivity beyond that provided by modern heteronuclear decoupling methods such as SPINAL-64, and provides optimal sensitivity at shorter recycle delays. We show how to acquire DNP enhanced 2D refocused CP-INADEQUATE spectra with flip-back recovery, and demonstrate that the flip-back recovery method is particularly useful in rapid recycling regimes. We also report Overhauser effect DNP enhancements of over 70 at 592.6 GHz/900 MHz.
Fuwa, Haruhiko; Sato, Mizuho
2017-10-20
Neopeltolide, an antiproliferative marine macrolide, is known to specifically inhibit complex III of the mitochondrial electron transport chain (mETC). However, details of the biological mode-of-action(s) remain largely unknown. This work demonstrates potent cytotoxic activity of synthetic neopeltolide analogue, 8,9-dehydroneopeltolide (8,9-DNP), against starved human pancreatic adenocarcinoma PANC-1 cells and human non-small cell lung adenocarcinoma A549 cells. 8,9-DNP induced rapid dissipation of the mitochondrial membrane potential and depletion of intracellular ATP level in nutrient-deprived medium. Meanwhile, in spite of mTOR inhibition under starvation conditions, impairment of cytoprotective autophagy was observed as the lipidation of LC3-I to form LC3-II and the degradation of p62 were suppressed. Consequently, cells were severely deprived of energy sources and underwent necrotic cell death. The autophagic flux inhibited by 8,9-DNP could be restored by glucose, and this eventually rescued cells from necrotic death. Thus, 8,9-DNP is a potent anti-austerity agent that impairs mitochondrial ATP synthesis and cytoprotective autophagy in starved tumor cells.
Sato, Mizuho
2017-01-01
Neopeltolide, an antiproliferative marine macrolide, is known to specifically inhibit complex III of the mitochondrial electron transport chain (mETC). However, details of the biological mode-of-action(s) remain largely unknown. This work demonstrates potent cytotoxic activity of synthetic neopeltolide analogue, 8,9-dehydroneopeltolide (8,9-DNP), against starved human pancreatic adenocarcinoma PANC-1 cells and human non-small cell lung adenocarcinoma A549 cells. 8,9-DNP induced rapid dissipation of the mitochondrial membrane potential and depletion of intracellular ATP level in nutrient-deprived medium. Meanwhile, in spite of mTOR inhibition under starvation conditions, impairment of cytoprotective autophagy was observed as the lipidation of LC3-I to form LC3-II and the degradation of p62 were suppressed. Consequently, cells were severely deprived of energy sources and underwent necrotic cell death. The autophagic flux inhibited by 8,9-DNP could be restored by glucose, and this eventually rescued cells from necrotic death. Thus, 8,9-DNP is a potent anti-austerity agent that impairs mitochondrial ATP synthesis and cytoprotective autophagy in starved tumor cells. PMID:29053565
Breaux, Meghan; Lewis, Kyle; Valanejad, Leila; Iakova, Polina; Chen, Fengju; Mo, Qianxing; Medrano, Estela; Timchenko, Lubov; Timchenko, Nikolai
2015-09-01
The histone acetyltransferase p300 has been implicated in the regulation of liver biology; however, molecular mechanisms of this regulation are not known. In this paper, we examined these mechanisms using transgenic mice expressing a dominant negative p300 molecule (dnp300). While dnp300 mice did not show abnormal growth within 1 year, these mice have many alterations in liver biology and liver functions. We found that the inhibition of p300 leads to the accumulation of heterochromatin foci in the liver of 2-month-old mice. Transcriptome sequencing (RNA-Seq) analysis showed that this inhibition of p300 also causes alterations of gene expression in many signaling pathways, including chromatin remodeling, apoptosis, DNA damage, translation, and activation of the cell cycle. Livers of dnp300 mice have a high rate of proliferation and a much higher rate of proliferation after partial hepatectomy. We found that livers of dnp300 mice are resistant to CCl4-mediated injury and have reduced apoptosis but have increased proliferation after injury. Underlying mechanisms of resistance to liver injury and increased proliferation in dnp300 mice include ubiquitin-proteasome-mediated degradation of C/EBPα and translational repression of the p53 protein by the CUGBP1-eukaryotic initiation factor 2 (eIF2) repressor complex. Our data demonstrate that p300 regulates a number of critical signaling pathways that control liver functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Geiger, Michel; Jagtap, Anil; Kaushik, Monu; Sun, Han; Stöppler, Daniel; Sigurdsson, Snorri; Corzilius, Björn; Oschkinat, Hartmut
2018-05-09
Nitroxide biradicals are very efficient polarizing agents in magic angle spinning (MAS) cross effect (CE) dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR). Many recently synthesized, new radicals show superior DNP-efficiency in organic solvents but suffer from insufficient solubility in water or glycerol/water for biological applications. We report DNP efficiencies for two new radicals, the particularly well-water soluble bcTol-M and cyolyl-TOTAPOL, and include a comparison with three known biradicals, TOTAPOL, bcTol, and AMUPol. They differ by linker groups, featuring either a 3-aminopropane-1,2-diol or a urea tether, or by the structure of the alkyl substituents that flank the nitroxide groups. For evaluating their performances, we measured both signal enhancements and DNP-enhanced sensitivity κ, and compared the results to electron spin relaxation data recorded at the same magnetic field strength (9.4 T). In our study, differences in DNP efficiency correlate with changes in the nuclear polarization dynamics rather than electron relaxation. The ratios of their individual ε and κ differ by up to 20%, which is explained by starkly different nuclear polarization build-up rates. For the radicals compared here empirically, using proline standard solutions, the new radical bcTol-M performs best while being most soluble in water/glycerol mixtures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microtesla MRI with dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Zotev, Vadim S.; Owens, Tuba; Matlashov, Andrei N.; Savukov, Igor M.; Gomez, John J.; Espy, Michelle A.
2010-11-01
Magnetic resonance imaging at microtesla fields is a promising imaging method that combines the pre-polarization technique and broadband signal reception by superconducting quantum interference device (SQUID) sensors to enable in vivo MRI at microtesla-range magnetic fields similar in strength to the Earth magnetic field. Despite significant advances in recent years, the potential of microtesla MRI for biomedical imaging is limited by its insufficient signal-to-noise ratio due to a relatively low sample polarization. Dynamic nuclear polarization (DNP) is a widely used approach that allows polarization enhancement by 2-4 orders of magnitude without an increase in the polarizing field strength. In this work, the first implementation of microtesla MRI with Overhauser DNP and SQUID signal detection is described. The first measurements of carbon-13 NMR spectra at microtesla fields are also reported. The experiments were performed at the measurement field of 96 μT, corresponding to Larmor frequency of 4 kHz for protons and 1 kHz for carbon-13. The Overhauser DNP was carried out at 3.5-5.7 mT fields using rf irradiation at 120 MHz. Objects for imaging included water phantoms and a cactus plant. Aqueous solutions of metabolically relevant sodium bicarbonate, pyruvate, alanine, and lactate, labeled with carbon-13, were used for NMR studies. All the samples were doped with TEMPO free radicals. The Overhauser DNP enabled nuclear polarization enhancement by factor as large as -95 for protons and as large as -200 for carbon-13, corresponding to thermal polarizations at 0.33 T and 1.1 T fields, respectively. These results demonstrate that SQUID-based microtesla MRI can be naturally combined with Overhauser DNP in one system, and that its signal-to-noise performance is greatly improved in this case. They also suggest that microtesla MRI can become an efficient tool for in vivo imaging of hyperpolarized carbon-13, produced by low-temperature dissolution DNP.
Ganote, C. E.; Sims, M. A.
1984-01-01
Hypothermia during calcium-free perfusion of hearts protects them from injury caused by subsequent calcium repletion at 37 C (calcium paradox). Injury to calcium-free hearts is also associated with contracture caused by anoxia, 2,4-dinitrophenol (DNP), or caffeine. This study was done for the purpose of determining whether hypothermia during calcium-free perfusions protects hearts from contracture-associated injury. Langendorff-perfused rat hearts were studied in four experimental groups: I) Anoxia: Thirty minutes of anoxic perfusion at 37 C was followed by thirty minutes of anoxic calcium-free perfusion at 37-18 C. II) Calcium paradox: Five minutes of calcium-free perfusion at 37-18 C was followed by calcium repletion at 37 C. III, IVa) Caffeine or DNP: Five minutes of calcium-free perfusion at 37-18 C was followed by addition of 10 mM caffeine or 1 mM DNP in calcium-free medium at 37 C or, IVb) 1 mM DNP in calcium-free medium at 22 C. Injury was assessed by measurement of serial releases of creatine kinase (CK) in effluents and by cellular morphology. The results show that progressive hypothermia to 22 C during calcium-free perfusion periods produced a progressive reduction of CK release and morphologic evidence of injury due to anoxia, caffeine, or DNP, which closely paralleled protection of hearts from the calcium paradox. Protection from injury in all experimental groups was associated with preservation of sarcolemmal membrane integrity and prevention of cell separations at intercalated disk junctions. It is proposed that weakening of intercalated disks occurs during calcium-free perfusions and may be a cause of mechanical fragility of the sarcolemma. Hypothermia may protect hearts from contracture-associated injury by preserving the integrity of intercalated disk junctions during periods of extracellular calcium depletion. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:6742111
Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger.
Wang, Lu; Zhang, Jianhua; Cao, Zhanglei; Wang, Yajun; Gao, Qiang; Zhang, Jian; Wang, Depei
2015-01-16
The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L(-1) and 135.78 g L(-1) by adding 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of intracellular ATP can accelerate glycolysis and the TCA cycle to enhance citric acid yield.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160 K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea -eb - n } during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions.
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
Mentink-Vigier, Frederic; Akbey, Ümit; Oschkinat, Hartmut; Vega, Shimon; Feintuch, Akiva
2015-09-01
Magic Angle Spinning (MAS) combined with Dynamic Nuclear Polarization (DNP) has been proven in recent years to be a very powerful method for increasing solid-state NMR signals. Since the advent of biradicals such as TOTAPOL to increase the nuclear polarization new classes of radicals, with larger molecular weight and/or different spin properties have been developed. These have led to unprecedented signal gain, with varying results for different experimental parameters, in particular the microwave irradiation strength, the static field, and the spinning frequency. Recently it has been demonstrated that sample spinning imposes DNP enhancement processes that differ from the active DNP mechanism in static samples as upon sample spinning the DNP enhancements are the results of energy level anticrossings occurring periodically during each rotor cycle. In this work we present experimental results with regards to the MAS frequency dependence of the DNP enhancement profiles of four nitroxide-based radicals at two different sets of temperature, 110 and 160K. In fact, different magnitudes of reduction in enhancement are observed with increasing spinning frequency. Our simulation code for calculating MAS-DNP powder enhancements of small model spin systems has been improved to extend our studies of the influence of the interaction and relaxation parameters on powder enhancements. To achieve a better understanding we simulated the spin dynamics of a single three-spin system {ea-eb-n} during its steady state rotor periods and used the Landau-Zener formula to characterize the influence of the different anti-crossings on the polarizations of the system and their necessary action for reaching steady state conditions together with spin relaxation processes. Based on these model calculations we demonstrate that the maximum steady state nuclear polarization cannot become larger than the maximum polarization difference between the two electrons during the steady state rotor cycle. This study also shows the complexity of the MAS-DNP process and therefore the necessity to rely on numerical simulations for understanding parametric dependencies of the enhancements. Finally an extension of the spin system up to five spins allowed us to probe the first steps of the transfer of polarization from the nuclei coupled to the electrons to further away nuclei, demonstrating a decrease in the spin-diffusion barrier under MAS conditions. Copyright © 2015 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Methods were employed to evaluate serum biomarkers associated with protein oxidative stress and damage, to determine potential sources of metabolic stress in baby pigs. Protein carbonyls in serum were converted to dinitrophenyl (DNP) derivatives with DNP-hydrazine, precipitated with TCA, extracted i...
Direct 17O dynamic nuclear polarization of single-site heterogeneous catalysts
Perras, Frédéric A.; Boteju, Kasuni C.; Slowing, Igor I.; ...
2018-03-13
In this work, we utilize direct 17O DNP for the characterization of non-protonated oxygens in heterogeneous catalysts. The optimal sample preparation and population transfer approach for 17O direct DNP experiments performed on silica surfaces is determined and applied to the characterization of Zr- and Y-based mesoporous silica-supported single-site catalysts.
NASA Astrophysics Data System (ADS)
Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew
2011-03-01
Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.
NASA Astrophysics Data System (ADS)
Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew
2011-03-01
Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.
Shavell, Valerie I; Fletcher, Nicole M; Jiang, Zhong L; Saed, Ghassan M; Diamond, Michael P
2012-03-01
To determine the effect of uncoupling oxidative phosphorylation with 2,4-dinitrophenol (DNP) on adhesion phenotype development. Prospective experimental study. Academic medical center. Women undergoing laparotomy for pelvic pain from whom normal peritoneum and adhesions were excised to create primary cultures of normal peritoneal and adhesion fibroblasts. Treatment of normal peritoneal and adhesion fibroblasts isolated from the same patient(s) with or without 0.2 mM DNP for 24 hours. Evaluation of adhesion phenotype markers type I collagen, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor (HIF)-1α. In agreement with prior findings, adhesion fibroblasts exhibited significantly higher basal levels of type I collagen, VEGF, and HIF-1α compared with normal peritoneal fibroblasts. Treatment of normal peritoneal fibroblasts with DNP resulted in significant increases in type I collagen (10.2 ± 1.4 vs. 18.4 ± 1.9 fg/μg RNA) and VEGF (8.2 ± 1.1 vs. 13.7 ± 0.4 fg/μg RNA) over baseline. HIF-1α levels did not increase when normal peritoneal fibroblasts were treated with DNP. The adhesion phenotype, which is normally expressed in response to hypoxia, is reproduced in a normoxic environment by uncoupling oxidative phosphorylation with DNP, as evidenced by an increase in type I collagen and VEGF. Acquisition of the adhesion phenotype was via a mechanism distinct from up-regulation of HIF-1α. These observations are consistent with the hypothesis that the adhesion phenotype represents a state of intracellular metabolic depletion. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segawa, Takuya F., E-mail: takuya.segawa@alumni.ethz.ch; Doppelbauer, Maximilian; Garbuio, Luca
2016-05-21
Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the {sup 1}H NMR spectrum of H{sub 2}O at a Larmormore » frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10–20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.« less
He, Yugui; Feng, Jiwen; Zhang, Zhi; Wang, Chao; Wang, Dong; Chen, Fang; Liu, Maili; Liu, Chaoyang
2015-08-01
High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for (1)H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo (1)H MRI at 0.35 T.
Seppan, Prakash; Muhammed, Ibrahim; Mohanraj, Karthik Ganesh; Lakshmanan, Ganesh; Premavathy, Dinesh; Muthu, Sakthi Jothi; Wungmarong Shimray, Khayinmi; Sathyanathan, Sathya Bharathy
2018-02-15
To study the effect of ethanolic seed extract of Mucuna pruriens on damaged dorsal nerve of the penis (DNP) in aged rat in relation to penile erection. The rats were divided into four groups Young (3 months), Aged (24 - 28 months), Aged + M. pruriens, and Young + M. pruriens (200 mg/kg b.w/60 days) and were subjected to the hypophysial - gonadal axis, nerve conduction velocity (NCV), and penile reflex. DNP sections were stained with nitric oxide synthase (nNOS), nicotinamide adenine dinucleotide phosphate (NaDPH) diaphorase, androgen receptor (AR), and osmium tetroxide. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining, electron microscopy(EM) and histometric analyses were done. Significant disturbance in hypophysial - gonadal axis was noted in aged rat. With reduced number of myelinated fibers, diameter, vacuolization, indentation of the myelin sheath, and degeneration. nNOS and its cofactor (NaDPH diaphorase) were reduced in aged rat DNP. NCV was slow in aged rats and concomitant poor penile reflex was also noted. AR showed reduced expression in aged rat DNP when compared to young and control groups. TUNEL positive cells were increased in aged rat DNP. These pathological changes were remarkably reduced or recovered in M. pruriens treated aged rats. The results indicate a multi-factorial therapeutic activity in penile innervations towards sustaining the penile erection in the presence of the extract in aged rats and justifying the claim of traditional usage.
Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods.
Segawa, Takuya F; Doppelbauer, Maximilian; Garbuio, Luca; Doll, Andrin; Polyhach, Yevhen O; Jeschke, Gunnar
2016-05-21
Water accessibility is a key parameter for the understanding of the structure of biomolecules, especially membrane proteins. Several experimental techniques based on the combination of electron paramagnetic resonance (EPR) spectroscopy with site-directed spin labeling are currently available. Among those, we compare relaxation time measurements and electron spin echo envelope modulation (ESEEM) experiments using pulse EPR with Overhauser dynamic nuclear polarization (DNP) at X-band frequency and a magnetic field of 0.33 T. Overhauser DNP transfers the electron spin polarization to nuclear spins via cross-relaxation. The change in the intensity of the (1)H NMR spectrum of H2O at a Larmor frequency of 14 MHz under a continuous-wave microwave irradiation of the nitroxide spin label contains information on the water accessibility of the labeled site. As a model system for a membrane protein, we use the hydrophobic α-helical peptide WALP23 in unilamellar liposomes of DOPC. Water accessibility measurements with all techniques are conducted for eight peptides with different spin label positions and low radical concentrations (10-20 μM). Consistently in all experiments, the water accessibility appears to be very low, even for labels positioned near the end of the helix. The best profile is obtained by Overhauser DNP, which is the only technique that succeeds in discriminating neighboring positions in WALP23. Since the concentration of the spin-labeled peptides varied, we normalized the DNP parameter ϵ, being the relative change of the NMR intensity, by the electron spin concentration, which was determined from a continuous-wave EPR spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yugui; Liu, Chaoyang, E-mail: chyliu@wipm.ac.cn; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2015-08-15
High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with highmore » data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately −170 for {sup 1}H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo {sup 1}H MRI at 0.35 T.« less
High-Field Liquid-State Dynamic Nuclear Polarization in Microliter Samples.
Yoon, Dongyoung; Dimitriadis, Alexandros I; Soundararajan, Murari; Caspers, Christian; Genoud, Jeremy; Alberti, Stefano; de Rijk, Emile; Ansermet, Jean-Philippe
2018-05-01
Nuclear hyperpolarization in the liquid state by dynamic nuclear polarization (DNP) has been of great interest because of its potential use in NMR spectroscopy of small samples of biological and chemical compounds in aqueous media. Liquid state DNP generally requires microwave resonators in order to generate an alternating magnetic field strong enough to saturate electron spins in the solution. As a consequence, the sample size is limited to dimensions of the order of the wavelength, and this restricts the sample volume to less than 100 nL for DNP at 9 T (∼260 GHz). We show here a new approach that overcomes this sample size limitation. Large saturation of electron spins was obtained with a high-power (∼150 W) gyrotron without microwave resonators. Since high power microwaves can cause serious dielectric heating in polar solutions, we designed a planar probe which effectively alleviates dielectric heating. A thin liquid sample of 100 μm of thickness is placed on a block of high thermal conductivity aluminum nitride, with a gold coating that serves both as a ground plane and as a heat sink. A meander or a coil were used for NMR. We performed 1 H DNP at 9.2 T (∼260 GHz) and at room temperature with 10 μL of water, a volume that is more than 100× larger than reported so far. The 1 H NMR signal is enhanced by a factor of about -10 with 70 W of microwave power. We also demonstrated the liquid state of 31 P DNP in fluorobenzene containing triphenylphosphine and obtained an enhancement of ∼200.
Just Care: Learning from and with Graduate Students in a Doctor of Nursing Practice Program
ERIC Educational Resources Information Center
Boquet, Elizabeth; Kazer, Meredith; Manister, Nancy; Lucas, Owen; Shaw, Michael; Madaffari, Valerie; Gannett, Cinthia
2015-01-01
In 2010, Fairfield University, a Jesuit Carnegie Masters Level 1 University located in the Northeast, established its first doctoral-level program: the Doctorate of Nursing Practice (DNP). In a developing program such as the DNP, some of the most pressing concerns of current rhetoric and writing in the disciplines align and interact with the…
Deoxyribonucleoside kinases in mitochondrial DNA depletion.
Saada-Reisch, Ann
2004-10-01
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are a heterogeneous group of mitochondrial disorders, manifested by a decreased mtDNA copy number and respiratory chain dysfunction. Primary MDS are inherited autosomally and may affect a single organ or multiple tissues. Mutated mitochondrial deoxyribonucleoside kinases; deoxyguanosine kinase (dGK) and thymidine kinase 2 (TK2), were associated with the hepatocerebral and myopathic forms of MDS respectively. dGK and TK2 are key enzymes in the mitochondrial nucleotide salvage pathway, providing the mitochondria with deoxyribonucleotides (dNP) essential for mtDNA synthesis. Although the mitochondrial dNP pool is physically separated from the cytosolic one, dNP's may still be imported through specific transport. Non-replicating tissues, where cytosolic dNP supply is down regulated, are thus particularly vulnerable to dGK and TK2 deficiency. The overlapping substrate specificity of deoxycytidine kinase (dCK) may explain the relative sparing of muscle in dGK deficiency, while low basal TK2 activity render this tissue susceptible to TK2 deficiency. The precise pathophysiological mechanisms of mtDNA depletion due to dGK and TK2 deficiencies remain to be determined, though recent findings confirm that it is attributed to imbalanced dNTP pools.
Doctor of nursing practice program development: reengineering health care.
Wall, Barbra M; Novak, Julie C; Wilkerson, Sharon A
2005-09-01
In this article, we describe the developmental process of a Doctor of Nursing Practice (DNP) program that uses interdisciplinary resources to create unique DNP curriculum opportunities. Other schools may benefit from this experience in the development of their own DNP programs. The program delivers an innovative curriculum from post-baccalaureate to doctorate, emphasizing health care engineering and interdisciplinary collaboration among faculty, hospitals, community leaders, and policymakers. This DNP program is uniquely situated to provide leadership in solving complex clinical problems through its partnership with the Regenstrief Center for Healthcare Engineering, the School of Pharmacy, the Homeland Security Institute, and the Center on Aging and the Life Course. Doctoral coursework, interdisciplinary collaboration, health care engineering/systems approaches, and new knowledge result in uniquely qualified providers. Post-baccalaureate students complete the university's Adult Nurse Practitioner program or its developing Pediatric Nurse Practitioner program during the first 2 years of the 4-year curriculum. A total of 83 post-baccalaureate credit hours include 1,526 hours of supervised clinical practice, a health policy residency, and cognate residencies in an area of specialization. The seven core competencies recommended by the American Association of Colleges of Nursing are incorporated into the curriculum.
Electrically tunable dynamic nuclear spin polarization in GaAs quantum dots at zero magnetic field
NASA Astrophysics Data System (ADS)
Manca, M.; Wang, G.; Kuroda, T.; Shree, S.; Balocchi, A.; Renucci, P.; Marie, X.; Durnev, M. V.; Glazov, M. M.; Sakoda, K.; Mano, T.; Amand, T.; Urbaszek, B.
2018-04-01
In III-V semiconductor nano-structures, the electron and nuclear spin dynamics are strongly coupled. Both spin systems can be controlled optically. The nuclear spin dynamics are widely studied, but little is known about the initialization mechanisms. Here, we investigate optical pumping of carrier and nuclear spins in charge tunable GaAs dots grown on 111A substrates. We demonstrate dynamic nuclear polarization (DNP) at zero magnetic field in a single quantum dot for the positively charged exciton X+ state transition. We tune the DNP in both amplitude and sign by variation of an applied bias voltage Vg. Variation of ΔVg on the order of 100 mV changes the Overhauser splitting (nuclear spin polarization) from -30 μeV (-22%) to +10 μeV (+7%) although the X+ photoluminescence polarization does not change sign over this voltage range. This indicates that absorption in the structure and energy relaxation towards the X+ ground state might provide favourable scenarios for efficient electron-nuclear spin flip-flops, generating DNP during the first tens of ps of the X+ lifetime which is on the order of hundreds of ps. Voltage control of DNP is further confirmed in Hanle experiments.
Electron spin dynamics and spin–lattice relaxation of trityl radicals in frozen solutions†
Chen, Hanjiao; Maryasov, Alexander G.; Rogozhnikova, Olga Yu.; Trukhin, Dmitry V.; Tormyshev, Victor M.
2017-01-01
Electron spin–lattice relaxation of two trityl radicals, d24-OX063 and Finland trityl, were studied under conditions relevant to their use in dissolution dynamic nuclear polarization (DNP). The dependence of relaxation kinetics on temperature up to 100 K and on concentration up to 60 mM was obtained at X- and W-bands (0.35 and 3.5 Tesla, respectively). The relaxation is quite similar at both bands and for both trityl radicals. At concentrations typical for DNP, relaxation is mediated by excitation transfer and spin-diffusion to fast-relaxing centers identified as triads of trityl radicals that spontaneously form in the frozen samples. These centers relax by an Orbach–Aminov mechanism and determine the relaxation, saturation and electron spin dynamics during DNP. PMID:27560644
NASA Astrophysics Data System (ADS)
Zou, Zhen-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen
2018-04-01
At first, the entanglement source deployment problem is studied in a quantum multi-hop network, which has a significant influence on quantum connectivity. Two optimization algorithms are introduced with limited entanglement sources in this paper. A deployment algorithm based on node position (DNP) improves connectivity by guaranteeing that all overlapping areas of the distribution ranges of the entanglement sources contain nodes. In addition, a deployment algorithm based on an improved genetic algorithm (DIGA) is implemented by dividing the region into grids. From the simulation results, DNP and DIGA improve quantum connectivity by 213.73% and 248.83% compared to random deployment, respectively, and the latter performs better in terms of connectivity. However, DNP is more flexible and adaptive to change, as it stops running when all nodes are covered.
Kobayashi, Takeshi; Singappuli-Arachchige, Dilini; Wang, Zhuoran; ...
2016-12-23
Solid-state NMR spectroscopy, both conventional and dynamic nuclear polarization (DNP)-enhanced, was employed to study the spatial distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles via co-condensation and grafting. The most revealing information was provided by DNP-enhanced two-dimensional 29Si– 29Si correlation measurements, which unambiguously showed that post-synthesis grafting leads to a more homogeneous dispersion of propyl and mercaptopropyl functionalities than co-condensation. Furthermore, during the anhydrous grafting process, the organosilane precursors do not self-condense and are unlikely to bond to the silica surface in close proximity (less than 4 Å) due to the limited availability of suitablymore » arranged hydroxyl groups.« less
On the present and future of dissolution-DNP
NASA Astrophysics Data System (ADS)
Ardenkjaer-Larsen, Jan Henrik
2016-03-01
Dissolution-DNP is a method to create solutions of molecules with nuclear spin polarization close to unity. The many orders of magnitude signal enhancement have enabled many new applications, in particular in vivo MR metabolic imaging. The method relies on solid state dynamic nuclear polarization at low temperature followed by a dissolution to produce the room temperature solution of highly polarized spins. This work describes the present and future of dissolution-DNP in the mind of the author. The article describes some of the current trends in the field as well as outlines some of the areas where new ideas will make an impact. Most certainly, the future will take unpredicted directions, but hopefully the thoughts presented here will stimulate new ideas that can further advance the field.
High Frequency Dynamic Nuclear Polarization
Ni, Qing Zhe; Daviso, Eugenio; Can, Thach V.; Markhasin, Evgeny; Jawla, Sudheer K.; Swager, Timothy M.; Temkin, Richard J.; Herzfeld, Judith; Griffin, Robert G.
2013-01-01
Conspectus During the three decades 1980–2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = ½ species 13C or 15N. The difficulty is still greater when quadrupolar nuclei, like 17O or 27Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime — roughly 150–660 GHz — and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low temperature MAS probes were developed that permit in-situ microwave irradiation of the samples. And, finally, biradical polarizing agents were developed that increased the efficiency of DNP experiments by factors of ~4 at considerably lower paramagnet concentrations. Collectively these developments have made it possible to apply DNP on a routine basis to a number of different scientific endeavors, most prominently in the biological and material sciences. This Account reviews these developments, including the primary mechanisms used to transfer polarization in high frequency DNP, and the current choice of microwave sources and biradical polarizing agents. In addition, we illustrate the utility of the technique with a description of applications to membrane and amyloid proteins that emphasizes the unique structural information that is available in these two cases. PMID:23597038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu
2014-01-21
Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (<50 K) for all three systems. The vibrational temperature of the NO product from DNP is (3850 ± 50) K, 1350 K hotter than that of the two model species. Potential energy surface calculations at the CASSCF(12,8)/6-31+G(d) level illustratemore » that conical intersections plays an essential role in the decomposition mechanism. Electronically excited S{sub 2} nitropyraozles can nonradiatively relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{sub 1}/S{sub 0}){sub CI} conical intersection and undergo a nitro-nitrite isomerization to generate NO product either in the S{sub 1} state or S{sub 0} state. In model systems, NO is generated in the S{sub 1} state, while in the energetic material DNP, NO is produced on the ground state surface, as the S{sub 1} decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.« less
Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen
2018-01-01
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (~100 μL, i.e. 3 mm diameter NMR tubes). PMID:29459343
NASA Astrophysics Data System (ADS)
Eichhorn, T. R.; Haag, M.; van den Brandt, B.; Hautle, P.; Wenckebach, W. Th.; Jannin, S.; van der Klink, J. J.; Comment, A.
2013-09-01
In standard Dynamic Nuclear Polarization (DNP) electron spins are polarized at low temperatures in a strong magnetic field and this polarization is transferred to the nuclear spins by means of a microwave field. To obtain high nuclear polarizations cryogenic equipment reaching temperatures of 1 K or below and superconducting magnets delivering several Tesla are required. This equipment strongly limits applications in nuclear and particle physics where beams of particles interact with the polarized nuclei, as well as in neutron scattering science. The problem can be solved using short-lived optically excited triplet states delivering the electron spin. The spin is polarized in the optical excitation process and both the cryogenic equipment and magnet can be simplified significantly. A versatile apparatus is described that allows to perform pulsed dynamic nuclear polarization experiments at X-band using short-lived optically excited triplet sates. The efficient 4He flow cryostat that cools the sample to temperatures between 4 K and 300 K has an optical access with a coupling stage for a fiber transporting the light from a dedicated laser system. It is further designed to be operated on a neutron beam. A combined pulse ESR/DNP spectrometer has been developed to observe and characterize the triplet states and to perform pulse DNP experiments. The ESR probe is based on a dielectric ring resonator of 7 mm inner diameter that can accommodate cubic samples of 5 mm length needed for neutron experiments. NMR measurements can be performed during DNP with a coil integrated in the cavity. With the presented apparatus a proton polarization of 0.5 has been achieved at 0.3 T.
The NNP/DNP shortage: transforming neonatal nurse practitioners into DNPs.
Pressler, Jana L; Kenner, Carole A
2009-01-01
Neonatal nurse practitioners (NNPs) represent a high-demand specialty practice that is especially targeted for US secondary and tertiary care neonatal intensive care units (NICUs). NNPs make primary decisions about the caregiving of high-risk newborns at the time of admission, throughout hospitalization, at transfer, and at discharge that require an advanced knowledge base in neonatology as well as NICU clinical experience. NNPs prepared at the master's level are currently in very short supply, with some estimates suggesting that for each NNP who graduates, there are 80 positions open across the country. Even with the present shortage, due to the high cost of NNP education, NNP programs are diminishing and those that are remaining are not graduating a sufficient number of new NNPs each year to keep up with the demand. To add to the basic shortage problem, in 2004 the American Association of Colleges of Nursing decided that by 2015, the terminal degree for all nurse practitioners should move from the master's degree to the doctor of nursing practice (DNP) degree. That decision added a minimum of 12 months of full-time education to the advanced education requirements for nurse practitioners. What impact will the decision to require a DNP degree have on NNP specialty practice? Will even more NNP programs close because of faculty shortages of NNPs prepared at the DNP level? If a worse shortage occurs in the number of NNPs prepared to practice in NICUs, will physician assistants or other nonphysician clinicians who meet the need for advanced neonatal care providers replace NNPs? What steps, if any, can nursing take to ensure that NNP specialty practice is still needed and survives after supplementing the DNP requirement to NNP education?
Denitrification potential in relation to lithology in five headwater riparian zones.
Hill, Alan R; Vidon, Philippe G F; Langat, Jackson
2004-01-01
The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field-riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000-2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.
He, Xiao-Fen; Wei, Jun-Jun; Shou, Sheng-Yun; Fang, Jian-Qiao; Jiang, Yong-Liang
To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the P2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). Rat type 2 DNP was induced by a high calorie and high sugar diet fed for 7 weeks, plus a single intraperitoneal injection of streptozotocin (STZ) after 5 weeks. EA at 2 and 100 Hz was carried out once every day after 7 weeks for 7 consecutive days. Body weight, serum fasting insulin (FINS), fasting blood glucose (FBG), insulin sensitivity index (ISI), and paw withdrawal latency (PWL) were measured. The expressions of L4-L6 DRG P2X3 receptors and CGRP were assessed by immunofluorescence. Type 2 DNP was successfully induced as shown by the increased body weight, FINS, and FBG, as well as the reduced ISI and PWL. Expressions of P2X3 receptors and CGRP in L4-L6 DRGs increased. EA at both 2 and 100 Hz relieved type 2 DNP, but the analgesic effect of EA was stronger at 2 Hz. P2X3 receptor expression decreased in L4-L6 DRGs following EA at 2 Hz and in L5 and L6 DRGs following EA at 100 Hz. EA at both 2 and 100 Hz down-regulated CGRP overexpression in L4-L6 DRGs. These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG P2X3 receptors and CGRP in this condition.
Li, Wenzheng; Wang, Qiang; Xu, Jun; Aussenac, Fabien; Qi, Guodong; Zhao, Xingling; Gao, Pan; Wang, Chao; Deng, Feng
2018-06-14
γ-Al2O3 is an important catalyst and catalyst support of industrial interest. Its acid/base characteristics are correlated to the surface structure, which has always been an issue of concern. In this work, the complex (sub-)surface oxygen species on surface-selectively labelled γ-Al2O3 were probed by 17O dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP-SENS). Direct 17O MAS and indirect 1H-17O cross-polarization (CP)/MAS DNP experiments enable observation of the (sub-)surface bare oxygen species and hydroxyl groups. In particular, a two-dimensional (2D) 17O 3QMAS DNP spectrum was for the first time achieved for γ-Al2O3, in which two O(Al)4 and one O(Al)3 bare oxygen species were identified. The 17O isotropic chemical shifts (δcs) vary from 56.7 to 81.0 ppm and the quadrupolar coupling constants (CQ) range from 0.6 to 2.5 MHz for the three oxygen species. The coordinatively unsaturated O(Al)3 species is characterized by a higher field chemical shift (56.7 ppm) and the largest CQ value (2.5 MHz) among these oxygen sites. 2D 1H → 17O HETCOR DNP experiments allow us to discriminate three bridging (Aln)-μ2-OH and two terminal (Aln)-μ1-OH hydroxyl groups. The structural features of the bare oxygen species and hydroxyl groups are similar for the γ-Al2O3 samples isotopically labelled by 17O2 gas or H217O. The results presented here show that the combination of surface-selective labelling and DNP-SENS is an effective approach for characterizing oxides with complex surface species.
NASA Astrophysics Data System (ADS)
Dubroca, Thierry; Smith, Adam N.; Pike, Kevin J.; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R.; Frydman, Lucio; Hill, Stephen
2018-04-01
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 μL, i.e. 3 mm diameter NMR tubes).
A profile of U.S. nursing faculty in research- and practice-focused doctoral education.
Smeltzer, Suzanne C; Sharts-Hopko, Nancy C; Cantrell, Mary Ann; Heverly, Mary Ann; Nthenge, Serah; Jenkinson, Amanda
2015-03-01
This study, which is part of a larger project, was conducted to profile the nursing faculty in the United States teaching in PhD and DNP programs. This is a descriptive study. A sample of 554 nursing faculty who teach in PhD and DNP programs was recruited by email solicitation to represent all geographic regions of the United States. Data were collected from November 2013 through January 2014 using an online survey instrument. The instrument was developed based on results of review of the literature and of focus groups of doctoral faculty (faculty teaching in doctoral programs) to ascertain characteristics of faculty teaching in doctoral programs and of the schools in which they teach. Frequencies and descriptive statistics are reported. Growth in DNP programs has outpaced growth in PhD programs, and DNP graduates have moved into doctoral education in greater numbers than PhD graduates. DNP faculty report less prior experience and current productivity scholarship than faculty in PhD programs only or both types of programs. Strategies are needed to ensure that doctoral programs are staffed by faculty who are prepared for doctoral education and the development of nursing science. The Institute of Medicine has recommended doubling the number of doctorally prepared nurses in the United States by 2020 to ensure that sufficient numbers of faculty are available to prepare the nursing labor force that is needed for delivery of healthcare services. Nurse scientists are needed to contribute to improvement in patient care quality and safety, and practice leaders are needed to facilitate the translation of research into safe, high-quality, and cost-effective care. The landscape of doctoral education in nursing is rapidly changing. © 2015 Sigma Theta Tau International.
Dubroca, Thierry; Smith, Adam N; Pike, Kevin J; Froud, Stuart; Wylde, Richard; Trociewitz, Bianca; McKay, Johannes; Mentink-Vigier, Frederic; van Tol, Johan; Wi, Sungsool; Brey, William; Long, Joanna R; Frydman, Lucio; Hill, Stephen
2018-04-01
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T ( 1 H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13 C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31 P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T ( 1 H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 µL, i.e. 3 mm diameter NMR tubes). Copyright © 2018 Elsevier Inc. All rights reserved.
Ryan, Herbert; van Bentum, Jan; Maly, Thorsten
2017-04-01
In recent years high-field Dynamic Nuclear Polarization (DNP) enhanced NMR spectroscopy has gained significant interest. In high-field DNP-NMR experiments (⩾400MHz 1 H NMR, ⩾9.4T) often a stand-alone gyrotron is used to generate high microwave/THz power to produce sufficiently high microwave induced B 1e fields at the position of the NMR sample. These devices typically require a second, stand-alone superconducting magnet to operate. Here we present the design and realization of a ferroshim insert, to create two iso-centers inside a commercially available wide-bore NMR magnet. This work is part of a larger project to integrate a gyrotron into NMR magnets, effectively eliminating the need for a second, stand-alone superconducting magnet. Copyright © 2017 Elsevier Inc. All rights reserved.
Beware the yellow slimming pill: fatal 2,4-dinitrophenol overdose.
Holborow, Alexander; Purnell, Richard M; Wong, Jenny Frederina
2016-04-04
An industrial chemical, 2,4-dinitrophenol (DNP), has found use as a weight loss drug. It is extremely toxic in overdose and has a narrow therapeutic window with significant interindividual variability in metabolism. The rise in internet-based sales and distribution of this drug has seen an increased incidence of both accidental and intentional overdose presenting to emergency departments across the UK. No antidote currently exists and overdose is often fatal despite management based on current recommendations. We report a case of intentional overdose of DNP in a young man and discuss the current treatment guidelines. The case highlights the need for an increased awareness among frontline medical staff of the effects of DNP poisoning and questions the need for a more aggressive approach in the management of acute toxicity. 2016 BMJ Publishing Group Ltd.
Dynamic Nuclear Polarization and the Paradox of Quantum Thermalization.
De Luca, Andrea; Rosso, Alberto
2015-08-21
Dynamic nuclear polarization (DNP) is to date the most effective technique to increase the nuclear polarization opening disruptive perspectives for medical applications. In a DNP setting, the interacting spin system is quasi-isolated and brought out of equilibrium by microwave irradiation. Here we show that the resulting stationary state strongly depends on the ergodicity properties of the spin many-body eigenstates. In particular, the dipolar interactions compete with the disorder induced by local magnetic fields resulting in two distinct dynamical phases: while for weak interaction, only a small enhancement of polarization is observed, for strong interactions the spins collectively equilibrate to an extremely low effective temperature that boosts DNP efficiency. We argue that these two phases are intimately related to the problem of thermalization in closed quantum systems where a many-body localization transition can occur varying the strength of the interactions.
Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR
Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; ...
2015-11-20
DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al 2O 3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C- 13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.
Re-Envisioning a DNP Program for Quality and Sustainability.
Killien, Marcia; Thompson, Hilaire; Kieckhefer, Gail; Bekemeier, Betty; Kozuki, Yoriko; Perry, Cynthia K
When the University of Washington, School of Nursing determined that its post-BSN-DNP degree program, with multiple specialty tracks and programs of study, was not sustainable, the curriculum was re-envisioned. The revised program is consistent with the American Association of Colleges of Nursing (AACN) Essentials of Doctoral Education for Advanced Nursing Practice and the national Licensure Accreditation, Certification, and Education (LACE) model. The re-envisioned program was conceptualized as a single degree in which students preparing for any specialty would have the same number of required credits with the majority of courses (DNP core) required for all students. Two major pathways, 1) advanced practice registered nursing and 2) advanced systems and population health were identified. The model allows for specialties to be added or discontinued without major disruption to the core curriculum. The consolidated curriculum reduced instructional costs to the school by approximately 26% and reduced and made more equitable the tuition costs for the majority of students. The revised consolidated program is innovative, maintains quality, attracts students, and aligns with resources. This article discusses how we achieved revision and consolidation of a post-BSN DNP program with multiple specialty tracks that is innovative, high quality, sustainable, and replicable by other schools of nursing. Copyright © 2016 Elsevier Inc. All rights reserved.
Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd
2015-03-01
Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.
NASA Astrophysics Data System (ADS)
Filibian, M.; Elisei, E.; Colombo Serra, S.; Rosso, A.; Tedoldi, F.; Cesàro, A.; Carretta, P.
$^1$H nuclear spin-lattice relaxation and Dynamic Nuclear Polarization (DNP) have been studied in amorphous samples of trehalose sugar doped with TEMPO radicals by means of mechanical milling, in the 1.6 K $\\div$ 4.2 K temperature range. The radical concentration was varied between 0.34 and 0.81 $\\%$. The highest polarization of 15 \\% at 1.6 K, observed in the sample with concentration $0.50 \\%$, is of the same order of magnitude of that reported in standard frozen solutions with TEMPO. The temperature and concentration dependence of the spin-lattice relaxation rate $1/T_{\\text{1}}$, dominated by the coupling with the electron spins, were found to follow power laws with an exponent close to $3$ in all samples. The observed proportionality between $1/T_{\\text{1}}$ and the polarization rate $1/T_{\\text{pol}}$, with a coefficient related to the electron polarization, is consistent with the presence of Thermal Mixing (TM) and a good contact between the nuclear and the electron spins. At high electron concentration additional relaxation channels causing a decrease in the nuclear polarization must be considered. These results provide further support for a more extensive use of amorphous DNP-ready samples, obtained by means of comilling, in dissolution DNP experiments and possibly for $\\textit{in vivo}$ metabolic imaging.
Natural abundance 17O DNP two-dimensional and surface-enhanced NMR spectroscopy
Perras, Frédéric A.; Kobayashi, Takeshi; Pruski, Marek
2015-06-22
Due to its extremely low natural abundance and quadrupolar nature, the 17O nuclide is very rarely used for spectroscopic investigation of solids by NMR without isotope enrichment. Additionally, the applicability of dynamic nuclear polarization (DNP), which leads to sensitivity enhancements of 2 orders of magnitude, to 17O is wrought with challenges due to the lack of spin diffusion and low polarization transfer efficiency from 1H. Here, we demonstrate new DNP-based measurements that extend 17O solid-state NMR beyond its current capabilities. The use of the PRESTO technique instead of conventional 1H– 17O cross-polarization greatly improves the sensitivity and enables the facilemore » measurement of undistorted line shapes and two-dimensional 1H– 17O HETCOR NMR spectra as well as accurate internuclear distance measurements at natural abundance. This was applied for distinguishing hydrogen-bonded and lone 17O sites on the surface of silica gel; the one-dimensional spectrum of which could not be used to extract such detail. As a result, this greatly enhanced sensitivity has enabled, for the first time, the detection of surface hydroxyl sites on mesoporous silica at natural abundance, thereby extending the concept of DNP surface-enhanced NMR spectroscopy to the 17O nuclide.« less
Filibian, M; Elisei, E; Colombo Serra, S; Rosso, A; Tedoldi, F; Cesàro, A; Carretta, P
2016-06-22
(1)H nuclear spin-lattice relaxation and Dynamic Nuclear Polarization (DNP) have been studied in amorphous samples of trehalose sugar doped with TEMPO radicals by means of mechanical milling, in the 1.6-4.2 K temperature range. The radical concentration was varied between 0.34 and 0.81%. The highest polarization of 15% at 1.6 K, observed in the sample with concentration 0.50%, is of the same order of magnitude of that reported in standard frozen solutions with TEMPO. The temperature and concentration dependence of the spin-lattice relaxation rate 1/T1, dominated by the coupling with the electron spins, were found to follow power laws with an exponent close to 3 in all samples. The observed proportionality between 1/T1 and the polarization rate 1/Tpol, with a coefficient related to the electron polarization, is consistent with the presence of Thermal Mixing (TM) and a good contact between the nuclear and the electron spins. At high electron concentration additional relaxation channels causing a decrease in the nuclear polarization must be considered. These results provide further support for a more extensive use of amorphous DNP-ready samples, obtained by means of comilling, in dissolution DNP experiments and possibly for in vivo metabolic imaging.
Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP
2016-09-01
ARL-TN-0788 ● SEP 2016 US Army Research Laboratory Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by... Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP by Rose A Pesce-Rodriguez Weapons and Materials
2,4-Dinitrophenol: a threat to Chinese body-conscious groups.
Lee, Han Chih Hencher; Law, Chun Yiu; Chen, Mo Lung; Lam, Ying Hoo; Chan, Albert Yan Wo; Mak, Tony Wing Lai
2014-08-01
2,4-Dinitrophenol (2,4-DNP), a yellowish compound, has historically been used in the manufacture of dyes, explosives, and fungicides. As it uncouples mitochondrial oxidative phosphorylation, the compound was also used as an antiobesity agent early in the past century. The compound was subsequently banned by the United States Food and Drug Administration in 1938 due to its potentially fatal adverse effects, including hyperthermia, cataract, agranulocytosis, hepatoxicity, nephrotoxicity, and cardiotoxicity. However, the popularity of 2,4-DNP as a slimming aid has appeared to increase again in recent years. The Hong Kong Hospital Authority Toxicology Reference Laboratory recently confirmed two cases of self-administered 2,4-DNP with different clinical presentations to hospitals in the area. Here we describe those two cases, in an attempt to underscore the potential of misuse of this substance by body-conscious groups among the Chinese population. Copyright © 2014. Published by Elsevier B.V.
Cheng, Chi-Yuan; Han, Songi
2013-01-01
Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.
Frequency-Swept Integrated and Stretched Solid Effect Dynamic Nuclear Polarization.
Can, T V; McKay, J E; Weber, R T; Yang, C; Dubroca, T; van Tol, J; Hill, S; Griffin, R G
2018-06-21
We investigate a new time domain approach to dynamic nuclear polarization (DNP), the frequency-swept integrated solid effect (FS-ISE), utilizing a high power, broadband 94 GHz (3.35 T) pulse EPR spectrometer. The bandwidth of the spectrometer enabled measurement of the DNP Zeeman frequency/field profile that revealed two dominant polarization mechanisms, the expected ISE, and a recently observed mechanism, the stretched solid effect (S 2 E). At 94 GHz, despite the limitations in the microwave chirp pulse length (10 μs) and the repetition rate (2 kHz), we obtained signal enhancements up to ∼70 for the S 2 E and ∼50 for the ISE. The results successfully demonstrate the viability of the FS-ISE and S 2 E DNP at a frequency 10 times higher than previous studies. Our results also suggest that these approaches are candidates for implementation at higher magnetic fields.
Dynamic nuclear polarization by frequency modulation of a tunable gyrotron of 260GHz.
Yoon, Dongyoung; Soundararajan, Murari; Cuanillon, Philippe; Braunmueller, Falk; Alberti, Stefano; Ansermet, Jean-Philippe
2016-01-01
An increase in Dynamic Nuclear Polarization (DNP) signal intensity is obtained with a tunable gyrotron producing frequency modulation around 260GHz at power levels less than 1W. The sweep rate of frequency modulation can reach 14kHz, and its amplitude is fixed at 50MHz. In water/glycerol glassy ice doped with 40mM TEMPOL, the relative increase in the DNP enhancement was obtained as a function of frequency-sweep rate for several temperatures. A 68 % increase was obtained at 15K, thus giving a DNP enhancement of about 80. By employing λ/4 and λ/8 polarizer mirrors, we transformed the polarization of the microwave beam from linear to circular, and achieved an increase in the enhancement by a factor of about 66% for a given power. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Albert, Brice J.; Pahng, Seong Ho; Alaniva, Nicholas; Sesti, Erika L.; Rand, Peter W.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Barnes, Alexander B.
2017-10-01
Cryogenic sample temperatures can enhance NMR sensitivity by extending spin relaxation times to improve dynamic nuclear polarization (DNP) and by increasing Boltzmann spin polarization. We have developed an efficient heat exchanger with a liquid nitrogen consumption rate of only 90 L per day to perform magic-angle spinning (MAS) DNP experiments below 85 K. In this heat exchanger implementation, cold exhaust gas from the NMR probe is returned to the outer portion of a counterflow coil within an intermediate cooling stage to improve cooling efficiency of the spinning and variable temperature gases. The heat exchange within the counterflow coil is calculated with computational fluid dynamics to optimize the heat transfer. Experimental results using the novel counterflow heat exchanger demonstrate MAS DNP signal enhancements of 328 ± 3 at 81 ± 2 K, and 276 ± 4 at 105 ± 2 K.
Role of chiral quantum Hall edge states in nuclear spin polarization.
Yang, Kaifeng; Nagase, Katsumi; Hirayama, Yoshiro; Mishima, Tetsuya D; Santos, Michael B; Liu, Hongwu
2017-04-20
Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.
Herbst, L H; Klein, P A
1995-06-01
Monoclonal antibodies (Mabs) were developed against the known immunoglobulin classes of the green turtle, Chelonia mydas. Plasma protein fractions enriched for 5.7S IgY, 7S IgY, and IgM turtle immunoglobulins were used to immunize Balb/c mice for hybridoma production and for hybridoma screening. Fifteen hybridomas produced Mabs with specificity for turtle immunoglobulins and for affinity purified dinitrophenol (DNP) specific turtle antibodies. Three Mabs specific for either turtle 5.7S IgY heavy chain (HL814), 7S IgY heavy chain (HL857), or IgM heavy chain (HL846) were purified and used in an enzyme-linked immunosorbent assay (ELISA) to measure antibody responses in two turtles immunized with 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) over a 10 month period. In both turtles the 7S IgY antibody response developed within 5 weeks of the first inoculation and remained high over the following 9 months. The 5.7S IgY antibody response was detected in one turtle at 3-4 months and in the other at 8 months, and reached high levels in both individuals by 10 months. The IgM responses were difficult to interpret. One turtle had pre-inoculation anti-DNP IgM antibody in its plasma and the other developed only a weak, transient response at about 4 months. The class-specific antibody activity in immune turtle plasma could be strongly inhibited by soluble DNP or by rabbit anti-DNP specific antiserum, showing that these antibody responses were directed predominantly to the DNP hapten on the DNP-BSA antigen. Antibody responses to the BSA carrier could not be detected in either turtle over the course of the immunization. Mab HL814, specific for an epitope on the 5.7S green turtle immunoglobulin heavy chain, will be useful for characterizing the molecular relationships of 5.7S, 7S and IgM heavy chains and the role of 5.7S antibody in humoral immunity in this species. All anti-turtle Ig Mabs were screened against the plasma globulins of Loggerhead (Caretta caretta), Olive Ridley (Lepidochelys olivacea), Kemp's Ridley (Lepidochelys kempi), Hawksbill (Eretmochelys imbricata), and Leatherback (Dermochelys coriacea). While the Mabs specific for IgM and 5.7S IgY reacted only with the green turtle, two Mabs specific for light chain reacted with all species except the leatherback, and nine mabs specific for 7S IgY heavy chain reacted with all five species. Thus, these Mabs may be useful for immunodiagnostic applications in these endangered species as well.
Mentoring Nurses in Political Skill to Navigate Organizational Politics
2016-01-01
Objective. The aim of this study was to describe and analyze the correlations between mentoring functions and political skill development among nurses who have earned or are candidates for a Ph.D. or doctorate of nursing practice (DNP) degree. Background. The healthcare system is in flux; future generations of Ph.D. and DNP nurse leaders will be required to demonstrate political acumen. Political skill to navigate organizational politics has had limited research within nursing. Methods. A cross-sectional research design using a web-based survey of 222 nurses who have earned or are candidates for a Ph.D. or DNP. This study utilized two validated tools to measure mentoring functions and political skill. Results. The response rate was 52% (n = 115) of which 86 were Ph.D. and 29 were DNPs. An informal mentoring relationship was described by 62% of the respondents and formal mentoring by 35% of the protégés; only 25% (n = 74) established a mentoring contract. Mentoring score showed significance for total political skill and moderate effect on the networking ability. The mentoring functions of advocacy, career development facilitation, learning facilitation, and friendship were found to correlate significantly with total political skill scores. Conclusions. This study established a benefit for nurses who have earned or are candidates for a Ph.D. or DNP from mentoring to support political skill development. PMID:27777798
Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Scott, Faith J.; Saliba, Edward P.; Albert, Brice J.; Alaniva, Nicholas; Sesti, Erika L.; Gao, Chukun; Golota, Natalie C.; Choi, Eric J.; Jagtap, Anil P.; Wittmann, Johannes J.; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th. Sigurdsson, Snorri; Barnes, Alexander B.
2018-04-01
We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources.
[Clinical experiences with four newly developed, surface modified stimulation electrodes].
Winter, U J; Fritsch, J; Liebing, J; Höpp, H W; Hilger, H H
1993-05-01
Newly developed pacing electrodes with so-called porous surfaces promise a significantly improved post-operative pacing and sensing threshold. We therefore investigated four newly developed leads (ELA-PMCF-860 n = 10; Biotronik-60/4-DNP n = 10, CPI-4010 n = 10, Intermedics-421-03-Biopore n = 6) connected to two different pacing devices (Intermedics NOVA II, Medtronic PASYS) in 36 patients (18 men, 18 women, age: 69.7 +/- 9.8 years) suffering from symptomatic bradycardia. The individual electrode maturation process was investigated by means of repeated measurements of pacing threshold, electrode impedance in acute, subacute, and chronic phase, as well as energy consumption and sensing behavior in the chronic phase. However, with the exception of the 4010, the investigated leads showed largely varying values of the pacing threshold with individual peaks occurring from the second up to the 13th week. All leads had nearly similar chronic pacing thresholds (PMCF 0.13 +/- 0.07; DNP 0.25 +/- 0.18; Biopore 0.15 +/- 0.05; 4010 0.14 +/- 0.05 ms). Impedance measurements revealed higher, but not significantly different values for the DNP (PMCF 582 +/- 112, DNP 755 +/- 88, Biopore 650 +/- 15, 4010 718 +/- 104 Ohm). Despite differing values for pacing threshold and impedance, the energy consumption in the chronic phase during threshold-adapted, but secure stimulation (3 * impulse-width at pacing threshold) were comparable.
Low-temperature dynamic nuclear polarization of gases in frozen mixtures
Pourfathi, Mehrdad; Clapp, Justin; Kadlecek, Stephen J.; Keenan, Caroline D.; Ghosh, Rajat K.; Kuzma, Nicholas N.; Rizi, Rahim R.
2015-01-01
Purpose To present a new cryogenic technique for preparing gaseous compounds in solid mixtures for polarization using dynamic nuclear polarization (DNP). Methods 129Xe and 15N2O samples were prepared using the presented method. Samples were hyperpolarized at 1.42K at 5T. 129Xe was polarized at 1.65K and 1.42K to compare enhancement. Polarization levels for both samples and T1 relaxation times for the 129Xe sample were measured. Sample pulverization for the 129Xe and controlled annealing for both samples were introduced as additional steps in sample preparation. Results Enhancement increased by 15% due to a temperature drop from 1.65K to 1.42K for the 129Xe sample. A polarization level of 20±3% for the 129Xe sample was achieved, a 2-fold increase from 10±1% after pulverization of the sample at 1.42K. T1 of the 129Xe sample was increased by more than 3-fold via annealing. In the case of 15N2O, annealing led to a ~2-fold increase in the signal level after DNP. Conclusion The presented technique for producing and manipulating solid gas/glassing agent/radical mixtures for DNP led to high polarization levels in 129Xe and 15N2O samples. These methods show potential for polarizing other gases using DNP technology. PMID:26444315
Towards Overhauser DNP in supercritical CO(2).
van Meerten, S G J; Tayler, M C D; Kentgens, A P M; van Bentum, P J M
2016-06-01
Overhauser Dynamic Nuclear Polarization (ODNP) is a well known technique to improve NMR sensitivity in the liquid state, where the large polarization of an electron spin is transferred to a nucleus of interest by cross-relaxation. The efficiency of the Overhauser mechanism for dipolar interactions depends critically on fast local translational dynamics at the timescale of the inverse electron Larmor frequency. The maximum polarization enhancement that can be achieved for (1)H at high magnetic fields benefits from a low viscosity solvent. In this paper we investigate the option to use supercritical CO2 as a solvent for Overhauser DNP. We have investigated the diffusion constants and longitudinal nuclear relaxation rates of toluene in high pressure CO2. The change in (1)H T1 by addition of TEMPO radical was analyzed to determine the Overhauser cross-relaxation in such a mixture, and is compared with calculations based on the Force Free Hard Sphere (FFHS) model. By analyzing the relaxation data within this model we find translational correlation times in the range of 2-4ps, depending on temperature, pressure and toluene concentration. Such short correlation times may be instrumental for future Overhauser DNP applications at high magnetic fields, as are commonly used in NMR. Preliminary DNP experiments have been performed at 3.4T on high pressure superheated water and model systems such as toluene in high pressure CO2. Copyright © 2016 Elsevier Inc. All rights reserved.
Embryotoxicity of nitrophenols to the early life stages of zebrafish (Danio rerio).
Ceylan, Zeynep; Şişman, Turgay; Yazıcı, Zehra; Altıkat, Aysun Özen
2016-08-01
The nitrophenols (NPs) are water-soluble compounds. These compounds pose a significant health threat since they are priority environmental pollutants. In this study, 2-Nitrophenol (2NP) and 2,4-dinitrophenol (DNP) were examined for embryo and early life stage toxicity in zebrafish (Danio rerio). Acute toxicity and teratogenicity of 2NP and DNP were tested for 4 days using zebrafish embryos. The typical lesions observed were no somite formation, incomplete eye and head development, tail curvature, weak pigmentation (≤48 hours postfertilization (hpf)), kyphosis, scoliosis, yolk sac deformity, and nonpigmentation (72 hpf). Also, embryo and larval mortality increased and hatching success decreased. The severity of abnormalities and mortalities were concentration- and compound-dependent. Of the compounds tested, 2,4-DNP was found to be highly toxic to the fish embryos following exposure. The median lethal concentrations and median effective concentrations for 2NP are 18.7 mg/L and 7.9 mg/L, respectively; the corresponding values for DNP are 9.65 mg/L and 3.05 mg/L for 48 h. The chorda deformity was the most sensitive endpoint measured. It is suggested that the embryotoxicity may be mediated by an oxidative phosphorylation uncoupling mechanism. This article is the first to describe the teratogenicity and embryotoxicity of two NPs to the early life stages of zebrafish. © The Author(s) 2014.
Kamour, Ashraf; George, Nathan; Gwynnette, David; Cooper, Gillian; Lupton, David; Eddleston, Michael; Thompson, John Paul; Vale, John Allister; Thanacoody, Harry Krishna Ruben; Hill, Simon; Thomas, Simon Hugh Lynton
2015-05-01
2,4-Dinitrophenol (DNP) increases energy consumption by uncoupling oxidative phosphorylation. Although not licensed as a medicine, it is sometimes used by 'body sculptors' and for weight loss as a 'fat burning' agent. This research was performed to characterise patterns of presentation, clinical features and outcomes of patients reported to the National Poisons Information Service (NPIS) in the UK after exposure to DNP. NPIS telephone enquiry records and user sessions for TOXBASE, the NPIS online information database, related to DNP, were reviewed from 1 January 2007 to 31 December 2013. Of the 30 separate systemic exposures to DNP reported by telephone to NPIS during the study period (27 males, 3 females, with a median age of 23.5 years), there were 3 during 2007-2011 (inclusive), 5 during 2012 and 22 during 2013. TOXBASE user sessions also increased sharply from 6 in 2011 to 35 in 2012 and 331 in 2013. The modes of exposure reported in telephone enquiries were chronic (n=2), acute (n=12) and subacute (n=16). Commonly reported clinical features were fever (47%), tachycardia (43%), sweating (37%), nausea or vomiting (27%), skin discolouration or rash (23%), breathing difficulties (23%), abdominal pain (23%), agitation (13%) and headache (13%). There were five (17%, 95% CI 6.9% to 34%) fatalities, four involving acute overdose. The study indicates a substantial recent increase in clinical presentations with toxicity caused by exposure to DNP in the UK with an associated high mortality. Further steps are needed to warn potential users of the severe and sometimes fatal toxicity that may occur after exposure to this compound. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
He, Xiao-fen; Wei, Jun-jun; Shou, Sheng-yun; Fang, Jian-qiao; Jiang, Yong-liang
2017-01-01
Objective: To investigate the analgesic effects of electroacupuncture (EA) at 2 and 100 Hz on type 2 diabetic neuropathic pain (DNP) and on the expressions of the P2X3 receptor and calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). Methods: Rat type 2 DNP was induced by a high calorie and high sugar diet fed for 7 weeks, plus a single intraperitoneal injection of streptozotocin (STZ) after 5 weeks. EA at 2 and 100 Hz was carried out once every day after 7 weeks for 7 consecutive days. Body weight, serum fasting insulin (FINS), fasting blood glucose (FBG), insulin sensitivity index (ISI), and paw withdrawal latency (PWL) were measured. The expressions of L4–L6 DRG P2X3 receptors and CGRP were assessed by immunofluorescence. Results: Type 2 DNP was successfully induced as shown by the increased body weight, FINS, and FBG, as well as the reduced ISI and PWL. Expressions of P2X3 receptors and CGRP in L4–L6 DRGs increased. EA at both 2 and 100 Hz relieved type 2 DNP, but the analgesic effect of EA was stronger at 2 Hz. P2X3 receptor expression decreased in L4–L6 DRGs following EA at 2 Hz and in L5 and L6 DRGs following EA at 100 Hz. EA at both 2 and 100 Hz down-regulated CGRP overexpression in L4–L6 DRGs. Conclusions: These findings indicate that EA at 2 Hz is a good option for the management of type 2 DNP. The EA effect may be related to its down-regulation of the overexpressions of the DRG P2X3 receptors and CGRP in this condition. PMID:28271659
Foster, Stephen P; Anderson, Karin G; Casas, Jérôme
2017-08-01
Most species of moths use a female-produced volatile sex pheromone, typically produced via de novo fatty acid synthesis in a specialized gland, for communication among mates. While de novo biosynthesis of pheromone (DNP) is rapid, suggesting transient precursor acids, substantial amounts of pheromone precursor (and other) acids are stored, predominantly in triacylglycerols in the pheromone gland. Whether these stored acids are converted to pheromone later or not has been the subject of some debate. Using a tracer/tracee approach, in which we fed female Heliothis virescens U- 13 C-glucose, we were able to distinguish two pools of pheromone, in which precursors were temporally separated (after and before feeding on labeled glucose): DNP synthesized from a mixed tracer/tracee acetyl CoA pool after feeding, and pheromone made from precursor acids primarily synthesized before feeding, which we call recycled precursor fat pheromone (RPP). DNP titer varied from high (during scotophase) to low (photophase) and with presence/absence of pheromone biosynthesis activating neuropeptide (PBAN), in accord with native pheromone titer previously observed. By contrast, RPP was constant throughout the photoperiod and did not change with PBAN presence/absence. The amount of RPP (6.3-10.3 ng/female) was typically much lower than that of DNP, especially during the scotophase (peak DNP, 105 ng/female). We propose an integral role for stored fats in pheromone biosynthesis, in which they are hydrolyzed and re-esterified throughout the photoperiod, with a small proportion of liberated precursor acyl CoAs being converted to pheromone. During the sexually active period, release of PBAN results in increased flux of glucose (from trehalose) and hydrolyzed acids entering the mitochondria, producing acetyl CoA precursor for de novo fat and pheromone biosynthesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ramkumar, Prem; Navarro, Sergio Michael
2017-01-01
Objectives: The primary goal of this study was to assess the short-term outcomes among National Football League (NFL) players following concussion in terms of: (1) DNP protocol activation, (2) release rate at one and three years, and (3) mean salary reduction. A secondary goal of the study was to stratify the post-concussive release rate by franchise and player position. Methods: NFL player transaction records and publicly available weekly injury reports from August 2005 to January 2016 for NFL players were analyzed. All players immediately sustaining recorded concussions were evaluated for a change to inactive or do-not-play (DNP) status. The one-year and three-year release rate following concussion was defined as any player transitioning to inactivation, retirement, free agency, or any failure to return for a successive season on the same team’s active roster after one or three years from the initial concussion. Student’s t-test was used to compare release rates between non-concussed and concussed players at one and three years. Mean salary reduction per year following concussion was calculated using publicly available player contracts. Additionally, franchise-level and position-based analyses of the release rate were performed. Results: Of the total 5,451 NFL players retrospectively analyzed over the 11-year period, 373 sustained publicly reported concussions resulting in DNP protocol activation. The release rate of the post-concussive versus non-concussive player was 26% vs. 20% at 1 year (p<0.01) and 31% vs. 19% at 3 years (p<0.01). After analyzing individual player contracts, the mean year-over-year change in contract value for concussed players after DNP protocol activation was an overall salary reduction of $760,000/year ± $2,380,000. Figure 1 depicts the tendency of each NFL franchise to release an athlete following concussion within one and three years. Table 1 reports a position-based analysis in terms of concussion rate, mean salary reduction, and NFL career longevity. Conclusion: Our retrospective study demonstrates that NFL concussions resulting in DNP protocol activation leads to a statistically greater release rate among concussed NFL players than non-concussed players. Released players suffered reduction in year-over-year accumulated earnings, and particular franchises tended to release concussed players more than others. Position-based Concussion Statistics of Players by DNP Activation, Salary Reduction, Career LengthPosition GroupDNP ConcussionsMean Salary Reduction ($/yr)Average Career Length (yrs)DB75 (20.1%)280,0007.0WR66 (17.7%)1,760,0007.3OL49 (13.1%)1,190,0005.5TE46 (12.3%)333,0007.7RB40 (10.7%)140,0005.1LB39 (10.5%)720,0004.9DL31 (8.3%)540,0007.0QB27 (7.2%)2,440,0007.3Total373760,0006.4
The effect of lung deformation on the spatial distribution of pulmonary blood flow.
Arai, Tatsuya J; Theilmann, Rebecca J; Sá, Rui Carlos; Villongco, Michael T; Hopkins, Susan R
2016-11-01
Pulmonary perfusion measurement using magnetic resonance imaging combined with deformable image registration enabled us to quantify the change in the spatial distribution of pulmonary perfusion at different lung volumes. The current study elucidated the effects of tidal volume lung inflation [functional residual capacity (FRC) + 500 ml and FRC + 1 litre] on the change in pulmonary perfusion distribution. Changes in hydrostatic pressure distribution as well as transmural pressure distribution due to the change in lung height with tidal volume inflation are probably bigger contributors to the redistribution of pulmonary perfusion than the changes in pulmonary vasculature resistance caused by lung tissue stretch. Tidal volume lung inflation results in structural changes in the pulmonary circulation, potentially affecting pulmonary perfusion. We hypothesized that perfusion is recruited to regions receiving the greatest deformation from a tidal breath, thus ensuring ventilation-perfusion matching. Density-normalized perfusion (DNP) magnetic resonance imaging data were obtained in healthy subjects (n = 7) in the right lung at functional residual capacity (FRC), FRC+500 ml, and FRC+1.0 l. Using deformable image registration, the displacement of a sagittal lung slice acquired at FRC to the larger volumes was calculated. Registered DNP images were normalized by the mean to estimate perfusion redistribution (nDNP). Data were evaluated across gravitational regions (dependent, middle, non-dependent) and by lobes (upper, RUL; middle, RML; lower, RLL). Lung inflation did not alter mean DNP within the slice (P = 0.10). The greatest expansion was seen in the dependent region (P < 0.0001: dependent vs non-dependent, P < 0.0001: dependent vs middle) and RLL (P = 0.0015: RLL vs RUL, P < 0.0001: RLL vs RML). Neither nDNP recruitment to RLL [+500 ml = -0.047(0.145), +1 litre = 0.018(0.096)] nor to dependent lung [+500 ml = -0.058(0.126), +1 litre = -0.023(0.106)] were found. Instead, redistribution was seen in decreased nDNP in the non-dependent [+500 ml = -0.075(0.152), +1 litre = -0.137(0.167)) and increased nDNP in the gravitational middle lung [+500 ml = 0.098(0.058), +1 litre = 0.093(0.081)] (P = 0.01). However, there was no significant lobar redistribution (P < 0.89). Contrary to our hypothesis, based on the comparison between gravitational and lobar perfusion data, perfusion was not redistributed to the regions of the most inflation. This suggests that either changes in hydrostatic pressure or transmural pressure distribution in the gravitational direction are implicated in the redistribution of perfusion away from the non-dependent lung. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
The effect of lung deformation on the spatial distribution of pulmonary blood flow
Arai, Tatsuya J.; Theilmann, Rebecca J.; Sá, Rui Carlos; Villongco, Michael T.
2016-01-01
Key points Pulmonary perfusion measurement using magnetic resonance imaging combined with deformable image registration enabled us to quantify the change in the spatial distribution of pulmonary perfusion at different lung volumes.The current study elucidated the effects of tidal volume lung inflation [functional residual capacity (FRC) + 500 ml and FRC + 1 litre] on the change in pulmonary perfusion distribution.Changes in hydrostatic pressure distribution as well as transmural pressure distribution due to the change in lung height with tidal volume inflation are probably bigger contributors to the redistribution of pulmonary perfusion than the changes in pulmonary vasculature resistance caused by lung tissue stretch. Abstract Tidal volume lung inflation results in structural changes in the pulmonary circulation, potentially affecting pulmonary perfusion. We hypothesized that perfusion is recruited to regions receiving the greatest deformation from a tidal breath, thus ensuring ventilation–perfusion matching. Density‐normalized perfusion (DNP) magnetic resonance imaging data were obtained in healthy subjects (n = 7) in the right lung at functional residual capacity (FRC), FRC+500 ml, and FRC+1.0 l. Using deformable image registration, the displacement of a sagittal lung slice acquired at FRC to the larger volumes was calculated. Registered DNP images were normalized by the mean to estimate perfusion redistribution (nDNP). Data were evaluated across gravitational regions (dependent, middle, non‐dependent) and by lobes (upper, RUL; middle, RML; lower, RLL). Lung inflation did not alter mean DNP within the slice (P = 0.10). The greatest expansion was seen in the dependent region (P < 0.0001: dependent vs non‐dependent, P < 0.0001: dependent vs middle) and RLL (P = 0.0015: RLL vs RUL, P < 0.0001: RLL vs RML). Neither nDNP recruitment to RLL [+500 ml = −0.047(0.145), +1 litre = 0.018(0.096)] nor to dependent lung [+500 ml = −0.058(0.126), +1 litre = −0.023(0.106)] were found. Instead, redistribution was seen in decreased nDNP in the non‐dependent [+500 ml = −0.075(0.152), +1 litre = −0.137(0.167)) and increased nDNP in the gravitational middle lung [+500 ml = 0.098(0.058), +1 litre = 0.093(0.081)] (P = 0.01). However, there was no significant lobar redistribution (P < 0.89). Contrary to our hypothesis, based on the comparison between gravitational and lobar perfusion data, perfusion was not redistributed to the regions of the most inflation. This suggests that either changes in hydrostatic pressure or transmural pressure distribution in the gravitational direction are implicated in the redistribution of perfusion away from the non‐dependent lung. PMID:27273807
Capozzi, Andrea; Cheng, Tian; Boero, Giovanni; Roussel, Christophe; Comment, Arnaud
2017-01-01
Hyperpolarization via dynamic nuclear polarization (DNP) is pivotal for boosting magnetic resonance imaging (MRI) sensitivity and dissolution DNP can be used to perform in vivo real-time 13C MRI. The type of applications is however limited by the relatively fast decay time of the hyperpolarized spin state together with the constraint of having to polarize the 13C spins in a dedicated apparatus nearby but separated from the MRI magnet. We herein demonstrate that by polarizing 13C with photo-induced radicals, which can be subsequently annihilated using a thermalization process that maintains the sample temperature below its melting point, hyperpolarized 13C-substrates can be extracted from the DNP apparatus in the solid form, while maintaining the enhanced 13C polarization. The melting procedure necessary to transform the frozen solid into an injectable solution containing the hyperpolarized 13C-substrates can therefore be performed ex situ, up to several hours after extraction and storage of the polarized solid. PMID:28569840
Design and Development of Layered Security: Future Enhancements and Directions in Transmission
Shahzad, Aamir; Lee, Malrey; Kim, Suntae; Kim, Kangmin; Choi, Jae-Young; Cho, Younghwa; Lee, Keun-Kwang
2016-01-01
Today, security is a prominent issue when any type of communication is being undertaken. Like traditional networks, supervisory control and data acquisition (SCADA) systems suffer from a number of vulnerabilities. Numerous end-to-end security mechanisms have been proposed for the resolution of SCADA-system security issues, but due to insecure real-time protocol use and the reliance upon open protocols during Internet-based communication, these SCADA systems can still be compromised by security challenges. This study reviews the security challenges and issues that are commonly raised during SCADA/protocol transmissions and proposes a secure distributed-network protocol version 3 (DNP3) design, and the implementation of the security solution using a cryptography mechanism. Due to the insecurities found within SCADA protocols, the new development consists of a DNP3 protocol that has been designed as a part of the SCADA system, and the cryptographically derived security is deployed within the application layer as a part of the DNP3 stack. PMID:26751443
Aerobic Biodegradation of 2,4-Dinitroanisole by Nocardioides sp. Strain JS1661
Fida, Tekle Tafese; Palamuru, Shannu; Pandey, Gunjan
2014-01-01
2,4-Dinitroanisole (DNAN) is an insensitive munition ingredient used in explosive formulations as a replacement for 2,4,6-trinitrotoluene (TNT). Little is known about the environmental behavior of DNAN. There are reports of microbial transformation to dead-end products, but no bacteria with complete biodegradation capability have been reported. Nocardioides sp. strain JS1661 was isolated from activated sludge based on its ability to grow on DNAN as the sole source of carbon and energy. Enzyme assays indicated that the first reaction involves hydrolytic release of methanol to form 2,4-dinitrophenol (2,4-DNP). Growth yield and enzyme assays indicated that 2,4-DNP underwent subsequent degradation by a previously established pathway involving formation of a hydride-Meisenheimer complex and release of nitrite. Identification of the genes encoding the key enzymes suggested recent evolution of the pathway by recruitment of a novel hydrolase to extend the well-characterized 2,4-DNP pathway. PMID:25281383
NASA Astrophysics Data System (ADS)
Ho, Steven Sai Hang; Ho, K. F.; Liu, W. D.; Lee, S. C.; Dai, W. T.; Cao, J. J.; Ip, H. S. S.
2011-01-01
Measurements of aldehydes and ketones are typically conducted by derivatization using sorbent cartridges coated with 2,4-dinitrophenylhydrazine (DNPH). The collected samples are eluted with acetonitrile and analyzed by high-pressure liquid chromatography coupled with an ultra-violet detector (HPLC/UV). This paper intends to examine artifacts about its suitability in identification of unsaturated carbonyls. Kinetic tests for acrolein, crotonaldehyde, methacrolein and methyl vinyl ketone (MVK) showed formations of carbonyl-DNP-hydrazone during sampling, which could further react with DNPH, resulting in undesired UV absorption products [e.g., carbonyl-DNP-hydrazone-DNPH (dimer) and 2(carbonyl-DNP-hydrazone)-DNPH (trimer)]. The dimerization and trimerization occurred for acrolein and MVK whereas only dimerization for crotonaldehyde and methacrolein. The polymerization products undoubtedly affect the integrity of the chromatogram, leading to misidentification and inaccurate quantification. Whether precautions taken during sampling and/or sample treatment could avoid or minimize this artifact has not been thoughtfully investigated. More often, such artifacts are usually overlooked by scientists when the data are reported.
IGE AND IGGA ANTIBODY-MEDIATED RELEASE OF HISTAMINE FROM RAT PERITONEAL CELLS
Bach, Michael K.; Bloch, Kurt J.; Austen, K. Frank
1971-01-01
IgGa, in contrast to IgE, antibodies mediated the antigen-induced release of histamine from rat peritoneal mast cells without a requirement for a latent period and without the capacity to bind firmly to the target cell. Nonetheless, IgGa anti-DNP antibody interfered with the capacity of rat anti-N. brasiliensis antiserum rich in IgE antibodies to prepare the target cells for histamine release by worm antigen. Further, interaction of IgE antibody-prepared cells with IgGa anti-DNP antibody and DNP-BSA at 0°C so as to achieve sterile activation, or at 30°C to permit histamine release, inactivated such cells as determined by the subsequent failure to release histamine upon challenge with worm antigen. Thus, although IgE and IgGa antibodies are immunochemically distinct homologous immunoglobulins and exhibit different functional characteristics, their interaction at the target cell involves a common receptor and at least one common point in the pathway to the release of pharmacologic agents from the cell. PMID:4101607
Jin, Wei; Meng, Zhenxiang; Wang, Jing; Cheng, Yanfen; Zhu, Weiyun
2017-08-01
Rumen in vitro fermentation was used to evaluate the capacity of nitrooxy compounds to mitigate rumen methane production. The following three nitrooxy compounds, each with different molecular structures, were evaluated: 2,2-dimethyl-3-(nitrooxy) propanoic (DNP), N-[2-(Nitrooxy)ethyl]-3-pyridinecarboxamide (NPD), and nitroglycerin (NG). All three compounds substantially decreased the total gas production, methane production, and the acetate:propionate ratio, while increasing hydrogen production. The growth of methanogens was specifically inhibited by all three compounds, without affecting the abundance of bacteria, anaerobic fungi, or protozoa. However, inhibition of methanogenesis required a much higher dose of DNP when compared to NPD or NG. Further investigations were conducted on NG to determine its effects on the methanogenic community. NG reduced the relative abundance of Methanomassiliicoccales, while increasing the relative abundance of Methanobrevibacter and Methanosphaera. Overall, the results suggested that all three of these nitrooxy compounds could specifically inhibit rumen methanogenesis, but NPD and NG were much more efficient than DNP at rumen methane mitigation.
ANTIGEN-INDUCED CHANGES IN LYMPHOID CELL HISTONES
Black, Maurice M.; Ansley, Hudson R.
1967-01-01
In this study we have examined the solubility of deoxyribonucleoprotein (DNP) isolated from control and antigen-affected thymocytes. 2-M sodium chloride extracts containing the DNP of rat thymus glands were serially diluted. A comparison was made of the effect of dilution on fiber formation in the control and test series. Fiber formation is usually complete for the control material at a salt concentration between 0.63 and 0.57 M. The test material shows some fiber formation within this range. However, a significant portion of the DNP is precipitated at dilutions of 0.54–0.48 M. Ammoniacal silver (A-S) stains the control fibers a characteristic yellowish color. With the test material, those fibers formed within the control range tended to be stained yellowish brown by A-S, whereas those formed only after greater dilution stained blackish. These data, coupled with our previous observations on altered A-S staining, clearly demonstrate an antigen-induced physical and/or chemical alteration of the histone or histone-DNA complex of lymphoid cell chromatin. PMID:4168881
A 250 GHz Gyrotron with a 3 GHz Tuning Bandwidth for Dynamic Nuclear Polarization
Barnes, Alexander B.; Nanni, Emilio A.; Herzfeld, Judith; Griffin, Robert G.; Temkin, Richard J.
2012-01-01
We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE5,2,q mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. PMID:22743211
Design and Development of Layered Security: Future Enhancements and Directions in Transmission.
Shahzad, Aamir; Lee, Malrey; Kim, Suntae; Kim, Kangmin; Choi, Jae-Young; Cho, Younghwa; Lee, Keun-Kwang
2016-01-06
Today, security is a prominent issue when any type of communication is being undertaken. Like traditional networks, supervisory control and data acquisition (SCADA) systems suffer from a number of vulnerabilities. Numerous end-to-end security mechanisms have been proposed for the resolution of SCADA-system security issues, but due to insecure real-time protocol use and the reliance upon open protocols during Internet-based communication, these SCADA systems can still be compromised by security challenges. This study reviews the security challenges and issues that are commonly raised during SCADA/protocol transmissions and proposes a secure distributed-network protocol version 3 (DNP3) design, and the implementation of the security solution using a cryptography mechanism. Due to the insecurities found within SCADA protocols, the new development consists of a DNP3 protocol that has been designed as a part of the SCADA system, and the cryptographically derived security is deployed within the application layer as a part of the DNP3 stack.
Dissolution DNP-NMR spectroscopy using galvinoxyl as a polarizing agent
NASA Astrophysics Data System (ADS)
Lumata, Lloyd L.; Merritt, Matthew E.; Malloy, Craig R.; Sherry, A. Dean; van Tol, Johan; Song, Likai; Kovacs, Zoltan
2013-02-01
The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio γ such as 13C and 15N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest 13C nuclear polarization (approximately 6% for [1-13C]ethyl acetate) at 3.35 T and 1.4 K was found to be around 40 mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of 13C and 15N compounds with long spin-lattice relaxation time T1. In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy.
Prashanth, Kudige Nagaraj; Swamy, Nagaraju; Basavaiah, Kanakapura
2016-01-01
Two simple and selective spectrophotometric methods are described for the determination of trifluoperazine dihydrochloride (TFH) as base form (TFP) in bulk drug, and in tablets. The methods are based on the molecular charge-transfer complexation of trifluoperazine base (TFP) with either 2,4,6-trinitrophenol (picric acid; PA) or 2,4-dinitrophenol (DNP). The yellow colored radical anions formed are quantified at 410 run (PA method) or 415 nm (DNP method). The assay conditions were optimized for both the methods. Beer's law is obeyed over the concentration ranges of 1.5-24.0 pg/mL in PA method and 5.0-80.0 µg/mL in DNP method, with respective molar absorptivity values of 1.03 x 10(4) and 6.91 x 10(3) L mol-1 cm-1. The reaction stoichiometry in both methods was evaluated by Job's method of continuous variations and was found to be 1 : 2 (TFP : PA, TFP : DNP). The developed methods were successfully applied to the determination of TFP in pure form and commercial tablets with good accuracy and precision. Statistical comparison of the results was performed using Student's t-test and F-ratio at 95% confidence level and the results showed no significant difference between the reference and proposed methods with regard to accuracy and precision. Further, the accuracy and reliability of the methods were confirmed by recovery studies via standard addition technique.
Poreba, Marcin; Szalek, Aleksandra; Rut, Wioletta; Kasperkiewicz, Paulina; Rutkowska-Wlodarczyk, Izabela; Snipas, Scott J.; Itoh, Yoshifumi; Turk, Dusan; Turk, Boris; Overall, Christopher M.; Kaczmarek, Leszek; Salvesen, Guy S.; Drag, Marcin
2017-01-01
Internally quenched fluorescent (IQF) peptide substrates originating from FRET (Förster Resonance Energy Transfer) are powerful tool for examining the activity and specificity of proteases, and a variety of donor/acceptor pairs are extensively used to design individual substrates and combinatorial libraries. We developed a highly sensitive and adaptable donor/acceptor pair that can be used to investigate the substrate specificity of cysteine proteases, serine proteases and metalloproteinases. This novel pair comprises 7-amino-4-carbamoylmethylcoumarin (ACC) as the fluorophore and 2,4-dinitrophenyl-lysine (Lys(DNP)) as the quencher. Using caspase-3, caspase-7, caspase-8, neutrophil elastase, legumain, and two matrix metalloproteinases (MMP2 and MMP9), we demonstrated that substrates containing ACC/Lys(DNP) exhibit 7 to 10 times higher sensitivity than conventional 7-methoxy-coumarin-4-yl acetic acid (MCA)/Lys(DNP) substrates; thus, substantially lower amounts of substrate and enzyme can be used for each assay. We therefore propose that the ACC/Lys(DNP) pair can be considered a novel and sensitive scaffold for designing substrates for any group of endopeptidases. We further demonstrate that IQF substrates containing unnatural amino acids can be used to investigate protease activities/specificities for peptides containing post-translationally modified amino acids. Finally, we used IQF substrates to re-investigate the P1-Asp characteristic of caspases, thus demonstrating that some human caspases can also hydrolyze substrates after glutamic acid. PMID:28230157
Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization.
Scott, Faith J; Saliba, Edward P; Albert, Brice J; Alaniva, Nicholas; Sesti, Erika L; Gao, Chukun; Golota, Natalie C; Choi, Eric J; Jagtap, Anil P; Wittmann, Johannes J; Eckardt, Michael; Harneit, Wolfgang; Corzilius, Björn; Th Sigurdsson, Snorri; Barnes, Alexander B
2018-04-01
We describe a frequency-agile gyrotron which can generate frequency-chirped microwave pulses. An arbitrary waveform generator (AWG) within the NMR spectrometer controls the microwave frequency, enabling synchronized pulsed control of both electron and nuclear spins. We demonstrate that the acceleration of emitted electrons, and thus the microwave frequency, can be quickly changed by varying the anode voltage. This strategy results in much faster frequency response than can be achieved by changing the potential of the electron emitter, and does not require a custom triode electron gun. The gyrotron frequency can be swept with a rate of 20 MHz/μs over a 670 MHz bandwidth in a static magnetic field. We have already implemented time-domain electron decoupling with dynamic nuclear polarization (DNP) magic angle spinning (MAS) with this device. In this contribution, we show frequency-swept DNP enhancement profiles recorded without changing the NMR magnet or probe. The profile of endofullerenes exhibits a DNP profile with a <10 MHz linewidth, indicating that the device also has sufficient frequency stability, and therefore phase stability, to implement pulsed DNP mechanisms such as the frequency-swept solid effect. We describe schematics of the mechanical and vacuum construction of the device which includes a novel flanged sapphire window assembly. Finally, we discuss how commercially available continuous-wave gyrotrons can potentially be converted into similar frequency-agile high-power microwave sources. Copyright © 2018. Published by Elsevier Inc.
Promising application of dynamic nuclear polarization for in vivo (13)C MR imaging.
Yen, Yi-Fen; Nagasawa, Kiyoshi; Nakada, Tsutomu
2011-01-01
Use of hyperpolarized (13)C in magnetic resonance (MR) imaging is a new technique that enhances signal tens of thousands-fold. Recent in vivo animal studies of metabolic imaging that used hyperpolarized (13)C demonstrated its potential in many applications for disease indication, metabolic profiling, and treatment monitoring. We review the basic physics for dynamic nuclear polarization (DNP) and in vivo studies reported in prostate cancer research, hepatocellular carcinoma research, diabetes and cardiac applications, brain metabolism, and treatment response as well as investigations of various DNP (13)C substrates.
Transmission Line for 258 GHz Gyrotron DNP Spectrometry
NASA Astrophysics Data System (ADS)
Bogdashov, Alexandr A.; Belousov, Vladimir I.; Chirkov, Alexey V.; Denisov, Gregory G.; Korchagin, Vyacheslav V.; Kornishin, Sergey Yu.; Tai, Evgeny M.
2011-06-01
We describe the design and test results of the transmission line for liquid-state (LS) and solid-state (SS) DNP spectrometers with the second-harmonic 258.6 GHz gyrotron at the Institute of the Biophysical Chemistry Center of Goethe University (Frankfurt). The 13-meter line includes a mode converter, HE11 waveguides, 4 mitre bends, a variable polarizer-attenuator, directional couplers, a water-flow calorimeter and a mechanical switch. A microwave power of about 15 W was obtained in the pure HE11 mode at the spectrometer inputs.
Local dynamic nuclear polarization using quantum point contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wald, K.R.; Kouwenhoven, L.P.; McEuen, P.L.
1994-08-15
We have used quantum point contacts (QPCs) to locally create and probe dynamic nuclear polarization (DNP) in GaAs heterostructures in the quantum Hall regime. DNP is created via scattering between spin-polarized Landau level electrons and the Ga and As nuclear spins, and it leads to hysteresis in the dc transport characteristics. The nuclear origin of this hysteresis is demonstrated by nuclear magnetic resonance (NMR). Our results show that QPCs can be used to create and probe local nuclear spin populations, opening up new possibilities for mesoscopic NMR experiments.
