Sample records for docking studies show

  1. Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy.

    PubMed

    Sutherland, Jeffrey J; Nandigam, Ravi K; Erickson, Jon A; Vieth, Michal

    2007-01-01

    Docking methods are used to predict the manner in which a ligand binds to a protein receptor. Many studies have assessed the success rate of programs in self-docking tests, whereby a ligand is docked into the protein structure from which it was extracted. Cross-docking, or using a protein structure from a complex containing a different ligand, provides a more realistic assessment of a docking program's ability to reproduce X-ray results. In this work, cross-docking was performed with CDocker, Fred, and Rocs using multiple X-ray structures for eight proteins (two kinases, one nuclear hormone receptor, one serine protease, two metalloproteases, and two phosphodiesterases). While average cross-docking accuracy is not encouraging, it is shown that using the protein structure from the complex that contains the bound ligand most similar to the docked ligand increases docking accuracy for all methods ("similarity selection"). Identifying the most successful protein conformer ("best selection") and similarity selection substantially reduce the difference between self-docking and average cross-docking accuracy. We identify universal predictors of docking accuracy (i.e., showing consistent behavior across most protein-method combinations), and show that models for predicting docking accuracy built using these parameters can be used to select the most appropriate docking method.

  2. Naringenin and quercetin--potential anti-HCV agents for NS2 protease targets.

    PubMed

    Lulu, S Sajitha; Thabitha, A; Vino, S; Priya, A Mohana; Rout, Madhusmita

    2016-01-01

    Nonstructural proteins of hepatitis C virus had drawn much attention for the scientific fraternity in drug discovery due to its important role in the disease. 3D structure of the protein was predicted using molecular modelling protocol. Docking studies of 10 medicinal plant compounds and three drugs available in the market (control) with NS2 protease were employed by using rigid docking approach of AutoDock 4.2. Among the molecules tested for docking study, naringenin and quercetin revealed minimum binding energy of - 7.97 and - 7.95 kcal/mol with NS2 protease. All the ligands were docked deeply within the binding pocket region of the protein. The docking study results showed that these compounds are potential inhibitors of the target; and also all these docked compounds have good inhibition constant, vdW+Hbond+desolv energy with best RMSD value.

  3. Identification of new 2,5-diketopiperazine derivatives as simultaneous effective inhibitors of αβ-tubulin and BCRP proteins: Molecular docking, Structure-Activity Relationships and virtual consensus docking studies

    NASA Astrophysics Data System (ADS)

    Fani, Najmeh; Sattarinezhad, Elham; Bordbar, Abdol-Khalegh

    2017-06-01

    In the first part of this paper, docking method was employed in order to study the binding mechanism of breast cancer resistance protein (BCRP) with a group of previously synthesized TPS-A derivatives which known as potent inhibitors of this protein to get insight into drug binding site of BCRP and to explore structure-activity relationship of these compounds. Molecular docking results showed that most of these compounds bind in the binding site of BCRP at the interface between the membrane and outer environment. In the second part, a group of designed TPS-A derivatives which showed good binding energies in the binding site of αβ-tubulin in the previous study were chosen to study their binding energies in the binding site of BCRP to investigate their simultaneous inhibitory effect on both αβ-tubulin and BCRP. The results showed that all of these compounds bind to the binding site of BCRP with relatively suitable binding energies and therefore could be potential inhibitors of both αβ-tubulin and BCRP proteins. Finally, virtual consensus docking method was utilized with the aim of design of new 2,5-diketopiperazine derivatives with significant inhibitory effect on both αβ-tubulin and BCRP proteins. For this purpose binding energies of a library of 2,5-diketopiperazine derivatives in the binding sites of αβ-tubulin and BCRP was investigated by using AutoDock and AutoDock vina tools. Molecular docking results revealed that a group of 36 compounds among them exhibit strong anti-tubulin and anti-BCRP activity.

  4. A python-based docking program utilizing a receptor bound ligand shape: PythDock.

    PubMed

    Chung, Jae Yoon; Cho, Seung Joo; Hah, Jung-Mi

    2011-09-01

    PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.

  5. Protein-protein docking using region-based 3D Zernike descriptors

    PubMed Central

    2009-01-01

    Background Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. Results We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-αRMSD ≤ 2.5 Å) within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. Conclusion We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods. PMID:20003235

  6. Protein-protein docking using region-based 3D Zernike descriptors.

    PubMed

    Venkatraman, Vishwesh; Yang, Yifeng D; Sael, Lee; Kihara, Daisuke

    2009-12-09

    Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-alphaRMSD < or = 2.5 A) within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods.

  7. Molecular docking and ex vivo and in vitro anticholinesterase activity studies of Salvia sp. and highlighted rosmarinic acid.

    PubMed

    Demirezer, Lütfiye Ömür; Gürbüz, Perihan; Kelicen Uğur, Emine Pelin; Bodur, Mine; Özenver, Nadire; Uz, Ayse; Güvenalp, Zühal

    2015-01-01

    To evaluate acetylcholinesterase (AChE) inhibitory activity and antioxidant capacity of the major molecule from Salvia sp., rosmarinic acid, as a drug candidate molecule for treatment of Alzheimer disease (AD). The AChE inhibitory activity of different extracts from Salvia trichoclada, Salvia verticillata, and Salvia fruticosa was determined by the Ellman and isolated guinea pig ileum methods, and the antioxidant capacity was determined with DPPH. The AChE inhibitory activity of the major molecule rosmarinic acid was determined by in silico docking and isolated guinea pig ileum methods. The methanol extract of Salvia trichoclada showed the highest inhibition on AChE. The same extract and rosmarinic acid showed significant contraction responses on isolated guinea pig ileum. All the extracts and rosmarinic acid showed high radical scavenging capacities. Docking results of rosmarinic acid showed high affinity to the selected target, AChE. In this study in vitro and ex vivo studies and in silico docking research of rosmarinic acid were used simultaneously for the first time. Rosmarinic acid showed promising results in all the methods tested.

  8. Synthesis and characterization of curcumin-sulfonamide hybrids: Biological evaluation and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Banuppriya, Govindharasu; Sribalan, Rajendran; Padmini, Vediappen

    2018-03-01

    Curcumin-sulfonamide hybrids (4a-e) were synthesized and their in vitro antioxidant, anti-inflammatory and anticancer activities were studied. The synthesized compounds showed a very good potent activity towards antioxidant and anti-inflammatory studies rather than its parent as well as standard. These compounds have exhibited an excellent toxicity effect to the cancer cell lines such as A549 and AGS. The compounds 4a and 4c have showed good anticancer activity than curcumin. The molecular docking studies were also performed against various Epidermal Growth Factor Receptor (EGFR) enzymes. The DFT calculations were also done in order to support the docking results.

  9. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm.

    PubMed

    Wu, Guosheng; Robertson, Daniel H; Brooks, Charles L; Vieth, Michal

    2003-10-01

    The influence of various factors on the accuracy of protein-ligand docking is examined. The factors investigated include the role of a grid representation of protein-ligand interactions, the initial ligand conformation and orientation, the sampling rate of the energy hyper-surface, and the final minimization. A representative docking method is used to study these factors, namely, CDOCKER, a molecular dynamics (MD) simulated-annealing-based algorithm. A major emphasis in these studies is to compare the relative performance and accuracy of various grid-based approximations to explicit all-atom force field calculations. In these docking studies, the protein is kept rigid while the ligands are treated as fully flexible and a final minimization step is used to refine the docked poses. A docking success rate of 74% is observed when an explicit all-atom representation of the protein (full force field) is used, while a lower accuracy of 66-76% is observed for grid-based methods. All docking experiments considered a 41-member protein-ligand validation set. A significant improvement in accuracy (76 vs. 66%) for the grid-based docking is achieved if the explicit all-atom force field is used in a final minimization step to refine the docking poses. Statistical analysis shows that even lower-accuracy grid-based energy representations can be effectively used when followed with full force field minimization. The results of these grid-based protocols are statistically indistinguishable from the detailed atomic dockings and provide up to a sixfold reduction in computation time. For the test case examined here, improving the docking accuracy did not necessarily enhance the ability to estimate binding affinities using the docked structures. Copyright 2003 Wiley Periodicals, Inc.

  10. Silencing of dedicator of cytokinesis (DOCK180) obliterates pregnancy by interfering with decidualization due to blockage of nuclear entry of autoimmune regulator (AIRE).

    PubMed

    Mohan, Jasna Jagan; Narayan, Prashanth; Padmanabhan, Renjini Ambika; Joseph, Selin; Kumar, Pradeep G; Laloraya, Malini

    2018-07-01

    Dedicator of cytokinesis (DOCK 180) involved in cytoskeletal reorganization is primarily a cytosolic molecule. It is recently shown to be nuclear in HeLa cells but its nuclear function is not known. The spatiotemporal distribution of DOCK180 in uterus was studied in uterine cytoplasmic and nuclear compartments during the "window of implantation." The functional significance of nuclear DOCK180 was explored by homology modeling, co-immunoprecipitation assays, and mass spectrometric analysis. Dock180's role in early pregnancy was ascertained by Dock 180 silencing and subsequent quantitative real-time PCR and Western blotting analysis. Our study shows a nuclear DOCK180 in the uterus during "window of implantation." Estrogen and progesterone mediate expression and nuclear translocation of DOCK180. The nuclear function of DOCK180 is attributed to its ability to import autoimmune regulator (AIRE) into the nucleus. Silencing of Dock180 inhibited AIRE nuclear shuttling which influenced its downstream targets, thereby affecting decidualization with AIRE and HOXA-10 as the major players as well as lack of implantation site formation due to impact on angiogenesis-associated genes. DOCK180 has an indispensable role in pregnancy establishment as knocking down Dock180 abrogates pregnancy by a consolidated impact on decidualization and angiogenesis by regulating AIRE nuclear entry. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. An Elmo–Dock complex locally controls Rho GTPases and actin remodeling during cadherin-mediated adhesion

    PubMed Central

    Collins, Caitlin

    2014-01-01

    Cell–cell contact formation is a dynamic process requiring the coordination of cadherin-based cell–cell adhesion and integrin-based cell migration. A genome-wide RNA interference screen for proteins required specifically for cadherin-dependent cell–cell adhesion identified an Elmo–Dock complex. This was unexpected as Elmo–Dock complexes act downstream of integrin signaling as Rac guanine-nucleotide exchange factors. In this paper, we show that Elmo2 recruits Dock1 to initial cell–cell contacts in Madin–Darby canine kidney cells. At cell–cell contacts, both Elmo2 and Dock1 are essential for the rapid recruitment and spreading of E-cadherin, actin reorganization, localized Rac and Rho GTPase activities, and the development of strong cell–cell adhesion. Upon completion of cell–cell adhesion, Elmo2 and Dock1 no longer localize to cell–cell contacts and are not required subsequently for the maintenance of cell–cell adhesion. These studies show that Elmo–Dock complexes are involved in both integrin- and cadherin-based adhesions, which may help to coordinate the transition of cells from migration to strong cell–cell adhesion. PMID:25452388

  12. Docking and molecular dynamics simulation of quinone compounds with trypanocidal activity.

    PubMed

    de Molfetta, Fábio Alberto; de Freitas, Renato Ferreira; da Silva, Albérico Borges Ferreira; Montanari, Carlos Alberto

    2009-10-01

    In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.

  13. Docking studies of antidepressants against single crystal structure of tryptophan 2, 3-dioxygenase using Molegro Virtual Docker software.

    PubMed

    Dawood, Shazia; Zarina, Shamshad; Bano, Samina

    2014-09-01

    Tryptophan 2, 3-dioxygenase (TDO) a heme containing enzyme found in mammalian liver is responsible for tryptophan (Trp) catabolism. Trp is an essential amino acid that is degraded in to N-formylkynurenine by the action of TDO. The protein ligand interaction plays a significant role in structural based drug designing. The current study illustrates the binding of established antidepressants (ADs) against TDO enzyme using in-silico docking studies. For this purpose, Fluoxetine, Paroxetine, Sertraline, Fluvoxamine, Seproxetine, Citalopram, Moclobamide, Hyperforin and Amoxepine were selected. In-silico docking studies were carried out using Molegro Virtual Docker (MVD) software. Docking results show that all ADs fit well in the active site of TDO moreover Hyperforin and Paroxetine exhibited high docking scores of -152.484k cal/mol and -139.706k cal/mol, respectively. It is concluded that Hyperforin and Paroxetine are possible lead molecules because of their high docking scores as compared to other ADs examined. Therefore, these two ADs stand as potent inhibitors of TDO enzyme.

  14. 6. Looking west showing top of dock: steaming frozen ore ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Looking west showing top of dock: steaming frozen ore which had been put in pockets in December 1959, May 6, 1990. Photographer: unknown - Marquette Ore Dock No. 6, Ore Dock, On pilings in Marquette City Lower Harbor, Marquette, Marquette County, MI

  15. Synthesis of 4-aminophenyl substituted indole derivatives for the instrumental analysis and molecular docking evaluation studies

    NASA Astrophysics Data System (ADS)

    Singh, Navneet; Kumar, Keshav

    2017-07-01

    The Indole has been known to maintain celebrity status since so many decades and has been a centre point at the spectrum of pharmacological research. The present work stimulates an idea of generating a pool of library of lead compounds. The data collected can be used for the mapping of biologically active compounds. The reported derivatives of 4-aminophenyl substituted Indole were prepared by the methods of Fischer Indole synthesis and Vilsemeier reaction followed by screening for instrumental analysis and molecular docking studies. The synthesized compounds 4-(1-(2-phenylhydrazono)ethyl)aniline, 1, 4-(1H-indol-2-yl)aniline, 2 and 2-(4-aminophenyl)-1H-indole-3-carbaldehyde, 3 were found to have remarkable yield and instrumental data analysis and also showed remarkable docked characteristic. The molecular docking studies revealed that ligand (amino acids) of comp. 1, 2 and 3 had been docked successfully on the binding site of the 3JUS protein selected from PDB with H bonding. The molecular docking data showed that compound 1, would possess remarkable biological activity and compd. 2 and 3 would possess mild to moderate biological activity. Thus this research work paves the way to synthesize new derivatives and thus to develop new compounds in future with accurate prediction.

  16. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2016-11-23

    Water plays a significant role in the binding process between protein and ligand. However, the thermodynamics of water molecules are often underestimated, or even ignored, in protein-ligand docking. Usually, the free energies of active-site water molecules are substantially different from those of waters in the bulk region. The binding of a ligand to a protein causes a displacement of these waters from an active site to bulk, and this displacement process substantially contributes to the free energy change of protein-ligand binding. The free energy of active-site water molecules can be calculated by grid inhomogeneous solvation theory (GIST), using molecular dynamics (MD) and the trajectory of a target protein and water molecules. Here, we show a case study of the combination of GIST and a docking program and discuss the effectiveness of the displacing gain of unfavorable water in protein-ligand docking. We combined the GIST-based desolvation function with the scoring function of AutoDock4, which is called AutoDock-GIST. The proposed scoring function was assessed employing 51 ligands of coagulation factor Xa (FXa), and results showed that both scoring accuracy and docking success rate were improved. We also evaluated virtual screening performance of AutoDock-GIST using FXa ligands in the directory of useful decoys-enhanced (DUD-E), thus finding that the displacing gain of unfavorable water is effective for a successful docking campaign.

  17. Protein-ligand docking using fitness learning-based artificial bee colony with proximity stimuli.

    PubMed

    Uehara, Shota; Fujimoto, Kazuhiro J; Tanaka, Shigenori

    2015-07-07

    Protein-ligand docking is an optimization problem, which aims to identify the binding pose of a ligand with the lowest energy in the active site of a target protein. In this study, we employed a novel optimization algorithm called fitness learning-based artificial bee colony with proximity stimuli (FlABCps) for docking. Simulation results revealed that FlABCps improved the success rate of docking, compared to four state-of-the-art algorithms. The present results also showed superior docking performance of FlABCps, in particular for dealing with highly flexible ligands and proteins with a wide and shallow binding pocket.

  18. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    PubMed

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Exploring the Stability of Ligand Binding Modes to Proteins by Molecular Dynamics Simulations: A Cross-docking Study.

    PubMed

    Liu, Kai; Kokubo, Hironori

    2017-10-23

    Docking has become an indispensable approach in drug discovery research to predict the binding mode of a ligand. One great challenge in docking is to efficiently refine the correct pose from various putative docking poses through scoring functions. We recently examined the stability of self-docking poses under molecular dynamics (MD) simulations and showed that equilibrium MD simulations have some capability to discriminate between correct and decoy poses. Here, we have extended our previous work to cross-docking studies for practical applications. Three target proteins (thrombin, heat shock protein 90-alpha, and cyclin-dependent kinase 2) of pharmaceutical interest were selected. Three comparable poses (one correct pose and two decoys) for each ligand were then selected from the docking poses. To obtain the docking poses for the three target proteins, we used three different protocols, namely: normal docking, induced fit docking (IFD), and IFD against the homology model. Finally, five parallel MD equilibrium runs were performed on each pose for the statistical analysis. The results showed that the correct poses were generally more stable than the decoy poses under MD. The discrimination capability of MD depends on the strategy. The safest way was to judge a pose as being stable if any one run among five parallel runs was stable under MD. In this case, 95% of the correct poses were retained under MD, and about 25-44% of the decoys could be excluded by the simulations for all cases. On the other hand, if we judge a pose as being stable when any two or three runs were stable, with the risk of incorrectly excluding some correct poses, approximately 31-53% or 39-56% of the two decoys could be excluded by MD, respectively. Our results suggest that simple equilibrium simulations can serve as an effective filter to exclude decoy poses that cannot be distinguished by docking scores from the computationally expensive free-energy calculations.

  20. Discovery of binding proteins for a protein target using protein-protein docking-based virtual screening.

    PubMed

    Zhang, Changsheng; Tang, Bo; Wang, Qian; Lai, Luhua

    2014-10-01

    Target structure-based virtual screening, which employs protein-small molecule docking to identify potential ligands, has been widely used in small-molecule drug discovery. In the present study, we used a protein-protein docking program to identify proteins that bind to a specific target protein. In the testing phase, an all-to-all protein-protein docking run on a large dataset was performed. The three-dimensional rigid docking program SDOCK was used to examine protein-protein docking on all protein pairs in the dataset. Both the binding affinity and features of the binding energy landscape were considered in the scoring function in order to distinguish positive binding pairs from negative binding pairs. Thus, the lowest docking score, the average Z-score, and convergency of the low-score solutions were incorporated in the analysis. The hybrid scoring function was optimized in the all-to-all docking test. The docking method and the hybrid scoring function were then used to screen for proteins that bind to tumor necrosis factor-α (TNFα), which is a well-known therapeutic target for rheumatoid arthritis and other autoimmune diseases. A protein library containing 677 proteins was used for the screen. Proteins with scores among the top 20% were further examined. Sixteen proteins from the top-ranking 67 proteins were selected for experimental study. Two of these proteins showed significant binding to TNFα in an in vitro binding study. The results of the present study demonstrate the power and potential application of protein-protein docking for the discovery of novel binding proteins for specific protein targets. © 2014 Wiley Periodicals, Inc.

  1. Spectroscopic and theoretical investigation of oxali-palladium interactions with β-lactoglobulin.

    PubMed

    Ghalandari, Behafarid; Divsalar, Adeleh; Saboury, Ali Akbar; Haertlé, Thomas; Parivar, Kazem; Bazl, Roya; Eslami-Moghadam, Mahbube; Amanlou, Massoud

    2014-01-24

    The possibility of using a small cheap dairy protein, β-lactoglobulin (β-LG), as a carrier for oxali-palladium for drug delivery was studied. Their binding in an aqueous solution at two temperatures of 25 and 37°C was investigated using spectroscopic techniques in combination with a molecular docking study. Fluorescence intensity changes showed combined static and dynamic quenching during β-LG oxali-palladium binding, with the static mode being predominant in the quenching mechanism. The binding and thermodynamic parameters were determined by analyzing the results of quenching and those of the van't Hoff equation. According to obtained results the binding constants at two temperatures of 25 and 37°C are 3.3×10(9) M(-1) and 18.4×10(6) M(-1) respectively. Fluorescence resonance energy transfer (FRET) showed that the experimental results and the molecular docking results were coherent. An absence change of β-LG secondary structure was confirmed by the CD results. Molecular docking results agreed fully with the experimental results since the fluorescence studies also revealed the presence of two binding sites with a negative value for the Gibbs free energy of binding of oxali-palladium to β-LG. Furthermore, molecular docking and experimental results suggest that the hydrophobic effect plays a critical role in the formation of the oxali-palladium complex with β-LG. This agreement between molecular docking and experimental results implies that docking studies may be a suitable method for predicting and confirming experimental results, as shown in this study. Hence, the combination of molecular docking and spectroscopy methods is an effective innovative approach for binding studies, particularly for pharmacophores. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Dock mediates Scar- and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts.

    PubMed

    Kaipa, Balasankara Reddy; Shao, Huanjie; Schäfer, Gritt; Trinkewitz, Tatjana; Groth, Verena; Liu, Jianqi; Beck, Lothar; Bogdan, Sven; Abmayr, Susan M; Önel, Susanne-Filiz

    2013-01-01

    The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.

  3. Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review.

    PubMed

    Liu, Zhifeng; Liu, Yujie; Zeng, Guangming; Shao, Binbin; Chen, Ming; Li, Zhigang; Jiang, Yilin; Liu, Yang; Zhang, Yu; Zhong, Hua

    2018-07-01

    The molecular docking has been employed successfully to study the mechanism of biodegradation in the environmental remediation in the past few years, although medical science and biology are the main application areas for it. Molecular docking is a very convenient and low cost method to understand the reaction mechanism of proteins or enzymes with ligands with a high accuracy. This paper mainly provides a review for the application of molecular docking between organic pollutants and enzymes. It summarizes the fundamental knowledge of molecular docking, such as its theory, available softwares and main databases. Moreover, five types of pollutants, including phenols, BTEX (benzene, toluene, ethylbenzene, and xylenes), nitrile, polycyclic aromatic hydrocarbons (PAHs), and high polymer (e.g., lignin and cellulose), are discussed from molecular level. Different removal mechanisms are also explained in detail via docking technology. Even though this method shows promising application in the research of biodegradation, further studies are still needed to relate with actual condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets.

    PubMed

    Feinstein, Wei P; Brylinski, Michal

    2015-01-01

    Computational approaches have emerged as an instrumental methodology in modern research. For example, virtual screening by molecular docking is routinely used in computer-aided drug discovery. One of the critical parameters for ligand docking is the size of a search space used to identify low-energy binding poses of drug candidates. Currently available docking packages often come with a default protocol for calculating the box size, however, many of these procedures have not been systematically evaluated. In this study, we investigate how the docking accuracy of AutoDock Vina is affected by the selection of a search space. We propose a new procedure for calculating the optimal docking box size that maximizes the accuracy of binding pose prediction against a non-redundant and representative dataset of 3,659 protein-ligand complexes selected from the Protein Data Bank. Subsequently, we use the Directory of Useful Decoys, Enhanced to demonstrate that the optimized docking box size also yields an improved ranking in virtual screening. Binding pockets in both datasets are derived from the experimental complex structures and, additionally, predicted by eFindSite. A systematic analysis of ligand binding poses generated by AutoDock Vina shows that the highest accuracy is achieved when the dimensions of the search space are 2.9 times larger than the radius of gyration of a docking compound. Subsequent virtual screening benchmarks demonstrate that this optimized docking box size also improves compound ranking. For instance, using predicted ligand binding sites, the average enrichment factor calculated for the top 1 % (10 %) of the screening library is 8.20 (3.28) for the optimized protocol, compared to 7.67 (3.19) for the default procedure. Depending on the evaluation metric, the optimal docking box size gives better ranking in virtual screening for about two-thirds of target proteins. This fully automated procedure can be used to optimize docking protocols in order to improve the ranking accuracy in production virtual screening simulations. Importantly, the optimized search space systematically yields better results than the default method not only for experimental pockets, but also for those predicted from protein structures. A script for calculating the optimal docking box size is freely available at www.brylinski.org/content/docking-box-size. Graphical AbstractWe developed a procedure to optimize the box size in molecular docking calculations. Left panel shows the predicted binding pose of NADP (green sticks) compared to the experimental complex structure of human aldose reductase (blue sticks) using a default protocol. Right panel shows the docking accuracy using an optimized box size.

  5. 2. General oblique view of north loading dock showing loading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. General oblique view of north loading dock showing loading docks with doors opening into refrigerated rooms - Fort Hood, World War II Temporary Buildings, Cold Storage Building, Seventeenth Street, Killeen, Bell County, TX

  6. Protein docking prediction using predicted protein-protein interface.

    PubMed

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  7. Conformational Heterogeneity of Unbound Proteins Enhances Recognition in Protein-Protein Encounters.

    PubMed

    Pallara, Chiara; Rueda, Manuel; Abagyan, Ruben; Fernández-Recio, Juan

    2016-07-12

    To understand cellular processes at the molecular level we need to improve our knowledge of protein-protein interactions, from a structural, mechanistic, and energetic point of view. Current theoretical studies and computational docking simulations show that protein dynamics plays a key role in protein association and support the need for including protein flexibility in modeling protein interactions. Assuming the conformational selection binding mechanism, in which the unbound state can sample bound conformers, one possible strategy to include flexibility in docking predictions would be the use of conformational ensembles originated from unbound protein structures. Here we present an exhaustive computational study about the use of precomputed unbound ensembles in the context of protein docking, performed on a set of 124 cases of the Protein-Protein Docking Benchmark 3.0. Conformational ensembles were generated by conformational optimization and refinement with MODELLER and by short molecular dynamics trajectories with AMBER. We identified those conformers providing optimal binding and investigated the role of protein conformational heterogeneity in protein-protein recognition. Our results show that a restricted conformational refinement can generate conformers with better binding properties and improve docking encounters in medium-flexible cases. For more flexible cases, a more extended conformational sampling based on Normal Mode Analysis was proven helpful. We found that successful conformers provide better energetic complementarity to the docking partners, which is compatible with recent views of binding association. In addition to the mechanistic considerations, these findings could be exploited for practical docking predictions of improved efficiency.

  8. 1. Full SW side of dock as viewed from shore ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Full SW side of dock as viewed from shore at the Oil/Creosote Unloading Dock. This view formed a panorama with photo WA-131-H-5, which shows the Oil/Creosote Unloading Dock. - Pacific Creosoting Plant, West Dock, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  9. 20. VIEW OF EAST END OF SPERRY OCEAN DOCK, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF EAST END OF SPERRY OCEAN DOCK, SHOWING SOUTH AND EAST ELEVATION, INCLUDING PORTION OF THE SPERRY OCEAN DOCK DECK, LOOKING NORTH - Puget Sound Flouring Mills, 611 Schuster Parkway, Tacoma, Pierce County, WA

  10. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling

    NASA Astrophysics Data System (ADS)

    Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär

    2018-01-01

    Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.

  11. Prediction of binding poses to FXR using multi-targeted docking combined with molecular dynamics and enhanced sampling.

    PubMed

    Bhakat, Soumendranath; Åberg, Emil; Söderhjelm, Pär

    2018-01-01

    Advanced molecular docking methods often aim at capturing the flexibility of the protein upon binding to the ligand. In this study, we investigate whether instead a simple rigid docking method can be applied, if combined with multiple target structures to model the backbone flexibility and molecular dynamics simulations to model the sidechain and ligand flexibility. The methods are tested for the binding of 35 ligands to FXR as part of the first stage of the Drug Design Data Resource (D3R) Grand Challenge 2 blind challenge. The results show that the multiple-target docking protocol performs surprisingly well, with correct poses found for 21 of the ligands. MD simulations started on the docked structures are remarkably stable, but show almost no tendency of refining the structure closer to the experimentally found binding pose. Reconnaissance metadynamics enhances the exploration of new binding poses, but additional collective variables involving the protein are needed to exploit the full potential of the method.

  12. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.

    PubMed

    Brylinski, Michal

    2013-11-25

    A common strategy for virtual screening considers a systematic docking of a large library of organic compounds into the target sites in protein receptors with promising leads selected based on favorable intermolecular interactions. Despite a continuous progress in the modeling of protein-ligand interactions for pharmaceutical design, important challenges still remain, thus the development of novel techniques is required. In this communication, we describe eSimDock, a new approach to ligand docking and binding affinity prediction. eSimDock employs nonlinear machine learning-based scoring functions to improve the accuracy of ligand ranking and similarity-based binding pose prediction, and to increase the tolerance to structural imperfections in the target structures. In large-scale benchmarking using the Astex/CCDC data set, we show that 53.9% (67.9%) of the predicted ligand poses have RMSD of <2 Å (<3 Å). Moreover, using binding sites predicted by recently developed eFindSite, eSimDock models ligand binding poses with an RMSD of 4 Å for 50.0-39.7% of the complexes at the protein homology level limited to 80-40%. Simulations against non-native receptor structures, whose mean backbone rearrangements vary from 0.5 to 5.0 Å Cα-RMSD, show that the ratio of docking accuracy and the estimated upper bound is at a constant level of ∼0.65. Pearson correlation coefficient between experimental and predicted by eSimDock Ki values for a large data set of the crystal structures of protein-ligand complexes from BindingDB is 0.58, which decreases only to 0.46 when target structures distorted to 3.0 Å Cα-RMSD are used. Finally, two case studies demonstrate that eSimDock can be customized to specific applications as well. These encouraging results show that the performance of eSimDock is largely unaffected by the deformations of ligand binding regions, thus it represents a practical strategy for across-proteome virtual screening using protein models. eSimDock is freely available to the academic community as a Web server at http://www.brylinski.org/esimdock .

  13. Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers

    PubMed Central

    Chan, Yee-Hung M.; Lenz, Peter; Boxer, Steven G.

    2007-01-01

    Membrane–membrane recognition and binding are crucial in many biological processes. We report an approach to studying the dynamics of such reactions by using DNA-tethered vesicles as a general scaffold for displaying membrane components. This system was used to characterize the docking reaction between two populations of tethered vesicles that display complementary DNA. Deposition of vesicles onto a supported lipid bilayer was performed by using a microfluidic device to prevent mixing of the vesicles in bulk during sample preparation. Once tethered onto the surface, vesicles mixed via two-dimensional diffusion. DNA-mediated docking of two reacting vesicles results in their colocalization after collision and their subsequent tandem motion. Individual docking events and population kinetics were observed via epifluorescence microscopy. A lattice-diffusion simulation was implemented to extract from experimental data the probability, Pdock, that a collision leads to docking. For individual vesicles displaying small numbers of docking DNA, Pdock shows a first-order relationship with copy number as well as a strong dependence on the DNA sequence. Both trends are explained by a model that includes both tethered vesicle diffusion on the supported bilayer and docking DNA diffusion over each vesicle's surface. These results provide the basis for the application of tethered vesicles to study other membrane reactions including protein-mediated docking and fusion. PMID:18025472

  14. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility

    PubMed Central

    Ravindranath, Pradeep Anand; Forli, Stefano; Goodsell, David S.; Olson, Arthur J.; Sanner, Michel F.

    2015-01-01

    Automated docking of drug-like molecules into receptors is an essential tool in structure-based drug design. While modeling receptor flexibility is important for correctly predicting ligand binding, it still remains challenging. This work focuses on an approach in which receptor flexibility is modeled by explicitly specifying a set of receptor side-chains a-priori. The challenges of this approach include the: 1) exponential growth of the search space, demanding more efficient search methods; and 2) increased number of false positives, calling for scoring functions tailored for flexible receptor docking. We present AutoDockFR–AutoDock for Flexible Receptors (ADFR), a new docking engine based on the AutoDock4 scoring function, which addresses the aforementioned challenges with a new Genetic Algorithm (GA) and customized scoring function. We validate ADFR using the Astex Diverse Set, demonstrating an increase in efficiency and reliability of its GA over the one implemented in AutoDock4. We demonstrate greatly increased success rates when cross-docking ligands into apo receptors that require side-chain conformational changes for ligand binding. These cross-docking experiments are based on two datasets: 1) SEQ17 –a receptor diversity set containing 17 pairs of apo-holo structures; and 2) CDK2 –a ligand diversity set composed of one CDK2 apo structure and 52 known bound inhibitors. We show that, when cross-docking ligands into the apo conformation of the receptors with up to 14 flexible side-chains, ADFR reports more correctly cross-docked ligands than AutoDock Vina on both datasets with solutions found for 70.6% vs. 35.3% systems on SEQ17, and 76.9% vs. 61.5% on CDK2. ADFR also outperforms AutoDock Vina in number of top ranking solutions on both datasets. Furthermore, we show that correctly docked CDK2 complexes re-create on average 79.8% of all pairwise atomic interactions between the ligand and moving receptor atoms in the holo complexes. Finally, we show that down-weighting the receptor internal energy improves the ranking of correctly docked poses and that runtime for AutoDockFR scales linearly when side-chain flexibility is added. PMID:26629955

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, P.H.; Van Dolah, R.F.; Bobo, M.Y.

    Recent evidence indicates that the wood preservative commonly used in dock pilings (chromated copper arsenate or CCA) is highly toxic to several estuarine organisms in laboratory experiments. Increasing demand for residential docks prompted a field study intended to complement these earlier laboratory investigations. Objectives of the study were to: (1) examine concentrations of Cu, Cr, and As in sediments and oysters from intertidal locations in several creeks with and without high densities of docks; (2) examine the bioaccumulation of wood preservative leachates by laboratory-reared oysters transferred to field sites near and distant from newly constructed docks; and (3) investigate themore » acute toxicity of wood preservative leachates for several species of estuarine fishes and invertebrates exposed to these compounds in the field. Preliminary results indicate that sediment concentrations of all three metals were well below ER-L levels reported by Long and Morgan at all but one dock site. In an ancillary study, 24h LC{sub 50} bioassays were performed using rotifers (Brachionus plicatilis) which were exposed to pore water from sediments in creeks with and without docks. Toxicities of bulk sediments from the same sites were examined using Microtox which measures decreases in bioluminescence of marine bacteria (Photobacterium phosphoreum) as a function of sediment concentration. Neither the rotifer nor the Microtox bioassays showed any significant differences in toxicity between creeks with and without docks.« less

  16. 21. ORE DOCK, LOOKING SOUTHWEST. THIS VIEW SHOWS THE WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. ORE DOCK, LOOKING SOUTHWEST. THIS VIEW SHOWS THE WEST END OF THE DOCK. EMPTY CARS ARE MOVED IN FROM THE WEST BY 'SHUNT CARS,' PUT INTO PLACE AS NEEDED BENEATH THE HULETTS, FILLED, THEN SHUNTED TO THE EAST END OF THE YARD WHERE THEY ARE MADE UP INTO TRAINS. THE POWER HOUSE (WITH TALL ARCHED WINDOWS) AND THE TWO-STORY DOCK OFFICE CAN BE SEEN HERE. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  17. Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of Aβ peptide.

    PubMed

    Dhanavade, Maruti J; Jalkute, Chidambar B; Barage, Sagar H; Sonawane, Kailas D

    2013-12-01

    Cysteine protease is known to degrade amyloid beta peptide which is a causative agent of Alzheimer's disease. This cleavage mechanism has not been studied in detail at the atomic level. Hence, a three-dimensional structure of cysteine protease from Xanthomonas campestris was constructed by homology modeling using Geno3D, SWISS-MODEL, and MODELLER 9v7. All the predicted models were analyzed by PROCHECK and PROSA. Three-dimensional model of cysteine protease built by MODELLER 9v7 shows similarity with human cathepsin B crystal structure. This model was then used further for docking and simulation studies. The molecular docking study revealed that Cys17, His87, and Gln88 residues of cysteine protease form an active site pocket similar to human cathepsin B. Then the docked complex was refined by molecular dynamic simulation to confirm its stable behavior over the entire simulation period. The molecular docking and MD simulation studies showed that the sulfhydryl hydrogen atom of Cys17 of cysteine protease interacts with carboxylic oxygen of Lys16 of Aβ peptide indicating the cleavage site. Thus, the cysteine protease model from X. campestris having similarity with human cathepsin B crystal structure may be used as an alternate approach to cleave Aβ peptide a causative agent of Alzheimer's disease. © 2013 Elsevier Ltd. All rights reserved.

  18. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.

    PubMed

    Romero, Angel H; López, Simón E

    2017-09-01

    Recently, a series of 4-phthalazinyl-hydrazones under its E-configuration have exhibited excellent in vitro antichagasic and antileishmanial profiles. Preliminary assays on both parasites suggested that the most active derivatives act through oxidative and nitrosative stress mechanisms; however, their exact mode of actions as anti-trypanosomal and anti-leishmanial agents have not been completely elucidated. This motivated to perform a molecular docking study on essential trypanosomatid enzymes such as superoxide dismutase (SOD), trypanothione reductase (TryR), cysteine-protease (CP) and pteridine reductase 1 (PTR1). In addition, to understand the experimental results of nitric oxide production obtained for infected macrophages with Leishmania parasite, a molecular docking was evaluated on nitric oxide synthase (iNOS) enzyme of Rattus norvegicus. Both diastereomers (E and Z) of the 4-phthalazinyl-hydrazones were docked on the mentioned targets. In general, molecular docking on T. cruzi enzymes revealed that the E-diastereomers exhibited lower binding energies than Z-diastereomers on the Fe-SOD and CP enzymes, while Z-diastereomers showed lower docking energies than E-isomers on TryR enzyme. For the Leishmania docking studies, the Z-isomers exhibited the best binding affinities on the PTR1 and iNOS enzymes, while the TryR enzyme showed a minor dependence with the stereoselectivity of the tested phthalazines. However, either the structural information of the ligand-enzyme complexes or the experimental data suggest that the significant antitrypanosomatid activity of the most active derivatives is not associated to the inhibition of the SOD, CP and PTR1 enzymes, while the TryR inhibition and nitric oxide generation in host cells emerge as interesting antitrypanosomatid therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dry dock gate stability modelling

    NASA Astrophysics Data System (ADS)

    Oktoberty; Widiyanto; Sasono, E. J.; Pramono, S.; Wandono, A. T.

    2018-03-01

    The development of marine transportation needs in Indonesia increasingly opens national shipyard business opportunities to provide shipbuilding services to the shipbuilding vessels. That emphasizes the stability of prime. The ship's decking door becomes an integral part of the efficient place and the specification of the use of the asset of its operational ease. This study aims to test the stability of Dry Dock gate with the length of 35.4 meters using Maxsurf and Hydromax in analyzing the calculation were in its assessment using interval per 500 mm length so that it can get detail data toward longitudinal and transverse such as studying Ship planning in general. The test result shows dry dock gate meets IMO standard with ballast construction containing 54% and 68% and using fix ballast can produce GMt 1,924 m, tide height 11,357m. The GMt value indicates dry dick gate can be stable and firmly erect at the base of the mouth dry dock. When empty ballast produces GMt 0.996 which means dry dock date is stable, but can easily be torn down. The condition can be used during dry dock gate treatment.

  20. Virtual Screening of Novel Glucosamine-6-Phosphate Synthase Inhibitors.

    PubMed

    Lather, Amit; Sharma, Sunil; Khatkar, Anurag

    2018-01-01

    Infections caused by microorganisms are the major cause of death today. The tremendous and improper use of antimicrobial agents leads to antimicrobial resistance. Various currently available antimicrobial drugs are inadequate to control the infections and lead to various adverse drug reactions. Efforts based on computer-aided drug design (CADD) can excavate a large number of databases to generate new, potent hits and minimize the requirement of time as well as money for the discovery of newer antimicrobials. Pharmaceutical sciences also have made development with advances in drug designing concepts. The current research article focuses on the study of various G-6-P synthase inhibitors from literature cited molecular database. Docking analysis was conducted and ADMET data of various molecules was evaluated by Schrodinger Glide and PreADMET software, respectively. Here, the results presented efficacy of various inhibitors towards enzyme G-6-P synthase. Docking scores, binding energy and ADMET data of various molecules showed good inhibitory potential toward G-6-P synthase as compared to standard antibiotics. This novel antimicrobial drug target G-6-P synthase has not so extensively been explored for its application in antimicrobial therapy, so the work done so far proved highly essential. This article has helped the drug researchers and scientists to intensively explore about this wonderful antimicrobial drug target. The Schrodinger, Inc. (New York, USA) software was utilized to carry out the computational calculations and docking studies. The hardware configuration was Intel® core (TM) i5-4210U CPU @ 2.40GHz, RAM memory 4.0 GB under 64-bit window operating system. The ADMET data was calculated by using the PreADMET tool (PreADMET ver. 2.0). All the computational work was completed in the Laboratory for Enzyme Inhibition Studies, Department of Pharmaceutical Sciences, M.D. University, Rohtak, INDIA. Molecular docking studies were carried out to identify the binding affinities and interaction between the inhibitors and the target proteins (G-6-P synthase) by using Glide software (Schrodinger Inc. U.S.A.-Maestro version 10.2). Grid-based Ligand Docking with Energetic (Glide) is one of the most accurate docking softwares available for ligand-protein, protein-protein binding studies. A library of hundreds of available ligands was docked against targeted proteins G-6-P synthase having PDB ID 1moq. Results of docking are shown in Table 1 and Table 2. Results of G-6-P synthase docking showed that some compounds were found to have comparable docking score and binding energy (kj/mol) as compared to standard antibiotics. Many of the ligands showed hydrogen bond interaction, hydrophobic interactions, electrostatic interactions, ionic interactions and π- π stacking with the various amino acid residues in the binding pockets of G-6-P synthase. The docking study estimated free energy of binding, binding pose andglide score and all these parameters provide a promising tool for the discovery of new potent natural inhibitors of G-6-P synthase. These G-6-P synthase inhibitors could further be used as antimicrobials. Here, a detailed binding analysis and new insights of inhibitors from various classes of molecules were docked in binding cavity of G-6-P synthase. ADME and toxicity prediction of these compounds will further accentuate us to study these compounds in vivo. This information will possibly present further expansion of effective antimicrobials against several microbial infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Molecular docking and in vitro studies of soap nut trypsin inhibitor (SNTI) against phospholipase A2 isoforms in therapeutic intervention of inflammatory diseases.

    PubMed

    Sirisha, Gandreddi V D; Vijaya Rachel, K; Zaveri, Kunal; Yarla, Nagendra Sastry; Kiranmayi, P; Ganash, Magdah; Alkreathy, Huda Mohammad; Rajeh, Nisreen; Ashraf, Ghulam Md

    2018-07-15

    Therapeutic value of allelochemicals in inflammatory disorders and the potential drug targets need to be elucidated to alleviate tissue and vascular injury. Natural anti-inflammatory agents are known to cause minimal adverse effects. Presence of different secondary metabolites (allelochemicals), protease inhibitors like soap nut trypsin inhibitor (SNTI) from Sapindus trifoliatus and allied compounds from natural sources cannot be blithely ignored as natural therapeutics. In the present study, SNTI, a prospective protease inhibitor isolated from the seeds of Sapindus trifoliatus were subjected to docking against three isoforms of Phospholipase A 2 (PLA 2 ) molecules of the inflammatory pathways which are localized in the membrane, cytosol and pancreas. Eleven ligand molecules were selected from Sapindus trifoliatus and docked against membrane, cytosolic and pancreatic PLA 2 . Cytosolic PLA 2 showed a strong inhibition by Kampferol, a secondary metabolite from seed endosperm of Sapindus trifoliatus. SNTI showed best interaction with membrane PLA 2 in both in silico as well as in in vitro studies. SNTI showed IC 50 value of 29.02 μM in in vitro assay. Docking interaction profiles and in vitro studies validate selected molecules from Sapindus trifoliatus as immunomodulators and can mollify inflammatory responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Design of Novel Chemotherapeutic Agents Targeting Checkpoint Kinase 1 Using 3D-QSAR Modeling and Molecular Docking Methods.

    PubMed

    Balupuri, Anand; Balasubramanian, Pavithra K; Cho, Seung J

    2016-01-01

    Checkpoint kinase 1 (Chk1) has emerged as a potential therapeutic target for design and development of novel anticancer drugs. Herein, we have performed three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking analyses on a series of diazacarbazoles to design potent Chk1 inhibitors. 3D-QSAR models were developed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. Docking studies were performed using AutoDock. The best CoMFA and CoMSIA models exhibited cross-validated correlation coefficient (q2) values of 0.631 and 0.585, and non-cross-validated correlation coefficient (r2) values of 0.933 and 0.900, respectively. CoMFA and CoMSIA models showed reasonable external predictabilities (r2 pred) of 0.672 and 0.513, respectively. A satisfactory performance in the various internal and external validation techniques indicated the reliability and robustness of the best model. Docking studies were performed to explore the binding mode of inhibitors inside the active site of Chk1. Molecular docking revealed that hydrogen bond interactions with Lys38, Glu85 and Cys87 are essential for Chk1 inhibitory activity. The binding interaction patterns observed during docking studies were complementary to 3D-QSAR results. Information obtained from the contour map analysis was utilized to design novel potent Chk1 inhibitors. Their activities and binding affinities were predicted using the derived model and docking studies. Designed inhibitors were proposed as potential candidates for experimental synthesis.

  3. 22. Detail of interior corner showing truss system, dock no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Detail of interior corner showing truss system, dock no. 492. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  4. Docking Based 3D-QSAR Study of Tricyclic Guanidine Analogues of Batzelladine K as anti-malarial agents

    NASA Astrophysics Data System (ADS)

    Ahmed, Nafees; Anwar, Sirajudheen; Thet Htar, Thet

    2017-06-01

    The Plasmodium falciparum Lactate Dehydrogenase enzyme (PfLDH) catalyzes inter-conversion of pyruvate to lactate during glycolysis producing the energy required for parasitic growth. The PfLDH has been studied as a potential molecular target for development of anti-malarial agents. In an attempt to find the potent inhibitor of PfLDH, we have used Discovery studio to perform molecular docking in the active binding pocket of PfLDH by CDOCKER, followed by three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of tricyclic guanidine batzelladine compounds, which were previously synthesized in our laboratory. Docking studies showed that there is a very strong correlation between in silico and in vitro results. Based on docking results, a highly predictive 3D-QSAR model was developed with q2 of 0.516. The model has predicted r2 of 0.91 showing that predicted IC50 values are in good agreement with experimental IC50 values. The results obtained from this study revealed the developed model can be used to design new anti-malarial compounds based on tricyclic guanidine derivatives and to predict activities of new inhibitors.

  5. Docking Based 3D-QSAR Study of Tricyclic Guanidine Analogues of Batzelladine K As Anti-Malarial Agents.

    PubMed

    Ahmed, Nafees; Anwar, Sirajudheen; Thet Htar, Thet

    2017-01-01

    The Plasmodium falciparum Lactate Dehydrogenase enzyme ( Pf LDH) catalyzes inter-conversion of pyruvate to lactate during glycolysis producing the energy required for parasitic growth. The Pf LDH has been studied as a potential molecular target for development of anti-malarial agents. In an attempt to find the potent inhibitor of Pf LDH, we have used Discovery studio to perform molecular docking in the active binding pocket of Pf LDH by CDOCKER, followed by three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of tricyclic guanidine batzelladine compounds, which were previously synthesized in our laboratory. Docking studies showed that there is a very strong correlation between in silico and in vitro results. Based on docking results, a highly predictive 3D-QSAR model was developed with q 2 of 0.516. The model has predicted r 2 of 0.91 showing that predicted IC 50 values are in good agreement with experimental IC 50 values. The results obtained from this study revealed the developed model can be used to design new anti-malarial compounds based on tricyclic guanidine derivatives and to predict activities of new inhibitors.

  6. Docking Based 3D-QSAR Study of Tricyclic Guanidine Analogues of Batzelladine K As Anti-Malarial Agents

    PubMed Central

    Ahmed, Nafees; Anwar, Sirajudheen; Thet Htar, Thet

    2017-01-01

    The Plasmodium falciparum Lactate Dehydrogenase enzyme (PfLDH) catalyzes inter-conversion of pyruvate to lactate during glycolysis producing the energy required for parasitic growth. The PfLDH has been studied as a potential molecular target for development of anti-malarial agents. In an attempt to find the potent inhibitor of PfLDH, we have used Discovery studio to perform molecular docking in the active binding pocket of PfLDH by CDOCKER, followed by three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of tricyclic guanidine batzelladine compounds, which were previously synthesized in our laboratory. Docking studies showed that there is a very strong correlation between in silico and in vitro results. Based on docking results, a highly predictive 3D-QSAR model was developed with q2 of 0.516. The model has predicted r2 of 0.91 showing that predicted IC50 values are in good agreement with experimental IC50 values. The results obtained from this study revealed the developed model can be used to design new anti-malarial compounds based on tricyclic guanidine derivatives and to predict activities of new inhibitors. PMID:28664157

  7. Multiple receptor conformation docking, dock pose clustering and 3D QSAR studies on human poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors.

    PubMed

    Fatima, Sabiha; Jatavath, Mohan Babu; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2014-10-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) functions as a DNA damage sensor and signaling molecule. It plays a vital role in the repair of DNA strand breaks induced by radiation and chemotherapeutic drugs; inhibitors of this enzyme have the potential to improve cancer chemotherapy or radiotherapy. Three-dimensional quantitative structure activity relationship (3D QSAR) models were developed using comparative molecular field analysis, comparative molecular similarity indices analysis and docking studies. A set of 88 molecules were docked into the active site of six X-ray crystal structures of poly(ADP-ribose)polymerase-1 (PARP-1), by a procedure called multiple receptor conformation docking (MRCD), in order to improve the 3D QSAR models through the analysis of binding conformations. The docked poses were clustered to obtain the best receptor binding conformation. These dock poses from clustering were used for 3D QSAR analysis. Based on MRCD and QSAR information, some key features have been identified that explain the observed variance in the activity. Two receptor-based QSAR models were generated; these models showed good internal and external statistical reliability that is evident from the [Formula: see text], [Formula: see text] and [Formula: see text]. The identified key features enabled us to design new PARP-1 inhibitors.

  8. Structural Basis of Membrane Targeting by the Dock180 Family of Rho Family Guanine Exchange Factors (Rho-GEFs)*

    PubMed Central

    Premkumar, Lakshmanane; Bobkov, Andrey A.; Patel, Manishha; Jaroszewski, Lukasz; Bankston, Laurie A.; Stec, Boguslaw; Vuori, Kristiina; Côté, Jean-Francois; Liddington, Robert C.

    2010-01-01

    The Dock180 family of atypical Rho family guanine nucleotide exchange factors (Rho-GEFs) regulate a variety of processes involving cellular or subcellular polarization, including cell migration and phagocytosis. Each contains a Dock homology region-1 (DHR-1) domain that is required to localize its GEF activity to a specific membrane compartment where levels of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) are up-regulated by the local activity of PtdIns 3-kinase. Here we define the structural and energetic bases of phosphoinositide specificity by the DHR-1 domain of Dock1 (a GEF for Rac1), and show that DHR-1 utilizes a C2 domain scaffold and surface loops to create a basic pocket on its upper surface for recognition of the PtdIns(3,4,5)P3 head group. The pocket has many of the characteristics of those observed in pleckstrin homology domains. We show that point mutations in the pocket that abolish phospholipid binding in vitro ablate the ability of Dock1 to induce cell polarization, and propose a model that brings together recent mechanistic and structural studies to rationalize the central role of DHR-1 in dynamic membrane targeting of the Rho-GEF activity of Dock180. PMID:20167601

  9. Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Saravanan, R. R.; Seshadri, S.; Gunasekaran, S.; Mendoza-Meroño, R.; Garcia-Granda, S.

    2015-03-01

    Conformational analysis, X-ray crystallographic, FT-IR, FT-Raman, DFT, MEP and molecular docking studies on 1-(1-(3-methoxyphenyl) ethylidene) thiosemicarbazide (MPET) are investigated. From conformational analysis the examination of the positions of a molecule taken and the energy changes is observed. The docking studies of the ligand MPET with target protein showed that this is a good molecule which docks well with target related to HMG-CoA. Hence MPET can be considered for developing into a potent anti-cholesterol drug. MEP assists in optimization of electrostatic interactions between the protein and the ligand. The MEP surface displays the molecular shape, size and electrostatic potential values. The optimized geometry of the compound was calculated from the DFT-B3LYP gradient calculations employing 6-31G (d, p) basis set and calculated vibrational frequencies are evaluated via comparison with experimental values.

  10. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling.

    PubMed

    Cui, Hong-Yong; Wang, Shi-Jie; Miao, Ji-Yu; Fu, Zhi-Guang; Feng, Fei; Wu, Jiao; Yang, Xiang-Min; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-02-02

    The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis.

  11. Molecular docking and QSAR study on steroidal compounds as aromatase inhibitors.

    PubMed

    Dai, Yujie; Wang, Qiang; Zhang, Xiuli; Jia, Shiru; Zheng, Heng; Feng, Dacheng; Yu, Peng

    2010-12-01

    In order to develop more potent, selective and less toxic steroidal aromatase (AR) inhibitors, molecular docking, 2D and 3D hybrid quantitative structure-activity relationship (QSAR) study have been conducted using topological, molecular shape, spatial, structural and thermodynamic descriptors on 32 steroidal compounds. The molecular docking study shows that one or more hydrogen bonds with MET374 are one of the essential requirements for the optimum binding of ligands. The QSAR model obtained indicates that the aromatase inhibitory activity can be enhanced by increasing SIC, SC_3_C, Jurs_WNSA_1, Jurs_WPSA_1 and decreasing CDOCKER interaction energy (ECD), IAC_Total and Shadow_XZfrac. The predicted results shows that this model has a comparatively good predictive power which can be used in prediction of activity of new steroidal aromatase inhibitors. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  12. Centrosome docking at the immunological synapse is controlled by Lck signaling

    PubMed Central

    Tsun, Andy; Qureshi, Ihjaaz; Stinchcombe, Jane C.; Jenkins, Misty R.; de la Roche, Maike; Kleczkowska, Joanna; Zamoyska, Rose

    2011-01-01

    Docking of the centrosome at the plasma membrane directs lytic granules to the immunological synapse. To identify signals controlling centrosome docking at the synapse, we have studied cytotoxic T lymphocytes (CTLs) in which expression of the T cell receptor–activated tyrosine kinase Lck is ablated. In the absence of Lck, the centrosome is able to translocate around the nucleus toward the immunological synapse but is unable to dock at the plasma membrane. Lytic granules fail to polarize and release their contents, and target cells are not killed. In CTLs deficient in both Lck and the related tyrosine kinase Fyn, centrosome translocation is impaired, and the centrosome remains on the distal side of the nucleus relative to the synapse. These results show that repositioning of the centrosome in CTLs involves at least two distinct steps, with Lck signaling required for the centrosome to dock at the plasma membrane. PMID:21339332

  13. High performance transcription factor-DNA docking with GPU computing

    PubMed Central

    2012-01-01

    Background Protein-DNA docking is a very challenging problem in structural bioinformatics and has important implications in a number of applications, such as structure-based prediction of transcription factor binding sites and rational drug design. Protein-DNA docking is very computational demanding due to the high cost of energy calculation and the statistical nature of conformational sampling algorithms. More importantly, experiments show that the docking quality depends on the coverage of the conformational sampling space. It is therefore desirable to accelerate the computation of the docking algorithm, not only to reduce computing time, but also to improve docking quality. Methods In an attempt to accelerate the sampling process and to improve the docking performance, we developed a graphics processing unit (GPU)-based protein-DNA docking algorithm. The algorithm employs a potential-based energy function to describe the binding affinity of a protein-DNA pair, and integrates Monte-Carlo simulation and a simulated annealing method to search through the conformational space. Algorithmic techniques were developed to improve the computation efficiency and scalability on GPU-based high performance computing systems. Results The effectiveness of our approach is tested on a non-redundant set of 75 TF-DNA complexes and a newly developed TF-DNA docking benchmark. We demonstrated that the GPU-based docking algorithm can significantly accelerate the simulation process and thereby improving the chance of finding near-native TF-DNA complex structures. This study also suggests that further improvement in protein-DNA docking research would require efforts from two integral aspects: improvement in computation efficiency and energy function design. Conclusions We present a high performance computing approach for improving the prediction accuracy of protein-DNA docking. The GPU-based docking algorithm accelerates the search of the conformational space and thus increases the chance of finding more near-native structures. To the best of our knowledge, this is the first ad hoc effort of applying GPU or GPU clusters to the protein-DNA docking problem. PMID:22759575

  14. Replica Exchange Improves Sampling in Low-Resolution Docking Stage of RosettaDock

    PubMed Central

    Zhang, Zhe; Lange, Oliver F.

    2013-01-01

    Many protein-protein docking protocols are based on a shotgun approach, in which thousands of independent random-start trajectories minimize the rigid-body degrees of freedom. Another strategy is enumerative sampling as used in ZDOCK. Here, we introduce an alternative strategy, ReplicaDock, using a small number of long trajectories of temperature replica exchange. We compare replica exchange sampling as low-resolution stage of RosettaDock with RosettaDock's original shotgun sampling as well as with ZDOCK. A benchmark of 30 complexes starting from structures of the unbound binding partners shows improved performance for ReplicaDock and ZDOCK when compared to shotgun sampling at equal or less computational expense. ReplicaDock and ZDOCK consistently reach lower energies and generate significantly more near-native conformations than shotgun sampling. Accordingly, they both improve typical metrics of prediction quality of complex structures after refinement. Additionally, the refined ReplicaDock ensembles reach significantly lower interface energies and many previously hidden features of the docking energy landscape become visible when ReplicaDock is applied. PMID:24009670

  15. Service building. Cross section thru dry dock nos. 4 & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Service building. Cross section thru dry dock nos. 4 & 5 showing service bldg & 20-75-150 ton cranes (dry dock associates, May 23, 1941). In files of Cushman & Wakefield, building no. 501, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Service Building, Dry Docks No. 4 & 5, League Island, Philadelphia, Philadelphia County, PA

  16. Performance Studies on Distributed Virtual Screening

    PubMed Central

    Krüger, Jens; de la Garza, Luis; Kohlbacher, Oliver; Nagel, Wolfgang E.

    2014-01-01

    Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly. PMID:25032219

  17. Assessing the binding of cholinesterase inhibitors by docking and molecular dynamics studies.

    PubMed

    Ali, M Rejwan; Sadoqi, Mostafa; Møller, Simon G; Boutajangout, Allal; Mezei, Mihaly

    2017-09-01

    In this report we assessed by docking and molecular dynamics the binding mechanisms of three FDA-approved Alzheimer drugs, inhibitors of the enzyme acetylcholinesterase (AChE): donepezil, galantamine and rivastigmine. Dockings by the softwares Autodock-Vina, PatchDock and Plant reproduced the docked conformations of the inhibitor-enzyme complexes within 2Å of RMSD of the X-ray structure. Free-energy scores show strong affinity of the inhibitors for the enzyme binding pocket. Three independent Molecular Dynamics simulation runs indicated general stability of donepezil, galantamine and rivastigmine in their respective enzyme binding pocket (also referred to as gorge) as well as the tendency to form hydrogen bonds with the water molecules. The binding of rivastigmine in the Torpedo California AChE binding pocket is interesting as it eventually undergoes carbamylation and breaks apart according to the X-ray structure of the complex. Similarity search in the ZINC database and targeted docking on the gorge region of the AChE enzyme gave new putative inhibitor molecules with high predicted binding affinity, suitable for potential biophysical and biological assessments. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Operator learning effects in teleoperated rendezvous & docking

    NASA Astrophysics Data System (ADS)

    Wilde, M.; Harder, J.; Purschke, R.

    Teleoperation of spacecraft proximity operations and docking requires delicate timing and coordination of spacecraft maneuvers. Experience has shown that human operators show large performance fluctuations in these areas, which are a major factor to be addressed in operator training. In order to allow the quantification of the impact of these human fluctuations on control system performance and the human perception of this performance, a learning curve study was conducted with teleoperated final approach and docking scenarios. Over a period of ten experiment days, three test participants were tasked with repeatedly completing a set of three training scenarios. The scenarios were designed to contain different combinations of the major elements of any final approach and docking situation, and to feature an increasing difficulty level. The individual difficulty levels for the three operators furthermore differed in the level of operator support functions available in their human-machine interfaces. Operator performance in the test scenarios were evaluated in the fields approach success and precision, docking safety, and approach efficiency by a combination of recorded maneuver data and questionnaires. The results show that operator experience and the associated learning curves increase operator performance substantially, regardless of the support system used. The paper also shows that the fluctuations in operator performance and self-perception are substantial between as well as within experiment days, and must be reckoned with in teleoperation system design and mission planning.