Zhang, J H; Yang, C X; Zhong, J Y; Zhang, L; Xiong, Q M; Wang, J; Wang, H B
2016-06-28
To observe the influence of lumbar sympathetic ganglion radiofrequency thermocoagulation on the activation of spinal microglia in rats with diabetic neuropathic pain (DNP). Thirty-six painful diabetic Sprague-Dawley rats induced by 60 mg/kg streptozotocin (STZ) intraperitoneal injection were randomly divided into diabetic neuropathic pain group (group DNP, n=12), Sham operation group (group Sham, n=12) and radiofrequency thermocoagulation group (group R, n=12). Meanwhile another 12 age-matched rats were allocated as normal control group (group N), rats in group N received intraperitoneal injection of equal volume of normal saline. Twenty-eight days after STZ injection, rats in group R received L3 lumbar sympathetic ganglia radiofrequency thermocoagulation on the left side under X-ray guideline after anesthesia with damage time 60 s and damage temperature 60 ℃. Rats in group Sham received puncture positioning, but not thermocoagulation therapy. The mechanical paw withdrawal threshold (PWT) were performed before STZ injection, 7, 14, 21, 28 days after STZ injection and 1, 3, 5, 7, 14 days after radiofrequency thermocoagulation, respectively. Blood glucose were performed before STZ injection, 3, 28 days after STZ injection and 1, 14days after radiofrequency thermocoagulation. After the final behavioral testing, L3-L5 spinal cord tissues were removed to exam the expression of microglia marker OX42 by Western blotting and immunofluorescence technique, and the changes in the expression of inflammation factor IL-1β, IL-6, TNF-α were detected by ELISA technique. Compared with group N, after 14, 21, 28 days of STZ injection and 1, 3, 5, 7, 14 days of radiofrequency thermocoagulation, the PWT of group DNP and group Sham decreased significantly (P<0.05); Before radiofrequency thermocoagulation, the PWT of rats in group DNP was (3.84±0.83) g, the PWT of rats in group R was (4.45±0.88) g, there was no statistically significant difference between group DNP and group R (t=1.514, P>0.05), but after radiofrequency thermocoagulation, compared with DNP group, the PWT of rats in group R increased significantly (P<0.05), and lasted to 14 d after radiofrequency thermocoagulation. The ratio of spinal microglia marker OX42 and GAPDH, the expression of inflammation factor IL-1β, IL-6, and TNF-α in group N were 0.074±0.023, (35.93±6.16) pg/ml, (92.11±13.23) pg/ml, and (169.50±22.64) pg/ml, respectively. The ratio of spinal microglia marker OX42 and GAPDH, the expression of inflammation factor IL-1β, IL-6, and TNF-α in group DNP were 1.023±0.185, (73.82±9.25) pg/ml, (155.33±21.82) pg/ml, and (298.30±33.21) pg/ml, respectively. The ratio of spinal microglia marker OX42 and GAPDH, the expression of inflammation factor IL-1β, IL-6, and TNF-α in group Sham were 0.951±0.103, (73.00±7.54) pg/ml, (151.02±24.26) pg/ml, and (294.01±36.37) pg/ml, respectively. The ratio of spinal microglia marker OX42 and GAPDH, the expression of inflammation factor IL-1β, IL-6, and TNF-α in group R were 0.563±0.019, (51.81±7.36) pg/ml, (123.24±16.13) pg/ml, and (229.23±29.16) pg/ml, respectively. Compared with group N, the expression of spinal microglia marker OX42 and inflammation factor IL-1β, IL-6, and TNF-α in group DNP, group Sham and group R increased significantly (F=7.501, 348.698, 568.021, 145.110, all P<0.05). Compared with DNP group, the expression of spinal microglia marker OX42 and inflammation factor IL-1β, IL-6, and TNF-α of group R reduced significantly (all P<0.05). The lumbar sympathetic ganglion radiofrequency thermocoagulation can alleviate diabetic neuropathic pain. The mechanism may relate with the inhibition of spinal microglia activation and the lower expression of inflammation factor.
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2011-02-21
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.
Prion Replication Elicits Cytopathic Changes in Differentiated Neurosphere Cultures
Iwamaru, Yoshifumi; Takenouchi, Takato; Imamura, Morikazu; Shimizu, Yoshihisa; Miyazawa, Kohtaro; Mohri, Shirou; Yokoyama, Takashi
2013-01-01
The molecular mechanisms of prion-induced cytotoxicity remain largely obscure. Currently, only a few cell culture models have exhibited the cytopathic changes associated with prion infection. In this study, we introduced a cell culture model based on differentiated neurosphere cultures isolated from the brains of neonatal prion protein (PrP)-null mice and transgenic mice expressing murine PrP (dNP0 and dNP20 cultures). Upon exposure to mouse Chandler prions, dNP20 cultures supported the de novo formation of abnormal PrP and the resulting infectivity, as assessed by bioassays. Furthermore, this culture was susceptible to various prion strains, including mouse-adapted scrapie, bovine spongiform encephalopathy, and Gerstmann-Sträussler-Scheinker syndrome prions. Importantly, a subset of the cells in the infected culture that was mainly composed of astrocyte lineage cells consistently displayed late-occurring, progressive signs of cytotoxicity as evidenced by morphological alterations, decreased cell viability, and increased lactate dehydrogenase release. These signs of cytotoxicity were not observed in infected dNP0 cultures, suggesting the requirement of endogenous PrP expression for prion-induced cytotoxicity. Degenerated cells positive for glial fibrillary acidic protein accumulated abnormal PrP and exhibited features of apoptotic death as assessed by active caspase-3 and terminal deoxynucleotidyltransferase nick-end staining. Furthermore, caspase inhibition provided partial protection from prion-mediated cell death. These results suggest that differentiated neurosphere cultures can provide an in vitro bioassay for mouse prions and permit the study of the molecular basis for prion-induced cytotoxicity at the cellular level. PMID:23740992
UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.
Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen
2015-12-01
Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.
Shahzad, Aamir; Lee, Malrey; Xiong, Neal Naixue; Jeong, Gisung; Lee, Young-Keun; Choi, Jae-Young; Mahesar, Abdul Wheed; Ahmad, Iftikhar
2016-01-01
In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design. PMID:26950129
Shahzad, Aamir; Lee, Malrey; Xiong, Neal Naixue; Jeong, Gisung; Lee, Young-Keun; Choi, Jae-Young; Mahesar, Abdul Wheed; Ahmad, Iftikhar
2016-03-03
In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design.
Ghosh, Rajat K; Kadlecek, Stephen J; Pourfathi, Mehrdad; Rizi, Rahim R
2015-11-01
To produce hyperpolarized bicarbonate indirectly via chemical reaction from a hyperpolarized precursor and utilize it for the simultaneous regional measurement of metabolism and pH. Alpha keto carboxylic acids are first hyperpolarized by dissolution dynamic nuclear polarization (DNP). These precursor molecules are rapidly reacted with hydrogen peroxide (H2O2) to decarboxylate the species, resulting in new target molecules. Unreacted H2O2 is removed from the system by reaction with sulfite. Interrogation of the ratio of dissolved carbon dioxide (CO2) to bicarbonate can be used to determine pH. Conversion of hyperpolarized alpha keto acids to bicarbonate and CO2 results in a minimal loss of the spin order. The reaction can be conducted to completion within seconds and preserves the nuclear spin polarization. Through a rapid chemical reaction, we can conserve the nuclear spin order of a DNP precursor to generate multiple hyperpolarized bioprobes otherwise unamenable to polarization. This indirect technique for the production of hyperpolarized agents can be applied to different precursor compounds to generate additional novel probes. © 2014 Wiley Periodicals, Inc.
Hyodo, Fuminori; Ito, Shinji; Yasukawa, Keiji; Kobayashi, Ryoma; Utsumi, Hideo
2014-08-05
Redox reactions that generate free radical intermediates are essential to metabolic processes. However, their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. We report here the use of dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) to conduct redox molecular imaging. Using DNP-MRI, we obtained simultaneous images of free radical intermediates generated from the coenzyme Q10 (CoQ10), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) involved in the mitochondrial electron transport chain as well as the radicals derived from vitamins E and K1. Each of these free radicals was imaged in real time in a phantom comprising a mixture of free radicals localized in either lipophilic or aqueous environments. Changing the frequency of electron spin resonance (ESR) irradiation also allowed each of the radical species to be distinguished in the spectroscopic images. This study is the first to report the spectroscopic DNP-MRI imaging of free radical intermediates that are derived from endogenous species involved in metabolic processes.
NASA Astrophysics Data System (ADS)
Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka
2016-09-01
A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.
Goethite promoted biodegradation of 2,4-dinitrophenol under nitrate reduction condition.
Tang, Ting; Yue, Zhengbo; Wang, Jin; Chen, Tianhu; Qing, Chengsong
2018-02-05
Iron oxide may interact with other pollutants in the aquatic environments and further influence their toxicity, transport and fate. The current study was conducted to investigate the biodegradation of 2,4-dinitrophenol (2,4-DNP) in the presence of iron oxide of goethite under anoxic condition using nitrate as the electron acceptor. Experiment results showed that the degradation rate of 2,4-DNP was improved by goethite. High performance liquid chromatography-mass spectra analysis results showed that goethite promoted degradation and transformation of 2,4-diaminophenol and 2-amino-4-nitrophenol (2-nitro-4-aminophenol). Microbial community analysis results showed that the abundance of Actinobacteria, which have the potential ability to degrade PAHs, was increased when goethite was available. This might partially explain the higher degradation of 2,4-DNP. Furthermore, another bacterium of Desulfotomaculum reducens which could reduce soluble Fe(III) and nitrate was also increased. Results further confirmed that nanomaterials in the aquatic environment will influence the microbial community and further change the transformation process of toxic pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Rosenberg, Leigh; Hihn, Jairus; Roust, Kevin; Warfield, Keith
2000-01-01
This paper presents an overview of a parametric cost model that has been built at JPL to estimate costs of future, deep space, robotic science missions. Due to the recent dramatic changes in JPL business practices brought about by an internal reengineering effort known as develop new products (DNP), high-level historic cost data is no longer considered analogous to future missions. Therefore, the historic data is of little value in forecasting costs for projects developed using the DNP process. This has lead to the development of an approach for obtaining expert opinion and also for combining actual data with expert opinion to provide a cost database for future missions. In addition, the DNP cost model has a maximum of objective cost drivers which reduces the likelihood of model input error. Version 2 is now under development which expands the model capabilities, links it more tightly with key design technical parameters, and is grounded in more rigorous statistical techniques. The challenges faced in building this model will be discussed, as well as it's background, development approach, status, validation, and future plans.
Thurber, Kent R; Tycko, Robert
2010-06-14
We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.
Thurber, Kent R.; Tycko, Robert
2010-01-01
Summary We evaluate the feasibility of 1H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol/water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 µl sample yields a 1H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that 1H NMR signals from 1 µm3 voxel volumes should be readily detectable, and voxels as small as 0.03 µm3 may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz 1H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension. PMID:20458431
Synthesis of long T₁ silicon nanoparticles for hyperpolarized ²⁹Si magnetic resonance imaging.
Atkins, Tonya M; Cassidy, Maja C; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M; Kauzlarich, Susan M
2013-02-26
We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na₄Si₄) and silicon tetrachloride (SiCl₄) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ∼10 nm with long size-adjusted ²⁹Si spin-lattice relaxation (T₁) times (>600 s), which are retained after hyperpolarization by low-temperature DNP.
Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging
Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.
2013-01-01
We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651
Conley, Matthew P; Drost, Ruben M; Baffert, Mathieu; Gajan, David; Elsevier, Cornelis; Franks, W Trent; Oschkinat, Hartmut; Veyre, Laurent; Zagdoun, Alexandre; Rossini, Aaron; Lelli, Moreno; Lesage, Anne; Casano, Gilles; Ouari, Olivier; Tordo, Paul; Emsley, Lyndon; Copéret, Christophe; Thieuleux, Chloé
2013-09-09
Direct evidence of the conformation of a Pd-N heterocyclic carbene (NHC) moiety imbedded in a hybrid material and of the Pd-NHC bond were obtained by dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) at natural abundance in short experimental times (hours). Overall, this silica-based hybrid material containing well-defined Pd-NHC sites in a uniform environment displays high activity and selectivity in the semihydrogenation of alkynes into Z-alkenes (see figure). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Overgoor, Max L E; Braakhekke, Jan P; Kon, Moshe; De Jong, Tom P V M
2015-04-01
The recently developed TOMAX-procedure restores unilateral genital sensation, improving sexual health in men with a low spinal lesion (LSL). It connects one dorsal nerve of the penis (DNP) to the intact ipsilateral ilioinguinal nerve. We proposed bilateral neurotization for full sensation of the glans but this entails cutting both DNPs, risking patients' erection/ejaculation ability. The objective was to select patients for a bilateral TOMAX-procedure by measuring remaining DNP function, and perform the first bilateral cases. In 30 LSL patients with no penile- but normal groin sensation selected for a unilateral TOMAX-procedure the integrity of the sacral-reflex-arc and DNP function was tested pre-operatively using bilateral needle electromyography (EMG)-bulbocavernosus reflex (BCR) measurements, and an interview about reflex erections (RE) ability. In 13 spina bifida- and 17 spinal cord injury patients [median age 29.5 years (range 13-59 years), spinal lesion T12 (incomplete) to sacral], seven (23%) patients reported RE, four (57%) with intact BCR, and of nine (30%) patients with intact BCR, four reported RE (44%). Even patients with a LSL and no penile sensation can have signs of remaining DNP function, but cutting both DNPs to restore full glans sensation in a bilateral TOMAX-procedure might interfere with their RE/ejaculation. To avoid this risk, we propose a selecting-protocol for a unilateral- or bilateral procedure using RE and BCR measurements. Using this protocol, three patients were bilaterally operated with promising preliminary results. Full sensation of the glans could lead to further improvement in sexual function. © 2014 Wiley Periodicals, Inc.
Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions
NASA Astrophysics Data System (ADS)
Corzilius, Björn; Andreas, Loren B.; Smith, Albert A.; Ni, Qing Zhe; Griffin, Robert G.
2014-03-01
The effects of nuclear signal quenching induced by the presence of a paramagnetic polarizing agent are documented for conditions used in magic angle spinning (MAS)-dynamic nuclear polarization (DNP) experiments on homogeneous solutions. In particular, we present a detailed analysis of three time constants: (1) the longitudinal build-up time constant TB for 1H; (2) the rotating frame relaxation time constant T1ρ for 1H and 13C and (3) T2 of 13C, the transverse relaxation time constant in the laboratory frame. These relaxation times were measured during microwave irradiation at a magnetic field of 5 T (140 GHz) as a function of the concentration of four polarizing agents: TOTAPOL, 4-amino-TEMPO, trityl (OX063), and Gd-DOTA and are compared to those obtained for a sample lacking paramagnetic doping. We also report the EPR relaxation time constants T1S and T2S, the DNP enhancements, ε, and the parameter E, defined below, which measures the sensitivity enhancement for the four polarizing agents as a function of the electron concentration. We observe substantial intensity losses (paramagnetic quenching) with all of the polarizing agents due to broadening mechanisms and cross relaxation during MAS. In particular, the monoradical trityl and biradical TOTAPOL induce ∼40% and 50% loss of signal intensity. In contrast there is little suppression of signal intensity in static samples containing these paramagnetic species. Despite the losses due to quenching, we find that all of the polarizing agents provide substantial gains in signal intensity with DNP, and in particular that the net enhancement is optimal for biradicals that operate with the cross effect. We discuss the possibility that much of this polarization loss can be regained with the development of instrumentation and methods to perform electron decoupling.
He, Hongliang; Yuan, Quan; Bie, Jinghua; Wallace, Ryan L; Yannie, Paul J; Wang, Jing; Lancina, Michael G; Zolotarskaya, Olga Yu; Korzun, William; Yang, Hu; Ghosh, Shobha
2018-03-01
Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque burden. Copyright © 2017 Elsevier Inc. All rights reserved.
High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.
Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar
2011-04-21
Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.
Khodorov, B I; Storozhevykh, T P; Surin, A M; Yuryavichyus, A I; Sorokina, E G; Borodin, A V; Vinskaya, N P; Khaspekov, L G; Pinelis, V G
2002-01-01
Data obtained in studies of the nature of the correlation which we have previously observed [10,17] between mitochondrial depolarization and the level of disruption of Ca2+ homeostasis in cultivated brain neuronsare summarized. Experiments were performed on cultured cerebellar granule cells loaded with Fura-2-AM or rhodamine 123 to measure changes in cytoplasmic Ca2+ and mitochondrial potential during pathogenic treatments of the cells. Prolonged exposure to 100 microM glutamate induced a reversible increase in [Ca2+]i, which was accompanied by only a small degree of mitochondrial depolarization. A sharp increase in this mitochondrial depolarization, induced by addition of 3 mM NaCN or 300 microM dinitrophenol (DNP) to the glutamate-containing solution, resulted in further increase in [Ca2+]i, due to blockade of electrophoretic mitochondrial Ca2+ uptake. Prolonged exposure to CN- or DNP in the post-glutamate period maintained [Ca2+]i at a high level until the metabolic inhibitors were removed. In most cells, this plateau was characterized by low sensitivity to removal of external Ca2+, demonstrating that the mechanisms of Ca2+ release from neurons were disrupted. Addition of oligomycin, a blocker of mitochondrial ATP synthase/ATPase, to the solution containing glutamate and CN- or DNP eliminated the post-glutamate plateau. Parallel experiments with direct measurements of intracellular ATP levels ([ATP]) showed that profound mitochondrial depolarization induced by CN- or DNP sharply enhanced the drop in ATP due to glutamate, while oligomycin significantly weakened this effect of the metabolic inhibitors. Analysis of these data led to the conclusion that blockade of mitochondrial Ca2+ uptake and inhibition of ATP synthesis resulted from mitochondrial depolarization and plays a key role in the mechanism disrupting [Ca2+]i homeostasis after toxic exposure to glutamate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Singappuli-Arachchige, Dilini; Wang, Zhuoran
Solid-state NMR spectroscopy, both conventional and dynamic nuclear polarization (DNP)-enhanced, was employed to study the spatial distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles via co-condensation and grafting. The most revealing information was provided by DNP-enhanced two-dimensional 29Si– 29Si correlation measurements, which unambiguously showed that post-synthesis grafting leads to a more homogeneous dispersion of propyl and mercaptopropyl functionalities than co-condensation. Furthermore, during the anhydrous grafting process, the organosilane precursors do not self-condense and are unlikely to bond to the silica surface in close proximity (less than 4 Å) due to the limited availability of suitablymore » arranged hydroxyl groups.« less
Yoshinaka, R; Sato, M; Yamashita, M; Itoko, M; Ikeda, S
1987-01-01
The collagenolytic serine proteinase from the pancreas of the catfish (Parasilus asotus) had a pH optimum of 7.5 for native, reconstituted calf skin collagen fibrils. The enzyme was most stable at pH 6-9. The enzyme hydrolyzed heat-denatured collagen (gelatin), casein, hemoglobin and elastin in addition to native collagen but not virtually Tos-Arg-OEe, Bz-Tyr-OEe and Suc-(Ala)3-NA. The enzyme cleaved Leu-Gly (or Gln-Gly), Gly-Ile and Ile-Ala bonds on DNP-Pro-Leu-Gly-Ile-Ala-Gly-Arg-NH2 and DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg.
Falk, Nancy L; Garrison, Kenneth F; Brown, Mary-Michael; Pintz, Christine; Bocchino, Joseph
2015-01-01
Strategic planning and thinking skills are essential for today's nurse leaders. Doctor of nursing practice (DNP) programs provide an opportunity for developing effective nurse strategists. A well-designed strategy course can stimulate intellectual growth at all levels of Bloom's Taxonomy. Discussion forums in online education provide new opportunities for rich interaction among peers en route to development of well-informed strategic plans. An interprofessional perspective adds a rich and vital aspect to doctoral nursing education and it serves to inform strategic plan development. A roadmap for teaching strategic planning to current and future nursing leaders will guide the integration of essential content into DNP programs.
Li, J; French, B A; Nan, L; Fu, P; French, S W
2005-06-01
The mechanism of the UAL cycle in the intragastric feeding model of alcoholic liver disease in the rat was investigated by administering dinitrophenol (DNP) with ethanol in the diet. The question was: is the rate of oxidative phosphorylation fluxuation essential for the cycle to occur? The question has been partially answered by showing that rotenone, which inhibits complex I, blocks the cycle by preventing the generation of NAD from NADH. This would inhibit ATP generation from complex I but would not affect oxidative phosphorylation by complex 2 and 3. Since the rate of O2 consumption is normal at the troughs of the cycle and decreases at the peaks of the cycle and the levels of ATP are reduced at the peaks of the cycle, it is likely that the rate of oxidative phosphorylation also cycles. Since 2-4 dinitrophenol (DNP) uncouples oxidative phosphorylation, it was anticipated that feeding it with ethanol would prevent the cycle from occurring. This proved to be the case. In addition, DNP caused energy wasting and prevented the increase in serum alanine aminotranspeptidase caused by ethanol feeding, probably by preventing the hypoxia which occurs at the peaks of the cycle.
WITTER, R F; MINK, W
1958-01-25
A study was made of the effects of various types of detergents on the swelling of isolated mitochondria and on mitochondrial ATPases which are activated by Mg or DNP respectively. The rate of swelling was measured in the Beckman spectrophotometer by following the decrease in turbidity of dilute suspensions of these organelles. It was found that non-ionic detergents containing a nonyl phenoxy side chain or anionic detergents caused swelling of the mitochondria and activation of Mg-ATPase. On the other hand, cationic detergents promoted the clumping of mitochondria and did not activate Mg-ATPase. DNP-ATPase was inhibited by all of the detergents tested. It would appear from these observations that the inhibition of DNP-ATPase is not related to a gross change in the morphology of the organelles; in contrast, the activation of Mg-ATPase definitely is correlated with swelling of the isolated mitochondria. These data also suggest that the ionic detergents combine with charged sites on the protein moiety of the lipoprotein in the mitochondrial surface, whereas the non-ionic detergents form inclusion compounds with the lipide moiety, thereby altering the mitochondrial structure and permeability.
Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek
Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less
Margo, Curtis E; Harman, Lynn E
2014-01-01
An outbreak of cataracts in 1935 caused by dinitrophenol (DNP), the active ingredient of popular diet pills, highlighted the inability of the U.S. Food and Drug Administration (FDA) to prevent harmful drugs from entering the marketplace. Just two years earlier, the FDA used horrific images of ocular surface injury caused by cosmetics at the World's Fair in Chicago to garner public support for legislative reform. The FDA had to walk a fine line between a public awareness campaign and lobbying Congress while lawmakers debated the need for consumer protection. The cataract outbreak of 1935 was conspicuous in the medical literature during the height of New Deal legislation, but questions persist as to how much it affected passage of the proposed Food, Drug, and Cosmetic Act (of 1938). The legislation languished in committee for years. The cataract outbreak probably had little impact on the eventual outcome, but medical opinion concerning the safety of DNP may have contributed to the voluntary withdrawal of the diet drug from the market. We review the DNP cataract outbreak and examine it in context of the challenges facing regulatory reform at that time. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Ferguson, Sarah; Taylor, David; McDonald, George; Lumata, Lloyd
Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging technique in biomedical and metabolic imaging since it amplifies the liquid-state nuclear magnetic resonance (NMR) and imaging (MRI) signals by >10,000-fold. Originally used in nuclear scattering experiments, DNP works by creating a non-Boltzmann nuclear spin distribution by transferring the high electron (γ = 28,000 MHz/T) thermal polarization to the nuclear spins via microwave irradiation of the sample at high magnetic field and low temperature. A dissolution device is used to rapidly dissolve the frozen sample and consequently produces an injectable ``hyperpolarized'' liquid at physiologically-tolerable temperature. Here we report the construction and performance evaluation of a dissolution DNP hyperpolarizer at 6.4 T and 1.4 K using a continuous-flow cryostat. The solid and liquid-state 13C NMR signal enhancement levels of 13C acetate samples doped with trityl OX063 and 4-oxo-TEMPO free radicals will be discussed and compared with the results from the 3.35 T commercial hyperpolarizer. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Merrill, Jacqueline A; Yoon, Sunmoo; Larson, Elaine; Honig, Judy; Reame, Nancy
2013-01-01
The nursing profession has seen a dramatic rise in the number of schools offering both DNP and PhD nursing programs. Information is limited on the impact of this parallel approach in doctoral education on the quality and scope of scholarly interactions or institutional culture.The authors studied collaboration characteristics across the DNP and PhD programs of a research-intensive university school of nursing, before and after programmatic enhancements. An IRB-approved online survey was delivered to faculty and students of both programs at baseline and one year after curricular changes. Response rates were 70% and 74%, respectively. The responses were analyzed by using social network analysis and descriptive statistics to characterize the number and strength of connections between and within student groups, and between students and faculty. At baseline, the flow of communication was centralized primarily through faculty. At Time 2, density of links between students increased and network centralization decreased, suggesting more distributed communication. This nonlinear quantitative approach may be a useful addition to the evaluation strategies for doctoral education initiatives. Copyright © 2013 Elsevier Inc. All rights reserved.
Thurber, Kent; Tycko, Robert
2016-03-01
We describe novel instrumentation for low-temperature solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS), focusing on aspects of this instrumentation that have not been described in detail in previous publications. We characterize the performance of an extended interaction oscillator (EIO) microwave source, operating near 264 GHz with 1.5 W output power, which we use in conjunction with a quasi-optical microwave polarizing system and a MAS NMR probe that employs liquid helium for sample cooling and nitrogen gas for sample spinning. Enhancement factors for cross-polarized (13)C NMR signals in the 100-200 range are demonstrated with DNP at 25K. The dependences of signal amplitudes on sample temperature, as well as microwave power, polarization, and frequency, are presented. We show that sample temperatures below 30K can be achieved with helium consumption rates below 1.3 l/h. To illustrate potential applications of this instrumentation in structural studies of biochemical systems, we compare results from low-temperature DNP experiments on a calmodulin-binding peptide in its free and bound states. Published by Elsevier Inc.
Magnetic resonance imaging of DNP enhancements in a rotor spinning at the magic angle
Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek
2016-02-23
Simulations performed on model, static, samples have shown that the microwave power is non-uniformly distributed in the magic angle spinning (MAS) rotor when using conventional dynamic nuclear polarization (DNP) instrumentation. Here, we applied the stray-field magic angle spinning imaging (STRAFI–MAS) experiment to generate a spatial map of the DNP enhancements in a full rotor, which is spun at a low rate in a commercial DNP–MAS NMR system. Notably, we observed that the enhancement factors produced in the center of the rotor can be twice as large as those produced at the top of the rotor. Surprisingly, we observed that themore » largest enhancement factors are observed along the axis of the rotor as opposed to against its walls, which are most directly irradiated by the microwave beam. We lastly observed that the distribution of enhancement factors can be moderately improved by degassing the sample and increasing the microwave power. The inclusion of dielectric particles greatly amplifies the enhancement factors throughout the rotor. Furthermore, the STRAFI–MAS approach can provide useful guidance for optimizing the access of microwave power to the sample, and thereby lead to further increases in sensitivity of DNP–MAS NMR.« less
250 GHz CW Gyrotron Oscillator for Dynamic Nuclear Polarization in Biological Solid State NMR
Bajaj, Vikram S.; Hornstein, Melissa K.; Kreischer, Kenneth E.; Sirigiri, Jagadishwar R.; Woskov, Paul P.; Mak-Jurkauskas, Melody L.; Herzfeld, Judith; Temkin, Richard J.; Griffin, Robert G.
2009-01-01
In this paper, we describe a 250 GHz gyrotron oscillator, a critical component of an integrated system for magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments at 9T, corresponding to 380 MHz 1H frequency. The 250 GHz gyrotron is the first gyro-device designed with the goal of seamless integration with an NMR spectrometer for routine DNP-enhanced NMR spectroscopy and has operated under computer control for periods of up to 21 days with a 100% duty cycle. Following a brief historical review of the field, we present studies of the membrane protein bacteriorhodopsin (bR) using DNP-enhanced multidimensional NMR. These results include assignment of active site resonances in [U-13C,15N]-bR and demonstrate the utility of DNP for studies of membrane proteins. Next, we review the theory of gyro-devices from quantum mechanical and classical viewpoints and discuss the unique considerations that apply to gyrotron oscillators designed for DNP experiments. We then characterize the operation of the 250 GHz gyrotron in detail, including its long-term stability and controllability. We have measured the spectral purity of the gyrotron emission using both homodyne and heterodyne techniques. Radiation intensity patterns from the corrugated waveguide that delivers power to the NMR probe were measured using two new techniques to confirm pure mode content: a thermometric approach based on the temperature-dependent color of liquid crystalline media applied to a substrate and imaging with a pyroelectric camera. We next present a detailed study of the mode excitation characteristics of the gyrotron. Exploration of the operating characteristics of several fundamental modes reveals broadband continuous frequency tuning of up to 1.8 GHz as a function of the magnetic field alone, a feature that may be exploited in future tunable gyrotron designs. Oscillation of the 250 GHz gyrotron at the second harmonic of cyclotron resonance begins at extremely low beam currents (as low 12 mA) at frequencies between 320–365 GHz, suggesting an efficient route for the generation of even higher frequency radiation. The low starting currents were attributed to an elevated cavity Q, which is confirmed by cavity thermal load measurements. We conclude with an appendix containing a detailed description of the control system that safely automates all aspects of the gyrotron operation. PMID:17942352
RECOMBINATION OF ANTIBODY POLYPEPTIDE CHAINS IN THE PRESENCE OF ANTIGEN
Metzger, Henry; Mannik, Mart
1964-01-01
Conditions were developed by which the separated H and L chains of gamma2 globulins recombined to form four-chained molecules in good yields. In the absence of antigen, anti-2,4-dinitrophenyl (anti-DNP) H chains randomly reassociated with a mixture of antibody and non-specific gamma2 globulin L chains. In the presence of a specific hapten, however, the antibody H chains preferentially interacted with the anti-DNP L chains. Antibody H chain-antibody L chain recombinants formed in the presence of hapten were more active than the corresponding recombinants formed in the absence of hapten. Speculations are made regarding the possible mechanisms and biological significance of these effects. PMID:14247718
Compact type-I coil planet centrifuge for counter-current chromatography
Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro
2009-01-01
A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 cm and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-glu, DNP-β-ala and DNP-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. PMID:20060979
Compact type-I coil planet centrifuge for counter-current chromatography.
Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro
2010-02-19
A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.
2014-07-01
In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.
Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by spirulina.
Kim, H M; Lee, E H; Cho, H H; Moon, Y H
1998-04-01
We investigated the effect of spirulina on mast cell-mediated immediate-type allergic reactions. Spirulina dose-dependently inhibited the systemic allergic reaction induced by compound 48/80 in rats. Spirulina inhibited compound 48/80-induced allergic reaction 100% with doses of 100-1000 microg/g body weight, i.p. Spirulina (10-1000 microg/g body weight, i.p.) also significantly inhibited local allergic reaction activated by anti-dinitrophenyl (DNP) IgE. When rats were pretreated with spirulina at a concentration ranging from 0.01 to 1000 microg/g body weight, i.p., the serum histamine levels were reduced in a dose-dependent manner. Spirulina (0.001 to 10 microg/mL) dose-dependently inhibited histamine release from rat peritoneal mast cells (RPMC) activated by compound 48/80 or anti-DNP IgE. The level of cyclic AMP in RPMC, when spirulina (10 microg/mL) was added, transiently and significantly increased about 70-fold at 10 sec compared with that of control cells. Moreover, spirulina (10 microg/mL) had a significant inhibitory effect on anti-DNP IgE-induced tumor necrosis factor-alpha production. These results indicate that spirulina inhibits mast cell-mediated immediate-type allergic reactions in vivo and in vitro.
Elnaiem, D A; Hassan, M M; Maingon, R; Nureldin, G H; Mekawi, A M; Miles, M; Ward, R D
2001-05-01
Investigations were made on possible reservoir hosts of Leishmania donovani in 2 zoonotic foci of visceral leishmaniasis (VL) in Dinder National Park (DNP) and the peri-domestic habitats of adjacent villages of eastern Sudan. Animals were captured, in November 1997-1998 and April-May 1999 and examined for L. donovani infection using light microscopy and 2 sensitive Polymerase Chain Reaction (PCR) systems. Microscopy and PCR investigations were also used to determine the infection rates of L. donovani in Phlebotomus orientalis captured from the uninhabited site of DNP. Infections of L. donovani were detected in 2 out of 14 Egyptian mongooses (Herpestes ichneumon), 1 out of 168 Arviconthus niloticus and 1 out of 8 Mastomys natalensis. Samples from 68 other animals captured from the study area were all negative for the infection. Active zoonotic transmission of L. donovani at the time of animal sampling in the uninhabited site of DNP was demonstrated by finding the parasite in 3.4% (7 out of 184) and 3.2% (5 out of 157) of flies collected in March 1998 and May 1999, respectively. We suggest that the Egyptian mongoose is a possible reservoir host of L. donovani. The importance of other animals in maintaining the infection is also discussed.
Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd
Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization
Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.
2015-01-01
Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131
Dynamic nuclear polarization using frequency modulation at 3.34 T.
Hovav, Y; Feintuch, A; Vega, S; Goldfarb, D
2014-01-01
During dynamic nuclear polarization (DNP) experiments polarization is transferred from unpaired electrons to their neighboring nuclear spins, resulting in dramatic enhancement of the NMR signals. While in most cases this is achieved by continuous wave (cw) irradiation applied to samples in fixed external magnetic fields, here we show that DNP enhancement of static samples can improve by modulating the microwave (MW) frequency at a constant field of 3.34 T. The efficiency of triangular shaped modulation is explored by monitoring the (1)H signal enhancement in frozen solutions containing different TEMPOL radical concentrations at different temperatures. The optimal modulation parameters are examined experimentally and under the most favorable conditions a threefold enhancement is obtained with respect to constant frequency DNP in samples with low radical concentrations. The results are interpreted using numerical simulations on small spin systems. In particular, it is shown experimentally and explained theoretically that: (i) The optimal modulation frequency is higher than the electron spin-lattice relaxation rate. (ii) The optimal modulation amplitude must be smaller than the nuclear Larmor frequency and the EPR line-width, as expected. (iii) The MW frequencies corresponding to the enhancement maxima and minima are shifted away from one another when using frequency modulation, relative to the constant frequency experiments. Copyright © 2013 Elsevier Inc. All rights reserved.
Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine
2013-04-03
Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.
Lundberg, L; Koch, C; Magnusson, M; Bertelsen, C
1983-06-01
Two strains of guinea-pigs selectively bred for either high (IMM/S) or low (IMM/R) responsiveness to ovalbumin-induced respiratory anaphylaxis were examined for their immune response to a copolymer of L-glutamic acid and L-alanine (GA), a copolymer of L-glutamic acid and L-tyrosine (GT), and to a dinitro-phenyl derivative of a homopolymer of L-lysine (DNP-PLL). Considerable differences between the strains in development of cellular hypersensitivity and in the production of antibodies were observed. Guinea-pigs from IMM/S were all responders to GA and DNP-PLL and non-responders to GT, while guinea-pigs from two of three lines from IMM/R were responders to GT and non-responders to GA and DNP-PLL. The third IMM/R line showed an immune response pattern similar to guinea-pigs of strain IMM/S. Preliminary breeding studies confirmed that the immune response to these three antigens is under the control of dominant autosomal genes, since (IMM/S x IMM/R) F1 animals responded to all three antigens. It is concluded that these three antigens may serve as immune response markers in genetic studies of the differences between guinea-pigs from IMM/S and IMM/R in their ability to develop respiratory anaphylaxis.
Abdulrahman, Sameer A. M.; Basavaiah, Kanakapura
2011-01-01
Two simple and selective spectrophotometric methods have been proposed for the determination of gabapentin (GBP) in pure form and in capsules. Both methods are based on the proton transfer from the Lewis acid such as 2,4,6-trinitrophenol (picric acid; PA) or 2,4-dinitrophenol (2,4-DNP) to the primary amino group of GBP which works as Lewis base and formation of yellow ion-pair complexes. The ion-pair complexes formed show absorption maximum at 415 and 420 nm for PA and 2,4-DNP, respectively. Under the optimized experimental conditions, Beer's law is obeyed over the concentration ranges of 1.25–15.0 and 2.0–18.0 μg mL−1 GBP for PA and 2,4-DNP methods, respectively. The molar absorptivity, Sandell's sensitivity, detection and, quantification limits for both methods are also reported. The proposed methods were applied successfully to the determination of GBP in pure form and commercial capsules. Statistical comparison of the results was performed using Student's t-test and F-ratio at 95% confidence level, and there was no significant difference between the reference and proposed methods with regard to accuracy and precision. Further, the validity of the proposed methods was confirmed by recovery studies via standard addition technique. PMID:21760787
Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.
Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B
2015-11-01
Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.
Choi, Yun Ho; Song, Chang Ho; Mun, Sung Phil
2018-02-01
Mast cells play a critical role in the effector phase of immediate hypersensitivity and allergic reactions. Pinus radiata bark extract exerts multiple biological effects and exhibits immunomodulatory and antioxidant properties. However, its role in mast cell-mediated anaphylactic reactions has not been thoroughly investigated. In this study, we examined the effects of proanthocyanidin-rich water extract (PAWE) isolated from P. radiata bark on compound 48/80-induced or antidinitrophenyl (DNP) immunoglobulin E (IgE)-mediated anaphylaxis-like reactions in vivo. In addition, we evaluated the mechanism underlying the inhibitory effect of PAWE on mast cell activation, with a specific focus on histamine release, using rat peritoneal mast cells. PAWE attenuated compound 48/80-induced or anti-DNP IgE-mediated passive cutaneous anaphylaxis-like reactions in mice, and it inhibited histamine release triggered by compound 48/80, ionophore A23187, or anti-DNP IgE in rat peritoneal mast cells in vitro. Moreover, PAWE suppressed compound 48/80-elicited calcium uptake in a concentration-dependent manner and promoted a transient increase in intracellular cyclic adenosine-3',5'-monophosphate levels. Together, these results suggest that proanthocyanidin-rich P. radiata bark extract effectively inhibits anaphylaxis-like reactions. Copyright © 2017 John Wiley & Sons, Ltd.
Amplifying Dynamic Nuclear Polarization of Frozen Solutions by Incorporating Dielectric Particles
2014-01-01
There is currently great interest in understanding the limits on NMR signal enhancements provided by dynamic nuclear polarization (DNP), and in particular if the theoretical maximum enhancements can be achieved. We show that over a 2-fold improvement in cross-effect DNP enhancements can be achieved in MAS experiments on frozen solutions by simply incorporating solid particles into the sample. At 9.4 T and ∼105 K, enhancements up to εH = 515 are obtained in this way, corresponding to 78% of the theoretical maximum. We also underline that degassing of the sample is important to achieve highest enhancements. We link the amplification effect to the dielectric properties of the solid material, which probably gives rise to scattering, diffraction, and amplification of the microwave field in the sample. This is substantiated by simulations of microwave propagation. A reduction in sample heating at a given microwave power also likely occurs due to reduced dielectric loss. Simulations indicate that the microwave field (and thus the DNP enhancement) is inhomogeneous in the sample, and we deduce that in these experiments between 5 and 10% of the solution actually yields the theoretical maximum signal enhancement of 658. The effect is demonstrated for a variety of particles added to both aqueous and organic biradical solutions. PMID:25285480
Bagal, Manisha V; Gogate, Parag R
2013-09-01
In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Modeling DNP3 Traffic Characteristics of Field Devices in SCADA Systems of the Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Cheng, Liang; Chuah, Mooi Choo
In the generation, transmission, and distribution sectors of the smart grid, intelligence of field devices is realized by programmable logic controllers (PLCs). Many smart-grid subsystems are essentially cyber-physical energy systems (CPES): For instance, the power system process (i.e., the physical part) within a substation is monitored and controlled by a SCADA network with hosts running miscellaneous applications (i.e., the cyber part). To study the interactions between the cyber and physical components of a CPES, several co-simulation platforms have been proposed. However, the network simulators/emulators of these platforms do not include a detailed traffic model that takes into account the impactsmore » of the execution model of PLCs on traffic characteristics. As a result, network traces generated by co-simulation only reveal the impacts of the physical process on the contents of the traffic generated by SCADA hosts, whereas the distinction between PLCs and computing nodes (e.g., a hardened computer running a process visualization application) has been overlooked. To generate realistic network traces using co-simulation for the design and evaluation of applications relying on accurate traffic profiles, it is necessary to establish a traffic model for PLCs. In this work, we propose a parameterized model for PLCs that can be incorporated into existing co-simulation platforms. We focus on the DNP3 subsystem of slave PLCs, which automates the processing of packets from the DNP3 master. To validate our approach, we extract model parameters from both the configuration and network traces of real PLCs. Simulated network traces are generated and compared against those from PLCs. Our evaluation shows that our proposed model captures the essential traffic characteristics of DNP3 slave PLCs, which can be used to extend existing co-simulation platforms and gain further insights into the behaviors of CPES.« less
Using Standardized Patients to Teach Interprofessional Competencies to Dental Students.
Anders, Patrick L; Scherer, Yvonne Krall; Hatton, Michael; Antonson, Donald; Austin-Ketch, Tammy; Campbell-Heider, Nancy
2016-01-01
The aims of this study were to develop, implement, and evaluate a novel interprofessional standardized patient exercise (ISPE) with oral-systemic and interprofessional collaborative practice (IPCP) components. Dental students and doctor of nursing practice (DNP) students at one U.S. university participated in the simulation, which was primarily designed to test their teamwork skills. In spring 2014, DNP students worked in the dental clinics with dental students under the supervision of nursing and dental faculty members. To test the teamwork outcomes for both groups of students, a standardized patient (SP) scenario was designed to include multiple chronic medical diagnoses and an oral-systemic component. The exercise was filmed for later review. Outcomes measures included SP and student self-evaluations and faculty evaluation of student documentation. The primary outcome of interest from a dental standpoint was faculty evaluation of IPCP competencies derived from the Core Competencies of Interprofessional Collaborative Practice and were deemed to be observable by faculty when viewing the videotaped scenario. Eight teams of students participated with an SP trained in the scenario. Each team consisted of a DNP student, a fourth-year dental student, and a second-year dental student. All eligible students in the DNP class (n=20) and eight students from each dental class (approximately 110 each) participated. The results showed that the teams scored highest on the role/responsibilities subscale, indicating students were respectful of each other's roles and expertise and effectively engaged each other to develop strategies to meet the patient's needs. Scores on the three other subscales (values/ethics, interprofessional communication, and teams/teamwork) were also high. These findings appeared to support IPCP as a method to foster knowledge and respect for other roles and responsibilities, improve appreciation of teamwork, and encourage better communication among health care providers. The ISPE scenario provided an effective way to evaluate IPCP competencies.
An optimized method for the measurement of acetaldehyde by high-performance liquid chromatography.
Guan, Xiangying; Rubin, Emanuel; Anni, Helen
2012-03-01
Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC). We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood, and plasma. After sample deproteinization, acetaldehyde was derivatized with 2,4-dinitrophenylhydrazine (DNPH). The reaction was optimized for pH, amount of derivatization reagent, time, and temperature. Extraction methods of the acetaldehyde-hydrazone (AcH-DNP) stable derivative and product stability studies were carried out. Acetaldehyde was identified by its retention time in comparison with AcH-DNP standard, using a new chromatography gradient program, and quantitated based on external reference standards and standard addition calibration curves in the presence and absence of ethanol. Derivatization of acetaldehyde was performed at pH 4.0 with an 80-fold molar excess of DNPH. The reaction was completed in 40 minutes at ambient temperature, and the product was stable for 2 days. A clear separation of AcH-DNP from DNPH was obtained with a new 11-minute chromatography program. Acetaldehyde detection was linear up to 80 μM. The recovery of acetaldehyde was >88% in culture media and >78% in plasma. We quantitatively determined the ethanol-derived acetaldehyde in hepatoma cells, rat blood and plasma with a detection limit around 3 μM. The accuracy of the method was <9% for intraday and <15% for interday measurements, in small volume (70 μl) plasma sampling. An optimized method for the quantitative determination of acetaldehyde in biological systems was developed using derivatization with DNPH, followed by a short RP-HPLC separation of AcH-DNP. The method has an extended linear range, is reproducible and applicable to small-volume sampling of culture media and biological fluids. Copyright © 2011 by the Research Society on Alcoholism.
Volkert, Delene; Candela, Lori; Bernacki, Matthew
2018-02-01
The demand for doctorally prepared nurses worldwide is higher than ever. Universities have responded with increased numbers of DNP and Ph.D. in Nursing programs. There are more doctoral nursing students than ever before yet they remain one of the least studied student populations. This is concerning given the high attrition rates reported in doctoral programs. The few studies that do exist are typically qualitative and exploratory in nature. The aim of this national study of Ph.D. and DNP students was to examine how the effects of environmental stressors predict the students' intent to leave their current program of doctoral study. A descriptive survey design was utilized for the study. Participation requests were sent by email to deans/directors of all Ph.D. and DNP programs across the United States, with the request to forward to all currently enrolled students. Eight hundred and thirty-five (n=835) Ph.D. and DNP participants responded to this survey. The survey was analyzed utilizing path analysis. Findings of the path analysis indicate that two types of stress significantly predicted students' intention to leave. First, stressors related to program issues, primarily relationships between student and faculty/advisor, significantly predict intent to leave. As program stressors rise, so does intent to leave. The other significant factor was related to support issues, specifically support from family/friends. This inverse relationship indicated as family support declines, intent to leave rises. It is impossible to remove all stressors from students' lives during their doctoral studies. A better understanding of the environmental stressors that affect them offers the potential for nursing programs looking to incorporate adequate resources and support which will help minimize attrition and promote persistence of their doctoral students. Specific recommendations are provided that may assist programs looking to decrease doctoral nursing student attrition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fine-tuning the space, time, and host distribution of mycobacteria in wildlife
2011-01-01
Background We describe the diversity of two kinds of mycobacteria isolates, environmental mycobacteria and Mycobacterium bovis collected from wild boar, fallow deer, red deer and cattle in Doñana National Park (DNP, Spain), analyzing their association with temporal, spatial and environmental factors. Results High diversity of environmental mycobacteria species and M. bovis typing patterns (TPs) were found. When assessing the factors underlying the presence of the most common types of both environmental mycobacteria and M. bovis TPs in DNP, we evidenced (i) host species differences in the occurrence, (ii) spatial structuration and (iii) differences in the degree of spatial association of specific types between host species. Co-infection of a single host by two M. bovis TPs occurred in all three wild ungulate species. In wild boar and red deer, isolation of one group of mycobacteria occurred more frequently in individuals not infected by the other group. While only three TPs were detected in wildlife between 1998 and 2003, up to 8 different ones were found during 2006-2007. The opposite was observed in cattle. Belonging to an M. bovis-infected social group was a significant risk factor for mycobacterial infection in red deer and wild boar, but not for fallow deer. M. bovis TPs were usually found closer to water marshland than MOTT. Conclusions The diversity of mycobacteria described herein is indicative of multiple introduction events and a complex multi-host and multi-pathogen epidemiology in DNP. Significant changes in the mycobacterial isolate community may have taken place, even in a short time period (1998 to 2007). Aspects of host social organization should be taken into account in wildlife epidemiology. Wildlife in DNP is frequently exposed to different species of non-tuberculous, environmental mycobacteria, which could interact with the immune response to pathogenic mycobacteria, although the effects are unknown. This research highlights the suitability of molecular typing for surveys at small spatial and temporal scales. PMID:21288321
Schaumburg, Herbert H; Zotova, Elena; Cannella, Barbara; Raine, Cedric S; Arezzo, Joseph; Tar, Moses; Melman, Arnold
2007-04-01
To illustrate the ultrastructural fibre composition of the rat cavernosal nerve at serial levels, from its origin in the main pelvic ganglion to its termination in the corpus cavernosum of the distal penile shaft, and to develop a technique that permits repeated electrophysiological recording from the fibres that form the cavernosal nerve distinct from the axons of the dorsal nerve of the penis (DNP). For the light microscope and ultrastructural studies, Sprague-Dawley rats were anaesthetized and the pelvic organs and lower limbs were perfused with glutaraldehyde through the distal aorta. Tissue samples were embedded in epoxy resin and prepared for light and electron microscopy. Frozen tissue was used for the immunohistochemical studies and sections were stained with rabbit anti-nitric oxide synthetase 1 (NOS1). For the electrophysiology, anaesthetized rats were used in sterile conditions. Nerve conduction velocity for the cavernosal nerve was assessed from a point 2 mm below the main (major) pelvic ganglion after stimulating the nerve at the crus penis; multi-unit averaging techniques were used to enhance the recording of slow-conduction activity. Recordings from the DNP were obtained over the proximal shaft after stimulation at the base of the penis. Step-serial sections of the cavernosal nerve revealed numerous ganglion cells in the initial segments and gradually fewer myelinated fibres at distal levels. At the point of crural entry, the nerve contained almost exclusively unmyelinated axons. As it descended the penile shaft, the nerve separated into small fascicles containing only one to four axons at the level of the distal shaft. In the corpus cavernosum, vesicle-filled presynaptic axon preterminals were close to smooth muscle fibres, but did not seem to be in direct contact. Immunohistochemical evaluation of NOS1 activity showed intense staining of the fibres of the DNP and most of the neurones in the main pelvic ganglion. There was also scattered NOS1 activity in the nerve bundles of the corpus cavernosum. Electrophysiology identified activity in C fibres on the cavernosal nerve and in Aalpha-Adelta fibres in the DNP. These results show that it is possible to perform integrated cavernosal pressure monitoring and ultrastructural and electrophysiological studies in this model. These yielded accurate data about the erectile status of the penis, and the state of unmyelinated and myelinated fibres in the DNP and cavernosal nerves of the same animal. This study provides a useful template for future studies of experimental diabetic autonomic neuropathy.
Abu-Melha, Sraa
2018-02-15
A new series of 2-amino-5-arylazothiazole derivatives has been designed and synthesized in 61-78% yields and screened as potential antibacterial drug candidates against the Gram negative bacterium Escherichia coli. The geometry of the title compounds were being studied using the Material Studio package and semi-core pseudopods calculations (dspp) were performed with the double numerica basis sets plus polarization functional (DNP) to predict the properties of materials using the hybrid FT/B3LYP method. Modeling calculations, especially the (E H -E L ) difference and the energetic parameters revealed that some of the title compounds may be promising tools for further research work and the activity is structure dependent.
Hyperpolarized MRS: New tool to study real-time brain function and metabolism.
Mishkovsky, Mor; Comment, Arnaud
2017-07-15
The advent of dissolution dynamic nuclear polarization (DNP) led to the emergence of a new kind of magnetic resonance (MR) measurements providing the opportunity to probe metabolism in vivo in real time. It has been shown that, following the injection of hyperpolarized substrates prepared using dissolution DNP, specific metabolic bioprobes that can be used to differentiate between healthy and pathological tissue in preclinical and clinical studies can be readily detected by MR thanks to the tremendous signal enhancement. The present article aims at reviewing the studies of cerebral function and metabolism based on the use of hyperpolarized MR. The constraints and future opportunities that this technology could offer are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Hyperpolarized NMR: d-DNP, PHIP, and SABRE.
Kovtunov, Kirill Viktorovich; Pokochueva, Ekaterina; Salnikov, Oleg; Cousin, Samuel; Kurzbach, Dennis; Vuichoud, Basile; Jannin, Sami; Chekmenev, Eduard; Goodson, Boyd; Barskiy, Danila; Koptyug, Igor
2018-05-23
NMR signals intensities can be enhanced by several orders of magnitude via utilization of techniques for hyperpolarization of different molecules, and it allows one to overcome the main sensitivity challenge of modern NMR/MRI techniques. Hyperpolarized fluids can be successfully used in different applications of material science and biomedicine. This focus review covers the fundamentals of the preparation of hyperpolarized liquids and gases via dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP) in both heterogeneous and homogeneous processes. The different novel aspects of hyperpolarized fluids formation and utilization along with the possibility of NMR signal enhancement observation are described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tapered optical fiber sensor based on localized surface plasmon resonance.
Lin, Hsing-Ying; Huang, Chen-Han; Cheng, Gia-Ling; Chen, Nan-Kuang; Chui, Hsiang-Chen
2012-09-10
A tapered fiber localized surface plasmon resonance (LSPR) sensor is demonstrated for refractive index sensing and label-free biochemical detection. The sensing strategy relies on the interrogation of the transmission intensity change due to the evanescent field absorption of immobilized gold nanoparticles on the tapered fiber surface. The refractive index resolution based on the interrogation of transmission intensity change is calculated to be 3.2×10⁻⁵ RIU. The feasibility of DNP-functionalized tapered fiber LSPR sensor in monitoring anti-DNP antibody with different concentrations spiked in buffer is examined. Results suggest that the compact sensor can perform qualitative and quantitative biochemical detection in real-time and thus has potential to be used in biomolecular sensing applications.
Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices.
Kim, Hyungjun; Goddard, William A; Jang, Seung Soon; Dichtel, William R; Heath, James R; Stoddart, J Fraser
2009-03-12
Donor-acceptor binding of the pi-electron-poor cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)) with the pi-electron-rich tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) stations provides the basis for electrochemically switchable, bistable [2]rotaxanes, which have been incorporated and operated within solid-state devices to form ultradense memory circuits (ChemPhysChem 2002, 3, 519-525; Nature 2007, 445, 414-417) and nanoelectromechanical systems. The rate of CBPQT(4+) shuttling at each oxidation state of the [2]rotaxane dictates critical write-and-retention time parameters within the devices, which can be tuned through chemical synthesis. To validate how well computational chemistry methods can estimate these rates for use in designing new devices, we used molecular dynamics simulations to calculate the free energy barrier for the shuttling of the CBPQT(4+) ring between the TTF and the DNP. The approach used here was to calculate the potential of mean force along the switching pathway, from which we calculated free energy barriers. These calculations find a turn-on time after the rotaxane is doubly oxidized of approximately 10(-7) s (suggesting that the much longer experimental turn-on time is determined by the time scale of oxidization). The return barrier from the DNP to the TTF leads to a predicted lifetime of 2.1 s, which is compatible with experiments.
Suppression of gyrase-mediated resistance by C7 aryl fluoroquinolones
Malik, Muhammad; Mustaev, Arkady; Schwanz, Heidi A.; Luan, Gan; Shah, Nirali; Oppegard, Lisa M.; de Souza, Ernane C.; Hiasa, Hiroshi; Zhao, Xilin; Kerns, Robert J.; Drlica, Karl
2016-01-01
Fluoroquinolones form drug-topoisomerase-DNA complexes that rapidly block transcription and replication. Crystallographic and biochemical studies show that quinolone binding involves a water/metal-ion bridge between the quinolone C3-C4 keto-acid and amino acids in helix-4 of the target proteins, GyrA (gyrase) and ParC (topoisomerase IV). A recent cross-linking study revealed a second drug-binding mode in which the other end of the quinolone, the C7 ring system, interacts with GyrA. We report that addition of a dinitrophenyl (DNP) moiety to the C7 end of ciprofloxacin (Cip-DNP) reduced protection due to resistance substitutions in Escherichia coli GyrA helix-4, consistent with the existence of a second drug-binding mode not evident in X-ray structures of drug-topoisomerase-DNA complexes. Several other C7 aryl fluoroquinolones behaved in a similar manner with particular GyrA mutants. Treatment of E. coli cultures with Cip-DNP selectively enriched an uncommon variant, GyrA-A119E, a change that may impede binding of the dinitrophenyl group at or near the GyrA-GyrA interface. Collectively the data support the existence of a secondary quinolone-binding mode in which the quinolone C7 ring system interacts with GyrA; the data also identify C7 aryl derivatives as a new way to obtain fluoroquinolones that overcome existing GyrA-mediated quinolone resistance. PMID:26984528
Waveguide transition with vacuum window for multiband dynamic nuclear polarization systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy
2016-05-15
A low loss waveguide transition section and oversized microwave vacuum window covering several frequency bands (94 GHz, 140 GHz, 188 GHz) is presented. The transition is compact and was optimized for multiband Dynamic Nuclear Polarization (DNP) systems in a full-wave simulator. The window is more broadband than commercially available windows, which are usually optimized for single band operation. It is demonstrated that high-density polyethylene with urethane adhesive can be used as a low loss microwave vacuum window in multiband DNP systems. The overall assembly performance and dimensions are found using full-wave simulations. The practical aspects of the window implementation inmore » the waveguide are discussed. To verify the design and simulation results, the window is tested experimentally at the three frequencies of interest.« less
NASA Technical Reports Server (NTRS)
Alers, I.; Alersova, E.; Praslichka, T.; Mishurova, E.; Sedlakova, A.; Malatova, Z.; Akhunov, A. A.; Markelov, B. A.
1974-01-01
The glucose content in blood and the lipid content in serum and tissues of dogs exposed to chronic radiation for 3 and 5 years were studied. In tissues of these animals, the concentration of soluble DNA and DNA contained in DNP was studied in the spleen, lymph node (deep cervical node) and bone marrow of thigh bones. Results indicate that chronic gamma irradiation significantly changes concentrations of glucose in the blood, and that of several lipids in serum and tissues. A reduction in the concentration of DNP in tested organs reflects changes in the relative number of cells with various nuclear cytoplasmic ratios; most pronounced changes in biochemical indices occur in dogs exposed to chronic gamma radiation in doses of 125 rad per year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seong-Joo, E-mail: sj.lee@kriss.re.kr; Shim, Jeong Hyun; Kim, Kiwoong
A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π/2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach,more » the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.« less
THz-waves channeling in a monolithic saddle-coil for Dynamic Nuclear Polarization enhanced NMR
NASA Astrophysics Data System (ADS)
Macor, A.; de Rijk, E.; Annino, G.; Alberti, S.; Ansermet, J.-Ph.
2011-10-01
A saddle coil manufactured by electric discharge machining (EDM) from a solid piece of copper has recently been realized at EPFL for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance experiments (DNP-NMR) at 9.4 T. The corresponding electromagnetic behavior of radio-frequency (400 MHz) and THz (263 GHz) waves were studied by numerical simulation in various measurement configurations. Moreover, we present an experimental method by which the results of the THz-wave numerical modeling are validated. On the basis of the good agreement between numerical and experimental results, we conducted by numerical simulation a systematic analysis on the influence of the coil geometry and of the sample properties on the THz-wave field, which is crucial in view of the optimization of DNP-NMR in solids.
Hoyt, Nathan; Brunell, Marla; Kroeck, Karl; Hable, Mike; Crouse, Lee; O'Neill, Art; Bannon, Desmond I
2013-11-01
The U.S. Department of Defense is using the chemicals 2,4-dinitroanisole (DNAN) and 3-nitro-1, 2,4-triazol-5-one (NTO) in new munitions development. In a screen for biomarkers of exposure, these compounds were measured in urine and blood of male rhesus monkeys after oral doses. NTO peaked at 4 h, with urinary concentrations at least 100-fold higher than that of blood or serum while 4-dinitrophenol (DNP), a metabolite of DNAN, appeared in blood at concentrations 10- to 20-fold higher than the parent compound. For human exposure monitoring, urine is optimal for NTO while the metabolite DNP in blood is best for DNAN.
Low temperature probe for dynamic nuclear polarization and multiple-pulse solid-state NMR.
Cho, HyungJoon; Baugh, Jonathan; Ryan, Colm A; Cory, David G; Ramanathan, Chandrasekhar
2007-08-01
Here, we describe the design and performance characteristics of a low temperature probe for dynamic nuclear polarization (DNP) experiments, which is compatible with demanding multiple-pulse experiments. The competing goals of a high-Q microwave cavity to achieve large DNP enhancements and a high efficiency NMR circuit for multiple-pulse control lead to inevitable engineering tradeoffs. We have designed two probes-one with a single-resonance RF circuit and a horn-mirror cavity configuration for the microwaves and a second with a double-resonance RF circuit and a double-horn cavity configuration. The advantage of the design is that the sample is in vacuum, the RF circuits are locally tuned, and the microwave resonator has a large internal volume that is compatible with the use of RF and gradient coils.
Tamrazi, Benita; Nguyen, Binh; Liu, Chia-Shang J; Azen, Colleen G; Nelson, Mary B; Dhall, Girish; Nelson, Marvin D
2018-05-01
Purpose To determine whether whole-brain irradiation, chemotherapy, and primary brain pathologic conditions affect magnetic resonance (MR) imaging signal changes in pediatric patients independent of the administration of gadolinium-based contrast agents (GBCAs). Materials and Methods This institutional review board-approved, HIPAA-compliant study included 144 pediatric patients who underwent intravenous GBCA-enhanced MR imaging examinations (55 patients with primary brain tumors and whole-brain irradiation, 19 with primary brain tumors and chemotherapy only, 52 with primary brain tumors without any treatment, and 18 with neuroblastoma without brain metastatic disease). The signal intensities (SIs) in the globus pallidus (GP), thalamus (T), dentate nucleus (DN), and pons (P) were measured on unenhanced T1-weighted images. GP:T and DN:P SI ratios were compared between groups by using the analysis of variance and were analyzed relative to group, total cumulative number of doses of GBCA, age, and sex by using multivariable linear models. Results DN:P ratio for the radiation therapy group was greater than that for the other groups except for the group of brain tumors treated with chemotherapy (P < .05). The number of GBCA doses was correlated with the DN:P ratio for the nontreated brain tumor group (P < .0001). The radiation therapy-treated brain tumor group demonstrated higher DN:P ratios than the nontreated brain tumor group for number of doses less than or equal to 10 (P < .0001), whereas ratios in the nontreated brain tumor group were higher than those in the radiation therapy-treated brain tumor group for doses greater than 20 (P = .05). The GP:T ratios for the brain tumor groups were greater than that for the neuroblastoma group (P = .01). Conclusion Changes in SI of the DN and GP that are independent of the administration of GBCA occur in patients with brain tumors undergoing brain irradiation, as well as in patients with untreated primary brain tumors. © RSNA, 2017.
Magnetic resonance imaging without field cycling at less than earth's magnetic field
NASA Astrophysics Data System (ADS)
Lee, Seong-Joo; Shim, Jeong Hyun; Kim, Kiwoong; Yu, Kwon Kyu; Hwang, Seong-min
2015-03-01
A strong pre-polarization field, usually tenths of a milli-tesla in magnitude, is used to increase the signal-to-noise ratio in ordinary superconducting quantum interference device-based nuclear magnetic resonance/magnetic resonance imaging experiments. Here, we introduce an experimental approach using two techniques to remove the need for the pre-polarization field. A dynamic nuclear polarization (DNP) technique enables us to measure an enhanced resonance signal. In combination with a π / 2 pulse to avoid the Bloch-Siegert effect in a micro-tesla field, we obtained an enhanced magnetic resonance image by using DNP technique with a 34.5 μT static external magnetic field without field cycling. In this approach, the problems of eddy current and flux trapping in the superconducting pickup coil, both due to the strong pre-polarization field, become negligible.
Preparation of Pillar[5]arene-Based [2]Rotaxanes by a Stopper-Exchange Strategy.
Nierengarten, Iwona; Meichsner, Eric; Holler, Michel; Pieper, Pauline; Deschenaux, Robert; Delavaux-Nicot, Béatrice; Nierengarten, Jean-François
2018-01-02
A pillar[5]arene-containing rotaxane building block bearing exchangeable stoppers has been prepared in multigram scale quantities with high yields from the reaction of 2,4-dinitrophenol (DNP) with the inclusion complex resulting from the association of dodecanedioyl chloride with 1,4-diethoxypillar[5]arene. Stopper exchange reactions have been achieved by treatment of the resulting DNP diester with various amines through an addition-elimination mechanism preventing the unthreading of the axle component during the reaction and thus preserving the [2]rotaxane structures. The resulting diamide [2]rotaxane derivatives have thus been obtained in good to excellent yields. Importantly, [2]rotaxanes difficult or impossible to prepare by direct introduction of the two stoppers in a single synthetic step are now easily available. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Perras, Frederic A.; Wang, Zhuoran; Naik, Pranjali; ...
2017-05-12
Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by 17O DNP surface-enhanced NMR spectroscopy (SENS). We additionally show that the O–H bond length in these catalysts can be measured with sub-picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. As a result, experiments performed on materials impregnated with pyridine also allow for the direct detection ofmore » intermolecular hydrogen bonding interactions through the lengthening of O–H bonds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Wang, Zhuoran; Naik, Pranjali
Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by 17O DNP surface-enhanced NMR spectroscopy (SENS). We additionally show that the O–H bond length in these catalysts can be measured with sub-picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. As a result, experiments performed on materials impregnated with pyridine also allow for the direct detection ofmore » intermolecular hydrogen bonding interactions through the lengthening of O–H bonds.« less
Frequency-Swept Integrated Solid Effect.
Can, Thach V; Weber, Ralph T; Walish, Joseph J; Swager, Timothy M; Griffin, Robert G
2017-06-06
The efficiency of continuous wave dynamic nuclear polarization (DNP) experiments decreases at the high magnetic fields used in contemporary high-resolution NMR applications. To recover the expected signal enhancements from DNP, we explored time domain experiments such as NOVEL which matches the electron Rabi frequency to the nuclear Larmor frequency to mediate polarization transfer. However, satisfying this matching condition at high frequencies is technically demanding. As an alternative we report here frequency-swept integrated solid effect (FS-ISE) experiments that allow low power sweeps of the exciting microwave frequencies to constructively integrate the negative and positive polarizations of the solid effect, thereby producing a polarization efficiency comparable to (±10 % difference) NOVEL. Finally, the microwave frequency modulation results in field profiles that exhibit new features that we coin the "stretched" solid effect. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
THz-waves channeling in a monolithic saddle-coil for Dynamic Nuclear Polarization enhanced NMR.
Macor, A; de Rijk, E; Annino, G; Alberti, S; Ansermet, J-Ph
2011-10-01
A saddle coil manufactured by electric discharge machining (EDM) from a solid piece of copper has recently been realized at EPFL for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance experiments (DNP-NMR) at 9.4 T. The corresponding electromagnetic behavior of radio-frequency (400 MHz) and THz (263 GHz) waves were studied by numerical simulation in various measurement configurations. Moreover, we present an experimental method by which the results of the THz-wave numerical modeling are validated. On the basis of the good agreement between numerical and experimental results, we conducted by numerical simulation a systematic analysis on the influence of the coil geometry and of the sample properties on the THz-wave field, which is crucial in view of the optimization of DNP-NMR in solids. Copyright © 2011 Elsevier Inc. All rights reserved.
Voices of chief nursing executives informing a doctor of nursing practice program.
Embree, Jennifer L; Meek, Julie; Ebright, Patricia
The purpose of this article is to describe the business case framework used to guide doctor of nursing practice (DNP) program enhancements and to discuss methods used to gain chief nurse executives' (CNEs) perspectives for desired curricular and experiential content for doctor of nursing practice nurses in health care system executive roles. Principal results of CNE interview responses were closely aligned to the knowledge, skills and/or attitudes identified by the national leadership organizations. Major conclusions of this article are that curriculum change should include increased emphasis on leadership, implementation science, and translation of evidence into practice methods. Business, information and technology management, policy, and health care law content would also need to be re-balanced to facilitate DNP graduates' health care system level practice. Copyright © 2017 Elsevier Inc. All rights reserved.
Specific immune response genes of new inbred strains of guinea pigs.
Chiba, J; Egashira, Y
1978-01-01
Distribution of specific immune-response (Ir) genes controlling responsiveness to synthetic polypeptide antigens, homopolymer of poly-L-lysine (PLL), copolymer of L-glutamic acid and L-alanine (GA) and copolymer of L-glutamic acid and L-tyrosine (GT), and limiting doses of 2,4-dinitrophenyl guinea pig serum albumin (DNP-GPA) was surveyed in new inbred strains of guinea pigs, JY 1, JY 2, JY 9 and JY 10, established in this Institute. The PLL gene was not found in any of the guinea pigs. The GA gene was found in JY 1 and JY 2 guinea pigs and the GT gene in all the guinea pigs. The gene controlling responsiveness to low doses (1 microgram) of DNP-GPA was found in JY 1, JY 9 and JY 10 guinea pigs. The associated (Ia) antigens was discussed.
Characterizing the interactions of organic nanoparticles with renal epithelial cells in vivo.
Nair, Anil V; Keliher, Edmund J; Core, Amanda B; Brown, Dennis; Weissleder, Ralph
2015-01-01
Nanotechnology approaches are actively being pursued for drug delivery, novel diagnostics, implantable devices, and consumer products. While considerable research has been performed on the effects of these materials on targeted tumor or phagocytic cells, relatively little is known about their effects on renal cells. This becomes critical for supersmall nanoparticles (<10 nm), designed to be renally excreted. The active endocytic machinery of kidney proximal tubules avidly internalizes filtered proteins, which may also be the case for filtered nanoparticles. To test whether such interactions affect kidney function, we injected mice with either 5 nm dextran-based nanoparticles (DNP) that are similar in composition to FDA-approved materials or poly(amido amine) dendrimer nanoparticles (PNP) of comparable size. These fluorescently tagged nanoparticles were both filtered and internalized by renal tubular epithelial cells in a dose- and time-dependent fashion. The biological effects were quantitated by immunocytochemistry, measuring kidney injury markers and performing functional tests. DNP administration resulted in a dose-dependent increase in urinary output, while cellular albumin endocytosis was increased. The expression of megalin, a receptor involved in albumin uptake, was also increased, but AQP1 expression was unaffected. The effects after PNP administration were similar but additionally resulted in increased clathrin expression and increased endocytosis of dextran. We conclude that there are no major detrimental renal effects of DNP on overall kidney function, but changes in endocytosis-mediating protein expression do occur. These studies provide a framework for the testing of additional nanoparticle preparations as they become available.
A table-top PXI based low-field spectrometer for solution dynamic nuclear polarization.
Biller, Joshua R; Stupic, Karl F; Moreland, J
2018-03-01
We present the development of a portable dynamic nuclear polarization (DNP) instrument based on the PCI eXtensions for Instrumentation platform. The main purpose of the instrument is for study of 1 H polarization enhancements in solution through the Overhauser mechanism at low magnetic fields. A DNP probe set was constructed for use at 6.7 mT, using a modified Alderman-Grant resonator at 241 MHz for saturation of the electron transition. The solenoid for detection of the enhanced 1 H signal at 288 kHz was constructed with Litz wire. The largest observed 1 H enhancements (ε) at 6.7 mT for 14 N-CTPO radical in air saturated aqueous solution was ε~65. A concentration dependence of the enhancement is observed, with maximum ε at 5.5 mM. A low resonator efficiency for saturation of the electron paramagnetic resonance transition results in a decrease in ε for the 10.3 mM sample. At high incident powers (42 W) and long pump times, capacitor heating effects can also decrease the enhancement. The core unit and program described here could be easily adopted for multi-frequency DNP work, depending on available main magnets and selection of the "plug and play" arbitrary waveform generator, digitizer, and radiofrequency synthesizer PCI eXtensions for Instrumentatione cards. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Thurber, Kent R; Tycko, Robert
2012-08-28
We present theoretical calculations of dynamic nuclear polarization (DNP) due to the cross effect in nuclear magnetic resonance under magic-angle spinning (MAS). Using a three-spin model (two electrons and one nucleus), cross effect DNP with MAS for electron spins with a large g-anisotropy can be seen as a series of spin transitions at avoided crossings of the energy levels, with varying degrees of adiabaticity. If the electron spin-lattice relaxation time T(1e) is large relative to the MAS rotation period, the cross effect can happen as two separate events: (i) partial saturation of one electron spin by the applied microwaves as one electron spin resonance (ESR) frequency crosses the microwave frequency and (ii) flip of all three spins, when the difference of the two ESR frequencies crosses the nuclear frequency, which transfers polarization to the nuclear spin if the two electron spins have different polarizations. In addition, adiabatic level crossings at which the two ESR frequencies become equal serve to maintain non-uniform saturation across the ESR line. We present analytical results based on the Landau-Zener theory of adiabatic transitions, as well as numerical quantum mechanical calculations for the evolution of the time-dependent three-spin system. These calculations provide insight into the dependence of cross effect DNP on various experimental parameters, including MAS frequency, microwave field strength, spin relaxation rates, hyperfine and electron-electron dipole coupling strengths, and the nature of the biradical dopants.
Ochi, H; Ikuma, I; Toda, H; Shimada, T; Morioka, S; Moriyama, K
1989-12-01
In order to determine whether isovolumic relaxation period (IRP) reflects left ventricular relaxation under different afterload conditions, 17 anesthetized, open chest dogs were studied, and the left ventricular pressure decay time constant (T) was calculated. In 12 dogs, angiotensin II and nitroprusside were administered, with the heart rate constant at 90 beats/min. Multiple linear regression analysis showed that the aortic dicrotic notch pressure (AoDNP) and T were major determinants of IRP, while left ventricular end-diastolic pressure was a minor determinant. Multiple linear regression analysis, correlating T with IRP and AoDNP, did not further improve the correlation coefficient compared with that between T and IRP. We concluded that correction of the IRP by AoDNP is not necessary to predict T from additional multiple linear regression. The effects of ascending aortic constriction or angiotensin II on IRP were examined in five dogs, after pretreatment with propranolol. Aortic constriction caused a significant decrease in IRP and T, while angiotensin II produced a significant increase in IRP and T. IRP was affected by the change of afterload. However, the IRP and T values were always altered in the same direction. These results demonstrate that IRP is substituted for T and it reflects left ventricular relaxation even in different afterload conditions. We conclude that IRP is a simple parameter easily used to evaluate left ventricular relaxation in clinical situations.
Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K.
Vuichoud, Basile; Canet, Estel; Milani, Jonas; Bornet, Aurélien; Baudouin, David; Veyre, Laurent; Gajan, David; Emsley, Lyndon; Lesage, Anne; Copéret, Christophe; Thieuleux, Chloé; Bodenhausen, Geoffrey; Koptyug, Igor; Jannin, Sami
2016-08-18
We report a simple and general method for the hyperpolarization of condensed gases by dynamic nuclear polarization (DNP). The gases are adsorbed in the pores of structured mesoporous silica matrices known as HYPSOs (HYper Polarizing SOlids) that have paramagnetic polarizing agents covalently bound to the surface of the mesopores. DNP is performed at low temperatures and moderate magnetic fields (T = 1.2 K and B0 = 6.7 T). Frequency-modulated microwave irradiation is applied close to the electron spin resonance frequency (f = 188.3 GHz), and the electron spin polarization of the polarizing agents of HYPSO is transferred to the nuclear spins of the frozen gas. A proton polarization as high as P((1)H) = 70% can be obtained, which can be subsequently transferred to (13)C in natural abundance by cross-polarization, yielding up to P((13)C) = 27% for ethylene.
Jantschke, Anne; Koers, Eline; Mance, Deni; Weingarth, Markus; Brunner, Eike; Baldus, Marc
2015-12-07
Diatom biosilica is an inorganic/organic hybrid with interesting properties. The molecular architecture of the organic material at the atomic and nanometer scale has so far remained unknown, in particular for intact biosilica. A DNP-supported ssNMR approach assisted by microscopy, MS, and MD simulations was applied to study the structural organization of intact biosilica. For the first time, the secondary structure elements of tightly biosilica-associated native proteins in diatom biosilica were characterized in situ. Our data suggest that these proteins are rich in a limited set of amino acids and adopt a mixture of random-coil and β-strand conformations. Furthermore, biosilica-associated long-chain polyamines and carbohydrates were characterized, thereby leading to a model for the supramolecular organization of intact biosilica. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pesticides sensing by surface plasmon resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalabina, N.A.; Ksenevich, T.I.; Beloglazov, A.A.
1995-12-31
High toxicity of pesticides and their wide use in agriculture, represent a general danger for environmental welfare and could become a real threat to life. Screening of pesticides in the environment has become very important during last years due to low threshold values for pesticides in drinking water. An optical biosensor has been developed for detection of pesticides, based on surface plasmon resonance (SPR) technique. Concentration of the pesticides was measured in liquid or gas. The authors specially originated organic film on a disposable element. A setup on the base of the Kretschmann arrangement was improved by using a computer-controlledmore » angular scanning system. The detection concentration limit of dinitrophenole (DNP) was 10{sup {minus}9} M. Some samples exhibited effect down to 10{sup {minus}11} M of DNP. The results obtained provide reason for further development of SPR sensor as applied to pesticides monitoring.« less
Impaired local immune response in vitamin A-deficient rats.
Sirisinha, S; Darip, M D; Moongkarndi, P; Ongsakul, M; Lamb, A J
1980-01-01
The functional integrity of the local immune system in vitamin A-deficient (A-) rats was investigated. Secretory IgA levels in the intestinal fluid of A- rats were significantly lower than in controls. This and the decrease in intensity of immunofluorescent staining for secretory component (SC) in the intestinal cells was related to the duration of vitamin A deprivation. IgG levels in the intestinal fluid, and serum IgA and IgG levels were unaffected in deficiency. Moreover, when the response of animals to DNP50-BGG was evaluated, the local anti-DNP response in the intestine was markedly depressed. These defects may result from impaired synthesis of SC by epithelial cells. On the other hand, the serum antibody response in deficient animals was not noticeably different from that of the controls; if any, htere was a slight reduction in the affinity of antibody. PMID:7389210
Dynamic Nuclear Polarization of 17O: Direct Polarization
Michaelis, Vladimir K.; Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2014-01-01
Dynamic nuclear polarization of 17O was studied using four different polarizing agents – the biradical TOTAPOL, and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and bi-radical polarizing agents. Enhancements were recorded < 88 K and were > 100 using the trityl (OX063) radical and < 10 with the other polarizing agents. The > 10,000 fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei. PMID:24195759
Dynamic nuclear polarization of 17O: direct polarization.
Michaelis, Vladimir K; Corzilius, Björn; Smith, Albert A; Griffin, Robert G
2013-12-05
Dynamic nuclear polarization of (17)O was studied using four different polarizing agents: the biradical TOTAPOL and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms, and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and biradical polarizing agents. Enhancements were recorded at <88 K and were >100 using the trityl (OX063) radical and <10 with the other polarizing agents. The >10,000-fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Y.; Kobayashi, A.
1983-04-01
In the acute phase of Toxoplasma infection, the function of both helper T and B cells was suppressed in primary antibody responses to dinitrophenol (DNP)-conjugated protein antigens. During the course of infection, the suppressive effect on T cells seems to continue longer than that on B cells, since suppression in responses to sheep erythrocytes, a T-dependent antigen, persisted longer than those to DNP-Ficoll, a T-independent antigen. Plastic-adherent cells from the spleens of Toxoplasma-infected and X-irradiated (400 rads) mice had strong suppressor activity in primary anti-sheep erythrocyte antibody responses of normal mouse spleen cells in vitro. These data suggest that themore » activation of irradiation-resistant and plastic-adherent suppressor cells causes the suppression of both T and B cells in Toxoplasma-infected mice.« less
Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators.
Scott, Faith J; Sesti, Erika L; Choi, Eric J; Laut, Alexander J; Sirigiri, Jagadishwar R; Barnes, Alexander B
2018-04-19
We introduce a novel design for millimeter wave electromagnetic structures within magic angle spinning (MAS) rotors. In this demonstration, a copper coating is vacuum deposited onto the outside surface of a sapphire rotor at a thickness of 50 nm. This thickness is sufficient to reflect 197-GHz microwaves, yet not too thick as to interfere with radiofrequency fields at 300 MHz or prevent sample spinning due to eddy currents. Electromagnetic simulations of an idealized rotor geometry show a microwave quality factor of 148. MAS experiments with sample rotation frequencies of ω r /2π = 5.4 kHz demonstrate that the drag force due to eddy currents within the copper does not prevent sample spinning. Spectra of sodium acetate show resolved 13 C J-couplings of 60 Hz and no appreciable broadening between coated and uncoated sapphire rotors, demonstrating that the copper coating does not prevent shimming and high-resolution nuclear magnetic resonance spectroscopy. Additionally, 13 C Rabi nutation curves of ω 1 /2π = 103 kHz for both coated and uncoated rotors indicate no detrimental impact of the copper coating on radio frequency coupling of the nuclear spins to the sample coil. We present this metal coated rotor as a first step towards an MAS resonator. MAS resonators are expected to have a significant impact on developments in electron decoupling, pulsed dynamic nuclear polarization (DNP), room temperature DNP, DNP with low-power microwave sources, and electron paramagnetic resonance detection. Copyright © 2018 John Wiley & Sons, Ltd.
Butler, J E; McGivern, P L; Swanson, P
1978-01-01
A modification of the standard enzyme-linked immunosorbent assay (ELISA) is described which circumvents the requirement for specifically purified antibodies from which antibody-enzyme complexes are made. The assay utilizes the principle of a soluble anti-alkaline phosphatase immune complex (AP-A-AP) and has been called the amplified ELISA. Methods for preparing and evidence for the specificity of rabbit anti-rat gamma-FC, IgM (mu) and IgA (alpha) are presented. These reagents are used to measure anti-DNP antibodies belonging to classes IgG, IgM and IgA in rat serum. Using antiglobulin and anti-enzyme reagents prepared in guinea pigs, anti-ovalbumin antibodies are measured in rabbit serum. Titration curves are similar when the amplified ELISA is compared to the standard ELISA. A change in slope suggesting an effect of saturation of antigen sites, occurs at the same input antibody concentration for both assays. Determination of the anti-DNP concentration of unknown sera by extrapopulation from titration graphs of a known serum suggests that the value is overestimated, i.e., amplified when the amplified ELISA is used. In addition, the amplified ELISA has an improved ability to detect low levels of antibody. Evidence is presented which illustrates how the use of optimally conjugated DNP-proteins, age of conjugates, and optimal dilutions of secondary antiglobulins and the AP-A-AP reduce non-specific binding in the amplified ELISA. The amplified ELISA is capable of detecting 2.4 ng of antibody to ovalbumin in a one: one million dilution of rabbit serum with high reproducibility and low background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinks, Mallory L.; Brady, Monica V.; Lignell, Hanna
This work explores the effect of environmental conditions on the photodegradation rates of atmospherically relevant, photolabilie, organic molecules embedded in a film of secondary organic material (SOM). Three types of SOM were studied: a-pinene/O3 SOM (PSOM), limonene/O3 SOM (LSOM), and aged limonene/O3 obtained by exposure of LSOM to ammonia (brown LSOM). PSOM and LSOM were impregnated with 2,4-dinitrophenol (2,4-DNP), an atmospherically relevant molecule that photodegrades faster than either PSOM or LSOM alone, to serve as a probe of SOM matrix effects on photochemistry. Brown LSOM contains an unidentified chromophore that absorbs strongly at 510 nm and photobleaches upon irradiation. Thismore » chromophore served as a probe molecule for the brown LSOM experiments. In all experiments, the temperature and relative humidity (RH) surrounding the SOM films were varied. The extent of photochemical reaction in the samples was monitored using UV-Vis absorption spectroscopy. For all three model systems examined, the observed photodegradation rates were slower at lower temperatures and lower RH, under conditions that make SOM more viscous. Additionally, the activation energies for photodegradation of each system were positively correlated with the viscosity of the SOM matrix as measured in poke-flow experiments. These activation energies were calculated to be 50, 24, and 17 kJ/mol for 2,4-DNP in PSOM, 2,4-DNP in LSOM, and brown LSOM, respectively and PSOM was found to be the most viscous of the three. These results suggest that the increased viscosity is hindering the motion of the molecules in SOM and is slowing down photochemical reactions in which they participate.« less
Application of blind source separation to real-time dissolution dynamic nuclear polarization.
Hilty, Christian; Ragavan, Mukundan
2015-01-20
The use of a blind source separation (BSS) algorithm is demonstrated for the analysis of time series of nuclear magnetic resonance (NMR) spectra. This type of data is obtained commonly from experiments, where analytes are hyperpolarized using dissolution dynamic nuclear polarization (D-DNP), both in in vivo and in vitro contexts. High signal gains in D-DNP enable rapid measurement of data sets characterizing the time evolution of chemical or metabolic processes. BSS is based on an algorithm that can be applied to separate the different components contributing to the NMR signal and determine the time dependence of the signals from these components. This algorithm requires minimal prior knowledge of the data, notably, no reference spectra need to be provided, and can therefore be applied rapidly. In a time-resolved measurement of the enzymatic conversion of hyperpolarized oxaloacetate to malate, the two signal components are separated into computed source spectra that closely resemble the spectra of the individual compounds. An improvement in the signal-to-noise ratio of the computed source spectra is found compared to the original spectra, presumably resulting from the presence of each signal more than once in the time series. The reconstruction of the original spectra yields the time evolution of the contributions from the two sources, which also corresponds closely to the time evolution of integrated signal intensities from the original spectra. BSS may therefore be an approach for the efficient identification of components and estimation of kinetics in D-DNP experiments, which can be applied at a high level of automation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ji Wei; Israf, Daud Ahmad; Harith, Hanis Haze
tHGA, a geranyl acetophenone compound originally isolated from a local shrub called Melicope ptelefolia, has been previously reported to prevent ovalbumin-induced allergic airway inflammation in a murine model of allergic asthma by targeting cysteinyl leukotriene synthesis. Mast cells are immune effector cells involved in the pathogenesis of allergic diseases including asthma by releasing cysteinyl leukotrienes. The anti-asthmatic properties of tHGA could be attributed to its inhibitory effect on mast cell degranulation. As mast cell degranulation is an important event in allergic responses, this study aimed to investigate the anti-allergic effects of tHGA in cellular and animal models of IgE-mediated mastmore » cell degranulation. For in vitro model of IgE-mediated mast cell degranulation, DNP-IgE-sensitized RBL-2H3 cells were pre-treated with tHGA before challenged with DNP-BSA to induce degranulation. For IgE-mediated passive systemic anaphylaxis, Sprague Dawley rats were sensitized by intraperitoneal injection of DNP-IgE before challenged with DNP-BSA. Both in vitro and in vivo models showed that tHGA significantly inhibited the release of preformed mediators (β-hexosaminidase and histamine) as well as de novo mediators (interleukin-4, tumour necrosis factor-α, prostaglandin D{sub 2} and leukotriene C{sub 4}). Pre-treatment of tHGA also prevented IgE-challenged RBL-2H3 cells and peritoneal mast cells from undergoing morphological changes associated with mast cell degranulation. These findings indicate that tHGA possesses potent anti-allergic activity via attenuation of IgE-mediated mast cell degranulation and inhibition of IgE-mediated passive systemic anaphylaxis. Thus, tHGA may have the potential to be developed as a mast cell stabilizer for the treatment of allergic diseases in the future. - Highlights: • The in vitro and in vivo mast cell stabilizing effects of tHGA were examined. • tHGA counteracts the plasma membrane deformation in degranulating mast cells. • tHGA attenuates preformed and de novo mediators released by degranulating mast cells. • tHGA prevents in vivo mast cell activation and passive systemic anaphylaxis in rats. • tHGA could be a potential mast cell stabilizer for the treatment of allergic diseases.« less
Dynamic nuclear polarization in a magnetic resonance force microscope experiment.
Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A
2016-04-07
We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.
NASA Astrophysics Data System (ADS)
Masion, A.; Alexandre, A. E.; Ziarelli, F.; Viel, S.; Santos, G.
2016-12-01
Biogenic silica resulting from the precipitation of dissolved Si through biological processes in plants, often contains small amounts of occluded organic carbon. These phases, called phytoliths, have a long persistence in soils, making them tracers of past conditions. In this context, the knowledge of the carbon speciation associated with phytoliths bears significant importance in examining the carbon dynamics in soils. With carbon concentrations as low as the 0.1% range, examining the nature of organic carbon remains very challenging, and available tools (e.g. pyrolysis) are often prone to serious artifacts. Recent improvements of microwave sources enabled the application of the Dynamic Nuclear Polarization (DNP) technique to NMR, thereby establishing a new non-destructive tool for the qualitative and quantitative determination of the carbon speciation. Applied to the analysis of phytoliths, this method showed the presence of carbons from different sources within the sample: About 20% of the signal correspond to carbohydrates, and are assigned to photosynthetic carbon; the marked alkyl, N-alkyl and carbonyl signals indicate a significant proportion of proteins. This is consistent with the hypothesis that parts of the carbon associated with the phytoliths is imported into the host plant via uptake from the soil. Finally, lignins, glomalin-like and/or humic-like compounds are minor species associated with biogenic silica. This speciation was obtained overnight with a DNP-NMR set-up with an excellent sensitivity (few tens of weight ppm); the same spectrum on a standard NMR spectrometer would have required at least 250 days of data acquisition. The considerable gain in sensitivity associated with the use of DNP now makes NMR a relevant technique for the analysis of environmental samples.
2,4-Dinitroanisole (DNAN) (2014).
2018-01-01
2,4-dinitroanisole (DNAN) is a warhead explosive currently under investigation as a replacement for TNT in melt-cast insensitive munitions. In animal studies, DNAN is a mild ocular and skin irritant with a significant potential for dermal absorption. It is not a dermal sensitizer. Acute and subacute rat inhalation studies demonstrated minimal toxicity with LC 50 and LOAEL endpoints of 2.9 and 150 mg/m 3 , respectively. In rat oral toxicity studies (14 and 90 days) organ weight and clinical chemistry changes suggested hepatocellular injury and anemia, particularly in females. In males there was evidence of testicular injury at the high-dose level (80 mg/kg/day). The NOAELs for the 14- and 90-day studies were 25 and 5 mg/kg/day, respectively, with a calculated BMDL 10 value of 0.93 mg/kg/day. No chronic, carcinogenicity or reproductive/developmental toxicity data were available for DNAN, but a maternal and fetal NOAEL of 5.1 mg/kg/day was inferred. DNAN is considered non-mutagenic and non-genotoxic. It is metabolized in vivo to 2,4-dinitrophenol (DNP), but other details of its metabolism or pharmacokinetics are unknown. There are considerable toxicity data for DNP, a known un-coupler of oxidative phosphorylation among other things, and these data may further inform regarding the safety of DNAN. In humans, DNAN was a component of louse powder (prior to DDT) with no reported safety concerns. However, its handling and use as a munition component presents a potential occupational hazard by both inhalation and dermal routes of exposure. Considering both DNAN and DNP toxicity endpoints, the recommended Workplace Environmental Exposure limit for DNAN is 0.1 mg/m 2 (8-h time weighted average).
IgE antibody responses to platinum group metals: a large scale refinery survey.
Murdoch, R D; Pepys, J; Hughes, E G
1986-01-01
All 306 South African platinum refinery workers (116 white, 190 coloured) accepted for employment on grounds of absence of evidence of atopy were investigated using the skin prick test and RAST to detect sensitivity to platinum, palladium, and rhodium salts. RAST studies were made for these, together with HSA and DNP-HSA RAST. Of the 306 workers, 38 had a positive skin prick test to the platinum halide salts; of these, one gave a positive reaction to the palladium salt and six to the rhodium salt. There were no isolated positives to the rhodium and palladium halide salts. Total IgE levels were raised in 24 of the 38 (63%) platinum salt prick test positive workers compared with only 43 of the 268 (16%) prick test negative group (p less than 0.001). Positive RASTs were obtained in 62% of those with positive skin tests to the platinum salts. Four of the six giving positive rhodium salt skin tests gave a positive RAST to rhodium salt. Of these, two gave positive RASTS to HSA and all four to DNP-HSA. The palladium salt RAST was negative in the single skin test reactor. In the platinum salt skin test positive group a raised HSA RAST was obtained in 10.5% compared with only 2.5% in the skin negative group. Twenty one per cent of the platinum salt skin positive group had a raised RAST score to DNP-HSA with only 3.5% (4/116) in the skin test negative group, of whom three also had a raised HSA RAST. The latter findings are suggestive of IgE antibody production to new antigenic determinants in HSA produced by conjugation with the platinum salts. PMID:2936374
Limoge, Michelle; Safina, Alfiya; Truskinovsky, Alexander M; Aljahdali, Ieman; Zonneville, Justin; Gruevski, Aleksandar; Arteaga, Carlos L; Bakin, Andrei V
2017-09-22
The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease.