  19. Homology modeling, active site prediction, and targeting the anti hypertension activity through molecular docking on endothelin – B receptor domain

    PubMed Central

    Rayalu, Daddam Jayasimha; Selvaraj, Chandrabose; Singh, Sanjeev Kumar; Ganeshan, Ramakrishan; Kumar, Nagapatla Udaya; Seshapani, Panthangi

    2012-01-01

    In cardiovascular system, activation of Endothelin receptors causes vasoconstriction which leads to Pulmonary Arterial Hypertension (PAH). Endothelin receptor antagonism has emerged as an important therapeutic strategy in pulmonary arterial hypertension. Bosentan is intended to affect vasoconstriction, hypertrophic and fibrotic effects by blocking the actions of receptors ETA and ETB. In this study we identified the action of Bosentan on endothelin B receptor using docking studies with homology modeled endothelin B receptor. Through the modeled protein, the flexible Docking study was performed with Bosentan and its derivatives with theoretically predicted active sites. The results indicated that amino acid ARG82, ARG84 and HIS197 present in endothelin B receptor are core important for binding activities and these residues are having strong hydrogen bond interactions with Bosentan. We have investigated the Bosentan and its derivatives interactions and scoring parameters using gold docking package. Among the docked compounds, one of the Bosentan derivatives BD6 shows better interaction than Bosentan with endothelin B receptor. Our results may be helpful for further investigations in both in vivo and in vitro conditions. PMID:22359440

  20. Identification of natural inhibitors against angiotensin I converting enzyme for cardiac safety using induced fit docking and MM-GBSA studies

    PubMed Central

    Vijayakumar, Balakrishnan; Parasuraman, Subramani; Raveendran, Ramasamy; Velmurugan, Devadasan

    2014-01-01

    Background: Cleistanthins A and B are isolated compounds from the leaves of Cleistanthus collinus Roxb (Euphorbiaceae). This plant is poisonous in nature which causes cardiovascular abnormalities such as hypotension, nonspecific ST-T changes and QTc prolongation. The biological activity predictions spectra of the compounds show the presence of antihypertensive, diuretic and antitumor activities. Objective: Objective of the present study was to determine the in silico molecular interaction of cleistanthins A and B with Angiotensin I- Converting Enzyme (ACE-I) using Induced Fit Docking (IFD) protocols. Materials and Methods: All the molecular modeling calculations like IFD docking, binding free energy calculation and ADME/Tox were carried out using Glide software (Schrödinger LLC 2009, USA) in CentOS EL-5 workstation. Results: The IFD complexes showed favorable docking score, glide energy, glide emodel, hydrogen bond and hydrophobic interactions between the active site residues of ACE-I and the compounds. Binding free energy was calculated for the IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of ACE-I were observed based on changes of the back bone Cα atoms and side-chain chi (x) angles. The various physicochemical properties were calculated for these compounds. Both cleistanthins A and B showed better docking score, glide energy and glide emodel when compared to captopril inhibitor. Conclusion: These compounds have successively satisfied all the in silico parameters and seem to be potent inhibitors of ACE-I and potential candidates for hypertension. PMID:25298685

  1. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling

    PubMed Central

    Feng, Fei; Wu, Jiao; Yang, Xiang-Min; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-01-01

    The acquisition of inappropriate migratory feature is crucial for tumor metastasis. It has been suggested that CD147 and Annexin A2 are involved in regulating tumor cell movement, while the regulatory mechanisms are far from clear. In this study, we demonstrated that CD147 physically interacted with the N-terminal domain of Annexin A2 and decreased Annexin A2 phosphorylation on tyrosine 23. In vitro kinase assay showed that the I domain of CD147 was indispensable for CD147-mediated downregulation of Annexin A2 phosphorylation by Src. Furthermore, we determined that p-Annexin A2 promoted the expression of dedicator of cytokinesis 3 (DOCK3) and DOCK3 blocked β-catenin nuclear translocation, resulting in inhibition of β-catenin signaling. In addition, DOCK3 inhibited lamellipodium dynamics and tumor cell movement. Also, we found that β-catenin signaling increased WAVE2 expression. Therefore, DOCK3 was characterized as a negative regulator of WAVE2 expression via inhibiting β-catenin signaling. Our study provides the first evidence that CD147 promotes tumor cell movement and metastasis via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling axis. PMID:26716413

  2. Molecular modeling and multispectroscopic studies of the interaction of mesalamine with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Fili, Soraya Moradi

    2014-01-01

    The interaction of mesalamine (5-aminosalicylic acid (5-ASA)) with bovine serum albumin (BSA) was investigated by fluorescence quenching, absorption spectroscopy, circular dichroism (CD) techniques, and molecular docking. Thermodynamic parameters (ΔH < 0 and ΔS 0) indicated that the hydrogen bond and electrostatic forces played the major role in the binding of 5-ASA to BSA. The results of CD and UV-vis spectroscopy showed that the binding of this drug to BSA induces some conformational changes in BSA. Displacement experiments predicted that the binding of 5-ASA to BSA is located within domain III, Sudlows site 2, that these observations were substantiated by molecular docking studies. In addition, the docking result shows that the 5-ASA in its anionic form mainly interacts with Gln-416 residue through one hydrogen bond between H atom of 5-ASA anion and the adjacent O atom of the hydroxyl group of Gln-416.

  3. Docking Mechanism on Progress 52

    NASA Image and Video Library

    2014-02-03

    ISS038-E-041175 (3 Feb. 2014) --- This close-up view shows the docking mechanism of the unpiloted Russian ISS Progress 52 resupply ship as it undocks from the International Space Station's Pirs Docking Compartment at 11:21 a.m. (EST) on Feb. 3, 2014. The Progress backed away to a safe distance from the orbital complex to begin several days of tests to study thermal effects of space on its attitude control system. Filled with trash and other unneeded items, the Russian resupply ship will be commanded to re-enter Earth's atmosphere Feb. 11 and disintegrate harmlessly over the Pacific Ocean.

  4. wFReDoW: A Cloud-Based Web Environment to Handle Molecular Docking Simulations of a Fully Flexible Receptor Model

    PubMed Central

    De Paris, Renata; Frantz, Fábio A.; Norberto de Souza, Osmar; Ruiz, Duncan D. A.

    2013-01-01

    Molecular docking simulations of fully flexible protein receptor (FFR) models are coming of age. In our studies, an FFR model is represented by a series of different conformations derived from a molecular dynamic simulation trajectory of the receptor. For each conformation in the FFR model, a docking simulation is executed and analyzed. An important challenge is to perform virtual screening of millions of ligands using an FFR model in a sequential mode since it can become computationally very demanding. In this paper, we propose a cloud-based web environment, called web Flexible Receptor Docking Workflow (wFReDoW), which reduces the CPU time in the molecular docking simulations of FFR models to small molecules. It is based on the new workflow data pattern called self-adaptive multiple instances (P-SaMIs) and on a middleware built on Amazon EC2 instances. P-SaMI reduces the number of molecular docking simulations while the middleware speeds up the docking experiments using a High Performance Computing (HPC) environment on the cloud. The experimental results show a reduction in the total elapsed time of docking experiments and the quality of the new reduced receptor models produced by discarding the nonpromising conformations from an FFR model ruled by the P-SaMI data pattern. PMID:23691504

  5. Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies.

    PubMed

    Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata

    2016-11-01

    Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10 6 M -1 . Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The inhibitory activity of HL-7 and HL-10 peptide from scorpion venom (Hemiscorpius lepturus) on angiotensin converting enzyme: Kinetic and docking study.

    PubMed

    Setayesh-Mehr, Zahra; Asoodeh, Ahmad

    2017-12-01

    The hypertension is one of the highest risk factors for stroke, myocardial infarction, vascular disease and chronic kidney disease. Angiotensin converting enzyme (ACE) has an important role in the physiological regulation of cardiovascular system. ACE inhibition is a key purpose for hypertension treatment. In this study, two peptides named HL-7 with the sequence of YLYELAR (MW: 927.07Da) and HL-10 with the sequence of AFPYYGHHLG (MW: 1161.28Da) were identified from scorpion venom of H. lepturus. The inhibitory activity of HL-7 and HL-10 was examined on rabbit ACE. The inhibition mechanisms were assayed by kinetic and docking studies. The IC 50 values for ACE inhibition of HL-7 and HL-10 were 9.37µM and 17.22µM, respectively. Lineweaver-Burk plots showed that two peptides inhibited rabbit ACE with competitive manner. The molecular docking conformed experimental results and showed that the two peptides interacted with N-domain and C-domain active sites. Also, docking study revealed that the two peptides can form hydrogen and hydrophobic bonds at their binding sites. Both peptides had higher affinity to N-domain. Our results showed that HL-7 exhibited more strong interactions with amino acids at active site. It seems that HL-10 peptide could occupy more space, thereby inhibiting the substrate entrance to active site. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Comparative evaluation of several docking tools for docking small molecule ligands to DC-SIGN.

    PubMed

    Jug, Gregor; Anderluh, Marko; Tomašič, Tihomir

    2015-06-01

    Five docking tools, namely AutoDock, FRED, CDOCKER, FlexX and GOLD, have been critically examined, with the aim of selecting those most appropriate for use as docking tools for docking molecules to the lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN). This lectin has been selected for its rather non-druggable binding site, which enables complex interactions that guide the binding of the core monosaccharide. Since optimal orientation is crucial for forming coordination bonds, it was important to assess whether the selected docking tools could reproduce the optimal binding conformation for several oligosaccharides that are known to bind DC-SIGN. Our results show that even widely used docking programs have certain limitations when faced with a rather shallow and featureless binding site, as is the case of DC-SIGN. The FRED docking software (OpenEye Scientific Software, Inc.) was found to score as the best tool for docking ligands to DC-SIGN. The performance of FRED was further assessed on another lectin, Langerin. We have demonstrated that this validated docking protocol could be used for docking to other lectins similar to DC-SIGN.

  8. Molecular docking, molecular modeling, and molecular dynamics studies of azaisoflavone as dual COX-2 inhibitors and TP receptor antagonists.

    PubMed

    Hadianawala, Murtuza; Mahapatra, Amarjyoti Das; Yadav, Jitender K; Datta, Bhaskar

    2018-02-26

    Designed multi-target ligand (DML) is an emerging strategy for the development of new drugs and involves the engagement of multiple targets with the same moiety. In the context of NSAIDs it has been suggested that targeting the thromboxane prostanoid (TP) receptor along with cyclooxygenase-2 (COX-2) may help to overcome cardiovascular (CVS) complications associated with COXIBs. In the present work, azaisoflavones were studied for their COX-2 and TP receptor binding activities using structure based drug design (SBDD) techniques. Flavonoids were selected as a starting point based on their known COX-2 inhibitory and TP receptor antagonist activity. Iterative design and docking studies resulted in the evolution of a new class scaffold replacing the benzopyran-4-one ring of flavonoids with quinolin-4-one. The docking and binding parameters of these new compounds are found to be promising in comparison to those of selective COX-2 inhibitors, such as SC-558 and celecoxib. Owing to the lack of structural information, a model for the TP receptor was generated using a threading base alignment method with loop optimization performed using an ab initio method. The model generated was validated against known antagonists for TP receptor using docking/MMGBSA. Finally, the molecules that were designed for selective COX-2 inhibition were docked into the active site of the TP receptor. Iterative structural modifications and docking on these molecules generated a series which displays optimum docking scores and binding interaction for both targets. Molecular dynamics studies on a known TP receptor antagonist and a designed molecule show that both molecules remain in contact with protein throughout the simulation and interact in similar binding modes. Graphical abstract ᅟ.

  9. PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets.

    PubMed

    Yu, Jinchao; Guerois, Raphaël

    2016-12-15

    Protein-protein docking methods are of great importance for understanding interactomes at the structural level. It has become increasingly appealing to use not only experimental structures but also homology models of unbound subunits as input for docking simulations. So far we are missing a large scale assessment of the success of rigid-body free docking methods on homology models. We explored how we could benefit from comparative modelling of unbound subunits to expand docking benchmark datasets. Starting from a collection of 3157 non-redundant, high X-ray resolution heterodimers, we developed the PPI4DOCK benchmark containing 1417 docking targets based on unbound homology models. Rigid-body docking by Zdock showed that for 1208 cases (85.2%), at least one correct decoy was generated, emphasizing the efficiency of rigid-body docking in generating correct assemblies. Overall, the PPI4DOCK benchmark contains a large set of realistic cases and provides new ground for assessing docking and scoring methodologies. Benchmark sets can be downloaded from http://biodev.cea.fr/interevol/ppi4dock/ CONTACT: guerois@cea.frSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Ensemble-based docking: From hit discovery to metabolism and toxicity predictions

    DOE PAGES

    Evangelista, Wilfredo; Weir, Rebecca; Ellingson, Sally; ...

    2016-07-29

    The use of ensemble-based docking for the exploration of biochemical pathways and toxicity prediction of drug candidates is described. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials.

  11. Ensemble-based docking: From hit discovery to metabolism and toxicity predictions.

    PubMed

    Evangelista, Wilfredo; Weir, Rebecca L; Ellingson, Sally R; Harris, Jason B; Kapoor, Karan; Smith, Jeremy C; Baudry, Jerome

    2016-10-15

    This paper describes and illustrates the use of ensemble-based docking, i.e., using a collection of protein structures in docking calculations for hit discovery, the exploration of biochemical pathways and toxicity prediction of drug candidates. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Docking analysis of gallic acid derivatives as HIV-1 protease inhibitors.

    PubMed

    Singh, Anjali; Pal, Tapan Kumar

    2015-01-01

    HIV-1 Protease (HIV-1 PR) enzymes are essential for accurate assembly and maturation of infectious HIV retroviruses. The significant role of HIV-1 protease in viral replication has made it a potential drug target. In the recent past, phytochemical Gallic Acid (GA) derivatives have been screened for protease inhibitor activity. The present work aims to design and evaluate potential GA-based HIV-1 PR phytoinhibitors by docking approach. The ligands were prepared by ChemDraw and docking was performed in HEX software. In this present study, one of the GA analogues (GA4) emerged as a potent drug candidate for HIV-1 PR inhibition, and docking results showed it to be comparable with anti-HIV drugs, darunavir and amprenavir. The GA4 derivative provided a lead for designing more effective HIV-1 PR inhibitors.

  13. 16. DETAIL VIEW OF NORTHWEST SIDE LOADING DOCKS, SHOWING SUSPENDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL VIEW OF NORTHWEST SIDE LOADING DOCKS, SHOWING SUSPENDER BARS AND ORIGINAL SHIPLAP SIDING - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  14. Evaluation of protein docking predictions using Hex 3.1 in CAPRI rounds 1 and 2.

    PubMed

    Ritchie, David W

    2003-07-01

    This article describes and reviews our efforts using Hex 3.1 to predict the docking modes of the seven target protein-protein complexes presented in the CAPRI (Critical Assessment of Predicted Interactions) blind docking trial. For each target, the structure of at least one of the docking partners was given in its unbound form, and several of the targets involved large multimeric structures (e.g., Lactobacillus HPr kinase, hemagglutinin, bovine rotavirus VP6). Here we describe several enhancements to our original spherical polar Fourier docking correlation algorithm. For example, a novel surface sphere smothering algorithm is introduced to generate multiple local coordinate systems around the surface of a large receptor molecule, which may be used to define a small number of initial ligand-docking orientations distributed over the receptor surface. High-resolution spherical polar docking correlations are performed over the resulting receptor surface patches, and candidate docking solutions are refined by using a novel soft molecular mechanics energy minimization procedure. Overall, this approach identified two good solutions at rank 5 or less for two of the seven CAPRI complexes. Subsequent analysis of our results shows that Hex 3.1 is able to place good solutions within a list of

  15. In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants

    PubMed Central

    Setzer, William N.; Ogungbe, Ifedayo V.

    2012-01-01

    Background Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment. Methods A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4′ epimerase (TbUDPGE), and ornithine decarboxylase (TbODC). Results This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4′ epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins. Conclusions This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations. PMID:22848767

  16. 13. DETAIL VIEW OF LOADING DOCK CANOPY, SHOWING TWIN TIMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL VIEW OF LOADING DOCK CANOPY, SHOWING TWIN TIMBER SUPPORT MEMBERS AND SUSPENDER BAR MOUNTING HARDWARE - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  17. Probing the binding of phenolic aldehyde vanillin with bovine serum albumin: Evidence from spectroscopic and docking approach.

    PubMed

    Siddiqui, Gufran Ahmed; Siddiqi, Mohammad Khursheed; Khan, Rizwan Hasan; Naeem, Aabgeena

    2018-05-08

    The interactions of bovine serum albumin (BSA) with vanillin (VAN) were studied using UV-vis absorption, fluorescence, synchronous fluorescence, three dimensional fluorescence spectroscopy (3D), Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and molecular docking techniques. The results revealed that VAN causes the static quenching of BSA by forming BSA-VAN complex. The thermodynamic parameters obtained using isothermal titration calorimetry (ITC) showed that the interaction between BSA and VAN is spontaneous and hydrogen bonding, van der Waals forces are mainly involved in stabilizing the complex. The distance between the donor and the acceptor was analyzed using fluorescence resonance energy transfer (FRET) which showed Forster distance of 2.58 nm. Molecular docking technique was applied to study the modes of interaction between BSA-VAN system and it was found that VAN bound to the sub-domain IIA of BSA. Structural analysis using 3D, synchronous fluorescence FTIR, and CD showed that upon binding of VAN, BSA exhibits small micro-environmental changes around tryptophan amino acid residue. Copyright © 2018. Published by Elsevier B.V.

  18. Structure-based design and evaluation of novel N-phenyl-1H-indol-2-amine derivatives for fat mass and obesity-associated (FTO) protein inhibition.

    PubMed

    Padariya, Monikaben; Kalathiya, Umesh

    2016-10-01

    Fat mass and obesity-associated (FTO) protein contributes to non-syndromic human obesity which refers to excessive fat accumulation in human body and results in health risk. FTO protein has become a promising target for anti-obesity medicines as there is an immense need for the rational design of potent inhibitors to treat obesity. In our study, a new scaffold N-phenyl-1H-indol-2-amine was selected as a base for FTO protein inhibitors by applying scaffold hopping approach. Using this novel scaffold, different derivatives were designed by extending scaffold structure with potential functional groups. Molecular docking simulations were carried out by using two different docking algorithm implemented in CDOCKER (flexible docking) and AutoDock programs (rigid docking). Analyzing results of rigid and flexible docking, compound MU06 was selected based on different properties and predicted binding affinities for further analysis. Molecular dynamics simulation of FTO/MU06 complex was performed to characterize structure rationale and binding stability. Certainly, Arg96 and His231 residue of FTO protein showed stable interaction with inhibitor MU06 throughout the production dynamics phase. Three residues of FTO protein (Arg96, Asp233, and His231) were found common in making H-bond interactions with MU06 during molecular dynamics simulation and CDOCKER docking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Performance of a docking/molecular dynamics protocol for virtual screening of nutlin-class inhibitors of Mdmx.

    PubMed

    Bharatham, Nagakumar; Finch, Kristin E; Min, Jaeki; Mayasundari, Anand; Dyer, Michael A; Guy, R Kiplin; Bashford, Donald

    2017-06-01

    A virtual screening protocol involving docking and molecular dynamics has been tested against the results of fluorescence polarization assays testing the potency of a series of compounds of the nutlin class for inhibition of the interaction between p53 and Mdmx, an interaction identified as a driver of certain cancers. The protocol uses a standard docking method (AutoDock) with a cutoff based on the AutoDock score (ADscore), followed by molecular dynamics simulation with a cutoff based on root-mean-square-deviation (RMSD) from the docked pose. An analysis of the experimental and computational results shows modest performance of ADscore alone, but dramatically improved performance when RMSD is also used. Published by Elsevier Inc.

  20. DockRank: Ranking docked conformations using partner-specific sequence homology-based protein interface prediction

    PubMed Central

    Xue, Li C.; Jordan, Rafael A.; EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2015-01-01

    Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. Dock-Rank uses interface residues predicted by partner-specific sequence homology-based protein–protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. PMID:23873600

  1. DockRank: ranking docked conformations using partner-specific sequence homology-based protein interface prediction.

    PubMed

    Xue, Li C; Jordan, Rafael A; El-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant

    2014-02-01

    Selecting near-native conformations from the immense number of conformations generated by docking programs remains a major challenge in molecular docking. We introduce DockRank, a novel approach to scoring docked conformations based on the degree to which the interface residues of the docked conformation match a set of predicted interface residues. DockRank uses interface residues predicted by partner-specific sequence homology-based protein-protein interface predictor (PS-HomPPI), which predicts the interface residues of a query protein with a specific interaction partner. We compared the performance of DockRank with several state-of-the-art docking scoring functions using Success Rate (the percentage of cases that have at least one near-native conformation among the top m conformations) and Hit Rate (the percentage of near-native conformations that are included among the top m conformations). In cases where it is possible to obtain partner-specific (PS) interface predictions from PS-HomPPI, DockRank consistently outperforms both (i) ZRank and IRAD, two state-of-the-art energy-based scoring functions (improving Success Rate by up to 4-fold); and (ii) Variants of DockRank that use predicted interface residues obtained from several protein interface predictors that do not take into account the binding partner in making interface predictions (improving success rate by up to 39-fold). The latter result underscores the importance of using partner-specific interface residues in scoring docked conformations. We show that DockRank, when used to re-rank the conformations returned by ClusPro, improves upon the original ClusPro rankings in terms of both Success Rate and Hit Rate. DockRank is available as a server at http://einstein.cs.iastate.edu/DockRank/. Copyright © 2013 Wiley Periodicals, Inc.

  2. Quantitative Structure-Activity Relationship Modeling Coupled with Molecular Docking Analysis in Screening of Angiotensin I-Converting Enzyme Inhibitory Peptides from Qula Casein Hydrolysates Obtained by Two-Enzyme Combination Hydrolysis.

    PubMed

    Lin, Kai; Zhang, Lanwei; Han, Xue; Meng, Zhaoxu; Zhang, Jianming; Wu, Yifan; Cheng, Dayou

    2018-03-28

    In this study, Qula casein derived from yak milk casein was hydrolyzed using a two-enzyme combination approach, and high angiotensin I-converting enzyme (ACE) inhibitory activity peptides were screened by quantitative structure-activity relationship (QSAR) modeling integrated with molecular docking analysis. Hydrolysates (<3 kDa) derived from combinations of thermolysin + alcalase and thermolysin + proteinase K demonstrated high ACE inhibitory activities. Peptide sequences in hydrolysates derived from these two combinations were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). On the basis of the QSAR modeling prediction, a total of 16 peptides were selected for molecular docking analysis. The docking study revealed that four of the peptides (KFPQY, MPFPKYP, MFPPQ, and QWQVL) bound the active site of ACE. These four novel peptides were chemically synthesized, and their IC 50 was determined. Among these peptides, KFPQY showed the highest ACE inhibitory activity (IC 50 = 12.37 ± 0.43 μM). Our study indicated that Qula casein presents an excellent source to produce ACE inhibitory peptides.

  3. Metal Ion Dependence, Thermodynamics, and Kinetics for Intramolecular Docking of a GAAA Tetraloop and Receptor Connected by a Flexible Linker†

    PubMed Central

    Downey, Christopher D.; Fiore, Julie L.; Stoddard, Colby D.; Hodak, Jose H.; Nesbitt, David J.; Pardi, Arthur

    2008-01-01

    The GAAA tetraloop-receptor is a commonly occurring tertiary interaction motif in RNA. This motif usually occurs in combination with other tertiary interactions in complex RNA structures. Thus, it is difficult to measure directly the contribution that a single GAAA tetraloop-receptor interaction makes to the folding properties of an RNA. To investigate the kinetics and thermodynamics for the isolated interaction, a GAAA tetraloop domain and receptor domain were connected by a single-stranded A7 linker. Fluorescence resonance energy transfer (FRET) experiments were used to probe intramolecular docking of the GAAA tetraloop and receptor. Docking was induced using a variety of metal ions, where the charge of the ion was the most important factor in determining the concentration of the ion required to promote docking ([Co(NH3)63+] ≪ [Ca2+], [Mg2+], [Mn2+] ≪ [Na+], [K+]). Analysis of metal ion cooperativity yielded Hill coefficients of ≈ 2 for Na+- or K+-dependent docking versus ≈ 1 for the divalent ions and Co(NH3)63+. Ensemble stopped-flow FRET kinetic measurements yielded an apparent activation energy of 12.7 kcal/mol for GAAA tetraloop-receptor docking. RNA constructs with U7 and A14 single-stranded linkers were investigated by single-molecule and ensemble FRET techniques to determine how linker length and composition affect docking. These studies showed that the single-stranded region functions primarily as a flexible tether. Inhibition of docking by oligonucleotides complementary to the linker was also investigated. The influence of flexible versus rigid linkers on GAAA tetraloop-receptor docking is discussed. PMID:16533049

  4. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines.

    PubMed

    Zhang, Xiaohua; Wong, Sergio E; Lightstone, Felice C

    2013-04-30

    A mixed parallel scheme that combines message passing interface (MPI) and multithreading was implemented in the AutoDock Vina molecular docking program. The resulting program, named VinaLC, was tested on the petascale high performance computing (HPC) machines at Lawrence Livermore National Laboratory. To exploit the typical cluster-type supercomputers, thousands of docking calculations were dispatched by the master process to run simultaneously on thousands of slave processes, where each docking calculation takes one slave process on one node, and within the node each docking calculation runs via multithreading on multiple CPU cores and shared memory. Input and output of the program and the data handling within the program were carefully designed to deal with large databases and ultimately achieve HPC on a large number of CPU cores. Parallel performance analysis of the VinaLC program shows that the code scales up to more than 15K CPUs with a very low overhead cost of 3.94%. One million flexible compound docking calculations took only 1.4 h to finish on about 15K CPUs. The docking accuracy of VinaLC has been validated against the DUD data set by the re-docking of X-ray ligands and an enrichment study, 64.4% of the top scoring poses have RMSD values under 2.0 Å. The program has been demonstrated to have good enrichment performance on 70% of the targets in the DUD data set. An analysis of the enrichment factors calculated at various percentages of the screening database indicates VinaLC has very good early recovery of actives. Copyright © 2013 Wiley Periodicals, Inc.

  5. Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano

    2018-01-01

    Molecular docking is a powerful tool in the field of computer-aided molecular design. In particular, it is the technique of choice for the prediction of a ligand pose within its target binding site. A multitude of docking methods is available nowadays, whose performance may vary depending on the data set. Therefore, some non-trivial choices should be made before starting a docking simulation. In the same framework, the selection of the target structure to use could be challenging, since the number of available experimental structures is increasing. Both issues have been explored within this work. The pose prediction of a pool of 36 compounds provided by D3R Grand Challenge 2 organizers was preceded by a pipeline to choose the best protein/docking-method couple for each blind ligand. An integrated benchmark approach including ligand shape comparison and cross-docking evaluations was implemented inside our DockBench software. The results are encouraging and show that bringing attention to the choice of the docking simulation fundamental components improves the results of the binding mode predictions.

  6. Molecular modeling and multispectroscopic studies of the interaction of mesalamine with bovine serum albumin.

    PubMed

    Shahabadi, Nahid; Fili, Soraya Moradi

    2014-01-24

    The interaction of mesalamine (5-aminosalicylic acid (5-ASA)) with bovine serum albumin (BSA) was investigated by fluorescence quenching, absorption spectroscopy, circular dichroism (CD) techniques, and molecular docking. Thermodynamic parameters (ΔH<0 and ΔS 0) indicated that the hydrogen bond and electrostatic forces played the major role in the binding of 5-ASA to BSA. The results of CD and UV-vis spectroscopy showed that the binding of this drug to BSA induces some conformational changes in BSA. Displacement experiments predicted that the binding of 5-ASA to BSA is located within domain III, Sudlows site 2, that these observations were substantiated by molecular docking studies. In addition, the docking result shows that the 5-ASA in its anionic form mainly interacts with Gln-416 residue through one hydrogen bond between H atom of 5-ASA anion and the adjacent O atom of the hydroxyl group of Gln-416. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A novel intermembrane space–targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding

    PubMed Central

    Sideris, Dionisia P.; Petrakis, Nikos; Katrakili, Nitsa; Mikropoulou, Despina; Gallo, Angelo; Ciofi-Baffoni, Simone; Banci, Lucia; Bertini, Ivano

    2009-01-01

    Mia40 imports Cys-containing proteins into the mitochondrial intermembrane space (IMS) by ensuring their Cys-dependent oxidative folding. In this study, we show that the specific Cys of the substrate involved in docking with Mia40 is substrate dependent, the process being guided by an IMS-targeting signal (ITS) present in Mia40 substrates. The ITS is a 9-aa internal peptide that (a) is upstream or downstream of the docking Cys, (b) is sufficient for crossing the outer membrane and for targeting nonmitochondrial proteins, (c) forms an amphipathic helix with crucial hydrophobic residues on the side of the docking Cys and dispensable charged residues on the other side, and (d) fits complementary to the substrate cleft of Mia40 via hydrophobic interactions of micromolar affinity. We rationalize the dual function of Mia40 as a receptor and an oxidase in a two step–specific mechanism: an ITS-guided sliding step orients the substrate noncovalently, followed by docking of the substrate Cys now juxtaposed to pair with the Mia40 active Cys. PMID:20026652

  8. Protein docking by the interface structure similarity: how much structure is needed?

    PubMed

    Sinha, Rohita; Kundrotas, Petras J; Vakser, Ilya A

    2012-01-01

    The increasing availability of co-crystallized protein-protein complexes provides an opportunity to use template-based modeling for protein-protein docking. Structure alignment techniques are useful in detection of remote target-template similarities. The size of the structure involved in the alignment is important for the success in modeling. This paper describes a systematic large-scale study to find the optimal definition/size of the interfaces for the structure alignment-based docking applications. The results showed that structural areas corresponding to the cutoff values <12 Å across the interface inadequately represent structural details of the interfaces. With the increase of the cutoff beyond 12 Å, the success rate for the benchmark set of 99 protein complexes, did not increase significantly for higher accuracy models, and decreased for lower-accuracy models. The 12 Å cutoff was optimal in our interface alignment-based docking, and a likely best choice for the large-scale (e.g., on the scale of the entire genome) applications to protein interaction networks. The results provide guidelines for the docking approaches, including high-throughput applications to modeled structures.

  9. [Screening of anti-aging active ingredients and mechanism analysis based on molecular docking technology].

    PubMed

    Du, Ran-Feng; Zhang, Xiao-Hua; Ye, Xiao-Tong; Yu, Wen-Kang; Wang, Yun

    2016-07-01

    Dampness evil is the source of all diseases, which is easy to cause disease and promote aging, while aging could also promote the occurence and development of diseases. In this paper, the relationship between the dampness evil and aging would be discussed, to find the anti-aging active ingredients in traditional Chinese medicine (TCM), and analyze the anti-aging mechanism of dampness eliminating drug. Molecular docking technology was used, with aging-related mammalian target of rapamycin as the docking receptors, and chemical components of Fuling, Sangzhi, Mugua, Yiyiren and Houpo as the docking molecules, to preliminarily screen the anti-aging active ingredients in dampness eliminating drug. Through the comparison with active drugs already on the market (temsirolimus and everolimus), 12 kinds of potential anti-aging active ingredients were found, but their drug gability still needs further study. The docking results showed that various components in the dampness eliminating drug can play anti-aging activities by acting on mammalian target of rapamycin. This result provides a new thought and direction for the method of delaying aging by eliminating dampness. Copyright© by the Chinese Pharmaceutical Association.

  10. Protein social behavior makes a stronger signal for partner identification than surface geometry

    PubMed Central

    Laine, Elodie

    2016-01-01

    ABSTRACT Cells are interactive living systems where proteins movements, interactions and regulation are substantially free from centralized management. How protein physico‐chemical and geometrical properties determine who interact with whom remains far from fully understood. We show that characterizing how a protein behaves with many potential interactors in a complete cross‐docking study leads to a sharp identification of its cellular/true/native partner(s). We define a sociability index, or S‐index, reflecting whether a protein likes or not to pair with other proteins. Formally, we propose a suitable normalization function that accounts for protein sociability and we combine it with a simple interface‐based (ranking) score to discriminate partners from non‐interactors. We show that sociability is an important factor and that the normalization permits to reach a much higher discriminative power than shape complementarity docking scores. The social effect is also observed with more sophisticated docking algorithms. Docking conformations are evaluated using experimental binding sites. These latter approximate in the best possible way binding sites predictions, which have reached high accuracy in recent years. This makes our analysis helpful for a global understanding of partner identification and for suggesting discriminating strategies. These results contradict previous findings claiming the partner identification problem being solvable solely with geometrical docking. Proteins 2016; 85:137–154. © 2016 Wiley Periodicals, Inc. PMID:27802579

  11. Protein social behavior makes a stronger signal for partner identification than surface geometry.

    PubMed

    Laine, Elodie; Carbone, Alessandra

    2017-01-01

    Cells are interactive living systems where proteins movements, interactions and regulation are substantially free from centralized management. How protein physico-chemical and geometrical properties determine who interact with whom remains far from fully understood. We show that characterizing how a protein behaves with many potential interactors in a complete cross-docking study leads to a sharp identification of its cellular/true/native partner(s). We define a sociability index, or S-index, reflecting whether a protein likes or not to pair with other proteins. Formally, we propose a suitable normalization function that accounts for protein sociability and we combine it with a simple interface-based (ranking) score to discriminate partners from non-interactors. We show that sociability is an important factor and that the normalization permits to reach a much higher discriminative power than shape complementarity docking scores. The social effect is also observed with more sophisticated docking algorithms. Docking conformations are evaluated using experimental binding sites. These latter approximate in the best possible way binding sites predictions, which have reached high accuracy in recent years. This makes our analysis helpful for a global understanding of partner identification and for suggesting discriminating strategies. These results contradict previous findings claiming the partner identification problem being solvable solely with geometrical docking. Proteins 2016; 85:137-154. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  12. 6. VIEW OF BOW OF VESSEL FROM STARBOARD SIDE, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BOW OF VESSEL FROM STARBOARD SIDE, SHOWING DOCKING CREW PREPARING TO REMOVE FOREFOOT FROM VESSEL'S STEM IN ORDER TO DRAW VESSEL OFF LIFT DOCK - Bugeye "Louise Travers", Intersection of Routes 2 & 4, Solomons, Calvert County, MD

  13. Quantum mechanical/molecular mechanical and docking study of the novel analogues based on hybridization of common pharmacophores as potential anti-breast cancer agents

    PubMed Central

    Asadi, Parvin; Khodarahmi, Ghadamali; Farrokhpour, Hossein; Hassanzadeh, Farshid; Saghaei, Lotfollah

    2017-01-01

    In an attempt to identify some new potential leads as anti-breast cancer agents, novel hybrid compounds were designed by molecular hybridization approach. These derivatives were structurally derived from hybrid benzofuran–imidazole and quinazolinone derivatives, which had shown good cytotoxicity against the breast cancer cell line (MCF-7). Since aromatase enzyme (CYP19) is highly expressed in the MCF-7 cell line, the binding of these novel hybrid compounds to aromatase was investigated using the docking method. In this study, due to the positive charge on the imidazole ring of the designed ligands and also, the presence of heme iron in the active site of the enzyme, it was decided to optimize the ligand inside the protein to obtain more realistic atomic charges for it. Quantum mechanical/molecular mechanical (QM/MM) method was used to obtain more accurate atomic charges of ligand for docking calculations by considering the polarization effects of CYP19 on ligands. It was observed that the refitted charge improved the binding energy of the docked compounds. Also, the results showed that these novel hybrid compounds were adopted properly within the aromatase binding site, thereby suggesting that they could be potential inhibitors of aromatase. The main binding modes in these complexes were through hydrophobic and H bond interactions showing agreement with the basic physicochemical features of known anti aromatase compounds. Finally, the complex structures obtained from the docking study were used for single point QM/MM calculations to obtain more accurate electronic interaction energy, considering the electronic polarization of the ligand by its protein environment. PMID:28626481

  14. Aminoguanidine hydrazones (AGH's) as modulators of norfloxacin resistance in Staphylococcus aureus that overexpress NorA efflux pump.

    PubMed

    Dantas, Natalina; de Aquino, Thiago Mendonça; de Araújo-Júnior, João Xavier; da Silva-Júnior, Edeildo; Gomes, Ednaldo Almeida; Gomes, Antoniel Augusto Severo; Siqueira-Júnior, José Pinto; Mendonça Junior, Francisco Jaime Bezerra

    2018-01-25

    One of the promising fields for improving the effectiveness of antimicrobial agents is their combination with efflux pump inhibitors (EPIs), which besides expanding the use of existing antibiotics. The goal of this research was to evaluate a series of aminoguanidine hydrazones (AGH's, 1-19) as antibacterial agents and NorA efflux pump inhibitors in Staphylococcus aureus strain SA-1199B. Molecular modeling and docking studies were also performed in order to explain at the molecular level the interactions of the compounds with the generated NorA efflux pump model. The MICs of the antibiotic and ethidium bromide were determined by microdilution assay in absence or presence of a subinhibitory concentration of aminoguanidine hydrazones and macrophages viability was determined through MTT assay. Bioinformatic software Swiss-Model and AutoDock 4.2 were used to perform modeling and docking studies, respectively. As results, all AGH's were able to potentiate the action for the antibiotic norfloxacin, causing MIC's reduction of 16-fold and 32-fold to ethidium bromide. In the cell viability test, the concentration of 10 μg/mL showed better results than 90% and the concentration of 1000 μg/mL showed the lowest viability, reaching a maximum of 50% for the analyzed aminoguanidine hydrazones. Molecular docking studies showed that both norfloxacin and derivative 13 were recognized by the same binding site of NorA pump, suggesting a competitive mechanism. The present work demonstrated for the first time that AGH derivatives have potential to be putative inhibitors of NorA efflux pump, showing a promising activity as an antibacterial drug development. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis, stereochemistry, crystal structure, docking study and biological evaluation of some new N-benzylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, S.; Kayalvizhi, R.; Sethuvasan, S.; Sugumar, P.; Ponnuswamy, M. N.

    2018-03-01

    Two new N-benzylpiperidin-4-ones 3 and 4 have been synthesized and characterized using IR, 1D and 2D NMR spectral studies. The NMR data of N-benzylpiperidin-4-ones 3 and 4 reveal that the compounds prefer to exist in chair conformation with equatorial orientation of the bulky substituents and the single crystal X-ray structure of compound 4 also reveals a similar conformation in solid state. Furthermore, the antimicrobial studies carried out for the compounds 1-4 indicate moderate activities with the selected strains. The antioxidant potency of 3 is superior whereas 4 exhibits moderate activity when compared to that of standard drug. The results of molecular docking studies with the AmpC β-lactamase enzyme indicate that compound 3 shows better docking score and binding energy than the co-crystal ligand.

  16. Identification of Phytochemicals Targeting c-Met Kinase Domain using Consensus Docking and Molecular Dynamics Simulation Studies.

    PubMed

    Aliebrahimi, Shima; Montasser Kouhsari, Shideh; Ostad, Seyed Nasser; Arab, Seyed Shahriar; Karami, Leila

    2018-06-01

    c-Met receptor tyrosine kinase is a proto-oncogene whose aberrant activation is attributed to a lower rate of survival in most cancers. Natural product-derived inhibitors known as "fourth generation inhibitors" constitute more than 60% of anticancer drugs. Furthermore, consensus docking approach has recently been introduced to augment docking accuracy and reduce false positives during a virtual screening. In order to obtain novel small-molecule Met inhibitors, consensus docking approach was performed using Autodock Vina and Autodock 4.2 to virtual screen Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database against active and inactive conformation of c-Met kinase domain structure. Two hit molecules that were in line with drug-likeness criteria, desired docking score, and binding pose were subjected to molecular dynamics simulations to elucidate intermolecular contacts in protein-ligand complexes. Analysis of molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area studies showed that ZINC08234189 is a plausible inhibitor for the active state of c-Met, whereas ZINC03871891 may be more effective toward active c-Met kinase domain compared to the inactive form due to higher binding energy. Our analysis showed that both the hit molecules formed hydrogen bonds with key residues of the hinge region (P1158, M1160) in the active form, which is a hallmark of kinase domain inhibitors. Considering the pivotal role of HGF/c-Met signaling in carcinogenesis, our results propose ZINC08234189 and ZINC03871891 as the therapeutic options to surmount Met-dependent cancers.

  17. Exploring the conformational and binding properties of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 through docking and molecular dynamics simulations.

    PubMed

    Zacarías-Lara, Oscar J; Correa-Basurto, José; Bello, Martiniano

    2016-07-01

    B-cell lymphoma (Bcl-2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl-2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl-2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time-scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein-protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl-2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl-2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl-2 inhibitors to explain their influence in homo-complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero-complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393-413, 2016. © 2016 Wiley Periodicals, Inc.

  18. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni(II) and Cu(II) Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Sangeeta, S.; Ahmad, K.; Noorussabah, N.; Bharti, S.; Mishra, M. K.; Sharma, S. R.; Choudhary, M.

    2018-03-01

    [Ni(L)2] 1 and [Cu(L)2] 2 [HL = 2-((E)-(2-methoxyphenylimino)methyl)-4,6-dichlorophenol] Schiff base complexes have been successfully synthesized and were characterized by FT-IR, UV-Vis, fluorescence spectroscopy and thermogravimetric analysis. The crystal structures of the two complexes were determined through X-ray crystallography. Its inhibitory activity against Helicobacter pylori urease was evaluated in vitro and showed strong inhibitory activity against H. pylori urease compared with acetohydroxamic acid (IC50 = 42.12 μmolL-1), which is a positive reference. A docking analysis using the AutoDock 4.0 program could explain the inhibitory activity of the complex against urease.

  19. Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multibody docking server.

    PubMed

    Karaca, Ezgi; Melquiond, Adrien S J; de Vries, Sjoerd J; Kastritis, Panagiotis L; Bonvin, Alexandre M J J

    2010-08-01

    Over the last years, large scale proteomics studies have generated a wealth of information of biomolecular complexes. Adding the structural dimension to the resulting interactomes represents a major challenge that classical structural experimental methods alone will have difficulties to confront. To meet this challenge, complementary modeling techniques such as docking are thus needed. Among the current docking methods, HADDOCK (High Ambiguity-Driven DOCKing) distinguishes itself from others by the use of experimental and/or bioinformatics data to drive the modeling process and has shown a strong performance in the critical assessment of prediction of interactions (CAPRI), a blind experiment for the prediction of interactions. Although most docking programs are limited to binary complexes, HADDOCK can deal with multiple molecules (up to six), a capability that will be required to build large macromolecular assemblies. We present here a novel web interface of HADDOCK that allows the user to dock up to six biomolecules simultaneously. This interface allows the inclusion of a large variety of both experimental and/or bioinformatics data and supports several types of cyclic and dihedral symmetries in the docking of multibody assemblies. The server was tested on a benchmark of six cases, containing five symmetric homo-oligomeric protein complexes and one symmetric protein-DNA complex. Our results reveal that, in the presence of either bioinformatics and/or experimental data, HADDOCK shows an excellent performance: in all cases, HADDOCK was able to generate good to high quality solutions and ranked them at the top, demonstrating its ability to model symmetric multicomponent assemblies. Docking methods can thus play an important role in adding the structural dimension to interactomes. However, although the current docking methodologies were successful for a vast range of cases, considering the variety and complexity of macromolecular assemblies, inclusion of some kind of experimental information (e.g. from mass spectrometry, nuclear magnetic resonance, cryoelectron microscopy, etc.) will remain highly desirable to obtain reliable results.

  20. Pharmacophore-Based Similarity Scoring for DOCK

    PubMed Central

    2015-01-01

    Pharmacophore modeling incorporates geometric and chemical features of known inhibitors and/or targeted binding sites to rationally identify and design new drug leads. In this study, we have encoded a three-dimensional pharmacophore matching similarity (FMS) scoring function into the structure-based design program DOCK. Validation and characterization of the method are presented through pose reproduction, crossdocking, and enrichment studies. When used alone, FMS scoring dramatically improves pose reproduction success to 93.5% (∼20% increase) and reduces sampling failures to 3.7% (∼6% drop) compared to the standard energy score (SGE) across 1043 protein–ligand complexes. The combined FMS+SGE function further improves success to 98.3%. Crossdocking experiments using FMS and FMS+SGE scoring, for six diverse protein families, similarly showed improvements in success, provided proper pharmacophore references are employed. For enrichment, incorporating pharmacophores during sampling and scoring, in most cases, also yield improved outcomes when docking and rank-ordering libraries of known actives and decoys to 15 systems. Retrospective analyses of virtual screenings to three clinical drug targets (EGFR, IGF-1R, and HIVgp41) using X-ray structures of known inhibitors as pharmacophore references are also reported, including a customized FMS scoring protocol to bias on selected regions in the reference. Overall, the results and fundamental insights gained from this study should benefit the docking community in general, particularly researchers using the new FMS method to guide computational drug discovery with DOCK. PMID:25229837

  1. Molecular docking and 3D-QSAR studies on triazolinone and pyridazinone, non-nucleoside inhibitor of HIV-1 reverse transcriptase.

    PubMed

    Sivan, Sree Kanth; Manga, Vijjulatha

    2010-06-01

    Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are allosteric inhibitors of the HIV-1 reverse transcriptase. Recently a series of Triazolinone and Pyridazinone were reported as potent inhibitors of HIV-1 wild type reverse transcriptase. In the present study, docking and 3D quantitative structure activity relationship (3D QSAR) studies involving comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on 31 molecules. Ligands were built and minimized using Tripos force field and applying Gasteiger-Hückel charges. These ligands were docked into protein active site using GLIDE 4.0. The docked poses were analyzed; the best docked poses were selected and aligned. CoMFA and CoMSIA fields were calculated using SYBYL6.9. The molecules were divided into training set and test set, a PLS analysis was performed and QSAR models were generated. The model showed good statistical reliability which is evident from the r2 nv, q2 loo and r2 pred values. The CoMFA model provides the most significant correlation of steric and electrostatic fields with biological activities. The CoMSIA model provides a correlation of steric, electrostatic, acceptor and hydrophobic fields with biological activities. The information rendered by 3D QSAR model initiated us to optimize the lead and design new potential inhibitors.

  2. Ginger (Zingiber officinale) phytochemicals-gingerenone-A and shogaol inhibit SaHPPK: molecular docking, molecular dynamics simulations and in vitro approaches.

    PubMed

    Rampogu, Shailima; Baek, Ayoung; Gajula, Rajesh Goud; Zeb, Amir; Bavi, Rohit S; Kumar, Raj; Kim, Yongseong; Kwon, Yong Jung; Lee, Keun Woo

    2018-04-02

    Antibiotic resistance is a defense mechanism, harbored by pathogens to survive under unfavorable conditions. Among several antibiotic resistant microbial consortium, Staphylococcus aureus is one of the most havoc microorganisms. Staphylococcus aureus encodes a unique enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), against which, none of existing antibiotics have been reported. Computational approaches have been instrumental in designing and discovering new drugs for several diseases. The present study highlights the impact of ginger phytochemicals on Staphylococcus aureus SaHPPK. Herein, we have retrieved eight ginger phytochemicals from published literature and investigated their inhibitory interactions with SaHPPK. To authenticate our work, the investigation proceeds considering the known antibiotics alongside the phytochemicals. Molecular docking was performed employing GOLD and CDOCKER. The compounds with the highest dock score from both the docking programmes were tested for their inhibitory capability in vitro. The binding conformations that were seated within the binding pocket showing strong interactions with the active sites residues rendered by highest dock score were forwarded towards the molecular dynamic (MD) simulation analysis. Based on molecular dock scores, molecular interaction with catalytic active residues and MD simulations studies, two ginger phytochemicals, gingerenone-A and shogaol have been proposed as candidate inhibitors against Staphylococcus aureus. They have demonstrated higher dock scores than the known antibiotics and have represented interactions with the key residues within the active site. Furthermore, these compounds have rendered considerable inhibitory activity when tested in vitro. Additionally, their superiority was corroborated by stable MD results conducted for 100 ns employing GROMACS package. Finally, we suggest that gingerenone-A and shogaol may either be potential SaHPPK inhibitors or can be used as fundamental platforms for novel SaHPPK inhibitor development.

  3. Influence of Ficoll on urea induced denaturation of fibrinogen

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Kamatchi; Meenakshisundaram, N.

    2016-03-01

    Ficoll is a neutral, highly branched polymer used as a molecular crowder in the study of proteins. Ficoll is also part of Ficoll-Paque used in biology laboratories to separate blood to its components (erythrocytes, leukocytes etc.,). Role of Ficoll in the urea induced denaturation of protein Fibrinogen (Fg) has been analyzed using fluorescence, circular dichroism, molecular docking and interfacial studies. Fluorescence studies show that Ficoll prevents quenching of Fg in the presence of urea. From the circular dichroism spectra, Fg shows conformational transition to random coil with urea of 6 M concentration. Ficoll helps to shift this denaturation concentration to 8 M and thus constraints by shielding Fg during the process. Molecular docking studies indicate that Ficoll interacts favorably with the protein than urea. The surface tension and shear viscosity analysis shows clearly that the protein is shielded by Ficoll.

  4. Electrostatics in protein–protein docking

    PubMed Central

    Heifetz, Alexander; Katchalski-Katzir, Ephraim; Eisenstein, Miriam

    2002-01-01

    A novel geometric-electrostatic docking algorithm is presented, which tests and quantifies the electrostatic complementarity of the molecular surfaces together with the shape complementarity. We represent each molecule to be docked as a grid of complex numbers, storing information regarding the shape of the molecule in the real part and information regarding the electrostatic character of the molecule in the imaginary part. The electrostatic descriptors are derived from the electrostatic potential of the molecule. Thus, the electrostatic character of the molecule is represented as patches of positive, neutral, or negative values. The potential for each molecule is calculated only once and stored as potential spheres adequate for exhaustive rotation/translation scans. The geometric-electrostatic docking algorithm is applied to 17 systems, starting form the structures of the unbound molecules. The results—in terms of the complementarity scores of the nearly correct solutions, their ranking in the lists of sorted solutions, and their statistical uniqueness—are compared with those of geometric docking, showing that the inclusion of electrostatic complementarity in docking is very important, in particular in docking of unbound structures. Based on our results, we formulate several "good electrostatic docking rules": The geometric-electrostatic docking procedure is more successful than geometric docking when the potential patches are large and when the potential extends away from the molecular surface and protrudes into the solvent. In contrast, geometric docking is recommended when the electrostatic potential around the molecules to be docked appears homogenous, that is, with a similar sign all around the molecule. PMID:11847280

  5. Milk caseins as useful vehicle for delivery of dipyridamole drug.

    PubMed

    Dezhampanah, Hamid; Esmaili, Masoomeh; Hasani, Leila

    2018-05-01

    The interaction of bovine milk α- and β-caseins as an efficient drug carrier system with Dipyridamole (DIP) was investigated using spectroscopy and molecular docking studies at different temperatures (20-37 °C). FTIR, CD, and fluorescence spectroscopy methods demonstrated that α- and β-caseins interact with DIP molecule mainly via hydrophobic and hydrophilic interactions and change in secondary structure of α- and β-caseins. DIP showed a higher quenching efficiency and binding constant of α-casein than β-casein. There was only one binding site for DIP and it was located on the surface of the protein molecule. The thermodynamic parameters of calculation showed that the binding process occurs spontaneously and demonstrated that α- and β-caseins provide very good binding and entrapment to DIP via hydrogen bonds, Van der Waals forces, and hydrophobic interactions. Fluorescence resonance energy transfer, synchronous fluorescence spectroscopy, and docking study showed that DIP binds to the Trp residues of α- and β-casein molecules with short distances. Docking study showed that DIP molecule made several hydrogen bonds and van der Waals interactions with α- and β-caseins. The study of cell culture and micellar solubility of DIP demonstrated α- and β-caseins relatively the same helping in delivery of DIP. Milk α- and β-caseins are considered as a useful vehicle for the solublization and stabilization of DIP in aqueous solution at natural pH.

  6. Synthesis, molecular docking, DFT calculations and cytotoxicity activity of benzo[g]quinazoline derivatives in choline chloride-urea

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Sivalingam; Govindaraj, Dharman; Ramalakshmi, Narayanan; Antony, S. Arul

    2017-12-01

    Green and highly efficient one-pot three component approach for the synthesis of benzo[g]quinazoline derivatives (6a-g) using Choline chloride-urea (DES). Synthesized compounds 6b and 6g showed the most potent biological activity against A549 lung cancer cell line. Docking simulation was performed to position compounds 6b and 6g showed the greater affinity for anaplastic lymphoma kinase (ALK) receptor. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity using DFT/6-31G level of theory.

  7. Docking analysis of verteporfin with YAP WW domain.

    PubMed

    Kandoussi, Ilham; Lakhlili, Wiame; Taoufik, Jamal; Ibrahimi, Azeddine

    2017-01-01

    The YAP oncogene is a known cancer target. Therefore, it is of interest to understand the molecular docking interaction of verteporfin (a derivative of benzo-porphyrin) with the WW domain of YAP (clinically used for photo-dynamic therapy in macular degeneration) as a potential WW domain-ligand modulator by inhibition. A homology protein SWISS MODEL of the human YAP protein was constructed to dock (using AutoDock vina) with the PubChem verteporfin structure for interaction analysis. The docking result shows the possibilities of verteporfin interaction with the oncogenic transcription cofactor YAP having WW1 and WW2 domains. Thus, the ability of verteporfin to bind with the YAP WW domain having modulator activity is implied in this analysis.

  8. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    PubMed

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  9. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design.

    PubMed

    Pevzner, Yuri; Frugier, Emilie; Schalk, Vinushka; Caflisch, Amedeo; Woodcock, H Lee

    2014-09-22

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser. One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing's capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of "re-dockings" with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing's docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening.

  10. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity

    PubMed Central

    Zhang, Qian; Dove, Christopher G.; Hor, Jyh Liang; Murdock, Heardley M.; Strauss-Albee, Dara M.; Garcia, Jordan A.; Mandl, Judith N.; Grodick, Rachael A.; Jing, Huie; Chandler-Brown, Devon B.; Lenardo, Timothy E.; Crawford, Greg; Matthews, Helen F.; Freeman, Alexandra F.; Cornall, Richard J.; Germain, Ronald N.

    2014-01-01

    DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin. PMID:25422492

  11. Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: a computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment.

    PubMed

    Tiwari, Sameeksha; Awasthi, Manika; Singh, Swati; Pandey, Veda P; Dwivedi, Upendra N

    2017-10-23

    Protein-protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein-protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein-protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski's rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.

  12. Validation studies of the site-directed docking program LibDock.

    PubMed

    Rao, Shashidhar N; Head, Martha S; Kulkarni, Amit; LaLonde, Judith M

    2007-01-01

    The performance of the site-features docking algorithm LibDock has been evaluated across eight GlaxoSmithKline targets as a follow-up to a broad validation study of docking and scoring software (Warren, G. L.; Andrews, W. C.; Capelli, A.; Clarke, B.; Lalonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Walls, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S. J. Med. Chem. 2006, 49, 5912-5931). Docking experiments were performed to assess both the accuracy in reproducing the binding mode of the ligand and the retrieval of active compounds in a virtual screening protocol using both the DJD (Diller, D. J.; Merz, K. M., Jr. Proteins 2001, 43, 113-124) and LigScore2 (Krammer, A. K.; Kirchoff, P. D.; Jiang, X.; Venkatachalam, C. M.; Waldman, M. J. Mol. Graphics Modell. 2005, 23, 395-407) scoring functions. This study was conducted using DJD scoring, and poses were rescored using all available scoring functions in the Accelrys LigandFit module, including LigScore2. For six out of eight targets at least 30% of the ligands were docked within a root-mean-square difference (RMSD) of 2.0 A for the crystallographic poses when the LigScore2 scoring function was used. LibDock retrieved at least 20% of active compounds in the top 10% of screened ligands for four of the eight targets in the virtual screening protocol. In both studies the LigScore2 scoring function enhanced the retrieval of crystallographic poses or active compounds in comparison with the results obtained using the DJD scoring function. The results for LibDock accuracy and ligand retrieval in virtual screening are compared to 10 other docking and scoring programs. These studies demonstrate the utility of the LigScore2 scoring function and that LibDock as a feature directed docking method performs as well as docking programs that use genetic/growing and Monte Carlo driven algorithms.

  13. An investigation of molecular dynamics simulation and molecular docking: interaction of citrus flavonoids and bovine β-lactoglobulin in focus.

    PubMed

    Sahihi, M; Ghayeb, Y

    2014-08-01

    Citrus flavonoids are natural compounds with important health benefits. The study of their interaction with a transport protein, such as bovine β-lactoglobulin (BLG), at the atomic level could be a valuable factor to control their transport to biological sites. In the present study, molecular docking and molecular dynamics simulation methods were used to investigate the interaction of hesperetin, naringenin, nobiletin and tangeretin as citrus flavonoids and BLG as transport protein. The molecular docking results revealed that these flavonoids bind in the internal cavity of BLG and the BLG affinity for binding the flavonoids follows naringenin>hesperetin>tangeretin>nobiletin. The docking results also indicated that the BLG-flavonoid complexes are stabilized through hydrophobic interactions, hydrogen bond interactions and π-π stacking interactions. The analysis of molecular dynamics (MD) simulation trajectories showed that the root mean square deviation (RMSD) of various systems reaches equilibrium and fluctuates around the mean value at various times. Time evolution of the radius of gyration, total solvent accessible surface of the protein and the second structure of protein showed as well that BLG and BLG-flavonoid complexes were stable around 2500ps, and there was not any conformational change as for BLG-flavonoid complexes. Further, the profiles of atomic fluctuations indicated the rigidity of the ligand binding site during the simulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Molecular Docking and Dynamic Simulation of AZD3293 and Solanezumab Effects Against BACE1 to Treat Alzheimer's Disease.

    PubMed

    Hassan, Mubashir; Shahzadi, Saba; Seo, Sung Y; Alashwal, Hany; Zaki, Nazar; Moustafa, Ahmed A

    2018-01-01

    The design of novel inhibitors to target BACE1 with reduced cytotoxicity effects is a promising approach to treat Alzheimer's disease (AD). Multiple clinical drugs and antibodies such as AZD3293 and Solanezumab are being tested to investigate their therapeutical potential against AD. The current study explores the binding pattern of AZD3293 and Solanezumab against their target proteins such as β-secretase (BACE1) and mid-region amyloid-beta (Aβ) (PDBIDs: 2ZHV & 4XXD), respectively using molecular docking and dynamic simulation (MD) approaches. The molecular docking results show that AZD3293 binds within the active region of BACE1 by forming hydrogen bonds against Asp32 and Lys107 with distances 2.95 and 2.68 Å, respectively. However, the heavy chain of Solanezumab interacts with Lys16 and Asp23 of amyloid beta having bond length 2.82, 2.78, and 3.00 Å, respectively. The dynamic cross correlations and normal mode analyses show that BACE1 depicted good residual correlated motions and fluctuations, as compared to Solanezumab. Using MD, the Root Mean Square Deviation and Fluctuation (RMSD/F) graphs show that AZD3293 residual fluctuations and RMSD value (0.2 nm) was much better compared to Solanezumab (0.7 nm). Moreover, the radius of gyration (Rg) results also depicts the significance of AZD3293 docked complex compared to Solanezumab through residual compactness. Our comparative results show that AZD3293 is a better therapeutic agent for treating AD than Solanezumab.

  15. Molecular Docking and Dynamic Simulation of AZD3293 and Solanezumab Effects Against BACE1 to Treat Alzheimer's Disease

    PubMed Central

    Hassan, Mubashir; Shahzadi, Saba; Seo, Sung Y.; Alashwal, Hany; Zaki, Nazar; Moustafa, Ahmed A.

    2018-01-01

    The design of novel inhibitors to target BACE1 with reduced cytotoxicity effects is a promising approach to treat Alzheimer's disease (AD). Multiple clinical drugs and antibodies such as AZD3293 and Solanezumab are being tested to investigate their therapeutical potential against AD. The current study explores the binding pattern of AZD3293 and Solanezumab against their target proteins such as β-secretase (BACE1) and mid-region amyloid-beta (Aβ) (PDBIDs: 2ZHV & 4XXD), respectively using molecular docking and dynamic simulation (MD) approaches. The molecular docking results show that AZD3293 binds within the active region of BACE1 by forming hydrogen bonds against Asp32 and Lys107 with distances 2.95 and 2.68 Å, respectively. However, the heavy chain of Solanezumab interacts with Lys16 and Asp23 of amyloid beta having bond length 2.82, 2.78, and 3.00 Å, respectively. The dynamic cross correlations and normal mode analyses show that BACE1 depicted good residual correlated motions and fluctuations, as compared to Solanezumab. Using MD, the Root Mean Square Deviation and Fluctuation (RMSD/F) graphs show that AZD3293 residual fluctuations and RMSD value (0.2 nm) was much better compared to Solanezumab (0.7 nm). Moreover, the radius of gyration (Rg) results also depicts the significance of AZD3293 docked complex compared to Solanezumab through residual compactness. Our comparative results show that AZD3293 is a better therapeutic agent for treating AD than Solanezumab. PMID:29910719

  16. Integrating docking and molecular dynamics approaches for a series of proline-based 2,5-diketopiperazines as novel αβ-tubulin inhibitors.

    PubMed

    Fani, Najmeh; Bordbar, Abdol-Khalegh; Ghayeb, Yousef; Sepehri, Saghi

    2015-01-01

    In this work, docking tools were utilized in order to study the binding properties of more than five hundred of proline-based 2,5-diketopiperazine in the binding site of αβ-tubulin. Results revealed that 20 compounds among them showed lower binding energies in comparison with Tryprostatin-A, a well known tubulin inhibitor and therefore could be potential inhibitors of tubulin. However, the precise evaluation of binding poses represents the similar binding modes for all of these compounds and Tryprostatin-A. Finally, the best docked complex was subjected to a 25 ns molecular dynamics simulation to further validate the proposed binding mode of this compound.

  17. The Drosophila SH2-SH3 adapter protein Dock is expressed in embryonic axons and facilitates synapse formation by the RP3 motoneuron.

    PubMed

    Desai, C J; Garrity, P A; Keshishian, H; Zipursky, S L; Zinn, K

    1999-04-01

    The Dock SH2-SH3 domain adapter protein, a homolog of the mammalian Nck oncoprotein, is required for axon guidance and target recognition by photoreceptor axons in Drosophila larvae. Here we show that Dock is widely expressed in neurons and at muscle attachment sites in the embryo, and that this expression pattern has both maternal and zygotic components. In motoneurons, Dock is concentrated in growth cones. Loss of zygotic dock function causes a selective delay in synapse formation by the RP3 motoneuron at the cleft between muscles 7 and 6. These muscles often completely lack innervation in late stage 16 dock mutant embryos. RP3 does form a synapse later in development, however, because muscles 7 and 6 are normally innervated in third-instar mutant larvae. The absence of zygotically expressed Dock also results in subtle defects in a longitudinal axon pathway in the embryonic central nervous system. Concomitant loss of both maternally and zygotically derived Dock dramatically enhances these central nervous system defects, but does not increase the delay in RP3 synaptogenesis. These results indicate that Dock facilitates synapse formation by the RP3 motoneuron and is also required for guidance of some interneuronal axons The involvement of Dock in the conversion of the RP3 growth cone into a presynaptic terminal may reflect a role for Dock-mediated signaling in remodeling of the growth cone's cytoskeleton.