Limoge, Michelle; Safina, Alfiya; Truskinovsky, Alexander M.; Aljahdali, Ieman; Zonneville, Justin; Gruevski, Aleksandar; Arteaga, Carlos L.; Bakin, Andrei V.
2017-01-01
The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease. PMID:28977919
The Keys to Success in Doctoral Studies: A Preimmersion Course.
Salani, Deborah; Albuja, Laura Dean; Azaiza, Khitam
2016-01-01
This article will review an innovative on-line preimmersion course for a hybrid doctor of nursing practice (DNP) program and a traditional face-to-face doctor of philosophy nursing program. The doctoral candidates include both postbaccalaureate and postmaster's students. The authors of the preimmersion course developed and initiated the course in order to address various issues that have surfaced in discussions between students and faculty. Examples of common themes identified include writing skills, statistics, life-work-school balance, and navigating instructional technology. Doctoral studies may pose challenges to students studying nursing, in regard to academic rigor and experiencing on-line education for the first time, especially for students who have been out of school for an extended amount of time or are not accustomed to a nontraditional classroom; thus, having a preimmersion course established may facilitate a smooth transition to rigorous academic studies in a hybrid program. The course, which was developed and delivered through Blackboard, a learning management system, includes the following 9 preimmersion modules: academic strategies (learning styles, creating an effective PowerPoint presentation), library support (introduction to the university library, literature review tutorial, and citation styles), mindfulness, wellness, statistics essentials, writing express, DNP capstone, netiquette, and DNP/doctor of philosophy mentorship. Each module consists of various tools that may promote student success in specific courses and the programs in general. The purpose of designing the preimmersion course is to decrease attrition rates and increase success of the students. While the majority of students have succeeded in their coursework and been graduated from the program, the authors of this article found that many students struggled with the work, life, and school balance. Future work will include the evaluation of results from graduate students enrolled in the program. Copyright © 2016 Elsevier Inc. All rights reserved.
Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp; Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara; Ishizuka, Tamotsu
Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bonemore » marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.« less
Involvement of the chloroplast plastoquinone pool in the Mehler reaction.
Vetoshkina, Daria V; Ivanov, Boris N; Khorobrykh, Sergey A; Proskuryakov, Ivan I; Borisova-Mubarakshina, Maria M
2017-09-01
Light-dependent oxygen reduction in the photosynthetic electron transfer chain, i.e. the Mehler reaction, has been studied using isolated pea thylakoids. The role of the plastoquinone pool in the Mehler reaction was investigated in the presence of dinitrophenyl ether of 2-iodo-4-nitrothymol (DNP-INT), the inhibitor of plastohydroquinone oxidation by cytochrome b6/f complex. Oxygen reduction rate in the presence of DNP-INT was higher than in the absence of the inhibitor in low light at pH 6.5 and 7.6, showing that the capacity of the plastoquinone pool to reduce molecular oxygen in this case exceeded that of the entire electron transfer chain. In the presence of DNP-INT, appearance of superoxide anion radicals outside thylakoid membrane represented approximately 60% of the total superoxide anion radicals produced. The remaining 40% of the produced superoxide anion radicals was suggested to be trapped by plastohydroquinone molecules within thylakoid membrane, leading to the formation of hydrogen peroxide (H 2 O 2 ). To validate the reaction of superoxide anion radical with plastohydroquinone, xanthine/xanthine oxidase system was integrated with thylakoid membrane in order to generate superoxide anion radical in close vicinity of plastohydroquinone. Addition of xanthine/xanthine oxidase to the thylakoid suspension resulted in a decrease in the reduction level of the plastoquinone pool in the light. The obtained data provide additional clarification of the aspects that the plastoquinone pool is involved in both reduction of oxygen to superoxide anion radicals and reduction of superoxide anion radicals to H 2 O 2 . Significance of the plastoquinone pool involvement in the Mehler reaction for the acclimation of plants to light conditions is discussed. © 2017 Scandinavian Plant Physiology Society.
Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.
Stier, Antoine; Massemin, Sylvie; Criscuolo, François
2014-12-01
Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.
Chemical characterization and sorption capacity measurements of degraded newsprint from a landfill
Chen, Lixia; Nanny, Mark A.; Knappe, Detlef R. U.; Wagner, Travis B.; Ratasuk, Nopawan
2004-01-01
Newsprint samples collected from 12−16 ft (top layer (TNP)), 20−24 ft (middle layer (MNP)), and 32−36 ft (bottom layer (BNP)) below the surface of the Norman Landfill (NLF) were characterized by infrared (IR) spectroscopy, cross-polarization, magic-angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) spectroscopy, and tetramethylammonium hydroxide (TMAH) thermochemolysis gas chromatography/mass spectrometry (GC/MS). The extent of NLF newsprint degradation was evaluated by comparing the chemical composition of NLF newsprint to that of fresh newsprint (FNP) and newsprint degraded in the laboratory under methanogenic conditions (DNP). The O-alkyl/alkyl, cellulose/lignin, and lignin/resin acid ratios showed that BNP was the most degraded, and that all three NLF newsprint samples were more degraded than DNP. 13C NMR and TMAH thermochemolysis data demonstrated selective enrichment of lignin over cellulose, and TMAH thermochemolysis further exhibited selective enrichment of resin acids over lignin. In addition, the crystallinity of cellulose in NLF newsprint samples was significantly lower relative to that of FNP and DNP as shown by 13C NMR spectra. The yield of lignin monomers from TMAH thermochemolysis suggested that hydroxyl groups were removed from the propyl side chain of lignin during the anaerobic decomposition of newsprint in the NLF. Moreover, the vanillyl acid/aldehyde ratio, which successfully describes aerobic lignin degradation, was not a good indicator of the anaerobic degradation of lignin on the basis of the TMAH data. The toluene sorption capacity increased as the degree of newsprint degradation increased or as the O-alkyl/alkyl ratio of newsprint decreased. The results of this study further verified that the sorbent O-alkyl/alkyl ratio is useful for predicting sorption capacities of natural organic materials for hydrophobic organic contaminants.
Dinitrophenyl hapten with laser immunotherapy for advanced malignant melanoma: A clinical study
Chen, Dian-Jun; Li, Xiao-Song; Zhao, Hui; Fu, Yan; Kang, Huan-Rong; Yao, Fang-Fang; Hu, Jia; Qi, Nan; Zhang, Huan-Huan; Du, Nan; Chen, Wei-R
2017-01-01
The present study aimed to evaluate the efficacy and safety of in situ immunotherapy with dinitrophenyl (DNP) hapten in combination with laser therapy for patients with malignant melanoma (MM). Between February 2008 and March 2012, 72 patients with stage III or IV MM were enrolled. Patients received in situ DNP alone (n=32) or in combination with laser therapy (n=32), and each group received dacarbazine chemotherapy. The levels of peripheral cluster of differentiation (CD)4+CD25+ regulatory T cells (Tregs), interleukin (IL)-10 and tumor growth factor (TGF)-β were detected by ELISA. The association between delayed-type hypersensitivity (DTH) and survival time was evaluated. Although peripheral Treg levels significantly decreased over time in the two groups (P<0.001), there was no significant difference between the treatment groups (P=0.098). Patients receiving the combination treatment exhibited significantly higher interferon-γ production by CD8+ and CD4+ T cells (both P<0.001), as well as significantly reduced levels of IL-10, TGF-β1 and TGF-β2. In addition, patients in the combination treatment group experienced significantly longer overall survival (OS; P=0.024) and disease-free survival (DFS; P=0.007) times; a DTH response of ≥15 mm was also associated with increased OS time and DFS time (P≤0.001). Finally, no severe adverse events were observed in either treatment group. Overall, in situ immunization with DNP in combination with laser immunotherapy may activate focal T cells, producing a regional antitumor immune response that increases cell-mediated immunity and improves survival in MM patients. Thus, this may represent a novel therapeutic strategy for patients with unresectable, advanced MM. PMID:28454272
Dinitrophenyl hapten with laser immunotherapy for advanced malignant melanoma: A clinical study.
Chen, Dian-Jun; Li, Xiao-Song; Zhao, Hui; Fu, Yan; Kang, Huan-Rong; Yao, Fang-Fang; Hu, Jia; Qi, Nan; Zhang, Huan-Huan; Du, Nan; Chen, Wei-R
2017-03-01
The present study aimed to evaluate the efficacy and safety of in situ immunotherapy with dinitrophenyl (DNP) hapten in combination with laser therapy for patients with malignant melanoma (MM). Between February 2008 and March 2012, 72 patients with stage III or IV MM were enrolled. Patients received in situ DNP alone (n=32) or in combination with laser therapy (n=32), and each group received dacarbazine chemotherapy. The levels of peripheral cluster of differentiation (CD)4 + CD25 + regulatory T cells (Tregs), interleukin (IL)-10 and tumor growth factor (TGF)-β were detected by ELISA. The association between delayed-type hypersensitivity (DTH) and survival time was evaluated. Although peripheral Treg levels significantly decreased over time in the two groups (P<0.001), there was no significant difference between the treatment groups (P=0.098). Patients receiving the combination treatment exhibited significantly higher interferon-γ production by CD8 + and CD4 + T cells (both P<0.001), as well as significantly reduced levels of IL-10, TGF-β1 and TGF-β2. In addition, patients in the combination treatment group experienced significantly longer overall survival (OS; P=0.024) and disease-free survival (DFS; P=0.007) times; a DTH response of ≥15 mm was also associated with increased OS time and DFS time (P≤0.001). Finally, no severe adverse events were observed in either treatment group. Overall, in situ immunization with DNP in combination with laser immunotherapy may activate focal T cells, producing a regional antitumor immune response that increases cell-mediated immunity and improves survival in MM patients. Thus, this may represent a novel therapeutic strategy for patients with unresectable, advanced MM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Cheng, Liang; Chuah, Mooi Choo
In the generation, transmission, and distribution sectors of the smart grid, intelligence of field devices is realized by programmable logic controllers (PLCs). Many smart-grid subsystems are essentially cyber-physical energy systems (CPES): For instance, the power system process (i.e., the physical part) within a substation is monitored and controlled by a SCADA network with hosts running miscellaneous applications (i.e., the cyber part). To study the interactions between the cyber and physical components of a CPES, several co-simulation platforms have been proposed. However, the network simulators/emulators of these platforms do not include a detailed traffic model that takes into account the impactsmore » of the execution model of PLCs on traffic characteristics. As a result, network traces generated by co-simulation only reveal the impacts of the physical process on the contents of the traffic generated by SCADA hosts, whereas the distinction between PLCs and computing nodes (e.g., a hardened computer running a process visualization application) has been overlooked. To generate realistic network traces using co-simulation for the design and evaluation of applications relying on accurate traffic profiles, it is necessary to establish a traffic model for PLCs. In this work, we propose a parameterized model for PLCs that can be incorporated into existing co-simulation platforms. We focus on the DNP3 subsystem of slave PLCs, which automates the processing of packets from the DNP3 master. To validate our approach, we extract model parameters from both the configuration and network traces of real PLCs. Simulated network traces are generated and compared against those from PLCs. Our evaluation shows that our proposed model captures the essential traffic characteristics of DNP3 slave PLCs, which can be used to extend existing co-simulation platforms and gain further insights into the behaviors of CPES.« less
Nie, Fachuan; Su, Dong; Shi, Ying; Chen, Jinmei; Wang, Haihui; Qin, Wanxiang; Chen, Yaohua; Wang, Suxia; Li, Lei
2015-03-01
The aim of this study was to investigate the role of the complement regulatory protein cluster of differentiation 55 (CD55) in the pathogenesis of diabetic neuropathic pain (DNP). Healthy adult male C57BL/6J mice were intraperitoneally injected with streptozotocin (STZ) in order to induce DNP. Peripheral blood glucose and protein, and the mRNA expression levels of C3 and CD55 in the spinal cord were determined. In addition, the behaviors of these mice were observed. The results showed that STZ‑treated mice displayed the clinical manifestations of diabetes mellitus, and that their peripheral blood glucose was markedly increased. On the 21st and 28th days following the STZ injection, the mechanical pain threshold and thermal pain threshold of the mice were dramatically reduced (P<0.05). |Additionally, 14 days post‑STZ injection, the mRNA expression of C3 in the spinal cord was significantly increased, which continued for 28 days. On the 21st and 28th days, the number of C3 positive cells in the spinal cord was markedly increased. Seven days after the STZ injection, the number of cells positive for CD55 was markedly reduced in the spinal dorsal horn and subsequently remained at a low level. The mRNA expression of CD55 also was significantly reduced (P<0.05) and remained so for 28 days. The reduction in the expression levels of CD55 occurred earlier than the changes in the expression of C3, suggesting that the downregulation of CD55 expression precedes, and has an important role regarding, the activation of C3 in the occurrence and development of DNP.
Doctor of Professional Counseling: The Next Step
ERIC Educational Resources Information Center
Southern, Stephen; Cade, Rochelle; Locke, Don W.
2012-01-01
Professional doctorates have been established in the allied health professions by clinicians seeking the highest levels of independent practice. Allied health professional doctorates include nursing practice (DNP), occupational therapy (OTD), psychology (PsyD), social work (DSW), and marriage and family therapy (DMFT). Lessons learned from the…
Colombia’s Resurrection: Alternative Development is the Key to Democratic Security
2004-09-01
regional economic strength. This implies 73 Sesin. 74 Departamento Nacional de Planeación (DNP), Bases del Plan Nacional de Desarrollo “Hacia un...Estado Comunitario .” Page 54 (Web version). 38 that the government is willing to adopt more flexible
Ahluwalia, Arti; De Rossi, Danilo; Giusto, Giuseppe; Chen, Oren; Papper, Vladislav; Likhtenshtein, Gertz I
2002-06-15
A fluorescent-photochrome method of quantifying the orientation and surface density of solid phase antibodies is described. The method is based on measurements of quenching and rates of cis-trans photoisomerization and photodestruction of a stilbene-labeled hapten by a quencher in solution. These experimental parameters enable a quantitative description of the order of binding sites of antibodies immobilized on a surface and can be used to characterize the microviscosity and steric hindrance in the vicinity of the binding site. Furthermore, a theoretical method for the determination of the depth of immersion of the fluorescent label in a two-phase system was developed. The model exploits the concept of dynamic interactions and is based on the empirical dependence of parameters of static exchange interactions on distances between exchangeable centers. In the present work, anti-dinitrophenyl (DNP) antibodies and stilbene-labeled DNP were used to investigate three different protein immobilization methods: physical adsorption, covalent binding, and the Langmuir-Blodgett technique. Copyright 2002 Elsevier Science (USA).
Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.; ...
2017-01-23
The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Padmos, J. Daniel; Johnson, Robert L.
The characterization of nanometer-scale interactions between carbon-containing substrates and alumina surfaces is of paramount importance to industrial and academic catalysis applications, but it is also very challenging. Here, we demonstrate that dynamic nuclear polarization surface-enhanced NMR spectroscopy (DNP SENS) allows the unambiguous description of the coordination geometries and conformations of the substrates at the alumina surface through high-resolution measurements of 13C– 27Al distances. We apply this new technique to elucidate the molecular-level geometry of 13C-enriched methionine and natural abundance poly(vinyl alcohol) adsorbed on γ-Al 2O 3-supported Pd catalysts, and we support these results with element-specific X-ray absorption near-edge measurements. Furthermore,more » this work clearly demonstrates a surprising bimodal coordination of methionine at the Pd–Al 2O 3 interface.« less
Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization
Barnes, Alexander B.; Mak-Jurkauskas, Melody L.; Matsuki, Yoh; Bajaj, Vikram S.; van der Wel, Patrick C. A.; DeRocher, Ronald; Bryant, Jeffrey; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Lugtenburg, Johan; Herzfeld, Judith; Griffin, Robert G.
2009-01-01
We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here — which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole — circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths. PMID:19356957
Phospholipid arrays on porous polymer coatings generated by micro-contact spotting
de Freitas, Monica; Tröster, Lea-Marie; Jochum, Tobias; Levkin, Pavel A; Hirtz, Michael; Fuchs, Harald
2017-01-01
Nanoporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) is used as a 3D mesh for spotting lipid arrays. Its porous structure is an ideal matrix for lipid ink to infiltrate, resulting in higher fluorescent signal intensity as compared to similar arrays on strictly 2D substrates like glass. The embedded lipid arrays show high stability against washing steps, while still being accessible for protein and antibody binding. To characterize binding to polymer-embedded lipids we have applied Streptavidin as well as biologically important biotinylated androgen receptor binding onto 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) and anti-DNP IgE recognition of 2,4-dinitrophenyl[1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP)] antigen. This approach adds lipid arrays to the range of HEMA polymer applications and makes this solid substrate a very attractive platform for a variety of bio-applications. PMID:28487815
Jaudzems, Kristaps; Bertarello, Andrea; Chaudhari, Sachin R; Pica, Andrea; Cala-De Paepe, Diane; Barbet-Massin, Emeline; Pell, Andrew J; Akopjana, Inara; Kotelovica, Svetlana; Gajan, David; Ouari, Olivier; Tars, Kaspars; Pintacuda, Guido; Lesage, Anne
2018-06-18
Dynamic nuclear polarization (DNP) is a powerful way to overcome the sensitivity limitation of magic-angle-spinning (MAS) NMR experiments. However, the resolution of the DNP NMR spectra of proteins is compromised by severe line broadening associated with the necessity to perform experiments at cryogenic temperatures and in the presence of paramagnetic radicals. High-quality DNP-enhanced NMR spectra of the Acinetobacter phage 205 (AP205) nucleocapsid can be obtained by combining high magnetic field (800 MHz) and fast MAS (40 kHz). These conditions yield enhanced resolution and long coherence lifetimes allowing the acquisition of resolved 2D correlation spectra and of previously unfeasible scalar-based experiments. This enables the assignment of aromatic resonances of the AP205 coat protein and its packaged RNA, as well as the detection of long-range contacts, which are not observed at room temperature, opening new possibilities for structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Redox Molecular Imaging Using ReMI].
Hyodo, Fuminori; Ito, Shinji; Utsumi, Hideo
2015-01-01
Tissue redox status is one of the most important parameters to maintain homeostasis in the living body. Numerous redox reactions are involved in metabolic processes, such as energy production in the mitochondrial electron transfer system. A variety of intracellular molecules such as reactive oxygen species, glutathione, thioredoxins, NADPH, flavins, and ascorbic acid may contribute to the overall redox status in tissues. Breakdown of redox balance may lead to oxidative stress and can induce many pathological conditions such as cancer, neurological disorders, and aging. Therefore imaging of tissue redox status and monitoring antioxidant levels in living organisms can be useful in the diagnosis of disease states and assessment of treatment response. In vivo redox molecular imaging technology such as electron spin resonance imaging (ESRI), magnetic resonance imaging (MRI), and dynamic nuclear polarization (DNP)-MRI (redox molecular imaging; ReMI) is emerging as a viable redox status imaging modality. This review focuses on the application of magnetic resonance technologies using MRI or DNP-MRI and redox-sensitive contrast agents.
Polarized proton spin density images the tyrosyl radical locations in bovine liver catalase.
Zimmer, Oliver; Jouve, Hélène M; Stuhrmann, Heinrich B
2016-09-01
A tyrosyl radical, as part of the amino acid chain of bovine liver catalase, supports dynamic proton spin polarization (DNP). Finding the position of the tyrosyl radical within the macromolecule relies on the accumulation of proton polarization close to it, which is readily observed by polarized neutron scattering. The nuclear scattering amplitude due to the polarization of protons less than 10 Å distant from the tyrosyl radical is ten times larger than the amplitude of magnetic neutron scattering from an unpaired polarized electron of the same radical. The direction of DNP was inverted every 5 s, and the initial evolution of the intensity of polarized neutron scattering after each inversion was used to identify those tyrosines which have assumed a radical state. Three radical sites, all of them close to the molecular centre and the haem, appear to be equally possible. Among these is tyr-369, the radical state of which had previously been proven by electron paramagnetic resonance.
Toxicokinetic Model Development for the Insensitive Munitions Component 2,4-Dinitroanisole.
Sweeney, Lisa M; Goodwin, Michelle R; Hulgan, Angela D; Gut, Chester P; Bannon, Desmond I
2015-01-01
The Armed Forces are developing new explosives that are less susceptible to unintentional detonation (insensitive munitions [IMX]). 2,4-Dinitroanisole (DNAN) is a component of IMX. Toxicokinetic data for DNAN are required to support interpretation of toxicology studies and refinement of dose estimates for human risk assessment. Male Sprague-Dawley rats were dosed by gavage (5, 20, or 80 mg DNAN/kg), and blood and tissue samples were analyzed to determine the levels of DNAN and its metabolite 2,4-dinitrophenol (DNP). These data and data from the literature were used to develop preliminary physiologically based pharmacokinetic (PBPK) models. The model simulations indicated saturable metabolism of DNAN in rats at higher tested doses. The PBPK model was extrapolated to estimate the toxicokinetics of DNAN and DNP in humans, allowing the estimation of human-equivalent no-effect levels of DNAN exposure from no-observed adverse effect levels determined in laboratory animals, which may guide the selection of exposure limits for DNAN. © The Author(s) 2015.
1992-04-15
World Military and Social Expenditures. 1991. 4. Republica de Colombia, Departamento Nacional de Planeacion , Documento DNP-2570-UIP-MinHacienda...Center, The Planning. Programmina and Budgeting System (PPBS), Technical Report, 1991. Departamento Nacional de Planeacion de Colombia, Plan ouinuenal
42 CFR 410.76 - Clinical nurse specialists' services.
Code of Federal Regulations, 2014 CFR
2014-10-01
... master's degree in a defined clinical area of nursing from an accredited educational institution or a Doctor of Nursing Practice (DNP) doctoral degree; and (3) Be certified as a clinical nurse specialist by....26 are met. (e) Professional services. Clinical nurse specialists can be paid for professional...
McMichael, A. J.; Williamson, A. R.
1974-01-01
A single clone of B cells producing anti-DNP antibody recognizable by the isoelectric-focusing spectrum has been used, in a double transfer system, to study clonal memory. Trasnsferable B memory develops between 4 and 7 days after the first transfer with antigen. B-memory cells thus proliferate before or concomitantly with antibody-forming cells. PMID:4545165
Simulation and Advanced Practice Nursing Education
ERIC Educational Resources Information Center
Blue, Dawn I.
2016-01-01
This quantitative study compared changes in level of confidence resulting from participation in simulation or traditional instructional methods for BSN (Bachelor of Science in Nursing) to DNP (Doctor of Nursing Practice) students in a nurse practitioner course when they entered the clinical practicum. Simulation has been used in many disciplines…
75 FR 63856 - Public Land Order No. 7753; Extension of Public Land Order No. 7464; Montana
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLMTL06000-L14300000.ET0000; MTM 89170] Public Land Order No. 7753; Extension of Public Land Order No. 7464; Montana AGENCY: Bureau of Land...:45 am] BILLING CODE 4310-DN-P ...
USDA-ARS?s Scientific Manuscript database
Bath immersion remains a practical route for immunizing against disease in channel catfish; however research efforts in this area have revealed variable results when activating mucosal Ab responses with different antigens. This is likely due to a number of factors including the individual species, ...
Chen, Lin; Tan, Glenna Jue Tong; Pang, Xinyi; Yuan, Wenqian; Lai, Shaojuan; Yang, Hongshun
2018-06-25
The role of energy status in germination and sprouting of broccoli seeds was investigated by exogenous ATP and DNP treatments. With the synthesis of adenylates from 38.82 to 142.69 mg·100 g -1 DW, the nutritive components (soluble sugar, proteins, pigments, and phenolics) and AAs were increased during germination and early sprouting (day 5). Elements of the BoSnRK2 pathway were down-regulated by more than 2 fold under the energy charge feedback inhibition. At the end of sprouting (day 7), energy depletion resulted in slowdown or reduced nutritional accumulation and antioxidant capacities. Exogenous ATP depressed the BoSnRK2 pathway by maintaining the energy status at high levels and further promoted the nutrition and antioxidant levels. It also prevented the energy depletion at day 7. On the contrary, DNP reduced the ATP contents (16.10-26.86%) and activated the BoSnRK2 pathway. It also notably suppressed the energy-consuming activities including germination, sprouts growth, and secondary metabolic synthesis.
Ge, Jian; Dong, Haobin; Liu, Huan; Yuan, Zhiwen; Dong, He; Zhao, Zhizhuo; Liu, Yonghua; Zhu, Jun; Zhang, Haiyang
2016-01-01
Based on the dynamic nuclear polarization (DNP) effect, an alternative design of an Overhauser geomagnetic sensor is presented that enhances the proton polarization and increases the amplitude of the free induction decay (FID) signal. The short-pulse method is adopted to rotate the enhanced proton magnetization into the plane of precession to create an FID signal. To reduce the negative effect of the powerful electromagnetic interference, the design of the anti-interference of the pick-up coil is studied. Furthermore, the radio frequency polarization method based on the capacitive-loaded coaxial cavity is proposed to improve the quality factor of the resonant circuit. In addition, a special test instrument is designed that enables the simultaneous testing of the classical proton precession and the Overhauser sensor. Overall, comparison experiments with and without the free radical of the Overhauser sensors show that the DNP effect does effectively improve the amplitude and quality of the FID signal, and the magnetic sensitivity, resolution and range reach to 10 pT/Hz1/2@1 Hz, 0.0023 nT and 20–100 μT, respectively. PMID:27258283
Huang, Lei; Li, Lingqian; Lemos, Henrique; Chandler, Phillip R.; Pacholczyk, Gabriela; Baban, Babak; Barber, Glen N.; Hayakawa, Yoshihiro; McGaha, Tracy L.; Ravishankar, Buvana; Munn, David H.; Mellor, Andrew L.
2013-01-01
Cytosolic DNA sensing via the STING adaptor incites autoimmunity by inducing type I IFN (IFNαβ). Here we show that DNA is also sensed via STING to suppress immunity by inducing indoleamine 2,3 dioxygenase (IDO). STING gene ablation abolished IFNαβ and IDO induction by dendritic cells (DCs) after DNA nanoparticle (DNP) treatment. Marginal zone macrophages, some DCs and myeloid cells ingested DNPs but CD11b+ DCs were the only cells to express IFNβ, while CD11b+ non-DCs were major IL-1β producers. STING ablation also abolished DNP-induced regulatory responses by DCs and regulatory T cells (Tregs), and hallmark regulatory responses to apoptotic cells were also abrogated. Moreover, systemic cyclic diguanylate monophosphate (c-diGMP) treatment to activate STING induced selective IFNβ expression by CD11b+ DCs and suppressed Th1 responses to immunization. Thus, previously unrecognized functional diversity amongst physiologic innate immune cells regarding DNA sensing via STING is pivotal in driving immune responses to DNA. PMID:23986532
Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2012-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592
Khan, Reas S.; Geisler, John G.
2017-01-01
The ability of novel mitochondrial uncoupler prodrug of 2,4-dinitrophenol (DNP), MP201, to prevent neuronal damage and preserve visual function in an experimental autoimmune encephalomyelitis (EAE) model of optic neuritis was evaluated. Optic nerve inflammation, demyelination, and axonal loss are prominent features of optic neuritis, an inflammatory optic neuropathy often associated with the central nervous system demyelinating disease multiple sclerosis. Currently, optic neuritis is frequently treated with high-dose corticosteroids, but treatment fails to prevent permanent neuronal damage and associated vision changes that occur as optic neuritis resolves, thus suggesting that additional therapies are required. MP201 administered orally, once per day, attenuated visual dysfunction, preserved retinal ganglion cells (RGCs), and reduced RGC axonal loss and demyelination in the optic nerves of EAE mice, with limited effects on inflammation. The prominent mild mitochondrial uncoupling properties of MP201, with slow elimination of DNP, may contribute to the neuroprotective effect by modulating the entire mitochondria's physiology directly. Results suggest that MP201 is a potential novel treatment for optic neuritis. PMID:28680531
Comparison of Upward and Downward Translocation of 14C From a Single Leaf of Sunflower
Shiroya, Michi
1968-01-01
When single leaves attached at a given node were allowed to carry on photosynthesis in 14CO2 for 30 min, younger plants showed a higher proportion of upward translocation than did older plants. Downward translocation of 14C-photosynthate was stimulated by ATP pre-treatment of the translocating leaf, while upward translocation was not affected by ATP. A similar phenomenon was observed in the translocation of 14C-sucrose infiltrated into a leaf with or without ATP. Downward translocation of photosynthate was inhibited by DNP pre-treatment of a fed leaf. Upward translocation, however, was not affected by DNP. Thirty min after infiltration of 14C-glucose into a leaf, almost all the 14C translocated upwards was found to be in the form of glucose, while a great part of the 14C translocated downwards was in the form of sucrose. In the case of translocation of infiltrated 14C-sucrose, 14C found both above and below the fed leaf was mainly in the form of sucrose. PMID:16656944
Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert
2013-01-01
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.
Hosokawa, T; Tanaka, Y; Aoike, A; Kawai, K; Muramatsu, S
1984-09-01
The time course of B-cell memory development to a dinitrophenyl (DNP) T-independent type-2 (TI-2) antigen was investigated by adoptive cell transfer. Strong IgM and IgG memory developed in BALB/c mice after immunization with DNP-dextran, to be recalled by challenge with either T-dependent (TD) antigen or TI-2 antigen. However, only weak IgM memory and very feeble IgG memory were detected in athymic nude mice receiving the same immunization as euthymic mice. Once memory was established under probable T cell influence, its recall by TI-2 antigen challenge seemed independent of T cell help and did not require sharing of carriers between priming and challenge antigens. The following may be concluded. (i) Long-term IgM and IgG memory is induced by TI-2 antigen priming in the presence of functional T cells. (ii) The class switch from IgM to IgG in the memory B cell pool is driven effectively by TI-2 antigen and is probably T cell-dependent.
Mechanisms of reflex bladder activation by pudendal afferents
Woock, John P.; Yoo, Paul B.
2011-01-01
Activation of pudendal afferents can evoke bladder contraction or relaxation dependent on the frequency of stimulation, but the mechanisms of reflex bladder excitation evoked by pudendal afferent stimulation are unknown. The objective of this study was to determine the contributions of sympathetic and parasympathetic mechanisms to bladder contractions evoked by stimulation of the dorsal nerve of the penis (DNP) in α-chloralose anesthetized adult male cats. Bladder contractions were evoked by DNP stimulation only above a bladder volume threshold equal to 73 ± 12% of the distension-evoked reflex contraction volume threshold. Bilateral hypogastric nerve transection (to eliminate sympathetic innervation of the bladder) or administration of propranolol (a β-adrenergic antagonist) decreased the stimulation-evoked and distension-evoked volume thresholds by −25% to −39%. Neither hypogastric nerve transection nor propranolol affected contraction magnitude, and robust bladder contractions were still evoked by stimulation at volume thresholds below the distension-evoked volume threshold. As well, inhibition of distention-evoked reflex bladder contractions by 10 Hz stimulation of the DNP was preserved following bilateral hypogastric nerve transection. Administration of phentolamine (an α-adrenergic antagonist) increased stimulation-evoked and distension-evoked volume thresholds by 18%, but again, robust contractions were still evoked by stimulation at volumes below the distension-evoked threshold. These results indicate that sympathetic mechanisms contribute to establishing the volume dependence of reflex contractions but are not critical to the excitatory pudendal to bladder reflex. A strong correlation between the magnitude of stimulation-evoked bladder contractions and bladder volume supports that convergence of pelvic afferents and pudendal afferents is responsible for bladder excitation evoked by pudendal afferents. Further, abolition of stimulation-evoked bladder contractions following administration of hexamethonium bromide confirmed that contractions were generated by pelvic efferent activation via the pelvic ganglion. These findings indicate that pudendal afferent stimulation evokes bladder contractions through convergence with pelvic afferents to increase pelvic efferent activity. PMID:21068196
Haouzi, Philippe; Van de Louw, Andry
2015-08-15
Our study intended to determine the effects on oxygen uptake (VO2) of restoring a normal rate of O2 delivery following blood transfusion (BT) after a severe hemorrhage (H). Spontaneously breathing urethane anesthetized rats were bled by removing 20 ml/kg of blood over 30 min. Rats were then infused with their own shed blood 15 min after the end of H. At mid-perfusion, half of the rats received a unique infusion of the decoupling agent 2,4-dinitrophenol (DNP, 6 mg/kg). VO2 and arterial blood pressure (ABP) were continuously measured throughout the study, along with serial determination of blood lactate concentration [La]. Animals were euthanized 45 min after the end of reperfusion; liver and lungs were further analyzed for early expression of oxidative stress gene using RT-PCR. Our bleeding protocol induced a significant decrease in ABP and increase in [La], while VO2 dropped by half. The O2 deficit progressively accumulated during the period of bleeding reached -114 ± 53 ml/kg, just before blood transfusion. Despite the transfusion of blood, a significant O2 deficit persisted (-82 ± 59 ml/kg) 45 min after reperfusion. This slow recovery of VO2 was sped up by DNP injection, leading to a fast recovery of O2 deficit after reperfusion, becoming positive (+460 ± 132 ml/kg) by the end of the protocol, supporting the view that O2 supply is not the main controller of VO2 dynamics after BT. Of note is that DNP also enhanced oxidative stress gene expression (up-regulation of NADPH oxidase 4 in the lung for instance). The mechanism of slow recovery of O2 requirement/demand following BT and the resulting effects on tissues exposed to relatively high O2 partial pressure are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...
2018-02-15
Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less
Hall, E. T.; Sá, R. C.; Holverda, S.; Arai, T. J.; Dubowitz, D. J.; Theilmann, R. J.; Prisk, G. K.
2013-01-01
The Zone model of pulmonary perfusion predicts that exercise reduces perfusion heterogeneity because increased vascular pressure redistributes flow to gravitationally nondependent lung, and causes dilation and recruitment of blood vessels. However, during exercise in animals, perfusion heterogeneity as measured by the relative dispersion (RD, SD/mean) is not significantly decreased. We evaluated the effect of exercise on pulmonary perfusion in six healthy supine humans using magnetic resonance imaging (MRI). Data were acquired at rest, while exercising (∼27% of maximal oxygen consumption) using a MRI-compatible ergometer, and in recovery. Images were acquired in most of the right lung in the sagittal plane at functional residual capacity, using a 1.5-T MR scanner equipped with a torso coil. Perfusion was measured using arterial spin labeling (ASL-FAIRER) and regional proton density using a fast multiecho gradient-echo sequence. Perfusion images were corrected for coil-based signal heterogeneity, large conduit vessels removed and quantified (in ml·min−1·ml−1) (perfusion), and also normalized for density and quantified (in ml·min−1·g−1) (density-normalized perfusion, DNP) accounting for tissue redistribution. DNP increased during exercise (11.1 ± 3.5 rest, 18.8 ± 2.3 exercise, 13.2 ± 2.2 recovery, ml·min−1·g−1, P < 0.0001), and the increase was largest in nondependent lung (110 ± 61% increase in nondependent, 63 ± 35% in mid, 70 ± 33% in dependent, P < 0.005). The RD of perfusion decreased with exercise (0.93 ± 0.21 rest, 0.73 ± 0.13 exercise, 0.94 ± 0.18 recovery, P < 0.005). The RD of DNP showed a similar trend (0.82 ± 0.14 rest, 0.75 ± 0.09 exercise, 0.81 ± 0.10 recovery, P = 0.13). In conclusion, in contrast to animal studies, in supine humans, mild exercise decreased perfusion heterogeneity, consistent with Zone model predictions. PMID:24356515
Reid Ponte, Patricia; Nicholas, Patrice K
2015-07-01
This article examines the evolution of Doctor of Nursing Science (DNS or DNSc) and Doctor of Science in Nursing (DSN) degrees, including their emergence as research-intensive doctoral degrees in the 1960s, efforts to distinguish the degrees from the Doctor of Philosophy (PhD) and Doctor of Nursing Practice (DNP) degrees, the recent decline in program numbers, and implications for degree holders. The article reviews the U.S. history of doctoral education in nursing, research examining similarities and differences between the PhD and DNS, DNSc, or DSN degrees, and how the DNS, DNSc, or DSN degree differs from DNP programs. The article also examines the confusion regarding the focus of the DNS, DNSc, or DSN degree among nurses, patients, and potential funders; and describes actions taken by universities to address the confusion, with examples provided by academic deans, nurse leaders, and nurse researchers. Longstanding confusion about the research merits of the DNS, DNSc, or DSN degree, and the growing prominence of the similarly-titled DNP degree, has created confusion about the focus of DNS, DNSc, or DSN programs and the capabilities of degree holders. Many universities have addressed this confusion by converting their DNS, DNSc, and DSN programs to a PhD or retroactively converting degrees to a PhD. Other universities have chosen not to pursue this route. The DNS, DNSc, or DSN experience highlights the importance of clarifying and standardizing the purpose and goals of nursing education programs and the repercussions for degree holders when such clarity is lacking. The international academic nursing communities have consistently pursued one doctoral-level nursing degree and therefore have not shared this challenging landscape in nursing education. Findings and recommendations presented in this article have implications for schools of nursing and professional groups that oversee the development of educational programs and pathways for nurses. © 2015 Sigma Theta Tau International.
Jia, Tianyu; Rao, Jingan; Zou, Lifang; Zhao, Shanhong; Yi, Zhihua; Wu, Bing; Li, Lin; Yuan, Huilong; Shi, Liran; Zhang, Chunping; Gao, Yun; Liu, Shuangmei; Xu, Hong; Liu, Hui; Liang, Shangdong; Li, Guilin
2018-01-01
Diabetic peripheral neuropathy results in diabetic neuropathic pain (DNP). Satellite glial cells (SGCs) enwrap the neuronal soma in the dorsal root ganglia (DRG). The purinergic 2 (P2) Y12 receptor is expressed on SGCs in the DRG. SGC activation plays an important role in the pathogenesis of DNP. Curcumin has anti-inflammatory and antioxidant properties. Because curcumin has poor metabolic stability in vivo and low bioavailability, nanoparticle-encapsulated curcumin was used to improve its targeting and bioavailability. In the present study, our aim was to investigate the effects of nanoparticle-encapsulated curcumin on DNP mediated by the P2Y12 receptor on SGCs in the rat DRG. Diabetic peripheral neuropathy increased the expression levels of the P2Y12 receptor on SGCs in the DRG and enhanced mechanical and thermal hyperalgesia in rats with diabetes mellitus (DM). Up-regulation of the P2Y12 receptor in SGCs in the DRG increased the production of pro-inflammatory cytokines. Up-regulation of interleukin-1β (IL-1β) and connexin43 (Cx43) resulted in mechanical and thermal hyperalgesia in rats with DM. The nanoparticle-encapsulated curcumin decreased up-regulated IL-1β and Cx43 expression and reduced levels of phosphorylated-Akt (p-Akt) in the DRG of rats with DM. The up-regulation of P2Y12 on SGCs and the up-regulation of the IL-1β and Cx43 in the DRG indicated the activation of SGCs in the DRG. The nano-curcumin treatment inhibited the activation of SGCs accompanied by its anti-inflammatory effect to decrease the up-regulated CGRP expression in the DRG neurons. Therefore, the nanoparticle-encapsulated curcumin treatment decreased the up-regulation of the P2Y12 receptor on SGCs in the DRG and decreased mechanical and thermal hyperalgesia in rats with DM. PMID:29422835
Frasch, Alejandra P.; Carmona, Adriana K.; Juliano, Luiz; Cazzulo, Juan J.; Niemirowicz, Gabriela T.
2012-01-01
Metallocarboxypeptidases (MCP) of the M32 family of peptidases have been identified in a number of prokaryotic organisms but they are absent from eukaryotic genomes with the remarkable exception of those of trypanosomatids. The genome of Trypanosoma brucei, the causative agent of Sleeping Sickness, encodes one such MCP which displays 72% identity to the characterized TcMCP-1 from Trypanosoma cruzi. As its orthologue, TcMCP-1, Trypanosoma brucei MCP is a cytosolic enzyme expressed in both major stages of the parasite. Purified recombinant TbMCP-1 exhibits a significant hydrolytic activity against the carboxypeptidase B substrate FA (furylacryloil)-Ala-Lys at pH 7.0–7.8 resembling the T. cruzi enzyme. S everal divalent cations had little effect on TbMCP-1 activity but increasing amounts of Co2+ inhibited the enzyme. Despite having similar tertiary structure, both protozoan MCPs display different substrate specificity with respect to P1 position. Thus, TcMCP-1 enzyme cleaved Abz-FVK-(Dnp)-OH substrate (where Abz: o-aminobenzoic acid and Dnp: 2,4-dinitrophenyl) whereas TbMCP-1 had no activity on this substrate. Comparative homology models and sequence alignments using TcMCP-1 as a template led us to map several residues that could explain this difference. To verify this hypothesis, site-directed mutagenesis was undertaken replacing the TbMCP-1 residues by those present in TcMCP-1. We found that the substitution A414M led TbMCP-1 to gain activity on Abz-FVK-(Dnp)-OH, thus showing that this residue is involved in specificity determination, probably being part of the S1 sub-site. Moreover, the activity of both protozoan MCPs was explored on two vasoactive compounds such as bradykinin and angiotensin I resulting in two different hydrolysis patterns. PMID:22575602
Johnson, Monica; Alsaleh, Nasser; Mendoza, Ryan P; Persaud, Indushekhar; Bauer, Alison K; Saba, Laura; Brown, Jared M
2018-01-01
Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.
Adaptation to a Curriculum Delivered via iPad: The Challenge of Being Early Adopters
ERIC Educational Resources Information Center
Stec, Melissa; Bauer, Melanie; Hopgood, Daniel; Beery, Theresa
2018-01-01
This convergent mixed methods study was designed to examine the skills and attitudes toward using an iPad to deliver nursing curriculum and enhance active learning strategies for sophomore Bachelor of Science in Nursing (BSN) and Doctor of Nursing Practice (DNP) students at a Midwestern university. Quantitative data were collected using an…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLMTB072000-L14300000-ET0000; MTM 98499] Public Land Order No. 7803; Withdrawal of Public Lands for the Limestone Hills Training Area; MT AGENCY... Filed 10-2-12; 8:45 am] BILLING CODE 1430-DN-P ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
...; MTM-99236] Notice of Public Meeting; Proposed Alluvial Valley Floor Coal Exchange Public Interest... (SMCRA) of 1977. This exchange (serial number MTM-99236) has been proposed by Jay Nance, Brett A... Director. [FR Doc. 2010-25060 Filed 10-6-10; 8:45 am] BILLING CODE 4310-DN-P ...
Physical Mechanism of the Lower-Hybrid-Drift Instability in a Collisional Plasma.
1981-01-30
8217 70Q SaCE .A-.D A> AT TN R~~ . WIL.IAMRS 01CI " CUT% 755O -řA ol2’ 4’TN E_."D-NP F. WIMItNITZ 01:y A’ ’N. LOGE 02CY ATTN D’E_,D).p C. MOAZED 0:2’ All% c
77 FR 46111 - Public Land Order No. 7792; Partial Revocation, Power Site Reserve No. 109; Montana
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... DEPARTMENT OF THE INTERIOR Bureau of land management [MT-LLB05000-LL14300000-FQ0000; MTM 40412] Public Land Order No. 7792; Partial Revocation, Power Site Reserve No. 109; Montana AGENCY: Bureau of...--Policy, Management and Budget. [FR Doc. 2012-18888 Filed 8-1-12; 8:45 am] BILLING CODE 4310-DN-P ...
Effect of aminophylline on hindlimb blood flow autoregulation during increased metabolism in dogs.
Metting, P J; Weldy, D L; Ronau, T F; Britton, S L
1986-06-01
The contribution of adenosine to hindlimb blood flow autoregulation during treadmill exercise or the administration of 2,4-dinitrophenol (DNP) was evaluated in 9 conscious dogs by determining hindlimb vascular bed pressure-flow relationships in the presence and absence of the adenosine receptor site antagonist, aminophylline. Hindlimb pressure-flow relationships were obtained by measuring blood flow during stepwise reductions in perfusion pressure produced with an occlusion cuff located distal to a flow probe on the external iliac artery. The efficiency of autoregulation was quantitated by calculating the closed-loop gain of flow regulation (Gc) at each pressure decrement utilizing the equation Gc = 1 - (% delta flow/% delta pressure). A Gc of one represents perfect autoregulation of flow, and a Gc of zero is indicative of a rigid system. During exercise, Gc averaged 0.44 +/- 0.07. Aminophylline reduced the Gc during exercise to -0.07 +/- 0.06 (P less than 0.05). During DNP administration, Gc averaged 0.54 +/- 0.09 and declined to -0.09 +/- 0.10 in the presence of aminophylline (P less than 0.05). These results support the hypothesis that adenosine is a primary mediator of hindlimb blood flow autoregulation during conditions that increase hindlimb metabolism.
NASA Astrophysics Data System (ADS)
Yuan, B.; Liggio, J.; Wentzell, J.; Li, S.-M.; Stark, H.; Roberts, J. M.; Gilman, J.; Lerner, B.; Warneke, C.; Li, R.; Leithead, A.; Osthoff, H. D.; Wild, R.; Brown, S. S.; de Gouw, J. A.
2015-10-01
We describe the results from online measurements of nitrated phenols using a time of flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP) and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding of the evolution of primary VOCs in the atmosphere.
NASA Astrophysics Data System (ADS)
Yuan, Bin; Liggio, John; Wentzell, Jeremy; Li, Shao-Meng; Stark, Harald; Roberts, James M.; Gilman, Jessica; Lerner, Brian; Warneke, Carsten; Li, Rui; Leithead, Amy; Osthoff, Hans D.; Wild, Robert; Brown, Steven S.; de Gouw, Joost A.
2016-02-01
We describe the results from online measurements of nitrated phenols using a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) with acetate as reagent ion in an oil and gas production region in January and February of 2014. Strong diurnal profiles were observed for nitrated phenols, with concentration maxima at night. Based on known markers (CH4, NOx, CO2), primary emissions of nitrated phenols were not important in this study. A box model was used to simulate secondary formation of phenol, nitrophenol (NP), and dinitrophenols (DNP). The box model results indicate that oxidation of aromatics in the gas phase can explain the observed concentrations of NP and DNP in this study. Photolysis was the most efficient loss pathway for NP in the gas phase. We show that aqueous-phase reactions and heterogeneous reactions were minor sources of nitrated phenols in our study. This study demonstrates that the emergence of new ToF-CIMS (including PTR-TOF) techniques allows for the measurement of intermediate oxygenates at low levels and these measurements improve our understanding on the evolution of primary VOCs in the atmosphere.
Feintuch, Akiva; Shimon, Daphna; Hovav, Yonatan; Banerjee, Debamalya; Kaminker, Ilia; Lipkin, Yaacov; Zibzener, Koby; Epel, Boris; Vega, Shimon; Goldfarb, Daniella
2011-04-01
A spectrometer specifically designed for systematic studies of the spin dynamics underlying Dynamic Nuclear Polarization (DNP) in solids at low temperatures is described. The spectrometer functions as a fully operational NMR spectrometer (144 MHz) and pulse EPR spectrometer (95 GHz) with a microwave (MW) power of up to 300 mW at the sample position, generating a MW B(1) field as high as 800 KHz. The combined NMR/EPR probe comprises of an open-structure horn-reflector configuration that functions as a low Q EPR cavity and an RF coil that can accommodate a 30-50 μl sample tube. The performance of the spectrometer is demonstrated through some basic pulsed EPR experiments, such as echo-detected EPR, saturation recovery and nutation measurements, that enable quantification of the actual intensity of MW irradiation at the position of the sample. In addition, DNP enhanced NMR signals of samples containing TEMPO and trityl are followed as a function of the MW frequency. Buildup curves of the nuclear polarization are recorded as a function of the microwave irradiation time period at different temperatures and for different MW powers. Copyright © 2011 Elsevier Inc. All rights reserved.
Li, Man; Shi, Kairong; Tang, Xian; Wei, Jiaojie; Cun, Xingli; Long, Yang; Zhang, Zhirong; He, Qin
2018-05-22
Cancer associated fibroblasts (CAFs) which shape the tumor microenvironment (TME) and the presence of blood brain barrier (BBB) remain great challenges in targeting breast cancer and its brain metastasis. Herein, we reported a strategy using PTX-loaded liposome co-modified with acid-cleavable folic acid (FA) and BBB transmigrating cell penetrating peptide dNP2 peptide (cFd-Lip/PTX) for enhanced delivery to orthotopic breast cancer and its brain metastasis. Compared with single ligand or non-cleavable Fd modified liposomes, cFd-Lip exhibited synergistic TME targeting and BBB transmigration. Moreover, upon arrival at the TME, the acid-cleavable cFd-Lip/PTX showed sensitive cleavage of FA, which reduced the hindrance effect and maximized the function of both FA and dNP2 peptide. Consequently, efficient targeting of folate receptor (FR)-positive tumor cells and FR-negative CAFs was achieved, leading to enhanced anti-tumor activity. This strategy provides a feasible approach to the cascade targeting of TME and BBB transmigration in orthotopic and metastatic cancer treatment. Copyright © 2018. Published by Elsevier Inc.
A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen.
Jiang, Hui; Jiang, Donglei; Zhu, Pei; Pi, Fuwei; Ji, Jian; Sun, Chao; Sun, Jiadi; Sun, Xiulan
2016-09-15
In this study a novel cell-to-cell electrochemical microfluidic chip was developed for qualitative and quantitative analysis of food allergen. Microfluidic cell culture, food allergen-induced cell morphological changes, and cell metabolism measurements were performed simultaneously using the aforementioned device. RBL-2H3 mast cells and ANA-1 macrophages have been used within a cell co-culture model to observe their allergic response when they are introduced to the antigen stimulus. Two cell cultivation microfluidic channels are located in the microfluidic chip, which is fabricated with four groups of gold electrodes, with an additional "capillary". In order to detect the allergic response, the cells were stimulated with dinitrophenylated bovine serum albumin (DNP-BSA) without anti-DNP IgE incubation. When exocytosis occurs, the cell-secreted inflammatory cytokines were measured by enzyme-linked immuno sorbent assay (ELISA) and cell impedance changes were detected using cell-based electrochemical assay. Results indicate that the real-time cell allergic response are accurately monitored by this electrochemical microfluidic chip, which provides a general example of rapidly prototyped low-cost biosensor technology for applications in both food allergen detection and investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
Todorova, Tanya K; Rozanska, Xavier; Gervais, Christel; Legrand, Alexandre; Ho, Linh N; Berruyer, Pierrick; Lesage, Anne; Emsley, Lyndon; Farrusseng, David; Canivet, Jérôme; Mellot-Draznieks, Caroline
2016-11-07
We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15 N dynamic nuclear polarization surface enhanced solid-state NMR spectroscopy (DNP SENS) to understand graft-host interactions and effects imposed by the metal-organic framework (MOF) host on peptide conformations in a peptide-functionalized MOF. Focusing on two grafts typified by MIL-68-proline (-Pro) and MIL-68-glycine-proline (-Gly-Pro), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide-functionalized MOFs. The calculated chemical shifts of selected MIL-68-NH-Pro and MIL-68-NH-Gly-Pro conformations are in a good agreement with the experimentally obtained 15 N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host-guest interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yan, Qi-Long; Song, Zhen-Wei; Shi, Xiao-Bing; Yang, Zhi-Yuan; Zhang, Xiao-Hong
2009-03-01
In order to evaluate the actual pros and cons in the use of new nitroamines for solid rocket applications, the combustion properties of double-base propellants containing nitrogen heterocyclic nitroamines such as RDX, TNAD, HMX and DNP are investigated by means of high-speed photography technique, Non-contact wavelet-based measurement of flame temperature distribution. The chemical reactions in different combustion zone which control the burning characteristics of the double-base propellant containing nitrogen heterocyclic nitroamines were systematically investigated and descriptions of the detailed thermal decomposition mechanisms from solid phase to liquid phase or to gas phase are also included. It was indicated that the thermodynamic phase transition consisting of both evaporation and condensation of NC+NG, HMX, TNAD, RDX and DNP, are considered to provide a complete description of the mass transfer process in the combustion of these double-base propellants, and the combustion mechanisms of them are mainly involved with the oxidation mechanism of the NO 2, formaldehyde (CH 2O) and hydrogen cyanide (HCN). The entire oxidation reaction rate might be dependent on the pressure of the combustion chamber and temperature of the gas phase.
Presence of angiotensin converting enzyme isoforms in larval lepidoptera (Spodoptera littoralis).
Lemeire, E; Van Camp, J; Smagghe, G
2007-01-01
In this research the presence of angiotensin converting enzyme (ACE) in larvae of the lepidopteran Spodoptera littoralis was evaluated. Making use of the substrate Abz-FRK-(Dnp)P-OH and the specific inhibitor captopril at 10 microM, ACE activity was determined in a fluorescence assay for intact larvae, hemolymph, head, midgut and dorsal tissue. In dorsal tissue and hemolymph, ACE activity was highest. These data are consistent with a possible role for ACE in contractions of the dorsal vessel and metabolism of circulating peptide hormones in the hemolymph. After the presence of ACE was confirmed, a sequential procedure of anion exchange and size exclusion chromatography was applied to purify ACE from whole wandering larvae (last stage). With this procedure, three different ACE pools were collected that cleaved the fluorogenic substrate Abz-FRK-(Dnp)P-OH. Activity could be inhibited by a final concentration of 2.5 microM captopril. In addition, two out of three samples eluted at different salt concentration and thus ACE 1, 2 and 3 represent at least two different ACE isoforms. These data reveal that ACE is present in S. littoralis and that at least two out of three isolated ACE forms are truly isoforms.
Cuya, Teobaldo; Baptista, Leonardo; Celmar Costa França, Tanos
2017-11-23
Components of ginger (Zingiber officinale) extracts have been described as potential new drug candidates against Alzheimer disease (AD), able to interact with several molecular targets related to the AD treatment. However, there are very few theoretical studies in the literature on the possible mechanisms of action by which these compounds can work as potential anti-AD drugs. For this reason, we performed here docking, molecular dynamic simulations and mmpbsa calculations on four components of ginger extracts former reported as active inhibitors of human acetylcholinesterase (HssAChE), and compared our results to the known HssAChE inhibitor and commercial drug in use against AD, donepezil (DNP). Our findings points to two among the compounds studied: (E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hept-4-en-3-on and 1-(3,4-dihydroxy-5-methoxyphenyl)-7-(4-hydroxy-3- ethoxyphenyl) heptane-3,5-diyl diacetate, as promising new HssAChE inhibitors that could be as effective as DNP. We also mapped the binding of the studied compounds in the different binding pockets inside HssAChE and established the preferred interactions to be favored in the design of new and more efficient inhibitors.
Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research
Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; ...
2015-10-20
In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.
Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics.
Hu, Kan-Nian; Debelouchina, Galia T; Smith, Albert A; Griffin, Robert G
2011-03-28
Microwave driven dynamic nuclear polarization (DNP) is a process in which the large polarization present in an electron spin reservoir is transferred to nuclei, thereby enhancing NMR signal intensities. In solid dielectrics there are three mechanisms that mediate this transfer--the solid effect (SE), the cross effect (CE), and thermal mixing (TM). Historically these mechanisms have been discussed theoretically using thermodynamic parameters and average spin interactions. However, the SE and the CE can also be modeled quantum mechanically with a system consisting of a small number of spins and the results provide a foundation for the calculations involving TM. In the case of the SE, a single electron-nuclear spin pair is sufficient to explain the polarization mechanism, while the CE requires participation of two electrons and a nuclear spin, and can be used to understand the improved DNP enhancements observed using biradical polarizing agents. Calculations establish the relations among the electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) frequencies and the microwave irradiation frequency that must be satisfied for polarization transfer via the SE or the CE. In particular, if δ, Δ < ω(0I), where δ and Δ are the homogeneous linewidth and inhomogeneous breadth of the EPR spectrum, respectively, we verify that the SE occurs when ω(M) = ω(0S) ± ω(0I), where ω(M), ω(0S) and ω(0I) are, respectively, the microwave, and the EPR and NMR frequencies. Alternatively, when Δ > ω(0I) > δ, the CE dominates the polarization transfer. This two-electron process is optimized when ω(0S(1))-ω(0S(2)) = ω(0I) and ω(M)~ω(0S(1)) or ω(0S(2)), where ω(0S(1)) and ω(0S(2)) are the EPR Larmor frequencies of the two electrons. Using these matching conditions, we calculate the evolution of the density operator from electron Zeeman order to nuclear Zeeman order for both the SE and the CE. The results provide insights into the influence of the microwave irradiation field, the external magnetic field, and the electron-electron and electron-nuclear interactions on DNP enhancements.
Grüning, Wolfram R; Rossini, Aaron J; Zagdoun, Alexandre; Gajan, David; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe
2013-08-28
We present the molecular level characterization of a phenylpyridine-based periodic mesoporous organosilicate and its post-functionalized organometallic derivatives through the fast acquisition of high quality natural isotopic abundance 1D (13)C, (15)N, and (29)Si and 2D (1)H-(13)C and (1)H-(29)Si solid-state NMR spectra enhanced with dynamic nuclear polarization.
Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camacho-Bunquin, Jeffrey; Ferrandon, Magali; Sohn, Hyuntae
For this research, well-defined organoplatinum(IV) sites were grafted on a Zn(II)-modified SiO 2 support via surface organometallic chemistry in toluene at room temperature. Solid-state spectroscopies including XAS, DRIFTS, DRUV–vis, and solid-state (SS) NMR enhanced by dynamic nuclear polarization (DNP), as well as TPR-H 2 and TEM techniques revealed highly dispersed (methylcyclopentadienyl)methylplatinum(IV) sites on the surface ((MeCp)PtMe/Zn/SiO 2, 1). In addition, computational modeling suggests that the surface reaction of (MeCp)PtMe 3 with Zn(II)-modified SiO 2 support is thermodynamically favorable (ΔG = -12.4 kcal/mol), likely due to the increased acidity of the hydroxyl group, as indicated by NH 3-TPD and DNP-enhanced 17O{more » 1H} SSNMR. In situ DRIFTS and XAS hydrogenation experiments reveal the probable formation of a surface Pt(IV)-H upon hydrogenolysis of Pt-Me groups. The heterogenized organoplatinum(IV)-hydride sites catalyze the selective partial hydrogenation of 1,3-butadiene to butenes (up to 95%) and the reduction of nitrobenzene derivatives to anilines (up to 99%) with excellent tolerance of reduction-sensitive functional groups (olefin, carbonyl, nitrile, halogens) under mild reaction conditions.« less
Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camacho-Bunquin, Jeffrey; Ferrandon, Magali; Sohn, Hyuntae
Well-defined organoplatinum(IV) sites were grafted on a Zn(II)-modified SiO2 support via surface organometallic chemistry in toluene at room temperature. Solid-state spectroscopies including XAS, DRIFTS, DRUV-Vis, and solid-state (SS)NMR enhanced by dynamic nuclear polarization (DNP), as well as TPR-H2 and TEM techniques revealed highly dispersed (methylcyclopentadi-enyl)methylplatinum(IV) sites on the surface ((MeCp)PtMe/Zn/SiO2, 1). In addition, computational modelling suggests that the surface reaction of (MeCp)PtMe3 with Zn(II)-modified SiO2 support is thermodynamically favorable (ΔG = -12.4 kcal/mol), likely due to the increased acidity of the hydroxyl group, as confirmed by NH3-TPD and DNP-enhanced 17O{1H} SSNMR. In situ DRIFTS and XAS hydrogenation experiments reveal themore » formation of a surface Pt(IV)-H upon hydrogenolysis of Pt-Me groups. The heterogenized organoplatinum(IV)-H sites catalyze the selective partial hydrogenation of 1,3-butadiene to butenes (up to 95%) and the reduction of nitrobenzene derivatives to anilines (up to 100%) with excellent tolerance of reduction-sensitive func-tional groups (olefin, carbonyl, nitrile, halogens) under mild reaction conditions.« less
Hydrogel tissue construct-based high-content compound screening.
Lam, Vy; Wakatsuki, Tetsuro
2011-01-01
Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)-based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds--rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)--for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.
The configuration of 2,6-diamino-3-hydroxypimelic acid in microbial cell walls
Perkins, H. R.
1969-01-01
β-Hydroxydiaminopimelic acid, together with some diaminopimelic acid, occurs in the cell-wall mucopeptide of certain Actinomycetales. These components were converted into their di-DNP derivatives and separated by chromatography. Hence the relative proportions present in the cell walls of a number of species were measured. The problem of acid-induced inversion of configuration was studied. Of the diaminohydroxypimelic acids isomer B (see Scheme 2; amino groups meso, hydroxy group threo to its neighbouring amino group) always predominated but a small proportion of isomer D (amino groups l, hydroxy group erythro) also occurred. The configuration of the diaminohydroxypimelic acids was determined by periodate oxidation to glutamic γ-semialdehyde, which underwent spontaneous ring-closure. Reduction with sodium borohydride produced optically active proline, the configuration of which was determined by direct measurement of the optical rotation of DNP-proline. Un-cross-linked diaminohydroxypimelic acid in the cell wall was oxidized with periodate in the presence of ammonia. Since the remaining amino group was bound in peptide linkage, ring-closure was prevented and borohydride reduction of the aldehyde–ammonia presumed to be present resulted in the formation of ornithine. The quantity of ornithine was used as a measure of the degree of cross-linking. PMID:4311441
Gorris, Hans H; Bade, Steffen; Röckendorf, Niels; Fránek, Milan; Frey, Andreas
2011-08-17
The sensitivity of antibody/hapten-based labeling systems is limited by the natural affinity ceiling of immunoglobulins. Breaking this limit by antibody engineering is difficult. We thus attempted a different approach and investigated if the so-called bridge effect, a corecognition of the linker present between hapten and carrier protein during antibody generation, can be utilized to improve the affinity of such labeling systems. The well-known haptens 2,4-dinitrophenol (2,4-DNP) and 2,4-dichlorophenoxyacetic acid (2,4-D) were equipped with various linkers, and the resulting affinity change of their cognate antibodies was analyzed by ELISA. Anti-2,4-DNP antibodies exhibited the best affinity to their hapten when it was combined with aminobutanoic acid or aminohexanoic acid. The affinity of anti-2,4-D antibodies could be enhanced even further with longer aliphatic spacers connected to the hapten. The affinity toward aminoundecanoic acid-2,4-D derivatives, for instance, was improved about 100-fold compared to 2,4-D alone and yielded detection limits as low as 100 amoles of analyte. As the effect occurred for all antibodies and haptens tested, it may be sensible to implement the bridge effect in future antibody/hapten-labeling systems in order to achieve the highest sensitivity possible.
Producing >60,000-fold room-temperature 89Y NMR signal enhancement
NASA Astrophysics Data System (ADS)
Lumata, Lloyd; Jindal, Ashish; Merritt, Matthew; Malloy, Craig; Sherry, A. Dean; Kovacs, Zoltan
2011-03-01
89 Y in chelated form is potentially valuable in medical imaging because its chemical shift is sensitive to local factors in tumors such as pH. However, 89 Y has a low gyromagnetic ratio γn thus its NMR signal is hampered by low thermal polarization. Here we show that we can enhance the room-temperature NMR signal of 89 Y up to 65,000 times the thermal signal, which corresponds to 10 % nuclear polarization, via fast dissolution dynamic nuclear polarization (DNP). The relatively long spin-lattice relaxation time T1 (~ 500 s) of 89 Y translates to a long polarization lifetime. The 89 Y NMR enhancement is optimized by varying the glassing matrices and paramagnetic agents as well as doping the samples with a gadolinium relaxation agent. Co-polarization of 89 Y-DOTA with a 13 C sample shows that both nuclear spin species acquire the same spin temperature Ts , consistent with thermal mixing mechanism of DNP. The high room-temperature NMR signal enhancement places 89 Y, one of the most challenging nuclei to detect by NMR, in the list of viable magnetic resonance imaging (MRI) agents when hyperpolarized under optimized conditions. This work is supported in part by the National Institutes of Health grant numbers 1R21EB009147-01 and RR02584.
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-01-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201
NASA Astrophysics Data System (ADS)
Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.
Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert
2014-07-01
We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.
Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica
Camacho-Bunquin, Jeffrey; Ferrandon, Magali; Sohn, Hyuntae; ...
2018-02-27
For this research, well-defined organoplatinum(IV) sites were grafted on a Zn(II)-modified SiO 2 support via surface organometallic chemistry in toluene at room temperature. Solid-state spectroscopies including XAS, DRIFTS, DRUV–vis, and solid-state (SS) NMR enhanced by dynamic nuclear polarization (DNP), as well as TPR-H 2 and TEM techniques revealed highly dispersed (methylcyclopentadienyl)methylplatinum(IV) sites on the surface ((MeCp)PtMe/Zn/SiO 2, 1). In addition, computational modeling suggests that the surface reaction of (MeCp)PtMe 3 with Zn(II)-modified SiO 2 support is thermodynamically favorable (ΔG = -12.4 kcal/mol), likely due to the increased acidity of the hydroxyl group, as indicated by NH 3-TPD and DNP-enhanced 17O{more » 1H} SSNMR. In situ DRIFTS and XAS hydrogenation experiments reveal the probable formation of a surface Pt(IV)-H upon hydrogenolysis of Pt-Me groups. The heterogenized organoplatinum(IV)-hydride sites catalyze the selective partial hydrogenation of 1,3-butadiene to butenes (up to 95%) and the reduction of nitrobenzene derivatives to anilines (up to 99%) with excellent tolerance of reduction-sensitive functional groups (olefin, carbonyl, nitrile, halogens) under mild reaction conditions.« less
Structure of the c-Ki-ras gene in a rat fibrosarcoma induced by 1,8-dinitropyrene.
Tahira, T; Hayashi, K; Ochiai, M; Tsuchida, N; Nagao, M; Sugimura, T
1986-01-01
Restriction enzyme maps were made of the region around exons 1 and 2 of activated c-Ki-ras of a fibrosarcoma (1,8-DNP2) induced in a rat by 1,8-dinitropyrene. Nucleotide sequence analysis revealed that activated c-Ki-ras shows a G----T transversion in codon 12 and consequently encodes cysteine instead of glycine in normal rat c-Ki-ras. PMID:3023884
2016 Visionary Leader: Bob Dent.
Bredimus, Brandon Kit
2017-01-01
The following manuscript is the winning Richard Hader Visionary Leader 2016 entry submitted to Nursing Management in recognition of Dr. Bob Dent, DNP, MBA, RN, NEA-BC, CENP, FACHE, senior vice president, chief operating officer, and CNO for Midland Memorial Hospital in Midland, Tex. Dr. Dent was formally recognized for his achievements before the Keynote Address at Congress2016, November 8, in Las Vegas, Nev. There, he received the award, sponsored by Hackensack Meridian Health.
Fernandes, Gonçalo; Dasai, Navin; Kozlova, Natalia; Mojadadi, Albaraa; Gall, Mandy; Drew, Ellen; Barratt, Evelyn; Madamidola, Oladipo A.; Brown, Sean G.; Milne, Alison M.; Martins da Silva, Sarah J.; Whalley, Katherine M.; Barratt, Christopher L.R.; Jovanović, Aleksandar
2016-01-01
STUDY QUESTION Could drugs targeting ATP-sensitive K+ (KATP) channels prevent any spontaneous increase in intracellular Ca2+ that may occur in human metaphase II (MII) oocytes under in vitro conditions? SUMMARY ANSWER Pinacidil, a KATP channel opener, and glibenclamide, a KATP channel blocker, prevent a spontaneous increase in intracellular Ca2+ in human MII oocytes. WHAT IS KNOWN ALREADY The quality of the oocyte and maintenance of this quality during in vitro processing in the assisted reproductive technology (ART) laboratory is of critical importance to successful embryo development and a healthy live birth. Maintenance of Ca2+ homeostasis is crucial for cell wellbeing and increased intracellular Ca2+ levels is a well-established indicator of cell stress. STUDY DESIGN, SIZE, DURATION Supernumerary human oocytes (n = 102) collected during IVF/ICSI treatment that failed to fertilize were used from October 2013 to July 2015. All experiments were performed on mature (MII) oocytes. Dynamics of intracellular Ca2+ levels were monitored in oocytes in the following experimental groups: (i) Control, (ii) Dimethyl sulfoxide (DMSO; used to dissolve pinacidil, glibenclamide and 2,4-Dinitrophenol (DNP)), (iii) Pinacidil, (iv) Glibenclamide, (v) DNP: an inhibitor of oxidative phosphorylation, (vi) Pinacidil and DNP and (vii) Glibenclamide and DNP. PARTICIPANTS/MATERIALS/SETTINGS/METHODS Oocytes were collected under sedation as part of routine treatment at an assisted conception unit from healthy women (mean ± SD) age 34.1 ± 0.6 years, n = 41. Those surplus to clinical use were donated for research. Oocytes were loaded with Fluo-3 Ca2+-sensitive dye, and monitored by laser confocal microscopy for 2 h at 10 min intervals. Time between oocyte collection and start of Ca2+ monitoring was 80.4 ± 2.1 h. MAIN RESULTS AND THE ROLE OF CHANCE Intracellular levels of Ca2+ increased under in vitro conditions with no deliberate challenge, as shown by Fluo-3 fluorescence increasing from 61.0 ± 11.8 AU (AU = arbitrary units; n = 23) to 91.8 ± 14.0 AU (n = 19; P < 0.001) after 2 h of monitoring. Pinacidil (100 µM) inhibited this increase in Ca2+ (85.3 ± 12.3 AU at the beginning of the experiment, 81.7 ± 11.0 AU at the end of the experiment; n = 13; P = 0.616). Glibenclamide (100 µM) also inhibited the increase in Ca2+ (74.7 ± 10.6 AU at the beginning and 71.8 ± 10.9 AU at the end of the experiment; n = 13; P = 0.851. DNP (100 mM) induced an increase in intracellular Ca2+ that was inhibited by glibenclamide (100 µM; n = 9) but not by pinacidil (100 µM; n = 5). LIMITATIONS, REASONS FOR CAUTION Owing to clinical and ethical considerations, it was not possible to monitor Ca2+ in MII oocytes immediately after retrieval. MII oocytes were available for our experimentation only after unsuccessful IVF or ICSI, which was, on average, 80.4 ± 2.1 h (n = 102 oocytes) after the moment of retrieval. As the MII oocytes used here were those that were not successfully fertilized, it is possible that they may have been abnormal with impaired Ca2+ homeostasis and, furthermore, the altered Ca2+ homeostasis might have been associated solely with the protracted incubation. WIDER IMPLICATIONS OF THE FINDINGS These results show that maintenance of oocytes under in vitro conditions is associated with intracellular increase in Ca2+, which can be counteracted by drugs targeting KATP channels. As Ca2+ homeostasis is crucial for contributing to a successful outcome of ART, these results suggest that KATP channel openers and blockers should be tested as drugs for improving success rates of ART. STUDY FUNDING/COMPETING INTEREST(S) University of Dundee, MRC (MR/K013343/1, MR/012492/1), NHS Tayside. Funding NHS fellowship (Dr Sarah Martins da Silva), NHS Scotland. The authors declare no conflicts of interest. PMID:26682579
Nutritional strategies of high level natural bodybuilders during competition preparation.
Chappell, A J; Simper, T; Barker, M E
2018-01-01
Competitive bodybuilders employ a combination of resistance training, cardiovascular exercise, calorie reduction, supplementation regimes and peaking strategies in order to lose fat mass and maintain fat free mass. Although recommendations exist for contest preparation, applied research is limited and data on the contest preparation regimes of bodybuilders are restricted to case studies or small cohorts. Moreover, the influence of different nutritional strategies on competitive outcome is unknown. Fifty-one competitors (35 male and 16 female) volunteered to take part in this project. The British Natural Bodybuilding Federation (BNBF) runs an annual national competition for high level bodybuilders; competitors must qualify by winning at a qualifying events or may be invited at the judge's discretion. Competitors are subject to stringent drug testing and have to undergo a polygraph test. Study of this cohort provides an opportunity to examine the dietary practices of high level natural bodybuilders. We report the results of a cross-sectional study of bodybuilders competing at the BNBF finals. Volunteers completed a 34-item questionnaire assessing diet at three time points. At each time point participants recorded food intake over a 24-h period in grams and/or portions. Competitors were categorised according to contest placing. A "placed" competitor finished in the top 5, and a "Non-placed" (DNP) competitor finished outside the top 5. Nutrient analysis was performed using Nutritics software. Repeated measures ANOVA and effect sizes (Cohen's d ) were used to test if nutrient intake changed over time and if placing was associated with intake. Mean preparation time for a competitor was 22 ± 9 weeks. Nutrient intake of bodybuilders reflected a high-protein, high-carbohydrate, low-fat diet. Total carbohydrate, protein and fat intakes decreased over time in both male and female cohorts ( P < 0.05). Placed male competitors had a greater carbohydrate intake at the start of contest preparation (5.1 vs 3.7 g/kg BW) than DNP competitors ( d = 1.02, 95% CI [0.22, 1.80]). Greater carbohydrate intake in the placed competitors could theoretically have contributed towards greater maintenance of muscle mass during competition preparation compared to DNP competitors. These findings require corroboration, but will likely be of interest to bodybuilders and coaches.
Frederiksen, O
1978-07-01
1. Net fluid transport rate, transepithelial p.d. and resistance, and unidirectional Na+-fluxes were measured in rabbit gall-bladder preparations exposed on both sides to bicarbonate-Ringer solution in vitro. 2. Both ouabain and ethacrynic acid (ETCA) caused dose-dependent decreases of net fluid transport rate; ouabain inhibited fluid transport predominantly from the serosal side, whereas the inhibitory effect of ETCA was elicited mainly from the mucosal (luminal) side. Applied bilaterally, the ID50 for ouabain was 2.5 X 10(-6) M, and for ETCA 2.3 X 10(-4) M. After maximal inhibition at each concentration level of the two inhibitors fluid transport could not be reversed. 3. 2,4-Dinitrophenol (2,4-DNP) (2 X 10(-4) M) or substitution of O2 by N2 caused an 80% reversible decrease of net fluid transport. 4. The spontaneous p.d. across the rabbit gall-bladder was about 2.7 mV, mucosal side positive. 2,4-DNP, N2 and serosal application of ouabain depressed the p.d. after an initial hyperpolarization. This decrease was reversible during recovery from 2,4-DNP and N2, but irreversible after removal of ouabain at concentrations greater than or equal to 10(-4) M. Mucosal application of ETCA (10(-3) M) caused no decrease in p.d., which actually increased slightly. 5. Calculated passive serosal-to-mucosal Na+-fluxes changed in the same direction as did changes in conductance. 6. It is concluded that ETCA does not interfere primarily with the Na-K-ATPase or cellular oxidative metabolism. The data support the proposal that the pump responsible for isosmotic transepithelial fluid transfer is located in the luminal end of the cells. This pump is ETCA-sensitive. The ATPase-dependent Na-K pump, which can be inhibited by ouabain, is localized in the serosa-facing cell membrane. The data suggest that the inhibition of net fluid transport by ouabain is indirect and mediated by changes in intracellular ion concentrations. 7. The results support the concept that the transepithelial fluid transport mechanism is electroneutral, and suggest that the mucosa positive transepithelial p.d. is due to differences in electromotive forces arising from ion (mainly K+) diffusion across the mucosal and serosal cell membranes.
Immunopotentiation by SGP and Quil A. II. Identification of responding cell populations.
Flebbe, L M; Braley-Mullen, H
1986-04-15
The adjuvants SGP (a starch-acrylamide polymer) and Quil A (purified saponin) were shown to markedly augment antibody responses to T-independent (TI) antigens, suggesting that their adjuvant effects may be at least partially mediated through B cells. The ability of both adjuvants to augment primary responses to trinitrophenyl (TNP)-Ficoll (TI-2 antigen) in athymic nude mice further suggested these adjuvants affect B cells. SGP, however, did not induce a response to the T-dependent (TD) antigen dinitrophenyl-keyhole limpet hemocyanin (DNP-KLH) in athymic nude mice, indicating it was unable to replace the requirement for T-helper cells for responses to TD antigens. Responses to TNP-lipopolysaccharide (LPS) were augmented by SGP in CBA/N X Balb/c immune defective (xid) mice. However, SGP was unable to induce a response to TNP-Ficoll in xid mice. The SGP and Quil A augmented responses to TNP-Ficoll were completely inhibited by the mitotic inhibitor, Velban, indicating that SGP and Quil A increased the plaque-forming cell (PFC) response primarily by stimulating cell proliferation, and not by recruitment of antigen-reactive cells. The effects of the adjuvants on secondary responses were investigated using adoptive transfer experiments. SGP and A1(OH)3 both increased the induction of hapten-specific memory B cells in mice primed with DNP-KLH. SGP, Quil A, and A1(OH)3 also increased priming of carrier specific T cells. Priming of memory B cells with DNP-KLH and either A1(OH)3 or SGP was prevented when T cells were depleted with anti-lymphocyte serum (ALS) at the time of antigen priming, indicating that the augmentation of memory B-cell priming by SGP and A1(OH)3 was dependent on the presence of functional T cells. SGP and Quil A were both unable to augment memory cell induction to the TI antigen, TNP-Ficoll, even though both adjuvants markedly augmented primary IgM and IgG responses to this antigen. Based on these results, it is suggested that SGP and Quil A can mediate their adjuvant effects primarily by a direct or indirect effect on B cells although the adjuvants may also affect T cells to some extent.
Quantitative Prediction of Available Power in Mitochondrial Arrays for Compact Power Supplies
2010-06-17
applying an artificial electron acceptor such as PMS ( Phenazine Methosulfate). The mitochondrial electrode (anode) was prepared as described above. The...along with the nutrient succinate, the uncoupler 2,4 Dinitrophenol (DNP) and the mediator Phenazine Methosulfate (PMS). DNP prevented mitochondrial
NAQ's 40th Birthday Nursing: Predictions From the Past; Predictions for the Future, Parts I & II.
McClure, Margaret L; Batcheller, Joyce
2016-01-01
The following two articles relate to Nursing's past and future, described through a series of predictions made by one of Nursing's great leaders Margaret L. McClure (Maggie McClure). It is reprinted from NAQ Fall 2000, Volume 25, Issue 1. The second article, by another great leader, Joyce Batcheller, DNP, RN, NEA-BC, FAAN, is a follow up on those predictions, reflecting on Nursing today and tommorow.
Birceanu, Oana; McClelland, Grant B; Wang, Yuxiang S; Brown, Jason C L; Wilkie, Michael P
2011-04-01
The toxicity of 3-trifluoromethyl-4-nitrophenol (TFM) appears to be due to a mismatch between ATP supply and demand in lamprey, depleting glycogen stores and starving the nervous system of ATP. The cause of this TFM-induced ATP deficit is unclear. One possibility is that TFM uncouples mitochondrial oxidative phosphorylation, thus impairing ATP production. To test this hypothesis, mitochondria were isolated from the livers of sea lamprey and rainbow trout, and O(2) consumption rates were measured in the presence of TFM or 2,4-dinitrophenol (2,4-DNP), a known uncoupler of oxidative phosphorylation. TFM and 2,4-DNP markedly increased State IV respiration in a dose-dependent fashion, but had no effect on State III respiration, which is consistent with uncoupling of oxidative phosphorylation. To determine how TFM uncoupled oxidative phosphorylation, the mitochondrial transmembrane potential (TMP) was recorded using the mitochondria-specific dye rhodamine 123. Mitochondrial TMP decreased by 22% in sea lamprey, and by 28% in trout following treatment with 50μmolL(-1) TFM. These findings suggest that TFM acted as a protonophore, dissipating the proton motive force needed to drive ATP synthesis. We conclude that the mode of TFM toxicity in sea lamprey and rainbow trout is via uncoupling of oxidative phosphorylation, leading to impaired ATP production. Copyright © 2010 Elsevier Inc. All rights reserved.
Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate
NASA Astrophysics Data System (ADS)
Cavallari, Eleonora; Carrera, Carla; Aime, Silvio; Reineri, Francesca
2018-04-01
The use of [1-13C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), in in vivo metabolic studies has developed quickly, thanks to the imaging probe's diagnostic relevance. Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced Polarization Side Arm Hydrogenation (PHIP-SAH) (Reineri et al., 2015) is a cost effective and easy-to-handle method that produces 13C-MR hyperpolarization in [1-13C]pyruvate and other metabolites. This work aims to identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several experimental parameters whose optimization must be pursued if this method is to be made suitable for future translational steps. The search for possible solutions has led to improvements in the polarization of sodium [1-13C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels could be increased considerably by an automatized procedure which would reduce the time required for the work-up passages that are currently carried out manually. The results reported herein mean that the attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized substrates show significant promise.
Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd
Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Beranová, Jana; Seydlová, Gabriela; Kozak, Halyna; Benada, Oldřich; Fišer, Radovan; Artemenko, Anna; Konopásek, Ivo; Kromka, Alexander
2014-02-01
In this study, the influence of the size and surface termination of diamond nanoparticles (DNPs) on their antibacterial activity against Escherichia coli and Bacillus subtilis was assessed. The average size and distribution of DNPs were determined by dynamic light scattering and X-ray diffraction techniques. The chemical composition of the DNPs studied by X-ray photoelectron spectroscopy showed that DNPs > 5 nm and oxidized particles have a higher oxygen content. The antibacterial potential of DNPs was assessed by the viable count method. In general, E. coli exhibited a higher sensitivity to DNPs than B. subtilis. However, in the presence of all the DNPs tested, the B. subtilis colonies exhibited altered size and morphology. Antibacterial activity was influenced not only by DNP concentration but also by DNP size and form. Whereas untreated 5-nm DNPs were the most effective against E. coli, the antibacterial activity of 18-50-nm DNPs was higher against B. subtilis. Transmission electron microscopy showed that DNPs interact with the bacterial surface, probably affecting vital cell functions. We propose that DNPs interfere with the permeability of the bacterial cell wall and/or membrane and hinder B. subtilis colony spreading. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Basheer, A. K.; Lu, H.; Omer, A.; Ali, A. B.; Abdelgader, A. M. S.
2015-10-01
The fate of seasonal rivers ecosystem habitats under climate change essentially depends on the changes in annual recharge, which related to alterations in precipitation and evaporation over the river basin. Therefore the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in Dinder River Basin (DRB), and infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in the Sudan. Two global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with hydrological model (SWAT) were used to project the climate change conditions over the study periods 2020s, 2050s and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under the most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow was more sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during (1960s, 1970s and 1980s), the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration of the flora and fauna habitats'.
Li, Jie-Ren; Ross, Shailise S; Liu, Yang; Liu, Ying X; Wang, Kang-Hsin; Chen, Huan-Yuan; Liu, Fu-Tong; Laurence, Ted A; Liu, Gang-Yu
2015-07-28
A recent finding reports that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113-128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. These results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.
Yang, Cheng; Gao, Jie; Wu, Banglin; Yan, Nuo; Li, Hui; Ren, Yiqing; Kan, Yufei; Liang, Jiamin; Jiao, Yang; Yu, Yonghao
2017-10-01
We studied the effects of minocycline (an inhibitor of microglial activation) on the expression and activity of Notch-1 receptor, and explored the therapeutic efficacy of minocycline combined with Notch inhibitor DAPT in the treatment of diabetic neuropathic pain (DNP). Diabetic rat model was established by intraperitoneal injection (ip) of Streptozotocin (STZ). Expression and activity of Notch-1 and expression of macrophage/microglia marker Iba-1 were detected by WB. Diabetes induction significantly attenuated sciatic nerve conduction velocity, and dramatically augmented the expression and the activity of Notch-1 in the lumbar enlargement of the spinal cord. Minocycline treatment, however, accelerated the decreased conduction velocity of sciatic nerve and suppressed Notch-1expression and activity in diabetic rats. Similar to DAPT treatment, minocycline administration also prolonged thermal withdrawal latency (TWL) and increase mechanical withdrawal threshold (MWT) in diabetic rats in response to heat or mechanical stimulation via inhibition the expression and the activity of Notch-1 in spinal cord. Combination of DAPT and minocycline further inhibited Notch-1 receptor signaling and reduce neuropathic pain exhibited as improved TWL and MWT. Our study revealed a novel mechanism of Notch-1 receptor inhibition in spinal cord induced by minocycline administration, and suggested that the combination of minocycline and DAPT has the potential to treat DNP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie-Ren; Ross, Shailise S.; Liu, Yang
We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation viamore » FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.« less
Developing an Acquisition Strategy for the Colombian Navy’s New Strategic Surface Ships
2007-06-01
37 Departamento Nacional de Planeacion (2006), “Visión Colombia II Centenario: 2019.” Retrieved 14 May 2007 from http...40 Jefatura Oficina Planeacion A.R.C. (July 2006), Plan de Desarrollo 2007–2010, conference presented at Dirección General Marítima, Bogota...Departamento Nacional de Planeacion (2006). “Visión Colombia II Centenario: 2019”. Retrieved 14 May 2007 from http://www.dnp.gov.co/paginas_detalle.aspx?idp=888
1983-06-24
and vali- date methods for the analysis of the 12 munitions in water and sediment. Two high performance liquid chromatographic (IIPLC-UV) systems...t from Re.po.r) 11i. SUP•L.EMENTARY NOTES 1S. KEY WORDS (Conrinuo.on rovers* old* It necessary and Identify by biock number) Methods development...munition and 4-munition groups in sediment The method for eight munitions (DNP, RDX, TNB, DNB, 2,4-DNT, TNT, tetryl and DPA) in water samples consists of
Histocompatibility type and immune responsiveness in random bred Hartley strain guinea pigs.
Martin, W J; Ellman, L; Green, I; Benacerraf, B
1970-12-01
Outbred Hartley strain guinea pigs capable of responding immunologically to 2,4-dinitrophenylated poly-L-lysine were shown to display a histocompatibility specificity in common with inbred strain 2 guinea pigs. This histocompatibility specificity was not detected in guinea pigs unable to respond immunologically to DNP-PLL. The result suggests that the poly-L-lysine specific immune response gene is very closely linked or even identical with a gene determining a major histocompatibility antigen in guinea pigs.
Elucidation of two photon absorption of ethylenediaminium (2,4-dinitrophenolate) crystals
NASA Astrophysics Data System (ADS)
Indumathi, C.; Sabari Girisun, T. C.; Anitha, K.; Cecil Raj, S. Alfred
2016-10-01
Optical quality single crystals of ethylenediaminium (2,4-dinitrophenolate) [EDA(2,4)DNP] were grown by solvent evaporation method for optical limiting applications against intense ultrashot pulse lasers. Single crystal XRD showed that the material crystallizes in monoclinic system with centric space group P21/C. The crystal packing diagram was elucidated for the first time in literature and it revealed six hydrogen bonds played a very important role in stabilizing the structure. A bifurcated hydrogen bond was also observed between ethylenediamminium and dinitrophenolate ions. The formation of charge transfer complex during the reaction of ethylenediamine and 2,4-dinitrophenol was strongly evident through the vibrational spectroscopic studies. TG-DTA and DSC curves indicate that the material exhibited strong decomposition at 224 °C. Ground state absorption analysis showed that the grown crystals possess absorption maxima in UV region (270 nm, 346 nm) and wide optical transmittance window (480-1200 nm) in the entire visible and NIR region. Measurement of two photon absorption (2PA) and optical limiting response by Z-scan technique under nanosecond pulse excitation was reported. Hence EDA(2,4)DNP with high 2PA coefficient (0.79 ± 0.04 × 10-10 m/W) and low limiting threshold (2.40 ± 0.05 × 1012 W/m2) will be a potential candidate for optical limiting applications like eye and sensor protection against short pulse lasers that are well spread in human interactive sectors.
Zakharova, Vlada V; Pletjushkina, Olga Yu; Galkin, Ivan I; Zinovkin, Roman A; Chernyak, Boris V; Krysko, Dmitri V; Bachert, Claus; Krysko, Olga; Skulachev, Vladimir P; Popova, Ekaterina N
2017-04-01
Mitochondrial dysfunctions occur in many diseases linked to the systemic inflammatory response syndrome (SIRS). Mild uncoupling of oxidative phosphorylation is known to rescue model animals from pathologies related to mitochondrial dysfunctions and overproduction of reactive oxygen species (ROS). To study the potential of SIRS therapy by uncoupling, we tested protonophore dinitrophenol (DNP) and a free fatty acid (FFA) anion carrier, lipophilic cation dodecyltriphenylphosphonium (C 12 TPP) in mice and in vitro models of SIRS. DNP and C 12 TPP prevented the body temperature drop and lethality in mice injected with high doses of a SIRS inducer, tumor necrosis factor (TNF). The mitochondria-targeted antioxidant plastoquinonyl decyltriphenylphosphonium (SkQ1) which also catalyzes FFA-dependent uncoupling revealed similar protective effects and downregulated expression of the NFκB-regulated genes (VCAM1, ICAM1, MCP1, and IL-6) involved in the inflammatory response of endothelium in aortas of the TNF-treated mice. In vitro mild uncoupling rescued from TNF-induced endothelial permeability, disassembly of cell contacts and VE-cadherin cleavage by the matrix metalloprotease 9 (ММР9). The uncouplers prevented TNF-induced expression of MMP9 via inhibition of NFκB signaling. Water-soluble antioxidant Trolox also prevented TNF-induced activation and permeability of endothelium in vitro via inhibition of NFκB signaling, suggesting that the protective action of the uncouplers is linked to their antioxidant potential. Copyright © 2017 Elsevier B.V. All rights reserved.
Wellehan, James F X; Green, Linda G; Duke, Diane G; Bootorabi, Shadi; Heard, Darryl J; Klein, Paul A; Jacobson, Elliott R
2009-09-01
Megachiropteran bats are biologically important both as endangered species and reservoirs for emerging human pathogens. Reliable detection of antibodies to specific pathogens in bats is thus epidemiologically critical. Eight variable flying foxes (Pteropus hypomelanus) were immunized with 2,4-dinitrophenylated bovine serum albumin (DNP-BSA). Each bat received monthly inoculations for 2 months. Affinity-purified IgG was used for production of polyclonal and monoclonal anti-variable flying fox IgG antibodies. ELISA and western blot analysis were used to monitor immune responses and for assessment of polyclonal and monoclonal antibody species cross-reactivity. Protein G, polyclonal antibodies, and monoclonal antibodies detected specific anti-DNP antibody responses in immunized variable flying foxes, with protein G being the most sensitive, followed by monoclonal antibodies and then polyclonal antibodies. While the polyclonal antibody was found to cross-react well against IgG of all bat species tested, some non-specific background was observed. The monoclonal antibody was found to cross-react well against IgG of six other species in the genus Pteropus and to cross-react less strongly against IgG from Eidolon helvum or Phyllostomus hastatus. Protein G distinguished best between vaccinated and unvaccinated bats, and these results validate the use of protein G for detection of bat IgG. Monoclonal antibodies developed in this study recognized immunoglobulins from other members of the genus Pteropus well, and may be useful in applications where specific detection of Pteropus IgG is needed.