  18. 19. Interior view showing flight simulator partition and rear overhead ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Interior view showing flight simulator partition and rear overhead door, dock no. 493. View to south. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  19. Interior of east side bathroom showing the sloped ceiling and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of east side bathroom showing the sloped ceiling and window grill openings, light coming from right to left, view facing north-northeast - U.S. Naval Base, Pearl Harbor, Dry Dock No. 1, Latrine, Sixth Street, adjacent to Dry Dock No. 1, Pearl City, Honolulu County, HI

  20. Dock and Pak regulate olfactory axon pathfinding in Drosophila.

    PubMed

    Ang, Lay-Hong; Kim, Jenny; Stepensky, Vitaly; Hing, Huey

    2003-04-01

    The convergence of olfactory axons expressing particular odorant receptor (Or) genes on spatially invariant glomeruli in the brain is one of the most dramatic examples of precise axon targeting in developmental neurobiology. The cellular and molecular mechanisms by which olfactory axons pathfind to their targets are poorly understood. We report here that the SH2/SH3 adapter Dock and the serine/threonine kinase Pak are necessary for the precise guidance of olfactory axons. Using antibody localization, mosaic analyses and cell-type specific rescue, we observed that Dock and Pak are expressed in olfactory axons and function autonomously in olfactory neurons to regulate the precise wiring of the olfactory map. Detailed analyses of the mutant phenotypes in whole mutants and in small multicellular clones indicate that Dock and Pak do not control olfactory neuron (ON) differentiation, but specifically regulate multiple aspects of axon trajectories to guide them to their cognate glomeruli. Structure/function studies show that Dock and Pak form a signaling pathway that mediates the response of olfactory axons to guidance cues in the developing antennal lobe (AL). Our findings therefore identify a central signaling module that is used by ONs to project to their cognate glomeruli.

  1. Molecular Docking Simulation of Neuraminidase Influenza A Subtype H1N1 with Potential Inhibitor of Disulfide Cyclic Peptide (DNY, NNY, LRL)

    NASA Astrophysics Data System (ADS)

    Putra, R. P.; Imaniastuti, R.; Nasution, M. A. F.; Kerami, Djati; Tambunan, U. S. F.

    2018-04-01

    Oseltamivir resistance as an inhibitor of neuraminidase influenza A virus subtype H1N1 has been reported lately. Therefore, to solve this problem, several kinds of research has been conducted to design and discover disulfide cyclic peptide ligands through molecular docking method, to find the potential inhibitors for neuraminidase H1N1 which then can disturb the virus replication. This research was studied and evaluated the interaction of ligands toward enzyme using molecular docking simulation, which was performed on three disulfide cyclic peptide inhibitors (DNY, LRL, and NNT), along with oseltamivir and zanamivir as the standard ligands using MOE 2008.10 software. The docking simulation shows that all disulfide cyclic peptide ligands have lower Gibbs free binding energies (ΔGbinding) than the standard ligands, with DNY ligand has the lowest ΔGbinding at -7.8544 kcal/mol. Furthermore, these ligands were also had better molecular interactions with neuraminidase than the standards, owing by the hydrogen bonds that were formed during the docking simulation. In the end, we concluded that DNY, LRL and NNT ligands have the potential to be developed as the inhibitor of neuraminidase H1N1.

  2. Pyrazolo[3,4-d]pyrimidines as novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica: an in silico study.

    PubMed

    Yadava, Umesh; Shukla, Bindesh Kumar; Roychoudhury, Mihir; Kumar, Devesh

    2015-04-01

    Amoebiasis, a worldwide explosive epidemic, caused by the gastrointestinal anaerobic protozoan parasite Entamoeba histolytica, infects the large intestine and, in advance stages, liver, kidney, brain and lung. Metronidazole (MNZ)-the first line medicament against amoebiasis-is potentially carcinogenic to humans and shows significant side-effects. Pyrazolo[3,4-d]pyrimidine compounds have been reported to demonstrate antiamoebic activity. In silico molecular docking simulations on nine pyrazolo[3,4-d]pyrimidine molecules without linkers (molecules 1-9) and nine pyrazolo[3,4-d]pyrimidine molecules with a trimethylene linker (molecules 10-18) along with the reference drug metronidazole (MNZ) were conducted using the modules of the programs Glide-SP, Glide-XP and Autodock with O-acetyl-L-serine sulfhydrylase (OASS) enzyme-a promising target for inhibiting the growth of Entamoeba histolytica. Docking simulations using Glide-SP demonstrate good agreement with reported biological activities of molecules 1-9 and indicate that molecules 2 and 4 may act as potential high affinity inhibitors. Trimethylene linker molecules show improved binding affinities among which molecules 15 and 16 supersede. MD simulations on the best docked poses of molecules 2, 4, 15, 16 and MNZ were carried out for 20 ns using DESMOND. It was observed that the docking complexes of molecules 4, 15 and MNZ remain stable in aqueous conditions and do not undergo noticeable fluctuations during the course of the dynamics. Relative binding free energy calculations of the ligands with the enzyme were executed on the best docked poses using the molecular mechanics generalized Born surface area (MM-GBSA) approach, which show good agreement with the reported biological activities.

  3. Virtual screening and rational drug design method using structure generation system based on 3D-QSAR and docking.

    PubMed

    Chen, H F; Dong, X C; Zen, B S; Gao, K; Yuan, S G; Panaye, A; Doucet, J P; Fan, B T

    2003-08-01

    An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.

  4. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations.

    PubMed

    Gao, Xiaodong; Han, Liping; Ren, Yujie

    2016-05-05

    Checkpoint kinase 1 (Chk1) is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q² values (0.531, 0.726), fitted correlation r² coefficients (higher than 0.90), and standard error of prediction (less than 0.250). These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity.

  5. Structural insights of a PI3K/mTOR dual inhibitor with the morpholino-triazine scaffold

    NASA Astrophysics Data System (ADS)

    Takeda, Takako; Wang, Yanli; Bryant, Stephen H.

    2016-04-01

    Stimulation of the PI3K/Akt/mTOR pathway, which controls cell proliferation and growth, is often observed in cancer cell. Inhibiting both PI3K and mTOR in this pathway can switch off Akt activation and hence, plays a powerful role for modulating this pathway. PKI-587, a drug containing the structure of morpholino-triazines, shows a dual and nano-molar inhibition activity and is currently in clinical trial. To provide an insight into the mechanism of this dual inhibition, pharmacophore and QSAR models were developed in this work using compounds based on the morpholino-triazines scaffold, followed by a docking study. Pharmacophore model suggested the mechanism of the inhibition of PI3Kα and mTOR by the compounds were mostly the same, which was supported by the docking study showing similar docking modes. The analysis also suggested the importance of the flat plane shape of the ligands, the space surrounding the ligands in the binding pocket, and the slight difference in the shape of the binding sites between PI3Kα and mTOR.

  6. Molecular docking and 3D-QSAR studies on inhibitors of DNA damage signaling enzyme human PARP-1.

    PubMed

    Fatima, Sabiha; Bathini, Raju; Sivan, Sree Kanth; Manga, Vijjulatha

    2012-08-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r², q²(loo) and r²(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r²(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.

  7. [Study on anti-hyperlipidemia mechanism of high frequency herb pairs by molecular docking method].

    PubMed

    Jiang, Lu-di; He, Yu-su; Chen, Xi; Tao, Ou; Li, Gong-Yu; Zhang, Yan-ling

    2015-06-01

    Traditional Chinese medicine (TCM) has definitely clinical effect in treating hyperlipidemia, but the action mechanism still need to be explored. Based on consulting Chinese Pharmacopoeia (2010), all the lipid-lowering Chinese patent medicines were analyzed by associated rules data mining method to explore high frequency herb pairs. The top three couplet medicines with high support degree were Puerariae Lobatae Radix-Crataegi Fructus, Salviae Miltiorrhizae Radix et Rhizoma-Crataegi Fructus, and Polygoni Multiflori Radix-Crataegi Fructus. The 20 main ingredients were selected from the herb pairs and docked with 3 key hyperlipidemia targets, namely 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), peroxisome proliferator activated receptor-α (PPAR-α ) and niemann-pick C1 like 1 (NPC1L1) to further discuss the molecular mechanism of the high frequency herb pairs, by using the docking program, LibDock. To construct evaluation rules for the ingredients of herb pairs, the root-mean-square deviation (RMSD) value between computed and initial complexes was first calculated to validate the fitness of LibDock models. Then, the key residues were also confirmed by analyzing the interactions of those 3 proteins and corresponding marketed drugs. The docking results showed that hyperin, puerarin, salvianolic acid A and polydatin can interact with two targets, and the other five compounds may be potent for at least one of the three targets. In this study, the multi-target effect of high frequency herb pairs for lipid-lowering was discussed on the molecular level, which can help further researching new multi-target anti-hyperlipidemia drug.

  8. Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology

    PubMed Central

    Hsin, Kun-Yi; Ghosh, Samik; Kitano, Hiroaki

    2013-01-01

    Increased availability of bioinformatics resources is creating opportunities for the application of network pharmacology to predict drug effects and toxicity resulting from multi-target interactions. Here we present a high-precision computational prediction approach that combines two elaborately built machine learning systems and multiple molecular docking tools to assess binding potentials of a test compound against proteins involved in a complex molecular network. One of the two machine learning systems is a re-scoring function to evaluate binding modes generated by docking tools. The second is a binding mode selection function to identify the most predictive binding mode. Results from a series of benchmark validations and a case study show that this approach surpasses the prediction reliability of other techniques and that it also identifies either primary or off-targets of kinase inhibitors. Integrating this approach with molecular network maps makes it possible to address drug safety issues by comprehensively investigating network-dependent effects of a drug or drug candidate. PMID:24391846

  9. Docking analysis of verteporfin with YAP WW domain

    PubMed Central

    Kandoussi, Ilham; Lakhlili, Wiame; Taoufik, Jamal; Ibrahimi, Azeddine

    2017-01-01

    The YAP oncogene is a known cancer target. Therefore, it is of interest to understand the molecular docking interaction of verteporfin (a derivative of benzo-porphyrin) with the WW domain of YAP (clinically used for photo-dynamic therapy in macular degeneration) as a potential WW domain-ligand modulator by inhibition. A homology protein SWISS MODEL of the human YAP protein was constructed to dock (using AutoDock vina) with the PubChem verteporfin structure for interaction analysis. The docking result shows the possibilities of verteporfin interaction with the oncogenic transcription cofactor YAP having WW1 and WW2 domains. Thus, the ability of verteporfin to bind with the YAP WW domain having modulator activity is implied in this analysis. PMID:28943729

  10. In vitro, in silico and in vivo studies of ursolic acid as an anti-filarial agent.

    PubMed

    Kalani, Komal; Kushwaha, Vikas; Sharma, Pooja; Verma, Richa; Srivastava, Mukesh; Khan, Feroz; Murthy, P K; Srivastava, Santosh Kumar

    2014-01-01

    As part of our drug discovery program for anti-filarial agents from Indian medicinal plants, leaves of Eucalyptus tereticornis were chemically investigated, which resulted in the isolation and characterization of an anti-filarial agent, ursolic acid (UA) as a major constituent. Antifilarial activity of UA against the human lymphatic filarial parasite Brugia malayi using in vitro and in vivo assays, and in silico docking search on glutathione-s-transferase (GST) parasitic enzyme were carried out. The UA was lethal to microfilariae (mf; LC100: 50; IC50: 8.84 µM) and female adult worms (LC100: 100; IC50: 35.36 µM) as observed by motility assay; it exerted 86% inhibition in MTT reduction potential of the adult parasites. The selectivity index (SI) of UA for the parasites was found safe. This was supported by the molecular docking studies, which showed adequate docking (LibDock) scores for UA (-8.6) with respect to the standard antifilarial drugs, ivermectin (IVM -8.4) and diethylcarbamazine (DEC-C -4.6) on glutathione-s-transferase enzyme. Further, in silico pharmacokinetic and drug-likeness studies showed that UA possesses drug-like properties. Furthermore, UA was evaluated in vivo in B. malayi-M. coucha model (natural infection), which showed 54% macrofilaricidal activity, 56% female worm sterility and almost unchanged microfilaraemia maintained throughout observation period with no adverse effect on the host. Thus, in conclusion in vitro, in silico and in vivo results indicate that UA is a promising, inexpensive, widely available natural lead, which can be designed and developed into a macrofilaricidal drug. To the best of our knowledge this is the first ever report on the anti-filarial potential of UA from E. tereticornis, which is in full agreement with the Thomson Reuter's 'Metadrug' tool screening predictions.

  11. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    PubMed

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  12. PharmDock: a pharmacophore-based docking program

    PubMed Central

    2014-01-01

    Background Protein-based pharmacophore models are enriched with the information of potential interactions between ligands and the protein target. We have shown in a previous study that protein-based pharmacophore models can be applied for ligand pose prediction and pose ranking. In this publication, we present a new pharmacophore-based docking program PharmDock that combines pose sampling and ranking based on optimized protein-based pharmacophore models with local optimization using an empirical scoring function. Results Tests of PharmDock on ligand pose prediction, binding affinity estimation, compound ranking and virtual screening yielded comparable or better performance to existing and widely used docking programs. The docking program comes with an easy-to-use GUI within PyMOL. Two features have been incorporated in the program suite that allow for user-defined guidance of the docking process based on previous experimental data. Docking with those features demonstrated superior performance compared to unbiased docking. Conclusion A protein pharmacophore-based docking program, PharmDock, has been made available with a PyMOL plugin. PharmDock and the PyMOL plugin are freely available from http://people.pharmacy.purdue.edu/~mlill/software/pharmdock. PMID:24739488

  13. Combined 3D-QSAR and molecular docking study on 7,8-dialkyl-1,3-diaminopyrrolo-[3,2-f] Quinazoline series compounds to understand the binding mechanism of DHFR inhibitors

    NASA Astrophysics Data System (ADS)

    Aouidate, Adnane; Ghaleb, Adib; Ghamali, Mounir; Chtita, Samir; Choukrad, M'barek; Sbai, Abdelouahid; Bouachrine, Mohammed; Lakhlifi, Tahar

    2017-07-01

    A series of nineteen DHFR inhibitors was studied based on the combination of two computational techniques namely, three-dimensional quantitative structure activity relationship (3D-QSAR) and molecular docking. The comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) were developed using 19 molecules having pIC50 ranging from 9.244 to 5.839. The best CoMFA and CoMSIA models show conventional determination coefficients R2 of 0.96 and 0.93 as well as the Leave One Out cross-validation determination coefficients Q2 of 0.64 and 0.72, respectively. The predictive ability of those models was evaluated by the external validation using a test set of five compounds with predicted determination coefficients R2test of 0.92 and 0.94, respectively. The binding mode between this kind of compounds and the DHFR enzyme in addition to the key amino acid residues were explored by molecular docking simulation. Contour maps and molecular docking identified that the R1 and R2 natures at the pyrazole moiety are the important features for the optimization of the binding affinity to the DHFR receptor. According to the good concordance between the CoMFA/CoMSIA contour maps and docking results, the obtained information was explored to design novel molecules.

  14. Three Co(II) complexes with a sexidentate N2O4-donor bis-Schiff base ligand: Synthesis, crystal structures, DFT studies, urease inhibition and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Xia; Zhao, Yu; Zhang, Dongmei; Jin, Fan; Fan, Yuhua

    2017-11-01

    Three new N2O4-donor bis-Schiff base Co(II) complexes, Co(C36H34N2O8)·2CH3OH (1), Co(C28H34N2O8S2)·H2O (2) and Co(C40H36N4O8)·3CH3OH (3) with distorted octahedral six-coordinate Co(II) centers were synthesized and determined by single crystal X-ray analysis. The X-ray crystallography shows that the metal atoms of three complexes are all six-coordinate with two nitrogen atoms from Cdbnd N groups, two oxygen atoms from ether groups and two carboxylic oxygen atoms in the mono-ligand, forming a distorted octahedral geometry. Theoretical studies of the three complexes were carried out by density functional theory (DFT) Becke's three-parameter hybrid (B3LYP) method employing the 6-31G basis set. The DFT studies indicate that the calculation is in accordance with the experimental results. Moreover, inhibition of jack bean urease by Co(II) complexes 1-3 have also been investigated. At the same time, a docking analysis using a DOCK program was conducted to determine the probable binding mode by inserting the complexes into the active site of jack bean urease. The experimental values and docking simulation exhibited that the complex 3 showed strong inhibitory activity (IC50 = 16.43 ± 2.35 μM) and the structure-activity relationships were further discussed.

  15. Ligand- and receptor-based docking with LiBELa

    NASA Astrophysics Data System (ADS)

    dos Santos Muniz, Heloisa; Nascimento, Alessandro S.

    2015-08-01

    Methodologies on molecular docking are constantly improving. The problem consists on finding an optimal interplay between the computational cost and a satisfactory physical description of ligand-receptor interaction. In pursuit of an advance in current methods we developed a mixed docking approach combining ligand- and receptor-based strategies in a docking engine, where tridimensional descriptors for shape and charge distribution of a reference ligand guide the initial placement of the docking molecule and an interaction energy-based global minimization follows. This hybrid docking was evaluated with soft-core and force field potentials taking into account ligand pose and scoring. Our approach was found to be competitive to a purely receptor-based dock resulting in improved logAUC values when evaluated with DUD and DUD-E. Furthermore, the smoothed potential as evaluated here, was not advantageous when ligand binding poses were compared to experimentally determined conformations. In conclusion we show that a combination of ligand- and receptor-based strategy docking with a force field energy model results in good reproduction of binding poses and enrichment of active molecules against decoys. This strategy is implemented in our tool, LiBELa, available to the scientific community.

  16. The Rab27a effector exophilin7 promotes fusion of secretory granules that have not been docked to the plasma membrane.

    PubMed

    Wang, Hao; Ishizaki, Ray; Xu, Jun; Kasai, Kazuo; Kobayashi, Eri; Gomi, Hiroshi; Izumi, Tetsuro

    2013-02-01

    Granuphilin, an effector of the small GTPase Rab27a, mediates the stable attachment (docking) of insulin granules to the plasma membrane and inhibits subsequent fusion of docked granules, possibly through interaction with a fusion-inhibitory Munc18-1/syntaxin complex. However, phenotypes of insulin exocytosis differ considerably between Rab27a- and granuphilin-deficient pancreatic β cells, suggesting that other Rab27a effectors function in those cells. We found that one of the putative Rab27a effector family proteins, exophilin7/JFC1/Slp1, is expressed in β cells; however, unlike granuphilin, exophilin7 overexpressed in the β-cell line MIN6 failed to show granule-docking or fusion-inhibitory activity. Furthermore, exophilin7 has no affinities to either Munc18-1 or Munc18-1-interacting syntaxin-1a, in contrast to granuphilin. Although β cells of exophilin7-knockout mice show no apparent abnormalities in intracellular distribution or in ordinary glucose-induced exocytosis of insulin granules, they do show impaired fusion in response to some stronger stimuli, specifically from granules that have not been docked to the plasma membrane. Exophilin7 appears to mediate the fusion of undocked granules through the affinity of its C2A domain toward the plasma membrane phospholipids. These findings indicate that the two Rab27a effectors, granuphilin and exophilin7, differentially regulate the exocytosis of either stably or minimally docked granules, respectively.

  17. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach.

    PubMed

    Kesharwani, Rajesh Kumar; Singh, Durg Vijay; Misra, Krishna

    2013-01-01

    Cysteine proteases (falcipains), a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate E64 (E64) and leupeptin respectively were retrieved from protein data bank (PDB) and latter leupeptin was used as lead molecule to design new analogues by using Ligbuilder software and refined the molecules on the basis of Lipinski rule of five and fitness score parameters. All the designed leupeptin analogues were screened via docking simulation at the active site cavity of falcipain-II and falcipain-III by using Glide software and AutoDock. The 104 new leupeptin-based antimalarial ligands were designed using structure-based drug designing approach with the help of Ligbuilder and subjected for virtual screening via docking simulation method against falcipain-II and falcipain-III receptor proteins. The Glide docking results suggest that the ligands namely result_037 shows good binding and other two, result_044 and result_042 show nearly similar binding than naturally occurring PDB bound ligand E64 against falcipain-II and in case of falcipain-III, 15 designed leupeptin analogues having better binding affinity compared to the PDB bound inhibitor of falcipain-III. The docking simulation results of falcipain-III with designed leupeptin analogues using Glide compared with AutoDock and find 80% similarity as better binder than leupeptin. These results further highlight new leupeptin analogues as promising future inhibitors for chemotherapeutic prevention of malaria. The result of Glide for falcipain-III has been compared with the result of AutoDock and finds very less differences in their order of binding affinity. Although there are no extra hydrogen bonds, however, equal number of hydrogen bonds with variable strength as compared to leupeptin along with the enhanced hydrophobic and electrostatic interactions in case of analogues supports our study that it holds the ligand molecules strongly within the receptor. The comparative e-pharmacophoric study also suggests and supports our predictions regarding the minimum features required in ligand molecule to behave as falcipain- III inhibitors and is also helpful in screening the large database as future antimalarial inhibitors.

  18. Protein-Protein Docking with F2Dock 2.0 and GB-Rerank

    PubMed Central

    Chowdhury, Rezaul; Rasheed, Muhibur; Keidel, Donald; Moussalem, Maysam; Olson, Arthur; Sanner, Michel; Bajaj, Chandrajit

    2013-01-01

    Motivation Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error. Results The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other. Availability The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http://www.cs.utexas.edu/~bajaj/cvc/software/f2dock.shtml. Client: http://www.cs.utexas.edu/~bajaj/cvc/software/f2dockclient.shtml. PMID:23483883

  19. Potential antimicrobial agents from triazole-functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones.

    PubMed

    Bollu, Rajitha; Banu, Saleha; Bantu, Rajashaker; Reddy, A Gopi; Nagarapu, Lingaiah; Sirisha, K; Kumar, C Ganesh; Gunda, Shravan Kumar; Shaik, Kamal

    2017-12-01

    A series of substituted triazole functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones were synthesized by employing click chemistry and further characterized based on 1 H NMR, 13 C NMR, IR and mass spectral studies. All the synthesized derivatives were screened for their in vitro antimicrobial activities. Further, molecular docking studies were accomplished to explore the binding interactions between 1,2,3-triazol-4-yl-2H-benzo[b][1,4]oxazin-3(4H)-one and the active site of Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCS). These docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9c, 9d and 9e were identified as promising antimicrobial leads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Molecular docking and simulation studies of gustatory receptor of Aedes aegypti: A potent drug target to distract host-seeking behaviour in mosquitoes.

    PubMed

    Gupta, Krishna Kant; Sethi, Guneswar; Jayaraman, Manikandan

    2016-01-01

    It is well reported that exhaled CO 2 and skin odour from human being assist female mosquitoes to locate human host. Basically, the receptors for this activity are expressed in cpA neurons. In both Aedes aegypti and Anopheles gambiae, this CO 2-sensitive olfactory neuron detects myriad number of chemicals present in human skin. Therefore, manipulation of gustatory receptors housing these neurons may serve as important targets for behavioural intervention. The study was aimed towards virtual screening of small molecules in the analyzed conserved active site residues of gustatory receptor and molecular dynamics simulation study of optimum protein-ligand complex to identify a suitable lead molecule for distracting host-seeking behaviour of mosquitoes. The conserved residue analysis of gustatory receptor (GR) of Ae. aegypti and An. gambiae was performed. The structure of GR protein from Ae. aegypti was modeled and validated, and then molecular docking was performed to screen 2903 small molecules against the predicted active residues of GR. Further, simulation studies were also carried out to prove protein-ligand stability. The glutamine 154 residue of GR was found to be highly conserved in Ae. aegypti and An. gambiae. Docking results indicated that the dodecanoic acid, 1,2,3-propanetriyl ester (dynasan 112) was interacting with this residue, as it showed better LibDock score than previously reported ethyl acetate used as mosquito repellant. Simulation studies indicated the structural instability of GR protein in docked form with dynasan 112 suggesting its involvement in structural changes. Based on the interaction energies and stability, this compound has been proposed to be used in mosquitoes' repellant. A novel effective odorant acting as inhibitor of GR is proposed based on its stability, docking score, interactions and RMSD, considering ethyl pyruvate as a standard inhibitor. Host preference and host-seeking ability of mosquito vectors play key roles in disease transmission, a clear understanding of these aspects is essential for preventing the spread of the disease.

  1. Coumarin derivatives bearing benzoheterocycle moiety: synthesis, cholinesterase inhibitory, and docking simulation study

    PubMed Central

    Hirbod, Kimia; Jalili-baleh, Leili; Nadri, Hamid; ebrahimi, Seyed esmaeil Sadat; Moradi, Alireza; Pakseresht, Bahar; Foroumadi, Alireza; Shafiee, Abbas; Khoobi, Mehdi

    2017-01-01

    Objective(s): To investigate the efficiency of a novel series of coumarin derivatives bearing benzoheterocycle moiety as novel cholinesterase inhibitors. Materials and Methods: Different 7-hydroxycoumarin derivatives were synthesized via Pechmann or Knoevenagel condensation and conjugated to different benzoheterocycle (8-hydroxyquinoline, 2-mercaptobenzoxazole or 2-mercaptobenzimidazole) using dibromoalkanes 3a-m: Final compounds were evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by Ellman’s method. Kinetic study of AChE inhibition and ligand-protein docking simulation were also carried out for the most potent compound 3b. Results: Some of the compounds revealed potent and selective activity against AChE. Compound 3b containing the quinoline group showed the best activity with an IC50 value of 8.80 μM against AChE. Kinetic study of AChE inhibition revealed the mixed-type inhibition of the enzyme by compound 3b. Ligand-protein docking simulation also showed that the flexibility of the hydrophobic five carbons linker allows the quinoline ring to form π-π interaction with Trp279 in the PAS. Conclusion: We suggest these synthesized compounds could become potential leads for AChE inhibition and prevention of AD symptoms. PMID:28868119

  2. Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia

    PubMed Central

    Usha, Talambedu; Middha, Sushil Kumar; Goyal, Arvind Kumar; Karthik, Mahesh; Manoj, DA; Faizan, Syed; Goyal, Peyush; Prashanth, HP; Pande, Veena

    2014-01-01

    Abstract Actinorhizal plants contain numerous antioxidants that may play a crucial role in preventing the formation of tumors. H-Ras p21, a member of the Ras-GTPase family, is a promising target to treat various kinds of cancers. An in silico docking study was carried out to identify the inhibitory potential of compounds of these plants against H-Ras by using Discovery Studio 3.5 and by using Autodock 4.2. Docking studies revealed that four compounds, isorhamnetin-7-rhamnoside, quercetin-3-glucoside-7-rhamnoside (present in H. rhamnoides), zeaxanthin, and translutein (present in H. salicifolia) significantly bind with binding energies −17.1534, −14.7936, −10.2105 and −17.2217 Kcal/mol, respectively, even though they slightly deviate from Lipinski's rule. Absorption, distribution, metabolism, excretion and toxicity (ADME/tox) analyses of these compounds and their stereoisomers showed that they were less toxic and non-mutagenic. Amongst them, isorhamntein-7-rhamnoside showed hepatotoxicity. Hence, these compounds can be further investigated in vivo to optimize their formulation and concentration and to develop potential chemical entities for the prevention and treatment of cancers. PMID:25332713

  3. Prediction of anticancer property of bowsellic acid derivatives by quantitative structure activity relationship analysis and molecular docking study.

    PubMed

    Satpathy, Raghunath; Guru, R K; Behera, R; Nayak, B

    2015-01-01

    Boswellic acid consists of a series of pentacyclic triterpene molecules that are produced by the plant Boswellia serrata. The potential applications of Bowsellic acid for treatment of cancer have been focused here. To predict the property of the bowsellic acid derivatives as anticancer compounds by various computational approaches. In this work, all total 65 derivatives of bowsellic acids from the PubChem database were considered for the study. After energy minimization of the ligands various types of molecular descriptors were computed and corresponding two-dimensional quantitative structure activity relationship (QSAR) models were obtained by taking Andrews coefficient as the dependent variable. Different types of comparative analysis were used for QSAR study are multiple linear regression, partial least squares, support vector machines and artificial neural network. From the study geometrical descriptors shows the highest correlation coefficient, which indicates the binding factor of the compound. To evaluate the anticancer property molecular docking study of six selected ligands based on Andrews affinity were performed with nuclear factor-kappa protein kinase (Protein Data Bank ID 4G3D), which is an established therapeutic target for cancers. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound. Along with QSAR study and docking result, it was predicted that bowsellic acid can also be treated as a potential anticancer compound.

  4. Isolation of anticancer drug TAXOL from Pestalotiopsis breviseta with apoptosis and B-Cell lymphoma protein docking studies.

    PubMed

    Kathiravan, G; Sureban, Sripathi M; Sree, Harsha N; Bhuvaneshwari, V; Kramony, Evelin

    2012-12-01

    Extraction and investigation of TAXOL from Pestalotiopsis breviseta (Sacc.) using protein docking, which is a computational technique that samples conformations of small molecules in protein-binding sites. Scoring functions are used to assess which of these conformations best complements the protein binding site and active site prediction. Coelomycetous fungi P. breviseta (Sacc.) Steyaert was screened for the production of TAXOL, an anticancer drug. TAXOL PRODUCTION WAS CONFIRMED BY THE FOLLOWING METHODS: Ultraviolet (UV) spectroscopic analysis, Infrared analysis, High performance liquid chromatography analysis (HPLC), and Liquid chromatography mass spectrum (LC-MASS). TAXOL produced by the fungi was compared with authentic TAXOL, and protein docking studies were performed. The BCL2 protein of human origin showed a higher affinity toward the compound paclitaxel. It has the binding energy value of -13.0061 (KJ/Mol) with four hydrogen bonds.

  5. Isolation of anticancer drug TAXOL from Pestalotiopsis breviseta with apoptosis and B-Cell lymphoma protein docking studies

    PubMed Central

    Kathiravan, G.; Sureban, Sripathi M.; Sree, Harsha N.; Bhuvaneshwari, V.; Kramony, Evelin

    2012-01-01

    Background: Extraction and investigation of TAXOL from Pestalotiopsis breviseta (Sacc.) using protein docking, which is a computational technique that samples conformations of small molecules in protein-binding sites. Scoring functions are used to assess which of these conformations best complements the protein binding site and active site prediction. Materials and Methods: Coelomycetous fungi P. breviseta (Sacc.) Steyaert was screened for the production of TAXOL, an anticancer drug. Results: TAXOL production was confirmed by the following methods: Ultraviolet (UV) spectroscopic analysis, Infrared analysis, High performance liquid chromatography analysis (HPLC), and Liquid chromatography mass spectrum (LC-MASS). TAXOL produced by the fungi was compared with authentic TAXOL, and protein docking studies were performed. Conclusion: The BCL2 protein of human origin showed a higher affinity toward the compound paclitaxel. It has the binding energy value of −13.0061 (KJ/Mol) with four hydrogen bonds. PMID:24808664

  6. Medicinal plant phytochemicals and their inhibitory activities against pancreatic lipase: molecular docking combined with molecular dynamics simulation approach.

    PubMed

    Ahmed, Bilal; Ali Ashfaq, Usman; Usman Mirza, Muhammad

    2018-05-01

    Obesity is the worst health risk worldwide, which is linked to a number of diseases. Pancreatic lipase is considered as an affective cause of obesity and can be a major target for controlling the obesity. The present study was designed to find out best phytochemicals against pancreatic lipase through molecular docking combined with molecular dynamics (MD) simulation. For this purpose, a total of 3770 phytochemicals were docked against pancreatic lipase and ranked them on the basis of binding affinity. Finally, 10 molecules (Kushenol K, Rosmarinic acid, Reserpic acid, Munjistin, Leachianone G, Cephamycin C, Arctigenin, 3-O-acetylpadmatin, Geniposide and Obtusin) were selected that showed strong bonding with the pancreatic lipase. MD simulations were performed on top five compounds using AMBER16. The simulated complexes revealed stability and ligands remained inside the binding pocket. This study concluded that these finalised molecules can be used as drug candidate to control obesity.

  7. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy.

    PubMed

    Erickson, Jon A; Jalaie, Mehran; Robertson, Daniel H; Lewis, Richard A; Vieth, Michal

    2004-01-01

    The key to success for computational tools used in structure-based drug design is the ability to accurately place or "dock" a ligand in the binding pocket of the target of interest. In this report we examine the effect of several factors on docking accuracy, including ligand and protein flexibility. To examine ligand flexibility in an unbiased fashion, a test set of 41 ligand-protein cocomplex X-ray structures were assembled that represent a diversity of size, flexibility, and polarity with respect to the ligands. Four docking algorithms, DOCK, FlexX, GOLD, and CDOCKER, were applied to the test set, and the results were examined in terms of the ability to reproduce X-ray ligand positions within 2.0A heavy atom root-mean-square deviation. Overall, each method performed well (>50% accuracy) but for all methods it was found that docking accuracy decreased substantially for ligands with eight or more rotatable bonds. Only CDOCKER was able to accurately dock most of those ligands with eight or more rotatable bonds (71% accuracy rate). A second test set of structures was gathered to examine how protein flexibility influences docking accuracy. CDOCKER was applied to X-ray structures of trypsin, thrombin, and HIV-1-protease, using protein structures bound to several ligands and also the unbound (apo) form. Docking experiments of each ligand to one "average" structure and to the apo form were carried out, and the results were compared to docking each ligand back to its originating structure. The results show that docking accuracy falls off dramatically if one uses an average or apo structure. In fact, it is shown that the drop in docking accuracy mirrors the degree to which the protein moves upon ligand binding.

  8. Ground Demonstration on the Autonomous Docking of Two 3U CubeSats Using a Novel Permanent-Magnet Docking Mechanism

    NASA Technical Reports Server (NTRS)

    Pei, Jing; Murchison, Luke; BenShabat, Adam; Stewart, Victor; Rosenthal, James; Follman, Jacob; Branchy, Mark; Sellers, Drew; Elandt, Ryan; Elliott, Sawyer; hide

    2017-01-01

    Small spacecraft autonomous rendezvous and docking is an essential technology for future space structure assembly missions. A novel magnetic capture and latching mechanism is analyzed that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. A CubeSat 3-DOF ground demonstration effort is on-going at NASA Langley Research Center that enables hardware-in-the loop testing of the autonomous approach and docking of a follower CubeSat to an identical leader CubeSat. The test setup consists of a 3 meter by 4 meter granite table and two nearly frictionless air bearing systems that support the two CubeSats. Four cold-gas on-off thrusters are used to translate the follower towards the leader, while a single reaction wheel is used to control the attitude of each CubeSat. An innovative modified pseudo inverse control allocation scheme was developed to address interactions between control effectors. The docking procedure requires relatively high actuator precision, a novel minimal impulse bit mitigation algorithm was developed to minimize the undesirable deadzone effects of the thrusters. Simulation of the ground demonstration shows that the Guidance, Navigation, and Control system along with the docking subsystem leads to successful docking under 3-sigma dispersions for all key system parameters. Extensive simulation and ground testing will provide sufficient confidence that the proposed docking mechanism along with the choosen suite of sensors and actuators will perform successful docking in the space environment.

  9. Studies on interaction of insect repellent compounds with odorant binding receptor proteins by in silico molecular docking approach.

    PubMed

    Gopal, J Vinay; Kannabiran, K

    2013-12-01

    The aim of the study was to identify the interactions between insect repellent compounds and target olfactory proteins. Four compounds, camphor (C10H16O), carvacrol (C10H14O), oleic acid (C18H34O2) and firmotox (C22H28O5) were chosen as ligands. Seven olfactory proteins of insects with PDB IDs: 3K1E, 1QWV, 1TUJ, 1OOF, 2ERB, 3R1O and OBP1 were chosen for docking analysis. Patch dock was used and pymol for visualizing the structures. The interactions of these ligands with few odorant binding proteins showed binding energies. The ligand camphor had showed a binding energy of -136 kcal/mol with OBP1 protein. The ligand carvacrol interacted with 1QWV and 1TUJ proteins with a least binding energy of -117.45 kcal/mol and -21.78 kcal/mol respectively. The ligand oleic acid interacted with 1OOF, 2ERB, 3R1O and OBP1 with least binding energies. Ligand firmotox interacted with OBP1 and showed least binding energies. Three ligands (camphor, oleic acid and firmotox) had one, two, three interactions with a single protein OBP1 of Nilaparvatha lugens (Rice pest). From this in silico study we identified the interaction patterns for insect repellent compounds with the target insect odarant proteins. The results of our study revealed that the chosen ligands showed hydrogen bond interactions with the target olfactory receptor proteins.

  10. In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra.

    PubMed

    Kalani, Komal; Agarwal, Jyoti; Alam, Sarfaraz; Khan, Feroz; Pal, Anirban; Srivastava, Santosh Kumar

    2013-01-01

    Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhizaglabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA) as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69 µg/ml) anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock) score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68-100% at doses of 62.5-250 mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress.

  11. In Silico and In Vivo Anti-Malarial Studies of 18β Glycyrrhetinic Acid from Glycyrrhiza glabra

    PubMed Central

    Kalani, Komal; Agarwal, Jyoti; Alam, Sarfaraz; Khan, Feroz; Pal, Anirban; Srivastava, Santosh Kumar

    2013-01-01

    Malaria is one of the most prevailing fatal diseases causing between 1.2 and 2.7 million deaths all over the world each year. Further, development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents possessing novel modes of action. Over the past few years triterpenoids from higher plants have shown a wide range of anti-malarial activities. As a part of our drug discovery program for anti-malarial agents from Indian medicinal plants, roots of Glycyrrhiza glabra were chemically investigated, which resulted in the isolation and characterization of 18β-glycyrrhetinic acid (GA) as a major constituent. The in vitro studies against P. falciparum showed significant (IC50 1.69µg/ml) anti-malarial potential for GA. Similarly, the molecular docking studies showed adequate docking (LibDock) score of 71.18 for GA and 131.15 for standard anti-malarial drug chloroquine. Further, in silico pharmacokinetic and drug-likeness studies showed that GA possesses drug-like properties. Finally, in vivo evaluation showed a dose dependent anti-malarial activity ranging from 68–100% at doses of 62.5–250mg/kg on day 8. To the best of our knowledge this is the first ever report on the anti-malarial potential of GA. Further work on optimization of the anti-malarial lead is under progress. PMID:24086367

  12. F2Dock: Fast Fourier Protein-Protein Docking

    PubMed Central

    Bajaj, Chandrajit; Chowdhury, Rezaul; Siddavanahalli, Vinay

    2009-01-01

    The functions of proteins is often realized through their mutual interactions. Determining a relative transformation for a pair of proteins and their conformations which form a stable complex, reproducible in nature, is known as docking. It is an important step in drug design, structure determination and understanding function and structure relationships. In this paper we extend our non-uniform fast Fourier transform docking algorithm to include an adaptive search phase (both translational and rotational) and thereby speed up its execution. We have also implemented a multithreaded version of the adaptive docking algorithm for even faster execution on multicore machines. We call this protein-protein docking code F2Dock (F2 = Fast Fourier). We have calibrated F2Dock based on an extensive experimental study on a list of benchmark complexes and conclude that F2Dock works very well in practice. Though all docking results reported in this paper use shape complementarity and Coulombic potential based scores only, F2Dock is structured to incorporate Lennard-Jones potential and re-ranking docking solutions based on desolvation energy. PMID:21071796

  13. Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach

    NASA Astrophysics Data System (ADS)

    Lam, Polo C.-H.; Abagyan, Ruben; Totrov, Maxim

    2018-01-01

    Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added. In the current study, we developed a new ligand-biased ensemble receptor docking method and composite scoring function which combine the use of ligand-based atomic property field (APF) method with receptor structure-based docking. This method helps us to correctly dock 30 out of 36 ligands presented by the D3R docking challenge. For the six mis-docked ligands, the cognate receptor structures prove to be too different from the 40 available experimental Pocketome conformations used for docking and could be identified only by receptor sampling beyond experimentally explored conformational subspace.

  14. Fragment-Based Docking: Development of the CHARMMing Web User Interface as a Platform for Computer-Aided Drug Design

    PubMed Central

    2015-01-01

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser.1 One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing’s capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of “re-dockings” with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing’s docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening. PMID:25151852

  15. Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures.

    PubMed

    Elfiky, A A; Ismail, A M

    2018-05-01

    A new Zika virus (ZIKV) outbreak started in 2015. According to the World Health Organization, 84 countries confirmed ZIKV infection. RNA-dependent RNA polymerase (RdRp) was an appealing target for drug designers during the last two decades. Through molecular docking, we screened 16 nucleotide/side inhibitors against ZIKV RdRp. While the mode of interaction with ZIKV is different from that in the hepatitis C virus (HCV), nucleotide/side inhibitors in this study (mostly anti-HCV) showed promising binding affinities (-6.2 to -9.7 kcal/mol calculated by AutoDock Vina) to ZIKV RdRp. Setrobuvir, YAK and, to a lesser extent, IDX-184 reveal promising results compared to other inhibitors in terms of binding ZIKV RdRp. These candidates would be powerful anti-ZIKV drugs.

  16. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies.

    PubMed

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V; Pavlyukovets, Vladimir A; Blumberg, Peter M; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  17. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies

    NASA Astrophysics Data System (ADS)

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V.; Pavlyukovets, Vladimir A.; Blumberg, Peter M.; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  18. Molecular docking, 3D QSAR and dynamics simulation studies of imidazo-pyrrolopyridines as janus kinase 1 (JAK 1) inhibitors.

    PubMed

    Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha

    2016-10-01

    Janus kinase 1 (JAK 1) plays a critical role in initiating responses to cytokines by the JAK-signal transducer and activator of transcription (JAK-STAT). This controls survival, proliferation and differentiation of a variety of cells. Docking, 3D quantitative structure activity relationship (3D-QSAR) and molecular dynamics (MD) studies were performed on a series of Imidazo-pyrrolopyridine derivatives reported as JAK 1 inhibitors. QSAR model was generated using 30 molecules in the training set; developed model showed good statistical reliability, which is evident from r 2 ncv and r 2 loo values. The predictive ability of this model was determined using a test set of 13 molecules that gave acceptable predictive correlation (r 2 Pred ) values. Finally, molecular dynamics simulation was performed to validate docking results and MM/GBSA calculations. This facilitated us to compare binding free energies of cocrystal ligand and newly designed molecule R1. The good concordance between the docking results and CoMFA/CoMSIA contour maps afforded obliging clues for the rational modification of molecules to design more potent JAK 1 inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Docking studies on a new human immunodeficiency virus integrase-Mg-DNA complex: phenyl ring exploration and synthesis of 1H-benzylindole derivatives through fluorine substitutions.

    PubMed

    Ferro, Stefania; De Luca, Laura; Barreca, Maria Letizia; Iraci, Nunzio; De Grazia, Sara; Christ, Frauke; Witvrouw, Myriam; Debyser, Zeger; Chimirri, Alba

    2009-01-22

    A new model of HIV-1 integrase-Mg-DNA complex that is useful for docking experiments has been built. It was used to study the binding mode of integrase strand transfer inhibitor 1 (CHI-1043) and other fluorine analogues. Molecular modeling results prompted us to synthesize the designed derivatives which showed potent enzymatic inhibition at nanomolar concentration, high antiviral activity, and low toxicity. Microwave assisted organic synthesis (MAOS) was employed in several steps of the synthetic pathway, thus reducing reaction times and improving yields.

  20. Molecular Docking Studies to Explore Potential Binding Pockets and Inhibitors for Chikungunya Virus Envelope Glycoproteins.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2017-03-11

    The chikungunya virus (CHIKV) envelope glycoproteins are considered important potential targets for anti-CHIKV drug discovery due to their crucial roles in virus attachment and virus entry. In this study, using two available crystal structures of the immature and mature forms of envelope glycoproteins, virtual screenings based on blind dockings and focused dockings were carried out to identify potential binding pockets and hit compounds for the virus. The chemical library database of compounds, NCI Diversity Set II, was used in these docking studies. In addition to reproducing previously reported examples, new binding pockets were identified, e.g., Pocket 2 in the 3N40, and Pocket 2 and Pocket 3 in the 3N42. Convergences in conformational sampling in docking using AutoDock Vina were evaluated. An analysis of docking results was carried out to understand interactions of the envelope glycoproteins complexes. Some key residues for interactions, for example Gly91 and His230, are identified as possessing important roles in the fusion process.

  1. Skylab

    NASA Image and Video Library

    1971-08-01

    This August 1971 interior photograph of Skylab's Multiple Docking Adapter (MDA) flight article, undergoing outfitting at the Martin-Marietta Corporation's Space Center facility in Denver, Colorado, shows the forward cone area and docking tunnel (center) that attached to the Apollo Command Module. Designed and manufactured by the Marshall Space Flight Center, the MDA housed the control units for the Apollo Telescope Mount, Earth Resources Experiment Package, and Zero-Gravity Materials Processing Facility and provided a docking port for the Apollo Command Module.

  2. Pharmacophore modeling, molecular docking and molecular dynamics studies on natural products database to discover novel skeleton as non-purine xanthine oxidase inhibitors.

    PubMed

    Peng, Jiale; Li, Yaping; Zhou, Yeheng; Zhang, Li; Liu, Xingyong; Zuo, Zhili

    2018-05-29

    Gout is a common inflammatory arthritis caused by the deposition of urate crystals within joints. It is increasingly in prevalence during the past few decades as shown by the epidemiological survey results. Xanthine oxidase (XO) is a key enzyme to transfer hypoxanthine and xanthine to uric acid, whose overproduction leads to gout. Therefore, inhibiting the activity of xanthine oxidase is an important way to reduce the production of urate. In the study, in order to identify the potential natural products targeting XO, pharmacophore modeling was employed to filter databases. Here, two methods, pharmacophore based on ligand and pharmacophore based on receptor-ligand, were constructed by Discovery Studio. Then GOLD was used to refine the potential compounds with higher fitness scores. Finally, molecular docking and dynamics simulations were employed to analyze the interactions between compounds and protein. The best hypothesis was set as a 3D query to screen database, returning 785 and 297 compounds respectively. A merged set of the above 1082 molecules was subjected to molecular docking, which returned 144 hits with high-fitness scores. These molecules were clustered in four main kinds depending on different backbones. What is more, molecular docking showed that the representative compounds established key interactions with the amino acid residues in the protein, and the RMSD and RMSF of molecular dynamics results showed that these compounds can stabilize the protein. The information represented in the study confirmed previous reports. And it may assist to discover and design new backbones as potential XO inhibitors based on natural products.

  3. Ligand-based and structure-based approaches in identifying ideal pharmacophore against c-Jun N-terminal kinase-3.

    PubMed

    Kumar, B V S Suneel; Kotla, Rohith; Buddiga, Revanth; Roy, Jyoti; Singh, Sardar Shamshair; Gundla, Rambabu; Ravikumar, Muttineni; Sarma, Jagarlapudi A R P

    2011-01-01

    Structure and ligand based pharmacophore modeling and docking studies carried out using diversified set of c-Jun N-terminal kinase-3 (JNK3) inhibitors are presented in this paper. Ligand based pharmacophore model (LBPM) was developed for 106 inhibitors of JNK3 using a training set of 21 compounds to reveal structural and chemical features necessary for these molecules to inhibit JNK3. Hypo1 consisted of two hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD), and a hydrophobic (HY) feature with a correlation coefficient (r²) of 0.950. This pharmacophore model was validated using test set containing 85 inhibitors and had a good r² of 0.846. All the molecules were docked using Glide software and interestingly, all the docked conformations showed hydrogen bond interactions with important hinge region amino acids (Gln155 and Met149)and these interactions were compared with Hypo1 features. The results of ligand based pharmacophore model (LBPM)and docking studies are validated each other. The structure based pharmacophore model (SBPM) studies have identified additional features, two hydrogen bond donors and one hydrogen bond acceptor. The combination of these methodologies is useful in designing ideal pharmacophore which provides a powerful tool for the discovery of novel and selective JNK3 inhibitors.

  4. Structure and Sequence Search on Aptamer-Protein Docking

    NASA Astrophysics Data System (ADS)

    Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie

    2015-03-01

    Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.

  5. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour

    2013-10-01

    In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.

  6. Molecular docking studies of (1E,3E,5E)-1,6-Bis(substituted phenyl)hexa-1,3,5-triene and 1,4-Bis(substituted trans-styryl)benzene analogs as novel tyrosinase inhibitors.

    PubMed

    Ha, Young Mi; Lee, Hye Jin; Park, Daeui; Jeong, Hyoung Oh; Park, Ji Young; Park, Yun Jung; Lee, Kyung Jin; Lee, Ji Yeon; Moon, Hyung Ryong; Chung, Hae Young

    2013-01-01

    We simulated the docking of the tertiary structure of mushroom tyrosinase with our compounds. From the structure-tyrosinase inhibitory activity relationship, it is notable that compounds 4, 8 and 11 showed similar or better activity rates than kojic acid which was used as a positive control. Compounds 17, 21, and 23 among benzene analogs that possess the same substituent showed significantly lower tyrosinase inhibitory effects. Therefore, we have confirmed that among the compounds showing better tyrosinase inhibitory effects than kojic acid, the compounds with triene analogs have better tyrosinase inhibitory effect than the compounds with benzene analogs. Docking simulation suggested the mechanism of compounds by several key residues which had possible hydrogen bonding interactions. The pharmacophore model underlined the features of active compounds, 4,4'-((1E,3E,5E)-hexa-1,3,5-triene-1,6-diyl)diphenol, 5,5'-((1E,3E,5E)-hexa-1,3,5-triene-1,6-diyl)bis(2-methoxy-phenol), and 5,5'-((1E,3E,5E)-hexa-1,3,5-triene-1,6-diyl)dibenzene-1,3-diol among triene derivatives which had several hydrogen bond groups on both terminal rings. The soundness of the docking results and the agreement with the pharmacophores suggest that it can be conveniently exploited to design inhibitors with an improved affinity for tyrosinase.

  7. Synthesis, docking and ADMET studies of novel chalcone triazoles for anti-cancer and anti-diabetic activity.

    PubMed

    Chinthala, Yakaiah; Thakur, Sneha; Tirunagari, Shalini; Chinde, Srinivas; Domatti, Anand Kumar; Arigari, Niranjana Kumar; K V N S, Srinivas; Alam, Sarfaraz; Jonnala, Kotesh Kumar; Khan, Feroz; Tiwari, Ashok; Grover, Paramjit

    2015-03-26

    A series of novel chalcone-triazole derivatives were synthesized and screened for in vitro anticancer activity on the human cancer cell lines IMR32 (neuroblastoma), HepG2 (hepatoma) and MCF-7 (breast adenocarcinoma), DU-145 (prostate carcinoma), and A549 (lung adenocarcinoma). Among the tested compounds, 4r showed the most promising anticancer activity in all the cell lines whereas, compounds 4c (IC50 65.86 μM), 4e (IC50 66.28 μM), 4o (IC50 35.81 μM), 4q (IC50 50.82 μM) and 4s (IC50 48.63 μM) showed better activity than the standard doxorubicin (IC50 69.33 μM) in A549 cell line alone. Rat intestinal α-glucosidase inhibitory activity of the synthesized derivatives showed 4m (IC50 67.77 μM), 4p (IC50 74.94 in μM) and 4s (IC50 102.10 μM) as most active compared to others. The in silico docking of synthesized derivatives 4a-4t with DNA topoisomerase IIα revealed the LibDock score in the range of 71.2623-118.29 whereas, compounds 4h, 4m, 4p and 4s with docking target α-glucosidase were in the range of 100.372-107.784. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: a virtual screening and molecular dynamics simulations study

    NASA Astrophysics Data System (ADS)

    Banavath, Hemanth Naick; Sharma, Om Prakash; Kumar, Muthuvel Suresh; Baskaran, R.

    2014-11-01

    BCR-ABL tyrosine kinase plays a major role in the pathogenesis of chronic myeloid leukemia (CML) and is a proven target for drug development. Currently available drugs in the market are effective against CML; however, side-effects and drug-resistant mutations in BCR-ABL limit their full potential. Using high throughput virtual screening approach, we have screened several small molecule databases and docked against wild-type and drug resistant T315I mutant BCR-ABL. Drugs that are currently available, such as imatinib and ponatinib, were also docked against BCR-ABL protein to set a cutoff value for our screening. Selected lead compounds were further evaluated for chemical reactivity employing density functional theory approach, all selected ligands shows HLG value > 0.09900 and the binding free energy between protein-ligand complex interactions obtained was rescored using MM-GBSA. The selected compounds showed least ΔG score -71.53 KJ/mol to maximum -126.71 KJ/mol in both wild type and drug resistant T315I mutant BCR-ABL. Following which, the stability of the docking complexes were evaluated by molecular dynamics simulation (MD) using GROMACS4.5.5. Results uncovered seven lead molecules, designated with Drug-Bank and PubChem ids as DB07107, DB06977, ST013616, DB04200, ST007180 ST019342, and DB01172, which shows docking scores higher than imatinib and ponatinib.

  9. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies

    PubMed Central

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents. PMID:28463978

  10. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies.

    PubMed

    Yadav, Saveg; Pandey, Shrish Kumar; Singh, Vinay Kumar; Goel, Yugal; Kumar, Ajay; Singh, Sukh Mahendra

    2017-01-01

    Altered metabolism is an emerging hallmark of cancer, as malignant cells display a mammoth up-regulation of enzymes responsible for steering their bioenergetic and biosynthetic machinery. Thus, the recent anticancer therapeutic strategies focus on the targeting of metabolic enzymes, which has led to the identification of specific metabolic inhibitors. One of such inhibitors is 3-bromopyruvate (3-BP), with broad spectrum of anticancer activity due to its ability to inhibit multiple metabolic enzymes. However, the molecular characterization of its binding to the wide spectrum of target enzymes remains largely elusive. Therefore, in the present study we undertook in silico investigations to decipher the molecular nature of the docking of 3-BP with key target enzymes of glycolysis and TCA cycle by PatchDock and YASARA docking tools. Additionally, derivatives of 3-BP, dibromopyruvate (DBPA) and propionic acid (PA), with reported biological activity, were also investigated for docking to important target metabolic enzymes of 3-BP, in order to predict their therapeutic efficacy versus that of 3-BP. A comparison of the docking scores with respect to 3-BP indicated that both of these derivatives display a better binding strength to metabolic enzymes. Further, analysis of the drug likeness of 3-BP, DBPA and PA by Lipinski filter, admetSAR and FAF Drug3 indicated that all of these agents showed desirable drug-like criteria. The outcome of this investigation sheds light on the molecular characteristics of the binding of 3-BP and its derivatives with metabolic enzymes and thus may significantly contribute in designing and optimizing therapeutic strategies against cancer by using these agents.

  11. Distinguishing Binders from False Positives by Free Energy Calculations: Fragment Screening Against the Flap Site of HIV Protease

    PubMed Central

    2015-01-01

    Molecular docking is a powerful tool used in drug discovery and structural biology for predicting the structures of ligand–receptor complexes. However, the accuracy of docking calculations can be limited by factors such as the neglect of protein reorganization in the scoring function; as a result, ligand screening can produce a high rate of false positive hits. Although absolute binding free energy methods still have difficulty in accurately rank-ordering binders, we believe that they can be fruitfully employed to distinguish binders from nonbinders and reduce the false positive rate. Here we study a set of ligands that dock favorably to a newly discovered, potentially allosteric site on the flap of HIV-1 protease. Fragment binding to this site stabilizes a closed form of protease, which could be exploited for the design of allosteric inhibitors. Twenty-three top-ranked protein–ligand complexes from AutoDock were subject to the free energy screening using two methods, the recently developed binding energy analysis method (BEDAM) and the standard double decoupling method (DDM). Free energy calculations correctly identified most of the false positives (≥83%) and recovered all the confirmed binders. The results show a gap averaging ≥3.7 kcal/mol, separating the binders and the false positives. We present a formula that decomposes the binding free energy into contributions from the receptor conformational macrostates, which provides insights into the roles of different binding modes. Our binding free energy component analysis further suggests that improving the treatment for the desolvation penalty associated with the unfulfilled polar groups could reduce the rate of false positive hits in docking. The current study demonstrates that the combination of docking with free energy methods can be very useful for more accurate ligand screening against valuable drug targets. PMID:25189630

  12. Molecular docking studies shows tivozanib and lapatinib as potential inhibitors of EML4-ALK translocation mediated fusion protein in non small cell lung cancer.

    PubMed

    Ramshankar, Vijayalakshmi; Yegnaswamy, Subha; P, Kumarasamy; Arvind, Krishnamurthy

    2014-01-01

    Identification of activating mutations in non-small cell lung cancers (NSCLC) has been a focus in recent years. This led to successful evidence of using tyrosine kinase inhibitors (TKIs) over the standard platinum doublet based chemotherapy as the first line treatment in the metastatic setting.The rearrangements of fusion protein EML4-ALK in NSCLC lead to the use of crizotinib for this class of tumors. Preclinical and Phase 1 clinical studies show that ceritinib is more effective against both crizotinib sensitive and resistant tumors. Although robust responses to crizotinib are observed in NSCLC harboring ALK mutations, majority of tumors eventually become resistant, posing a major challenge in treatment course. Thus, there is a need for the identification and development of second-generation of ALK inhibitors. Computer aided molecular docking data show Tivozanib and Lapatinib bind EML4-ALK with high score. Tivozanib is in clinical trials for renal cell cancer and Lapatinib is a known dual tyrosine kinase inhibitor effective in breast cancer patients with HER2 over-expression. Additional data on these compounds for use in EML4-ALK positive NSCLC will provide evidence for use in patients treated with crizotinib. Data shows the importance of computer aided molecular docking in developing candidates with improved activity for further consideration in vitro and in vivo validation.

  13. Molecular docking studies shows tivozanib and lapatinib as potential inhibitors of EML4-ALK translocation mediated fusion protein in non small cell lung cancer

    PubMed Central

    Ramshankar, Vijayalakshmi; Yegnaswamy, Subha; P, Kumarasamy; Arvind, Krishnamurthy

    2014-01-01

    Identification of activating mutations in non-small cell lung cancers (NSCLC) has been a focus in recent years. This led to successful evidence of using tyrosine kinase inhibitors (TKIs) over the standard platinum doublet based chemotherapy as the first line treatment in the metastatic setting.The rearrangements of fusion protein EML4-ALK in NSCLC lead to the use of crizotinib for this class of tumors. Preclinical and Phase 1 clinical studies show that ceritinib is more effective against both crizotinib sensitive and resistant tumors. Although robust responses to crizotinib are observed in NSCLC harboring ALK mutations, majority of tumors eventually become resistant, posing a major challenge in treatment course. Thus, there is a need for the identification and development of second-generation of ALK inhibitors. Computer aided molecular docking data show Tivozanib and Lapatinib bind EML4-ALK with high score. Tivozanib is in clinical trials for renal cell cancer and Lapatinib is a known dual tyrosine kinase inhibitor effective in breast cancer patients with HER2 over-expression. Additional data on these compounds for use in EML4-ALK positive NSCLC will provide evidence for use in patients treated with crizotinib. Data shows the importance of computer aided molecular docking in developing candidates with improved activity for further consideration in vitro and in vivo validation. PMID:25489176

  14. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking.

    PubMed

    Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna

    2016-10-01

    Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation.

  15. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta.

    PubMed

    Li, Haiou; Lu, Liyao; Chen, Rong; Quan, Lijun; Xia, Xiaoyan; Lü, Qiang

    2014-01-01

    Structural information related to protein-peptide complexes can be very useful for novel drug discovery and design. The computational docking of protein and peptide can supplement the structural information available on protein-peptide interactions explored by experimental ways. Protein-peptide docking of this paper can be described as three processes that occur in parallel: ab-initio peptide folding, peptide docking with its receptor, and refinement of some flexible areas of the receptor as the peptide is approaching. Several existing methods have been used to sample the degrees of freedom in the three processes, which are usually triggered in an organized sequential scheme. In this paper, we proposed a parallel approach that combines all the three processes during the docking of a folding peptide with a flexible receptor. This approach mimics the actual protein-peptide docking process in parallel way, and is expected to deliver better performance than sequential approaches. We used 22 unbound protein-peptide docking examples to evaluate our method. Our analysis of the results showed that the explicit refinement of the flexible areas of the receptor facilitated more accurate modeling of the interfaces of the complexes, while combining all of the moves in parallel helped the constructing of energy funnels for predictions.

  16. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    NASA Astrophysics Data System (ADS)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  17. Modeling the protonation states of β-secretase binding pocket by molecular dynamics simulations and docking studies.

    PubMed

    Sabbah, Dima A; Zhong, Haizhen A

    2016-07-01

    β-secretase (BACE1) is an aspartyl protease that processes the β-amyloid peptide in the human brain in patients with Alzheimer's disease. There are two catalytic aspartates (ASP32 and ASP228) in the active domain of BACE1. Although it is believed that the net charge of the Asp dyad is -1, the exact protonation state still remains a matter of debate. We carried out molecular dynamic (MD) simulations for the four protonation states of BACE1 proteins. We applied Glide docking studies to 21 BACE1 inhibitors against the MD extracted conformations. The dynamic results infer that the protein/ligand complex remains stable during the entire simulation course for HD32D228 model. The results show that the hydrogen bonds between the inhibitor and the Asp dyad are maintained in the 10,000th ps snapshot of HD32D228 model. Our results also reveal the significant loop residues in maintaining the active binding conformation in the HD32D228 model. Molecular docking results show that the HD32D228 model provided the best enrichment factor score, suggesting that this model was able to recognize the most active compounds. Our observations provide an evidence for the preference of the anionic state (HD32D228) in BACE1 binding site and are in accord with reported computational data. The protonation state study would provide significant information to assign the correct protonation state for structure-based drug design and docking studies targeting the BACE1 proteins as a tactic to develop potential AD inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Molecular docking of bacosides with tryptophan hydroxylase: a model to understand the bacosides mechanism.

    PubMed

    Rajathei, David Mary; Preethi, Jayakumar; Singh, Hemant K; Rajan, Koilmani Emmanuvel

    2014-08-01

    Tryptophan hydroxylase (TPH) catalyses l-tryptophan into 5-hydroxy-l-tryptophan, which is the first and rate-limiting step of serotonin (5-HT) biosynthesis. Earlier, we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides. However, the knowledge about the interactions between bacosides with TPH is limited. In this study, we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock, PatchDock and AutoDock. All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites. Further, our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond. Interestingly, Tyr235, Thr265 and Glu317 are the key residues among them, but none of them are either at tryptophan or BH4 binding region. However, its note worthy to mention that Tyr 235 is a catalytic sensitive residue, Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe. Interactions with these residues may critically regulate TPH function and thus serotonin synthesis. Our study suggested that the interaction of bacosides (A3/A) with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT, thereby enhances learning and memory formation.