Li, Jie-Ren; Ross, Shailise S.; Liu, Yang; ...
2015-06-09
We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation viamore » FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.« less
Mechanically induced intramolecular electron transfer in a mixed-valence molecular shuttle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, J. C.; Fahrenbach, A. C.; Dyar, S. M.
2012-06-08
The kinetics and thermodynamics of intramolecular electron transfer (IET) can be subjected to redox control in a bistable [2]rotaxane comprised of a dumbbell component containing an electron-rich 1,5-dioxynaphthalene (DNP) unit and an electron-poor phenylene-bridged bipyridinium (P-BIPY2+) unit and a cyclobis (paraquat-p-phenylene) (CBPQT4+) ring component. The [2]rotaxane exists in the ground-state co-conformation (GSCC) wherein the CBPQT4+ ring encircles the DNP unit. Reduction of the CBPQT4+ leads to the CBPQT2(•+) diradical dication while the P-BIPY2+ unit is reduced to its P-BIPY•+ radical cation. A radical-state co-conformation (RSCC) results from movement of the CBPQT2(•+) ring along the dumbbell to surround the P-BIPY•+ unit.more » This shuttling event induces IET to occur between the pyridinium redox centers of the P-BIPY•+ unit, a property which is absent between these redox centers in the free dumbbell and in the 1:1 complex formed between the CBPQT2(•+) ring and the radical cation of methyl-phenylene-viologen (MPV•+). Using electron paramagnetic resonance (EPR) spectroscopy, the process of IET was investigated by monitoring the line broadening at varying temperatures and determining the rate constant (kET = 1.33 × 107 s-1) and activation energy (ΔG‡ = 1.01 kcal mol-1) for electron transfer. These values were compared to the corresponding values predicted, using the optical absorption spectra and Marcus–Hush theory.« less
Jiang, Donglei; Ji, Jian; An, Lu; Sun, Xiulan; Zhang, Yinzhi; Zhang, Genyi; Tang, Lili
2013-12-15
A novel cell-based electrochemical biosensor was developed to quantify major shrimp allergen Pen a 1 (tropomyosin) and to assess its immunoglobulin E (IgE)-mediated hypersensitivity. Rat basophilic leukemia (RBL-2H3) mast cells, encapsulated in type I collagen, were immobilized on a self-assembled l-cysteine/gold nanoparticle (AuNPsCys)-modified gold electrode to monitor IgE-mediated mast cell sensitization and activation. The exposure of dinitrophenol-bovine serum albumin (DNP-BSA), as a model antigen that stimulates mast cells, induced a robust and long-lasting electrochemical impedance signal in a dose-dependent manner which efficiently measured degranulation of anti-DNP IgE-stimulated mast cells. Then this mast cell-based biosensor was applied into quantification for the shrimp allergen with anti-shrimp tropomyosin IgE-sensitization. The electrochemical impedance spectroscopy (EIS) results showed that the impedance value (Ret) increased with the concentration of purified shrimp allergen Pen a 1 (tropomyosin) in range of 0.5-0.25 μg mL(-1) with the detection limit as 0.15 μg mL(-1), and the electrochemical result was confirmed by β-hexosaminidase assay and scanning electron microscopic morphological (SEM) analysis. Thus, a simple, label-free, and sensitive method for the determination of shrimp allergens was proposed and demonstrated here, implying a highly versatile biosensor for food allergen detection and prediction. Copyright © 2013 Elsevier B.V. All rights reserved.
Hyperpolarized ketone body metabolism in the rat heart.
Miller, Jack J; Ball, Daniel R; Lau, Angus Z; Tyler, Damian J
2018-06-01
The aim of this work was to investigate the use of 13 C-labelled acetoacetate and β-hydroxybutyrate as novel hyperpolarized substrates in the study of cardiac metabolism. [1- 13 C]Acetoacetate was synthesized by catalysed hydrolysis, and both it and [1- 13 C]β-hydroxybutyrate were hyperpolarized by dissolution dynamic nuclear polarization (DNP). Their metabolism was studied in isolated, perfused rat hearts. Hyperpolarized [1- 13 C]acetoacetate metabolism was also studied in the in vivo rat heart in the fed and fasted states. Hyperpolarization of [1- 13 C]acetoacetate and [1- 13 C]β-hydroxybutyrate provided liquid state polarizations of 8 ± 2% and 3 ± 1%, respectively. The hyperpolarized T 1 values for the two substrates were 28 ± 3 s (acetoacetate) and 20 ± 1 s (β-hydroxybutyrate). Multiple downstream metabolites were observed within the perfused heart, including acetylcarnitine, citrate and glutamate. In the in vivo heart, an increase in acetylcarnitine production from acetoacetate was observed in the fed state, as well as a potential reduction in glutamate. In this work, methods for the generation of hyperpolarized [1- 13 C]acetoacetate and [1- 13 C]β-hydroxybutyrate were investigated, and their metabolism was assessed in both isolated, perfused rat hearts and in the in vivo rat heart. These preliminary investigations show that DNP can be used as an effective in vivo probe of ketone body metabolism in the heart. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Basheer, Amir K.; Lu, Haishen; Omer, Abubaker; Ali, Abubaker B.; Abdelgader, Abdeldime M. S.
2016-04-01
The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River basin (DRB) and to infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in Sudan. Four global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with a hydrological model (SWAT - the Soil and Water Assessment Tool) were used to project the climate change conditions over the study periods 2020s, 2050s, and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during the 1960s, 1970s, and 1980s, the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration for the habitats of flora and fauna.
Kamal, Tahseen; Khan, Sher Bahadar; Haider, Sajjad; Alghamdi, Yousef Gamaan; Asiri, Abdullah M
2017-11-01
A facile approach utilizing synthesis of cobalt nanoparticles in green polymers of chitosan (CS) coating layer on high surface area cellulose microfibers of filter paper (CFP) is described for the catalytic reduction of nitrophenol and an organic dye using NaBH 4 . Simple steps of CFP coating with 1wt% CS aqueous solution followed by Co 2+ ions adsorption from 0.2M CoCl 2 aqueous solution were carried out to prepare pre-catalytic strips. The Co 2+ loaded pre-catalytic strips of CS-CFP were treated with 0.19M NaBH 4 aqueous solution to convert the ions into nanoparticles. Successful Co nanoparticles formation was assessed by various characterization techniques of FESEM, EDX and XRD analyzes. TGA analyses were carried out on CFP, CS-CFP, and Co-CS-CFP for the determination of the amount of Co particles formed on the CS-FP, and to track their thermal properties. Furthermore, we demonstrated that the Co-CS-CFP showed an excellent catalytic activity and reusability in the reduction reactions a nitroaromatic compound of 2,6-dintirophenol (2,6-DNP) and brilliant cresyl blue (BCB) dye by NaBH 4 . The Co-CS-CFP catalyzed the reduction reactions of 2,6-DNP and BCB by NaBH 4 with psuedo-first order rate constants of 0.0451 and 0.1987min -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian; Rowe, Cliff; Naisbitt, Dean J; Goldring, Christopher E; Park, B Kevin
2009-07-15
Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency at inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p<0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.
NASA Astrophysics Data System (ADS)
Potapenko, Dmitrii I.; Foster, Margaret A.; Lurie, David J.; Kirilyuk, Igor A.; Hutchison, James M. S.; Grigor'ev, Igor A.; Bagryanskaya, Elena G.; Khramtsov, Valery V.
2006-09-01
New improved pH-sensitive nitroxides were applied for in vivo studies. An increased stability of the probes towards reduction was achieved by the introduction of the bulky ethyl groups in the vicinity of the paramagnetic N sbnd O fragment. In addition, the range of pH sensitivity of the approach was extended by the synthesis of probes with two ionizable groups, and, therefore, with two p Ka values. Stability towards reduction and spectral characteristics of the three new probes were determined in vitro using 290 MHz radiofrequency (RF)- and X-band electron paramagnetic resonance (EPR), longitudinally detected EPR (LODEPR), and field-cycled dynamic nuclear polarization (FC-DNP) techniques. The newly synthesized probe, 4-[bis(2-hydroxyethyl)amino]-2-pyridine-4-yl-2,5,5-triethyl-2,5-dihydro-1 H-imidazol-oxyl, was found to be the most appropriate for the application in the stomach due to both higher stability and convenient pH sensitivity range from pH 1.8 to 6. LODEPR, FC-DNP and proton-electron double resonance imaging (PEDRI) techniques were used to detect the nitroxide localization and acidity in the rat stomach. Improved probe characteristics allowed us to follow in vivo the drug-induced perturbation in the stomach acidity and its normalization afterwards during 1 h or longer period of time. The results show the applicability of the techniques for monitoring drug pharmacology and disease in the living animals.
Kinetics of nitric oxide and oxygen gases on porous Y-stabilized ZrO2-based sensors.
Killa, Sajin; Cui, Ling; Murray, Erica P; Mainardi, Daniela S
2013-08-16
Using impedance spectroscopy the electrical response of sensors with various porous Y-stabilized ZrO2 (YSZ) microstructures was measured for gas concentrations containing 0-100 ppm NO with 10.5%O2 at temperatures ranging from 600-700 °C. The impedance response increased substantially as the sensor porosity increased from 46%-50%. Activation energies calculated based on data from the impedance measurements increased in magnitude (97.4-104.9 kJ/mol for 100 ppm NO) with respect to increasing YSZ porosity. Analysis of the oxygen partial pressure dependence of the sensors suggested that dissociative adsorption was the dominant rate limiting. The PWC/DNP theory level was used to investigate the gas-phase energy barrier of the 2NO+O2 → 2NO2 reaction on a 56-atom YSZ/Au model cluster using Density Functional Theory and Linear Synchronous Transit/Quadratic Synchronous Transit calculations. The reaction path shows oxygen surface reactions that begin with NO association with adsorbed O2 on a Zr surface site, followed by O2 dissociative adsorption, atomic oxygen diffusion, and further NO2 formation. The free energy barrier was calculated to be 181.7 kJ/mol at PWC/DNP. A qualitative comparison with the extrapolated data at 62% ± 2% porosity representing the YSZ model cluster indicates that the calculated barriers are in reasonable agreement with experiments, especially when the RPBE functional is used.
2013-01-01
heparin was purchased from Innovative Research (Novi, MI). Goat and horse whole blood was provided by our Veterinary Medicine Division (USAMRIID, Fort...quinquefasciatus (10) BA House NA Human Culex Th9-0122 Ae. aegypti (1) BA House DENV-3 DNP Aedes Th9-0164 Cx. tritaeniorhynchus (24) LT Farm JEV NA...Culex Th9-0167 Ae. albopictus (1) LT Farm NA NA Aedes Th9-0175 Cx. tritaeniorhynchus (25) LT Farm JEV NA Culex Th9-0235 Cx. tritaeniorhynchus (25) BA
p38 Mitogen-Activated Protein Kinase in Metastasis Associated with Transforming Growth Factor Beta
2006-06-01
Functional Analysis of cells • Expression of HA-tagged TβRI • Signaling (p-Smad2, p- HSP27 , p-p38) • Transcription (SBE-Lux, 3TP-Lux) • Proliferation...when they also affected lls expressing DN-p38alpha phosphorylation of HSP27 was effectively blocked (data not shown). However, cells e studies show...231-ALK5-T204D cells treated with kinase inhibitors U0126, SB202190, SP600125 (JNK). (B) Immunoblot of phospho-Smad2/3, phospho- HSP27 , and alpha
2016-04-01
potential. The h-CLAT is one of many non- animal skin sensitizing tests , and it comprises part of an integrated testing strategy with two other in vitro...Protocol No. 158. 2015: European Union Reference Laboratory for Alternatives to Animal Testing [18, 19]. Toxicology Study No. S.0024589d-15, April...Alternatives to Animal Testing [18, 19]. If the EC200 or EC150 fell below the lowest dose, the values were extrapolated by the following equations
2009-09-01
Phyluma Raw Sewage GLBR Sp.b Clone (%)c Sp. Clone (%)d Actinobacteria 0 0 2 3.5 Bacteroidetes 6 28.2 7 8.2 Chloroflexi 2 11.3 2 3.5 Firmicutes 7...and 2,4,6-trinitrotoluene (TNT) based on 16S rDNA clone distribution. Phyluma Sp.b Clone (%)c Acidobacteria 1 1.1 Actinobacteria 1 8.7...distribution, established that the culture was enriched in both Actinobacteria and Proteobacteria, suggesting involvement of both phyla in 2,4-DNP degradation
Detection of 1-nitropyrene in yakitori (grilled chicken).
Kinouchi, T; Tsutsui, H; Ohnishi, Y
1986-01-01
Pieces of raw chicken with or without a marinating sauce were grilled over a city gas flame, extracted with benzene-ethanol (4:1) by ultrasonication and fractionated into diethyl ether-soluble neutral, acidic and basic fractions. The mutagenicity of these fractions was measured with Salmonella typhimurium strains TA100, TA98, TA98NR and TA98/1,8-DNP6 in the presence and absence of a 9000 X g post-mitochondrial supernatant from Aroclor 1254-treated Sprague-Dawley rat liver (S9 mix). The basic fraction of yakitori without the sauce was more mutagenic than the other fractions for S. typhimurium strain TA98 in the presence of S9 mix. This is probably due to the presence of amino acid or protein pyrolysates. However, when the chicken was grilled with the sauce, the basic fraction showed lower mutagenicity for strain TA98 in the presence of S9 mix than did the same fraction without the sauce. The neutral fraction of yakitori with sauce showed high mutagenicity for strain TA98 in the absence of S9 mix, but low mutagenicity for strains TA98NR and TA98/1,8-DNP6, suggesting that this fraction might contain nitropyrenes (NPs). The neutral fraction of yakitori was analyzed by high-performance liquid chromatography (HPLC). The neutral fraction of the chicken grilled with the sauce for 3, 5 and 7 min contained 3.8, 19 and 43 ng, respectively, of 1-NP per gram of yakitori accounting for 3.0, 2.7 and 1.3%, respectively, of the total mutagenicity.(ABSTRACT TRUNCATED AT 250 WORDS)
Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Tae-Yong; Kim, Sang-Hyun; Suk, Kyoungho
2005-12-15
The current study characterizes the mechanism by which the aqueous extract of Lycopus lucidus Turcz. (Labiatae) (LAE) decreases mast cell-mediated immediate-type allergic reaction. The immediate-type allergic reaction is involved in many allergic diseases such as asthma and allergic rhinitis. LAE has been used as a traditional medicine in Korea and is known to have an anti-inflammatory effect. However, its specific mechanism of action is still unknown. LAE was anally administered to mice for high and fast absorption. LAE inhibited compound 48/80-induced systemic reactions in mice. LAE decreased the local allergic reaction, passive cutaneous anaphylaxis, activated by anti-dinitrophenyl (DNP) IgE antibody.more » LAE dose-dependently reduced histamine release from rat peritoneal mast cells activated by compound 48/80 or anti-DNP IgE. Furthermore, LAE decreased the secretion of TNF-{alpha} and IL-6 in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187-stimulated human mast cells. The inhibitory effect of LAE on the pro-inflammatory cytokine was p38 mitogen-activated protein kinase (MAPK) and nuclear factor-{kappa}B (NF-{kappa}B) dependent. LAE attenuated PMA plus A23187-induced degradation of I{kappa}B{alpha} and nuclear translocation of NF-{kappa}B, and specifically blocked activation of p38 MAPK, but not that of c-jun N-terminal kinase and extracellular signal-regulated kinase. Our findings provide evidence that LAE inhibits mast cell-derived immediate-type allergic reactions and involvement of pro-inflammatory cytokines, p38 MAPK, and NF-{kappa}B in these effects.« less
Fan, Rong; Zhou, Qiu-Ping; Zhang, Guo-Fang; Cai, Mei-Yu; Li, Ping; Gan, Li-Hua; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng
2010-01-01
Nine metal compounds of Mn(II), Zn(II) and Cd(II) derived from dinitropyridone ligands (3,5-dinitro-pyrid-2-one, 2HDNP; 3,5-dinitropyrid-4-one, 4HDNP and 3,5-dinitropyrid-4-one-N- hydroxide, 4HDNPO) were characterized by elemental analysis, FT-IR and partly by TG-DSC. Three of which were further structurally characterized by X-ray single-crystal diffraction analysis. The structures of the three compounds, Mn(4DNP)2(H2O)4, 4, Zn(4DNPO)2(H2O)4, 8, and Cd(4DNPO)2(H2O)4, 9, crystallize in the monoclinic space group P2(1)/n and Z = 2, with a = 8.9281(9), b = 9.1053(9), c = 10.6881(11) Å, β = 97.9840(10)° for 4; a = 8.4154(7), b = 9.9806(8), c = 10.5695(8) Å, β = 97.3500(10)° for 8; a = 8.5072(7), b = 10.2254(8), c = 10.5075(8) Å, β 96.6500(10)° for 9. All three complexes are octahedral consisting of four equatorial water molecules, and two nitrogen or oxygen donor ligands (DNP or DNPO). The abundant hydrogen-bonding and π-π stacking interactions seem to contribute to stabilization of the crystal structures of the compounds. The TG-DTG results revealed that the complexes showed a weight loss sequence corresponding to all coordinated water molecules, nitro groups, the breaking of the pyridine rings and finally the formation of metal oxides. PMID:20526459
Fan, Rong; Zhou, Qiu-Ping; Zhang, Guo-Fang; Cai, Mei-Yu; Li, Ping; Gan, Li-Hua; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng
2009-09-28
Nine metal compounds of Mn(II), Zn(II) and Cd(II) derived from dinitropyridone ligands (3,5-dinitro-pyrid-2-one, 2HDNP; 3,5-dinitropyrid-4-one, 4HDNP and 3,5-dinitropyrid-4-one-N- hydroxide, 4HDNPO) were characterized by elemental analysis, FT-IR and partly by TG-DSC. Three of which were further structurally characterized by X-ray single-crystal diffraction analysis. The structures of the three compounds, Mn(4DNP)(2)(H(2)O)(4), 4, Zn(4DNPO)(2)(H(2)O)(4), 8, and Cd(4DNPO)(2)(H(2)O)(4), 9, crystallize in the monoclinic space group P2(1)/n and Z = 2, with a = 8.9281(9), b = 9.1053(9), c = 10.6881(11) A, beta = 97.9840(10) degrees for 4; a = 8.4154(7), b = 9.9806(8), c = 10.5695(8) A, beta = 97.3500(10) degrees for 8; a = 8.5072(7), b = 10.2254(8), c = 10.5075(8) A, beta 96.6500(10) degrees for 9. All three complexes are octahedral consisting of four equatorial water molecules, and two nitrogen or oxygen donor ligands (DNP or DNPO). The abundant hydrogen-bonding and pi-pi stacking interactions seem to contribute to stabilization of the crystal structures of the compounds. The TG-DTG results revealed that the complexes showed a weight loss sequence corresponding to all coordinated water molecules, nitro groups, the breaking of the pyridine rings and finally the formation of metal oxides.
Shinka, S; Komatsu, T; Dohi, Y; Amano, T
1979-01-01
The cellular basis of the mechanism of immunological tolerance to human gamma-globulin (H gamma G) induced in foetal and neonatal mice by materno-foetal or materno-neonatal transfer after a single injection of tolerogen (deaggregated H gamma G) into the mothers was investigated using a cell transfer system and assays of passive haemagglutinating antibodies and plaque-forming cells to H gamma G. The results demonstrated that B cells are mainly involved in the tolerance induced on the fourteenth day of gestation, whereas inactivation of T cells may account for the tolerance induced on the eighteenth day of gestation and in the neonatal stage. Treatment of the mothers with tolerogen and then anti-H gamma G serum reduced the tolerance induced on the fourteenth day of gestation, but did not affect that induced on the eighteenth day of gestation and in the neonatal stage. Cell transfer experiments showed that B-cell tolerance induced on the fourteenth day of gestation was prevented by passive antibody, while T-cell tolerance induced on the eighteenth day of gestation and in the neonatal stage was not affected by passive antibody. Assay of the anti-DNP antibody response after immunization with DNP10-H gamma G showed that treatment of mice with the tolerogen on the eighteenth day of gestation, but not the fourteenth day of gestation, inactivated H gamma G-reactive helper cells. The significance of these results is discussed in relation to the results of the cell transfer experiments described as above. PMID:89080
Lemos, Henrique; Huang, Lei; Chandler, Phillip R.; Mohamed, Eslam; Souza, Guilherme R.; Li, Lingqian; Pacholczyk, Gabriela; Barber, Glen N.; Hayakawa, Yoshihiro; Munn, David H.; Mellor, Andrew L.
2014-01-01
Cytosolic DNA sensing activates the Stimulator of Interferon Genes (STING) adaptor to induce interferon type I (IFNαβ) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown leading to autoimmunity. Here we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the central nervous system (CNS) and suppressed innate and adaptive immune responses to MOG immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFNαβ receptor genes, but not IFNγ receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate (c-diGMP) to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on indoleamine 2,3 dioxygenase (IDO) enzyme activity in hematopoietic cells. Thus DNPs and c-diGMP attenuate EAE by inducing dominant T cell regulatory responses via the STING-IFNαβ-IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING-IFNαβ pathway in either stimulating or suppressing autoimmunity and identify STING activating reagents as a novel class of immune modulatory drugs. PMID:24799564
Sohn, Youngjoo; Han, Na-Young; Lee, Min Jung; Cho, Hyun-Joo; Jung, Hyuk-Sang
2013-08-01
[6]-Shogaol is a major bioactive component of Zingiber officinale. Although [6]-shogaol has a number of pharmacological activities including antipyretic, analgesic, antitussive and anti-inflammatory effects, the specific mechanisms of its anti-allergic effects have not been studied. In this study, we present the effects of [6]-shogaol on mast cell-mediated allergic reactions in vivo and in vitro. Sprague-Dawley rats received intradermal injections of anti-DNP IgE was injected into dorsal skin sites. After 48 h, [6]-shogaol was administered orally 1 h prior to challenge with DNP-HSA in saline containing 4% Evans blue through the dorsal vein of the penis. In addition, rat peritoneal mast cells (RPMCs) were cultured and purified to investigate histamine release. In vitro, we evaluated the regulatory effects of [6]-shogaol on the level of inflammatory mediators in phorbol 12-myristate 13-acetate plus calcium ionomycin A23187-stimulated human mast cells (HMC-1). [6]-Shogaol reduced the passive cutaneous anaphylaxis reaction compared to the control group, and histamine release decreased significantly following the treatment of RPMCs with [6]-shogaol. In HMC-1 cells, [6]-shogaol inhibited the production of TNF-α, IL-6 and IL-8, as well as the activation of nuclear factor-κB (NF-κB) and phosphorylation of JNK in compound 48/80-induced HMC-1 cells. [6]-shogaol inhibited mast cell-mediated allergic reactions by inhibiting the release of histamine and the production of proinflammatory cytokines with the involvement of regulation of NF-κB and phosphorylation of JNK.
Behrend, Christian; Heesche-Wagner, Kerstin
1999-01-01
There are only a few examples of microbial conversion of picric acid (2,4,6-trinitrophenol). None of the organisms that have been described previously is able to use this compound as a sole source of carbon, nitrogen, and energy at high rates. In this study we isolated and characterized a strain, strain CB 22-2, that was able to use picric acid as a sole source of carbon and energy at concentrations up to 40 mM and at rates of 1.6 mmol · h−1 · g (dry weight) of cells−1 in continuous cultures and 920 μmol · h−1 · g (dry weight) of cells−1 in flasks. In addition, this strain was able to use picric acid as a sole source of nitrogen at comparable rates in a nitrogen-free medium. Biochemical characterization and 16S ribosomal DNA analysis revealed that strain CB 22-2 is a Nocardioides sp. strain. High-pressure liquid chromatography and UV-visible light data, the low residual chemical oxygen demand, and the stoichiometric release of 2.9 ± 0.1 mol of nitrite per mol of picric acid provided strong evidence that complete mineralization of picric acid occurred. During transformation, the metabolites detected in the culture supernatant were the [H−]-Meisenheimer complexes of picric acid and 2,4-dinitrophenol (H−-DNP), as well as 2,4-dinitrophenol. Experiments performed with crude extracts revealed that H−-DNP formation indeed is a physiologically relevant step in picric acid metabolism. PMID:10103224
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian
Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency atmore » inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p < 0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.« less
Adkins, Becky; Contractor, Nikhat
2011-01-01
Lycopene, a carotenoid produced by some commonly consumed plants such as tomatoes, is not synthesized by animals. Thus, the levels of lycopene found in the breast milk of lactating females reflect the dietary lycopene supply. Lycopene has potent antioxidant activity but has also been implicated in modulating immune function. Therefore, lycopene in breast milk has the potential to affect the development and/or function of the immune system in the suckling pups. Here, we have investigated the impact of breast milk lycopene on systemic and mucosal immunity in mouse neonates. Diets containing 0.3 g/kg lycopene (Lyc) or control (Con) diets were fed to mouse dams beginning at late gestation and continuing throughout lactation. Seven-day-old female BALB/c pups were parenterally immunized with a model vaccine antigen dinitrophenyl-keyhole limpet hemocyanin (DNP-KLH) and then reimmunized as adults. The levels of DNP-KLH–specific IgG in the sera as well as keyhole limpet hemocyanin-specific IFNγ and IL-4 production by splenic CD4+ cells were similar in the Lyc and Con pups. In addition, female neonatal (d7) C57BL/6 Lyc and Con pups were infected orally with the enteropathogen Yersinia enterocolitica. Breast milk lycopene had no effect on the recruitment of neutrophils to intestinal lymphoid tissues or on bacterial tissue colonization of the intestines, spleens, and livers. Thus, suckling pups exposed to lycopene in breast milk appear to develop normal innate and adaptive responses both systemically and at intestinal mucosal surfaces. PMID:21593356
Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J
2017-01-01
Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Intestinal multidrug resistance-associated protein 2 is down-regulated in fructose-fed rats.
Londero, Ana Sofía; Arana, Maite Rocío; Perdomo, Virginia Gabriela; Tocchetti, Guillermo Nicolás; Zecchinati, Felipe; Ghanem, Carolina Inés; Ruiz, María Laura; Rigalli, Juan Pablo; Mottino, Aldo Domingo; García, Fabiana; Villanueva, Silvina Stella Maris
2017-02-01
Expression and activity of jejunal multidrug resistance-associated protein 2 (Mrp2) and glutathione-S-transferase (GST) were examined in fructose fed Wistar rats, an experimental model of metabolic syndrome. Animals were fed on (a) control diet or (b) control diet plus 10% w/vol fructose in the drinking water. Mrp2 and the α class of GST proteins as well as their corresponding mRNAs were decreased, suggesting a transcriptional regulation by fructose. Confocal microscopy studies reaffirmed down-regulation of Mrp2. Everted intestinal sacs were incubated with 1-chloro-2,4-dinitrobenzene in the mucosal compartment, and the glutathione-conjugated derivative, dinitrophenyl- S-glutathione (DNP-SG; model Mrp2 substrate), was measured in the same compartment to estimate Mrp2 activity. Excretion of DNP-SG was substantially decreased by fructose treatment, consistent with simultaneous down-regulation of Mrp2 and GST. In addition, the effect of fructose on intestinal barrier function exerted by Mrp2 was evaluated in vivo using valsartan, a recognized Mrp2 substrate of therapeutic use. After intraduodenal administration as a bolus, intestinal absorption of valsartan was increased in fructose-drinking animals. Fructose administration also induced oxidative stress in intestinal tissue as demonstrated by significant increases of intestinal lipid peroxidation end products and activity of the antioxidant enzyme superoxide dismutase, by a decreased GSH/GSSG ratio. Moreover, fructose treatment conduced to increased intestinal levels of the proinflammatory cytokines IL-β1 and IL-6. Collectively, our results demonstrate that metabolic syndrome-like conditions, induced by a fructose-rich diet, result in down-regulation of intestinal Mrp2 expression and activity and consequently in an impairment of its barrier function. Copyright © 2016 Elsevier Inc. All rights reserved.
Lumata, Lloyd L; Martin, Richard; Jindal, Ashish K; Kovacs, Zoltan; Conradi, Mark S; Merritt, Matthew E
2015-04-01
We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of (13)C polarization levels using free radicals that span a range of ESR linewidths. A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate (13)C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m(3)/h roots blower. A hyperpolarized (13)C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdiphenylene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state (13)C polarization levels for these samples were determined. (13)C polarization levels close to 50 % were achieved for [1-(13)C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10-20 % (13)C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. At this field strength free radicals with smaller ESR linewidths are still superior for DNP of (13)C as opposed to those with linewidths that exceed that of the (1)H Larmor frequency.
NASA Astrophysics Data System (ADS)
Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng
2015-02-01
Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.
Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng
2014-01-01
Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157
Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng
2015-02-01
Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.
Yang, Yi; Yang, Jiao; Fang, Chen; Wang, Jihui; Gu, Dongyu; Tian, Jing; Ito, Yoichiro
2018-05-25
The intermittently pressed tubing was introduced in type-I counter-current chromatographic system as the separation column to improve the separation performance in the present study. The separations were performed with two different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW) and hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMW) using dipeptides and DNP-amino acids as test samples, respectively. The chromatographic performance was evaluated in terms of retention of the stationary phase (Sf), theoretical plate (N) and peak resolution (Rs). In general, the type-I planetary motion with the multilayer coil of non-modified standard tubing can yield the best separation at a low revolution speed of 200 rpm with lower flow rate. The present results with intermittently pressed tubing indicated that the performance was also optimal at the revolution speed of 200 rpm where the lower flow rate was more beneficial to retention of stationary phase and resolution. In the moderately hydrophobic two-phase solvent system composed of hexane-ethyl acetate-metanol-0.1 M hydrochloric acid (1:1:1:1, v/v), DNP-amino acids were separated with Rs at 1.67 and 1.47, respectively, with 12.66% of stationary phase retention at a flow rate of 0.25 ml/min. In the polar solvent system composed of 1-butanol-acetic acid-water (4:1:5, v/v), dipeptide samples were resolved with Rs at 2.18 and 18.75% of stationary phase retention at a flow rate of 0.25 ml/min. These results indicate that the present system substantially improves the separation efficiency of type-I counter-current chromatographic system. Published by Elsevier B.V.
Ortega, Elena; Walsh, Margaret M
2014-02-01
Because dental hygiene education has had a similar trajectory as nursing education, this critical review addressed the question "What can the dental hygiene discipline learn from the nursing experience in their development of doctoral education?" Information on admission and degree requirements, modes of instruction, and program length and cost was collected from the websites associated with 112 of 125 PhD nursing programs nationally, and 174 of 184 Doctor of Nursing Practice (DNP) programs. In addition, searches of PubMed, Cumulative Index Nursing Allied Health Literature (CINAHL) and the Web of Science were utilized to identify key articles and books. The following 4 insights relevant to future dental hygiene doctoral education emerged from a review of nursing doctoral education: First, nursing doctoral education offers 2 main doctoral degrees, the research-focused PhD degree and the practice-focused DNP degree. Second, there is a well-documented need for doctoral prepared nurses to teach in nursing programs at all levels in managing client-care settings. Third, curricula quality and consistency is a priority in nursing education. Fourth, there are numerous templates on nursing doctoral education available. The historical background of nursing doctoral education was also reviewed, with the assumption that it can be used to inform the dental hygiene discipline when establishing doctoral dental hygiene education. The authors recommend that with the current changes toward medically and socially compromised patient populations, impending changes in health care policies and the available critical mass of master degree-prepared dental hygiene scholars ready to advance the discipline, now is the time for the dental hygiene discipline to establish doctoral education.
Turbulent heat transfer and nanofluid flow in a protruded ribbed square passage
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Kothiyal, Alok Darshan; Bisht, Mangal Singh; Kumar, Anil
In this article, turbulent heat transfer of nanofluid flow in square passage with protruded rib shape is numerically and experimentally studied over Reynolds number ranges of 4000-18000. Different nanoparticles (Al2O3, CuO, and ZnO), with different concentration (φ) range of 1-4% and different nanoparticle diameter (dnp) range of 30-45 nm are disperse in water (base fluid). Several parameters such as stream wise distance (Xs /dp) range of 1.4-2.6, span wise distance (Ys /dp) range of 1.4-2.6, ratio of protruded height to print diameter (ep /dp) range of 0.83-1.67 also studied to find the consequence on thermal and hydrodynamic characteristics. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and ribbed square channel using commercial CFD software, ANSYS 15.0 (Fluent). Renormalization k - ε model was employed to assess the influence of protruded ribs on turbulent flow and velocity field. The outcome indicates that Al2O3 nanofluid has the highest value of average Nusselt number as compare to other nanofluids. The average Nusselt number increases as the concentration increases and it decreases as nanoparticle diameter increases. The thermal hydrodynamic performance parameter based on equal pumping power, average Nusselt number and average friction factor were found to be highest for Al2O3, φ = 0.04, dnp = 30 nm, Xs /dp = 1.8, Ys /dp = 1.8 and ep /dp = 1.0 . The numerical data are compared with the corresponding experimental data. Comparison between CFD and experimental analysis results showed that good agreement as the data fell within ±7.0% error band.
Li, Lin; Sheng, Xuan; Zhao, Shanhong; Zou, Lifang; Han, Xinyao; Gong, Yingxin; Yuan, Huilong; Shi, Liran; Guo, Lili; Jia, Tianyu; Liu, Shuangmei; Wu, Bing; Yi, Zhihua; Liu, Hui; Gao, Yun; Li, Guilin; Li, Guodong; Zhang, Chunping; Xu, Hong; Liang, Shangdong
2017-12-01
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus (DM). More than 90% of all cases of DM belong to type 2 diabetes mellitus (T2DM). Emodin is the main active component of Radix et rhizoma rhei and has anti-bacterial, anti-viral, anti-ulcerogenic, anti-inflammatory, and anti-cancer effects. Nanoparticle encapsulation of drugs is beneficial for drug targeting and bioavailability as well as for lowering drug toxicity side effects. The aim of this study was to investigate the effects of nanoparticle-encapsulated emodin (nano emodin) on diabetic neuropathic pain (DNP) mediated by the Purin 2X3 (P2X3) receptor in the dorsal root ganglia (DRG). Mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in T2DM rats were lower than those of control rats. MWT and TWL in T2DM rats treated with nano emodin were higher compared with those in T2DM rats. Expression levels of P2X3 protein and messenger RNA (mRNA) in the DRG of T2DM rats were higher than those of controls, while levels in T2DM rats treated with nano emodin were significantly lower than those of the T2DM rats. Phosphorylation and activation of ERK1/2 in the T2DM DRG were decreased by nano emodin treatment. Nano emodin significantly inhibited currents activated by the P2X3 agonist α,β-meATP in HEK293 cells transfected with the P2X3 receptor. Therefore, nano emodin treatment may relieve DNP by decreasing excitatory transmission mediated by the DRG P2X3 receptor in T2DM rats.
Bastiaansen, Jessica A. M.; Yoshihara, Hikari A. I.; Capozzi, Andrea; Schwitter, Juerg; Gruetter, Rolf; Merritt, Matthew E.; Comment, Arnaud
2018-01-01
Purpose To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13C-labeled substrate mixture prepared using photo-induced non-persistent radicals. Methods Droplets of mixed [1-13C]pyruvic and [1-13C]butyric acids were frozen into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet (UV) light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization (DNP) in a 7T polarizer, the beads were dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. Results UV-irradiation created non-persistent radicals in a mixture containing 13C-labeled pyruvic and butyric acids and enabled the hyperpolarization of both substrates by DNP. Ethanol addition increased the radical concentration from 16 to 26 mM. Liquid-state 13C polarization was 3% inside the pump at the time of injection, and increased to 5% by addition of ethanol to the substrate mixture prior to UV irradiation. In the rat heart, the in vivo13C signals from lactate, alanine, bicarbonate and acetylcarnitine were detected following the metabolism of the injected substrate mixture. Conclusion Co-polarization of two 13C-labeled substrates and the detection of their myocardial metabolism in vivo was achieved without using persistent radicals. The absence of radicals in the solution containing the hyperpolarized 13C-substrates may simplify the translation to clinical use because no filtration is required prior to injection. PMID:29411415
Solid effect in magic angle spinning dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.
2012-08-01
For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω _0 ^{ - 2} field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of 1H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear 1H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.
A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.
Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A
2016-04-01
Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Zhang, Ya-Qian; Blatov, Vladislav A; Zheng, Tian-Rui; Yang, Chang-Hao; Qian, Lin-Lu; Li, Ke; Li, Bao-Long; Wu, Bing
2018-05-01
A zinc(ii) coordination polymer {[Zn3(mtrb)3(btc)2]·3H2O}n (1) was synthesized and characterized (mtrb = 1,3-bis(1,2,4-triazole-4-ylmethyl)benzene, btc = 1,3,5-benzenetricarboxylate). The polymer 1 shows an unusual (3,4,4)-coordinated self-catenated 3D network with the point symbol of {63}2{62·82·102}{64·82}2. The polymer 1 is the first luminescent sensor for the detection of 2-amino-4-nitrophenol (ANP). The polymer 1 is also a good luminescence sensor for detection of TNP, 2,4-DNP, 4-NP, ANP and 2-NP in MeOH, particularly for TNP. The order of detection efficiency is TNP > 2,4-DNP > 4-NP > ANP > 2-NP. The polymer 1 also exhibits high sensitivity and selectivity as a luminescence sensor for the detection of Fe3+, Cr2O72- and CrO42- in aqueous solution. Our experiments showed that the presence of interfering ions had no significant effect on the sensing of Fe3+, Cr2O72- or CrO42- ions. The detection limits for TNP, ANP, Fe3+, Cr2O72- and CrO42- are 0.22 μM, 4.12 μM, 1.78 μM, 2.83 μM, and 4.52 μM, respectively. The luminescence sensor is stable and can be recycled for detection at least five times. The possible quenching mechanisms are discussed. The polymer 1 is also an effective photocatalyst for degradation of methylene blue (MB) under visible or UV light irradiation.
Robust techniques for polarization and detection of nuclear spin ensembles
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Schwartz, Ilai; Müller, Samuel; Chen, Qiong; Dhand, Ish; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2017-11-01
Highly sensitive nuclear spin detection is crucial in many scientific areas including nuclear magnetic resonance spectroscopy, magnetic resonance imaging (MRI), and quantum computing. The tiny thermal nuclear spin polarization represents a major obstacle towards this goal which may be overcome by dynamic nuclear spin polarization (DNP) methods. The latter often rely on the transfer of the thermally polarized electron spins to nearby nuclear spins, which is limited by the Boltzmann distribution of the former. Here we utilize microwave dressed states to transfer the high (>92 % ) nonequilibrium electron spin polarization of a single nitrogen-vacancy center (NV) induced by short laser pulses to the surrounding 13C carbon nuclear spins. The NV is repeatedly repolarized optically, thus providing an effectively infinite polarization reservoir. A saturation of the polarization of the nearby nuclear spins is achieved, which is confirmed by the decay of the polarization transfer signal and shows an excellent agreement with theoretical simulations. Hereby we introduce the polarization readout by polarization inversion method as a quantitative magnetization measure of the nuclear spin bath, which allows us to observe by ensemble averaging macroscopically hidden polarization dynamics like Landau-Zener-Stückelberg oscillations. Moreover, we show that using the integrated solid effect both for single- and double-quantum transitions nuclear spin polarization can be achieved even when the static magnetic field is not aligned along the NV's crystal axis. This opens a path for the application of our DNP technique to spins in and outside of nanodiamonds, enabling their application as MRI tracers. Furthermore, the methods reported here can be applied to other solid state systems where a central electron spin is coupled to a nuclear spin bath, e.g., phosphor donors in silicon and color centers in silicon carbide.
Bouarab, L; Dauta, A; Loudiki, M
2004-06-01
The main objective of this study was to determine the importance of secondary mechanism of organic carbon utilization (mixotrophic and heterotrophic modes) in addition to CO2 fixation (photoautotrophic mode) in the green alga, Micractinium pusillum Fresenius (chlorophyta), isolated from a waste stabilization pond. The growth was studied in the presence of acetate and glucose. The incorporation rate of 14C- acetate was measured in the light and in the dark at different concentrations. Finally, in order to underline the role of photosynthesis and respiration processes in the acetate assimilation, the effect of two specific metabolic inhibitors, a specific inhibitor of photosystem II (DCMU) and an uncoupler respiratory (DNP), has been studied. The obtained results showed that M. pusillum grows in the presence of organic substrates, i.e., glucose and acetate, in the light (mixotrophic growth) as well as in the dark (Heterotrophic growth). The growth was much more important in the light than in the dark and more in the presence of glucose than of acetate. In the light, the presence of acetate led to a variation of growth parameters mumax, iotaopt, and beta. The effect of acetate gradient on the growth of the microalga was severe as soon as its concentration in the medium was higher. The acetate uptake followed a Michaelis-Menten kinetic in the light as well as in the dark. The capacity of assimilation was slightly higher in the dark. The utilization of DNP and DCMU indicates that acetate incorporation is an active process depending on both anabolic (photosynthesis) and catabolic (respiration) metabolisms, corroborating the model of the Michaelis-Menten kinetic.
Transient elevation of glycolysis confers radio-resistance by facilitating DNA repair in cells.
Bhatt, Anant Narayan; Chauhan, Ankit; Khanna, Suchit; Rai, Yogesh; Singh, Saurabh; Soni, Ravi; Kalra, Namita; Dwarakanath, Bilikere S
2015-05-01
Cancer cells exhibit increased glycolysis for ATP production (the Warburg effect) and macromolecular biosynthesis; it is also linked with therapeutic resistance that is generally associated with compromised respiratory metabolism. Molecular mechanisms underlying radio-resistance linked to elevated glycolysis remain incompletely understood. We stimulated glycolysis using mitochondrial respiratory modifiers (MRMs viz. di-nitro phenol, DNP; Photosan-3, PS3; Methylene blue, MB) in established human cell lines (HEK293, BMG-1 and OCT-1). Glucose utilization and lactate production, levels of glucose transporters and glycolytic enzymes were investigated as indices of glycolysis. Clonogenic survival, DNA repair and cytogenetic damage were studied as parameters of radiation response. MRMs induced the glycolysis by enhancing the levels of two important regulators of glucose metabolism GLUT-1 and HK-II and resulted in 2 fold increase in glucose consumption and lactate production. This increase in glycolysis resulted in resistance against radiation-induced cell death (clonogenic survival) in different cell lines at an absorbed dose of 5 Gy. Inhibition of glucose uptake and glycolysis (using fasentin, 2-deoxy-D-glucose and 3-bromopyruvate) in DNP treated cells failed to increase the clonogenic survival of irradiated cells, suggesting that radio-resistance linked to inhibition of mitochondrial respiration is glycolysis dependent. Elevated glycolysis also facilitated rejoining of radiation-induced DNA strand breaks by activating both non-homologous end joining (NHEJ) and homologous recombination (HR) pathways of DNA double strand break repair leading to a reduction in radiation-induced cytogenetic damage (micronuclei formation) in these cells. These findings suggest that enhanced glycolysis generally observed in cancer cells may be responsible for the radio-resistance, partly by enhancing the repair of DNA damage.
Ratner, Veniamin; Sosunov, Sergey A; Niatsetskaya, Zoya V; Utkina-Sosunova, Irina V; Ten, Vadim S
2013-12-01
Hyperoxia inhibits pulmonary bioenergetics, causing delayed alveolarization in mice. We hypothesized that mechanical ventilation (MV) also causes a failure of bioenergetics to support alveolarization. To test this hypothesis, neonatal mice were ventilated with room air for 8 hours (prolonged) or for 2 hours (brief) with 15 μl/g (aggressive) tidal volume (Tv), or for 8 hours with 8 μl/g (gentle) Tv. After 24 hours or 10 days of recovery, lung mitochondria were examined for adenosine diphosphate (ADP)-phosphorylating respiration, using complex I (C-I)-dependent, complex II (C-II)-dependent, or cytochrome C oxidase (C-IV)-dependent substrates, ATP production rate, and the activity of C-I and C-II. A separate cohort of mice was exposed to 2,4-dinitrophenol (DNP), a known uncoupler of oxidative phosphorylation. At 10 days of recovery, pulmonary alveolarization and the expression of vascular endothelial growth factor (VEGF) were assessed. Sham-operated littermates were used as control mice. At 24 hours after aggressive MV, mitochondrial ATP production rates and the activity of C-I and C-II were significantly decreased compared with control mice. However, at 10 days of recovery, only mice exposed to prolonged-aggressive MV continued to exhibit significantly depressed mitochondrial respiration. This was associated with significantly poorer alveolarization and VEGF expression. In contrast, mice exposed to brief-aggressive or prolonged-gentle MV exhibited restored mitochondrial ADP-phosphorylation, normal alveolarization and pulmonary VEGF content. Exposure to DNP fully replicated the phenotype consistent with alveolar developmental arrest. Our data suggest that the failure of bioenergetics to support normal lung development caused by aggressive and prolonged ventilation should be considered a fundamental mechanism for the development of bronchopulmonary dysplasia in premature neonates.