  19. Fast Approximations of the Rotational Diffusion Tensor and their Application to Structural Assembly of Molecular Complexes

    PubMed Central

    Berlin, Konstantin; O’Leary, Dianne P.; Fushman, David

    2011-01-01

    We present and evaluate a rigid-body, deterministic, molecular docking method, called ELMDOCK, that relies solely on the three-dimensional structure of the individual components and the overall rotational diffusion tensor of the complex, obtained from nuclear spin-relaxation measurements. We also introduce a docking method, called ELMPATIDOCK, derived from ELMDOCK and based on the new concept of combining the shape-related restraints from rotational diffusion with those from residual dipolar couplings, along with ambiguous contact/interface-related restraints obtained from chemical shift perturbations. ELMDOCK and ELMPATIDOCK use two novel approximations of the molecular rotational diffusion tensor that allow computationally efficient docking. We show that these approximations are accurate enough to properly dock the two components of a complex without the need to recompute the diffusion tensor at each iteration step. We analyze the accuracy, robustness, and efficiency of these methods using synthetic relaxation data for a large variety of protein-protein complexes. We also test our method on three protein systems for which the structure of the complex and experimental relaxation data are available, and analyze the effect of flexible unstructured tails on the outcome of docking. Additionally, we describe a method for integrating the new approximation methods into the existing docking approaches that use the rotational diffusion tensor as a restraint. The results show that the proposed docking method is robust against experimental errors in the relaxation data or structural rearrangements upon complex formation and is computationally more efficient than current methods. The developed approximations are accurate enough to be used in structure refinement protocols. PMID:21604302

  20. Fast approximations of the rotational diffusion tensor and their application to structural assembly of molecular complexes.

    PubMed

    Berlin, Konstantin; O'Leary, Dianne P; Fushman, David

    2011-07-01

    We present and evaluate a rigid-body, deterministic, molecular docking method, called ELMDOCK, that relies solely on the three-dimensional structure of the individual components and the overall rotational diffusion tensor of the complex, obtained from nuclear spin-relaxation measurements. We also introduce a docking method, called ELMPATIDOCK, derived from ELMDOCK and based on the new concept of combining the shape-related restraints from rotational diffusion with those from residual dipolar couplings, along with ambiguous contact/interface-related restraints obtained from chemical shift perturbations. ELMDOCK and ELMPATIDOCK use two novel approximations of the molecular rotational diffusion tensor that allow computationally efficient docking. We show that these approximations are accurate enough to properly dock the two components of a complex without the need to recompute the diffusion tensor at each iteration step. We analyze the accuracy, robustness, and efficiency of these methods using synthetic relaxation data for a large variety of protein-protein complexes. We also test our method on three protein systems for which the structure of the complex and experimental relaxation data are available, and analyze the effect of flexible unstructured tails on the outcome of docking. Additionally, we describe a method for integrating the new approximation methods into the existing docking approaches that use the rotational diffusion tensor as a restraint. The results show that the proposed docking method is robust against experimental errors in the relaxation data or structural rearrangements upon complex formation and is computationally more efficient than current methods. The developed approximations are accurate enough to be used in structure refinement protocols. Copyright © 2011 Wiley-Liss, Inc.

  1. Satellite Docking Simulator with Generic Contact Dynamics Capabilities

    NASA Astrophysics Data System (ADS)

    Ma, O.; Crabtree, D.; Carr, R.; Gonthier, Y.; Martin, E.; Piedboeuf, J.-C.

    2002-01-01

    Satellite docking (and capture) systems are critical for the servicing or salvage of satellites. Satellite servicing has comparatively recently become a realistic and promising space operation/mission. Satellite servicing includes several of the following operations: rendezvous; docking (capturing); inspection; towing (transporting); refueling; refurbishing (replacement of faulty or "used-up" modules/boxes); and un-docking (releasing). Because spacecraft servicing has been, until recently non-feasible or non-economical, spacecraft servicing technology has been neglected. Accordingly, spacecraft designs have featured self- contained systems without consideration for operational servicing. Consistent with this view, most spacecrafts were designed and built without docking interfaces. If, through some mishap, a spacecraft was rendered non-operational, it was simply considered expendable. Several feasibility studies are in progress on salvaging stranded satellites (which, in fact had led to this project). The task of the designer of the docking system for a salvaging task is difficult. He/she has to work with whatever it is on orbit, and this excludes any special docking interfaces, which might have made his/her task easier. As satellite servicing becomes an accepted design requirement, many future satellites will be equipped with appropriate docking interfaces. The designer of docking systems will be faced with slightly different challenges: reliable, cost-effective, docking (and re-supply) systems. Thus, the role of designers of docking systems will increase from one of a kind, ad-hoc interfaces intended for salvaging operations, to docking systems for satellites and "caretaker" spacecraft which are meant for servicing and are produced in larger numbers. As in any space system (for which full and representative ground hardware test-beds are very expensive and often impossible to develop), simulations are mandatory for the development of systems and operations for satellite servicing. Simulations are also instrumental in concept studies during proposals and early development stages. Finally, simulations are useful during the operational phase of satellite servicing: improving the operational procedures; training ground operators; command and control, etc. Hence the need exists for a Satellite Servicing Simulator, which will support a project throughout its lifecycle. The paper addresses a project to develop a Simulink-based Satellite Docking Simulator (SDS) with generic Contact Dynamics (CD) capabilities. The simulator is intended to meet immediate practical demands for development of complex docking systems and operations at MD Robotics. The docking phase is the most critical and complex phase of the entire servicing sequence, and without docking there is no servicing. Docking mechanisms are often quite complex, especially when built to dock with a satellite manufactured without special docking interfaces. For successful docking operations, the design of a docking system must take into consideration: complexity of 3D geometric shapes defining the contact interfaces; sophistication of the docking mechanism; friction and stiction at the contacting surfaces; compliance (stiffness) and damping, in all axes; positional (translation and rotation) misalignments and relative velocities, in all axes; inertial properties of the docking satellites (including their distribution); complexity of the drive mechanisms and control sub-systems for the overall docking system; fully autonomous or tele-operated docking from the ground; etc. The docking simulator, which makes use of the proven Contact Dynamics Toolkit (CDT) developed by MD Robotics, is thus practically indispensable for the docking system designer. The use of the simulator could greatly reduce the prototyping and development time of a docking interface. A special feature of the simulator, which required an update of CDT, is variable step-size integration. This new capability permits increases in speed to accomplish all the simulation tasks.

  2. Skylab

    NASA Image and Video Library

    1971-12-01

    This interior photograph of Skylab's multiple docking adapter (MDA) flight article, then undergoing outfitting at the Martin Marietta Corporation's Space Center facility in Denver, Colorado, shows the forward cone area and docking turnel (center) that attached to the Apollo Command Module. Designed and manufactured by the Marshall Space Flight Center, the MDA housed the control units for the Apollo Telescope Mount (ATM), Earth Resources Experiment Package (EREP), and Zero-Gravity Materials Processing Facility and provided a docking port for the Apollo Command Module.

  3. A Steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs.

    PubMed

    Lu, Mingjian; Kinchen, Jason M; Rossman, Kent L; Grimsley, Cynthia; Hall, Matthew; Sondek, John; Hengartner, Michael O; Yajnik, Vijay; Ravichandran, Kodi S

    2005-02-22

    CDM (CED-5, Dock180, Myoblast city) family members have been recently identified as novel, evolutionarily conserved guanine nucleotide exchange factors (GEFs) for Rho-family GTPases . They regulate multiple processes, including embryonic development, cell migration, apoptotic-cell engulfment, tumor invasion, and HIV-1 infection, in diverse model systems . However, the mechanism(s) of regulation of CDM proteins has not been well understood. Here, our studies on the prototype member Dock180 reveal a steric-inhibition model for regulating the Dock180 family of GEFs. At basal state, the N-terminal SH3 domain of Dock180 binds to the distant catalytic Docker domain and negatively regulates the function of Dock180. Further studies revealed that the SH3:Docker interaction sterically blocks Rac access to the Docker domain. Interestingly, ELMO binding to the SH3 domain of Dock180 disrupted the SH3:Docker interaction, facilitated Rac access to the Docker domain, and contributed to the GEF activity of the Dock180/ELMO complex. Additional genetic rescue studies in C. elegans suggested that the regulation of the Docker-domain-mediated GEF activity by the SH3 domain and its adjoining region is evolutionarily conserved. This steric-inhibition model may be a general mechanism for regulating multiple SH3-domain-containing Dock180 family members and may have implications for a variety of biological processes.

  4. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4

    PubMed Central

    Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine. PMID:26741368

  5. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking.

    PubMed

    Prasanna, Sivaprakasam; Daga, Pankaj R; Xie, Aihua; Doerksen, Robert J

    2009-02-01

    Glycogen synthase kinase-3, a serine/threonine kinase, has been implicated in a wide variety of pathological conditions such as diabetes, Alzheimer's disease, stroke, bipolar disorder, malaria and cancer. Herein we report 3D-QSAR analyses using CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-phenylmaleimides as GSK-3alpha inhibitors, in order to better understand the mechanism of action and structure-activity relationship of these compounds. Comparison of the active site residues of GSK-3alpha and GSK-3beta isoforms shows that all the key amino acids involved in polar interactions with the maleimides for the beta isoform are the same in the alpha isoform, except that Asp133 in the beta isoform is replaced by Glu196 in the alpha isoform. We prepared a homology model for GSK-3alpha, and showed that the change from Asp to Glu should not affect maleimide binding significantly. Docking studies revealed the binding poses of three subclasses of these ligands, namely anilino, N-methylanilino and indoline derivatives, within the active site of the beta isoform, and helped to explain the difference in their inhibitory activity.

  6. Synthesis, spectral characterization, crystal structure and molecular docking study of 2,7-diaryl-1,4-diazepan-5-ones

    NASA Astrophysics Data System (ADS)

    Sethuvasan, S.; Sugumar, P.; Maheshwaran, V.; Ponnuswamy, M. N.; Ponnuswamy, S.

    2016-07-01

    In this study, a series of variously substituted r-2,c-7-diaryl-1,4-diazepan-5-ones 9-16 have been synthesized using Schmidt rearrangement and are characterized by IR, mass and 1D & 2D NMR spectral data. The proton NMR coupling constant and estimated dihedral angles reveal that the compounds 9-16 prefer a chair conformation with equatorial orientation of alkyl and aryl groups. Single crystal X-ray structure has been solved for compounds 9 and 11 which also indicates the preference for distorted chair conformation with equatorial orientation of substituents. The compounds 9-16 have been docked with the structure of Methicillin-resistant Staphylococcus aureus (MRSA) and the results demonstrate that compound 10 is having better docking score and glide energy than others and it is comparable to co-crystal ligand. Furthermore, all the compounds have been evaluated for their antibacterial and antioxidant activities. All the compounds show moderate antibacterial activity and only 11 exhibits better activity against S. aures and Escherichia coli. The compounds 11, 13 and 14 exhibit half of the antioxidant power when compared to the BHT and the remaining compounds show moderate activity.

  7. Anti-tubercular agents from Glycyrrhiza glabra.

    PubMed

    Kalani, Komal; Chaturvedi, Vinita; Alam, Sarfaraz; Khan, Feroz; Srivastava, Santosh Kumar

    2015-01-01

    Bioactivity guided isolation of Glycyrrhiza glabra (Leguminosae / Fabaceae) roots resulted in the characterization of 18β-glycyrrhetinic acid as a major anti-tubercular agent. Further, GA-1 was semi-synthetically converted into its nine derivatives, which were in-vitro evaluated for their antitubercular potential against Mycobacterium tuberculosis H37Rv using BACTEC-460 radiometric susceptibility assay. All the derivatives were active, but the benzylamide (GA-8, MIC 12.5μg/ml) and ethyl oxylate (GA-3, MIC 25.0 μg/ml) derivatives were significantly active against the pathogen. This was further supported by the molecular docking studies, which showed adequate docking (LibDock) scores for GA-3 (120.3) and GA-8 (112.6) with respect to the standard anti-tubercular drug, rifampicin (92.94) on the DNA-directed RNA polymerase subunit beta (rpoB) target site. Finally, the in silico pharmacokinetic and drug-likeness studies showed that GA-3 and GA- 8 possesses drug-like properties. This is the first ever report on the anti-tubercular potential of GA and its derivatives. These results may be of great help in anti-tubercular drug development from a very common, inexpensive, and non toxic natural product.

  8. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking

    NASA Astrophysics Data System (ADS)

    Prasanna, Sivaprakasam; Daga, Pankaj R.; Xie, Aihua; Doerksen, Robert J.

    2009-02-01

    Glycogen synthase kinase-3, a serine/threonine kinase, has been implicated in a wide variety of pathological conditions such as diabetes, Alzheimer's disease, stroke, bipolar disorder, malaria and cancer. Herein we report 3D-QSAR analyses using CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-phenylmaleimides as GSK-3α inhibitors, in order to better understand the mechanism of action and structure-activity relationship of these compounds. Comparison of the active site residues of GSK-3α and GSK-3β isoforms shows that all the key amino acids involved in polar interactions with the maleimides for the β isoform are the same in the α isoform, except that Asp133 in the β isoform is replaced by Glu196 in the α isoform. We prepared a homology model for GSK-3α, and showed that the change from Asp to Glu should not affect maleimide binding significantly. Docking studies revealed the binding poses of three subclasses of these ligands, namely anilino, N-methylanilino and indoline derivatives, within the active site of the β isoform, and helped to explain the difference in their inhibitory activity.

  9. In vitro and in silico Studies of Mangiferin from Aphloia theiformis on Key Enzymes Linked to Diabetes Type 2 and Associated Complications.

    PubMed

    Picot, Marie C N; Zengin, Gokhan; Mollica, Adriano; Stefanucci, Azzurra; Carradori, Simone; Mahomoodally, Mohamad F

    2017-01-01

    Mangiferin, was identified in the crude methanol extract, ethyl acetate, and n-butanol fractions of Aphloia theiformis (Vahl.) Benn. This study aimed to analyze the plausible binding modes of mangiferin to key enzymes linked to diabetes type 2 (DT2), obesity, hypertension, Alzheimer's disease, and urolithiasis using molecular docking. Crystallographic structures of α-amylase, α-glucosidase, glycogen phosphorylase (GP), pancreatic lipase, cholesterol esterase (CEase), angiotensin-I-converting enzyme (ACE), acetyl cholinesterase (AChE), and urease available on the Protein Databank database were docked to mangiferin using Gold 6.0 software. We showed that mangiferin bound to all enzymes by π-π and hydrogen bonds mostly. Mangiferin was docked to both allosteric and orthosteric sites of α-glucosidase by π-π interactions. However, several hydrogen bonds were observed at the orthosteric position, suggesting a preference for this site. The docking of mangiferin on AChE with the catalytic pocket occupied by paraoxon could be attributed to π-π stacking involving amino acid residues, Trp341 and Trp124. This study provided an insight of the molecular interaction of mangiferin with the studied enzymes and can be considered as a valuable tool for designing new drugs for better management of these diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. ISS General Resource Reel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This video is a collection of computer animations and live footage showing the construction and assembly of the International Space Station (ISS). Computer animations show the following: (1) ISS fly around; (2) ISS over a sunrise seen from space; (3) the launch of the Zarya Control Module; (4) a Proton rocket launch; (5) the Space Shuttle docking with Zarya and attaching Zarya to the Unity Node; (6) the docking of the Service Module, Zarya, and Unity to Soyuz; (7) the Space Shuttle docking to ISS and installing the Z1 Truss segment and the Pressurized Mating Adapter (PMA); (8) Soyuz docking to the ISS; (9) the Transhab components; and (10) a complete ISS assembly. Live footage shows the construction of Zarya, the Proton rocket, Unity Node, PMA, Service Module, US Laboratory, Italian Multipurpose Logistics Module, US Airlock, and the US Habitation Module. STS-88 Mission Specialists Jerry Ross and James Newman are seen training in the Neutral Buoyancy Laboratory (NBL). The Expedition 1 crewmembers, William Shepherd, Yuri Gidzenko, and Sergei Krikalev, are shown training in the Black Sea and at Johnson Space Flight Center for water survival.

  11. Mapping multiple potential ATP binding sites on the matrix side of the bovine ADP/ATP carrier by the combined use of MD simulation and docking.

    PubMed

    Di Marino, Daniele; Oteri, Francesco; della Rocca, Blasco Morozzo; D'Annessa, Ilda; Falconi, Mattia

    2012-06-01

    The mitochondrial adenosine diphosphate/adenosine triphosphate (ADP/ATP) carrier-AAC-was crystallized in complex with its specific inhibitor carboxyatractyloside (CATR). The protein consists of a six-transmembrane helix bundle that defines the nucleotide translocation pathway, which is closed towards the matrix side due to sharp kinks in the odd-numbered helices. In this paper, we describe the interaction between the matrix side of the AAC transporter and the ATP(4-) molecule using carrier structures obtained through classical molecular dynamics simulation (MD) and a protein-ligand docking procedure. Fifteen structures were extracted from a previously published MD trajectory through clustering analysis, and 50 docking runs were carried out for each carrier conformation, for a total of 750 runs ("MD docking"). The results were compared to those from 750 docking runs performed on the X-ray structure ("X docking"). The docking procedure indicated the presence of a single interaction site in the X-ray structure that was conserved in the structures extracted from the MD trajectory. MD docking showed the presence of a second binding site that was not found in the X docking. The interaction strategy between the AAC transporter and the ATP(4-) molecule was analyzed by investigating the composition and 3D arrangement of the interaction pockets, together with the orientations of the substrate inside them. A relationship between sequence repeats and the ATP(4-) binding sites in the AAC carrier structure is proposed.

  12. Synthesis, molecular docking, and biological evaluation of some novel hydrazones and pyrazole derivatives as anti-inflammatory agents.

    PubMed

    Mohammed, Khaled O; Nissan, Yassin M

    2014-10-01

    2-Hydrazinyl-N-(4-sulfamoylphenyl)acetamide 3 was the key intermediate for the synthesis of novel hydrazones 4-10 and pyrazole derivatives 11-17. All compounds were tested for their in vivo anti-inflammatory activity and their ability to inhibit the production of PGE(2) in serum samples of rats. IC(50) values for the most active compounds for inhibition of COX-1 and COX-2 enzymes were determined in vitro, and they were also tested for their ulcerogenic effect. Molecular docking was performed on the active site of COX-2 to predict their mode of binding to the amino acids. Most of the synthesized compounds showed good anti-inflammatory activity especially compounds 3, 4, 8, 9, 15, and 17 which showed better activity than diclofenac as the reference drug. Compounds 3, 8, 9, 13, and 15-17 were less ulcerogenic than indomethacine as the reference drug. Most of the synthesized compounds interacted with Tyr 385 and Ser 530 in molecular docking study with additional hydrogen bond for compound 17. Compound 17 showed good selectivity index value of 11.1 for COX-1/COX-2 inhibition in vitro. © 2014 John Wiley & Sons A/S.

  13. Bovine serum albumin binding study to erlotinib using surface plasmon resonance and molecular docking methods.

    PubMed

    Taghipour, Parvin; Zakariazadeh, Mostafa; Sharifi, Maryam; Ezzati Nazhad Dolatabadi, Jafar; Barzegar, Abolfazl

    2018-06-01

    Bovine serum albumin (BSA) is the most abundant protein in the blood circulation and it is commonly used for drug delivery in blood. Therefore, we aim to study BSA interaction with erlotinib as an anticancer drug using surface plasmon resonance (SPR) and molecular modeling methods under physiological conditions (pH = 7.4). BSA immobilized on carboxymethyl dextran hydrogel Au chip (CMD) after activation with N-hydroxysuccinimide and N-ethyl-N-(3-diethylaminopropyl) carbodiimide and then the erlotinib binding to BSA at different concentrations was evaluated. Increasing of erlotinib concentration led to dose-response sensorgrams of BSA. The amount of equilibrium constant (K D ) at 25 °C (4.25 × 10 -9 ) showed the high affinity of erlotinib to BSA. Thermodynamic parameters were attained at four different temperatures. The positive value of enthalpy and entropy showed that hydrophobic forces play major role in the interaction of erlotinib with BSA. Besides, the positive value of Gibbs free energy demonstrated that the interaction of erlotinib with BSA was nonspontaneous and enthalpy driven and the complexion of drug were dependent on endothermic process. According to the molecular docking study, the most favorable binding sites of erlotinib on the BSA were subdomain IIIA and IB. Moreover, molecular docking study results showed that hydrogen binding has a role in intermolecular force that stabilize erlotinib-BSA complex. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Microgravity experiments of nano-satellite docking mechanism for final rendezvous approach and docking phase

    NASA Astrophysics Data System (ADS)

    Ui, Kyoichi; Matunaga, Saburo; Satori, Shin; Ishikawa, Tomohiro

    2005-09-01

    Laboratory for Space Systems (LSS), Tokyo Institute of Technology (Tokyo Tech) conducted three-dimensional microgravity environment experiments about a docking mechanism for mothership-daughtership (MS-DS) nano-satellite using the facility of Japan Micro Gravity Center (JAMIC) with Hokkaido Institute of Technology (HIT). LSS has studied and developed a docking mechanism for MS-DS nano-satellite system in final rendezvous approach and docking phase since 2000. Consideration of the docking mechanism is to mate a nano-satellite stably while remaining control error of relative velocity and attitude because it is difficult for nano-satellite to have complicated attitude control and mating systems. Objective of the experiments is to verify fundamental grasping function based on our proposed docking methodology. The proposed docking sequence is divided between approach/grasping phase and guiding phase. In the approach/grasping phase, the docking mechanism grasps the nano-satellite even though the nano-satellite has relative position and attitude control errors as well as relative velocity in a docking space. In the guiding function, the docking mechanism guides the nano-satellite to a docking port while adjusting its attitude in order to transfer electrical power and fuel to the nano-satellite. In the paper, we describe the experimental system including the docking mechanism, control system, the daughtership system and the release mechanism, and describe results of microgravity experiments in JAMIC.

  15. Tail Docking of Canine Puppies: Reassessment of the Tail's Role in Communication, the Acute Pain Caused by Docking and Interpretation of Behavioural Responses.

    PubMed

    Mellor, David J

    2018-05-31

    Laws, regulations and professional standards increasingly aim to ban or restrict non-therapeutic tail docking in canine puppies. These constraints have usually been justified by reference to loss of tail participation in communication between dogs, the acute pain presumed to be caused during docking itself, subsequent experiences of chronic pain and heightened pain sensitivity, and the occurrence of other complications. These areas are reconsidered here. First, a scientifically robust examination of the dynamic functional foundations, sensory components and key features of body language that are integral to canine communication shows that the role of the tail has been greatly underestimated. More specifically, it shows that tail behaviour is so embedded in canine communication that docking can markedly impede unambiguous interactions between different dogs and between dogs and people. These interactions include the expression of wide ranges of both negative and positive emotions, moods and intentions that are of daily significance for dog welfare. Moreover, all docked dogs may experience these impediments throughout their lives, which challenges assertions by opponents to such bans or restrictions that the tail is a dispensable appendage. Second, and in contrast, a re-examination of the sensory capacities of canine puppies reveals that they cannot consciously experience acute or chronic pain during at least the first week after birth, which is when they are usually docked. The contrary view is based on questionable between-species extrapolation of information about pain from neurologically mature newborns such as calves, lambs, piglets and human infants, which certainly can consciously experience pain in response to injury, to neurologically immature puppies which remain unconscious and therefore unable to experience pain until about two weeks after birth. Third, underpinned by the incorrect conclusion that puppies are conscious at the usual docking age, it is argued here that the well-validated human emotional drive or desire to care for and protect vulnerable young, leads observers to misread striking docking-induced behaviour as indicating that the puppies consciously experience significant acute pain and distress. Fourth, updated information reaffirms the conclusion that a significant proportion of dogs docked as puppies will subsequently experience persistent and significant chronic pain and heightened pain sensitivity. And fifth, other reported negative consequences of docking should also be considered because, although their prevalence is unclear, when they do occur they would have significant negative welfare impacts. It is argued that the present analysis strengthens the rationale for such bans or restrictions on docking of puppies by clarifying which of several justifications previously used are and are not scientifically supportable. In particular, it highlights the major roles the tail plays in canine communication, as well as the lifetime handicaps to communication caused by docking. Thus, it is concluded that non-therapeutic tail docking of puppies represents an unnecessary removal of a necessary appendage and should therefore be banned or restricted.

  16. Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase

    PubMed Central

    Roberts, Victoria A.; Pique, Michael E.; Hsu, Simon; Li, Sheng; Slupphaug, Geir; Rambo, Robert P.; Jamison, Jonathan W.; Liu, Tong; Lee, Jun H.; Tainer, John A.; Ten Eyck, Lynn F.; Woods, Virgil L.

    2012-01-01

    X-ray crystallography provides excellent structural data on protein–DNA interfaces, but crystallographic complexes typically contain only small fragments of large DNA molecules. We present a new approach that can use longer DNA substrates and reveal new protein–DNA interactions even in extensively studied systems. Our approach combines rigid-body computational docking with hydrogen/deuterium exchange mass spectrometry (DXMS). DXMS identifies solvent-exposed protein surfaces; docking is used to create a 3-dimensional model of the protein–DNA interaction. We investigated the enzyme uracil-DNA glycosylase (UNG), which detects and cleaves uracil from DNA. UNG was incubated with a 30 bp DNA fragment containing a single uracil, giving the complex with the abasic DNA product. Compared with free UNG, the UNG–DNA complex showed increased solvent protection at the UNG active site and at two regions outside the active site: residues 210–220 and 251–264. Computational docking also identified these two DNA-binding surfaces, but neither shows DNA contact in UNG–DNA crystallographic structures. Our results can be explained by separation of the two DNA strands on one side of the active site. These non-sequence-specific DNA-binding surfaces may aid local uracil search, contribute to binding the abasic DNA product and help present the DNA product to APE-1, the next enzyme on the DNA-repair pathway. PMID:22492624

  17. Kinetic and thermodynamic study of bovine serum albumin interaction with rifampicin using surface plasmon resonance and molecular docking methods

    NASA Astrophysics Data System (ADS)

    Sharifi, Maryam; Dolatabadi, Jafar Ezzati Nazhad; Fathi, Farzaneh; Rashidi, Mohammad; Jafari, Behzad; Tajalli, Habib; Rashidi, Mohammad-Reza

    2017-03-01

    The interaction of bovine serum albumin (BSA) with various drugs, such as antibiotics, due to the importance of BSA in drug delivery has attracted increasing research attention at present. Therefore, the aim of this study was investigation of BSA interaction with rifampicin using surface plasmon resonance (SPR) and molecular docking methods under the imitated physiological conditions (pH=7.4). BSA immobilization on carboxymethyl dextran hydrogel chip has been carried out after activation with N-hydroxysuccinimide/N-ethyl-N-(3-diethylaminopropyl) carbodiimide. The dose-response sensorgrams of BSA upon increasing concentration of refampicin were attained in SPR analysis. The high affinity of rifampicin to BSA was demonstrated by a low equilibrium constants (KD) value (3.46×10-5 at 40°C). The process of kinetic values changing shows that affinity of BSA to rifampicin decreased with rising temperature. The positive value of both enthalpy change (ΔH) and entropy change (ΔS) showed that hydrophobic force plays major role in the BSA interaction with rifampicin. The positive value of ΔG was indicative of nonspontaneous and enthalpy-driven binding process. In addition, according to the molecular docking study, hydrogen binding has some contributions in the interaction of rifampicin with BSA.

  18. ConsDock: A new program for the consensus analysis of protein-ligand interactions.

    PubMed

    Paul, Nicodème; Rognan, Didier

    2002-06-01

    Protein-based virtual screening of chemical libraries is a powerful technique for identifying new molecules that may interact with a macromolecular target of interest. Because of docking and scoring limitations, it is more difficult to apply as a lead optimization method because it requires that the docking/scoring tool is able to propose as few solutions as possible and all of them with a very good accuracy for both the protein-bound orientation and the conformation of the ligand. In the present study, we present a consensus docking approach (ConsDock) that takes advantage of three widely used docking tools (Dock, FlexX, and Gold). The consensus analysis of all possible poses generated by several docking tools is performed sequentially in four steps: (i) hierarchical clustering of all poses generated by a docking tool into families represented by a leader; (ii) definition of all consensus pairs from leaders generated by different docking programs; (iii) clustering of consensus pairs into classes, represented by a mean structure; and (iv) ranking the different means starting from the most populated class of consensus pairs. When applied to a test set of 100 protein-ligand complexes from the Protein Data Bank, ConsDock significantly outperforms single docking with respect to the docking accuracy of the top-ranked pose. In 60% of the cases investigated here, ConsDock was able to rank as top solution a pose within 2 A RMSD of the X-ray structure. It can be applied as a postprocessing filter to either single- or multiple-docking programs to prioritize three-dimensional guided lead optimization from the most likely docking solution. Copyright 2002 Wiley-Liss, Inc.

  19. Structural Interface Parameters Are Discriminatory in Recognising Near-Native Poses of Protein-Protein Interactions

    PubMed Central

    Malhotra, Sony; Sankar, Kannan; Sowdhamini, Ramanathan

    2014-01-01

    Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native) structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets. PMID:24498255

  20. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions.

    PubMed

    Malhotra, Sony; Sankar, Kannan; Sowdhamini, Ramanathan

    2014-01-01

    Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native) structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets.

  1. Expedition 31 Soyuz TMA-04M Docking to ISS

    NASA Image and Video Library

    2012-05-17

    View from the balcony of the Russian Mission Control Center shows the Expedition 31 crew portrait along with a timeline of Soyuz TMA-04M docking events on Thursday, May 17, 2012, in Korolev, Russia. The Soyuz docked to the International Space Station at 8:36 a.m. Moscow time with Expedition 31 Soyuz Commander Gennady Padalka, Flight Engineer Sergei Revin, and NASA Flight Engineer Joe Acaba two days after they launched from the Baikonur Cosmodrome in Kazakhstan. Photo Credit (NASA/Bill Ingalls)

  2. PIRS Images

    NASA Image and Video Library

    2001-01-01

    JSC2001-E-26680 --- One of a series of three photos of the next station module that will launch--the Russian Docking Compartment, named Pirs, the Russian word for pier. The module is planned for launch from Baikonur Sept. 14, and to dock with the station on Sept. 16. It will serve as a Russian airlock for the station and also will provide a docking port for Soyuz or Progress craft arriving at the station. This image shows the Pirs under construction at Energia in Moscow.

  3. PIRS Images

    NASA Image and Video Library

    2001-01-01

    JSC2001-E-26679 --- One of a series of three photos of the next station module that will launch--the Russian Docking Compartment, named Pirs, the Russian word for pier. The module is planned for launch from Baikonur Sept. 14, and to dock with the station on Sept. 16. It will serve as a Russian airlock for the station and also will provide a docking port for Soyuz or Progress craft arriving at the station. This image shows the Pirs under construction at Energia in Moscow.

  4. Multiple biological activities and molecular docking studies of newly synthesized 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcone hybrids.

    PubMed

    Sribalan, Rajendran; Banuppriya, Govindharasu; Kirubavathi, Maruthan; Jayachitra, A; Padmini, Vediappen

    2016-12-01

    A series of fifteen new chemical entities, 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcones (6a-o), were synthesized as new hybrids with enriched biological activities compared to their parent molecules. The compounds were characterized by 1 H NMR, 13 C NMR, Mass and IR spectral studies. Their antibacterial, anti-inflammatory and antioxidant activities have been evaluated. These compounds showed moderate to good antibacterial, anti-inflammatory and antioxidant activities. The molecular docking analysis was performed with cyclooxygenase enzyme to ascertain the probable binding model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Synthesis, molecular docking and Brugia malayi thymidylate kinase (BmTMK) enzyme inhibition study of novel derivatives of [6]-shogaol.

    PubMed

    Singh, Vinay Kr; Doharey, Pawan K; Kumar, Vikash; Saxena, J K; Siddiqi, M I; Rathaur, Sushma; Narender, Tadigoppula

    2015-03-26

    [6]-Shogaol (1) was isolated from Zingiber officinale. Twelve novel compounds have been synthesized and evaluated for their Brugia malayi thymidylate kinase (BmTMK) inhibition activity, which plays important role for the DNA synthesis in parasite. [6]-Shogaol (1) and shogaol with thymine head group (2), 5-bromouracil head group (3), adenine head group (4) and 2-amino-3-methylpyridine head group (5) showed potential inhibitory effect on BmTMK activity. Further molecular docking studies were carried out to explore the putative binding mode of compounds 1-5. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Design, synthesis, biological evaluation and docking study of 5-oxo-4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors.

    PubMed

    Khoobi, Mehdi; Alipour, Masoumeh; Sakhteman, Amirhossein; Nadri, Hamid; Moradi, Alireza; Ghandi, Mehdi; Emami, Saeed; Foroumadi, Alireza; Shafiee, Abbas

    2013-10-01

    A series of fused coumarins namely 5-oxo-4,5-dihydropyrano[3,2-c]chromenes linked to N-benzylpyridinium scaffold were synthesized and evaluated as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. The 1-(4-fluorobenzyl)pyridinium derivative 6g showed the most potent anti-AChE activity (IC50 value=0.038 μM) and the highest AChE/BuChE selectivity (SI>48). The docking study permitted us to rationalize the observed structure-affinity relationships and to detect possible binding modes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?

    PubMed

    Ramírez, David; Caballero, Julio

    2018-04-28

    Molecular docking is the most frequently used computational method for studying the interactions between organic molecules and biological macromolecules. In this context, docking allows predicting the preferred pose of a ligand inside a receptor binding site. However, the selection of the “best” solution is not a trivial task, despite the widely accepted selection criterion that the best pose corresponds to the best energy score. Here, several rigid-target docking methods were evaluated on the same dataset with respect to their ability to reproduce crystallographic binding orientations, to test if the best energy score is a reliable criterion for selecting the best solution. For this, two experiments were performed: (A) to reconstruct the ligand-receptor complex by performing docking of the ligand in its own crystal structure receptor (defined as self-docking), and (B) to reconstruct the ligand-receptor complex by performing docking of the ligand in a crystal structure receptor that contains other ligand (defined as cross-docking). Root-mean square deviation (RMSD) was used to evaluate how different the obtained docking orientation is from the corresponding co-crystallized pose of the same ligand molecule. We found that docking score function is capable of predicting crystallographic binding orientations, but the best ranked solution according to the docking energy is not always the pose that reproduces the experimental binding orientation. This happened when self-docking was achieved, but it was critical in cross-docking. Taking into account that docking is typically used with predictive purposes, during cross-docking experiments, our results indicate that the best energy score is not a reliable criterion to select the best solution in common docking applications. It is strongly recommended to choose the best docking solution according to the scoring function along with additional structural criteria described for analogue ligands to assure the selection of a correct docking solution.

  8. Structural and molecular docking studies of biologically active mercaptopyrimidine Schiff bases

    NASA Astrophysics Data System (ADS)

    Kirubavathy, S. Jone; Velmurugan, R.; Karvembu, R.; Bhuvanesh, N. S. P.; Enoch, Israel V. M. V.; Selvakumar, P. Mosae; Premnath, D.; Chitra, S.

    2017-01-01

    Novel Schiff bases derived from the treatment of mercapto-diamino pyrimidine with two different aldehydes are characterized using elemental analysis, single crystal X-ray diffraction and 1H NMR spectroscopy. The pharmacological action of the synthesized compounds viz., antimicrobial, anticancer and antitubercular activities is studied. The Schiff bases show a very good activity against various test pathogens. DNA and β-CD binding interactions of the compounds are studied using UV-Visible absorption and fluorescence spectral measurements. The binding constants of the compounds towards β-CD are in the order of 103 to 104. Molecular docking is done using MOE program on the 3D structure of the enzymes, viz., human thymidylate synthase complexed with dump and raltitrex, candida albicans N-myristoyltransferasepeptidic inhibitor, catalytic domain of protein kinase pKnb from mycobacterium tuberculosis in complex with mitoxantrone, pare, topoisomerase atpase inhibitor, E. coli and lactobacillus casdihydrofolatereductase. The MIC/IC50 values of the Schiff bases are compared with the glide scores from the molecular docking studies. The number of hydrogen bonding interactions between the Schiff bases and amino acid residues are also reported.

  9. Apollo Docking with the LEM Target

    NASA Image and Video Library

    2012-09-07

    Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. This picture shows a later configuration of the Apollo docking with the LEM target. A.W. Vogeley described the simulator as follows: The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect. -- Published in A.W. Vogeley, Piloted Space-Flight Simulation at Langley Research Center, Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966.

  10. Prediction of protein-peptide interactions: application of the XPairIt API to anthrax lethal factor and substrates

    NASA Astrophysics Data System (ADS)

    Hurley, Margaret M.; Sellers, Michael S.

    2013-05-01

    As software and methodology develop, key aspects of molecular interactions such as detailed energetics and flexibility are continuously better represented in docking simulations. In the latest iteration of the XPairIt API and Docking Protocol, we perform a blind dock of a peptide into the cleavage site of the Anthrax lethal factor (LF) metalloprotein. Molecular structures are prepared from RCSB:1JKY and we demonstrate a reasonably accurate docked peptide through analysis of protein motion and, using NCI Plot, visualize and characterize the forces leading to binding. We compare our docked structure to the 1JKY crystal structure and the more recent 1PWV structure, and discuss both captured and overlooked interactions. Our results offer a more detailed look at secondary contact and show that both van der Waals and electrostatic interactions from peptide residues further from the enzyme's catalytic site are significant.

  11. Effects of early human handling on the pain sensitivity of young lambs.

    PubMed

    Guesgen, Mirjam J; Beausoleil, Ngaio J; Stewart, Mairi

    2013-01-01

    Pain sensitivity of lambs changes over the first weeks of life. However, the effects of early treatments such as human handling on pain sensitivity are unknown for this species. This study investigated the effects of regular early gentle human handling on the pain sensitivity of lambs, indicated by their behavioural responses to tail docking. Prospective part-blinded experimental study. Twenty-nine singleton Coopworth lambs (females n=14, males n=15). Starting at one day of age, lambs were either handled twice daily for 2 weeks (Handled), were kept in the presence of lambs who were being handled but were not handled themselves (Presence), or were exposed to a human only during routine feeding and care (Control). At 3 weeks of age, all lambs were tail docked using rubber rings. Changes in behaviour due to docking were calculated and change data were analyzed using two-way anova with treatment and test pen as main factors. All lambs showed significant increases in the frequency and duration of behaviours indicative of pain, including 'abnormal' behaviours, and decreases in the frequency and duration of 'normal' behaviours after docking. Handled lambs showed a smaller increase in the time spent lying abnormally after docking than did Control lambs (mean transformed change in proportion of 30 minutes spent±SE: Control 0.55±0.04; Handled 0.38±0.03; Presence 0.48±0.03; C versus H t=3.45, p=0.007). These results provide some evidence that handling early in life may reduce subsequent pain sensitivity in lambs. While the behavioural effects of handling on pain behaviour were subtle, the results suggest, at the very least, that early handling does not increase pain sensitivity in lambs and suggests there is still flexibility postnatally in the pain processing system of a precocial species. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  12. "Soft docking": matching of molecular surface cubes.

    PubMed

    Jiang, F; Kim, S H

    1991-05-05

    Molecular recognition is achieved through the complementarity of molecular surface structures and energetics with, most commonly, associated minor conformational changes. This complementarity can take many forms: charge-charge interaction, hydrogen bonding, van der Waals' interaction, and the size and shape of surfaces. We describe a method that exploits these features to predict the sites of interactions between two cognate molecules given their three-dimensional structures. We have developed a "cube representation" of molecular surface and volume which enables us not only to design a simple algorithm for a six-dimensional search but also to allow implicitly the effects of the conformational changes caused by complex formation. The present molecular docking procedure may be divided into two stages. The first is the selection of a population of complexes by geometric "soft docking", in which surface structures of two interacting molecules are matched with each other, allowing minor conformational changes implicitly, on the basis of complementarity in size and shape, close packing, and the absence of steric hindrance. The second is a screening process to identify a subpopulation with many favorable energetic interactions between the buried surface areas. Once the size of the subpopulation is small, one may further screen to find the correct complex based on other criteria or constraints obtained from biochemical, genetic, and theoretical studies, including visual inspection. We have tested the present method in two ways. First is a control test in which we docked the components of a molecular complex of known crystal structure available in the Protein Data Bank (PDB). Two molecular complexes were used: (1) a ternary complex of dihydrofolate reductase, NADPH and methotrexate (3DFR in PDB) and (2) a binary complex of trypsin and trypsin inhibitor (2PTC in PDB). The components of each complex were taken apart at an arbitrary relative orientation and then docked together again. The results show that the geometric docking alone is sufficient to determine the correct docking solutions in these ideal cases, and that the cube representation of the molecules does not degrade the docking process in the search for the correct solution. The second is the more realistic experiment in which we docked the crystal structures of uncomplexed molecules and then compared the structures of docked complexes with the crystal structures of the corresponding complexes. This is to test the capability of our method in accommodating the effects of the conformational changes in the binding sites of the molecules in docking.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. istar: a web platform for large-scale protein-ligand docking.

    PubMed

    Li, Hongjian; Leung, Kwong-Sak; Ballester, Pedro J; Wong, Man-Hon

    2014-01-01

    Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked conformation. istar is freely available at http://istar.cse.cuhk.edu.hk/idock.

  14. Molecular docking and panicolytic effect of 8-prenylnaringenin in the elevated T-maze.

    PubMed

    Bagatin, Mariane Cristovão; Tozatti, Camila Santos Suniga; Abiko, Layara Akemi; Yamazaki, Diego Alberto dos Santos; Silva, Priscila Rebeca Alves; Perego, Leonardo Martins; Audi, Elisabeth Aparecida; Seixas, Flavio Augusto Vicente; Basso, Ernani Abicht; Gauze, Gisele de Freitas

    2014-01-01

    The purpose of this study was to investigate the effects of the chronic administration of a racemic mixture of 8-prenylnaringenin (8-PN) on rats submitted to the elevated T-maze (ETM) model of generalized anxiety and panic disorders. The selective serotonin (SERT) reuptake inhibitor fluoxetine was used as a positive control. Rat locomotion was assessed in a circular arena following each drug treatment. The administration of racemic 8-PN for 21 d in rats increased one-way escape latencies from the ETM open arm, indicating a panicolytic effect. To evaluate the interactions of 8-PN with monoamine transporters, a docking study was performed for both the R and S configurations of 8-PN towards SERT, norepinephrine (NET) and dopamine transporters (DAT). The application of the docking protocol showed that (R)-8-PN provides greater affinity to all transporters than does the S enantiomer. This result suggests that enantiomer (R)-8-PN is the active form in the in vivo test of the racemic mixture.

  15. Understanding of empty container movement: A study on a bottleneck at an off-dock depot

    NASA Astrophysics Data System (ADS)

    Zain, Rosmaizura Mohd; Rahman, Mohd Nizam Ab; Nopiah, Zulkifli Mohd; Saibani, Nizaroyani

    2014-09-01

    Port not only function as connections between marine and land transportation but also as core business areas. In a port terminal, available space is limited, but the influx of container is growing. The off-dock depot is one of the key supply chain players that hold empty containers in the inventory. Therefore, this paper aims to identify the main factors of bottlenecks or congestion that hinder the rapid movement of empty containers from the off-dock depot to the customers. Thirty interviews were conducted with individuals who are key players in the container supply chain. The data were analyzed using Atlas.ti software and the analytic hierarchy process to rank the priority factors of bottlenecks. Findings show that several pertinent factors act as barriers to the key players in the container movement in the day-to-day operations. In future studies, strategies to overcome fragmentation in the container supply chain and logistics must be determined.

  16. The SH2/SH3 adaptor protein dock interacts with the Ste20-like kinase misshapen in controlling growth cone motility.

    PubMed

    Ruan, W; Pang, P; Rao, Y

    1999-11-01

    Recent studies suggest that the SH2/SH3 adaptor Dock/Nck transduces tyrosine phosphorylation signals to the actin cytoskeleton in regulating growth cone motility. The signaling cascade linking the action of Dock/Nck to the reorganization of cytoskeleton is poorly understood. We now demonstrate that Dock interacts with the Ste20-like kinase Misshapen (Msn) in the Drosophila photoreceptor (R cell) growth cones. Loss of msn causes a failure of growth cones to stop at the target, a phenotype similar to loss of dock, whereas overexpression of msn induces pretarget growth cone termination. Physical and genetic interactions between Msn and Dock indicate a role for Msn in the Dock signaling pathway. We propose that Msn functions as a key controller of growth cone cytoskeleton in response to Dock-mediated signals.

  17. 4. Aerial view (altitude 2,000 ft.) looking north showing Dry ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Aerial view (altitude 2,000 ft.) looking north showing Dry Dock No. 4 (upper left) under construction. Cofferdam is still in place. Note caisson sitting in caisson seat at east end of dock (2/8/43). Photographer: A. E. Weed, CPHoM. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  18. Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking

    NASA Astrophysics Data System (ADS)

    Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin

    2009-06-01

    Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.

  19. Biological evaluation and molecular docking of some chromenyl-derivatives as potential antimicrobial agents.

    PubMed

    Ionuţ, Ioana; Vodnar, Dan Cristian; Oniga, Ilioara; Oniga, Ovidiu; Tiperciuc, Brînduşa; Tamaian, Radu

    2016-01-01

    Various thiosemicarbazones (TSCs) and their heterocyclic thiadiazolines (TDZ) possess important biological effects. In addition, chromenyl derivatives exhibit a wide range of pharmacological activities. Based on these findings and as a continuation of our research on nitrogen and sulfur containing compounds, we investigated a series of previously reported chromenyl-TSCs (1a-j) and chromenyl-TDZs (2a-j) for their in vitro antimicrobial activities against two bacterial and four fungal strains. MIC and MBC/MFC (µg/mL) values of these compounds were evaluated and compared to those of Spectinomycin, Moxifloxacin and Fluconazole, used as reference drugs. For a better understanding of the drug-receptor interactions, all the compounds were further subjected to molecular docking against four targets that were chosen based on the specific mechanism of action of the reference drugs used in the antimicrobial screening. All compounds tested showed equal or higher antibacterial/antifungal activities relative to the used reference drugs. In silico studies (molecular docking) revealed that all the investigated compounds showed good binding energies towards four receptor protein targets and supported their antimicrobial properties.

  20. Uncovering potential anti-neuroinflammatory components of Modified Wuziyanzong Prescription through a target-directed molecular docking fingerprint strategy.

    PubMed

    Chen, Jinfeng; Wang, Jinlong; Lu, Yingyuan; Zhao, Shaoyang; Yu, Qian; Wang, Xuemei; Tu, Pengfei; Zeng, Kewu; Jiang, Yong

    2018-05-01

    Neuroinflammation is a main factor in the pathogenesis of neurodegenerative diseases, such as Alzheimer disease. Our previous studies indicated that the modified Wuziyanzong Prescription (MWP) can suppress neuroinflammatory responses via nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways. However, the anti-neuroinflammatory components of MWP remain unclear. Herein, a target-directed molecular docking fingerprint (TMDF) strategy, via integrating the chemical profiling and molecular docking approaches, was developed to identify the potential anti-neuroinflammatory components of MWP. First, as many as 120 possible structures, including 49 flavonoids, 28 phenylpropionic acids, 18 amides, 10 carotenoids, eight phenylethanoid glycosides, four lignans, two iridoids, and one triterpenoid were deduced by the source attribution and structural classification-assisted strategy. Then, their geometries were docked against five major targets of the NF-κB and MAPKs signaling cascades, including p38-α, IKKβ, ERK1, ERK2, and TRAF6. The docking results revealed diverse contributions of different components towards the protein targets. Collectively, prenylated flavonoids showed intensive or moderate anti-neuroinflammatory activities, while phenylpropanoids, amides, phenylethanoid glycosides, lignans, and triterpenoids exhibited moderate or weak anti-neuroinflammatory effects. The anti-neuroinflammatory activities of four retrieved prenylated flavonoids were tested by Western blotting assay, and the results mostly agreed with those predicted by the docking method. These gained information demonstrates that the established TMDF strategy could be a rapid and feasible methodology to investigate the potential active components in herbal compound prescriptions. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors

    NASA Astrophysics Data System (ADS)

    Tan, Wen; Mei, Hu; Chao, Li; Liu, Tengfei; Pan, Xianchao; Shu, Mao; Yang, Li

    2013-12-01

    P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter. The over expression of P-gp leads to the development of multidrug resistance (MDR), which is a major obstacle to effective treatment of cancer. Thus, designing effective P-gp inhibitors has an extremely important role in the overcoming MDR. In this paper, both ligand-based quantitative structure-activity relationship (QSAR) and receptor-based molecular docking are used to predict P-gp inhibitors. The results show that each method achieves good prediction performance. According to the results of tenfold cross-validation, an optimal linear SVM model with only three descriptors is established on 857 training samples, of which the overall accuracy (Acc), sensitivity, specificity, and Matthews correlation coefficient are 0.840, 0.873, 0.813, and 0.683, respectively. The SVM model is further validated by 418 test samples with the overall Acc of 0.868. Based on a homology model of human P-gp established, Surflex-dock is also performed to give binding free energy-based evaluations with the overall accuracies of 0.823 for the test set. Furthermore, a consensus evaluation is also performed by using these two methods. Both QSAR and molecular docking studies indicate that molecular volume, hydrophobicity and aromaticity are three dominant factors influencing the inhibitory activities.

  2. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A.

    PubMed

    Grover, Abhinav; Agrawal, Vibhuti; Shandilya, Ashutosh; Bisaria, Virendra S; Sundar, Durai

    2011-01-01

    Herpes Simplex Virus 1 and 2 causes several infections in humans including cold sores and encephalitis. Previous antiviral studies on herpes viruses have focussed on developing nucleoside analogues that can inhibit viral polymerase and terminate the replicating viral DNA. However, these drugs bear an intrinsic non-specificity as they can also inhibit cellular polymerase apart from the viral one. The present study is an attempt to elucidate the action mechanism of naturally occurring withaferin A in inhibiting viral DNA polymerase, thus providing an evidence for its development as a novel anti-herpetic drug. Withaferin A was found to bind very similarly to that of the previously reported 4-oxo-DHQ inhibitor. Withaferin A was observed binding to the residues Gln 617, Gln 618, Asn 815 and Tyr 818, all of which are crucial to the proper functioning of the polymerase. A comparison of the conformation obtained from docking and the molecular dynamics simulations shows that substantial changes in the binding conformations have occurred. These results indicate that the initial receptor-ligand interaction observed after docking can be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favoured. We have performed docking and molecular dynamics simulation studies to elucidate the binding mechanism of prospective herbal drug withaferin A onto the structure of DNA polymerase of Herpes simplex virus. Our docking simulations results give high binding affinity of the ligand to the receptor. Long de novo MD simulations for 10 ns performed allowed us to evaluate the dynamic behaviour of the system studied and corroborate the docking results, as well as identify key residues in the enzyme-inhibitor interactions. The present MD simulations support the hypothesis that withaferin A is a potential ligand to target/inhibit DNA polymerase of the Herpes simplex virus. Results of these studies will also guide the design of selective inhibitors of DNA POL with high specificity and potent activity in order to strengthen the therapeutic arsenal available today against the dangerous biological warfare agent represented by Herpes Simplex Virus.

  3. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A

    PubMed Central

    2011-01-01

    Background Herpes Simplex Virus 1 and 2 causes several infections in humans including cold sores and encephalitis. Previous antiviral studies on herpes viruses have focussed on developing nucleoside analogues that can inhibit viral polymerase and terminate the replicating viral DNA. However, these drugs bear an intrinsic non-specificity as they can also inhibit cellular polymerase apart from the viral one. The present study is an attempt to elucidate the action mechanism of naturally occurring withaferin A in inhibiting viral DNA polymerase, thus providing an evidence for its development as a novel anti-herpetic drug. Results Withaferin A was found to bind very similarly to that of the previously reported 4-oxo-DHQ inhibitor. Withaferin A was observed binding to the residues Gln 617, Gln 618, Asn 815 and Tyr 818, all of which are crucial to the proper functioning of the polymerase. A comparison of the conformation obtained from docking and the molecular dynamics simulations shows that substantial changes in the binding conformations have occurred. These results indicate that the initial receptor-ligand interaction observed after docking can be limited due to the receptor rigid docking algorithm and that the conformations and interactions observed after simulation runs are more energetically favoured. Conclusions We have performed docking and molecular dynamics simulation studies to elucidate the binding mechanism of prospective herbal drug withaferin A onto the structure of DNA polymerase of Herpes simplex virus. Our docking simulations results give high binding affinity of the ligand to the receptor. Long de novo MD simulations for 10 ns performed allowed us to evaluate the dynamic behaviour of the system studied and corroborate the docking results, as well as identify key residues in the enzyme-inhibitor interactions. The present MD simulations support the hypothesis that withaferin A is a potential ligand to target/inhibit DNA polymerase of the Herpes simplex virus. Results of these studies will also guide the design of selective inhibitors of DNA POL with high specificity and potent activity in order to strengthen the therapeutic arsenal available today against the dangerous biological warfare agent represented by Herpes Simplex Virus. PMID:22373101

  4. Two phase genetic algorithm for vehicle routing and scheduling problem with cross-docking and time windows considering customer satisfaction

    NASA Astrophysics Data System (ADS)

    Baniamerian, Ali; Bashiri, Mahdi; Zabihi, Fahime

    2018-03-01

    Cross-docking is a new warehousing policy in logistics which is widely used all over the world and attracts many researchers attention to study about in last decade. In the literature, economic aspects has been often studied, while one of the most significant factors for being successful in the competitive global market is improving quality of customer servicing and focusing on customer satisfaction. In this paper, we introduce a vehicle routing and scheduling problem with cross-docking and time windows in a three-echelon supply chain that considers customer satisfaction. A set of homogeneous vehicles collect products from suppliers and after consolidation process in the cross-dock, immediately deliver them to customers. A mixed integer linear programming model is presented for this problem to minimize transportation cost and early/tardy deliveries with scheduling of inbound and outbound vehicles to increase customer satisfaction. A two phase genetic algorithm (GA) is developed for the problem. For investigating the performance of the algorithm, it was compared with exact and lower bound solutions in small and large-size instances, respectively. Results show that there are at least 86.6% customer satisfaction by the proposed method, whereas customer satisfaction in the classical model is at most 33.3%. Numerical examples results show that the proposed two phase algorithm could achieve optimal solutions in small-size instances. Also in large-size instances, the proposed two phase algorithm could achieve better solutions with less gap from the lower bound in less computational time in comparison with the classic GA.

  5. Biological, chemical and in silico fingerprints of Dianthus calocephalus Boiss.: A novel source for rutin.

    PubMed

    Uysal, Sengul; Aktumsek, Abdurrahman; Picot-Allain, Carene M N; Unuvar, Hamiyet; Mollica, Adriano; Georgiev, Milen I; Zengin, Gokhan; Mahomoodally, Mohamad Fawzi

    2018-03-01

    Extracts (methanol, ethyl acetate, and water) from Dianthus calocephalus Boiss. prepared by different extraction techniques (maceration, Soxhlet, and ultrasonication) were studied for possible inhibitory action against key enzymes (α-amylase, α-glucosidase, acetyl cholinesterase, butyryl cholinesterase, and tyrosinase). Antioxidant potential was established using a battery of assays and phenolic compounds profiled by RP-HPLC. Binding pose of tyrosinase with rutin was studied by means of molecular docking. Methanol extracts showed the highest phenolic (39.35-40.25 mgGAE/g) content and rich in rutin (61.38-72.07 mg/g extract). Ethyl acetate extracts of D. calocephalus were potent inhibitors of acetyl (1.45-1.48 mgGALAE/g) and butyryl (2.44-2.74 mgGALAE/g) cholinesterases. Docking studies showed that rutin interacts with the side chains of the key amino acid residues and to the copper atom found at the active site of tyrosinase. Methanol extracts showed highest antioxidant capacity. D. calocephalus showed interesting biological properties that could be further studied to manage diabetes, neurodegenerative diseases, Alzheimer's disease, and hyperpigmentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Protein-ligand docking with multiple flexible side chains

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Sanner, Michel F.

    2008-09-01

    In this work, we validate and analyze the results of previously published cross docking experiments and classify failed dockings based on the conformational changes observed in the receptors. We show that a majority of failed experiments (i.e. 25 out of 33, involving four different receptors: cAPK, CDK2, Ricin and HIVp) are due to conformational changes in side chains near the active site. For these cases, we identify the side chains to be made flexible during docking calculation by superimposing receptors and analyzing steric overlap between various ligands and receptor side chains. We demonstrate that allowing these side chains to assume rotameric conformations enables the successful cross docking of 19 complexes (ligand all atom RMSD < 2.0 Å) using our docking software FLIPDock. The number of side receptor side chains interacting with a ligand can vary according to the ligand's size and shape. Hence, when starting from a complex with a particular ligand one might have to extend the region of potential interacting side chains beyond the ones interacting with the known ligand. We discuss distance-based methods for selecting additional side chains in the neighborhood of the known active site. We show that while using the molecular surface to grow the neighborhood is more efficient than Euclidian-distance selection, the number of side chains selected by these methods often remains too large and additional methods for reducing their count are needed. Despite these difficulties, using geometric constraints obtained from the network of bonded and non-bonded interactions to rank residues and allowing the top ranked side chains to be flexible during docking makes 22 out of 25 complexes successful.

  7. DOCKING OF STRUCTURALLY RELATED DIOLEPOXIDES OF BENZO(GHI)FLUORANTHENE WITH DNA

    EPA Science Inventory

    Docking of structurally-related diolepoxides of benzo{ghi}fluoranthene and benzo{c}phenanthrene with DNA
    Polycyclic aromatic hydrocarbons are a class of chemicals found in the environment. Some class members are potent carcinogens while others with similar structures show litt...

  8. Skylab

    NASA Image and Video Library

    1973-01-01

    This photograph shows the internal configuration of Skylab's Multiple Docking Adapter (MDA), including callouts for its various internal experiments and facilities. Designed and manufactured by the Marshall Space Flight Center, the MDA housed a number of experiment control and stowage units and provided a docking port for the Apollo Command Module.

  9. Cellulase enzyme: Homology modeling, binding site identification and molecular docking

    NASA Astrophysics Data System (ADS)

    Selvam, K.; Senbagam, D.; Selvankumar, T.; Sudhakar, C.; Kamala-Kannan, S.; Senthilkumar, B.; Govarthanan, M.

    2017-12-01

    Cellulase is an enzyme that degrades the linear polysaccharide like cellulose into glucose by breaking the β-1,4- glycosidic bonds. These enzymes are the third largest enzymes with a great potential towards the ethanol production and play a vital role in degrading the biomass. The production of ethanol depends upon the ability of the cellulose to utilize the wide range of substrates. In this study, the 3D structure of cellulase from Acinetobacter sp. was modeled by using Modeler 9v9 and validated by Ramachandran plot. The accuracy of the predicted 3D structure was checked using Ramachandran plot analysis showed that 81.1% in the favored region, compatibility of an atomic model (3D) with amino acid sequence (1D) for the model was observed as 78.21% and 49.395% for Verify 3D and ERRAT at SAVES server. As the binding efficacy with the substrate might suggests the choice of the substrate as carbon and nitrogen sources, the cellobiose, cellotetraose, cellotetriose and laminaribiose were employed in the docking studies. The docking of cellobiose, cellotetraose, cellotetriose and laminaribiose with cellulase exhibited the binding energy of -6.1523 kJ/mol, -7.8759 kJ/mol,-6.1590 kJ/mol and -6.7185 kJ/mol, respectively. These docking studies revealed that cellulase has the greater potential towards the cellotetraose as a substrate for the high yield of ethanol.

  10. Synthesis, β-glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Rahim, Fazal; Wadood, Abdul; Khan, Huma; Ullah, Hayat; Salar, Uzma; Khan, Khalid Mohammed

    2016-10-01

    Hybrid bisindole-thiosemicarbazides analogs (1-18) were synthesized and screened for β-glucuronidase activity. All compounds showed varied degree of β-glucuronidase inhibitory potential when compared with standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Compounds 4, 7, 9, 6, 5, 12, 17 and 18 showed exceptional β-glucuronidase inhibition with IC50 values ranging from 0.1 to 5.7μM. Compounds 1, 3, 8, 16, 13, 2 and 14 also showed better activities than standard with IC50 values ranging from 7.12 to 15.0μM. The remaining compounds 10, 11, and 15 showed good inhibitory potential with IC50 values 33.2±0.75, 21.4±0.30 and 28.12±0.25μM respectively. Molecular docking studies were carried out to confirm the binding interaction of the compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Orion Handling Qualities During ISS Proximity Operations and Docking

    NASA Technical Reports Server (NTRS)

    Stephens, John-Paul; Vos, Gordon A.; Bilimoria, Karl D.; Mueller, Eric R.; Brazzel, Jack; Spehar, Pete

    2011-01-01

    NASA's Orion spacecraft is designed to autonomously rendezvous and dock with many vehicles including the International Space Station. However, the crew is able to assume manual control of the vehicle s attitude and flight path. In these instances, Orion must meet handling qualities requirements established by NASA. Two handling qualities assessments were conducted at the Johnson Space Center to evaluate preliminary designs of the vehicle using a six degree of freedom, high-fidelity guidance, navigation, and control simulation. The first assessed Orion s handling qualities during the last 20 ft before docking, and included both steady and oscillatory motions of the docking target. The second focused on manual acquisition of the docking axis during the proximity operations phase and subsequent station-keeping. Cooper-Harper handling qualities ratings, workload ratings and comments were provided by 10 evaluation pilots for the docking study and 5 evaluation pilots for the proximity operations study. For the docking task, both cases received 90% Level 1 (satisfactory) handling qualities ratings, exceeding NASA s requirement. All ratings for the ProxOps task were Level 1. These evaluations indicate that Orion is on course to meet NASA's handling quality requirements for ProxOps and docking.

  12. Tail docking in horses: a review of the issues.

    PubMed

    Lefebvre, D; Lips, D; Odberg, F O; Giffroy, J M

    2007-09-01

    Routinely performed painful procedures are of increasing interest and, in 2001 (Royal Order, May 17), Belgium prohibited docking in several vertebrates including horses. In 2004, opponents to this decision submitted a Bill (Doc51 0969/001) to Parliament, intending to obtain derogation for Belgian draught horses, which were traditionally docked. The Animal Welfare Council of Belgium, an official body advising the Minister of Public Health, was asked to evaluate this complex question, including biological, ethical and socio-economic aspects, on the basis of the available peer-reviewed studies. In this context, this study reviews legal aspects (overview of the European legislation), zootechnic aspects (uses of the Belgian draught horse) and biological aspects (pain potentially related to docking; horses' welfare linked to insect harassment and hygiene, communication and reproduction) of tail docking in draught horses. We conclude that (1) there is no benefit for horses in tail docking, including Belgian draught horses, (2) potential advantages of docking are essentially in favour of humans and these advantages could be scrupulously re-evaluated, taking into account practices of other countries. Therefore, there is no need to dock any horse other than for veterinary reasons.

  13. Template-based protein-protein docking exploiting pairwise interfacial residue restraints.

    PubMed

    Xue, Li C; Rodrigues, João P G L M; Dobbs, Drena; Honavar, Vasant; Bonvin, Alexandre M J J

    2017-05-01

    Although many advanced and sophisticated ab initio approaches for modeling protein-protein complexes have been proposed in past decades, template-based modeling (TBM) remains the most accurate and widely used approach, given a reliable template is available. However, there are many different ways to exploit template information in the modeling process. Here, we systematically evaluate and benchmark a TBM method that uses conserved interfacial residue pairs as docking distance restraints [referred to as alpha carbon-alpha carbon (CA-CA)-guided docking]. We compare it with two other template-based protein-protein modeling approaches, including a conserved non-pairwise interfacial residue restrained docking approach [referred to as the ambiguous interaction restraint (AIR)-guided docking] and a simple superposition-based modeling approach. Our results show that, for most cases, the CA-CA-guided docking method outperforms both superposition with refinement and the AIR-guided docking method. We emphasize the superiority of the CA-CA-guided docking on cases with medium to large conformational changes, and interactions mediated through loops, tails or disordered regions. Our results also underscore the importance of a proper refinement of superimposition models to reduce steric clashes. In summary, we provide a benchmarked TBM protocol that uses conserved pairwise interface distance as restraints in generating realistic 3D protein-protein interaction models, when reliable templates are available. The described CA-CA-guided docking protocol is based on the HADDOCK platform, which allows users to incorporate additional prior knowledge of the target system to further improve the quality of the resulting models. © The Author 2016. Published by Oxford University Press.

  14. MEGADOCK: An All-to-All Protein-Protein Interaction Prediction System Using Tertiary Structure Data

    PubMed Central

    Ohue, Masahito; Matsuzaki, Yuri; Uchikoga, Nobuyuki; Ishida, Takashi; Akiyama, Yutaka

    2014-01-01

    The elucidation of protein-protein interaction (PPI) networks is important for understanding cellular structure and function and structure-based drug design. However, the development of an effective method to conduct exhaustive PPI screening represents a computational challenge. We have been investigating a protein docking approach based on shape complementarity and physicochemical properties. We describe here the development of the protein-protein docking software package “MEGADOCK” that samples an extremely large number of protein dockings at high speed. MEGADOCK reduces the calculation time required for docking by using several techniques such as a novel scoring function called the real Pairwise Shape Complementarity (rPSC) score. We showed that MEGADOCK is capable of exhaustive PPI screening by completing docking calculations 7.5 times faster than the conventional docking software, ZDOCK, while maintaining an acceptable level of accuracy. When MEGADOCK was applied to a subset of a general benchmark dataset to predict 120 relevant interacting pairs from 120 x 120 = 14,400 combinations of proteins, an F-measure value of 0.231 was obtained. Further, we showed that MEGADOCK can be applied to a large-scale protein-protein interaction-screening problem with accuracy better than random. When our approach is combined with parallel high-performance computing systems, it is now feasible to search and analyze protein-protein interactions while taking into account three-dimensional structures at the interactome scale. MEGADOCK is freely available at http://www.bi.cs.titech.ac.jp/megadock. PMID:23855673

  15. Coding and quantification of a facial expression for pain in lambs.

    PubMed

    Guesgen, M J; Beausoleil, N J; Leach, M; Minot, E O; Stewart, M; Stafford, K J

    2016-11-01

    Facial expressions are routinely used to assess pain in humans, particularly those who are non-verbal. Recently, there has been an interest in developing coding systems for facial grimacing in non-human animals, such as rodents, rabbits, horses and sheep. The aims of this preliminary study were to: 1. Qualitatively identify facial feature changes in lambs experiencing pain as a result of tail-docking and compile these changes to create a Lamb Grimace Scale (LGS); 2. Determine whether human observers can use the LGS to differentiate tail-docked lambs from control lambs and differentiate lambs before and after docking; 3. Determine whether changes in facial action units of the LGS can be objectively quantified in lambs before and after docking; 4. Evaluate effects of restraint of lambs on observers' perceptions of pain using the LGS and on quantitative measures of facial action units. By comparing images of lambs before (no pain) and after (pain) tail-docking, the LGS was devised in consultation with scientists experienced in assessing facial expression in other species. The LGS consists of five facial action units: Orbital Tightening, Mouth Features, Nose Features, Cheek Flattening and Ear Posture. The aims of the study were addressed in two experiments. In Experiment I, still images of the faces of restrained lambs were taken from video footage before and after tail-docking (n=4) or sham tail-docking (n=3). These images were scored by a group of five naïve human observers using the LGS. Because lambs were restrained for the duration of the experiment, Ear Posture was not scored. The scores for the images were averaged to provide one value per feature per period and then scores for the four LGS action units were averaged to give one LGS score per lamb per period. In Experiment II, still images of the faces nine lambs were taken before and after tail-docking. Stills were taken when lambs were restrained and unrestrained in each period. A different group of five human observers scored the images from Experiment II. Changes in facial action units were also quantified objectively by a researcher using image measurement software. In both experiments LGS scores were analyzed using a linear MIXED model to evaluate the effects of tail docking on observers' perception of facial expression changes. Kendall's Index of Concordance was used to measure reliability among observers. In Experiment I, human observers were able to use the LGS to differentiate docked lambs from control lambs. LGS scores significantly increased from before to after treatment in docked lambs but not control lambs. In Experiment II there was a significant increase in LGS scores after docking. This was coupled with changes in other validated indicators of pain after docking in the form of pain-related behaviour. Only two components, Mouth Features and Orbital Tightening, showed significant quantitative changes after docking. The direction of these changes agree with the description of these facial action units in the LGS. Restraint affected people's perceptions of pain as well as quantitative measures of LGS components. Freely moving lambs were scored lower using the LGS over both periods and had a significantly smaller eye aperture and smaller nose and ear angles than when they were held. Agreement among observers for LGS scores were fair overall (Experiment I: W=0.60; Experiment II: W=0.66). This preliminary study demonstrates changes in lamb facial expression associated with pain. The results of these experiments should be interpreted with caution due to low lamb numbers. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Modeling complexes of modeled proteins.

    PubMed

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Docking glycosaminoglycans to proteins: analysis of solvent inclusion

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey A.; Teyra, Joan; Pisabarro, M. Teresa

    2011-05-01

    Glycosaminoglycans (GAGs) are anionic polysaccharides, which participate in key processes in the extracellular matrix by interactions with protein targets. Due to their charged nature, accurate consideration of electrostatic and water-mediated interactions is indispensable for understanding GAGs binding properties. However, solvent is often overlooked in molecular recognition studies. Here we analyze the abundance of solvent in GAG-protein interfaces and investigate the challenges of adding explicit solvent in GAG-protein docking experiments. We observe PDB GAG-protein interfaces being significantly more hydrated than protein-protein interfaces. Furthermore, by applying molecular dynamics approaches we estimate that about half of GAG-protein interactions are water-mediated. With a dataset of eleven GAG-protein complexes we analyze how solvent inclusion affects Autodock 3, eHiTs, MOE and FlexX docking. We develop an approach to de novo place explicit solvent into the binding site prior to docking, which uses the GRID program to predict positions of waters and to locate possible areas of solvent displacement upon ligand binding. To investigate how solvent placement affects docking performance, we compare these results with those obtained by taking into account information about the solvent position in the crystal structure. In general, we observe that inclusion of solvent improves the results obtained with these methods. Our data show that Autodock 3 performs best, though it experiences difficulties to quantitatively reproduce experimental data on specificity of heparin/heparan sulfate disaccharides binding to IL-8. Our work highlights the current challenges of introducing solvent in protein-GAGs recognition studies, which is crucial for exploiting the full potential of these molecules for rational engineering.

  18. Casual Dock Work: Profile of Diseases and Injuries and Perception of Influence on Health

    PubMed Central

    Cezar-Vaz, Marta Regina; de Almeida, Marlise Capa Verde; Bonow, Clarice Alves; Rocha, Laurelize Pereira; Borges, Anelise Miritz; Piexak, Diéssica Roggia

    2014-01-01

    The present study aimed to identify the profile of diseases and injuries that affect casual dock workers and identify casual dock workers’ perceptions of positive and negative work influences on their health. This study consisted of two phases. The first phase was a quantitative study composed of a retrospective analysis, conducted with 953 medical records. The second phase of the research is a non-random sample with 51 casual dock workers. Data analysis was performed with SPSS 19.0. The average age of the casual dock workers was 48.7. Concerning working time, the majority had more than 19.6 years of dock work experience. In the first phase, 527 pathologic diagnoses were identified. The diagnoses that affected the musculoskeletal system (15.8%, N = 152; p < 0.01) were highlighted. Consequences to physical health produced by accidents stood out, with fracture registration predominating (12.8%, N = 122; p < 0.05). Significant differences were found for positive work influence on the cardiovascular system and family health. It was concluded that the diagnoses obtained are related to the influence of dock work perception and have motivated an introduction of preventive measures. PMID:24557521

  19. Blinded evaluation of farnesoid X receptor (FXR) ligands binding using molecular docking and free energy calculations

    NASA Astrophysics Data System (ADS)

    Selwa, Edithe; Elisée, Eddy; Zavala, Agustin; Iorga, Bogdan I.

    2018-01-01

    Our participation to the D3R Grand Challenge 2 involved a protocol in two steps, with an initial analysis of the available structural data from the PDB allowing the selection of the most appropriate combination of docking software and scoring function. Subsequent docking calculations showed that the pose prediction can be carried out with a certain precision, but this is dependent on the specific nature of the ligands. The correct ranking of docking poses is still a problem and cannot be successful in the absence of good pose predictions. Our free energy calculations on two different subsets provided contrasted results, which might have the origin in non-optimal force field parameters associated with the sulfonamide chemical moiety.

  20. Saturn Apollo Program

    NASA Image and Video Library

    1974-06-01

    This illustration shows the docking configuration of the Apollo-Soyuz Test Project (ASTP). The ASTP was the first international docking of the U.S.'s Apollo spacecraft and the U.S.S.R.'s Soyuz spacecraft in space. A joint engineering team from the two countries met to develop a docking system that permitted the two spacecraft to link in space and allowed the two crews to travel from one spacecraft to the other. This system entailed developing a large habitable Docking Module (DM) to be carried on the Apollo spacecraft to facilitate the joining of two dissimilar spacecraft. The Marshall Space Flight Center was responsible for development and sustaining engineering of the Saturn IB launch vehicle during the mission. The ASTP marked the last use of the Saturn Launch Vehicle.

  1. Exploring inhibitory potential of Curcumin against various cancer targets by in silico virtual screening.

    PubMed

    Mahajanakatti, Arpitha Badarinath; Murthy, Geetha; Sharma, Narasimha; Skariyachan, Sinosh

    2014-03-01

    Various types of cancer accounts for 10% of total death worldwide which necessitates better therapeutic strategies. Curcumin, a curcuminoid present in Curcuma longa, shown to exhibit antioxidant, anti-inflammatory and anticarcinogenic properties. Present study, we aimed to analyze inhibitory properties of curcumin towards virulent proteins for various cancers by computer aided virtual screening. Based on literature studies, twenty two receptors were selected which have critical virulent functions in various cancer. The binding efficiencies of curcumin towards selected targets were studied by molecular docking. Out of all, curcumin showed best results towards epidermal growth factor (EGF), virulent protein of gastric cancer; glutathione-S-transferase Pi gene (GST-PI), virulent protein for prostate cancer; platelet-derived growth factor alpha (PDGFA), virulent protein for mesothelioma and glioma compared with their natural ligands. The calculated binding energies of their docked conformations with curcumin found to be -7.59 kcal/mol, -7.98 kcal/mol and -7.93 kcal/mol respectively. Further, a comparative study was performed to screen binding efficiency of curcumin with two conventional antitumor agents, litreol and triterpene. Docking studies revealed that calculated binding energies of docked complex of litreol and EGF, GST-PI and PDGFA were found to be -5.08 kcal/mol, -3.69 kcal/mol and -1.86 kcal/mol respectively. The calculated binding energies of triterpene with EGF and PDGFA were found to be -4.02 kcal/mol and -3.11 kcal/mol respectively, whereas GST-PI showed +6.07 kcal/mol, indicate poor binding. The predicted pharmacological features of curcumin found to be better than litreol and triterpene. Our study concluded that curcumin has better interacting properties towards these cancer targets than their normal ligands and conventional antitumor agents. Our data pave insight for designing of curcumin as novel inhibitors against various types of cancer.

  2. 5. Oblique view of east side as viewed from shore. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Oblique view of east side as viewed from shore. This photo forms a panorama with photo WA-131-G-1, which shows the west dock from the same location. - Pacific Creosoting Plant, Oil-Creosote Unloading Dock, 5350 Creosote Place, Northeast, Bremerton, Kitsap County, WA

  3. A molecular docking study of phytochemical estrogen mimics from dietary herbal supplements.

    PubMed

    Powers, Chelsea N; Setzer, William N

    2015-01-01

    The purpose of this study is to use a molecular docking approach to identify potential estrogen mimics or anti-estrogens in phytochemicals found in popular dietary herbal supplements. In this study, 568 phytochemicals found in 17 of the most popular herbal supplements sold in the United States were built and docked with two isoforms of the estrogen receptor, ERα and ERβ (a total of 27 different protein crystal structures). The docking results revealed six strongly docking compounds in Echinacea, three from milk thistle (Silybum marianum), three from Gingko biloba, one from Sambucus nigra, none from maca (Lepidium meyenii), five from chaste tree (Vitex agnus-castus), two from fenugreek (Trigonella foenum-graecum), and two from Rhodiola rosea. Notably, of the most popular herbal supplements for women, there were numerous compounds that docked strongly with the estrogen receptor: Licorice (Glycyrrhiza glabra) had a total of 26 compounds strongly docking to the estrogen receptor, 15 with wild yam (Dioscorea villosa), 11 from black cohosh (Actaea racemosa), eight from muira puama (Ptychopetalum olacoides or P. uncinatum), eight from red clover (Trifolium pratense), three from damiana (Turnera aphrodisiaca or T. diffusa), and three from dong quai (Angelica sinensis). Of possible concern were the compounds from men's herbal supplements that exhibited strong docking to the estrogen receptor: Gingko biloba had three compounds, gotu kola (Centella asiatica) had two, muira puama (Ptychopetalum olacoides or P. uncinatum) had eight, and Tribulus terrestris had six compounds. This molecular docking study has revealed that almost all popular herbal supplements contain phytochemical components that may bind to the human estrogen receptor and exhibit selective estrogen receptor modulation. As such, these herbal supplements may cause unwanted side effects related to estrogenic activity.

  4. Spectrofluorimetric and molecular docking studies on the interaction of cyanidin-3-O-glucoside with whey protein, β-lactoglobulin.

    PubMed

    Cheng, Jing; Liu, Jian-Hua; Prasanna, Govindarajan; Jing, Pu

    2017-12-01

    The interaction of β-Lactoglobulin (β-Lg) with cyanidin-3-O-glucoside (C3G) was characterized using fluorescence, circular dichroism spectroscopy, and docking studies under physiological conditions. Fluorescence studies showed that β-Lg has a strong binding affinity for C3G via hydrophobic interaction with the binding constant, K a , of 3.14×10 4 M -1 at 298K. The secondary structure of β-Lg displayed an increase in the major structure of β-sheet upon binding with C3G, whereas a decrease in the minor structure of α-helix was also observed. In addition, evidenced by near UV-CD, the interaction also disrupted the environments of Trp residues. The molecular docking results illustrated that both hydrogen bonding and the hydrophobic interaction are involved as an acting force during the binding process. These results may contribute to a better understanding over the enhanced physicochemical proprieties of anthocyanins due to the complexation with milk proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Milk β-casein as a vehicle for delivery of bis(indolyl)methane: Spectroscopy and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Dezhampanah, Hamid; Esmaili, Masoomeh; Khorshidi, Alireza

    2017-05-01

    The interaction of bis(indolyl)methane with bovine milk β-casein was investigated using spectroscopy and molecular docking studies at different temperatures (25-37 °C). The circular dichroism and Fourier transform infrared spectroscopic data demonstrated that β-casein interacts with BIM molecule mainly via both the hydrophobic and hydrophilic interactions with a minor change in the secondary structure of β-casein. The fluorescence quenching measurements revealed that the presence of a single binding site on β-casein for BIM with the binding constant value of ∼104 M-1. The negative values of entropy and enthalpy changes confirm the predominate role of hydrogen binding and van der Waals interactions in the binding process. Fӧrster energy transfer measurement suggested that the distance between bound BIM and Trp residue is higher than the respective critical distance. Hence, the static quenching is more likely responsible for the fluorescence quenching rather than the mechanism of non-radiative. Docking study showed that BIM molecule forms three hydrogen bonds and several van der Waals contacts with β-casein.

  6. Synthesis, antimalarial activity in vitro, and docking studies of novel neolignan derivatives.

    PubMed

    Pereira, Glaécia A N; Souza, Gisele C; Santos, Lourivaldo S; Barata, Lauro E S; Meneses, Carla C F; Krettli, Antoniana U; Daniel-Ribeiro, Cláudio Tadeu; Alves, Cláudio Nahum

    2017-09-01

    The absence of effective vaccines against malaria and the difficulties associated with controlling mosquito vectors have left chemotherapy as the primary control measure against malaria. However, the emergence and spread of parasite resistance to conventional antimalarial drugs result in a worrisome scenario making the search for new drugs a priority. In the present study, the activities of nine neolignan derivatives were evaluated as follows: (i) against blood forms of chloroquine-resistant Plasmodium falciparum (clone W2), using the tritiated hypoxanthine incorporation and anti-HRPII assays; (ii) for cytotoxic activity against cultured human hepatoma cells (HepG2); and (iii) for intermolecular interaction with the P. falciparum cysteine protease of falcipain-2 (F2) by molecular docking. The neolignan derivatives 9 and 10 showed activity against the blood form of the chloroquine-resistant P. falciparum clone W2 and were not cytotoxic against cultured human hepatoma cells. A molecular docking study of these two neolignans with FP2 revealed several intermolecular interactions that should guide the design of future analogs. © 2017 John Wiley & Sons A/S.

  7. An expedient synthesis of N-(1-(5-mercapto-4-((substituted benzylidene)amino)-4H-1,2,4-triazol-3-yl)-2-phenylethyl)benzamides as jack bean urease inhibitors and free radical scavengers: Kinetic mechanism and molecular docking studies.

    PubMed

    Saeed, Aamer; Larik, Fayaz Ali; Channar, Pervaiz Ali; Mehfooz, Haroon; Ashraf, Mohammad Haseeb; Abbas, Qamar; Hassan, Mubashir; Seo, Sung-Yum

    2017-11-01

    In this study, some new azomethine-triazole hybrids 5a-5l derived from N-benzoyl-L-phenylalanine were synthesized and characterized. The synthesized compounds showed first-rate, urease inhibition, and compounds 5c and 5e were found to be most effective inhibitors with 0.0137 ± 0.00082 μm and 0.0183 ± 0.00068 μm, respectively (thiourea 15.151 ± 1.27 μm). The kinetic mechanism of urease inhibition revealed the compounds 5c and 5e to be non-competitive inhibitors, whereas compounds 5d and 5j were found to be of mixed-type inhibitors. Docking studies also indicated better interaction patterns with urease enzyme. The results of enzyme inhibition, kinetic mechanism and molecular docking suggest that these compounds can serve as lead compounds in the design of more effective urease inhibitors. © 2017 John Wiley & Sons A/S.

  8. Safety in earth orbit study. Volume 2: Analysis of hazardous payloads, docking, on-board survivability

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Detailed and supporting analyses are presented of the hazardous payloads, docking, and on-board survivability aspects connected with earth orbital operations of the space shuttle program. The hazards resulting from delivery, deployment, and retrieval of hazardous payloads, and from handling and transport of cargo between orbiter, sortie modules, and space station are identified and analyzed. The safety aspects of shuttle orbiter to modular space station docking includes docking for assembly of space station, normal resupply docking, and emergency docking. Personnel traffic patterns, escape routes, and on-board survivability are analyzed for orbiter with crew and passenger, sortie modules, and modular space station, under normal, emergency, and EVA and IVA operations.

  9. Analyses of the dynamic docking test system for advanced mission docking system test programs. [Apollo Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Williams, J. E.

    1974-01-01

    Results are given of analytical studies performed in support of the design, implementation, checkout and use of NASA's dynamic docking test system (DDTS). Included are analyses of simulator components, a list of detailed operational test procedures, a summary of simulator performance, and an analysis and comparison of docking dynamics and loads obtained by test and analysis.

  10. Recovery of spinning satellites

    NASA Technical Reports Server (NTRS)

    Coppey, J. M.; Mahaffey, W. R.

    1977-01-01

    The behavior of a space tug and a spinning satellite in a coupled configuration was simulated and analyzed. A docking concept was developed to investigate the requirements pertaining to the design of a docking interface. Sensing techniques and control requirements for the chase vehicle were studied to assess the feasibility of an automatic docking. The effects of nutation dampers and liquid propellant slosh motion upon the docking transient were investigated.

  11. jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework.

    PubMed

    López-Camacho, Esteban; García Godoy, María Jesús; Nebro, Antonio J; Aldana-Montes, José F

    2014-02-01

    Molecular docking is a method for structure-based drug design and structural molecular biology, which attempts to predict the position and orientation of a small molecule (ligand) in relation to a protein (receptor) to produce a stable complex with a minimum binding energy. One of the most widely used software packages for this purpose is AutoDock, which incorporates three metaheuristic techniques. We propose the integration of AutoDock with jMetalCpp, an optimization framework, thereby providing both single- and multi-objective algorithms that can be used to effectively solve docking problems. The resulting combination of AutoDock + jMetalCpp allows users of the former to easily use the metaheuristics provided by the latter. In this way, biologists have at their disposal a richer set of optimization techniques than those already provided in AutoDock. Moreover, designers of metaheuristic techniques can use molecular docking for case studies, which can lead to more efficient algorithms oriented to solving the target problems.  jMetalCpp software adapted to AutoDock is freely available as a C++ source code at http://khaos.uma.es/AutodockjMetal/.

  12. Designing small universal k-mer hitting sets for improved analysis of high-throughput sequencing

    PubMed Central

    Kingsford, Carl

    2017-01-01

    With the rapidly increasing volume of deep sequencing data, more efficient algorithms and data structures are needed. Minimizers are a central recent paradigm that has improved various sequence analysis tasks, including hashing for faster read overlap detection, sparse suffix arrays for creating smaller indexes, and Bloom filters for speeding up sequence search. Here, we propose an alternative paradigm that can lead to substantial further improvement in these and other tasks. For integers k and L > k, we say that a set of k-mers is a universal hitting set (UHS) if every possible L-long sequence must contain a k-mer from the set. We develop a heuristic called DOCKS to find a compact UHS, which works in two phases: The first phase is solved optimally, and for the second we propose several efficient heuristics, trading set size for speed and memory. The use of heuristics is motivated by showing the NP-hardness of a closely related problem. We show that DOCKS works well in practice and produces UHSs that are very close to a theoretical lower bound. We present results for various values of k and L and by applying them to real genomes show that UHSs indeed improve over minimizers. In particular, DOCKS uses less than 30% of the 10-mers needed to span the human genome compared to minimizers. The software and computed UHSs are freely available at github.com/Shamir-Lab/DOCKS/ and acgt.cs.tau.ac.il/docks/, respectively. PMID:28968408

  13. In vitro studies data on anticancer activity of Caesalpinia sappan L. heartwood and leaf extracts on MCF7 and A549 cell lines.

    PubMed

    Naik Bukke, Arunkumar; Nazneen Hadi, Fathima; Babu, K Suresh; Shankar, P Chandramati

    2018-08-01

    This article contains data on in vitro cytotoxicity activity of chloroform, methanolic and water extracts of leaf and heartwood of Caesalpinia sappan L. a medicinal plant against Breast cancer (MCF-7) and Lung cancer (A-549) cells. This data shows that Brazilin A, a natural bioactive compound in heartwood of Caesalpinia sappan L. induced cell death in breast cancer (MCF-7) cells. The therapeutic property was further proved by docking the Brazilin A molecule against BCL-2 protein (an apoptotic inhibitor) using auto dock tools.

  14. Automated Docking Screens: A Feasibility Study

    PubMed Central

    2009-01-01

    Molecular docking is the most practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCK Blaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCK Blaster recapitulates the crystal ligand pose within 2 Å rmsd 50−60% of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5% of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5% of 100 property-matched decoys while also posing within 2 Å rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available at http://blaster.docking.org. PMID:19719084

  15. Automated docking screens: a feasibility study.

    PubMed

    Irwin, John J; Shoichet, Brian K; Mysinger, Michael M; Huang, Niu; Colizzi, Francesco; Wassam, Pascal; Cao, Yiqun

    2009-09-24

    Molecular docking is the most practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCK Blaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCK Blaster recapitulates the crystal ligand pose within 2 A rmsd 50-60% of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5% of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5% of 100 property-matched decoys while also posing within 2 A rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available at http://blaster.docking.org .

  16. Earth Observations taken by Expedition 30 crewmember

    NASA Image and Video Library

    2012-01-01

    ISS030-E-038622 (1 Jan. 2012) --- Framed by a window of the Cupola on the International Space Station is a scene photographed by one of the Expedition 30 crew members aboard the orbital outpost showing two Russian spacecraft that are currently docked to it. A Soyuz (near foreground) is docked to Rassvet, also known as the Mini-Research Module 1 (MRM-1), and a Progress is linked to the Pirs Docking Compartment, just above center frame. Part of Earth, mostly clouds and water, can be seen running horizontally through the scene.

  17. A Comparison of Candidate Seal Designs for Future Docking Systems

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick, H., Jr.; Steinetz, Bruce, M.

    2012-01-01

    NASA is developing a new docking system to support future space exploration missions to low Earth orbit, the Moon, and other destinations. A key component of this system is the seal at the main docking interface which inhibits the loss of cabin air once docking is complete. Depending on the mission, the seal must be able to dock in either a seal-on-flange or seal-on-seal configuration. Seal-on-flange mating would occur when a docking system equipped with a seal docks to a system with a flat metal flange. This would occur when a vehicle docks to a node on the International Space Station. Seal-on-seal mating would occur when two docking systems equipped with seals dock to each other. Two types of seal designs were identified for this application: Gask-O-seals and multi-piece seals. Both types of seals had a pair of seal bulbs to satisfy the redundancy requirement. A series of performance assessments and comparisons were made between the candidate seal designs indicating that they meet the requirements for leak rate and compression and adhesion loads under a range of operating conditions. Other design factors such as part count, integration into the docking system tunnel, seal-on-seal mating, and cost were also considered leading to the selection of the multi-piece seal design for the new docking system. The results of this study can be used by designers of future docking systems and other habitable volumes to select the seal design best-suited for their particular application.

  18. 37. PWD Drawing 11,654M35 (1987), 'Dry Dock No. 4 Utility ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. PWD Drawing 11,654-M-35 (1987), 'Dry Dock No. 4 Utility Low Pressure Sensors-Hunters Point'; showing basic plan view at upper level of pump room. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  19. RAMP TO DOCK ON RIVERBANK SOUTH OF THE RAILROAD BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RAMP TO DOCK ON RIVERBANK SOUTH OF THE RAILROAD BRIDGE, LOOKING SOUTH. PA-1-48 AND PA-1-49 CAN BE PAIRED TO FORM A PANORAMA SHOWING THE RELATIONSHIP BETWEEN THE RIVERBANK AND THE MEADOW. - John Bartram House & Garden, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  20. Space Operations Center, Shuttle Interaction Study. Volume 2: Appendices, Book 1 of 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of shuttle orbiter docking to the Space Operations Center (SOC) is studied. The in-orbit relative motion of the free flying orbiter and SOC was simulated, accounting for the Orbiter RCS and digital autopilot (DAP) systems, orbital mechanics, center of gravity offset of the orbiter docking port, aero and gravity gradient effects, and other pertinent natural and man-made phenomena. Since there is no specified flight path and procedure for docking, terminal closure sensitivities were investigated. Orbiter approach direction, Orbiter approach attitude out of plane, DAP thruster compensation mode, final ballistic docking distance and time to dock, rate and excursion attitude deadbands, and selection of various thruster combinations (differing from nominal) for translational pulses are considered.

  1. A Study on Spectro-Analytical Aspects, DNA - Interaction, Photo-Cleavage, Radical Scavenging, Cytotoxic Activities, Antibacterial and Docking Properties of 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione and its Metal Complexes.

    PubMed

    Ravi, Mudavath; Chennam, Kishan Prasad; Ushaiah, B; Eslavath, Ravi Kumar; Perugu, Shyam; Ajumeera, Rajanna; Devi, Ch Sarala

    2015-09-01

    The focus of the present work is on the design, synthesis, characterization, DNA-interaction, photo-cleavage, radical scavenging, in-vitro cytotoxicity, antimicrobial, docking and kinetic studies of Cu (II), Cd (II), Ce (IV) and Zr (IV) metal complexes of an imine derivative, 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione. The investigation of metal ligand interactions for the determination of composition of metal complexes, corresponding kinetic studies and antioxidant activity in solution was carried out by spectrophotometric methods. The synthesized metal complexes were characterized by EDX analysis, Mass, IR, (1)H-NMR, (13)C-NMR and UV-Visible spectra. DNA binding studies of metal complexes with Calf thymus (CT) DNA were carried out at room temperature by employing UV-Vis electron absorption, fluorescence emission and viscosity measurement techniques. The results revealed that these complexes interact with DNA through intercalation. The results of in vitro antibacterial studies showed the enhanced activity of chelating agent in metal chelated form and thus inferring scope for further development of new therapeutic drugs. Cell viability experiments indicated that all complexes showed significant dose dependent cytotoxicity in selected cell lines. The molecular modeling and docking studies were carried out with energy minimized structures of metal complexes to identify the receptor to metal interactions.

  2. Molecular Docking Studies of Flavonoids Derivatives on the Flavonoid 3- O-Glucosyltransferase.

    PubMed

    Harsa, Alexandra M; Harsa, Teodora E; Diudea, Mircea V; Janezic, Dusanka

    2015-01-01

    A study of 30 flavonoid derivatives, taken from PubChem database and docked on flavonoid 3-O-glucosyltransferase 3HBF, next submitted to a QSAR study, performed within a hypermolecule frame, to model their LD50 values, is reported. The initial set of molecules was split into a training set and the test set (taken from the best scored molecules in the docking test); the predicted LD50 values, computed on similarity clusters, built up for each of the molecules of the test set, surpassed in accuracy the best model. The binding energies to 3HBF protein, provided by the docking step, are not related to the LD50 of these flavonoids, more protein targets are to be investigated in this respect. However, the docking step was useful in choosing the test set of molecules.

  3. Characterization of angiotensin-I converting enzyme inhibiting peptide from Venerupis philippinarum with nano-liquid chromatography in combination with orbitrap mass spectrum detection and molecular docking

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Wu, Tizhi; Sheng, Naijuan; Yang, Li; Wang, Qian; Liu, Rui; Wu, Hao

    2017-06-01

    The complexity and diversity of peptide mixture from protein hydrolysates make their characterization difficult. In this study, a method combining nano LC-MS/MS with molecular docking was applied to identifying and characterizing a peptide with angiotensin-I converting enzyme (ACE-I) inhibiting activity from Venerupis philippinarum hydrolysate. Firstly, ethanol supernatant of V. philippinarum hydrolysate was separated into active fractions with chromatographic methods such as ion-exchange chromatography and high performance liquid chromatography in combination. Then seven peptides from active fraction were identified according to the searching result of the MS/MS spectra against protein databases. Peptides were synthesized and subjected to ACE-I-inhibition assay. The peptide NTLTLIDTGIGMTK showed the highest potency with an IC50 of 5.75 μmol L-1. The molecular docking analysis showed that the ACE-I inhibiting peptide NTLTLIDTGIGMTK bond with residues Glu123, Glu403, Arg522, Glu376, Gln281 and Asn285 of ACE-I. Therefore, active peptides could be identified with the present method rather than the traditional purification and identification strategies. It may also be feasible to identify other food-derived peptides which target other enzymes and receptors with the method developed in this study.

  4. Sulfonamide-containing PTP 1B inhibitors: Docking studies, synthesis and model validation

    NASA Astrophysics Data System (ADS)

    Niu, Enli; Gan, Qiang; Chen, Xi; Feng, Changgen

    2017-01-01

    PTP 1B plays an important role in regulating insulin signaling pathway and is regarded as a valid target for curing diabetes and obesity. In this paper, two novel sulfonamide-containing PTP 1B inhibitors were designed, synthesized in mild condition, and characterized by FT-IR, 1H NMR, 13C NMR and elemental analysis. The single crystal of compounds 7 and 8 were obtained and their structures were determined by X-ray single crystal diffraction analysis. In addition, their inhibitory activity were predicted by genetic algorithm, and carried on in vitro enzyme activity test. Of which compound 8 showed good inhibitory activity, in consistent with docking studies.

  5. Docking of small molecules to farnesoid X receptors using AutoDock Vina with the Convex-PL potential: lessons learned from D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    Kadukova, Maria; Grudinin, Sergei

    2018-01-01

    The 2016 D3R Grand Challenge 2 provided an opportunity to test multiple protein-ligand docking protocols on a set of ligands bound to farnesoid X receptor that has many available experimental structures. We participated in the Stage 1 of the Challenge devoted to the docking pose predictions, with the mean RMSD value of our submission poses of 2.9 Å. Here we present a thorough analysis of our docking predictions made with AutoDock Vina and the Convex-PL rescoring potential by reproducing our submission protocol and running a series of additional molecular docking experiments. We conclude that a correct receptor structure, or more precisely, the structure of the binding pocket, plays the crucial role in the success of our docking studies. We have also noticed the important role of a local ligand geometry, which seems to be not well discussed in literature. We succeed to improve our results up to the mean RMSD value of 2.15-2.33 Å dependent on the models of the ligands, if docking these to all available homologous receptors. Overall, for docking of ligands of diverse chemical series we suggest to perform docking of each of the ligands to a set of multiple receptors that are homologous to the target.

  6. In-Silico Analysis of Amotosalen Hydrochloride Binding to CD-61 of Platelets.

    PubMed

    Chaudhary, Hammad Tufail

    2016-11-01

    To determine the docking of Amotosalen hydrochloride (AH) at CD-61 of platelets, and to suggest the cause of bleeding in AH treated platelets transfusion. Descriptive study. Medical College, Taif University, Taif, Saudi Arabia, from October 2014 to May 2015. The study was carried out in-silico. PDB (protein data bank) code of Tirofiban bound to CD-61 was 2vdm. CD-61 was docked with Tirofiban using online docking tools, i.e. Patchdock and Firedock. Then, Amotosalen hydrochloride and CD-61 were also docked. Best docking poses to active sites of 2vdm were found. Ligplot of interactions of ligands and CD-61 were obtained. Then comparison of hydrogen bonds, hydrogen bond lengths, and hydrophobic bonds of 2vdm molecule and best poses of docking results were done. Patchdock and Firedock results of best poses were also analysed using SPSS version 16. More amino acids were involved in hydrogen and hydrophobic bonds in Patchdock and Firedock docking of Amotosalen hydrochloride with CD-61 than Patchdock and Firedock docking of CD-61 with Tirofiban. The binding energy was more in latter than former. Amotosalen hydrochloride binds to the active site of CD-61 with weaker binding force. Haemorrhage seen in Amotosalen hydrochloride-treated platelets might be due to binding of Amotosalen hydrochloride to CD-61.

  7. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    NASA Astrophysics Data System (ADS)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  8. 5. Aerial view (altitude 5,000 ft.) looking southeast showing Dry ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Aerial view (altitude 5,000 ft.) looking southeast showing Dry Dock No. 4. completed (top center). Note major expansion of land mass to south of Dry Dock No. 4 resulting from placement of excavated soils and rock prior to and during construction (8/3/43). Photographer: Mr. Rudnick, PHoM 2/C. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  9. Empirical entropic contributions in computational docking: evaluation in APS reductase complexes.

    PubMed

    Chang, Max W; Belew, Richard K; Carroll, Kate S; Olson, Arthur J; Goodsell, David S

    2008-08-01

    The results from reiterated docking experiments may be used to evaluate an empirical vibrational entropy of binding in ligand-protein complexes. We have tested several methods for evaluating the vibrational contribution to binding of 22 nucleotide analogues to the enzyme APS reductase. These include two cluster size methods that measure the probability of finding a particular conformation, a method that estimates the extent of the local energetic well by looking at the scatter of conformations within clustered results, and an RMSD-based method that uses the overall scatter and clustering of all conformations. We have also directly characterized the local energy landscape by randomly sampling around docked conformations. The simple cluster size method shows the best performance, improving the identification of correct conformations in multiple docking experiments. 2008 Wiley Periodicals, Inc.

  10. Biological evaluation, docking and molecular dynamic simulation of some novel diaryl urea derivatives bearing quinoxalindione moiety

    PubMed Central

    Sadeghian-Rizi, Sedighe; Khodarahmi, Ghadamali Ali; Sakhteman, Amirhossein; Jahanian-Najafabadi, Ali; Rostami, Mahboubeh; Mirzaei, Mahmoud; Hassanzadeh, Farshid

    2017-01-01

    In this study a series of diarylurea derivatives containing quinoxalindione group were biologically evaluated for their cytotoxic activities using MTT assay against MCF-7 and HepG2 cell lines. Antibacterial activities of these compounds were also evaluated by Microplate Alamar Blue Assay (MABA) against three Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi), three Gram-positive (Staphylococcus aureus, Bacillus subtilis and Listeria monocitogenes) and one yeast-like fungus (Candida albicans) strain. Furthermore, molecular docking was carried out to study the binding pattern of the compounds to the active site of B-RAF kinase (PDB code: 1UWH). Molecular dynamics simulation was performed on the best ligand (16e) to investigate the ligand binding dynamics in the physiological environment. Cytotoxic evaluation revealed the most prominent cytotoxicity for 6 compounds with IC50 values of 10-18 μM against two mentioned cell lines. None of the synthesized compounds showed significant antimicrobial activity. The obtained results of the molecular docking study showed that all compounds fitted in the binding site of enzyme with binding energy range of -11.22 to -12.69 kcal/mol vs sorafenib binding energy -11.74 kcal/mol as the lead compound. Molecular dynamic simulation indicated that the binding of ligand (16e) was stable in the active site of B-RAF during the simulation. PMID:29204178

  11. Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem.

    PubMed

    Ban, Tomohiro; Ohue, Masahito; Akiyama, Yutaka

    2018-04-01

    The identification of comprehensive drug-target interactions is important in drug discovery. Although numerous computational methods have been developed over the years, a gold standard technique has not been established. Computational ligand docking and structure-based drug design allow researchers to predict the binding affinity between a compound and a target protein, and thus, they are often used to virtually screen compound libraries. In addition, docking techniques have also been applied to the virtual screening of target proteins (inverse docking) to predict target proteins of a drug candidate. Nevertheless, a more accurate docking method is currently required. In this study, we proposed a method in which a predicted ligand-binding site is covered by multiple grids, termed multiple grid arrangement. Notably, multiple grid arrangement facilitates the conformational search for a grid-based ligand docking software and can be applied to the state-of-the-art commercial docking software Glide (Schrödinger, LLC). We validated the proposed method by re-docking with the Astex diverse benchmark dataset and blind binding site situations, which improved the correct prediction rate of the top scoring docking pose from 27.1% to 34.1%; however, only a slight improvement in target prediction accuracy was observed with inverse docking scenarios. These findings highlight the limitations and challenges of current scoring functions and the need for more accurate docking methods. The proposed multiple grid arrangement method was implemented in Glide by modifying a cross-docking script for Glide, xglide.py. The script of our method is freely available online at http://www.bi.cs.titech.ac.jp/mga_glide/. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. In vitro Inhibition of Pancreatic Lipase by Polyphenols:
A Kinetic, Fluorescence Spectroscopy and Molecular Docking Study

    PubMed Central

    2017-01-01

    Summary The inhibitory activity and binding characteristics of caffeic acid, p-coumaric acid, quercetin and capsaicin, four phenolic compounds found in hot pepper, against porcine pancreatic lipase activity were studied and compared to hot pepper extract. Quercetin was the strongest inhibitor (IC50=(6.1±2.4) µM), followed by p-coumaric acid ((170.2±20.6) µM) and caffeic acid ((401.5±32.1) µM), while capsaicin and a hot pepper extract had very low inhibitory activity. All polyphenolic compounds showed a mixed-type inhibition. Fluorescence spectroscopy studies showed that polyphenolic compounds had the ability to quench the intrinsic fluorescence of pancreatic lipase by a static mechanism. The sequence of Stern-Volmer constant was quercetin, followed by caffeic and p-coumaric acids. Molecular docking studies showed that caffeic acid, quercetin and p-coumaric acid bound near the active site, while capsaicin bound far away from the active site. Hydrogen bonds and π-stacking hydrophobic interactions are the main pancreatic lipase-polyphenolic compound interactions observed. PMID:29540986

  13. CPdock: the complementarity plot for docking of proteins: implementing multi-dielectric continuum electrostatics.

    PubMed

    Basu, Sankar

    2017-12-07

    The complementarity plot (CP) is an established validation tool for protein structures, applicable to both globular proteins (folding) as well as protein-protein complexes (binding). It computes the shape and electrostatic complementarities (S m , E m ) for amino acid side-chains buried within the protein interior or interface and plots them in a two-dimensional plot having knowledge-based probabilistic quality estimates for the residues as well as for the whole structure. The current report essentially presents an upgraded version of the plot with the implementation of the advanced multi-dielectric functionality (as in Delphi version 6.2 or higher) in the computation of electrostatic complementarity to make the validation tool physico-chemically more realistic. The two methods (single- and multi-dielectric) agree decently in their resultant E m values, and hence, provisions for both methods have been kept in the software suite. So to speak, the global electrostatic balance within a well-folded protein and/or a well-packed interface seems only marginally perturbed by the choice of different internal dielectric values. However, both from theoretical as well as practical grounds, the more advanced multi-dielectric version of the plot is certainly recommended for potentially producing more reliable results. The report also presents a new methodology and a variant plot, namely CP dock , based on the same principles of complementarity specifically designed to be used in the docking of proteins. The efficacy of the method to discriminate between good and bad docked protein complexes has been tested on a recent state-of-the-art docking benchmark. The results unambiguously indicate that CP dock can indeed be effective in the initial screening phase of a docking scoring pipeline before going into more sophisticated and computationally expensive scoring functions. CP dock has been made available at https://github.com/nemo8130/CPdock . Graphical Abstract An example showing the efficacy of CP dock to be used in the initial screening phase of a protein-protein docking scoring pipeline.

  14. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations.

    PubMed

    Chakraborty, Sandeep

    2014-01-01

    The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational requirements.

  15. Extracellular domains play different roles in gap junction formation and docking compatibility.

    PubMed

    Bai, Donglin; Wang, Ao Hong

    2014-02-15

    GJ (gap junction) channels mediate direct intercellular communication and play an important role in many physiological processes. Six connexins oligomerize to form a hemichannel and two hemichannels dock together end-to-end to form a GJ channel. Connexin extracellular domains (E1 and E2) have been shown to be important for the docking, but the molecular mechanisms behind the docking and formation of GJ channels are not clear. Recent developments in atomic GJ structure and functional studies on a series of connexin mutants revealed that E1 and E2 are likely to play different roles in the docking. Non-covalent interactions at the docking interface, including hydrogen bonds, are predicted to form between interdocked extracellular domains. Protein sequence alignment analysis on the docking compatible/incompatible connexins indicate that the E1 domain is important for the formation of the GJ channel and the E2 domain is important in the docking compatibility in heterotypic channels. Interestingly, the hydrogen-bond forming or equivalent residues in both E1 and E2 domains are mutational hot spots for connexin-linked human diseases. Understanding the molecular mechanisms of GJ docking can assist us to develop novel strategies in rescuing the disease-linked connexin mutants.

  16. Targeting IL-17 AND IL-17D receptors of rheumatoid arthritis using phytocompounds: A Molecular Docking study

    NASA Astrophysics Data System (ADS)

    Thabitha, A.; Thoufic Ali, A. M. Mohamed; Shweta Kumari, Singh; Rakhi; Swami, Varsha; Mohana Priya, A.; Sajitha Lulu, S.

    2017-11-01

    Rheumatoid arthritis (RA) is a chronic autoimmune condition of the connective tissue in synovial joints, characterized by inflammation which can lead to bone and cartilage destruction. IL-17 and IL-17D cytokines produced by a number of cell types, primarily promote pro-inflammatory immune responses and negative regulator in fibroblast growth factor signalling. Thus, the promising therapeutic strategies focus on targeting these cytokines, which has led to the identification of effective inhibitors. However, several studies focused on identifying the anti-arthritic potential of natural compounds. Therefore, in the present study we undertook in silico investigations to decipher the anti-inflammatory prospective of phytocompounds by targeting IL-17 and IL-17D cytokines using Patch Dock algorithm. Additionally, IL-17 and IL-17D proteins structure were modelled and validated for molecular docking study. Further, phytocompounds based on anti-inflammatory property were subjected to Lipinski filter and ADMET properties indicated that all of these compounds showed desirable drug-like criteria. The outcome of this investigation sheds light on the anti-inflammatory mechanism of phytocompounds by targeting IL-17 and IL-D for effective treatment of RA.

  17. Interaction of lafutidine in binding to human serum albumin in gastric ulcer therapy: STD-NMR, WaterLOGSY-NMR, NMR relaxation times, Tr-NOESY, molecule docking, and spectroscopic studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; He, Jiawei; Li, Shanshan; Tang, Bin; Li, Hui

    2016-09-15

    In this study, lafutidine (LAF) was used as a model compound to investigate the binding mechanism between antiulcer drugs and human serum albumin (HSA) through various techniques, including STD-NMR, WaterLOGSY-NMR, (1)H NMR relaxation times, tr-NOESY, molecule docking calculation, FT-IR spectroscopy, and CD spectroscopy. The analyses of STD-NMR, which derived relative STD (%) intensities, and WaterLOGSY-NMR, determined that LAF bound to HSA. In particular, the pyridyl group of LAF was in close contact with HSA binding pocket, whereas furyl group had a secondary binding. Competitive STD-NMR and WaterLOGSY-NMR experiments, with warifarin and ibuprofen as site-selective probes, indicated that LAF preferentially bound to site II in the hydrophobic subdomains IIIA of HSA. The bound conformation of LAF at the HSA binding site was further elucidated by transferred NOE effect (tr-NOESY) experiment. Relaxation experiments provided quantitative information about the relationship between the affinity and structure of LAF. The molecule docking simulations conducted with AutoDock and the restraints derived from STD results led to three-dimensional models that were consistent with the NMR spectroscopic data. The presence of hydrophobic forces and hydrogen interactions was also determined. Additionally, FT-IR and CD spectroscopies showed that LAF induced secondary structure changes of HSA. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. 3D-QSAR and docking studies of flavonoids as potent Escherichia coli inhibitors

    PubMed Central

    Fang, Yajing; Lu, Yulin; Zang, Xixi; Wu, Ting; Qi, XiaoJuan; Pan, Siyi; Xu, Xiaoyun

    2016-01-01

    Flavonoids are potential antibacterial agents. However, key substituents and mechanism for their antibacterial activity have not been fully investigated. The quantitative structure-activity relationship (QSAR) and molecular docking of flavonoids relating to potent anti-Escherichia coli agents were investigated. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were developed by using the pIC50 values of flavonoids. The cross-validated coefficient (q2) values for CoMFA (0.743) and for CoMSIA (0.708) were achieved, illustrating high predictive capabilities. Selected descriptors for the CoMFA model were ClogP (logarithm of the octanol/water partition coefficient), steric and electrostatic fields, while, ClogP, electrostatic and hydrogen bond donor fields were used for the CoMSIA model. Molecular docking results confirmed that half of the tested flavonoids inhibited DNA gyrase B (GyrB) by interacting with adenosine-triphosphate (ATP) pocket in a same orientation. Polymethoxyl flavones, flavonoid glycosides, isoflavonoids changed their orientation, resulting in a decrease of inhibitory activity. Moreover, docking results showed that 3-hydroxyl, 5-hydroxyl, 7-hydroxyl and 4-carbonyl groups were found to be crucial active substituents of flavonoids by interacting with key residues of GyrB, which were in agreement with the QSAR study results. These results provide valuable information for structure requirements of flavonoids as antibacterial agents. PMID:27049530

  19. Identification of novel PfDHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity.

    PubMed

    Vyas, V K; Qureshi, G; Ghate, M; Patel, H; Dalai, S

    2016-06-01

    Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere-Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.

  20. Docking of Natural Products against Neurodegenerative Diseases: General Concepts.

    PubMed

    Ribeiro, Frederico F; Mendonca Junior, Francisco J B; Ghasemi, Jahan B; Ishiki, Hamilton M; Scotti, Marcus T; Scotti, Luciana

    2018-01-01

    Since antiquity, humanity has used medicinal plant preparations to cure its ills, and, as research has progressed, new technologies have enabled more investigations on natural compounds which originate from plants, fungi, and marine species. The health benefits that these natural products provide have become a motive for treatment studies of various diseases. Among them, the neurodegenerative diseases like Alzheimer's and Parkinson's, a major age-related neurodegenerative disorder. Studies with natural products for neurodegenerative diseases (particularly through molecular docking) search for, and then focus on those ligands which offer effective inhibition of the enzymes monoamine oxidase and acetylcholinesterase. This review introduces the main concepts involved in docking studies with natural products: and also in our group, which has conducted a docking study of natural products isolated from Tetrapterys mucronata for inhibition of acetylcholinesterase. We observed that compounds 4 and 5 formed more interactions than the theoretical ligand, but that ligands with greater activity also interacted with residues HIS 381 and GLN 527. We have reported on our docking study performed with AChE and alkaloids isolated from the plant Tetrapterys mucronata. Our docking results corroborate the experiments conducted, and emphasize the positive contribution that these theoretical studies involving natural products bring to the fight against neurodegenerative diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Detection of Escherichia coli and Associated β-Lactamases Genes from Diabetic Foot Ulcers by Multiplex PCR and Molecular Modeling and Docking of SHV-1, TEM-1, and OXA-1 β-Lactamases with Clindamycin and Piperacillin-Tazobactam

    PubMed Central

    Shahi, Shailesh K.; Singh, Vinay K.; Kumar, Ashok

    2013-01-01

    Diabetic foot ulcer (DFU) is a common and devastating complication in diabetes. Antimicrobial resistance mediated by extended-spectrum β-lactamases (ESBLs) production by bacteria is considered to be a major threat for foot amputation. The present study deals with the detection of Escherichia coli and the prevalence of bla TEM, bla SHV and bla OXA genes directly from biopsy and swab of foot ulcers of diabetic patients. In total, 116 DFU patients were screened, of which 42 suffering with severe DFUs were selected for this study. Altogether 16 E. coli strains were successfully isolated from biopsy and/or swab samples of 15 (35.71%) patients. ESBL production was noted in 12 (75%) strains. Amplification of β-lactamase genes by multiplex PCR showed the presence of bla CTX-M like genes in 10 strains, bla TEM and bla OXA in 9 strains each, and bla SHV in 8 of the total 16 strains of E. coli. Out of the ten antibiotics tested, E. coli strains were found to be resistant to ampicillin (75%), cefoxitin (56.25%), cefazolin (50%), meropenem (37.5%), cefoperazone (25%), cefepime (31.25%), ceftazidime (56.25%), and cefotaxime (68.75%) but all showed sensitivity (100%) to clindamycin and piperacillin-tazobactam. 3D models of the most prevalent variants of β-lactamases namely TEM-1, SHV-1, OXA-1, and ESBL namely CTX-M-15 were predicted and docking was performed with clindamycin and piperacillin-tazobactam to reveal the molecular basis of drug sensitivity. Docking showed the best docking score with significant interactions, forming hydrogen bond, Van der Waals and polar level interaction with active site residues. Findings of the present study may provide useful insights for the development of new antibiotic drugs and may also prevent ESBLs-mediated resistance problem in DFU. The novel multiplex PCR assay designed in this study may be routinely used in clinical diagnostics of E. coli and associated bla TEM, bla SHV, and bla OXA like genes. PMID:23861873

  2. Predicting protein complex geometries with a neural network.

    PubMed

    Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter

    2010-03-01

    A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  3. REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK STAND, SHOWING AIRCRAFT NUMBER (319), HORIZONTAL STABILIZER, TAIL CONE AND COOLING CTS FOR THE AUXILIARY POWER UNIT (APU), MECHANIC PAUL RIDEOUT IS LOWERING THE BALANCE PANELS ON THE STABILIZERS FOR LUBRICATION AND INSPECTION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  4. Mir survey just before docking

    NASA Image and Video Library

    1997-05-16

    STS084-730-002 (15-24 May 1997) --- A Space Shuttle Atlantis point-of-view frame showing the docking port and target during separation from with Russia's Mir Space Station. The picture should be held with the retracted Kristall solar array at right. Other elements partially visible are Kvant-2 (top), Spektr (bottom) and Core Module (left).

  5. 7. View from gate spanning mouth of Dry Dock 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. View from gate spanning mouth of Dry Dock 5, showing (1-r) north wall of Pier 10 and south wall of Pier 11. - Charlestown Navy Yard, Pier 10, Between Piers 9 & 11 along Mystic River on Charlestown Waterfront at eastern edge of Charlestown Navy Yard, Boston, Suffolk County, MA

  6. Photocopy of photograph (original in collection of U.S. Coast Guard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original in collection of U.S. Coast Guard Civil Engineering Unit Providence, Warwich, RI), photographer unknown, 1977 view south, showing western docking structure and ordnance wharf - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  7. Investigation of Control System and Display Variations on Spacecraft Handling Qualities for Docking with Stationary and Rotating Targets

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Goodrich, Kenneth H.; Bailey, Randall E.; Barnes, James R.; Ragsdale, William A.; Neuhaus, Jason R.

    2010-01-01

    This paper documents the investigation into the manual docking of a preliminary version of the Crew Exploration Vehicle with stationary and rotating targets in Low Earth Orbit. The investigation was conducted at NASA Langley Research Center in the summer of 2008 in a repurposed fixed-base transport aircraft cockpit and involved nine evaluation astronauts and research pilots. The investigation quantified the benefits of a feed-forward reaction control system thruster mixing scheme to reduce translation-into-rotation coupling, despite unmodeled variations in individual thruster force levels and off-axis center of mass locations up to 12 inches. A reduced rate dead-band in the phase-plane attitude controller also showed some promise. Candidate predictive symbology overlaid on a docking ring centerline camera image did not improve handling qualities, but an innovative attitude status indicator symbol was beneficial. The investigation also showed high workload and handling quality problems when manual dockings were performed with a rotating target. These concerns indicate achieving satisfactory handling quality ratings with a vehicle configuration similar to the nominal Crew Exploration Vehicle may require additional automation.

  8. Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2015-10-01

    Retinoid X receptors (RXRs) are ligand-controlled transcription factors which heterodimerize with other nuclear receptors to regulate gene transcriptions associated with crucial biological events. 9-cis retinoic acid (9cRA), which transactivates RXRs, is believed to be an endogenous RXR ligand. All-trans retinoic acid (ATRA) is a natural ligand for retinoic acid receptors (RARs), which heterodimerize with RXRs. Although the concentration of 9cRA in tissues is very low, ATRA is relatively abundant and some reports show that ATRA activates RXRs. We computationally studied the possibility of ATRA binding to RXRs using two different docking methods with our developed programs to assess the binding affinities of naturally occurring retinoids. The simulations showed good correlations to the reported binding affinities of these molecules for RXRs and RARs.

  9. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    PubMed

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  10. Interactions of cephalexin with bovine serum albumin: displacement reaction and molecular docking.

    PubMed

    Hamishehkar, Hamed; Hosseini, Soheila; Naseri, Abdolhossein; Safarnejad, Azam; Rasoulzadeh, Farzaneh

    2016-01-01

    Introduction: The drug-plasma protein interaction is a fundamental issue in guessing and checking the serious drug side effects related with other drugs. The purpose of this research was to study the interaction of cephalexin with bovine serum albumin (BSA) and displacement reaction using site probes. Methods: The interaction mechanism concerning cephalexin (CPL) with BSA was investigated using various spectroscopic methods and molecular modeling method. The binding sites number, n, apparent binding constant, K, and thermodynamic parameters, ΔG 0 , ΔH 0 , and ΔS 0 were considered at different temperatures. To evaluate the experimental results, molecular docking modeling was calculated. Results: The distance, r=1.156 nm between BSA and CPL were found in accordance with the Forster theory of non-radiation energy transfer (FRET) indicating energy transfer occurs between BSA and CPL. According to the binding parameters and ΔG 0 = negative values and ΔS 0 = 28.275 j mol -1 K -1 , a static quenching process is effective in the CPL-BSA interaction spontaneously. ΔG 0 for the CPL-BSA complex obtained from the docking simulation is -28.99 kj mol -1 , which is close to experimental ΔG of binding, -21.349 kj mol -1 that indicates a good agreement between the results of docking methods and experimental data. Conclusion: The outcomes of spectroscopic methods revealed that the conformation of BSA changed during drug-BSA interaction. The results of FRET propose that CPL quenches the fluorescence of BSA by static quenching and FRET. The displacement study showed that phenylbutazon and ketoprofen displaced CPL, indicating that its binding site on albumin is site I and Gentamicin cannot be displaced from the binding site of CPL. All results of molecular docking method agreed with the results of experimental data.

  11. Comparative modeling and docking studies of p16ink4/cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1.

    PubMed

    Naqsh e Zahra, Syeda; Khattak, Naureen Aslam; Mir, Asif

    2013-01-01

    Lung cancer is the major cause of mortality worldwide. Major signalling pathways that could play significant role in lung cancer therapy include (1) Growth promoting pathways (Epidermal Growth Factor Receptor/Ras/ PhosphatidylInositol 3-Kinase) (2) Growth inhibitory pathways (p53/Rb/P14ARF, STK11) (3) Apoptotic pathways (Bcl-2/Bax/Fas/FasL). Insilico strategy was implemented to solve the mystery behind selected lung cancer pathway by applying comparative modeling and molecular docking studies. YASARA [v 12.4.1] was utilized to predict structural models of P16-INK4 and RB1 genes using template 4ELJ-A and 1MX6-B respectively. WHAT CHECK evaluation tool demonstrated overall quality of predicted P16-INK4 and RB1 with Z-score of -0.132 and -0.007 respectively which showed a strong indication of reliable structure prediction. Protein-protein interactions were explored by utilizing STRING server, illustrated that CDK4 and E2F1 showed strong interaction with P16-INK4 and RB1 based on confidence score of 0.999 and 0.999 respectively. In order to facilitate a comprehensive understanding of the complex interactions between candidate genes with their functional interactors, GRAMM-X server was used. Protein-protein docking investigation of P16-INK4 revealed four ionic bonds illustrating Arg47, Arg80,Cys72 and Met1 residues as actively participating in interactions with CDK4 while docking results of RB1 showed four hydrogen bonds involving Glu864, Ser567, Asp36 and Arg861 residues which interact strongly with its respective functional interactor E2F1. This research may provide a basis for understanding biological insights of P16-INK4 and RB1 proteins which will be helpful in future to design a suitable drug to inhibit the disease pathogenesis as we have determined the interacting amino acids which can be targeted in order to design a ligand in-vitro to propose a drug for clinical trials. Protein -protein docking of candidate genes and their important interacting residues likely to be provide a gateway for developing computer aided drug designing.

  12. Interaction of the recently approved anticancer drug nintedanib with human acute phase reactant α 1-acid glycoprotein

    NASA Astrophysics Data System (ADS)

    Abdelhameed, Ali Saber; Ajmal, Mohammad Rehan; Ponnusamy, Kalaiarasan; Subbarao, Naidu; Khan, Rizwan Hasan

    2016-07-01

    A comprehensive study of the interaction of the newly approved tyrosine kinase inhibitor, Nintedanib (NTB) and Alpha-1 Acid Glycoprotein (AAG) has been carried out by utilizing UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism, dynamic light scattering and molecular docking techniques. The obtained results showed enhancement of the UV-Vis peak of the protein upon binding to NTB with the fluorescence intensity of AAG is being quenched by NTB via the formation of ground state complex (i.e. Static quenching). Forster distance (Ro) obtained from fluorescence resonance energy transfer (FRET) is found to be 2.3 nm. The calculated binding parameters from the modified Stern-Volmer equation showed that NTB binds to AAG with a binding constant in the order of 103. Conformational alteration of the protein upon its binding to NTB was confirmed by the circular dichroism. Dynamic light scattering results showed that the binding interaction of NTB leads to the reduction in hydrodynamic radii of AAG. Dynamic molecular docking results showed that the NTB fits into the central binding cavity in AAG and hydrophobic interaction played the key role in the binding process also the docking studies were performed with methotrexate and clofarabine drugs to look into the common binding regions of these drugs on AAG molecule, it was found that five amino acid residues namely Phe 113, Arg 89, Tyr 126, Phe 48 and Glu 63 were common among the binding regions of three studied drugs this phenomenon of overlapping binding regions may influence the drug transport by the carrier molecule in turn affecting the metabolism of the drug and treatment outcome.