Kubohara, Yuzuru; Kikuchi, Haruhisa; Nguyen, Van Hai; Kuwayama, Hidekazu; Oshima, Yoshiteru
2017-06-15
Differentiation-inducing factor-1 [1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one (DIF-1)] is an important regulator of cell differentiation and chemotaxis in the development of the cellular slime mold Dictyostelium discoideum However, the entire signaling pathways downstream of DIF-1 remain to be elucidated. To characterize DIF-1 and its potential receptor(s), we synthesized two fluorescent derivatives of DIF-1, boron-dipyrromethene (BODIPY)-conjugated DIF-1 (DIF-1-BODIPY) and nitrobenzoxadiazole (NBD)-conjugated DIF-1 (DIF-1-NBD), and investigated their biological activities and cellular localization. DIF-1-BODIPY (5 µM) and DIF-1 (2 nM) induced stalk cell differentiation in the DIF-deficient strain HM44 in the presence of cyclic adenosine monosphosphate (cAMP), whereas DIF-1-NBD (5 µM) hardly induced stalk cell differentiation under the same conditions. Microscopic analyses revealed that the biologically active derivative, DIF-1-BODIPY, was incorporated by stalk cells at late stages of differentiation and was localized to mitochondria. The mitochondrial uncouplers carbonyl cyanide m -chlorophenylhydrazone (CCCP), at 25-50 nM, and dinitrophenol (DNP), at 2.5-5 µM, induced partial stalk cell differentiation in HM44 in the presence of cAMP. DIF-1-BODIPY (1-2 µM) and DIF-1 (10 nM), as well as CCCP and DNP, suppressed chemotaxis in the wild-type strain Ax2 in shallow cAMP gradients. These results suggest that DIF-1-BODIPY and DIF-1 induce stalk cell differentiation and modulate chemotaxis, at least in part, by disturbing mitochondrial activity. © 2017. Published by The Company of Biologists Ltd.
Kikuchi, Haruhisa; Nguyen, Van Hai; Kuwayama, Hidekazu; Oshima, Yoshiteru
2017-01-01
ABSTRACT Differentiation-inducing factor-1 [1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one (DIF-1)] is an important regulator of cell differentiation and chemotaxis in the development of the cellular slime mold Dictyostelium discoideum. However, the entire signaling pathways downstream of DIF-1 remain to be elucidated. To characterize DIF-1 and its potential receptor(s), we synthesized two fluorescent derivatives of DIF-1, boron-dipyrromethene (BODIPY)-conjugated DIF-1 (DIF-1-BODIPY) and nitrobenzoxadiazole (NBD)-conjugated DIF-1 (DIF-1-NBD), and investigated their biological activities and cellular localization. DIF-1-BODIPY (5 µM) and DIF-1 (2 nM) induced stalk cell differentiation in the DIF-deficient strain HM44 in the presence of cyclic adenosine monosphosphate (cAMP), whereas DIF-1-NBD (5 µM) hardly induced stalk cell differentiation under the same conditions. Microscopic analyses revealed that the biologically active derivative, DIF-1-BODIPY, was incorporated by stalk cells at late stages of differentiation and was localized to mitochondria. The mitochondrial uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP), at 25–50 nM, and dinitrophenol (DNP), at 2.5–5 µM, induced partial stalk cell differentiation in HM44 in the presence of cAMP. DIF-1-BODIPY (1–2 µM) and DIF-1 (10 nM), as well as CCCP and DNP, suppressed chemotaxis in the wild-type strain Ax2 in shallow cAMP gradients. These results suggest that DIF-1-BODIPY and DIF-1 induce stalk cell differentiation and modulate chemotaxis, at least in part, by disturbing mitochondrial activity. PMID:28619991
A modern history of psychiatric-mental health nursing.
Hein, Laura C; Scharer, Kathleen M
2015-02-01
This paper discusses the progression of developments in psychiatric-mental health nursing from the 1960s to the present. The 1960s were a time of shortage of psychiatric APRNs, with legislation expanding the availability of mental health services. We find ourselves in a similar time with 7 million new health insurance enrollees, because of the Affordable Care Act (ACA). The expansion of health insurance coverage comes at a time when some colleges of nursing are closing master's programs in psychiatric-mental health, in lieu of the DNP mandate from the American Association of Colleges of Nursing. Is history repeating itself? Copyright © 2014 Elsevier Inc. All rights reserved.
The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.
Stuhrmann, Heinrich B
2007-11-01
Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.
Fullerene carbon-70 derivatives dampen anaphylaxis and allergic asthma pathogenesis in mice
NASA Astrophysics Data System (ADS)
Norton, Sarah Brooke
Fullerenes are carbon nanospheres that can be solublized by the addition of polar chemical groups to the carbon cage, forming fullerene derivatives. One specifically derivatized fullerene compound, termed C 70-Tetragylocolate (C70-TGA), has been shown to stabilize mast cell responses in vitro thus we hypothesized it may have an effect on mast cell-driven diseases such as asthma and systemic anaphylaxis. To observe the effects of C70-TGA on systemic anaphylaxis, mice were subjected to a model of passive systemic anaphylaxis. In this model, mice were injected with DNP-specific IgE 16 hours prior to challenge, then treated with C 70-TGA. Immediately prior to DNP challenge, mice were subjected to a second injection of C70-TGA. Following DNP challenge, body temperature was recorded and blood was collected for quantitation of histamine levels. Treatment with C70-TGA significantly reduced body temperature drop associated with systemic anaphylaxis and serum histamine levels. To observe the effects of C70-TGA on chronic features of asthma in vivo, we utilized a heavily MC influenced model of asthma pathogenesis. Mice were sensitized by intraperitoneal (i.p.) injection of ovalbumin (OVA) in saline, challenged intranasally (i.n.) with OVA, and one of two treatment strategies was pursued. In one, C70-TGA was given i.n. throughout disease development. In the other, C70-TGA was given following an initial set of challenges to allow disease to develop prior to treatment; mice were then re-challenged with OVA to assess the effect on established disease. We found that C70-TGA treatment significantly reduced airway inflammation and eosinophilia and dramatically reduced bronchoconstriction in either model. Cytokines IL-4 and IL-5 and serum IgE levels are significantly reduced in C70-TGA treated animals. Interestingly, we also saw an increase in the anti-inflammatory eicosanoid 11, 12-epoxyeicosatreinoic acid (11,12-EET) in the BAL fluid, suggesting the involvement of this mediator in C70-TGA inhibition. Further experiments utilizing an inhibitor of 11,12-EET formation (6-(2-Propargyloxyphenyl)hexanoic acid) and a structural analog of 14,15-EET (14,15-EE-5(Z)-E) in vivo indicate that these mediators are closely associated with C70-TGA mediated inhibition as their inhibition reverses the anti-inflammatory effects of C70-TGA. Importantly, mice did not exhibit any acute toxicity following C70-TGA treatment and liver and kidney function were normal. Collectively, these results show that the fullerene C70 derivative C70-TGA is capable of dampening severe allergic responses including systemic anaphylaxis, airway inflammation, and bronchoconstriction. The mechanism of inhibition is through the upregulation of the anti-inflammatory EETs, which may dampen mast cell degranulation in vivo, thus contributing to the inhibitory effect of C70-TGA on allergic disease
McNab, Hamish; Montgomery, James; Parsons, Simon; Tredgett, David G
2010-10-07
Pyrrolizine-1,3-dione 4 was made by oxidation of the alcohol 2 using pyridinium chlorochromate. The dione 4 shows ketone properties (e.g. formation of DNP derivative 11) and, in common with other pyrrolizinones, the lactam unit is readily ring-opened by methanol under basic conditions. The active methylene unit of 4 couples readily with diazonium salts to provide the hydrazone 15 whose structure was confirmed by X-ray crystallography. The 'Meldrumsated' derivative 18 exists exclusively as the tautomer 18F; flash vacuum pyrolysis (FVP) of 18 at 700 degrees C gives the pyronopyrrolizine 20 exclusively. Reaction of 4 with DMF acetal gives the dimethylaminomethylene derivative 22 which exists as a mixture of rotamers at room temperature.
The Production of the AGARD Multilingual Aeronautical Dictionary Using Computer Techniques,
1981-04-01
INl 10161 AnfliigknapuN if) 1 6877 Abatugalau (t) 10068 Ahkjntut, . fiI 10642 Anftigkannolfea (I1867 Ah.ug nng ft) 10062 skususocl, Aussabiohung 111...jA jin00 I.... (. . 167 ipndn I10063 ni-- M--1 M 13632 dAjinn!,-O In -1611’nn .*,.oIi P67 ,n . , 10062 d..-0a~ 1-014~~ /V *A 10064 .. n.lj If).t~ 1016...oilnn~nnn (0621 I) 10062 dnp4In.,l*tI0q 18891 aalln’." I/) IWAn.,0I 104s 16 0 ......nln In) )-d/ IVAann.. 14606 ipinO n W66 eggs~ l d n/njf l (If) d~p
Jiang, Donglei; Zhu, Pei; Jiang, Hui; Ji, Jian; Sun, Xiulan; Gu, Wenshu; Zhang, Genyi
2015-08-15
In this study, a novel electrochemical rat basophilic leukemia cell (RBL-2H3) cell sensor, based on fluorescent magnetic beads, has been developed for the detection and evaluation of different allergens in foodstuffs. Fluorescein isothiocyanate (FITC) was successfully fused inside the SiO2 layer of SiO2 shell-coated Fe3O4 nanoparticles, which was superior to the traditional Fe3O4@SiO2@FITC modification process. The as-synthesized fluorescent magnetic beads were then encapsulated with lipidosome to form cationic magnetic fluorescent nanoparticles (CMFNPs) for mast cell magnetofection. The CMFNPs were then characterized by SEM, TEM, VSM, FTIR, and XRD analyses, and transfected into RBL-2H3 cells through a highly efficient, lipid-mediated magnetofection procedure. Magnetic glassy carbon electrode (MGCE), which possesses excellent reproducibility and regeneration qualities, was then employed to adsorb the CMFNP-transfected RBL-2H3 cells activated by an allergen antigen for electrochemical assay. Results show that the exposure of model antigen-dinitrophenol-bovine serum albumin (DNP-BSA) to anti-DNP IgE-sensitized mast cells induced a robust and long-lasting electrochemical impedance signal in a dose-dependent manner. The detection limit was identified at 3.3×10(-4) ng/mL. To demonstrate the utility of this mast cell-based biosensor for detection of real allergens in foodstuffs, Anti-Pen a1 IgE and Anti-PV IgE-activated cells were employed to quantify both shrimp allergen tropomyosin (Pen a 1) and fish allergen parvalbumin (PV). Results show high detection accuracy for these targets, with a limit of 0.03 μg/mL (shrimp Pen a 1) and 0.16 ng/mL (fish PV), respectively. To this effect, we conclude the proposed method is a facile, highly sensitive, innovative electrochemical method for the evaluation of food allergens. Copyright © 2015 Elsevier B.V. All rights reserved.
Peng, Haiying; Zou, Lifang; Xie, Jinyan; Wu, Hong; Wu, Bing; Zhu, Gaochun; Lv, Qiulan; Zhang, Xi; Liu, Shuangmei; Li, Guilin; Xu, Hong; Gao, Yun; Xu, Changshui; Zhang, Chunping; Wang, Shouyu; Xue, Yun; Liang, Shangdong
2017-01-01
Long noncoding RNAs (lncRNAs) participate in physiological and pathophysiological processes. Type 2 diabetes mellitus (T2DM) accounts for more than 90 % of all cases of diabetes mellitus (DM). Diabetic neuropathic pain (DNP) is a common complication of T2DM. The aim of this study was to investigate the effects of lncRNA NONRATT021972 small interference RNA (siRNA) on DNP mediated by the P2X 3 receptor in dorsal root ganglia (DRG). These experiments showed that the expression levels of NONRATT021972 in DRG were increased in the T2DM rat model (intraperitoneal injection of STZ with 30 mg/kg). The concentration of NONRATT021972 in T2DM patient serum was higher compared to control healthy subjects. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in T2DM rats were lower compared to control rats. MWT and TWL in T2DM rats treated with NONRATT021972 siRNA were higher compared with those in T2DM rats. The expression levels of the P2X 3 protein and messenger RNA (mRNA) of T2DM rat DRG were higher compared to the control, while those in T2DM rats treated with NONRATT021972 siRNA were significantly lower compared to T2DM rats. The level of tumor necrosis factor-α (TNF-α) in the serum of T2DM rats treated with NONRATT021972 siRNA was significantly decreased compared with T2DM rats. NONRATT021972 siRNA inhibited the phosphorylation and activation of ERK1/2 in T2DM DRG. Thus, NONRATT021972 siRNA treatment may suppress the upregulated expression and activation of the P2X 3 receptor and reduce the hyperalgesia potentiated by the pro-inflammatory cytokine TNF-α in T2DM rats.
Navarro, Sergio M.; Sokunbi, Olumide F.; Haeberle, Heather S.; Schickendantz, Mark S.; Mont, Michael A.; Figler, Richard A.; Ramkumar, Prem N.
2017-01-01
Background: A short-term protocol for evaluation of National Football League (NFL) athletes incurring concussion has yet to be fully defined and framed in the context of the short-term potential team and career longevity, financial risk, and performance. Purpose: To compare the short-term career outcomes for NFL players with concussions by analyzing the effect of concussions on (1) franchise release rate, (2) career length, (3) salary, and (4) performance. Study Design: Cohort study; Level of evidence, 3. Methods: NFL player transaction records and publicly available injury reports from August 2005 to January 2016 were analyzed. All players sustaining documented concussions were evaluated for a change to inactive or DNP (“did not participate”) status. A case-control design compared franchise release rates and remaining NFL career span. Career length was analyzed via survival analysis. Salary and performance differences were analyzed with publicly available contract data and a performance-scoring algorithm based on position/player level. Results: Of the 5894 eligible NFL players over the 11-year period, 307 sustained publicly reported concussions resulting in the DNP injury protocol. Analysis of the probability of remaining in the league demonstrated a statistically significantly shorter career length for the concussion group at 3 and 5 years after concussion. The year-over-year change in contract value for the concussion group resulted in a mean overall salary reduction of $300,000 ± $1,300,000 per year (interquartile range, –$723,000 to $450,000 per year). The performance score reduction for all offensive scoring players sustaining concussions was statistically significant. Conclusion: This retrospective study demonstrated that NFL players who sustain a concussion face a higher overall franchise release rate and shorter career span. Players who sustained concussions may incur significant salary reductions and perform worse after concussion. Short-term reductions in longevity, performance, and salary after concussion exist and deserve additional consideration. PMID:29226164
Navarro, Sergio M; Sokunbi, Olumide F; Haeberle, Heather S; Schickendantz, Mark S; Mont, Michael A; Figler, Richard A; Ramkumar, Prem N
2017-11-01
A short-term protocol for evaluation of National Football League (NFL) athletes incurring concussion has yet to be fully defined and framed in the context of the short-term potential team and career longevity, financial risk, and performance. To compare the short-term career outcomes for NFL players with concussions by analyzing the effect of concussions on (1) franchise release rate, (2) career length, (3) salary, and (4) performance. Cohort study; Level of evidence, 3. NFL player transaction records and publicly available injury reports from August 2005 to January 2016 were analyzed. All players sustaining documented concussions were evaluated for a change to inactive or DNP ("did not participate") status. A case-control design compared franchise release rates and remaining NFL career span. Career length was analyzed via survival analysis. Salary and performance differences were analyzed with publicly available contract data and a performance-scoring algorithm based on position/player level. Of the 5894 eligible NFL players over the 11-year period, 307 sustained publicly reported concussions resulting in the DNP injury protocol. Analysis of the probability of remaining in the league demonstrated a statistically significantly shorter career length for the concussion group at 3 and 5 years after concussion. The year-over-year change in contract value for the concussion group resulted in a mean overall salary reduction of $300,000 ± $1,300,000 per year (interquartile range, -$723,000 to $450,000 per year). The performance score reduction for all offensive scoring players sustaining concussions was statistically significant. This retrospective study demonstrated that NFL players who sustain a concussion face a higher overall franchise release rate and shorter career span. Players who sustained concussions may incur significant salary reductions and perform worse after concussion. Short-term reductions in longevity, performance, and salary after concussion exist and deserve additional consideration.
FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.
Safaralizadeh, Reza; Soheili, Zahra-Soheila; Deezagi, Abdolkhaleg; Pourpak, Zahra; Samiei, Shahram; Moin, Mostafa
2009-12-01
FcepsilonRI, The high affinity receptor for IgE plays a critical role in triggering the allergic reactions. It is responsible for inducing mast cell degranulation and deliberation of allergy mediators when it is aggregated by allergen and IgE complexes. FcepsilonRI on the mast cells consists of three subunits; alpha chain directly binds IgE, beta chain and dimmer of gamma chains together mediate intracellular signaling. Cross-linking of IgE-bound FcepsilonRI on the surface of mast cells and basophils by the multivalent antigen induces release of chemical mediators. The present in vitro study was designed to investigate the effect of synthetic FcepsilonRI-alpha siRNA on the antigen-induced activation of MC/9 cells. MC/9 cells which are murine mast cells were transfected by FcepsilonRI-alpha siRNA and negative control siRNA. After 6 h, anti-DNP (Dinitrophenyl) IgE was used for the cells sensitization. Then the cells were challenged with Dinitrophenyl-Human Serum Albumin (DNP-HSA) for mast cell degranulation induction before collection of supernatants. The amount of mRNA and protein expression was measured by Real Time PCR and western blot analysis, respectively. Determination of the expression rate of FcepsilonRI-alpha on cell surface was achieved by flow cytometry. ELISA and spectrophotometry methods were used subsequently for measuring the effects of FcepsilonRI-alpha siRNA on antigen-induced histamine and beta-hexosaminidase release. FcepsilonRI-alpha siRNA treated cells showed significant decrease in FcepsilonRI-alpha mRNA and protein expression in comparison to control cells. FcepsilonRI-mediated mast cell release of beta-hexosaminidase and histamine were also inhibited. In this study it was shown that FcepsilonRI-alpha siRNA could suppress FcepsilonRI-alpha expression and inhibited degranulation and histamine release in antigen-stimulated MC/9 cells. In conclusion, knock-down of FcepsilonRI-alpha by siRNA could be a promising method for inhibition of the mast cell-mediated allergic reactions.
An Optimized Method for the Measurement of Acetaldehyde by High-Performance Liquid Chromatography
Guan, Xiangying; Rubin, Emanuel; Anni, Helen
2011-01-01
Background Acetaldehyde is produced during ethanol metabolism predominantly in the liver by alcohol dehydrogenase, and rapidly eliminated by oxidation to acetate via aldehyde dehydrogenase. Assessment of circulating acetaldehyde levels in biological matrices is performed by headspace gas chromatography and reverse phase high-performance liquid chromatography (RP-HPLC). Methods We have developed an optimized method for the measurement of acetaldehyde by RP-HPLC in hepatoma cell culture medium, blood and plasma. After sample deproteinization, acetaldehyde was derivatized with 2,4-dinitrophenylhydrazine (DNPH). The reaction was optimized for pH, amount of derivatization reagent,, time and temperature. Extraction methods of the acetaldehyde-hydrazone (AcH-DPN) stable derivative and product stability studies were carried out. Acetaldehyde was identified by its retention time in comparison to AcH-DPN standard, using a new chromatography gradient program, and quantitated based on external reference standards and standard addition calibration curves in the presence and absence of ethanol. Results Derivatization of acetaldehyde was performed at pH 4.0 with a 80-fold molar excess of DNPH. The reaction was completed in 40 min at ambient temperature, and the product was stable for 2 days. A clear separation of AcH-DNP from DNPH was obtained with a new 11-min chromatography program. Acetaldehyde detection was linear up to 80 μM. The recovery of acetaldehyde was >88% in culture media, and >78% in plasma. We quantitatively determined the ethanol-derived acetaldehyde in hepatoma cells, rat blood and plasma with a detection limit around 3 μM. The accuracy of the method was <9% for intraday and <15% for interday measurements, in small volume (70 μl) plasma sampling. Conclusions An optimized method for the quantitative determination of acetaldehyde in biological systems was developed using derivatization with DNPH, followed by a short RP-HPLC separation of AcH-DNP. The method has an extended linear range, is reproducible and applicable to small volume sampling of culture media and biological fluids. PMID:21895715
Tahara, I; Kinouchi, T; Kataoka, K; Ohnishi, Y
1994-06-01
Organic materials were extracted from particulates exhausted from a small diesel engine (displacement 269 ml) by the ultrasonic extraction method with three different solvent systems, methanol, dichloromethane and a 4:1 (v:v) mixture of benzene and ethanol. These solvent-extracted materials were tested for mutagenic activity by the Ames Salmonella/microsome assay system using Salmonella typhimurium strains TA98, TA100, TA98NR and TA98/1,8-DNP6. The concentrations of 1-nitropyrene (1-NP) and 1,6-dinitropyrene (1,6-diNP) in these extracted materials were also measured after nitroreduction by high pressure liquid chromatography. The methanol-extracted and benzene-ethanol-extracted materials showed the lowest and the highest mutagenic activity, respectively. The methanol-extracted, dichloromethane-extracted and benzene-ethanol-extracted materials induced 260, 1,570 and 3,240 His+ revertants per plate per mg of extracted materials, respectively, from strain TA98 in the absence of S9 mix. These materials showed decreased mutagenicity for strains TA98NR and TA98/1,8-DNP6, indicating that the particulates in the diesel engine exhaust contained 1-NP and diNPs. Actually, the amount of 1-NP and 1,6-diNP in the methanol-extracted, dichloromethane-extracted and benzene-ethanol-extracted materials were 17.0 and 0.03 ng, 37.5 and 0.97 ng, and 71.3 and 1.03 ng per mg of extracted materials, respectively, accounting for 11.9 and 3.2%, 4.4 and 17.3%, and 4.0 and 8.9%, respectively, of the total mutagenicity of the extracted materials. From these results it is concluded that a mixture of benzene-ethanol (4:1, v/v) is the most suitable solvent for extraction of organic matter containing nitrated polycyclic aromatic hydrocarbons such as NPs from particulates in diesel engine exhaust.
Kaetzel, C S; Robinson, J K; Chintalacharuvu, K R; Vaerman, J P; Lamm, M E
1991-01-01
The polymeric immunoglobulin receptor (pIgR) on mucosal epithelial cells binds dimeric IgA (dIgA) on the basolateral surface and mediates transport of dIgA to the apical surface. Using Madin-Darby canine kidney epithelial cells stably transfected with pIgR cDNA, we found that soluble immune complexes (ICs) of 125I-labeled rat monoclonal antidinitrophenyl (DNP) dIgA (125I-dIgA) and DNP/biotin-bovine serum albumin were transported from the basolateral to the apical surface and then released. Monomeric IgA ICs were not transported, consistent with the specificity of pIgR for polymeric immunoglobulins. Essentially all the 125I-dIgA in apical culture supernatants was streptavidin precipitable, indicating that dIgA remained bound to antigen during transcytosis. While both dIgA and dIgA ICs bound pIgR with equal affinity (Kd approximately 8 nM), the number of high-affinity binding sites per cell was 2- to 3-fold greater for dIgA than for dIgA ICs. The extent of endocytosis of dIgA and dIgA ICs was correlated with the number of high-affinity binding sites. SDS/PAGE analysis of intracellular dIgA and dIgA ICs demonstrated that in both cases IgA remained undegraded during transport. The results suggest that the pathways of epithelial transcytosis of free dIgA and dIgA ICs are the same. Given the high population density of mucosal IgA plasma cells and the enormous surface area of pIgR-expressing mucosal epithelium, it is likely that significant local transcytosis of IgA ICs occurs in vivo. Such a process would allow direct elimination of IgA ICs at the mucosal sites where they are likely to form, thus providing an important defense function for IgA. Images PMID:1924341
McCarney, Evan R; Armstrong, Brandon D; Kausik, Ravinath; Han, Songi
2008-09-16
We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity (approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain motion and measurable water permeation through the soft structure.
Lumata, Lloyd L.; Martin, Richard; Jindal, Ashish K.; Kovacs, Zoltan; Conradi, Mark S.
2014-01-01
Objective We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of 13C polarization levels using free radicals that span a range of ESR linewidths. Materials and methods A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate 13C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m3/h roots blower. A hyperpolarized 13C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdipheny-lene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state 13C polarization levels for these samples were determined. Results 13C polarization levels close to 50 % were achieved for [1-13C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10–20 % 13C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. Conclusion At this field strength free radicals with smaller ESR linewidths are still superior for DNP of 13C as opposed to those with linewidths that exceed that of the 1H Larmor frequency. PMID:25120071
Hyperpolarized 15N-pyridine Derivatives as pH-Sensitive MRI Agents
Jiang, Weina; Lumata, Lloyd; Chen, Wei; Zhang, Shanrong; Kovacs, Zoltan; Sherry, A. Dean; Khemtong, Chalermchai
2015-01-01
Highly sensitive MR imaging agents that can accurately and rapidly monitor changes in pH would have diagnostic and prognostic value for many diseases. Here, we report an investigation of hyperpolarized 15N-pyridine derivatives as ultrasensitive pH-sensitive imaging probes. These molecules are easily polarized to high levels using standard dynamic nuclear polarization (DNP) techniques and their 15N chemical shifts were found to be highly sensitive to pH. These probes displayed sharp 15N resonances and large differences in chemical shifts (Δδ >90 ppm) between their free base and protonated forms. These favorable features make these agents highly suitable candidates for the detection of small changes in tissue pH near physiological values. PMID:25774436
Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
2017-10-13
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek
Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Joe; Carpenter, Michael P.; Casten, Richard
In preparation for the 2015 NSAC Long Range Plan (LRP), the DNP town meetings on Nuclear Astrophysics and Low-Energy Nuclear Physics were held at the Mitchell Center on the campus of Texas A&M University August 21–23, 2014. Participants met in a number of topic-oriented working groups to discuss progress since the 2007 LRP, compelling science opportunities, and the resources needed to advance them. These considerations were used to determine priorities for the next five to ten years. In addition, approximately 270 participants attended the meetings, coming from US national laboratories, a wide range of US universities and other research institutionsmore » and universities abroad.« less
Carlson, Joe; Carpenter, Michael P.; Casten, Richard; ...
2017-01-04
In preparation for the 2015 NSAC Long Range Plan (LRP), the DNP town meetings on Nuclear Astrophysics and Low-Energy Nuclear Physics were held at the Mitchell Center on the campus of Texas A&M University August 21–23, 2014. Participants met in a number of topic-oriented working groups to discuss progress since the 2007 LRP, compelling science opportunities, and the resources needed to advance them. These considerations were used to determine priorities for the next five to ten years. In addition, approximately 270 participants attended the meetings, coming from US national laboratories, a wide range of US universities and other research institutionsmore » and universities abroad.« less
North, J R; Dresser, D W
1977-01-01
A comparison has been made of the in vitro and in vivo response of primed mouse spleen cells to the hapten DNP. The responses were analysed in terms of six classes (sub-classes) of humoral antibody directed against the cross-reacting hapten TNP. By comparison with the response in intact mice the adoptive secondary response is delayed by 3 days in addition to being somewhat lesser in magnitude. The timing of the response in vitro is similar to that observed in intact mice. The preponderant class in all three responses was gammaG1 with gammaA and gammaG3 secreting cells consistently comprising the smallest proportion of the total of antibody-secreting cells. PMID:863475
North, J R; Dresser, D W
1977-05-01
A comparison has been made of the in vitro and in vivo response of primed mouse spleen cells to the hapten DNP. The responses were analysed in terms of six classes (sub-classes) of humoral antibody directed against the cross-reacting hapten TNP. By comparison with the response in intact mice the adoptive secondary response is delayed by 3 days in addition to being somewhat lesser in magnitude. The timing of the response in vitro is similar to that observed in intact mice. The preponderant class in all three responses was gammaG1 with gammaA and gammaG3 secreting cells consistently comprising the smallest proportion of the total of antibody-secreting cells.
Application of ex situ dynamic nuclear polarization in studying small molecules.
Ludwig, Christian; Marin-Montesinos, Ildefonso; Saunders, Martin G; Emwas, Abdul-Hamid; Pikramenou, Zoe; Hammond, Stephen P; Günther, Ulrich L
2010-06-14
Dynamic nuclear polarization (DNP) has become an attractive technique to boost the sensitivity of NMR experiments. In the case of ex situ polarizations two-dimensional (2D) spectra are limited by the short lifetime of the polarization after dissolution and sample transfer to a high field NMR magnet. This limitation can be overcome by various approaches. Here we show how the use of (13)C-labelled acetyl tags can help to obtain 2D-HMQC spectra for many small molecules, owing to a nuclear Overhauser enhancement between (13)C spins originating from the long-lived carbonyl carbon, which extends the lifetimes of other (13)C spins with shorter longitudinal relaxation times. We also show an alternative approach of using an optimized polarization matrix.
Lis, Gail A; Hanson, Patricia; Burgermeister, Diane; Banfield, Barbara
2014-01-01
The purpose of this article is to describe the evolution and implementation of a graduate nursing program's curricular framework. A number of factors contributed to the realization that the curricular framework needed revision. These factors included the rapid changes occurring in the U.S. health care system, the publication of the 2011 edition of the Essentials of Master's Education in Nursing, and the publication of the Institute of Medicine's report entitled The Future of Nursing: Leading Change, Advancing Health (2010). A careful analysis of key guiding documents resulted in the development of three central, interrelated concepts to guide this revision, namely, relationship-based care, creative inquiry, and leadership. Copyright © 2014 Elsevier Inc. All rights reserved.
Polarized targets in high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cates, G.D. Jr.
1994-12-01
Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, anmore » experiment to measure the spin structure function of the neutron, and is described in detail.« less
Natriuretic peptides: Diagnostic and therapeutic use
Pandit, Kaushik; Mukhopadhyay, Pradip; Ghosh, Sujoy; Chowdhury, Subhankar
2011-01-01
Natriuretic peptides (NPs) are hormones which are mainly secreted from heart and have important natriuretic and kaliuretic properties. There are four different groups NPs identified till date [atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), C-type natriuretic peptide (CNP) and dendroaspis natriuretic peptide, a D-type natriuretic peptide (DNP)], each with its own characteristic functions. The N-terminal part of the prohormone of BNP, NT-proBNP, is secreted alongside BNP and has been documented to have important diagnostic value in heart failure. NPs or their fragments have been subjected to scientific observation for their diagnostic value and this has yielded important epidemiological data for interpretation. However, little progress has been made in harnessing the therapeutic potential of these cardiac hormones. PMID:22145138
Using phase locking for improving frequency stability and tunability of THz-band gyrotrons
NASA Astrophysics Data System (ADS)
Adilova, Asel B.; Gerasimova, Svetlana A.; Melnikova, Maria M.; Tyshkun, Alexandra V.; Rozhnev, Andrey G.; Ryskin, Nikita M.
2018-04-01
Medium-power (10-100 W) THz-band gyrotrons operating in a continuous-wave (CW) mode are of great importance for many applications such as NMR spectroscopy with dynamic nuclear polarization (DNP/NMR), plasma diagnostics, nondestructive inspection, stand-off detection of radioactive materials, biomedical applications, etc. For all these applications, high frequency stability and tunability within 1-2 GHz frequency range is typically required. Apart from different existing techniques for frequency stabilization, phase locking has recently attracted strong interest. In this paper, we present the results of theoretical analysis and numerical simulation for several phase locking techniques: (a) phase locking by injection of the external driving signal; (b) mutual phase locking of two coupled gyrotrons; and (c) selfinjection locking by a wave reflected from the remote load.
Electrical detection of nuclear spin-echo signals in an electron spin injection system
NASA Astrophysics Data System (ADS)
Lin, Zhichao; Rasly, Mahmoud; Uemura, Tetsuya
2017-06-01
We demonstrated spin echoes of nuclear spins in a spin injection device with a highly polarized spin source by nuclear magnetic resonance (NMR). Efficient spin injection into GaAs from a half-metallic spin source of Co2MnSi enabled efficient dynamic nuclear polarization (DNP) and sensitive detection of NMR signals even at a low magnetic field of ˜0.1 T and a relatively high temperature of 4.2 K. The intrinsic coherence time T2 of 69Ga nuclear spins was evaluated from the spin-echo signals. The relation between T2 and the decay time of the Rabi oscillation suggests that the inhomogeneous effects in our system are not obvious. This study provides an all-electrical NMR system for nuclear-spin-based qubits.
A Field-Sweep/Field-Lock System for Superconducting Magnets-Application to High-Field EPR
Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G.
2007-01-01
We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H-NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of ± 0.4 T and a resolution of up to 10-5 T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR. PMID:17027306
A field-sweep/field-lock system for superconducting magnets--Application to high-field EPR.
Maly, Thorsten; Bryant, Jeff; Ruben, David; Griffin, Robert G
2006-12-01
We describe a field-lock/field-sweep system for the use in superconducting magnets. The system is based on a commercially available field mapping unit and a custom designed broad-band 1H NMR probe. The NMR signal of a small water sample is used in a feedback loop to set and control the magnetic field to high accuracy. The current instrumental configuration allows field sweeps of +/-0.4 T and a resolution of up to 10(-5) T (0.1 G) and the performance of the system is demonstrated in a high-field electron paramagnetic resonance (EPR) application. The system should also be of utility in other experiments requiring precise and reproducible sweeps of the magnetic field such as DNP, ENDOR or PELDOR.
Wu, Li Hong; Chen, Li-Hong; Xie, Hongning; Xie, Ying-Jun
2017-06-01
We report a case of Norrie disease, diagnosed by prenatal ultrasound, confirmed by Sanger sequencing of the DNP gene from the aborted fetal cord blood and histologically. Prenatal ultrasound revealed no abnormality in either eye at 22 +1 and 31 +4 gestational weeks, but at 36 +5 gestational weeks both eyes had massive vitreous cavity opacities with complete retinal detachment. Norrie disease was initially suspected because of an older male sibling with the disease. To our knowledge, prenatal ultrasound diagnosis of Norrie disease has been previously described only one case in 1993 in a 34-week-old fetus. The normal eye development until after 31 + 4 gestational weeks provides insight into the first manifestation and then the rapid progression of the eye disease.
Highly dispersed SiO x/Al 2O 3 catalysts illuminate the reactivity of isolated silanol sites
Mouat, Aidan R.; George, Cassandra; Kobayashi, Takeshi; ...
2015-09-23
The reaction of γ-alumina with tetraethylorthosilicate (TEOS) vapor at low temperatures selectively yields monomeric SiO x species on the alumina surface. These isolated (-AlO) 3Si(OH) sites are characterized by PXRD, XPS, DRIFTS of adsorbed NH 3, CO, and pyridine, and 29Si and 27Al DNP-enhanced solid-state NMR spectroscopy. The formation of isolated sites suggests that TEOS reacts preferentially at strong Lewis acid sites on the γ-Al 2O 3 surface, functionalizing the surface with “mild” Brønsted acid sites. As a result, for liquid-phase catalytic cyclohexanol dehydration, these SiO x sites exhibit up to 3.5-fold higher specific activity than the parent alumina withmore » identical selectivity.« less
NASA Astrophysics Data System (ADS)
Sabchevski, S.; Idehara, T.; Damyanova, M.; Zhelyazkov, I.; Balabanova, E.; Vasileva, E.
2018-03-01
Gyrotrons are the most powerful sources of CW coherent radiation in the sub-THz and THz frequency bands. In recent years, they have demonstrated a remarkable potential for bridging the so-called THz-gap in the electromagnetic spectrum and opened the road to many novel applications of the terahertz waves. Among them are various advanced spectroscopic techniques (e.g., ESR and DNP-NMR), plasma physics and fusion research, materials processing and characterization, imaging and inspection, new medical technologies and biological studies. In this paper, we review briefly the current status of the research in this broad field and present our problem-oriented software packages developed recently for numerical analysis, computer-aided design (CAD) and optimization of gyrotrons.
Theoretical Study on the 1.185-THz Third Harmonic Gyrotron
NASA Astrophysics Data System (ADS)
Dumbrajs, O.; Idehara, T.
2018-02-01
We discuss how the existing University of Fukui (FIR UF) second harmonic double-beam gyrotron with the operating frequency 0.79 THz can be adopted for operation at the third harmonic. The new gyrotron will operate at the frequency 1.185 THz and will significantly increase the frequency of the dynamic nuclear polarization-nuclear magnetic resonance (DNP-NMR) spectrometer. This will allow one to study new bio-molecules.A special attention is payed to the mode competition between the operating {TE}_{3,11}+ mode at the third harmonic and the parasitic modes at the second and fundamental harmonics. The operating parameters of the modified gyrotron are U = 20 kV, α = 1.3, I = 0.35 A, and B = 14.60 T and the expected output power about 100W.
Kuramitz, Hideki; Sazawa, Kazuto; Nanayama, Yasuaki; Hata, Noriko; Taguchi, Shigeru; Sugawara, Kazuharu; Fukushima, Masami
2012-01-01
The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the β-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less interference, enables the analysis of turbid samples and allows detection even in small volumes without loss of sensitivity. Based on this understanding, we aim to develop a new umu test system with hydrodynamic chronoamperometry using a rotating disk electrode (RDE) in a microliter droplet. PAPG when used as a substrate is not electroactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current response of chronoamperometry resulting from the oxidation of PAP to PQI is directly proportional to the enzymatic activity of S. typhimurium. This was achieved by performing genotoxicity tests for 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and 2-aminoanthracene (2-AA) as model genotoxic compounds. The results obtained in this study indicated that the signal detection in the genotoxicity assay based on hydrodynamic voltammetry was less influenced by the presence of colored components and sediment particles in the samples when compared to the usual colorimetric signal detection. The influence caused by the presence of humic acids (HAs) and artificial sediment on the genotoxic property of selected model compounds such as 4-nitroquinoline-N-oxide (4-NQO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 1,8-dinitropyrene (1,8-DNP) and 1-nitropyrene (1-NP) were also investigated. The results showed that the genotoxicity of 1-NP and MX changed in the presence of 10 mg·L−1 HAs. The genotoxicity of tested chemicals with a high hydrophobicity such as 1,8-DNP and 1-NP were decreased substantially with the presence of 1 g·L−1 sediment. This was not observed in the case of genotoxins with a low log Kow value. PMID:23242275
Expression of CYP2E1 in human nasopharynx and its metabolic effect in vitro.
Hou, De-Fu; Wang, Shui-Liang; He, Zhi-Min; Yang, Fang; Chen, Zhu-Chu
2007-04-01
It was evident that nitrosamines can act directly on target tissue and result in carcinogenesis. As has been shown, the carcinogenic activity of nitrosamines relied on its bioactivation by Cytochrome P450 2E1 (CYP2E1). In this study, we investigated the expression of CYP2E1 in Nasopharyngeal carcinoma (NPC) cells, embryonic nasopharyngeal epithelial tissue (ENET) specimens, and NPC biopsies by RT-PCR analysis. CYP2E1 was expressed in all NPC cell lines (6/6, including 7429) and ENET (6/6), and 80% of NPC biopsie (8/10). The fact that Human nasopharynx expresses CYP2E1 suggests that CYP2E1 may play an important role in the course of NPC by indirect carcinogens nitrosamines. To further evaluate the function of CYP2E1, the CYP2E1 was stably expressed in the cell line NIH 3T3/rtTA under a tetracycline-controlled transactivator. The expression of CYP2E1 was tightly regulated in a dose-dependent manner by Doxycycline (Dox) When the catalytic activity of CYP2E1 was assayed, the result showed that the generation of 6-hydroxychlorzoxazone (6-OH-CZ) from chlorzoxazone (CZ) was dose- and time-dependent on Dox addition to the medium. In the presence of 1 microg/ml Dox, the CZ 6-hydroxylase activity of the cell line was found to be 0.986 +/- 0.034 nmol/10(6) cells/h. The metabolic activation of Tet/3T3/2E1-6 cells was also assayed by N,N'-dinitrosopiperazine (DNP) cytotoxicity, and the viability of Tet/3T3/2E1-6 cells treated with Dox was lower than that of untreated cells with a significant difference between them in 80 and 160 microg/ml DNP (P ( 0.05, t test. This cell line will be useful not only to assess the metabolic characteristics of CYP2E1, but also will be useful to investigate the role of CYP2E1 in metabolic activation of carcinogenic nitrosamines in vitro.
Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization.
Hurd, Ralph E; Yen, Yi-Fen; Chen, Albert; Ardenkjaer-Larsen, Jan Henrik
2012-12-01
This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution-DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this technology are also presented. For studies that allow the use of externally administered agents, hyperpolarization offers a way to overcome normal magnetic resonance sensitivity limitations, at least for a brief T(1)-dependent observation window. A 10,000-100,000-fold signal-to-noise advantage provides an avenue for real-time measurement of perfusion, metabolite transport, exchange, and metabolism. The principles behind these measurements, as well as the choice of agent, and progress toward the application of hyperpolarized (13)C metabolic imaging in oncology, cardiology, and neurology are reviewed. Copyright © 2012 Wiley Periodicals, Inc.
Overhauser shift and dynamic nuclear polarization on carbon fibers
NASA Astrophysics Data System (ADS)
Herb, Konstantin; Denninger, Gert
2018-06-01
We report on the first experimental magnetic resonance determination of the coupling between electrons and nuclear spins (1H, 13C) in carbon fibers. Our results strongly support the assumption that the electronic spins are delocalized on graphene like structures in the fiber. The coupling between these electrons and the nuclei of the lattice results in dynamic nuclear polarization of the nuclei (DNP), enabling very sensitive NMR experiments on these nuclear spins. For possible applications of graphene in spintronics devices the coupling between nuclei and electrons is essential. We were able to determine the interactions down to 30 × 10-9(30 ppb) . We were even able to detect the coupling of the electrons to 13C (in natural abundance). These experiments open the way for a range of new double resonance investigations with possible applications in the field of material science.
Effect of insecticides and phenolics on nitrogen fixation by Nostoc linckia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megharaj, M.; Venkateswarlu, K.; Rao, A.S.
1988-08-01
The nitrogen-fixing blue-green algae (cyanobacteria) significantly influence the nitrogen economy of temperate and tropical soils. Although the genera Nostoc and Tolypothrix have been particularly implicated in the fixation of significantly large amounts of atmospheric nitrogen, these diazotrophs received little attention in relation to insecticide treatment and the available few reports do not indicate a permanent deleterious effect of insecticides on their nitrogenase activity. As it has been well established that the effect of insecticides on nitrogen fixation by cyanobacteria is independent of that on growth, an attempt was, therefore, made to determine the influence of four insecticides (monocrotophos, quinalphos, cypermethrinmore » and fenvalerate) and four phenolics (p-nitrophenol (PNP), m-nitrophenol (MNP), 2,4-dinitrophenol (DNP) and catechol) on nitrogen-fixing capacity of N.linckia, isolated from a black soil.« less
Perras, Frederic A.; Luo, Hao; Zhang, Ximing; ...
2016-12-27
Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perras, Frederic A.; Luo, Hao; Zhang, Ximing
Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less
Spin Noise Detection of Nuclear Hyperpolarization at 1.2 K
Pöschko, Maria Theresia; Vuichoud, Basile; Milani, Jonas; Bornet, Aurélien; Bechmann, Matthias; Bodenhausen, Geoffrey; Jannin, Sami; Müller, Norbert
2015-01-01
We report proton spin noise spectra of a hyperpolarized solid sample of commonly used “DNP (dynamic nuclear polarization) juice” containing TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxide) and irradiated by a microwave field at a temperature of 1.2 K in a magnetic field of 6.7 T. The line shapes of the spin noise power spectra are sensitive to the variation of the microwave irradiation frequency and change from dip to bump, when the electron Larmor frequency is crossed, which is shown to be in good accordance with theory by simulations. Small but significant deviations from these predictions are observed, which can be related to spin noise and radiation damping phenomena that have been reported in thermally polarized systems. The non-linear dependence of the spin noise integral on nuclear polarization provides a means to monitor hyperpolarization semi-quantitatively without any perturbation of the spin system by radio frequency irradiation. PMID:26477605
Inclusion complexes of β-cyclodextrin-dinitrocompounds as UV absorber for ballpoint pen ink.
Srinivasan, Krishnan; Radhakrishnan, S; Stalin, Thambusamy
2014-08-14
2,4-Dinitrophenol (2,4-DNP), 2,4-dinitroaniline (2,4-DNA), 2,6-dinitroaniline (2,6-DNA) and 2,6-dinitrobenzoic acid (2,6-DNB) has appeared for the UV absorption bands in different wavelength region below 400 nm, a combination of these dinitro aromatic compounds gave the broad absorption spectra within the UV region. The absorption intensities have been increased by preparation of the inclusion complex of dinitro compounds with β-cyclodextrin (β-CD). Prepared inclusion complexes are used to improve the UV protection properties of the ball point pen ink against photo degradation. The formation of solid inclusion complexes was characterized by FT-IR, and (1)H NMR spectroscopy. The UV protecting properties of these inclusion complexes were calculated their sun protection factor (SPF) is also discussed. The stability of the ballpoint pen ink has been confirmed by UV-Visible spectroscopic method. Copyright © 2014 Elsevier B.V. All rights reserved.