  13. Apollo Rendezvous Docking Simulator

    NASA Image and Video Library

    1964-11-02

    Originally the Rendezvous was used by the astronauts preparing for Gemini missions. The Rendezvous Docking Simulator was then modified and used to develop docking techniques for the Apollo program. The pilot is shown maneuvering the LEM into position for docking with a full-scale Apollo Command Module. From A.W. Vogeley, Piloted Space-Flight Simulation at Langley Research Center, Paper presented at the American Society of Mechanical Engineers, 1966 Winter Meeting, New York, NY, November 27 - December 1, 1966. The Rendezvous Docking Simulator and also the Lunar Landing Research Facility are both rather large moving-base simulators. It should be noted, however, that neither was built primarily because of its motion characteristics. The main reason they were built was to provide a realistic visual scene. A secondary reason was that they would provide correct angular motion cues (important in control of vehicle short-period motions) even though the linear acceleration cues would be incorrect. Apollo Rendezvous Docking Simulator: Langley s Rendezvous Docking Simulator was developed by NASA scientists to study the complex task of docking the Lunar Excursion Module with the Command Module in Lunar orbit.

  14. Cloning and characterization of a new broadspecific β-glucosidase from Lactococcus sp. FSJ4.

    PubMed

    Fang, Shujun; Chang, Jie; Lee, Yong Seok; Guo, Weiliang; Choi, Yong Lark; Zhou, Yongcan

    2014-01-01

    A β-glucosidase gene bglX was cloned from Lactococcus sp. FSJ4 by the method of shotgun. The bglX open reading frame consisted of 1,437 bp, encoding 478 amino acids. SDS-PAGE showed a recombinant bglX monomer of 54 kDa. Substrate specificity study revealed that the enzyme exhibited multifunctional catalysis activity against pNPG, pNPX and pNPGal. This enzyme shows higher activity against aryl glycosides of xylose than those of glucose or galactose. The enzyme exhibited the maximal activity at 40 °C, and the optimal pH was 6.0 with pNPG and 6.5 with pNPX as the substrates. Molecular modeling and substrate docking showed that there should be one active center responsible for the mutifuntional activity in this enzyme, since the active site pocket was substantially wide to allow the entry of pNPG, pNPX and pNPGal, which elucidated the structure-function relationship in substrate specificities. Substrate docking results indicated that Glu180 and Glu377 were the essential catalytic residues of the enzyme. The CDOCKER_ENERGY values obtained by substrate docking indicated that the enzyme has higher activity against pNPX than those of pNPG and pNPGal. These observations are in conformity with the results obtained from experimental investigation. Therefore, such substrate specificity makes this β-glucosidase of great interest for further study on physiological and catalytic reaction processes.

  15. A promising anti-cancer and anti-oxidant agents based on the pyrrole and fused pyrrole: synthesis, docking studies and biological evaluation.

    PubMed

    Fatahala, Samar Said; Shalaby, Emad Ahmed; Kassab, Shaymaa Emam; Mohamed, Mossad Said

    2015-01-01

    A series of N-aryl derivatives of pyrrole and its related derivatives of fused form (namely; tetrahydroindole and dihydroindenopyrroles) were prepared in fair to good yields. The newly synthesized compounds were confirmed using IR, (1)H NMR, Mass spectral and elemental analysis. Tetrahydrobenzo[b] pyrroles Ia-d, 1,4-dihydroindeno[1,2-b]pyrroles IIa,b and pyrroles IIIa-c,e were evaluated for anticancer activity, coinciding with the antioxidant activity; using Di-Phenyl Picryl Hydrazyl (DPPH) tests. The cytotoxicity of the tested compounds (at a concentration of 100 and 200 μg /mL) was performed against HepG-2 and EACC cell lines. Compounds Ib, d and IIa showed promising antioxidant activity beside their anticancer activity. Docking studies were employed to justify the promising anticancer activity of Ib,d and IIa. Protein kinase (PKase)-PDB entry 1FCQ was chosen as target enzyme for this purpose using the MOLSOFT ICM 3.4-8C program. The docking results of the tested compounds went aligned with the respective anticancer assay results.

  16. Combined spectroscopic, molecular docking and quantum mechanics study of β-casein and p-coumaric acid interactions following thermal treatment.

    PubMed

    Kaur, Jasmeet; Katopo, Lita; Hung, Andrew; Ashton, John; Kasapis, Stefan

    2018-06-30

    The molecular nature of interactions between β-casein and p-coumaric acid was studied following exposure of their solutions to ultra-high temperature (UHT at 145 °C). Interactions were characterised by employing multi-spectroscopic methods, molecular docking and quantum mechanics calculations. FTIR demonstrates that the ligand lies in the vicinity of the protein, hence inverting the absorbance spectrum of the complex. This outcome changes the conformational characteristics of the protein leading to a flexible and open structure that accommodates the phenolic microconstituent. Results are supported by UV-vis, CD and fluorescence quenching showing considerable shifts in spectra with complexation. Molecular docking indicates that there is at least a hydrogen bond between p-coumaric acid and the peptide backbone of isoleucine (Ile27). Quantum mechanics calculations further argue that changes in experimental observations are also due to a covalent interaction in the protein-phenolic adduct, which according to the best predicted binding pose involves the side chain of lysine 47. Copyright © 2018. Published by Elsevier Ltd.

  17. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking.

    PubMed

    Han, Lin; Fang, Chun; Zhu, Ruixue; Peng, Qiang; Li, Ding; Wang, Min

    2017-02-01

    As the aglycone of phloridzin, phloretin belongs to dihydrochalcone with antioxidant, anti-inflammatory and antimicrobial activities. In this study, multispectroscopic techniques and molecular docking analysis were used to investigate the inhibitory activity and mechanisms of phloretin on α-glucosidase. The results showed that phloretin reversibly inhibited α-glucosidase in a mixed-type manner and the value of IC 50 was 31.26μgL -1 . The intrinsic fluorescence of α-glucosidase was quenched by the interactions with phloretin through a static quenching mechanism and spontaneously formed phloretin-α-glucosidase complex by the driving forces of van der Waals force and hydrogen bond. Atomic force microscope (AFM) studies and FT-IR measurements suggested that the interactions could change the micro-environments and conformation of the enzymes and the molecular docking analysis displayed the exact binding site of phloretin on α-glucosidase. These results indicated that phloretin is a strong α-glucosidase inhibitor, thus could be contribute to the improvement of diabetes mellitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of the explicit flexibility of the InhA enzyme from Mycobacterium tuberculosis in molecular docking simulations.

    PubMed

    Cohen, Elisangela M L; Machado, Karina S; Cohen, Marcelo; de Souza, Osmar Norberto

    2011-12-22

    Protein/receptor explicit flexibility has recently become an important feature of molecular docking simulations. Taking the flexibility into account brings the docking simulation closer to the receptors' real behaviour in its natural environment. Several approaches have been developed to address this problem. Among them, modelling the full flexibility as an ensemble of snapshots derived from a molecular dynamics simulation (MD) of the receptor has proved very promising. Despite its potential, however, only a few studies have employed this method to probe its effect in molecular docking simulations. We hereby use ensembles of snapshots obtained from three different MD simulations of the InhA enzyme from M. tuberculosis (Mtb), the wild-type (InhA_wt), InhA_I16T, and InhA_I21V mutants to model their explicit flexibility, and to systematically explore their effect in docking simulations with three different InhA inhibitors, namely, ethionamide (ETH), triclosan (TCL), and pentacyano(isoniazid)ferrate(II) (PIF). The use of fully-flexible receptor (FFR) models of InhA_wt, InhA_I16T, and InhA_I21V mutants in docking simulation with the inhibitors ETH, TCL, and PIF revealed significant differences in the way they interact as compared to the rigid, InhA crystal structure (PDB ID: 1ENY). In the latter, only up to five receptor residues interact with the three different ligands. Conversely, in the FFR models this number grows up to an astonishing 80 different residues. The comparison between the rigid crystal structure and the FFR models showed that the inclusion of explicit flexibility, despite the limitations of the FFR models employed in this study, accounts in a substantial manner to the induced fit expected when a protein/receptor and ligand approach each other to interact in the most favourable manner. Protein/receptor explicit flexibility, or FFR models, represented as an ensemble of MD simulation snapshots, can lead to a more realistic representation of the induced fit effect expected in the encounter and proper docking of receptors to ligands. The FFR models of InhA explicitly characterizes the overall movements of the amino acid residues in helices, strands, loops, and turns, allowing the ligand to properly accommodate itself in the receptor's binding site. Utilization of the intrinsic flexibility of Mtb's InhA enzyme and its mutants in virtual screening via molecular docking simulation may provide a novel platform to guide the rational or dynamical-structure-based drug design of novel inhibitors for Mtb's InhA. We have produced a short video sequence of each ligand (ETH, TCL and PIF) docked to the FFR models of InhA_wt. These videos are available at http://www.inf.pucrs.br/~osmarns/LABIO/Videos_Cohen_et_al_19_07_2011.htm.

  19. A novel dihydropyridine with 3-aryl meta-hydroxyl substitution blocks L-type calcium channels in rat cardiomyocytes.

    PubMed

    Galvis-Pareja, David; Zapata-Torres, Gerald; Hidalgo, Jorge; Ayala, Pedro; Pedrozo, Zully; Ibarra, Cristián; Diaz-Araya, Guillermo; Hall, Andrew R; Vicencio, Jose Miguel; Nuñez-Vergara, Luis; Lavandero, Sergio

    2014-08-15

    Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca(2+) channels and their renowned antioxidant properties. We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca(2+) channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca(2+) channel-blocking activity and antioxidant properties. The Ca(2+) channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flow cytometry using the ROS sensitive dye 1,2,3 DHR. Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca(2+) channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca(2+) channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Computational study concerning the effect of some pesticides on the Proteus Mirabilis catalase activity

    NASA Astrophysics Data System (ADS)

    Isvoran, Adriana

    2016-03-01

    Assessment of the effects of the herbicides nicosulfuron and chlorsulfuron and the fungicides difenoconazole and drazoxlone upon catalase produced by soil microorganism Proteus mirabilis is performed using the molecular docking technique. The interactions of pesticides with the enzymes are predicted using SwissDock and PatchDock docking tools. There are correlations for predicted binding energy values for enzyme-pesticide complexes obtained using the two docking tools, all the considered pesticides revealing favorable binding to the enzyme, but only the herbicides bind to the catalytic site. These results suggest the inhibitory potential of chlorsulfuron and nicosulfuron on the catalase activity in soil.

  1. Docking simulation analysis of range data requirements for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Micheal, J. D.; Vinz, F. L.

    1985-01-01

    The results of an initial study are reported assess the controllability of the Orbital Maneuvering Vehicle (OMV) for terminal closure and docking are reported. The vehicle characteristics used in this study are those of the Marshall Space Flight Center (MSFC) baseline OMV which were published with the request for proposals for preliminary design of this vehicle. This simulation was conducted at MSFC using the Target Motion Simulator. The study focused on the OMV manual mode capability to accommodate both stabilized and tumbling target engagements with varying complements of range and range rate data displayed to the OMV operator. Four trained test subjects performed over 400 simulated orbital dockings during this study. A firm requirement for radar during the terminal closure and dock phase of the OMV mission was not established by these simulations. Fifteen pound thrusters recommended in the MSFC baseline design were found to be advantageous for initial rate matching maneuvers with unstabilized targets; however, lower thrust levels were desirable for making the final docking maneuvers.

  2. Synthesis of novel benzodioxane midst piperazine moiety decorated chitosan silver nanoparticle against biohazard pathogens and as potential anti-inflammatory candidate: A molecular docking studies.

    PubMed

    Karthik, C S; Manukumar, H M; Ananda, A P; Nagashree, S; Rakesh, K P; Mallesha, L; Qin, Hua-Li; Umesha, S; Mallu, P; Krishnamurthy, N B

    2018-03-01

    Nanoparticles (NPs) are currently being investigated along with the use of biodegradable polymer containing active agents in many areas of medicine for targeted applications. The present study was aimed to synthesize novel compound Benzodioxane midst piperazine (BP) and characterization of a BP decorated chitosan silver nanoparticles (BP*C@AgNPs) and shown effective against hazardous pathogens, and also having anti-inflammatory property. It was further evaluated for molecular docking proofs, and toxicity. The BP*C@AgNPs had spherical shape with size of 36.6nm with wide biocidal activity against hazardous Gram-positive and Gram-negative bacteria with excellent inhibition at 100μg/mL for S. aureus (10.08±0.05mm ZOI), and E. coli (10.03±0.04mm ZOI) compared to antibiotic Streptomycin. The anti-inflammatory activity exhibited IC 50 value of 71.61±1.05μg/mL for BP*C@AgNPs compared to indomethacin (IC 50 =40.15±1.21μg/mL). Also, the docking study of BP showed excellent score for COX1 and DNA gyrase. This in silico study confirmed the achieved efficacy of BP, with less toxicity against normal PMBCs in vitro and in vivo studies. This study concludes that, the novel synthesized BP*C@AgNPs had excellent biocidal property and as anti-inflammatory candidate revealed by docking studies, it confirms BP*C@AgNPs for first-class therapeutic applications in the area of medicinal nanotechnology for the coming days. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Computational analysis for selectivity of histone deacetylase inhibitor by replica-exchange umbrella sampling molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Shuichiro; Sakae, Yoshitake; Itoh, Yukihiro; Suzuki, Takayoshi; Okamoto, Yuko

    2018-03-01

    We performed protein-ligand docking simulations with a ligand T247, which has been reported as a selective inhibitor of a histone deacetylase HDAC3, by the replica-exchange umbrella sampling method in order to estimate the free energy profiles along ligand docking pathways of HDAC3-T247 and HDAC2-T247 systems. The simulation results showed that the docked state of the HDAC3-T247 system is more stable than that of the HDAC2-T247 system although the amino-acid sequences and structures of HDAC3 and HDAC2 are very similar. By comparing structures obtained from the simulations of both systems, we found the difference between structures of hydrophobic residues at the entrance of the catalytic site. Moreover, we performed conventional molecular dynamics simulations of HDAC3 and HDAC2 systems without T247, and the results also showed the same difference of the hydrophobic structures. Therefore, we consider that this hydrophobic structure contributes to the stabilization of the docked state of the HDAC3-T247 system. Furthermore, we show that Tyr209, which is one of the hydrophobic residues in HDAC2, plays a key role in the instability from the simulation results of a mutated-HDAC2 system.

  4. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.

    PubMed

    Su, Chinh; Nguyen, Thuy-Diem; Zheng, Jie; Kwoh, Chee-Keong

    2014-01-01

    Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near native structures found. As our implementation so far targeted to improve the results of ZDOCK3.0.2, and particularly for the Antigen/Antibody complexes, it is expected in the near future that more implementations will be conducted to be applicable for other initial rigid docking algorithms.

  5. Plugin-docking system for autonomous charging using particle filter

    NASA Astrophysics Data System (ADS)

    Koyasu, Hiroshi; Wada, Masayoshi

    2017-03-01

    Autonomous charging of the robot battery is one of the key functions for the sake of expanding working areas of the robots. To realize it, most of existing systems use custom docking stations or artificial markers. By the other words, they can only charge on a few specific outlets. If the limit can be removed, working areas of the robots significantly expands. In this paper, we describe a plugin-docking system for the autonomous charging, which does not require any custom docking stations or artificial markers. A single camera is used for recognizing the 3D position of an outlet socket. A particle filter-based image tracking algorithm which is robust to the illumination change is applied. The algorithm is implemented on a robot with an omnidirectional moving system. The experimental results show the effectiveness of our system.

  6. Coordinating structural and functional synapse development: postsynaptic p21-activated kinase independently specifies glutamate receptor abundance and postsynaptic morphology.

    PubMed

    Albin, Stephanie D; Davis, Graeme W

    2004-08-04

    Here, we show that postsynaptic p21-activated kinase (Pak) signaling diverges into two genetically separable pathways at the Drosophila neuromuscular junction. One pathway controls glutamate receptor abundance. Pak signaling within this pathway is specified by a required interaction with the adaptor protein Dreadlocks (Dock). We demonstrate that Dock is localized to the synapse via an Src homology 2-mediated protein interaction. Dock is not necessary for Pak localization but is necessary to restrict Pak signaling to control glutamate receptor abundance. A second genetically separable function of Pak kinase signaling controls muscle membrane specialization through the regulation of synaptic Discs-large. In this pathway, Dock is dispensable. We present a model in which divergent Pak signaling is able to coordinate two different features of postsynaptic maturation, receptor abundance, and muscle membrane specialization.

  7. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features

    PubMed Central

    Ruiz, Duncan D. A.; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward’s, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill biologically relevant information from MD trajectories, especially for docking purposes. PMID:26218832

  8. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D A; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward's, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill biologically relevant information from MD trajectories, especially for docking purposes.

  9. Germacrone derivatives: synthesis, biological activity, molecular docking studies and molecular dynamics simulations.

    PubMed

    Wu, Jie; Feng, Yu; Han, Chao; Huang, Wu; Shen, Zhibin; Yang, Mengdie; Chen, Weiqiang; Ye, Lianbao

    2017-02-28

    Germacrone is one of the major bioactive components in the Curcuma zedoaria oil product, which is extracted from Curcuma zedoaria Roscoe, known as zedoary. The present study designed some novel germacrone derivatives based on combination principles, synthesized these compounds, and investigated their inhibitions on Bel-7402, HepG2, A549 and HeLa cells. Meanwhile, the study evaluated inhibitions of these derivatives on c-Met kinase, which has been detected in a number of cancers. The results suggested that the majority of the compounds showed stronger inhibitory effect on cancers and c-Met kinase than germacrone. Furthermore, our docking experiments analyzed the results and explained the molecular mechanism. Molecular dynamics simulations were then applied to perform further evaluation of the binding stabilities between compounds and their receptors.

  10. Homology modeling and docking studies of human Bcl-2L10 protein.

    PubMed

    Bhargavi, K; Kalyan Chaitanya, P; Ramasree, D; Vasavi, M; Murthy, D K; Uma, V

    2010-12-01

    Cancer, an unrestrained proliferation of cells, is one of the lead cause of death. Nearly 12.5 million people are diagnosed with cancer worldwide, 7.5 million people die of which 2.5 million cases are from India. Major cause for cancer is restriction of programmed cell death (apoptosis). Multiple signaling pathways regulate apoptosis. Bcl-2 (B - Cell Lymphomas-2) family proteins play a vital role as central regulators of apoptosis. Bcl-2L10, a novel anti-apoptotic protein, blocks apoptosis by mitochondrial dependent mechanism. The present study evaluates the 3D structure of Bcl-2L10 protein using homology modeling and aims to understand plausible functional and binding interactions between Bcl-2L10 with BH3 domain of BAX using protein - protein docking. The docking studies show binding of BH3 domain at Lys 110, Trp-111, Pro-115, Glu-119 and Asp-127 in the groove of BH 1, 2 and 3 domains of Bcl-2L10. Heterodimerization of anti-apoptotic Bcl-2 and BH3 domain of pro-apoptotic Bcl-2 proteins instigates apoptosis. Profound understanding of Bcl-2 pathway may prove useful in identification of future therapeutic targets for cancer.

  11. Emission rates of regulated pollutants from current technology heavy-duty diesel and natural gas goods movement vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt

    2015-04-21

    Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.

  12. Deceleration of arginine kinase refolding by induced helical structures.

    PubMed

    Li, Hai-Long; Zhou, Sheng-Mei; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Meng, Fan-Guo; Hu, Wei-Jiang

    2012-04-01

    Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for -2.19 kcal/mol for AutoDock4.2 and -20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

  13. STS-114 Discovery's approach for docking

    NASA Image and Video Library

    2005-07-28

    ISS011-E-11233 (28 July 2005) --- One of a series of photographs showing the Space Shuttle Discovery as taken from aboard the International Space Station during rendezvous and docking operations. The Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) is in the Shuttle’;s cargo bay. Earth, dotted with popcorn-like clouds, provides the backdrop for this image.

  14. Expedition 19 Docks to ISS

    NASA Image and Video Library

    2009-03-27

    A large TV screen in Russian Mission Control Center in Korolev, Russia shows Cosmonaut Yury Lonchakov, right, welcoming Expedition 19 Flight Engineer Michael R. Barratt onboard the International Space Station after he fellow crew members Expedition 19 Commander Gennady I. Padalka and Spaceflight Participant Charles Simonyi docked their Soyuz TMA-14 spacecraft on Saturday, March 28, 2009. Photo Credit: (NASA/Bill Ingalls)

  15. 33. Drawing R268 (1916), 'Record Of Wash Borings and Test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Drawing R-268 (1916), 'Record Of Wash Borings and Test Piles Taken In Vicinity Of Hunters Point, Cal.'; showing site in 1916 with Dry Docks 1 and 2 and without Dry Dock No. 4. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  16. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study.

    PubMed

    Gadhe, Changdev G; Balupuri, Anand; Cho, Seung Joo

    2015-01-01

    Human CC-chemokine receptor 8 (CCR8) is a crucial drug target in asthma that belongs to G-protein-coupled receptor superfamily, which is characterized by seven transmembrane helices. To date, there is no X-ray crystal structure available for CCR8; this hampers active research on the target. Molecular basis of interaction mechanism of antagonist with CCR8 remains unclear. In order to provide binding site information and stable binding mode, we performed modeling, docking and molecular dynamics (MD) simulation of CCR8. Docking study of biaryl-ether-piperidine derivative (13C) was performed inside predefined CCR8 binding site to get the representative conformation of 13C. Further, MD simulations of receptor and complex (13C-CCR8) inside dipalmitoylphosphatidylcholine lipid bilayers were performed to explore the effect of lipids. Results analyses showed that the Gln91, Tyr94, Cys106, Val109, Tyr113, Cys183, Tyr184, Ser185, Lys195, Thr198, Asn199, Met202, Phe254, and Glu286 were conserved in both docking and MD simulations. This indicated possible role of these residues in CCR8 antagonism. However, experimental mutational studies on these identified residues could be effective to confirm their importance in CCR8 antagonism. Furthermore, calculated Coulombic interactions represented the crucial roles of Glu286, Lys195, and Tyr113 in CCR8 antagonism. Important residues identified in this study overlap with the previous non-peptide agonist (LMD-009) binding site. Though, the non-peptide agonist and currently studied inhibitor (13C) share common substructure, but they differ in their effects on CCR8. So, to get more insight into their agonist and antagonist effects, further side-by-side experimental studies on both agonist (LMD-009) and antagonist (13C) are suggested.

  17. Great interactions: How binding incorrect partners can teach us about protein recognition and function.

    PubMed

    Vamparys, Lydie; Laurent, Benoist; Carbone, Alessandra; Sacquin-Mora, Sophie

    2016-10-01

    Protein-protein interactions play a key part in most biological processes and understanding their mechanism is a fundamental problem leading to numerous practical applications. The prediction of protein binding sites in particular is of paramount importance since proteins now represent a major class of therapeutic targets. Amongst others methods, docking simulations between two proteins known to interact can be a useful tool for the prediction of likely binding patches on a protein surface. From the analysis of the protein interfaces generated by a massive cross-docking experiment using the 168 proteins of the Docking Benchmark 2.0, where all possible protein pairs, and not only experimental ones, have been docked together, we show that it is also possible to predict a protein's binding residues without having any prior knowledge regarding its potential interaction partners. Evaluating the performance of cross-docking predictions using the area under the specificity-sensitivity ROC curve (AUC) leads to an AUC value of 0.77 for the complete benchmark (compared to the 0.5 AUC value obtained for random predictions). Furthermore, a new clustering analysis performed on the binding patches that are scattered on the protein surface show that their distribution and growth will depend on the protein's functional group. Finally, in several cases, the binding-site predictions resulting from the cross-docking simulations will lead to the identification of an alternate interface, which corresponds to the interaction with a biomolecular partner that is not included in the original benchmark. Proteins 2016; 84:1408-1421. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

  18. Great interactions: How binding incorrect partners can teach us about protein recognition and function

    PubMed Central

    Vamparys, Lydie; Laurent, Benoist; Carbone, Alessandra

    2016-01-01

    ABSTRACT Protein–protein interactions play a key part in most biological processes and understanding their mechanism is a fundamental problem leading to numerous practical applications. The prediction of protein binding sites in particular is of paramount importance since proteins now represent a major class of therapeutic targets. Amongst others methods, docking simulations between two proteins known to interact can be a useful tool for the prediction of likely binding patches on a protein surface. From the analysis of the protein interfaces generated by a massive cross‐docking experiment using the 168 proteins of the Docking Benchmark 2.0, where all possible protein pairs, and not only experimental ones, have been docked together, we show that it is also possible to predict a protein's binding residues without having any prior knowledge regarding its potential interaction partners. Evaluating the performance of cross‐docking predictions using the area under the specificity‐sensitivity ROC curve (AUC) leads to an AUC value of 0.77 for the complete benchmark (compared to the 0.5 AUC value obtained for random predictions). Furthermore, a new clustering analysis performed on the binding patches that are scattered on the protein surface show that their distribution and growth will depend on the protein's functional group. Finally, in several cases, the binding‐site predictions resulting from the cross‐docking simulations will lead to the identification of an alternate interface, which corresponds to the interaction with a biomolecular partner that is not included in the original benchmark. Proteins 2016; 84:1408–1421. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27287388

  19. Investigation on the Interaction of Norgestrel with Human Serum Albumin Using Spectroscopy and Molecular-Docking Method.

    PubMed

    Ma, Xiangling; Wang, Qing; Wang, Lili; Huang, Yanmei; Liao, Xiaoxiang; Li, Hui

    2016-06-01

    The interaction of norgestrel with human serum albumin (HSA) was investigated by spectroscopy and molecular-docking methods. Results of spectroscopy methods suggested that the quenching mechanism of norgestrel on HSA was static quenching and that the quenching process was spontaneous. Negative values of thermodynamic parameters (ΔG, ΔH, and ΔS) indicated that hydrogen bonding and van der Waals forces dominated the binding between norgestrel and HSA. Three-dimensional fluorescence spectrum and circular dichroism spectrum showed that the HSA structure was slightly changed by norgestrel. Norgestrel mainly bound with Sudlow site I based on a probe study, as confirmed by molecular-docking results. Competition among similar structures indicated that ethisterone and norethisterone affected the binding of norgestrel with HSA. CH3 in R1 had little effect on norgestrel binding with HSA. The surface hydrophobicity properties of HSA, investigated using 8-anilino-1-naphthalenesulfonic acid, was changed with norgestrel addition. © 2016 Wiley Periodicals, Inc.

  20. α-Cyclodextrin dimer complexes of dopamine and levodopa derivatives to assess drug delivery to the central nervous system: ADME and molecular docking studies

    PubMed Central

    Shityakov, Sergey; Broscheit, Jens; Förster, Carola

    2012-01-01

    This paper attempts to predict and emphasize molecular interactions of dopamine, levodopa, and their derivatives (Dopimid compounds) containing 2-phenyl-imidazopyridine moiety with the α-cyclodextrin dimer in order to assess and improve drug delivery to the central nervous system. The molecular docking method is used to determine the energetic profiles, hydrogen bond formation, and hydrophobic effect of 14 host–guest complexes. The results show that the “chemical branching” represented by additional ethyl-acetate residue is energetically unfavorable and promotes a conformational shift due to the high root mean square deviation levels. This phenomenon is characterized by a low number of H-bonds and a significant decrease of the host–guest hydrophobic potential surface. Finally, the overall docking procedure presents a powerful rationale for screening and analyzing various sets of promising drug-like chemical compounds in the fields of supramolecular chemistry, molecular sensing, synthetic receptors, and nanobiotechnology. PMID:22811606

  1. Covalent Docking of Large Libraries for the Discovery of Chemical Probes

    PubMed Central

    London, Nir; Miller, Rand M.; Krishnan, Shyam; Uchida, Kenji; Irwin, John J.; Eidam, Oliv; Gibold, Lucie; Cimermančič, Peter; Bonnet, Richard; Shoichet, Brian K.; Taunton, Jack

    2014-01-01

    Chemical probes that form a covalent bond with a protein target often show enhanced selectivity, potency, and utility for biological studies. Despite these advantages, protein-reactive compounds are usually avoided in high-throughput screening campaigns. Here we describe a general method (DOCKovalent) for screening large virtual libraries of electrophilic small molecules. We apply this method prospectively to discover reversible covalent fragments that target distinct protein nucleophiles, including the catalytic serine of AmpC β-lactamase and noncatalytic cysteines in RSK2, MSK1, and JAK3 kinases. We identify submicromolar to low-nanomolar hits with high ligand efficiency, cellular activity and selectivity, including the first reported reversible covalent inhibitors of JAK3. Crystal structures of inhibitor complexes with AmpC and RSK2 confirm the docking predictions and guide further optimization. As covalent virtual screening may have broad utility for the rapid discovery of chemical probes, we have made the method freely available through an automated web server (http://covalent.docking.org). PMID:25344815

  2. Covalent docking of large libraries for the discovery of chemical probes.

    PubMed

    London, Nir; Miller, Rand M; Krishnan, Shyam; Uchida, Kenji; Irwin, John J; Eidam, Oliv; Gibold, Lucie; Cimermančič, Peter; Bonnet, Richard; Shoichet, Brian K; Taunton, Jack

    2014-12-01

    Chemical probes that form a covalent bond with a protein target often show enhanced selectivity, potency and utility for biological studies. Despite these advantages, protein-reactive compounds are usually avoided in high-throughput screening campaigns. Here we describe a general method (DOCKovalent) for screening large virtual libraries of electrophilic small molecules. We apply this method prospectively to discover reversible covalent fragments that target distinct protein nucleophiles, including the catalytic serine of AmpC β-lactamase and noncatalytic cysteines in RSK2, MSK1 and JAK3 kinases. We identify submicromolar to low-nanomolar hits with high ligand efficiency, cellular activity and selectivity, including what are to our knowledge the first reported reversible covalent inhibitors of JAK3. Crystal structures of inhibitor complexes with AmpC and RSK2 confirm the docking predictions and guide further optimization. As covalent virtual screening may have broad utility for the rapid discovery of chemical probes, we have made the method freely available through an automated web server (http://covalent.docking.org/).

  3. Synthesis, crystal structure, superoxide scavenging activity, anticancer and docking studies of novel adamantyl nitroxide derivatives

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-he; Sun, Jin; Wang, Shan; Bu, Wei; Yao, Min-na; Gao, Kai; Song, Ying; Zhao, Jin-yi; Lu, Cheng-tao; Zhang, En-hu; Yang, Zhi-fu; Wen, Ai-dong

    2016-03-01

    A novel adamantyl nitroxide derivatives has been synthesized and characterized by IR, ESI-MS and elemental analysis. Quantum chemical calculations have also been performed to calculate the molecular geometry using density functional theory (B3LYP) with the 6-31G (d,p) basis set. The calculated results showed that the optimized geometry can well reproduce the crystal structure. The antioxidant and antiproliferative activity were evaluated by superoxide (NBT) and MTT assay. The adamantyl nitroxide derivatives exhibited stronger scavenging ability towards O2· - radicals when compared to Vitamin C, and demonstrated a remarked anticancer activity against all the tested cell lines, especially Bel-7404 cells with IC50 of 43.3 μM, compared to the positive control Sorafenib (IC50 = 92.0 μM). The results of molecular docking within EGFR using AutoDock confirmed that the titled compound favorably fitted into the ATP binding site of EGFR and would be a potential anticancer agent.

  4. Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfonamide moieties: synthesis, biological evaluation and molecular docking.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; El-Gaby, Mohamed S A; Elaasser, Mahmoud M; Nissan, Yassin M

    2017-04-07

    Various thiourea derivatives have been used as starting materials for compounds with better biological activities. Molecular modeling tools are used to explore their mechanism of action. A new series of thioureas were synthesized. Fluorinated pyridine derivative 4a showed the highest antimicrobial activity (with MIC values ranged from 1.95 to 15.63 µg/mL). Interestingly, thiadiazole derivative 4c and coumarin derivative 4d exhibited selective antibacterial activities against Gram positive bacteria. Fluorinated pyridine derivative 4a was the most active against HepG2 with IC50 value of 4.8 μg/mL. Molecular docking was performed on the active site of MK-2 with good results. Novel compounds were obtained with good anticancer and antibacterial activity especially fluorinated pyridine derivative 4a and molecular docking study suggest good activity as mitogen activated protein kinase-2 inhibitor. Graphical abstract Compound 4a in the active site of MK-2.

  5. Flattop regulates basal body docking and positioning in mono- and multiciliated cells

    PubMed Central

    Gegg, Moritz; Böttcher, Anika; Burtscher, Ingo; Hasenoeder, Stefan; Van Campenhout, Claude; Aichler, Michaela; Walch, Axel; Grant, Seth G N; Lickert, Heiko

    2014-01-01

    Planar cell polarity (PCP) regulates basal body (BB) docking and positioning during cilia formation, but the underlying mechanisms remain elusive. In this study, we investigate the uncharacterized gene Flattop (Fltp) that is transcriptionally activated during PCP acquisition in ciliated tissues. Fltp knock-out mice show BB docking and ciliogenesis defects in multiciliated lung cells. Furthermore, Fltp is necessary for kinocilium positioning in monociliated inner ear hair cells. In these cells, the core PCP molecule Dishevelled 2, the BB/spindle positioning protein Dlg3, and Fltp localize directly adjacent to the apical plasma membrane, physically interact and surround the BB at the interface of the microtubule and actin cytoskeleton. Dlg3 and Fltp knock-outs suggest that both cooperatively translate PCP cues for BB positioning in the inner ear. Taken together, the identification of novel BB/spindle positioning components as potential mediators of PCP signaling might have broader implications for other cell types, ciliary disease, and asymmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.03842.001 PMID:25296022

  6. Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets.

    PubMed

    Straub, Susanne G; Shanmugam, Geetha; Sharp, Geoffrey W G

    2004-12-01

    Electron microscopy and quantitative stereological techniques were used to study the dynamics of the docked granule pool in the rat pancreatic beta-cell. The mean number of granules per beta-cell was 11,136. After equilibration in RPMI containing 5.6 mmol/l glucose, 6.4% of the granules (approximately 700) were docked at the plasma membrane (also measured as [means +/- SE] 4.3 +/- 0.6 docked granules per 10 microm of plasma membrane at the perimeter of the cell sections). After a 40-min exposure to 16.7 mmol/l glucose, 10.2% of the granules (approximately 1,060) were docked (6.4 +/- 0.8 granules per 10 microm of plasma membrane). Thus, the docked pool increased by 50% during stimulation with glucose. Islets were also exposed to 16.7 mmol/l glucose in the absence or presence of 10 micromol/l nitrendipine. In the absence and presence of nitrendipine, there were 6.1 +/- 0.7 and 6.3 +/- 0.6 granules per 10 microm of membrane, respectively. Thus, glucose increased granule docking independently of increased [Ca2+]i and exocytosis. The data suggest a limit to the number of docking sites. As the rate of docking exceeded the rate of exocytosis, docking is not rate limiting for insulin release. Only with extremely high release rates, glucose stimulation after a 4-h incubation with a high concentration of fatty acid-free BSA, was the docked granule pool reduced in size.

  7. Synthesis, biological evaluation, and molecular docking of Ugi products containing a zinc-chelating moiety as novel inhibitors of histone deacetylases.

    PubMed

    Grolla, Ambra A; Podestà, Valeria; Chini, Maria Giovanna; Di Micco, Simone; Vallario, Antonella; Genazzani, Armando A; Canonico, Pier Luigi; Bifulco, Giuseppe; Tron, Gian Cesare; Sorba, Giovanni; Pirali, Tracey

    2009-05-14

    HDAC inhibitors show great promise for the treatment of cancer. As part of a broader effort to explore the SAR of HDAC inhibitors, synthesis, biological evaluation, and molecular docking of novel Ugi products containing a zinc-chelating moiety are presented. One compound shows improved inhibitory potencies compared to SAHA, demonstrating that hindered lipophilic residues grafted on the peptide scaffold of the alpha-aminoacylamides can be favorable in the interaction with the enzyme.

  8. Synthesis, biological evaluation and molecular docking studies of stellatin derivatives as cyclooxygenase (COX-1, COX-2) inhibitors and anti-inflammatory agents.

    PubMed

    Gautam, Raju; Jachak, Sanjay M; Kumar, Vivek; Mohan, C Gopi

    2011-03-15

    Stellatin (4), isolated from Dysophylla stellata is a cyclooxygenase (COX) inhibitor. The present study reports the synthesis and biological evaluation of new stellatin derivatives for COX-1, COX-2 inhibitory and anti-inflammatory activities. Eight derivatives showed more pronounced COX-2 inhibition than stellatin and, 17 and 21 exhibited the highest COX-2 inhibition. They also exhibited the significant anti-inflammatory activity in TPA-induced mouse ear edema assay and their anti-inflammatory effects were more than that of stellatin and indomethacin at 0.5mg/ear. The derivatives were further evaluated for antioxidant activity wherein 16 and 17 showed potent free radical scavenging activity against DPPH and ABTS radicals. Molecular docking study revealed the binding orientations of stellatin and its derivatives into the active sites of COX-1 and COX-2 and thereby helps to design the potent inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. New Thiazolyl-triazole Schiff Bases: Synthesis and Evaluation of the Anti-Candida Potential.

    PubMed

    Stana, Anca; Enache, Alexandra; Vodnar, Dan Cristian; Nastasă, Cristina; Benedec, Daniela; Ionuț, Ioana; Login, Cezar; Marc, Gabriel; Oniga, Ovidiu; Tiperciuc, Brîndușa

    2016-11-22

    In the context of the dangerous phenomenon of fungal resistance to the available therapies, we present here the chemical synthesis of a new series of thiazolyl-triazole Schiff bases B1 - B15 , which were in vitro assessed for their anti- Candida potential. Compound B10 was found to be more potent against Candida spp. when compared with the reference drugs Fluconazole and Ketoconazole. A docking study of the newly synthesized Schiff bases was performed, and results showed good binding affinity in the active site of co-crystallized Itraconazole-lanosterol 14α-demethylase isolated from Saccharomyces cerevisiae . An in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) study was done in order to predict some pharmacokinetic and pharmacotoxicological properties. The Schiff bases showed good drug-like properties. The results of in vitro anti- Candida activity, a docking study and ADMET prediction revealed that the newly synthesized compounds have potential anti- Candida activity and evidenced the most active derivative, B10 , which can be further optimized as a lead compound.

  10. Synthesis, docking study and neuroprotective effects of some novel pyrano[3,2-c]chromene derivatives bearing morpholine/phenylpiperazine moiety.

    PubMed

    Sameem, Bilqees; Saeedi, Mina; Mahdavi, Mohammad; Nadri, Hamid; Moghadam, Farshad Homayouni; Edraki, Najmeh; Khan, Muhammad Imran; Amini, Mohsen

    2017-08-01

    Novel pyrano[3,2-c]chromene derivatives bearing morpholine/phenylpiperazine moiety were synthesized and evaluated against acetylcholinestrase (AChE) and butylcholinestrase (BuChE). Among the synthesized compounds, N-(3-cyano-4-(4-methoxyphenyl)-5-oxo-4,5-dihydropyrano[3,2-c]chromen-2-yl)-2-(4-phenylpiperazin-1-yl)acetamide (6c) exhibited the highest acetylcholinestrase inhibitory (AChEI) activity (IC 50 =1.12µM) and most of them showed moderate butylcholinestrase inhibitory activity (BChEI). Kinetic study of compound 6c confirmed mixed type of inhibition towards AChE which was in covenant with the results obtained from docking study. Also, it was evaluated against β-secretase which demonstrated low activity (inhibition percentage: 18%). It should be noted that compounds 6c, 7b, 6g, and 7d showed significant neuroprotective effects against H 2 O 2 -induced PC12 oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.

    PubMed

    Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid

    2016-07-01

    This study aims to investigate the interaction between glutathione and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopies under simulated physiological conditions (pH 7.4) and molecular docking methods. The results of fluorescence spectroscopy indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of glutathione through a static quenching mechanism. The fluorescence quenching obtained was related to the formation of BSA-glutathione complex. The values of KSV, Ka and Kb for the glutathione and BSA interaction were in the order of 10(5). The thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and also Gibb's free energy (ΔG) were determined using Van't Hoff equation. These values showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of glutathione to BSA and the stabilization of the complex. Also, the interaction of glutathione and BSA was spontaneous. The effects of glutathione on the BSA conformation were determined using UV-vis spectroscopy. Moreover, glutathione was docked in BSA using ArgusLab as a molecular docking program. It was recognized that glutathione binds within the sub-domain IIA pocket in domain II of BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Molecular docking to Toxoplasma gondii thymidylate synthase-dihydrofolate reductase and efficacy of raltitrexed in infected mice.

    PubMed

    de Paula Reis, Michelle; de Lima, Daniely Alves; Pauli, Karoline Bach; Andreotti, Carlos Eduardo Linhares; de Moraes, André Luiz Soares; Gonçalves, Daniela Dib; Navarro, Italmar Teodorico; Bueno, Paulo Sérgio Alves; Seixas, Flavio Augusto Vicente; Gasparotto Junior, Arquimedes; Lourenço, Emerson Luiz Botelho

    2018-05-01

    Toxoplasmosis is a zoonosis of worldwide distribution. Currently, two drugs, pyrimethamine and sulfadiazine, are used as a reference in the treatment of toxoplasmosis, but the resistance of Toxoplasma gondii appears as a relevant public health problem. In order to identify new drugs to toxoplasmosis treatment, we performed a molecular docking of raltitrexed to T. gondii thymidylate synthase-dihydrofolate reductase (TS-DHFR) and also evaluated its efficacy in infected mice. Initially, raltitrexed was docked on the crystallographic structures of TS-DHFR from T. gondii and Mus musculus. Then, 48 h after infection with the T. gondii RH strain, different groups of mice received an oral dose of raltitrexed (0.15, 0.75, and 1.5 mg kg -1 ). Two days after treatments, raltitrexed was able to prevent mortality and reduce the number of tachyzoites in the peritoneal fluid and liver imprints from infected mice. The results showed that raltitrexed has important protective activities against the T. gondii RH strain. Molecular docking still suggests that the effects against the parasite may be dependent on the inhibition of T. gondii thymidylate synthase. This study opens new perspectives for the use of raltitrexed in patients infected with T. gondii, especially when conventional treatments do not exhibit the expected efficacy.

  13. Optimization of pyDock for the new CAPRI challenges: Docking of homology-based models, domain-domain assembly and protein-RNA binding.

    PubMed

    Pons, Carles; Solernou, Albert; Perez-Cano, Laura; Grosdidier, Solène; Fernandez-Recio, Juan

    2010-11-15

    We describe here our results in the last CAPRI edition. We have participated in all targets, both as predictors and as scorers, using our pyDock docking methodology. The new challenges (homology-based modeling of the interacting subunits, domain-domain assembling, and protein-RNA interactions) have pushed our computer tools to the limits and have encouraged us to devise new docking approaches. Overall, the results have been quite successful, in line with previous editions, especially considering the high difficulty of some of the targets. Our docking approaches succeeded in five targets as predictors or as scorers (T29, T34, T35, T41, and T42). Moreover, with the inclusion of available information on the residues expected to be involved in the interaction, our protocol would have also succeeded in two additional cases (T32 and T40). In the remaining targets (except T37), results were equally poor for most of the groups. We submitted the best model (in ligand RMSD) among scorers for the unbound-bound target T29, the second best model among scorers for the protein-RNA target T34, and the only correct model among predictors for the domain assembly target T35. In summary, our excellent results for the new proposed challenges in this CAPRI edition showed the limitations and applicability of our approaches and encouraged us to continue developing methodologies for automated biomolecular docking. © 2010 Wiley-Liss, Inc.

  14. Using docking and alchemical free energy approach to determine the binding mechanism of eEF2K inhibitors and prioritizing the compound synthesis.

    PubMed

    Wang, Qiantao; Edupuganti, Ramakrishna; Tavares, Clint D J; Dalby, Kevin N; Ren, Pengyu

    2015-01-01

    A-484954 is a known eEF2K inhibitor with submicromolar IC50 potency. However, the binding mechanism and the crystal structure of the kinase remains unknown. Here, we employ a homology eEF2K model, docking and alchemical free energy simulations to probe the binding mechanism of eEF2K, and in turn, guide the optimization of potential lead compounds. The inhibitor was docked into the ATP-binding site of a homology model first. Three different binding poses, hypothesis 1, 2, and 3, were obtained and subsequently applied to molecular dynamics (MD) based alchemical free energy simulations. The calculated relative binding free energy of the analogs of A-484954 using the binding pose of hypothesis 1 show a good correlation with the experimental IC50 values, yielding an r (2) coefficient of 0.96 after removing an outlier (compound 5). Calculations using another two poses show little correlation with experimental data, (r (2) of less than 0.5 with or without removing any outliers). Based on hypothesis 1, the calculated relative free energy suggests that bigger cyclic groups, at R1 e.g., cyclobutyl and cyclopentyl promote more favorable binding than smaller groups, such as cyclopropyl and hydrogen. Moreover, this study also demonstrates the ability of the alchemical free energy approach in combination with docking and homology modeling to prioritize compound synthesis. This can be an effective means of facilitating structure-based drug design when crystal structures are not available.

  15. SKATE: a docking program that decouples systematic sampling from scoring.

    PubMed

    Feng, Jianwen A; Marshall, Garland R

    2010-11-15

    SKATE is a docking prototype that decouples systematic sampling from scoring. This novel approach removes any interdependence between sampling and scoring functions to achieve better sampling and, thus, improves docking accuracy. SKATE systematically samples a ligand's conformational, rotational and translational degrees of freedom, as constrained by a receptor pocket, to find sterically allowed poses. Efficient systematic sampling is achieved by pruning the combinatorial tree using aggregate assembly, discriminant analysis, adaptive sampling, radial sampling, and clustering. Because systematic sampling is decoupled from scoring, the poses generated by SKATE can be ranked by any published, or in-house, scoring function. To test the performance of SKATE, ligands from the Asetex/CDCC set, the Surflex set, and the Vertex set, a total of 266 complexes, were redocked to their respective receptors. The results show that SKATE was able to sample poses within 2 A RMSD of the native structure for 98, 95, and 98% of the cases in the Astex/CDCC, Surflex, and Vertex sets, respectively. Cross-docking accuracy of SKATE was also assessed by docking 10 ligands to thymidine kinase and 73 ligands to cyclin-dependent kinase. 2010 Wiley Periodicals, Inc.

  16. Ardipusilloside I purified from Ardisia pusilla competitively binds VEGFR and induces apoptosis in NCI-H460 cells.

    PubMed

    Zhang, Yanmin; Qu, Youle; Zhang, Jie; Wang, Xiaojuan

    2010-06-01

    The present study was to evaluate the effects of Ardipusilloside I isolated from Ardisia pusilla on the growth, vascular endothelial growth factor receptor (VEGFR) expression and apoptosis of NCI-H460 cell line by MTT, ELISA and flow cytometer, respectively. The docking assay between Ardipusilloside I and VEGFR was studied by Sybyl/Sketch module. The change of microstructure was observed by transmission electron microscope (TEM). DNA fragmentation was visualized by agarose gel electrophoresis. The protein expression of Bax and Bcl-2 was detected by immunohistochemistry (IHC). A series of changes were observed in NCI-H460 cell treated by Ardipusilloside I, including microstructure, DNA fragmentation, protein expression of VEGFR, Bax and Bcl-2. The results showed Ardipusilloside I had a good docking with VEGFR and could inhibit growth and induce apoptosis of NCI-H460 cell in a dose-dependent manner. Cell cycle was significantly stopped at the G(1) phase. Under electronic microscope, the morphology of NCI-H460 cell treated with Ardipusilloside I showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. VEGFR and Bcl-2 expression were decreased and Bax expression was increased. In conclusion, all these results demonstrate that Ardipusilloside I has a good docking with VEGFR and has an inhibitory effect on growth of NCI-H460 cell and can induce its apoptosis.

  17. The Effects of Tail Docking Method on Piglets' Behavioral Responses to a Formalin Pain Test

    USDA-ARS?s Scientific Manuscript database

    Routine piglet production procedures, for example teeth clipping, tail docking and castration, most likely cause pain and are under increasing scrutiny from the animal rights lobby. The objectives of this study were to assess the impact of 2 alternative methods of tail-docking on subsequent response...

  18. Connecting in Space: Docking with the International Space Station. Educational Brief.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This brief discusses the space shuttle and the docking procedures used with the International Space Station (ISS). Using this activity designed for grades 5-12, students demonstrate and identify procedures for determining the best method for completing the docking activity. Students will also study and identify Newton's Laws of Motion. A mockup…

  19. 78 FR 46925 - Western Pacific Fishery Management Council; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... Commercial Dock Development Study A. Contract and Project Status B. Overview of draft Dock Development Plan.... Land-side support facilities a. Outer Cove Mariana b. Puerto Rico Dump c. Echo Dock d. Sea Plan Ramp iv. Environmental Consideration and Permits v. Discussion on Preferred Site Location C. Evaluation of Preliminary...

  20. Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes.

    PubMed

    Kumar, Anil; Bora, Utpal

    2014-12-01

    DNA topoisomerase I (topo I) and II (topo II) are essential enzymes that solve the topological problems of DNA by allowing DNA strands or double helices to pass through each other during cellular processes such as replication, transcription, recombination, and chromatin remodeling. Their critical roles make topoisomerases an attractive drug target against cancer. The present molecular docking study provides insights into the inhibition of topo I and II by curcumin natural derivatives. The binding modes suggested that curcumin natural derivatives docked at the site of DNA cleavage parallel to the axis of DNA base pairing. Cyclocurcumin and curcumin sulphate were predicted to be the most potent inhibitors amongst all the curcumin natural derivatives docked. The binding modes of cyclocurcumin and curcumin sulphate were similar to known inhibitors of topo I and II. Residues like Arg364, Asn722 and base A113 (when docked to topo I-DNA complex) and residues Asp479, Gln778 and base T9 (when docked to topo II-DNA complex) seem to play important role in the binding of curcumin natural derivatives at the site of DNA cleavage.

  1. Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis

    PubMed Central

    Kumari, Divya; Sheikh, Lubna; Bhattacharya, Soumya; Webster, Thomas J; Nayar, Suprabha

    2017-01-01

    In this study, natural graphite was first converted to collagen-graphene composites and then used as templates for the synthesis of nanoparticles of silver, iron oxide, and hydroxyapatite. X-ray diffraction did not show any diffraction peaks of graphene in the composites after inorganic nucleation, compared to the naked composite which showed (002) and (004) peaks. Scanning electron micrographs showed lateral gluing/docking of these composites, possibly driven by an electrostatic attraction between the positive layers of one stack and negative layers of another, which became distorted after inorganic nucleation. Docking resulted in single layer-like characteristics in certain places, as seen under transmission electron microscopy, but sp2/sp3 ratios from Raman analysis inferred three-layer composite formation. Strain-induced folding of these layers into uniform clusters at the point of critical nucleation, revealed beautiful microstructures under scanning electron microscopy. Lastly, cell viability studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed the highest cell viability for the collagen-graphene-hydroxyapatite composites. In this manner, this study provided – to the field of nanomedicine – a new process for the synthesis of several nanoparticles (with low toxicity) of high interest for numerous medical applications. PMID:28553102

  2. Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis.

    PubMed

    Kumari, Divya; Sheikh, Lubna; Bhattacharya, Soumya; Webster, Thomas J; Nayar, Suprabha

    2017-01-01

    In this study, natural graphite was first converted to collagen-graphene composites and then used as templates for the synthesis of nanoparticles of silver, iron oxide, and hydroxyapatite. X-ray diffraction did not show any diffraction peaks of graphene in the composites after inorganic nucleation, compared to the naked composite which showed (002) and (004) peaks. Scanning electron micrographs showed lateral gluing/docking of these composites, possibly driven by an electrostatic attraction between the positive layers of one stack and negative layers of another, which became distorted after inorganic nucleation. Docking resulted in single layer-like characteristics in certain places, as seen under transmission electron microscopy, but sp 2 /sp 3 ratios from Raman analysis inferred three-layer composite formation. Strain-induced folding of these layers into uniform clusters at the point of critical nucleation, revealed beautiful microstructures under scanning electron microscopy. Lastly, cell viability studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed the highest cell viability for the collagen-graphene-hydroxyapatite composites. In this manner, this study provided - to the field of nanomedicine - a new process for the synthesis of several nanoparticles (with low toxicity) of high interest for numerous medical applications.

  3. Synthesis, in vitro β-glucuronidase inhibitory potential and molecular docking studies of quinolines.

    PubMed

    Bano, Bilquees; Arshia; Khan, Khalid Mohammed; Kanwal; Fatima, Bibi; Taha, Muhammad; Ismail, Nor Hadiani; Wadood, Abdul; Ghufran, Mehreen; Perveen, Shahnaz

    2017-10-20

    In this study synthesis and β-glucuronidase inhibitory potential of 3/5/8 sulfonamide and 8-sulfonate derivatives of quinoline (1-40) are discussed. Studies reveal that all the synthetic compounds were found to have good inhibitory activity against β-glucuronidase. Nonetheless, compounds 1, 2, 5, 13, and 22-24 having IC 50 values in the range of 1.60-8.40 μM showed superior activity than the standard saccharic acid 1,4-lactone (IC 50  = 48.4 ± 1.25 μM). Moreover, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites. Structures of all the synthetic compounds were confirmed through 1 H NMR, EI-MS and HREI-MS spectroscopic techniques. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Dissecting Nck/Dock signaling pathways in Drosophila visual system.

    PubMed

    Rao, Yong

    2005-01-01

    The establishment of neuronal connections during embryonic development requires the precise guidance and targeting of the neuronal growth cone, an expanded cellular structure at the leading tip of a growing axon. The growth cone contains sophisticated signaling systems that allow the rapid communication between guidance receptors and the actin cytoskeleton in generating directed motility. Previous studies demonstrated a specific role for the Nck/Dock SH2/SH3 adapter protein in photoreceptor (R cell) axon guidance and target recognition in the Drosophila visual system, suggesting strongly that Nck/Dock is one of the long-sought missing links between cell surface receptors and the actin cytoskeleton. In this review, I discuss the recent progress on dissecting the Nck/Dock signaling pathways in R-cell growth cones. These studies have identified additional key components of the Nck/Dock signaling pathways for linking the receptor signaling to the remodeling of the actin cytoskeleton in controlling growth-cone motility.

  5. Dissecting Nck/Dock Signaling Pathways in Drosophila Visual System

    PubMed Central

    2005-01-01

    The establishment of neuronal connections during embryonic development requires the precise guidance and targeting of the neuronal growth cone, an expanded cellular structure at the leading tip of a growing axon. The growth cone contains sophisticated signaling systems that allow the rapid communication between guidance receptors and the actin cytoskeleton in generating directed motility. Previous studies demonstrated a specific role for the Nck/Dock SH2/SH3 adapter protein in photoreceptor (R cell) axon guidance and target recognition in the Drosophila visual system, suggesting strongly that Nck/Dock is one of the long-sought missing links between cell surface receptors and the actin cytoskeleton. In this review, I discuss the recent progress on dissecting the Nck/Dock signaling pathways in R-cell growth cones. These studies have identified additional key components of the Nck/Dock signaling pathways for linking the receptor signaling to the remodeling of the actin cytoskeleton in controlling growth-cone motility. PMID:15951852

  6. Do Clinical Results and Return-to-Sport Rates After Ulnar Collateral Ligament Reconstruction Differ Based on Graft Choice and Surgical Technique?

    PubMed Central

    Erickson, Brandon J.; Cvetanovich, Gregory L.; Frank, Rachel M.; Bach, Bernard R.; Cohen, Mark S.; Bush-Joseph, Charles A.; Cole, Brian J.; Romeo, Anthony A.

    2016-01-01

    Background: Ulnar collateral ligament reconstruction (UCLR) has become a common procedure performed in overhead-throwing athletes of many athletic levels. Purpose/Hypothesis: The purpose of this study was to determine whether clinical outcomes and return-to-sport (RTS) rates differ among patients undergoing UCLR based on graft choice, surgical technique, athletic competition level, handedness, and treatment of the ulnar nerve. We hypothesized that no differences would exist in clinical outcomes or RTS rates between technique, graft choice, or other variables. Study Design: Cohort study; Level of evidence, 3. Methods: All patients who underwent UCLR from January 1, 2004 through December 31, 2014 at a single institution were identified. Charts were reviewed to determine patient age, sex, date of surgery, sport played, handedness, athletic level, surgical technique, graft type, and complications. Patients were contacted via telephone to obtain the RTS rate, Conway-Jobe score, Timmerman-Andrews score, and Kerlan-Jobe Orthopaedic Clinic (KJOC) Shoulder and Elbow score. Results: Eighty-five patients (mean age at surgery, 19.3 ± 4.7 years; 92% male; 78% right hand–dominant) underwent UCLR between 2004 and 2014 and were available for follow-up. Overall, 87% were baseball pitchers, 49.4% were college athletes, and 41.2% were high school athletes. No significant difference existed between the docking and double-docking techniques, graft choice, handedness, sex, activity level, and treatment of the ulnar nerve with regard to clinical outcomes, RTS, or subsequent surgeries (all P > .05). More complications were seen in the docking technique compared with the double-docking technique (P = .036). Hamstring autograft was used more commonly with the docking technique (P = .023) while allograft was used more commonly with the double-docking technique (P = .0006). Conclusion: Both the docking and double-docking techniques produce excellent clinical outcomes in patients undergoing UCLR. No difference in outcome scores was seen between surgical technique or graft type. The double-docking technique had fewer complications than the docking technique. PMID:27896290

  7. Design, synthesis, anticancer screening, docking studies and in silico ADME prediction of some β-carboline derivatives.

    PubMed

    Abdelsalam, Mohamed A; AboulWafa, Omaima M; M Badawey, El-Sayed A; El-Shoukrofy, Mai S; El-Miligy, Mostafa M; Gouda, Noha; Elaasser, Mahmoud M

    2018-05-22

    Medicinal interest has focused on β-carbolines as anticancer agents. Several β-carbolines were designed, synthesized and evaluated for their cytotoxic activity against MCF-7 and A-549 cancer cell lines using MTT assay. Compounds 13a, 13c, 13d and 20a were the most promising showing high selectivity indices. Compounds 13c and 20a showed potent inhibition of topoisomerase (topo-I) and kinesin spindle protein (KSP/Eg5 ATPase) which was confirmed by their docking results into the active site of both enzymes. In silico physicochemical calculations predicted that compounds 13a, 13d and 20a obeyed Lipinski's rule of five. Compounds 13c and 20a are multitarget anticancer leads that act as potent inhibitors for both topo-I and/or KSP ATPase.

  8. Identification of Biomarkers for Resistance to Fusarium oxysporum f. sp. cubense Infection and in Silico Studies in Musa paradisiaca Cultivar Puttabale through Proteomic Approach.

    PubMed

    Ramu, Venkatesh; Venkatarangaiah, Krishna; Krishnappa, Pradeepa; Shimoga Rajanna, Santosh Kumar; Deeplanaik, Nagaraja; Chandra Pal, Anup; Kini, Kukkundoor Ramachandra

    2016-02-24

    Panama wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the major disease constraints of banana production. Previously, we reported the disease resistance Musa paradisiaca cv. puttabale clones developed from Ethylmethanesulfonate and Foc culture filtrate against Foc inoculation. Here, the same resistant clones and susceptible clones were used for the study of protein accumulation against Foc inoculation by two-dimensional gel electrophoresis (2-DE), their expression pattern and an in silico approach. The present investigation revealed mass-spectrometry identified 16 proteins that were over accumulated and 5 proteins that were under accumulated as compared to the control. The polyphosphoinositide binding protein ssh2p (PBPssh2p) and Indoleacetic acid-induced-like (IAA) protein showed significant up-regulation and down-regulation. The docking of the pathogenesis-related protein (PR) with the fungal protein endopolygalacturonase (PG) exemplify the three ionic interactions and seven hydrophobic residues that tends to good interaction at the active site of PG with free energy of assembly dissociation (1.5 kcal/mol). The protein-ligand docking of the Peptide methionine sulfoxide reductase chloroplastic-like protein (PMSRc) with the ligand β-1,3 glucan showed minimum binding energy (-6.48 kcal/mol) and docking energy (-8.2 kcal/mol) with an interaction of nine amino-acid residues. These explorations accelerate the research in designing the host pathogen interaction studies for the better management of diseases.

  9. Identification of Biomarkers for Resistance to Fusarium oxysporum f. sp. cubense Infection and in Silico Studies in Musa paradisiaca Cultivar Puttabale through Proteomic Approach

    PubMed Central

    Ramu, Venkatesh; Venkatarangaiah, Krishna; Krishnappa, Pradeepa; Shimoga Rajanna, Santosh Kumar; Deeplanaik, Nagaraja; Chandra Pal, Anup; Kini, Kukkundoor Ramachandra

    2016-01-01

    Panama wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the major disease constraints of banana production. Previously, we reported the disease resistance Musa paradisiaca cv. puttabale clones developed from Ethylmethanesulfonate and Foc culture filtrate against Foc inoculation. Here, the same resistant clones and susceptible clones were used for the study of protein accumulation against Foc inoculation by two-dimensional gel electrophoresis (2-DE), their expression pattern and an in silico approach. The present investigation revealed mass-spectrometry identified 16 proteins that were over accumulated and 5 proteins that were under accumulated as compared to the control. The polyphosphoinositide binding protein ssh2p (PBPssh2p) and Indoleacetic acid-induced-like (IAA) protein showed significant up-regulation and down-regulation. The docking of the pathogenesis-related protein (PR) with the fungal protein endopolygalacturonase (PG) exemplify the three ionic interactions and seven hydrophobic residues that tends to good interaction at the active site of PG with free energy of assembly dissociation (1.5 kcal/mol). The protein-ligand docking of the Peptide methionine sulfoxide reductase chloroplastic-like protein (PMSRc) with the ligand β-1,3 glucan showed minimum binding energy (−6.48 kcal/mol) and docking energy (−8.2 kcal/mol) with an interaction of nine amino-acid residues. These explorations accelerate the research in designing the host pathogen interaction studies for the better management of diseases. PMID:28248219

  10. Acute and subacute antidiabetic studies of ENP-9, a new 1,5-diarylpyrazole derivative.

    PubMed

    Hernández-Vázquez, Eduardo; Young-Peralta, Sandra; Cerón-Romero, Litzia; García-Jiménez, Sara; Estrada-Soto, Samuel

    2018-05-17

    To explore the antihyperglycaemic and antidiabetic effects and to determine the acute toxicity of 5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (ENP-9). The antihyperglycaemic effect of ENP-9 (50 mg/kg) was determined by oral glucose tolerance test (OGTT). Also, the acute (16, 50 and 160 mg/kg) and subacute (50 mg/kg/day for 10 days) antidiabetic effects of ENP-9 were determined. After subacute treatment, blood samples were analysed to determine glucose and lipid profiles. Also, an acute toxicity determination of ENP-9 was conducted followed the OECD recommendation. Molecular docking was performed using AutoDock 4.2.6 at human cannabinoid receptor 1 (PDB code 5TGZ). Acute Administration of ENP-9 showed significant antidiabetic effect and decreased the maximum OGTT peak, compared to the control group (P < 0.05). Moreover, the 10 days treatment induced a decrease in plasma glucose levels, being significant at the end of the experiments (P < 0.05); however, triacylglycerols and cholesterol were not modified. Finally, LD 50 of ENP-9 was estimated to be greater than 2000 mg/kg. Molecular docking suggests that ENP-9 may act as rimonabant does. ENP-9 showed significant antihyperglycaemic and antidiabetic properties and also was demonstrated to be safety in the studied doses, which might allow future studies for its potential development as antidiabetic agent. © 2018 Royal Pharmaceutical Society.

  11. Gemini Simulator and Neil Armstrong

    NASA Image and Video Library

    1963-11-06

    Astronaut Neil Armstrong (left) was one of 14 astronauts, 8 NASA test pilots, and 2 McDonnell test pilots who took part in simulator studies. Armstrong was the first astronaut to participate (November 6, 1963). A.W. Vogeley described the simulator in his paper "Discussion of Existing and Planned Simulators For Space Research," "Many of the astronauts have flown this simulator in support of the Gemini studies and they, without exception, appreciated the realism of the visual scene. The simulator has also been used in the development of pilot techniques to handle certain jet malfunctions in order that aborts could be avoided. In these situations large attitude changes are sometimes necessary and the false motion cues that were generated due to earth gravity were somewhat objectionable; however, the pilots were readily able to overlook these false motion cues in favor of the visual realism." Roy F. Brissenden, noted in his paper "Initial Operations with Langley's Rendezvous Docking Facility," "The basic Gemini control studies developed the necessary techniques and demonstrated the ability of human pilots to perform final space docking with the specified Gemini-Agena systems using only visual references. ... Results... showed that trained astronauts can effect the docking with direct acceleration control and even with jet malfunctions as long as good visual conditions exist.... Probably more important than data results was the early confidence that the astronauts themselves gained in their ability to perform the maneuver in the ultimate flight mission." Francis B. Smith, noted in his paper "Simulators for Manned Space Research," "Some major areas of interest in these flights were fuel requirements, docking accuracies, the development of visual aids to assist alignment of the vehicles, and investigation of alternate control techniques with partial failure modes. However, the familiarization and confidence developed by the astronaut through flying and safely docking the simulator during these tests was one of the major contributions. For example, it was found that fuel used in docking from 200 feet typically dropped from about 20 pounds to 7 pounds after an astronaut had made a few training flights." -- Published in Barton C. Hacker and James M. Grimwood, On the Shoulders of Titans: A History of Project Gemini, NASA SP-4203; A.W. Vogeley, "Discussion of Existing and Planned Simulators For Space Research," Paper presented at the Conference on the Role of Simulation in Space Technology, August 17-21, 1964; Roy F. Brissenden, "Initial Operations with Langley's Rendezvous Docking Facility," Langley Working Paper, LWP-21, 1964; Francis B. Smith, "Simulators for Manned Space Research," Paper presented at the 1966 IEEE International convention, March 21-25, 1966.

  12. STS-79 SPACEHAB Double module in Payload Bay

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Workers in the Payload Changeout Room (PCR) at Launch Pad 39A are preparing to close the payload doors for flight on the Space Shuttle Atlantis, targeted for liftoff on Mission STS-79 around September 12. The payloads in Atlantis' cargo bay will play key roles during the upcoming spaceflight, which will be highlighted by the fourth docking between the U.S. Shuttle and Russian Space Station Mir. Located in the aft (lowermost) area of the payload bay is the SPACEHAB Double Module, filled with supplies and other items slated for transfer to the Russian Space Station Mir as well as research equipment. The SPACEHAB is connected by tunnel to the Orbiter Docking System (ODS). This view looks directly at the top of the ODS and shows clearly the Androgynous Peripheral Docking System (APDS) that interfaces with the Docking Module on Mir to achieve a linkup.

  13. DOT2: Macromolecular Docking With Improved Biophysical Models

    PubMed Central

    Roberts, Victoria A.; Thompson, Elaine E.; Pique, Michael E.; Perez, Martin S.; Eyck, Lynn Ten

    2015-01-01

    Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate a complete list of favorable candidate configu-rations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions, and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome. PMID:23695987

  14. Recent progress and future directions in protein-protein docking.

    PubMed

    Ritchie, David W

    2008-02-01

    This article gives an overview of recent progress in protein-protein docking and it identifies several directions for future research. Recent results from the CAPRI blind docking experiments show that docking algorithms are steadily improving in both reliability and accuracy. Current docking algorithms employ a range of efficient search and scoring strategies, including e.g. fast Fourier transform correlations, geometric hashing, and Monte Carlo techniques. These approaches can often produce a relatively small list of up to a few thousand orientations, amongst which a near-native binding mode is often observed. However, despite the use of improved scoring functions which typically include models of desolvation, hydrophobicity, and electrostatics, current algorithms still have difficulty in identifying the correct solution from the list of false positives, or decoys. Nonetheless, significant progress is being made through better use of bioinformatics, biochemical, and biophysical information such as e.g. sequence conservation analysis, protein interaction databases, alanine scanning, and NMR residual dipolar coupling restraints to help identify key binding residues. Promising new approaches to incorporate models of protein flexibility during docking are being developed, including the use of molecular dynamics snapshots, rotameric and off-rotamer searches, internal coordinate mechanics, and principal component analysis based techniques. Some investigators now use explicit solvent models in their docking protocols. Many of these approaches can be computationally intensive, although new silicon chip technologies such as programmable graphics processor units are beginning to offer competitive alternatives to conventional high performance computer systems. As cryo-EM techniques improve apace, docking NMR and X-ray protein structures into low resolution EM density maps is helping to bridge the resolution gap between these complementary techniques. The use of symmetry and fragment assembly constraints are also helping to make possible docking-based predictions of large multimeric protein complexes. In the near future, the closer integration of docking algorithms with protein interface prediction software, structural databases, and sequence analysis techniques should help produce better predictions of protein interaction networks and more accurate structural models of the fundamental molecular interactions within the cell.

  15. Do Clinical Results and Return-to-Sport Rates After Ulnar Collateral Ligament Reconstruction Differ Based on Graft Choice and Surgical Technique?

    PubMed

    Erickson, Brandon J; Cvetanovich, Gregory L; Frank, Rachel M; Bach, Bernard R; Cohen, Mark S; Bush-Joseph, Charles A; Cole, Brian J; Romeo, Anthony A

    2016-11-01

    Ulnar collateral ligament reconstruction (UCLR) has become a common procedure performed in overhead-throwing athletes of many athletic levels. The purpose of this study was to determine whether clinical outcomes and return-to-sport (RTS) rates differ among patients undergoing UCLR based on graft choice, surgical technique, athletic competition level, handedness, and treatment of the ulnar nerve. We hypothesized that no differences would exist in clinical outcomes or RTS rates between technique, graft choice, or other variables. Cohort study; Level of evidence, 3. All patients who underwent UCLR from January 1, 2004 through December 31, 2014 at a single institution were identified. Charts were reviewed to determine patient age, sex, date of surgery, sport played, handedness, athletic level, surgical technique, graft type, and complications. Patients were contacted via telephone to obtain the RTS rate, Conway-Jobe score, Timmerman-Andrews score, and Kerlan-Jobe Orthopaedic Clinic (KJOC) Shoulder and Elbow score. Eighty-five patients (mean age at surgery, 19.3 ± 4.7 years; 92% male; 78% right hand-dominant) underwent UCLR between 2004 and 2014 and were available for follow-up. Overall, 87% were baseball pitchers, 49.4% were college athletes, and 41.2% were high school athletes. No significant difference existed between the docking and double-docking techniques, graft choice, handedness, sex, activity level, and treatment of the ulnar nerve with regard to clinical outcomes, RTS, or subsequent surgeries (all P > .05). More complications were seen in the docking technique compared with the double-docking technique ( P = .036). Hamstring autograft was used more commonly with the docking technique ( P = .023) while allograft was used more commonly with the double-docking technique ( P = .0006). Both the docking and double-docking techniques produce excellent clinical outcomes in patients undergoing UCLR. No difference in outcome scores was seen between surgical technique or graft type. The double-docking technique had fewer complications than the docking technique.

  16. Phenyl derivative of pyranocoumarin precludes Fusarium oxysporum f.sp. Lycopersici infection in Lycopersicon esculentum via induction of enzymes of the phenylpropanoid pathway.

    PubMed

    Sangeetha, S; Sarada, D V L

    2015-01-01

    Binding of phenyl derivative of pyranocoumarin (PDP) modulated activity of fungal endopolygalacturonase in silico. Induced fit docking study of PDP with endopolygalacturonase (1HG8) showed a bifurcated hydrogen bond interaction with the protein at Lys 244 with a docking score of -3.6 and glide energy of -37.30 kcal/mol. Docking with endopolygalacturonase II (1CZF) resulted hydrogen bond formation with Lys 258 with a docking score of -2.3 and glide energy of -30.42 kcal/mol. It was hypothesized that this modulation favors accumulation of cell wall fragments (oligogalacturonides) which act as elicitors of plant defense responses. In order to prove the same, in vivo studies were carried out using a formulation developed from PDP (PDP 5EC) on greenhouse grown Lycopersicon esculentum L. The formulation was effective at different concentrations in reduction of seed infection, improvement of vigor and control of Fusarium oxysporum f.sp. lycopersici infection in L. esculentum. At a concentration of 2 %, PDP 5EC significant reduction in seed infection (95.83 %), improvement in seed vigor (64.31 %) and control of F. oxysporum f.sp. lycopersici infection (96.15 %) were observed. Further application of PDP 5EC to L. esculentum challenged with F. oxysporum f.sp. lycopersici significantly increased the activity of enzymes of the phenylpropanoid pathway, namely, peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), and enhanced the total phenolic content when compared to the control.

  17. CoMSIA and Docking Study of Rhenium Based Estrogen Receptor Ligand Analogs

    PubMed Central

    Wolohan, Peter; Reichert, David E.

    2007-01-01

    OPLS all atom force field parameters were developed in order to model a diverse set of novel rhenium based estrogen receptor ligands whose relative binding affinities (RBA) to the estrogen receptor alpha isoform (ERα) with respect to 17β-Estradiol were available. The binding properties of these novel rhenium based organometallic complexes were studied with a combination of Comparative Molecular Similarity Indices Analysis (CoMSIA) and docking. A total of 29 estrogen receptor ligands consisting of 11 rhenium complexes and 18 organic ligands were docked inside the ligand-binding domain (LBD) of ERα utilizing the program Gold. The top ranked pose was used to construct CoMSIA models from a training set of 22 of the estrogen receptor ligands which were selected at random. In addition scoring functions from the docking runs and the polar volume (PV) were also studied to investigate their ability to predict RBA ERα. A partial least-squares analysis consisting of the CoMSIA steric, electrostatic and hydrophobic indices together with the polar volume proved sufficiently predictive having a correlation coefficient, r2, of 0.94 and a cross-validated correlation coefficient, q2, utilizing the leave one out method of 0.68. Analysis of the scoring functions from Gold showed particularly poor correlation to RBA ERα which did not improve when the rhenium complexes were extracted to leave the organic ligands. The combined CoMSIA and polar volume model ranked correctly the ligands in order of increasing RBA ERα, illustrating the utility of this method as a prescreening tool in the development of novel rhenium based estrogen receptor ligands. PMID:17280694

  18. Expedition 23 Docking

    NASA Image and Video Library

    2010-04-03

    A large TV screen in Russian Mission Control Center in Korolev, Russia shows Expedition 23 Commander Oleg Kotov, right, welcoming NASA astronaut and Flight Engineer Tracy Caldwell Dyson onboard the International Space Station after she and fellow crew members Expedition 23 Soyuz Commander Alexander Skvortsov and Flight Engineer Mikhail Kornienko docked their Soyuz TMA-18 spacecraft on Sunday, April 4, 2010. Photo Credit: (NASA/Carla Cioffi)

  19. Skylab

    NASA Image and Video Library

    1972-09-01

    This September 1972 photograph shows the internal configuration of Skylab's Multiple Docking Adapter (MDA) flight article as it appeared during the Crew Compartment and Function Review at the Martin-Marietta Corporation's Space Center facility in Denver, Colorado. Designed and manufactured by the Marshall Space Flight Center, the MDA housed a number of experiment control and stowage units and provided a docking port for the Apollo Command Module.

  20. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations.

    PubMed

    Sgobba, Miriam; Caporuscio, Fabiana; Anighoro, Andrew; Portioli, Corinne; Rastelli, Giulio

    2012-12-01

    In the last decades, molecular docking has emerged as an increasingly useful tool in the modern drug discovery process, but it still needs to overcome many hurdles and limitations such as how to account for protein flexibility and poor scoring function performance. For this reason, it has been recognized that in many cases docking results need to be post-processed to achieve a significant agreement with experimental activities. In this study, we have evaluated the performance of MM-PBSA and MM-GBSA scoring functions, implemented in our post-docking procedure BEAR, in rescoring docking solutions. For the first time, the performance of this post-docking procedure has been evaluated on six different biological targets (namely estrogen receptor, thymidine kinase, factor Xa, adenosine deaminase, aldose reductase, and enoyl ACP reductase) by using i) both a single and a multiple protein conformation approach, and ii) two different software, namely AutoDock and LibDock. The assessment has been based on two of the most important criteria for the evaluation of docking methods, i.e., the ability of known ligands to enrich the top positions of a ranked database with respect to molecular decoys, and the consistency of the docking poses with crystallographic binding modes. We found that, in many cases, MM-PBSA and MM-GBSA are able to yield higher enrichment factors compared to those obtained with the docking scoring functions alone. However, for only a minority of the cases, the enrichment factors obtained by using multiple protein conformations were higher than those obtained by using only one protein conformation. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. First report on 3D-QSAR and molecular dynamics based docking studies of GCPII inhibitors for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Pandit, Amit; Sengupta, Sagnik; Krishnan, Mena Asha; Reddy, Ramesh B.; Sharma, Rajesh; Venkatesh, Chelvam

    2018-05-01

    Prostate Specific Membrane Antigen (PSMA) or Glutamate carboxypeptidase II (GCPII) has been identified as an important target in diagnosis and therapy of prostate cancer. Among several types of inhibitors, urea based inhibitors are the most common and widely employed in preclinical and clinical studies. Computational studies have been carried out to uncover active sites and interaction of PSMA inhibitors with the protein by modifying the core structure of the ligand. Analysis of the literature, however, show lack of 3-D quantitative structure activity relationship (QSAR) and molecular dynamics based molecular docking study to identify structural modifications responsible for better GCPII inhibitory activity. The present study aims to fulfil this gap by analysing well known PSMA inhibitors reported in the literature with known experimental PSMA inhibition constants. Also in order to validate the in silico study, a new GCPII inhibitor 7 was designed, synthesized and experimental PSMA enzyme inhibition was evaluated by using freshly isolated PSMA protein from human cancer cell line derived from lymph node, LNCaP. 3D-QSAR CoMFA models on 58 urea based GCPII inhibitors were generated, and the best correlation was obtained in Gast-Huck charge assigning method with q2, r2 and predictive r2 values as 0.592, 0.995 and 0.842 respectively. Moreover, steric, electrostatic, and hydrogen bond donor field contribution analysis provided best statistical values from CoMSIA model (q2, r2 and predictive r2 as 0.527, 0.981 and 0.713 respectively). Contour maps study revealed that electrostatic field contribution is the major factor for discovering better binding affinity ligands. Further molecular dynamic assisted molecular docking was also performed on GCPII receptor (PDB ID 4NGM) and most active GCPII inhibitor, DCIBzL. 4NGM co-crystallised ligand, JB7 was used to validate the docking procedure and the amino acid interactions present in JB7 are compared with DCIBzL. The results suggest that Arg210, Asn257, Gly518, Tyr552, Lys699, and Tyr700 amino acid residues may play a crucial role in GCPII inhibition. Molecular Dynamics Simulation provides information about docked pose stability of DCIBzL. By combination of CoMFA-CoMSIA field analysis and docking interaction analysis studies, conclusive SAR was generated for urea based derivatives based on which GCPII inhibitor 7 was designed and chemically synthesized in our laboratory. Evaluation of GCPII inhibitory activity of 7 by performing NAALADase assay provided IC50 value of 113 nM which is in close agreement with in silico predicted value (119 nM). Thus we have successfully validated our 3D-QSAR and molecular docking based designing of GCPII inhibitors methodology through biological experiments. This conclusive SAR would be helpful to generate novel and more potent GCPII inhibitors for drug delivery applications.

  2. In silico studies and fluorescence binding assays of potential anti-prion compounds reveal an important binding site for prion inhibition from PrP(C) to PrP(Sc).

    PubMed

    Pagadala, Nataraj S; Perez-Pineiro, Rolando; Wishart, David S; Tuszynski, Jack A

    2015-02-16

    To understand the pharmacophore properties of 2-aminothiazoles and design novel inhibitors against the prion protein, a highly predictive 3D quantitative structure-activity relationship (QSAR) has been developed by performing comparative molecular field analysis (CoMFA) and comparative similarity analysis (CoMSIA). Both CoMFA and CoMSIA maps reveal the presence of the oxymethyl groups in meta and para positions on the phenyl ring of compound 17 (N-[4-(3,4-dimethoxyphenyl)-1,3-thiazol-2-yl]quinolin-2-amine), is necessary for activity while electro-negative nitrogen of quinoline is highly favorable to enhance activity. The blind docking results for these compounds show that the compound with quinoline binds with higher affinity than isoquinoline and naphthalene groups. Out of 150 novel compounds retrieved using finger print analysis by pharmacophoric model predicted based on five test sets of compounds, five compounds with diverse scaffolds were selected for biological evaluation as possible PrP inhibitors. Molecular docking combined with fluorescence quenching studies show that these compounds bind to pocket-D of SHaPrP near Trp145. The new antiprion compounds 3 and 6, which bind with the interaction energies of -12.1 and -13.2 kcal/mol, respectively, show fluorescence quenching with binding constant (Kd) values of 15.5 and 44.14 μM, respectively. Further fluorescence binding assays with compound 5, which is similar to 2-aminothiazole as a positive control, also show that the molecule binds to the pocket-D with the binding constant (Kd) value of 84.7 μM. Finally, both molecular docking and a fluorescence binding assay of noscapine as a negative control reveals the same binding site on the surface of pocket-A near a rigid loop between β2 and α2 interacting with Arg164. This high level of correlation between molecular docking and fluorescence quenching studies confirm that these five compounds are likely to act as inhibitors for prion propagation while noscapine might act as a prion accelerator from PrP(C) to PrP(Sc). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Game Theoretic Approach to Post-Docked Satellite Control

    NASA Technical Reports Server (NTRS)

    Hiramatsu, Takashi; Fitz-Coy, Norman G.

    2007-01-01

    This paper studies the interaction between two satellites after docking. In order to maintain the docked state with uncertainty in the motion of the target vehicle, a game theoretic controller with Stackelberg strategy to minimize the interaction between the satellites is considered. The small perturbation approximation leads to LQ differential game scheme, which is validated to address the docking interactions between a service vehicle and a target vehicle. The open-loop solution are compared with Nash strategy, and it is shown that less control efforts are obtained with Stackelberg strategy.

  4. Dredging Research Program. Dredge Mooring Study, Recommended Design, Phase 2 Report

    DTIC Science & Technology

    1992-05-01

    describes the amount of dock space and staging area required (250 ft by 300 ft of dock space), crane requirements (a 50- to 60-ton crane ), and time and...including a diver) in 1 week or less (5 days minimum). With the addition of a second crane and second anchor handling vessel, the assembly and installation...describes the amount of dock space and staging area required (250 ft by 300 ft of dock space), crane requirements (a 50- to 60-ton crane ), and time and

  5. Ursolic acid derivatives as potential antidiabetic agents: In vitro, in vivo, and in silico studies.

    PubMed

    Guzmán-Ávila, Ricardo; Flores-Morales, Virginia; Paoli, Paolo; Camici, Guido; Ramírez-Espinosa, Juan José; Cerón-Romero, Litzia; Navarrete-Vázquez, Gabriel; Hidalgo-Figueroa, Sergio; Yolanda Rios, Maria; Villalobos-Molina, Rafael; Estrada-Soto, Samuel

    2018-03-01

    Hit, Lead & Candidate Discovery Protein tyrosine phosphatase 1B (PTP-1B) has attracted interest as a novel target for the treatment of type 2 diabetes, this because its role in the insulin-signaling pathway as a negative regulator. Thus, the aim of current work was to obtain seven ursolic acid derivatives as potential antidiabetic agents with PTP-1B inhibition as main mechanism of action. Furthermore, derivatives 1-7 were submitted in vitro to enzymatic PTP-1B inhibition being 3, 5, and 7 the most active compounds (IC 50  = 5.6, 4.7, and 4.6 μM, respectively). In addition, results were corroborated with in silico docking studies with PTP-1B orthosteric site A and extended binding site B, showed that 3 had polar and Van der Waals interactions in both sites with Lys120, Tyr46, Ser216, Ala217, Ile219, Asp181, Phe182, Gln262, Val49, Met258, and Gly259, showing a docking score value of -7.48 Kcal/mol, being more specific for site A. Moreover, compound 7 showed polar interaction with Gln262 and Van der Waals interactions with Ala217, Phe182, Ile219, Arg45, Tyr46, Arg47, Asp48, and Val49 with a predictive docking score of -6.43 kcal/mol, suggesting that the potential binding site could be localized in the site B adjacent to the catalytic site A. Finally, derivatives 2 and 7 (50 mg/kg) were selected to establish their in vivo antidiabetic effect using a noninsulin-dependent diabetes mice model, showing significant blood glucose lowering compared with control group (p < .05). © 2018 Wiley Periodicals, Inc.

  6. Modeling and Proposed Molecular Mechanism of Hydroxyurea Through Docking and Molecular Dynamic Simulation to Curtail the Action of Ribonucleotide Reductase.

    PubMed

    Iman, Maryam; Khansefid, Zeynab; Davood, Asghar

    2016-01-01

    Ribonucleotide Reductase (RNR) is an important anticancer chemotherapy target. It has main key role in DNA synthesis and cell growth. Therefore several RNR inhibitors, such as hydroxyurea, have entered the clinical trials. Based on our proposed mechanism, radical site of RNR protein reacts with hydroxyurea in which hydroxyurea is converted into its oxidized form compound III, and whereby the tyrosyl radical is converted into a normal tyrosine residue. In this study, docking and molecular dynamics simulations were used for proposed molecular mechanism of hydroxyurea in RNR inhibition as anticancer agent. The binding affinity of hydroxyurea and compound III to RNR was studied by docking method. The docking study was performed for the crystal structure of human RNR with the radical scavenger Hydroxyurea and its oxidized form to inhibit the human RNR. hydroxyurea and compound III bind at the active site with Tyr-176, which are essential for free radical formation. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2. To confirm the binding mode of inhibitors, the molecular dynamics (MD) simulations were performed using GROMACS 4.5.5, based upon the docked conformation of inhibitors. Both of the studied compounds stayed in the active site. The results of MD simulations confirmed the binding mode of ligands, accuracy of docking and the reliability of active conformations which were obtained by AutoDock. MD studies confirm our proposed mechanism in which compound III reacts with the active site residues specially Tyr-176, and inhibits the radical generation and subsequently inhibits the RNR enzyme.

  7. Molecular Docking Study on Galantamine Derivatives as Cholinesterase Inhibitors.

    PubMed

    Atanasova, Mariyana; Yordanov, Nikola; Dimitrov, Ivan; Berkov, Strahil; Doytchinova, Irini

    2015-06-01

    A training set of 22 synthetic galantamine derivatives binding to acetylcholinesterase was docked by GOLD and the protocol was optimized in terms of scoring function, rigidity/flexibility of the binding site, presence/absence of a water molecule inside and radius of the binding site. A moderate correlation was found between the affinities of compounds expressed as pIC50 values and their docking scores. The optimized docking protocol was validated by an external test set of 11 natural galantamine derivatives and the correlation coefficient between the docking scores and the pIC50 values was 0.800. The derived relationship was used to analyze the interactions between galantamine derivatives and AChE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. O-desmethylquinine as a cyclooxygenase-2 (COX-2) inhibitors using AutoDock Vina

    NASA Astrophysics Data System (ADS)

    Damayanti, Sophi; Mahardhika, Andhika Bintang; Ibrahim, Slamet; Chong, Wei Lim; Lee, Vannajan Sanghiran; Tjahjono, Daryono Hadi

    2014-10-01

    Computational approach was employed to evaluate the biological activity of novel cyclooxygenase-2 COX-2 inhibitor, O-desmethylquinine, in comparison to quinine as common inhibitor which can also be used an agent of antipyretic, antimalaria, analgesic and antiinflamation. The molecular models of the compound were constructed and optimized with the density function theory with at the B3LYP/6-31G (d,p) level using Gaussian 09 program. Molecular docking studies of the compounds were done to obtain the COX-2 complex structures and their binding energies were analyzed using the AutoDock Vina. The results of docking of the two ligands were comparable and cannot be differentiated from the energy scoring function with AutoDock Vina.

  9. Dock/Nck facilitates PTP61F/PTP1B regulation of insulin signalling.

    PubMed

    Wu, Chia-Lun; Buszard, Bree; Teng, Chun-Hung; Chen, Wei-Lin; Warr, Coral G; Tiganis, Tony; Meng, Tzu-Ching

    2011-10-01

    PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.

  10. Natural Products as New Treatment Options for Trichomoniasis: A Molecular Docking Investigation.

    PubMed

    Setzer, Mary Snow; Byler, Kendall G; Ogungbe, Ifedayo Victor; Setzer, William N

    2017-01-27

    Trichomoniasis, caused by the parasitic protozoan Trichomonas vaginalis, is the most common non-viral sexually-transmitted disease, and there can be severe complications from trichomoniasis. Antibiotic resistance in T. vaginalis is increasing, but there are currently no alternatives treatment options. There is a need to discover and develop new chemotherapeutic alternatives. Plant-derived natural products have long served as sources for new medicinal agents, as well as new leads for drug discovery and development. In this work, we have carried out an in silico screening of 952 antiprotozoal phytochemicals with specific protein drug targets of T. vaginalis. A total of 42 compounds showed remarkable docking properties to T. vaginalis methionine gamma-lyase (TvMGL) and to T. vaginalis purine nucleoside phosphorylase (TvPNP). The most promising ligands were polyphenolic compounds, and several of these showed docking properties superior to either co-crystallized ligands or synthetic enzyme inhibitors.

  11. Synthesis of 6-chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives: Antidiabetic, antioxidant, β-glucuronidase inhibiton and their molecular docking studies.

    PubMed

    Taha, Muhammad; Ismail, Nor Hadiani; Imran, Syahrul; Rashwan, Hesham; Jamil, Waqas; Ali, Sajjad; Kashif, Syed Muhammad; Rahim, Fazal; Salar, Uzma; Khan, Khalid Mohammed

    2016-04-01

    6-Chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives 1-26 were synthesized and characterized by various spectroscopic techniques. All these derivatives were evaluated for their antiglycation, antioxidant and β-glucuronidase potential followed their docking studies. In antiglycation assay, compound 2 (IC50=240.10±2.50μM) and 4 (IC50=240.30±2.90μM) was found to be most active compound of this series, while compounds 3 (IC50=260.10±2.50μM), 6 (IC50=290.60±3.60μM), 13 (IC50=288.20±3.00μM) and 26 (IC50=292.10±3.20μM) also showed better activities than the standard rutin (IC50=294.50±1.50μM). In antioxidant assay, compound 1 (IC50=69.45±0.25μM), 2 (IC50=58.10±2.50μM), 3 (IC50=74.25±1.10μM), and 4 (IC50=72.50±3.30μM) showed good activities. In β-glucuronidase activity, compounds 3 (IC50=29.25±0.50μM), compound 1 (IC50=30.10±0.60μM) and compound 4 (IC50=46.10±1.10μM) showed a significant activity as compared to than standard D-Saccharic acid 1,4-lactonec (IC50=48.50±1.25μM) and their interaction with the enzyme was confirm by docking studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Synthesis, antimalarial activity and molecular docking of hybrid 4-aminoquinoline-1,3,5-triazine derivatives.

    PubMed

    Bhat, Hans Raj; Singh, Udaya Pratap; Thakur, Anjali; Kumar Ghosh, Surajit; Gogoi, Kabita; Prakash, Anil; Singh, Ramendra K

    2015-10-01

    A series of novel hybrid 4-aminoquinoline 1,3,5-triazine derivatives was synthesized in a five-steps reaction and evaluated for their in vitro antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (RKL-2) strains of Plasmodium falciparum. Entire synthetic derivatives showed higher antimalarial activity on the sensitive strain while two compounds, viz., 9a and 9c displayed good activity against both the strains of P. falciparum. The observed activity was further substantiated by docking study on both wild and qradruple mutant type P. falciparum dihydrofolate reductase-thymidylate synthase (pf-DHFR-TS). Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Molecular dynamics simulation studies suggests unconventional roles of non-secretary laccases from enteropathogenic gut bacteria and Cryptococcus neoformans serotype D.

    PubMed

    Sharma, Krishna Kant; Singh, Deepti; Rawat, Surender

    2018-04-01

    Laccase in Cryptococcus neoformans is covalently linked to the carbohydrate moiety of the cell wall, which allows it to get access to the different substrates for catalyzing their oxidation and therefore plays a vital role in the virulence. The laccase gene (3.0 kb) from C. neoformans serotype D was amplified, cloned and sequenced for protein modeling, docking and simulation studies. The three dimensional homology models of laccase protein from C. neoformans and other pathogenic gut bacteria were docked with selected biomolecules like prostaglandins (PG), membrane phospholipids, neurotransmitters (serotonin) using GOLD software. The GOLDscore values of laccase from C. neoformans docked with prostaglandinH 2 (59.76), prostaglandinG 2 (59.45), prostaglandinE 2 (60.99), phosphatidylinositol (54.95), phosphatidylcholine (46.26), phosphatidylserine (55.26), arachidonic acid (53.08) and serotonin (46.22) were similar to the laccase from enteropathogenic bacteria but showed a better binding affinity as compared to that of the non-pathogenic bacteria (e.g. Bacillus safensis, Bacillus pumilus and Bacillus subtilis). The RMSD of MD simulation study done for 25 ns using laccase protein from C. neoformans complexed with phosphatidylcholine was found to be highly stable, followed by the laccase-PGE 2 and laccase-serotonin complexes. Furthermore, the binding free energy results were found to support the docking and MD simulation results. The present study implies that few candidate ligands can be intermediate substrate in the catalysis of microbial laccases, which can further play some crucial role in the cell signaling and pathogenesis of enteropathogenic gut micro flora and C. neoformans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Inhibitory effect of apocarotenoids on the activity of tyrosinase: Multi-spectroscopic and docking studies.

    PubMed

    Anantharaman, Amrita; Hemachandran, Hridya; Priya, Rajendra Rao; Sankari, Mohan; Gopalakrishnan, Mohan; Palanisami, Nallasamy; Siva, Ramamoorthy

    2016-01-01

    In this present study, the inhibitory mechanism of three selected apocarotenoids (bixin, norbixin and crocin) on the diphenolase activity of tyrosinase has been investigated. The preliminary screening results indicated that apocarotenoids inhibited tyrosinase activity in a dose-dependent manner. Kinetic analysis revealed that apocarotenoids reversibly inhibited tyrosinase activity. Analysis of fluorescence spectra showed that apocarotenoids quenched the intrinsic fluorescence intensity of the tyrosinase. Further, molecular docking results implied that apocarotenoids were allosterically bound to tyrosinase through hydrophobic interactions. The results of the in vitro studies suggested that higher concentrations of bixin and norbixin inhibited tyrosinase activity in B16F0 melanoma cells. Our results suggested that apocarotenoids could form the basis for the design of novel tyrosinase inhibitors. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise.

    PubMed

    Kumar, Ashutosh; Zhang, Kam Y J

    2016-06-27

    To evaluate the applicability of shape similarity in docking-based pose selection and virtual screening, we participated in the CSARdock2014 benchmark exercise for identifying the correct docking pose of inhibitors targeting factor XA, spleen tyrosine kinase, and tRNA methyltransferase. This exercise provides a valuable opportunity for researchers to test their docking programs, methods, and protocols in a blind testing environment. In the CSARdock2014 benchmark exercise, we have implemented an approach that uses ligand 3D shape similarity to facilitate docking-based pose selection and virtual screening. We showed here that ligand 3D shape similarity between bound poses could be used to identify the native-like pose from an ensemble of docking-generated poses. Our method correctly identified the native pose as the top-ranking pose for 73% of test cases in a blind testing environment. Moreover, the pose selection results also revealed an excellent correlation between ligand 3D shape similarity scores and RMSD to X-ray crystal structure ligand. In the virtual screening exercise, the average RMSD for our pose prediction was found to be 1.02 Å, and it was one of the top performances achieved in CSARdock2014 benchmark exercise. Furthermore, the inclusion of shape similarity improved virtual screening performance of docking-based scoring and ranking. The coefficient of determination (r(2)) between experimental activities and docking scores for 276 spleen tyrosine kinase inhibitors was found to be 0.365 but reached 0.614 when the ligand 3D shape similarity was included.

  16. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking

    PubMed Central

    2014-01-01

    Background Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. In this paper, we propose a new re-ranking technique using a new energy-based scoring function, namely IFACEwat - a combined Interface Atomic Contact Energy (IFACE) and water effect. The IFACEwat aims to further improve the discrimination of the near-native structures of the initial rigid docking algorithm ZDOCK3.0.2. Unlike other re-ranking techniques, the IFACEwat explicitly implements interfacial water into the protein interfaces to account for the water-mediated contacts during the protein interactions. Results Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. Conclusions With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near native structures found. As our implementation so far targeted to improve the results of ZDOCK3.0.2, and particularly for the Antigen/Antibody complexes, it is expected in the near future that more implementations will be conducted to be applicable for other initial rigid docking algorithms. PMID:25521441

  17. Binding modes of environmental endocrine disruptors to human serum albumin: insights from STD-NMR, ITC, spectroscopic and molecular docking studies.

    PubMed

    Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui

    2017-09-11

    Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.

  18. The influence of spatial ability and experience on performance during spaceship rendezvous and docking.

    PubMed

    Du, Xiaoping; Zhang, Yijing; Tian, Yu; Huang, Weifen; Wu, Bin; Zhang, Jingyu

    2015-01-01

    Manual rendezvous and docking (manual RVD) is a challenging space task for astronauts. Previous research showed a correlation between spatial ability and manual RVD skills among participants at early stages of training, but paid less attention to experts. Therefore, this study tried to explore the role of spatial ability in manual RVD skills in two groups of trainees, one relatively inexperienced and the other experienced operators. Additionally, mental rotation has been proven essential in RVD and was tested in this study among 27 male participants, 15 novices, and 12 experts. The participants performed manual RVD tasks in a high fidelity simulator. Results showed that experience moderated the relation between mental rotation ability and manual RVD performance. On one hand, novices with high mental rotation ability tended to perform that RVD task more successfully; on the other hand, experts with high mental rotation ability showed not only no performance advantage in the final stage of the RVD task, but had certain disadvantages in their earlier processes. Both theoretical and practical implications were discussed.

  19. The influence of spatial ability and experience on performance during spaceship rendezvous and docking

    PubMed Central

    Du, Xiaoping; Zhang, Yijing; Tian, Yu; Huang, Weifen; Wu, Bin; Zhang, Jingyu

    2015-01-01

    Manual rendezvous and docking (manual RVD) is a challenging space task for astronauts. Previous research showed a correlation between spatial ability and manual RVD skills among participants at early stages of training, but paid less attention to experts. Therefore, this study tried to explore the role of spatial ability in manual RVD skills in two groups of trainees, one relatively inexperienced and the other experienced operators. Additionally, mental rotation has been proven essential in RVD and was tested in this study among 27 male participants, 15 novices, and 12 experts. The participants performed manual RVD tasks in a high fidelity simulator. Results showed that experience moderated the relation between mental rotation ability and manual RVD performance. On one hand, novices with high mental rotation ability tended to perform that RVD task more successfully; on the other hand, experts with high mental rotation ability showed not only no performance advantage in the final stage of the RVD task, but had certain disadvantages in their earlier processes. Both theoretical and practical implications were discussed. PMID:26236252

  20. ARCADE small-scale docking mechanism for micro-satellites

    NASA Astrophysics Data System (ADS)

    Boesso, A.; Francesconi, A.

    2013-05-01

    The development of on-orbit autonomous rendezvous and docking (ARD) capabilities represents a key point for a number of appealing mission scenarios that include activities of on-orbit servicing, automated assembly of modular structures and active debris removal. As of today, especially in the field of micro-satellites ARD, many fundamental technologies are still missing or require further developments and micro-gravity testing. In this framework, the University of Padova, Centre of Studies and Activities for Space (CISAS), developed the Autonomous Rendezvous Control and Docking Experiment (ARCADE), a technology demonstrator intended to fly aboard a BEXUS stratospheric balloon. The goal was to design, build and test, in critical environment conditions, a proximity relative navigation system, a custom-made reaction wheel and a small-size docking mechanism. The ARCADE docking mechanism was designed against a comprehensive set of requirements and it can be classified as small-scale, central, gender mating and unpressurized. The large use of commercial components makes it low-cost and simple to be manufactured. Last, it features a good tolerance to off-nominal docking conditions and a by-design soft docking capability. The final design was extensively verified to be compliant with its requirements by means of numerical simulations and physical testing. In detail, the dynamic behaviour of the mechanism in both nominal and off-nominal conditions was assessed with the multibody dynamics analysis software MD ADAMS 2010 and functional tests were carried out within the fully integrated ARCADE experiment to ensure the docking system efficacy and to highlight possible issues. The most relevant results of the study will be presented and discussed in conclusion to this paper.

  1. Molecular Docking Studies of Catechin and Its Derivatives as Anti-bacterial Inhibitor for Glucosamine-6-Phosphate Synthase

    NASA Astrophysics Data System (ADS)

    Fikrika, H.; Ambarsari, L.; Sumaryada, T.

    2016-01-01

    Molecular docking simulation of catechin and its derivatives on Glucosamine-6- Phosphate Synthase (GlmS) has been performed in this research. GlmS inhibition by a particular ligand will suppress the production of bacterial cell wall and significantly reduce the population of invading bacteria. In this study, catechin derivatives i.e epicatechin, galloatechin and epigalloatechin were found to have stronger binding affinities as compared to natural ligand of GlmS, Fructose-6-Phosphate (F6P). Those three ligands were docked on the same pocket in GlmS target as F6P, with 70% binding sites similarity. Based on the docking results, gallocatechin turns out to be the most potent ligand for anti-bacterial agent with ΔG= -8.00 kcal/mol. The docking between GlmS and catechin derivatives are characterized by a constant present of a strong hydrogen bond between functional group O3 and Ser-349. This hydrogen bond most likely plays a significant role in the docking mechanism and binding modes selection. The surprising result is catechin itself exhibited a quite strong binding with GlmS (ΔG= -7.80 kcal.mol), but docked on a completely different pocket compared to other ligands. This results suggest that catechin might still have a curing effect but with a completely different pathway and mechanism as compared to its derivatives.

  2. Design-Based Peptidomimetic Ligand Discovery to Target HIV TAR RNA Using Comparative Analysis of Different Docking Methods.

    PubMed

    Fu, Junjie; Xia, Amy; Dai, Yao; Qi, Xin

    2016-01-01

    Discovering molecules capable of binding to HIV trans-activation responsive region (TAR) RNA thereby disrupting its interaction with Tat protein is an attractive strategy for developing novel antiviral drugs. Computational docking is considered as a useful tool for predicting binding affinity and conducting virtual screening. Although great progress in predicting protein-ligand interactions has been achieved in the past few decades, modeling RNA-ligand interactions is still largely unexplored due to the highly flexible nature of RNA. In this work, we performed molecular docking study with HIV TAR RNA using previously identified cyclic peptide L22 and its analogues with varying affinities toward HIV-1 TAR RNA. Furthermore, sarcosine scan was conducted to generate derivatives of CGP64222, a peptide-peptoid hybrid with inhibitory activity on Tat/TAR RNA interaction. Each compound was docked using CDOCKER, Surflex-Dock and FlexiDock to compare the effectiveness of each method. It was found that FlexiDock energy values correlated well with the experimental Kd values and could be used to predict the affinity of the ligands toward HIV-1 TAR RNA with a superior accuracy. Our results based on comparative analysis of different docking methods in RNA-ligand modeling will facilitate the structure-based discovery of HIV TAR RNA ligands for antiviral therapy.

  3. Predicting the Accuracy of Protein–Ligand Docking on Homology Models

    PubMed Central

    BORDOGNA, ANNALISA; PANDINI, ALESSANDRO; BONATI, LAURA

    2011-01-01

    Ligand–protein docking is increasingly used in Drug Discovery. The initial limitations imposed by a reduced availability of target protein structures have been overcome by the use of theoretical models, especially those derived by homology modeling techniques. While this greatly extended the use of docking simulations, it also introduced the need for general and robust criteria to estimate the reliability of docking results given the model quality. To this end, a large-scale experiment was performed on a diverse set including experimental structures and homology models for a group of representative ligand–protein complexes. A wide spectrum of model quality was sampled using templates at different evolutionary distances and different strategies for target–template alignment and modeling. The obtained models were scored by a selection of the most used model quality indices. The binding geometries were generated using AutoDock, one of the most common docking programs. An important result of this study is that indeed quantitative and robust correlations exist between the accuracy of docking results and the model quality, especially in the binding site. Moreover, state-of-the-art indices for model quality assessment are already an effective tool for an a priori prediction of the accuracy of docking experiments in the context of groups of proteins with conserved structural characteristics. PMID:20607693

  4. A conservation and biophysics guided stochastic approach to refining docked multimeric proteins.

    PubMed

    Akbal-Delibas, Bahar; Haspel, Nurit

    2013-01-01

    We introduce a protein docking refinement method that accepts complexes consisting of any number of monomeric units. The method uses a scoring function based on a tight coupling between evolutionary conservation, geometry and physico-chemical interactions. Understanding the role of protein complexes in the basic biology of organisms heavily relies on the detection of protein complexes and their structures. Different computational docking methods are developed for this purpose, however, these methods are often not accurate and their results need to be further refined to improve the geometry and the energy of the resulting complexes. Also, despite the fact that complexes in nature often have more than two monomers, most docking methods focus on dimers since the computational complexity increases exponentially due to the addition of monomeric units. Our results show that the refinement scheme can efficiently handle complexes with more than two monomers by biasing the results towards complexes with native interactions, filtering out false positive results. Our refined complexes have better IRMSDs with respect to the known complexes and lower energies than those initial docked structures. Evolutionary conservation information allows us to bias our results towards possible functional interfaces, and the probabilistic selection scheme helps us to escape local energy minima. We aim to incorporate our refinement method in a larger framework which also enables docking of multimeric complexes given only monomeric structures.

  5. Predicting bioactive conformations and binding modes of macrocycles

    NASA Astrophysics Data System (ADS)

    Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen

    2016-10-01

    Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.

  6. GPU acceleration of Dock6's Amber scoring computation.

    PubMed

    Yang, Hailong; Zhou, Qiongqiong; Li, Bo; Wang, Yongjian; Luan, Zhongzhi; Qian, Depei; Li, Hanlu

    2010-01-01

    Dressing the problem of virtual screening is a long-term goal in the drug discovery field, which if properly solved, can significantly shorten new drugs' R&D cycle. The scoring functionality that evaluates the fitness of the docking result is one of the major challenges in virtual screening. In general, scoring functionality in docking requires a large amount of floating-point calculations, which usually takes several weeks or even months to be finished. This time-consuming procedure is unacceptable, especially when highly fatal and infectious virus arises such as SARS and H1N1, which forces the scoring task to be done in a limited time. This paper presents how to leverage the computational power of GPU to accelerate Dock6's (http://dock.compbio.ucsf.edu/DOCK_6/) Amber (J. Comput. Chem. 25: 1157-1174, 2004) scoring with NVIDIA CUDA (NVIDIA Corporation Technical Staff, Compute Unified Device Architecture - Programming Guide, NVIDIA Corporation, 2008) (Compute Unified Device Architecture) platform. We also discuss many factors that will greatly influence the performance after porting the Amber scoring to GPU, including thread management, data transfer, and divergence hidden. Our experiments show that the GPU-accelerated Amber scoring achieves a 6.5× speedup with respect to the original version running on AMD dual-core CPU for the same problem size. This acceleration makes the Amber scoring more competitive and efficient for large-scale virtual screening problems.

  7. Molecular docking and molecular dynamics studies on the interactions of hydroxylated polybrominated diphenyl ethers to estrogen receptor alpha.

    PubMed

    Lu, Qun; Cai, Zhengqing; Fu, Jie; Luo, Siyi; Liu, Chunsheng; Li, Xiaolin; Zhao, Dongye

    2014-03-01

    Environmental estrogens have attracted great concerns. Recent studies have indicated that some hydroxylated polybrominated diphenyl ethers (HO-PBDEs) can interact with estrogen receptor (ER), and exhibit estrogenic activity. However, interactions between HO-PBDEs and ER are not well understood. In this work, molecular docking and molecular dynamics (MD) simulations were performed to characterize interactions of two HO-PBDEs (4'-HO-BDE30 and 4'-HO-BDE121) with ERα. Surflex-Dock was employed to reveal the probable binding conformations of the compounds at the active site of ERα; MD simulation was used to determine the detailed binding process. The driving forces of the binding between HO-PBDEs and ERα were van der Waals and electrostatic interactions. The decomposition of the binding free energy indicated that the hydrogen bonds between the residues Glu353, Gly521 and ligands were crucial for anchoring the ligands into the active site of ERα and stabilizing their conformations. The results showed that different interaction modes and different specific interactions with some residues were responsible for the different estrogenic activities of the two HO-PBDEs. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Investigations of FAK inhibitors: a combination of 3D-QSAR, docking, and molecular dynamics simulations studies.

    PubMed

    Cheng, Peng; Li, Jiaojiao; Wang, Juan; Zhang, Xiaoyun; Zhai, Honglin

    2018-05-01

    Focal adhesion kinase (FAK) is one kind of tyrosine kinases that modulates integrin and growth factor signaling pathways, which is a promising therapeutic target because of involving in cancer cell migration, proliferation, and survival. To investigate the mechanism between FAK and triazinic inhibitors and design high activity inhibitors, a molecular modeling integrated with 3D-QSAR, molecular docking, molecular dynamics simulations, and binding free energy calculations was performed. The optimum CoMFA and CoMSIA models showed good reliability and satisfactory predictability (with Q 2  = 0.663, R 2  = 0.987, [Formula: see text] = 0.921 and Q 2  = 0.670, R 2  = 0.981, [Formula: see text] = 0.953). Its contour maps could provide structural features to improve inhibitory activity. Furthermore, a good consistency between contour maps, docking, and molecular dynamics simulations strongly demonstrates that the molecular modeling is reliable. Based on it, we designed several new compounds and their inhibitory activities were validated by the molecular models. We expect our studies could bring new ideas to promote the development of novel inhibitors with higher inhibitory activity for FAK.

  9. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    NASA Astrophysics Data System (ADS)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  10. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives.

    PubMed

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-15

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Isolation and Structure Elucidation, Molecular Docking Studies of Screlotiumol from Soil Borne Fungi Screlotium rolfsii and their Reversal of Multidrug Resistance in Mouse Lymphoma Cells.

    PubMed

    Ahmad, Bashir; Rizwan, Muhammad; Rauf, Abdur; Raza, Muslim; Azam, Sadiq; Bashir, Shumaila; Molnar, Joseph; Csonka, Akos; Szabo, Diana

    2016-01-01

    A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one (1) was isolated from an ethyl acetate extract of the borne fungi Screlotium rolfsii. Its chemical structure was elucidated by spectroscopic analysis. Screlotiumol 1 were evaluated for their effects on the reversion of multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) of the soil borne fungi. The multidrug resistant P-glycoprotein is a target for chemotherapeutic drugs in cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound-1 also showed better results as compared with the standard. Therefore the preliminary results obtained from this study suggest that screlotiumol 1 could be used as a potential agent for the treatment of cancer.

  12. Deciphering the mechanism of interaction of edifenphos with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Ahmad, Ajaz; Ahmad, Masood

    2018-01-01

    Edifenphos is an important organophosphate pesticide with many antifungal and anti-insecticidal properties but it may cause potential hazards to human health. In this work, we have tried to explore the binding mode of action and mechanism of edifenphos to calf thymus DNA (CT-DNA). Several experiments such as ultraviolet-visible absorption spectra and emission spectroscopy showed complex formation between edifenphos and CT-DNA and low binding constant values supporting groove binding mode. These results were further confirmed by circular dichroism (CD), CT-DNA melting studies, viscosity measurements, density functional theory and molecular docking. CD study suggests that edifenphos does not alter native structure of CT-DNA. Isothermal calorimetry reveals that binding of edifenphos with CT-DNA is enthalpy driven process. Competitive binding assay and effect of ionic strength showed that edifenphos binds to CT-DNA via groove binding manner. Hence, edifenphos is a minor groove binder preferably interacting with A-T regions with docking score - 6.84 kJ/mol.

  13. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang

    2016-08-01

    Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.

  14. Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors.

    PubMed

    Liu, Wei; Zhu, He-Min; Niu, Guo-Jun; Shi, En-Zhi; Chen, Jie; Sun, Bo; Chen, Wei-Qiang; Zhou, Hong-Gang; Yang, Cheng

    2014-01-01

    The Severe Acute Respiratory Syndrome (SARS) is a serious life-threatening and strikingly mortal respiratory illness caused by SARS-CoV. SARS-CoV which contains a chymotrypsin-like main protease analogous to that of the main picornavirus protease, 3CL(pro). 3CL(pro) plays a pivotal role in the viral replication cycle and is a potential target for SARS inhibitor development. A series of isatin derivatives as possible SARS-CoV 3CL(pro) inhibitors was designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide, in which several showed potent inhibition against the 3CL(pro). Structure-activity relationship was analyzed, and possible binding interaction modes were proposed by molecular docking studies. Among all compounds, 8k₁ showed most potent inhibitory activity against 3CL(pro) (IC₅₀=1.04 μM). These results indicated that these inhibitors could be potentially developed into anti-SARS drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Combination of virtual screening protocol by in silico towards the discovery of novel 4-hydroxyphenylpyruvate dioxygenase inhibitors

    NASA Astrophysics Data System (ADS)

    Fu, Ying; Sun, Yi-Na; Yi, Ke-Han; Li, Ming-Qiang; Cao, Hai-Feng; Li, Jia-Zhong; Ye, Fei

    2018-02-01

    4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is a potent new bleaching herbicide target. Therefore, in silico structure-based virtual screening was performed in order to speed up the identification of promising HPPD inhibitors. In this study, an integrated virtual screening protocol by combining 3D-pharmacophore model, molecular docking and molecular dynamics (MD) simulation was established to find novel HPPD inhibitors from four commercial databases. 3D-pharmacophore Hypo1 model was applied to efficiently narrow potential hits. The hit compounds were subsequently submitted to molecular docking studies, showing four compounds as potent inhibitor with the mechanism of the Fe(II) coordination and interaction with Phe360, Phe403 and Phe398. MD result demonstrated that nonpolar term of compound 3881 made great contributions to binding affinities. It showed an IC50 being 2.49 µM against AtHPPD in vitro. The results provided useful information for developing novel HPPD inhibitors, leading to further understanding of the interaction mechanism of HPPD inhibitors.

  16. QSAR and docking based semi-synthesis and in vitro evaluation of 18 β-glycyrrhetinic acid derivatives against human lung cancer cell line A-549.

    PubMed

    Yadav, Dharmendra Kumar; Kalani, Komal; Khan, Feroz; Srivastava, Santosh Kumar

    2013-12-01

    For the prediction of anticancer activity of glycyrrhetinic acid (GA-1) analogs against the human lung cancer cell line (A-549), a QSAR model was developed by forward stepwise multiple linear regression methodology. The regression coefficient (r(2)) and prediction accuracy (rCV(2)) of the QSAR model were taken 0.94 and 0.82, respectively in terms of correlation. The QSAR study indicates that the dipole moments, size of smallest ring, amine counts, hydroxyl and nitro functional groups are correlated well with cytotoxic activity. The docking studies showed high binding affinity of the predicted active compounds against the lung cancer target EGFR. These active glycyrrhetinic acid derivatives were then semi-synthesized, characterized and in-vitro tested for anticancer activity. The experimental results were in agreement with the predicted values and the ethyl oxalyl derivative of GA-1 (GA-3) showed equal cytotoxic activity to that of standard anticancer drug paclitaxel.

  17. Photocopy of plan (in collection of U.S. Coast Guard Civil ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of plan (in collection of U.S. Coast Guard Civil Engineering Unit Providence, Warwick, RI), U.S. Coast Guard Civil Engineering, third district, Sandy Hook L/B Station showing boat basin plan, circa 1945 Detail of western docking structure - U.S. Coast Guard Sandy Hook Station, Western Docking Structure, West of intersection of Canfield Road & Hartshorne Drive, Highlands, Monmouth County, NJ

  18. Photograph of MSC-8 color patch outside spacecraft during docking

    NASA Image and Video Library

    1966-07-18

    S66-46025 (18 July 1966) --- Astronaut Michael Collins, Gemini-10 pilot, photographed this MSC-8 color patch outside the spacecraft during the Gemini-10/Agena docking mission. The experiment was for the purpose of showing what effect the environment of space will have upon the color photography taken in cislunar space and on the lunar surface during an Apollo mission. Photo credit: NASA

  19. Skylab

    NASA Image and Video Library

    1971-12-01

    This December 1971 photograph shows the internal configuration of Skylab's Multiple Docking Adapter (MDA) flight article (forward view) as it appeared during the crew compartment and function review at the Martin-Marietta Corporation's Space Center Facility in Denver, Colorado. Designed and manufactured by the Marshall Space Flight Center, the MDA housed a number of experiment control and stowage units as well as providing a docking port for the Apollo Command module.

  20. The Ste20 kinase misshapen regulates both photoreceptor axon targeting and dorsal closure, acting downstream of distinct signals.

    PubMed

    Su, Y C; Maurel-Zaffran, C; Treisman, J E; Skolnik, E Y

    2000-07-01

    We have previously shown that the Ste20 kinase encoded by misshapen (msn) functions upstream of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase module in Drosophila. msn is required to activate the Drosophila JNK, Basket (Bsk), to promote dorsal closure of the embryo. A mammalian homolog of Msn, Nck interacting kinase, interacts with the SH3 domains of the SH2-SH3 adapter protein Nck. We now show that Msn likewise interacts with Dreadlocks (Dock), the Drosophila homolog of Nck. dock is required for the correct targeting of photoreceptor axons. We have performed a structure-function analysis of Msn in vivo in Drosophila in order to elucidate the mechanism whereby Msn regulates JNK and to determine whether msn, like dock, is required for the correct targeting of photoreceptor axons. We show that Msn requires both a functional kinase and a C-terminal regulatory domain to activate JNK in vivo in Drosophila. A mutation in a PXXP motif on Msn that prevents it from binding to the SH3 domains of Dock does not affect its ability to rescue the dorsal closure defect in msn embryos, suggesting that Dock is not an upstream regulator of msn in dorsal closure. Larvae with only this mutated form of Msn show a marked disruption in photoreceptor axon targeting, implicating an SH3 domain protein in this process; however, an activated form of Msn is not sufficient to rescue the dock mutant phenotype. Mosaic analysis reveals that msn expression is required in photoreceptors in order for their axons to project correctly. The data presented here genetically link msn to two distinct biological events, dorsal closure and photoreceptor axon pathfinding, and thus provide the first evidence that Ste20 kinases of the germinal center kinase family play a role in axonal pathfinding. The ability of Msn to interact with distinct classes of adapter molecules in dorsal closure and photoreceptor axon pathfinding may provide the flexibility that allows it to link to distinct upstream signaling systems.

  1. The Ste20 Kinase Misshapen Regulates Both Photoreceptor Axon Targeting and Dorsal Closure, Acting Downstream of Distinct Signals

    PubMed Central

    Su, Yi-Chi; Maurel-Zaffran, Corinne; Treisman, Jessica E.; Skolnik, Edward Y.

    2000-01-01

    We have previously shown that the Ste20 kinase encoded by misshapen (msn) functions upstream of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase module in Drosophila. msn is required to activate the Drosophila JNK, Basket (Bsk), to promote dorsal closure of the embryo. A mammalian homolog of Msn, Nck interacting kinase, interacts with the SH3 domains of the SH2-SH3 adapter protein Nck. We now show that Msn likewise interacts with Dreadlocks (Dock), the Drosophila homolog of Nck. dock is required for the correct targeting of photoreceptor axons. We have performed a structure-function analysis of Msn in vivo in Drosophila in order to elucidate the mechanism whereby Msn regulates JNK and to determine whether msn, like dock, is required for the correct targeting of photoreceptor axons. We show that Msn requires both a functional kinase and a C-terminal regulatory domain to activate JNK in vivo in Drosophila. A mutation in a PXXP motif on Msn that prevents it from binding to the SH3 domains of Dock does not affect its ability to rescue the dorsal closure defect in msn embryos, suggesting that Dock is not an upstream regulator of msn in dorsal closure. Larvae with only this mutated form of Msn show a marked disruption in photoreceptor axon targeting, implicating an SH3 domain protein in this process; however, an activated form of Msn is not sufficient to rescue the dock mutant phenotype. Mosaic analysis reveals that msn expression is required in photoreceptors in order for their axons to project correctly. The data presented here genetically link msn to two distinct biological events, dorsal closure and photoreceptor axon pathfinding, and thus provide the first evidence that Ste20 kinases of the germinal center kinase family play a role in axonal pathfinding. The ability of Msn to interact with distinct classes of adapter molecules in dorsal closure and photoreceptor axon pathfinding may provide the flexibility that allows it to link to distinct upstream signaling systems. PMID:10848599

  2. Potential interaction of natural dietary bioactive compounds with COX-2.

    PubMed

    Maldonado-Rojas, Wilson; Olivero-Verbel, Jesus

    2011-09-01

    Bioactive natural products present in the diet play an important role in several biological processes, and many have been involved in the alleviation and control of inflammation-related diseases. These actions have been linked to both gene expression modulation of pro-inflammatory enzymes, such as cyclooxygenase 2 (COX-2), and to an action involving a direct inhibitory binding on this protein. In this study, several food-related compounds with known gene regulatory action on inflammation have been examined in silico as COX-2 ligands, utilizing AutoDock Vina, GOLD and Surflex-Dock (SYBYL) as docking protocols. Curcumin and all-trans retinoic acid presented the maximum absolute AutoDock Vina-derived binding affinities (9.3 kcal/mol), but genistein, apigenin, cyanidin, kaempferol, and docosahexaenoic acid, were close to this value. AutoDock Vina affinities and GOLD scores for several known COX-2 inhibitors significatively correlated with reported median inhibitory concentrations (R² = 0.462, P < 0.001 and R² = 0.238, P = 0.029, respectively), supporting the computational reliability of the predictions made by our docking simulations. Moreover, docking analysis insinuate the synergistic action of curcumin on celecoxib-induced inhibition of COX-2 may occur allosterically, as this natural compound docks to a place different from the inhibitor binding site. These results suggest that the anti-inflammatory properties of some food-derived molecules could be the result of their direct binding capabilities to COX-2, and this process can be modeled using protein-ligand docking methodologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. SpaceDock: A Performance Task Platform for Spaceflight Operations

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas H.; Strangman, Gary E.; Strauss, Monica S.; Sutton, Jeffrey P.

    2003-01-01

    Preliminary evidence during both short- and long-duration spaceflight indicates that perceptual-motor coordination changes occur and persist in-flight. However, there is presently no in-flight method for evaluating astronaut performance on mission-critical tasks such as docking. We present a portable platform we have developed for attempting and evaluating docking, and describe the results of a pilot study wherein flight novices learned the docking task. Methods: A dual-joystick, six degrees of freedom platform-called SpaceDock-was developed to enable portable, adaptable performance testing in a spaceflight operations setting. Upon this platform, a simplified docking task was created, involving a constant rate of approach towards a docking target and requiring the user to correct translation in two dimensions and attitude orientation along one dimension (either pitch or roll). Ten flight naive subjects performed the task over a 45 min period and all joystick inputs and timings were collected, from which we could successfully reconstruct travel paths, input profiles and relative target displacements. Results: Subjects exhibited significant improvements in docking over the course of the experiment. Learning to compensate for roll-alterations was robust, whereas compensation for pitch-alterations was not in evidence in this population and relatively short training period. Conclusion: The SpaceDock platform can provide a novel method for training and testing subjects, on a spaceflight-relevant task, and can be used to examine behavioral learning, strategy use, and has been adapted for use in brain imaging experiments.

  4. How to Deal with Low-Resolution Target Structures: Using SAR, Ensemble Docking, Hydropathic Analysis, and 3D-QSAR to Definitively Map the αβ-Tubulin Colchicine Site

    PubMed Central

    Da, Chenxiao; Mooberry, Susan L.; Gupton, John T.; Kellogg, Glen E.

    2013-01-01

    αβ-tubulin colchicine site inhibitors (CSIs) from four scaffolds that we previously tested for antiproliferative activity were modeled to better understand their effect on microtubules. Docking models, constructed by exploiting the SAR of a pyrrole subset and HINT scoring, guided ensemble docking of all 59 compounds. This conformation set and two variants having progressively less structure knowledge were subjected to CoMFA, CoMFA+HINT, and CoMSIA 3D-QSAR analyses. The CoMFA+HINT model (docked alignment) showed the best statistics: leave-one-out q2 of 0.616, r2 of 0.949 and r2pred (internal test set) of 0.755. An external (tested in other laboratories) collection of 24 CSIs from eight scaffolds were evaluated with the 3D-QSAR models, which correctly ranked their activity trends in 7/8 scaffolds for CoMFA+HINT (8/8 for CoMFA). The combination of SAR, ensemble docking, hydropathic analysis and 3D-QSAR provides an atomic-scale colchicine site model more consistent with a target structure resolution much higher than the ~3.6 Å available for αβ-tubulin. PMID:23961916

  5. The connection characteristics of flux pinned docking interface

    NASA Astrophysics Data System (ADS)

    Zhang, Mingliang; Han, Yanjun; Guo, Xing; Zhao, Cunbao; Deng, Feiyue

    2017-03-01

    This paper presents the mechanism and potential advantages of flux pinned docking interface mainly composed of a high temperature superconductor and an electromagnet. In order to readily assess the connection characteristics of flux pinned docking interface, the force between a high temperature superconductor and an electromagnet needs to be investigated. Based on the magnetic dipole method and the Ampere law method, the force between two current coils can be compared, which shows that the Ampere law method has the higher calculated accuracy. Based on the improved frozen image model and the Ampere law method, the force between high temperature superconductor bulk and permanent magnet can be calculated, which is validated experimentally. Moreover, the force between high temperature superconductor and electromagnet applied to flux pinned docking interface is able to be predicted and analyzed. The connection stiffness between high temperature superconductor and permanent magnet can be calculated based on the improved frozen image model and Hooke's law. The relationship between the connection stiffness and field cooling height is analyzed. Furthermore, the connection stiffness of the flux pinned docking interface is predicted and optimized, and its effective working range is defined and analyzed in case of some different parameters.

  6. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  7. 4-Aminoquinoline-pyrimidine hybrids: synthesis, antimalarial activity, heme binding and docking studies.

    PubMed

    Kumar, Deepak; Khan, Shabana I; Tekwani, Babu L; Ponnan, Prija; Rawat, Diwan S

    2015-01-07

    A series of novel 4-aminoquinoline-pyrimidine hybrids has been synthesized and evaluated for their antimalarial activity. Several compounds showed promising in vitro antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. Selected compound 7g exhibited significant suppression of parasitemia in the in vivo assay. The heme binding studies were conducted to determine the mode of action of these hybrid molecules. These compounds form a stable 1:1 complex with hematin suggesting that heme may be one of the possible targets of these hybrids. The interaction of these conjugate hybrids was also investigated by the molecular docking studies in the binding site of PfDHFR. The pharmacokinetic property analysis of best active compounds was also studied using ADMET prediction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers.

    PubMed

    Ohue, Masahito; Shimoda, Takehiro; Suzuki, Shuji; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka

    2014-11-15

    The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling. MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock. akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  9. Acute peg in hole docking in the management of infected non-union of long bones.

    PubMed

    Dhar, Shabir Ahmed; Mir, Mohammed Ramzan; Ahmed, Molvi Sajjad; Afzal, Suhail; Butt, Mohammed Farooq; Badoo, A R; Dar, Irshad Tabasum; Hussain, Anwar

    2008-08-01

    The Ilizarov method has been studied extensively in the management of non-union of long bones. In most cases this involves filling of defects present primarily or after débridement by bone transport. Acute docking over gaps longer than 2 cm has not been adequately studied, however. The purpose of this paper is to report the efficacy of acute peg in hole docking as a bone graft-sparing modality in the management of infected non-union of long bones.

  10. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go

    PubMed Central

    Moitessier, N; Englebienne, P; Lee, D; Lawandi, J; Corbeil, C R

    2008-01-01

    Accelerating the drug discovery process requires predictive computational protocols capable of reducing or simplifying the synthetic and/or combinatorial challenge. Docking-based virtual screening methods have been developed and successfully applied to a number of pharmaceutical targets. In this review, we first present the current status of docking and scoring methods, with exhaustive lists of these. We next discuss reported comparative studies, outlining criteria for their interpretation. In the final section, we describe some of the remaining developments that would potentially lead to a universally applicable docking/scoring method. PMID:18037925

  11. Synthesis of novel 1,2,3-triazole based benzoxazolinones: their TNF-α based molecular docking with in-vivo anti-inflammatory, antinociceptive activities and ulcerogenic risk evaluation.

    PubMed

    Haider, Saqlain; Alam, M Sarwar; Hamid, Hinna; Shafi, Syed; Nargotra, Amit; Mahajan, Priya; Nazreen, Syed; Kalle, Arunasree M; Kharbanda, Chetna; Ali, Yakub; Alam, Aftab; Panda, Amulya K

    2013-01-01

    A library of novel bis-heterocycles containing benzoxazolinone based 1,2,3-triazoles has been synthesized using click chemistry approach. The compound 3f exhibited potent selective COX-2 inhibition of 59.48% in comparison to standard drug celecoxib (66.36% inhibition). The compound 3i showed significant (p < 0.001, 50.95%), TNF-α inhibitory activity as compared to indomethacin (p < 0.001, 64.01%). The results of the carrageenan induced hind paw oedema showed that compounds 3a, 3f, 3i, 3o, and 3e exhibited potent anti-inflammatory activity in comparison to Indomethacin. The molecular docking studies revealed that 3i exhibits strong inhibitory effect due to the extra stability of the complex because of an extra π-π bond. The histopathology report showed that none of the compounds caused gastric ulceration. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family

    PubMed Central

    Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha

    2012-01-01

    Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728

  13. Munc13-4 Is a Rab11-binding Protein That Regulates Rab11-positive Vesicle Trafficking and Docking at the Plasma Membrane.

    PubMed

    Johnson, Jennifer L; He, Jing; Ramadass, Mahalakshmi; Pestonjamasp, Kersi; Kiosses, William B; Zhang, Jinzhong; Catz, Sergio D

    2016-02-12

    The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Virtual Dual inhibition of COX-2 / 5-LOX enzymes based on binding properties of alpha-amyrins, the anti-inflammatory compound as a promising anti-cancer drug.

    PubMed

    Ranjbar, Mohammad Mehdi; Assadolahi, Vahideh; Yazdani, Mohsen; Nikaein, Donya; Rashidieh, Behnam

    2016-01-01

    Hydro-alcoholic fruit extract of Cordia myxa was considerably effective on curing acute inflammation in mouse model. Previous studies suggested significant anti-inflammatory activities as well as potential anticancer agent of α-amyrins in seeds. Inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX) is significant in cancer prevention and therapeutics although this inhibition with chemo-drugs has its own side-effects. It is shown that these enzymes pathways are related to several cancers including colon, breast and lung cancer. This study was conducted based on Cordia species' α-amyrins as a safer natural anti-cancer compound for inhibition of COX-2 and 5-LOX enzymes by molecular docking. The X-ray crystal structure of COX2 / 5-LOX enzymes and α-amyrins was retrieved and energetically minimized respectively. The binding site and surface of enzymes were detected. Docking studies were performed by AutoDock 4.2 using Lamarckian genetic algorithm (LGA). Finally drug likeness, molecular pharmacokinetic properties and toxicity of α-amyrins was calculated. Molecular Docking revealed hydrogen and hydrophobic interactions between α-amyrins with both active sites of COX-2 and 5-LOX enzymes. Interestingly, it covalently bonded to Fe cofactor of 5-LOX enzyme and chelated this molecule. Base on binding energies (∆G) α-amyrin has more inhibitory effects on 5-LOX (-10.45 Kcal/mol) than COX-2 (-8.02 Kcal/mol). Analysis of molecular pharmacokinetic parameters suggested that α-amyrins complied with most sets of Lipinski's rules, and so it could be a suitable ligand for docking studies. Eventually, bioactivity score showed α-amyrins possess considerable biological activities as nuclear receptor, enzyme inhibitor, GPCR and protease inhibitor ligand. These results clearly demonstrate that α-amyrins could act as potential highly selective COX-/5-LOX inhibitor. Also, it is a safe compound in comparison with classical non-steroidal anti-inflammatory drugs (NSAIDs) that are known as cancer preventive agents, since it is free of side effects on human body and it can be a promising drug for cancer therapeutics.

  15. Virtual Dual inhibition of COX-2 / 5-LOX enzymes based on binding properties of alpha-amyrins, the anti-inflammatory compound as a promising anti-cancer drug

    PubMed Central

    Ranjbar, Mohammad Mehdi; Assadolahi, Vahideh; Yazdani, Mohsen; Nikaein, Donya; Rashidieh, Behnam

    2016-01-01

    Hydro-alcoholic fruit extract of Cordia myxa was considerably effective on curing acute inflammation in mouse model. Previous studies suggested significant anti-inflammatory activities as well as potential anticancer agent of α-amyrins in seeds. Inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX) is significant in cancer prevention and therapeutics although this inhibition with chemo-drugs has its own side-effects. It is shown that these enzymes pathways are related to several cancers including colon, breast and lung cancer. This study was conducted based on Cordia species' α-amyrins as a safer natural anti-cancer compound for inhibition of COX-2 and 5-LOX enzymes by molecular docking. The X-ray crystal structure of COX2 / 5-LOX enzymes and α-amyrins was retrieved and energetically minimized respectively. The binding site and surface of enzymes were detected. Docking studies were performed by AutoDock 4.2 using Lamarckian genetic algorithm (LGA). Finally drug likeness, molecular pharmacokinetic properties and toxicity of α-amyrins was calculated. Molecular Docking revealed hydrogen and hydrophobic interactions between α-amyrins with both active sites of COX-2 and 5-LOX enzymes. Interestingly, it covalently bonded to Fe cofactor of 5-LOX enzyme and chelated this molecule. Base on binding energies (∆G) α-amyrin has more inhibitory effects on 5-LOX (-10.45 Kcal/mol) than COX-2 (-8.02 Kcal/mol). Analysis of molecular pharmacokinetic parameters suggested that α-amyrins complied with most sets of Lipinski's rules, and so it could be a suitable ligand for docking studies. Eventually, bioactivity score showed α-amyrins possess considerable biological activities as nuclear receptor, enzyme inhibitor, GPCR and protease inhibitor ligand. These results clearly demonstrate that α-amyrins could act as potential highly selective COX-/5-LOX inhibitor. Also, it is a safe compound in comparison with classical non-steroidal anti-inflammatory drugs (NSAIDs) that are known as cancer preventive agents, since it is free of side effects on human body and it can be a promising drug for cancer therapeutics. PMID:27231478

  16. New insights into the in vitro biological effects, in silico docking and chemical profile of clary sage - Salvia sclarea L.

    PubMed

    Zengin, Gokhan; Senkardes, Ismail; Mollica, Adriano; Picot-Allain, Carene Marie Nancy; Bulut, Gizem; Dogan, Ahmet; Mahomoodally, M Fawzi

    2018-05-06

    Salvia sclarea L. is traditionally used to manage common human ailments and is consumed as a food product. This study aimed to establish the phytochemical profile and antioxidant potential of ethyl acetate, methanol, and water extracts of Salvia sclarea. The inhibitory action of the extracts against α-amylase, α-glucosidase, acetylcholinesterase, butyrylcholinesterase, and tyrosinase was also investigated. Methanol extract showed the highest phenolic and flavonoid contents (81.78 mg GAE/g extract and 40.59 mg RE/g extract, respectively). Reversed phase high performance liquid chromatography with diode array detector analysis revealed that S. sclarea was rich in rosmarinic acid. The water extract exhibited the lowest inhibitory activity against α-amylase but the upmost activity against α-glucosidase (0.19 and 18.24 mmol ACAE/g extract, respectively). Experimental data showed that only the water extract (8.86 mg KAE/g extract) significantly inhibited tyrosinase. Docking studies showed that quercetin binds to tyrosinase by two hydrogen and a pi-pi bonds. Salvia sclarea showed interesting biological activity against key enzymes involved in the pathogenesis of common ailments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Computational Design of Apolipoprotein E4 Inhibitors for Alzheimer's Disease Therapy from Traditional Chinese Medicine

    PubMed Central

    Huang, Hung-Jin; Chen, Hsin-Yi; Lee, Cheng-Chun

    2014-01-01

    Apolipoprotein E4 (Apo E4) is the major genetic risk factor in the causation of Alzheimer's disease (AD). In this study we utilize virtual screening of the world's largest traditional Chinese medicine (TCM) database and investigate potential compounds for the inhibition of ApoE4. We present the top three TCM candidates: Solapalmitine, Isodesacetyluvaricin, and Budmunchiamine L5 for further investigation. Dynamics analysis and molecular dynamics (MD) simulation were used to simulate protein-ligand complexes for observing the interactions and protein variations. Budmunchiamine L5 did not have the highest score from virtual screening; however, the dynamics pose is similar to the initial docking pose after MD simulation. Trajectory analysis reveals that Budmunchiamine L5 was stable over all simulation times. The migration distance of Budmunchiamine L5 illustrates that docked ligands are not variable from the initial docked site. Interestingly, Arg158 was observed to form H-bonds with Budmunchiamine L5 in the docking pose and MD snapshot, which indicates that the TCM compounds could stably bind to ApoE4. Our results show that Budmunchiamine L5 has good absorption, blood brain barrier (BBB) penetration, and less toxicity according to absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction and could, therefore, be safely used for developing novel ApoE4 inhibitors. PMID:24967370

  18. Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz

    2017-01-01

    A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.

  19. Investigating the importance of Delaunay-based definition of atomic interactions in scoring of protein-protein docking results.

    PubMed

    Jafari, Rahim; Sadeghi, Mehdi; Mirzaie, Mehdi

    2016-05-01

    The approaches taken to represent and describe structural features of the macromolecules are of major importance when developing computational methods for studying and predicting their structures and interactions. This study attempts to explore the significance of Delaunay tessellation for the definition of atomic interactions by evaluating its impact on the performance of scoring protein-protein docking prediction. Two sets of knowledge-based scoring potentials are extracted from a training dataset of native protein-protein complexes. The potential of the first set is derived using atomic interactions extracted from Delaunay tessellated structures. The potential of the second set is calculated conventionally, that is, using atom pairs whose interactions were determined by their separation distances. The scoring potentials were tested against two different docking decoy sets and their performances were compared. The results show that, if properly optimized, the Delaunay-based scoring potentials can achieve higher success rate than the usual scoring potentials. These results and the results of a previous study on the use of Delaunay-based potentials in protein fold recognition, all point to the fact that Delaunay tessellation of protein structure can provide a more realistic definition of atomic interaction, and therefore, if appropriately utilized, may be able to improve the accuracy of pair potentials. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. 3D-QSAR (CoMFA, CoMSIA), molecular docking and molecular dynamics simulations study of 6-aryl-5-cyano-pyrimidine derivatives to explore the structure requirements of LSD1 inhibitors.

    PubMed

    Ding, Lina; Wang, Zhi-Zheng; Sun, Xu-Dong; Yang, Jing; Ma, Chao-Ya; Li, Wen; Liu, Hong-Min

    2017-08-01

    Recently, Histone Lysine Specific Demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. And several small molecules as LSD1 inhibitors in different structures have been reported. In this work, we carried out a molecular modeling study on the 6-aryl-5-cyano-pyrimidine fragment LSD1 inhibitors using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q 2 =0.802, r 2 ncv =0.979, and the best CoMSIA model has q 2 =0.799, r 2 ncv =0.982. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300K. All the results can provide us more useful information for our further drug design. Copyright © 2017. Published by Elsevier Ltd.

  1. Optimizing the admission time of outbound trucks entering a cross-dock with uniform arrival time by considering a queuing model

    NASA Astrophysics Data System (ADS)

    Motaghedi-Larijani, Arash; Aminnayeri, Majid

    2017-03-01

    Cross-docking is a supply-chain strategy that can reduce transportation and inventory costs. This study is motivated by a fruit and vegetable distribution centre in Tehran, which has cross-docks and a limited time to admit outbound trucks. In this article, outbound trucks are assumed to arrive at the cross-dock with a single outbound door with a uniform distribution (0,L). The total number of assigned trucks is constant and the loading time is fixed. A queuing model is modified for this situation and the expected waiting time of each customer is calculated. Then, a curve for the waiting time is calculated. Finally, the length of window time L is optimized to minimize the total cost, which includes the waiting time of the trucks and the admission cost of the cross-dock. Some illustrative examples of cross-docking are presented and solved using the proposed method.

  2. DOVIS 2.0: an efficient and easy to use parallel virtual screening tool based on AutoDock 4.0.

    PubMed

    Jiang, Xiaohui; Kumar, Kamal; Hu, Xin; Wallqvist, Anders; Reifman, Jaques

    2008-09-08

    Small-molecule docking is an important tool in studying receptor-ligand interactions and in identifying potential drug candidates. Previously, we developed a software tool (DOVIS) to perform large-scale virtual screening of small molecules in parallel on Linux clusters, using AutoDock 3.05 as the docking engine. DOVIS enables the seamless screening of millions of compounds on high-performance computing platforms. In this paper, we report significant advances in the software implementation of DOVIS 2.0, including enhanced screening capability, improved file system efficiency, and extended usability. To keep DOVIS up-to-date, we upgraded the software's docking engine to the more accurate AutoDock 4.0 code. We developed a new parallelization scheme to improve runtime efficiency and modified the AutoDock code to reduce excessive file operations during large-scale virtual screening jobs. We also implemented an algorithm to output docked ligands in an industry standard format, sd-file format, which can be easily interfaced with other modeling programs. Finally, we constructed a wrapper-script interface to enable automatic rescoring of docked ligands by arbitrarily selected third-party scoring programs. The significance of the new DOVIS 2.0 software compared with the previous version lies in its improved performance and usability. The new version makes the computation highly efficient by automating load balancing, significantly reducing excessive file operations by more than 95%, providing outputs that conform to industry standard sd-file format, and providing a general wrapper-script interface for rescoring of docked ligands. The new DOVIS 2.0 package is freely available to the public under the GNU General Public License.

  3. Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study

    PubMed Central

    Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2016-01-01

    Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management. PMID:27782155

  4. Structural elucidation of estrus urinary lipocalin protein (EULP) and evaluating binding affinity with pheromones using molecular docking and fluorescence study.

    PubMed

    Rajesh, Durairaj; Muthukumar, Subramanian; Saibaba, Ganesan; Siva, Durairaj; Akbarsha, Mohammad Abdulkader; Gulyás, Balázs; Padmanabhan, Parasuraman; Archunan, Govindaraju

    2016-10-26

    Transportation of pheromones bound with carrier proteins belonging to lipocalin superfamily is known to prolong chemo-signal communication between individuals belonging to the same species. Members of lipocalin family (MLF) proteins have three structurally conserved motifs for delivery of hydrophobic molecules to the specific recognizer. However, computational analyses are critically required to validate and emphasize the sequence and structural annotation of MLF. This study focused to elucidate the evolution, structural documentation, stability and binding efficiency of estrus urinary lipocalin protein (EULP) with endogenous pheromones adopting in-silico and fluorescence study. The results revealed that: (i) EULP perhaps originated from fatty acid binding protein (FABP) revealed in evolutionary analysis; (ii) Dynamic simulation study shows that EULP is highly stable at below 0.45 Å of root mean square deviation (RMSD); (iii) Docking evaluation shows that EULP has higher binding energy with farnesol and 2-iso-butyl-3-methoxypyrazine (IBMP) than 2-naphthol; and (iv) Competitive binding and quenching assay revealed that purified EULP has good binding interaction with farnesol. Both, In-silico and experimental studies showed that EULP is an efficient binding partner to pheromones. The present study provides impetus to create a point mutation for increasing longevity of EULP to develop pheromone trap for rodent pest management.

  5. Extending the scope of amantadine drug by incorporation of phenolic azo Schiff bases as potent selective inhibitors of carbonic anhydrase II, drug likeness and binding analysis.

    PubMed

    Channar, Pervaiz Ali; Saeed, Aamer; Shahzad, Danish; Larik, Fayaz Ali; Hassan, Mubashir; Raza, Hussain; Abbas, Qamar; Seo, Sung-Yum

    2018-05-16

    A series of Amantadine based azo Schiff base dyes 6a-6e have been synthesized and characterized by 1 H NMR and 13 C NMR and evaluated for their in vitro carbonic anhydrase II inhibition activity and antioxidant activity. All of the synthesized showed excellent carbonic inhibition. Compound 6b was found to be the most potent derivative in the series, the IC 50 of 6b was found to be 0.0849 ± 0.00245μM (standard Acetazolamide IC 50 =0.9975±0.049μM). The binding interactions of the most active analogs were confirmed through molecular docking studies. Docking studies showed 6b is interacting by making two hydrogen bonds w at His93 and Ser1 residues respectively. All compounds showed a good drug score and followed Lipinski's rule. In summary, our studies have shown that these amantadine derived phenolic azo Schiff base derivatives are a new class of carbonic anhydrase II inhibitors. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. [Anti-tumor target prediction and activity verification of Ganoderma lucidum triterpenoids].

    PubMed

    Du, Guo-Hua; Wang, Hong-Xu; Yan, Zheng; Liu, Li-Ying; Chen, Ruo-Yun

    2017-02-01

    It has reported that Ganoderma lucidum triterpenoids had anti-tumor activity. However, the anti-tumor target is still unclear. The present study was designed to investigate the anti-tumor activity of G. lucidum triterpenoids on different tumor cells, and predict their potential targets by virtual screening. In this experiment, molecular docking was used to simulate the interactions of 26 triterpenoids isolated from G. lucidum and 11 target proteins by LibDock module of Discovery Studio2016 software, then the anti-tumor targets of triterpenoids were predicted. In addition, the in vitro anti-tumor effects of triterpenoids were evaluated by MTT assay by determining the inhibition of proliferation in 5 tumor cell lines. The docking results showed that the poses were greater than five, and Libdock Scores higher than 100, which can be used to determine whether compounds were activity. Eight triterpenoids might have anti-tumor activity as a result of good docking, five of which had multiple targets. MTT experiments demonstrated that the ganoderic acid Y had a certain inhibitory activity on lung cancer cell H460, with IC₅₀ of 22.4 μmol•L ⁻¹, followed by 7-oxo-ganoderic acid Z2, with IC₅₀ of 43.1 μmol•L ⁻¹. However, the other triterpenoids had no anti-tumor activity in the detected tumor cell lines. Taking together, molecular docking approach established here can be used for preliminary screening of anti-tumor activity of G.lucidum ingredients. Through this screening method, combined with the MTT assay, we can conclude that ganoderic acid Y had antitumor activity, especially anti-lung cancer, and 7-oxo-ganoderic acid Z2 as well as ganoderon B, to a certain extent, had anti-tumor activity. These findings can provide basis for the development of anti-tumor drugs. However, the anti-tumor mechanisms need to be further studied. Copyright© by the Chinese Pharmaceutical Association.

  7. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation

    PubMed Central

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J. P.; Chen, Yu-Ching

    2016-01-01

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes. PMID:27304951

  8. Finding a Potential Dipeptidyl Peptidase-4 (DPP-4) Inhibitor for Type-2 Diabetes Treatment Based on Molecular Docking, Pharmacophore Generation, and Molecular Dynamics Simulation.

    PubMed

    Meduru, Harika; Wang, Yeng-Tseng; Tsai, Jeffrey J P; Chen, Yu-Ching

    2016-06-13

    Dipeptidyl peptidase-4 (DPP-4) is the vital enzyme that is responsible for inactivating intestinal peptides glucagon like peptide-1 (GLP-1) and Gastric inhibitory polypeptide (GIP), which stimulates a decline in blood glucose levels. The aim of this study was to explore the inhibition activity of small molecule inhibitors to DPP-4 following a computational strategy based on docking studies and molecular dynamics simulations. The thorough docking protocol we applied allowed us to derive good correlation parameters between the predicted binding affinities (pKi) of the DPP-4 inhibitors and the experimental activity values (pIC50). Based on molecular docking receptor-ligand interactions, pharmacophore generation was carried out in order to identify the binding modes of structurally diverse compounds in the receptor active site. Consideration of the permanence and flexibility of DPP-4 inhibitor complexes by means of molecular dynamics (MD) simulation specified that the inhibitors maintained the binding mode observed in the docking study. The present study helps generate new information for further structural optimization and can influence the development of new DPP-4 inhibitors discoveries in the treatment of type-2 diabetes.

  9. Modification of S-Adenosyl-l-Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation

    PubMed Central

    Tambunan, Usman Sumo Friend; Nasution, Mochammad Arfin Fardiansyah; Azhima, Fauziah; Parikesit, Arli Aditya; Toepak, Erwin Prasetya; Idrus, Syarifuddin; Kerami, Djati

    2017-01-01

    Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world’s population in tropical and subtropical countries. Nonstructural protein 5 (NS5) methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S-adenosyl-l-methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2′OH, resulting in S-adenosyl-l-homocysteine (SAH). The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) test. The 2 simulations were performed using Molecular Operating Environment (MOE) 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356) based on ΔGbinding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever. PMID:28469408

  10. Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2

    NASA Astrophysics Data System (ADS)

    da Silva Figueiredo Celestino Gomes, Priscila; Da Silva, Franck; Bret, Guillaume; Rognan, Didier

    2018-01-01

    A novel docking challenge has been set by the Drug Design Data Resource (D3R) in order to predict the pose and affinity ranking of a set of Farnesoid X receptor (FXR) agonists, prior to the public release of their bound X-ray structures and potencies. In a first phase, 36 agonists were docked to 26 Protein Data Bank (PDB) structures of the FXR receptor, and next rescored using the in-house developed GRIM method. GRIM aligns protein-ligand interaction patterns of docked poses to those of available PDB templates for the target protein, and rescore poses by a graph matching method. In agreement with results obtained during the previous 2015 docking challenge, we clearly show that GRIM rescoring improves the overall quality of top-ranked poses by prioritizing interaction patterns already visited in the PDB. Importantly, this challenge enables us to refine the applicability domain of the method by better defining the conditions of its success. We notably show that rescoring apolar ligands in hydrophobic pockets leads to frequent GRIM failures. In the second phase, 102 FXR agonists were ranked by decreasing affinity according to the Gibbs free energy of the corresponding GRIM-selected poses, computed by the HYDE scoring function. Interestingly, this fast and simple rescoring scheme provided the third most accurate ranking method among 57 contributions. Although the obtained ranking is still unsuitable for hit to lead optimization, the GRIM-HYDE scoring scheme is accurate and fast enough to post-process virtual screening data.

  11. Spatial association of marine dockage with land-borne infestations of invasive termites (Isoptera: Rhinotermitidae: Coptotermes) in urban south Florida.

    PubMed

    Hochmair, Hartwig H; Scheffrahn, Rudolf H

    2010-08-01

    Marine vessels have been implicated in the anthropogenic dispersal of invasive termites for the past 500 yr. It has long been suspected that two invasive termites, the Formosan subterranean termite, Coptotermes formosanus Shiraki, and Coptotermes gestroi (Wasmann) (Isoptera: Rhinotermitidae), were introduced to and dispersed throughout South Florida by sailboats and yachts. We compared the distances between 190 terrestrial point records for Formosan subterranean termite, 177 records for C. gestroi, and random locations with the nearest marine dockage by using spatial analysis. Results show that the median distance to nearest docks associated with C. gestroi is significantly smaller than for the random points. Results also reveal that the median distance to nearest docks associated with Formosan subterranean termite is significantly smaller than for the random points. These results support the hypothesis that C. gestroi and Formosan subterranean termite are significantly closer to potential infested boat locations, i.e., marine docks, than random points in these urban areas. The results of our study suggest yet another source of aggregation in the context of exotic species, namely, hubs for pleasure boating.

  12. Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCgamma1.

    PubMed

    Min, Lie; Joseph, Raji E; Fulton, D Bruce; Andreotti, Amy H

    2009-12-15

    Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.

  13. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    NASA Technical Reports Server (NTRS)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  14. An Automated Strategy for Binding-Pose Selection and Docking Assessment in Structure-Based Drug Design.

    PubMed

    Ballante, Flavio; Marshall, Garland R

    2016-01-25

    Molecular docking is a widely used technique in drug design to predict the binding pose of a candidate compound in a defined therapeutic target. Numerous docking protocols are available, each characterized by different search methods and scoring functions, thus providing variable predictive capability on a same ligand-protein system. To validate a docking protocol, it is necessary to determine a priori the ability to reproduce the experimental binding pose (i.e., by determining the docking accuracy (DA)) in order to select the most appropriate docking procedure and thus estimate the rate of success in docking novel compounds. As common docking programs use generally different root-mean-square deviation (RMSD) formulas, scoring functions, and format results, it is both difficult and time-consuming to consistently determine and compare their predictive capabilities in order to identify the best protocol to use for the target of interest and to extrapolate the binding poses (i.e., best-docked (BD), best-cluster (BC), and best-fit (BF) poses) when applying a given docking program over thousands/millions of molecules during virtual screening. To reduce this difficulty, two new procedures called Clusterizer and DockAccessor have been developed and implemented for use with some common and "free-for-academics" programs such as AutoDock4, AutoDock4(Zn), AutoDock Vina, DOCK, MpSDockZn, PLANTS, and Surflex-Dock to automatically extrapolate BD, BC, and BF poses as well as to perform consistent cluster and DA analyses. Clusterizer and DockAccessor (code available over the Internet) represent two novel tools to collect computationally determined poses and detect the most predictive docking approach. Herein an application to human lysine deacetylase (hKDAC) inhibitors is illustrated.

  15. Identification of potential PKC inhibitors through pharmacophore designing, 3D-QSAR and molecular dynamics simulations targeting Alzheimer's disease.

    PubMed

    Iqbal, Saleem; Anantha Krishnan, Dhanabalan; Gunasekaran, Krishnasamy

    2017-12-13

    Protein kinases are ubiquitously expressed as Serine/Threonine kinases, and play a crucial role in cellular activities. Protein kinases have evolved through stringent regulation mechanisms. Protein kinases are also involved in tauopathy, thus are important targets for developing Anti-Alzheimer's disease compounds. Structures with an indole scaffold turned out to be potent new leads. With the aim of developing new inhibitors for human protein kinase C, here we report the generation of four point 3D geometric featured pharmacophore model. In order to identify novel and potent PKCθ inhibitors, the pharmacophore model was screened against 80,000,00 compounds from various chemical databases such as., ZINC, SPEC, ASINEX, which resulted in 127 compound hits, and were taken for molecular docking filters (HTVS, XP docking). After in-depth analysis of binding patterns, induced fit docking (flexible) was employed for six compounds along with the cocrystallized inhibitor. Molecular docking study reveals that compound 6F found to be tight binder at the active site of PKCθ as compared to the cocrystal and has occupancy of 90 percentile. MM-GBSA also confirmed the potency of the compound 6F as better than cocrystal. Molecular dynamics results suggest that compound 6F showed good binding stability of active sites residues similar to cocrystal 7G compound. Present study corroborates the pharmacophore-based virtual screening, and finds the compound 6F as a potent Inhibitor of PKC, having therapeutic potential for Alzheimer's disease. Worldwide, 46.8 million people are believed to be living with Alzheimer's disease. When elderly population increases rapidly and neurodegenerative burden also increases in parallel, we project the findings from this study will be useful for drug developing efforts targeting Alzheimer's disease.

  16. Combined molecular docking and QSAR study of fused heterocyclic herbicide inhibitors of D1 protein in photosystem II of plants.

    PubMed

    Funar-Timofei, Simona; Borota, Ana; Crisan, Luminita

    2017-05-01

    Cinnoline, pyridine, pyrimidine, and triazine herbicides were found be inhibitors of the D1 protein in photosystem II (D1 PSII) electron transport of plants. The photosystem II inhibitory activity of these herbicides, expressed by experimental [Formula: see text] values, was modeled by a docking and quantitative structure-activity relationships study. A conformer ensemble for each of the herbicide structure was generated using the MMFF94s force field. These conformers were further employed in a docking approach, which provided new information about the rational "active conformations" and various interaction patterns of the herbicide derivatives with D1 PSII. The most "active conformers" from the docking study were used to calculate structural descriptors, which were further related to the inhibitory experimental [Formula: see text] values by multiple linear regression (MLR). The dataset was divided into training and test sets according to the partition around medoids approach, taking 27% of the compounds from the entire series for the test set. Variable selection was performed using the genetic algorithm, and several criteria were checked for model performance. WHIM and GETAWAY geometrical descriptors (position of substituents and moieties in the molecular space) were found to contribute to the herbicidal activity. The derived MLR model is statistically significant, shows very good stability and was used to predict the herbicidal activity of new derivatives having cinnoline, indeno[1.2-c]cinnoline-ll-one, triazolo[1,5-a] pyridine, imidazo[1,2-a]pyridine, triazine and triazolo[1,5-a] pyrimidine scaffolds whose experimental inhibitory activity against D1 PSII had not been determined up to now.

  17. Protein-Protein Interactions in a Crowded Environment: An Analysis via Cross-Docking Simulations and Evolutionary Information

    PubMed Central

    Lopes, Anne; Sacquin-Mora, Sophie; Dimitrova, Viktoriya; Laine, Elodie; Ponty, Yann; Carbone, Alessandra

    2013-01-01

    Large-scale analyses of protein-protein interactions based on coarse-grain molecular docking simulations and binding site predictions resulting from evolutionary sequence analysis, are possible and realizable on hundreds of proteins with variate structures and interfaces. We demonstrated this on the 168 proteins of the Mintseris Benchmark 2.0. On the one hand, we evaluated the quality of the interaction signal and the contribution of docking information compared to evolutionary information showing that the combination of the two improves partner identification. On the other hand, since protein interactions usually occur in crowded environments with several competing partners, we realized a thorough analysis of the interactions of proteins with true partners but also with non-partners to evaluate whether proteins in the environment, competing with the true partner, affect its identification. We found three populations of proteins: strongly competing, never competing, and interacting with different levels of strength. Populations and levels of strength are numerically characterized and provide a signature for the behavior of a protein in the crowded environment. We showed that partner identification, to some extent, does not depend on the competing partners present in the environment, that certain biochemical classes of proteins are intrinsically easier to analyze than others, and that small proteins are not more promiscuous than large ones. Our approach brings to light that the knowledge of the binding site can be used to reduce the high computational cost of docking simulations with no consequence in the quality of the results, demonstrating the possibility to apply coarse-grain docking to datasets made of thousands of proteins. Comparison with all available large-scale analyses aimed to partner predictions is realized. We release the complete decoys set issued by coarse-grain docking simulations of both true and false interacting partners, and their evolutionary sequence analysis leading to binding site predictions. Download site: http://www.lgm.upmc.fr/CCDMintseris/ PMID:24339765

  18. Skylab

    NASA Image and Video Library

    1971-12-01

    This December 1971 photograph shows the internal configuration of Skylab's Multiple Docking Adapter (MDA) as it appeared during the Crew Compartment and Function Review at the Martin-Marietta Corporation's Space Center facility in Denver, Colorado. At left is the control and display console for the Apollo Telescope Mount. Designed and manufactured by the Marshall Space Flight Center, the MDA housed a number of experiment control and stowage units and provided a docking port for the Apollo Command Module.

  19. Virtual screening and pharmacophore studies for ftase inhibitors using Indian plant anticancer compounds database.

    PubMed

    Khan, Abdul Hafeez; Prakash, Alok; Kumar, Dinesh; Rawat, Anil Kumar; Srivastava, Rajeev; Srivastava, Shipra

    2010-07-06

    Farnesyl transferase (FTase) is an enzyme responsible for post-translational modification in proteins having a carboxy-terminal CaaX motif in human. It catalyzes the attachment of a lipid group in proteins of RAS superfamily, which is essential in signal transduction. FTase has been recognized as an important target for anti cancer therapeutics. In this work, we performed virtual screening against FTase with entire 125 compounds from Indian Plant Anticancer Database using AutoDock 3.0.5 software. All compounds were docked within binding pocket containing Lys164, Tyr300, His248 and Tyr361 residues in crystal structure of FTase. These complexes were ranked according to their docking score, using methodology that was shown to achieve maximum accuracy. Finally we got three potent compounds with the best Autodock docking Score (Vinorelbine: -21.28 Kcal/mol, Vincristine: -21.74 Kcal/mol and Vinblastine: -22.14 Kcal/mol) and their energy scores were better than the FTase bound co-crystallized ligand (L- 739: -7.9 kcal/mol). These three compounds belong to Vinca alkaloids were analyzed through Python Molecular Viewer for their interaction studies. It predicted similar orientation and binding modes for these compounds with L-739 in FTase.Thus from the complex scoring and binding ability it is concluded that these Vinca alkaloids could be promising inhibitors for FTase. A 2-D pharmacophore was generated for these alkaloids using LigandScout to confirm it. A shared feature pharmacophore was also constructed that shows four common features (one hydogen bond Donar, Two hydrogen bond Acceptor and one ionizable area) help compounds to interact with this enzyme.

  20. InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs.

    PubMed

    Quignot, Chloé; Rey, Julien; Yu, Jinchao; Tufféry, Pierre; Guerois, Raphaël; Andreani, Jessica

    2018-05-08

    Computational protein docking is a powerful strategy to predict structures of protein-protein interactions and provides crucial insights for the functional characterization of macromolecular cross-talks. We previously developed InterEvDock, a server for ab initio protein docking based on rigid-body sampling followed by consensus scoring using physics-based and statistical potentials, including the InterEvScore function specifically developed to incorporate co-evolutionary information in docking. InterEvDock2 is a major evolution of InterEvDock which allows users to submit input sequences - not only structures - and multimeric inputs and to specify constraints for the pairwise docking process based on previous knowledge about the interaction. For this purpose, we added modules in InterEvDock2 for automatic template search and comparative modeling of the input proteins. The InterEvDock2 pipeline was benchmarked on 812 complexes for which unbound homology models of the two partners and co-evolutionary information are available in the PPI4DOCK database. InterEvDock2 identified a correct model among the top 10 consensus in 29% of these cases (compared to 15-24% for individual scoring functions) and at least one correct interface residue among 10 predicted in 91% of these cases. InterEvDock2 is thus a unique protein docking server, designed to be useful for the experimental biology community. The InterEvDock2 web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/.

  1. Text Mining for Protein Docking

    PubMed Central

    Badal, Varsha D.; Kundrotas, Petras J.; Vakser, Ilya A.

    2015-01-01

    The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking). Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu). The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features) approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound benchmark set, significantly increasing the docking success rate. PMID:26650466

  2. Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1.

    PubMed

    Gracheva, Elena O; Maryon, Ed B; Berthelot-Grosjean, Martine; Richmond, Janet E

    2010-01-01

    The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18), unc-64(syntaxin) and tom-1(tomosyn). We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25 nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin.

  3. Spectroscopic investigation, vibrational assignments, HOMO-LUMO, NBO, MEP analysis and molecular docking studies of oxoaporphine alkaloid liriodenine

    NASA Astrophysics Data System (ADS)

    Costa, Renyer A.; Pitt, Priscilla Olliveira; Pinheiro, Maria Lucia B.; Oliveira, Kelson M. T.; Salomé, Kahlil Schwanka; Barison, Andersson; Costa, Emmanoel Vilaça

    2017-03-01

    A combined experimental and theoretical DFT study of the structural, vibrational and electronic properties of liriodenine is presented using B3LYP function with 6-311G (2d, p) basis set. The theoretical geometry optimization data were compared with the X-ray data for a similar structure in the associated literature, showing similar values. In addition, natural bond orbitals (NBOs), HOMO-LUMO energy gap, mapped molecular Electrostatic Potential (MEP) surface calculation, first and second order hyperpolarizabilities were also performed with the same calculation level. Theoretical UV spectrum agreed well with the measured experimental data, with transitions assigned. The molecular electrostatic potential map shows opposite potentials regions that forms hydrogen bonds that stabilize the dimeric form, which were confirmed by the close values related to the C dbnd O bond stretching between the dimeric form and the experimental IR spectra (1654 cm- 1 for the experimental, 1700 cm- 1 for the dimer form). Calculated HOMO/LUMO gaps shows the excitation energy for Liriodenine, justifying its stability and kinetics reaction. Molecular docking studies with Candida albicans dihydrofolate reductase (DHFR) and Candida albicans secreted aspartic protease (SAP) showed binding free energies values of - 8.5 and - 8.3 kcal/mol, suggesting good affinity between the liriodenine and the target macromolecules.

  4. Assessing the applicability of template-based protein docking in the twilight zone.

    PubMed

    Negroni, Jacopo; Mosca, Roberto; Aloy, Patrick

    2014-09-02

    The structural modeling of protein interactions in the absence of close homologous templates is a challenging task. Recently, template-based docking methods have emerged to exploit local structural similarities to help ab-initio protocols provide reliable 3D models for protein interactions. In this work, we critically assess the performance of template-based docking in the twilight zone. Our results show that, while it is possible to find templates for nearly all known interactions, the quality of the obtained models is rather limited. We can increase the precision of the models at expenses of coverage, but it drastically reduces the potential applicability of the method, as illustrated by the whole-interactome modeling of nine organisms. Template-based docking is likely to play an important role in the structural characterization of the interaction space, but we still need to improve the repertoire of structural templates onto which we can reliably model protein complexes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results.

    PubMed

    ten Brink, Tim; Exner, Thomas E

    2009-06-01

    In this work, we present a systematical investigation of the influence of ligand protonation states, stereoisomers, and tautomers on results obtained with the two protein-ligand docking programs GOLD and PLANTS. These different states were generated with a fully automated tool, called SPORES (Structure PrOtonation and Recognition System). First, the most probable protonations, as defined by this rule based system, were compared to the ones stored in the well-known, manually revised CCDC/ASTEX data set. Then, to investigate the influence of the ligand protonation state on the docking results, different protonation states were created. Redocking and virtual screening experiments were conducted demonstrating that both docking programs have problems in identifying the correct protomer for each complex. Therefore, a preselection of plausible protomers or the improvement of the scoring functions concerning their ability to rank different molecules/states is needed. Additionally, ligand stereoisomers were tested for a subset of the CCDC/ASTEX set, showing similar problems regarding the ranking of these stereoisomers as the ranking of the protomers.

  6. Synthesis of bis-indolylmethanes as new potential inhibitors of β-glucuronidase and their molecular docking studies.

    PubMed

    Taha, Muhammad; Ullah, Hayat; Al Muqarrabun, Laode Muhammad Ramadhan; Khan, Muhammad Naseem; Rahim, Fazal; Ahmat, Norizan; Ali, Muhammad; Perveen, Shahnaz

    2018-01-01

    Thirty-two (32) bis-indolylmethane-hydrazone hybrids 1-32 were synthesized and characterized by 1 HNMR, 13 CNNMR and HREI-MS. All compounds were evaluated in vitro for β-glucuronidase inhibitory potential. All analogs showed varying degree of β-glucuronidase inhibitory potential ranging from 0.10 ± 0.01 to 48.50 ± 1.10 μM when compared with the standard drug d-saccharic acid-1,4-lactone (IC 50 value 48.30 ± 1.20 μM). Derivatives 1-32 showed the highest β-glucuronidase inhibitory potentials which is many folds better than the standard drug d-saccharic acid-1,4-lactone. Further molecular docking study validated the experimental results. It was proposed that bis-indolylmethane may interact with some amino acid residues located within the active site of β-glucuronidase enzyme. This study has culminated in the identification of a new class of potent β-glucuronidase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship

    NASA Astrophysics Data System (ADS)

    Akhtar, Muhammad Nadeem; Sakeh, Nurshafika M.; Zareen, Seema; Gul, Sana; Lo, Kong Mun; Ul-Haq, Zaheer; Shah, Syed Adnan Ali; Ahmad, Syahida

    2015-04-01

    Browning of fruits and vegetables is a serious issue in the food industry, as it damages the organoleptic properties of the final products. Overproduction of melanin causes aesthetic problems such as melisma, freckles and lentigo. In this study, a series of chalcones (1-10) have been synthesized and examined for their tryrosinase inhibitory activity. The results showed that flavokawain B (1), flavokawain A (2) and compound 3 were found to be potential tyrosinase inhibitors, indicating IC50 14.20-14.38 μM values. This demonstrates that 4-substituted phenolic compound especially at ring A exhibited significant tyrosinase inhibition. Additionally, molecular docking results showed a strong binding affinity for compounds 1-3 through chelation between copper metal and ligands. The detailed molecular docking and SARs studies correlate well with the tyrosinase inhibition studies in vitro. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and single X-ray crystallographic techniques. These findings could lead to design and discover of new tyrosinase inhibitors to control the melanine overproduction and overcome the economic loss of food industry.

  8. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.

    PubMed

    Arodola, Olayide A; Soliman, Mahmoud E S

    2015-01-01

    Based on experimental data, the anticancer activity of nelfinavir (NFV), a US Food and Drug Administration (FDA)-approved HIV-1 protease inhibitor (PI), was reported. Nevertheless, the mechanism of action of NFV is yet to be verified. It was hypothesized that the anticancer activity of NFV is due to its inhibitory effect on heat shock protein 90 (Hsp90), a promising target for anticancer therapy. Such findings prompted us to investigate the potential anticancer activity of all other FDA-approved HIV-1 PIs against human Hsp90. To accomplish this, "loop docking" - an enhanced in-house developed molecular docking approach - followed by molecular dynamic simulations and postdynamic analyses were performed to elaborate on the binding mechanism and relative binding affinities of nine FDA-approved HIV-1 PIs against human Hsp90. Due to the lack of the X-ray crystal structure of human Hsp90, homology modeling was performed to create its 3D structure for subsequent simulations. Results showed that NFV has better binding affinity (ΔG =-9.2 kcal/mol) when compared with other PIs: this is in a reasonable accordance with the experimental data (IC50 3.1 μM). Indinavir, saquinavir, and ritonavir have close binding affinity to NFV (ΔG =-9.0, -8.6, and -8.5 kcal/mol, respectively). Per-residue interaction energy decomposition analysis showed that hydrophobic interaction (most importantly with Val534 and Met602) played the most predominant role in drug binding. To further validate the docking outcome, 5 ns molecular dynamic simulations were performed in order to assess the stability of the docked complexes. To our knowledge, this is the first account of detailed computational investigations aimed to investigate the potential anticancer activity and the binding mechanism of the FDA-approved HIV PIs binding to human Hsp90. Information gained from this study should also provide a route map toward the design, optimization, and further experimental investigation of potential derivatives of PIs to treat HER2+ breast cancer.

  9. Synthesis, antimalarial activity, heme binding and docking studies of N-substituted 4-aminoquinoline-pyrimidine molecular hybrids.

    PubMed

    Maurya, Shiv Shyam; Khan, Shabana I; Bahuguna, Aparna; Kumar, Deepak; Rawat, Diwan S

    2017-03-31

    A series of novel N-substituted 4-aminoquinoline-pyrimidine hybrids have been synthesized via simple and economic route and evaluated for their antimalarial activity. Most compounds showed potent antimalarial activity against both CQ-sensitive and CQ-resistant strains with high selectivity index. All the compounds were found to be non-toxic to the mammalian cell lines. The most active compound 7b was analysed for heme binding activity using UV-spectrophotometer. Compound was found to interact with heme and a complex formation between compound and heme in a 1:1 stoichiometry ratio was determined using job plots. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The pharmacokinetic property analysis of best active compounds was also studied by ADMET prediction. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Synthesis, antimalarial evaluation and molecular docking studies of some thiolactone derivatives

    NASA Astrophysics Data System (ADS)

    Sainy, Jitendra; Sharma, Rajesh

    2017-04-01

    In present study novel thiolactone derivatives were designed, synthesized and characterized by various analytical techniques such as IR, 1H NMR, 13C NMR, mass spectral data and elemental analysis. All synthesized compounds were evaluated for in vitro antimalarial activity against Dd2 and 3d7 strain of P. falciparum. All synthesized compounds were also subjected for molecular docking study with pf KASI/II enzyme to analyze their binding orientation in the active site of the enzyme. Compounds 5d, 5e, and 5i found to be most potent with IC50 in the range of 0.09-0.19 μM and 0.03-0.04 μM against the Dd2 strain and 3D7 strain respectively as well as they showed good binding affinities with the residues of the active site of pf KASI/II.

  11. Synthesis, anti-inflammatory evaluation in vivo and docking studies of some new 5-(benzo[b]furan-2-ylmethyl)-6-methyl-pyridazin-3(2H)-one derivatives

    NASA Astrophysics Data System (ADS)

    Boukharsa, Youness; Lakhlili, Wiame; El harti, Jaouad; Meddah, Bouchra; Tiendrebeogo, Ramata Yvette; Taoufik, Jamal; El Abbes Faouzi, My; Ibrahimi, Azeddine; Ansar, M'hammed

    2018-02-01

    Seven novel 5-(benzo[b]furan-2-ylmethyl)-6-methyl-pyridazin-3(2H)-one derivatives (6a to 6g) have been synthesized by the condensation of appropriate 3-(benzofuran-2-ylmethylene)-4-oxopentanoic acid and hydrazine hydrate in ethanol. Structures of all compounds were elucidated by elemental analysis, IR, 1H NMR and 13C NMR. These compounds were tested for their anti-inflammatory activity in carrageenan-induced rat paw edema model. In silico molecular docking study has been executed to study the binding interactions of the synthesized compounds with COX-2 protein. Compounds 6a, 6b, 6e and 6g showed a good anti-inflammatory activity at 50 mg/kg compared with the indometacin at 10 mg/kg and the aspirin at 150 mg/kg and good binding affinity with COX-2.

  12. Design, synthesis, molecular docking, anti-Proteus mirabilis and urease inhibition of new fluoroquinolone carboxylic acid derivatives.

    PubMed

    Abdullah, Mohammed A A; Abuo-Rahma, Gamal El-Din A A; Abdelhafez, El-Shimaa M N; Hassan, Heba A; Abd El-Baky, Rehab M

    2017-02-01

    New hydroxamic acid, hydrazide and amide derivatives of ciprofloxacin in addition to their analogues of levofloxacin were prepared and identified by different spectroscopic techniques. Some of the prepared compounds revealed good activity against the urease splitting bacteria, Proteus mirabilis. The urease inhibitory activity was investigated using indophenol method. Most of the tested compounds showed better activity than the reference acetohydroxamic acid (AHA). The ciprofloxacin hydrazide derivative 3a and levofloxacin hydroxamic acid 7 experienced the highest activity (IC 50 =1.22μM and 2.20μM, respectively). Molecular docking study revealed high spontaneous binding ability of the tested compounds to the active site of urease. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols.

    PubMed

    Bohari, Mohammed H; Sastry, G Narahari

    2012-09-01

    Efficient drug discovery programs can be designed by utilizing existing pools of knowledge from the already approved drugs. This can be achieved in one way by repositioning of drugs approved for some indications to newer indications. Complex of drug to its target gives fundamental insight into molecular recognition and a clear understanding of putative binding site. Five popular docking protocols, Glide, Gold, FlexX, Cdocker and LigandFit have been evaluated on a dataset of 199 FDA approved drug-target complexes for their accuracy in predicting the experimental pose. Performance for all the protocols is assessed at default settings, with root mean square deviation (RMSD) between the experimental ligand pose and the docked pose of less than 2.0 Å as the success criteria in predicting the pose. Glide (38.7 %) is found to be the most accurate in top ranked pose and Cdocker (58.8 %) in top RMSD pose. Ligand flexibility is a major bottleneck in failure of docking protocols to correctly predict the pose. Resolution of the crystal structure shows an inverse relationship with the performance of docking protocol. All the protocols perform optimally when a balanced type of hydrophilic and hydrophobic interaction or dominant hydrophilic interaction exists. Overall in 16 different target classes, hydrophobic interactions dominate in the binding site and maximum success is achieved for all the docking protocols in nuclear hormone receptor class while performance for the rest of the classes varied based on individual protocol.

  14. Intuitive, but not simple: including explicit water molecules in protein-protein docking simulations improves model quality.

    PubMed

    Parikh, Hardik I; Kellogg, Glen E

    2014-06-01

    Characterizing the nature of interaction between proteins that have not been experimentally cocrystallized requires a computational docking approach that can successfully predict the spatial conformation adopted in the complex. In this work, the Hydropathic INTeractions (HINT) force field model was used for scoring docked models in a data set of 30 high-resolution crystallographically characterized "dry" protein-protein complexes and was shown to reliably identify native-like models. However, most current protein-protein docking algorithms fail to explicitly account for water molecules involved in bridging interactions that mediate and stabilize the association of the protein partners, so we used HINT to illuminate the physical and chemical properties of bridging waters and account for their energetic stabilizing contributions. The HINT water Relevance metric identified the "truly" bridging waters at the 30 protein-protein interfaces and we utilized them in "solvated" docking by manually inserting them into the input files for the rigid body ZDOCK program. By accounting for these interfacial waters, a statistically significant improvement of ∼24% in the average hit-count within the top-10 predictions the protein-protein dataset was seen, compared to standard "dry" docking. The results also show scoring improvement, with medium and high accuracy models ranking much better than incorrect ones. These improvements can be attributed to the physical presence of water molecules that alter surface properties and better represent native shape and hydropathic complementarity between interacting partners, with concomitantly more accurate native-like structure predictions. © 2013 Wiley Periodicals, Inc.

  15. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes.

    PubMed

    Uchikoga, Nobuyuki; Hirokawa, Takatsugu

    2010-05-11

    Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG), CaM kinase kinase (CaMKK) and the plasma membrane Ca2+ ATPase pump (PMCA), and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  16. In Silico Analyses of Substrate Interactions with Human Serum Paraoxonase 1

    DTIC Science & Technology

    2008-01-01

    substrate interactions of HuPON1 remains elusive. In this study, we apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the...mod- eling; docking; molecular dynamics simulations ; binding free energy decomposition. 486 PROTEINS Published 2008 WILEY-LISS, INC. yThis article is a...apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the binding interactions of HuPON1 with representative substrates. The

  17. NESDI FY10 Year in Review Report: The Case For Success 2010

    DTIC Science & Technology

    2010-01-01

    36 CASE STUDY: Motion Assisted Environmental Enclosure for Capturing Paint Overspray in Dry Docks...and to outline a means to assess its environmental impact. 8. Motion Assisted Environmental Enclosure for Capturing Paint Overspray in Dry Docks...in dry docks. 9. Cleaning Solvents for the 21st Century. As part of the Department of Defense’s (DoD) response to eliminating the use of volatile

  18. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2017-04-24

    Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.

  19. Laser assisted anticancer activity of benzimidazole based metal organic nanoparticles.

    PubMed

    Praveen, P A; Ramesh Babu, R; Balaji, P; Murugadas, A; Akbarsha, M A

    2018-03-01

    Recent studies showed that the photothermal therapy can be effectively used for the targeted cancerous cells destruction. Hence, in the present study, benzimidazole based metal organic complex nanoparticles, dichloro cobalt(II) bis-benzimidazole (Co-BMZ) and dichloro copper(II) bis-benzimidazole (Cu-BMZ), were synthesized by reprecipitation method and their anti-cancer activity by means of photothermal effect has been studied. Transmission electron microscopy analysis shows that the particle size of Cu-BMZ is ∼100 nm and Co-BMZ is in the range between 100 and 400 nm. Zeta potential analysis ensures the stability of the synthesized nanoparticles. It is found that the nonlinear absorption of the nanoparticles increases with increase in laser power intensity. Phototoxicity of human lung cancer (A549) and the normal mouse embryonic fibroblast (NIH-3T3) cells was studied using a 650 nm laser. Even though both the cell lines were affected by laser irradiation, A549 cells show higher cell destruction and lower IC 50 values than the normal cells. Docking studies were used to analyse the interaction site and the results showed that the Cu-BMZ molecules have higher dock score than the Co-BMZ molecules. The obtained results indicate that Cu-BMZ samples have lesser particle size, higher nonlinear absorption and higher interaction energy than the Co-BMZ samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Novel Phenoxazinones as potent agonist of PPAR-α: design, synthesis, molecular docking and in vivo studies.

    PubMed

    Ugwu, David I; Okoro, Uchechukwu C; Mishra, Narendra K; Okafor, Sunday N

    2018-05-22

    The use of statin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for the treatment of dyslipidemia has been associated with dose limiting hepatoxicity, mytotoxicity and tolerability due to myalgias thereby necessitating the synthesis of new drug candidates for the treatment of lipid disorder. The reaction of appropriate benzenesulphonamide with substituted phenoxazinone in the presence of phenylboronic acid gave the targeted compounds. The molecular docking study were carried out using autodock tool against peroxisome proliferator activated receptor alpha. The in vivo lipid profile were assayed using conventional methods. The kidney and liver function test were carried out to assess the effect of the derivatives on the organs. The LD 50 of the most active derivatives were determined using mice. The targeted compounds were successfully synthesized in excellent yields and characterized using spectroscopic techniques. The results of the molecular docking experiment showed that they were good stimulant of peroxisome proliferator activated receptor alpha. Compound 9f showed activity at Ki of 2.8 nM and binding energy of 12.6 kcal/mol. All the compounds tested reduced triglyceride, total cholesterol, low density lipoprotein cholesterol and very low density lipoprotein cholesterol level in the mice model. Some of the reported compounds also increased high density lipoprotein cholesterol level in the mice. The compounds did not have appreciable effect on the kidney and liver of the mice used. The LD 50 showed that the novel compounds have improved toxicity profile. The synthesis of fifteen new derivatives of carboxamides bearing phenoxazinone and sulphonamide were successful. The compounds possessed comparable activity to gemfibrozil. The reported compounds had better toxicity profile than gemfibrozil and could serve as a replacement for the statins and fibrate class of lipid agents.

  1. Docking, molecular dynamics, binding energy-MM-PBSA studies of naphthofuran derivatives to identify potential dual inhibitors against BACE-1 and GSK-3β.

    PubMed

    Kumar, Akhil; Srivastava, Gaurava; Negi, Arvind S; Sharma, Ashok

    2018-01-19

    BACE-1 and GSK-3β both are potential therapeutic drug targets for Alzheimer's disease. Recently, both these targets received attention for designing dual inhibitors. Till now only two scaffolds (triazinone and curcumin) derivatives have been reported as BACE-1 and GSK-3β dual inhibitors. In our previous work, we have reported first in class dual inhibitor for BACE-1 and GSK-3β. In this study, we have explored other naphthofuran derivatives for their potential to inhibit BACE-1 and GSK-3β through docking, molecular dynamics, binding energy (MM-PBSA). These computational methods were performed to estimate the binding affinity of naphthofuran derivatives towards the BACE-1 and GSK-3β. In the docking results, two derivatives (NS7 and NS9) showed better binding affinity as compared to previously reported inhibitors. Hydrogen bond occupancy of NS7 and NS9 generated from MD trajectories showed good interaction with the flap residues Gln73, Thr72 of BACE-1 and Arg141, Thr138 residues of GSK-3β. MM-PBSA and energy decomposition per residue revealed different components of binding energy and relative importance of amino acid involved in binding. The results showed that the binding of inhibitors was majorly governed by the hydrophobic interactions and suggesting that hydrophobic interactions might be the key to design dual inhibitors for BACE1-1 and GSK-3β. Distance between important pair of amino acid residues indicated that BACE-1 and GSK-3β adopt closed conformation and become inactive after ligand binding. The results suggested that naphthofuran derivatives might act as dual inhibitor against BACE-1 and GSK-3β.

  2. Exploring the novel heterocyclic derivatives as lead molecules for design and development of potent anticancer agents.

    PubMed

    Azad, Iqbal; Nasibullah, Malik; Khan, Tahmeena; Hassan, Firoj; Akhter, Yusuf

    2018-05-01

    This paper deals with in silico evaluation of newly proposed heterocyclic derivatives in search of potential anticancer activity. Best possible drug candidates have been proposed using a rational approach employing a pipeline of computational techniques namely MetaPrint2D prediction, molinspiration, cheminformatics, Osiris Data warrior, AutoDock and iGEMDOCK. Lazar toxicity prediction, AdmetSAR predictions, and targeted docking studies were also performed. 27 heterocyclic derivatives were selected for bioactivity prediction and drug likeness score on the basis of Lipinski's rule, Viber rule, Ghose filter, leadlikeness and Pan Assay Interference Compounds (PAINS) rule. Bufuralol, Sunitinib, and Doxorubicin were selected as reference standard drug for the comparison of molecular descriptors and docking. Bufuralol is a known non-selective adreno-receptor blocking agent. Studies showed that beta blockers are also used against different types of cancers. Sunitinib is well known Food and Drug administration (FDA) approved pyrrole containing tyrosine kinase inhibitor and our proposed molecules possess similarities with both drug and doxorubicin is another moiety having anticancer activity. All heterocyclic derivatives were found to obey the drug filters except standard drug Doxorubicin. Bioactivity score of the compounds was predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G protein-coupled receptor (GPCR) ligands and ion channel modulators. Absorption, distribution, metabolism and toxicity (ADMET) prediction of all proposed compound showed good Blood-brain barrier (BBB) penetration, Human intestinal absorption (HIA), Caco-2 cell permeability except compound-11 and was found to have no AdmetSAR toxicity as well as carcinogenic effect. Compounds 1-9 were slightly mutagenic while compound 2, 11, 20 and 21 showed carcinogenic effect according to Lazar toxicity prediction. Rests of the compounds were predicted to have no side effect. Molecular docking was performed with vascular endothelial growth factor receptor-2(VEGFR2) and glutathione S-transferase-1 (GSTP1) because both are common cancer causing proteins. Sunitinib and Doxorubicin possess great affinity to inhibit these cancers causing protein. Self-organizing map (SOM) was used to depict data in a simple 2D presentation. Our studies justify that good oral bioavailability and therapeutic efficacy of 10, 12-19 and 22-27 compounds can be considered as potential anticancer agents. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.

    PubMed

    Hameed, Abdul; Zehra, Syeda T; Shah, Syed J A; Khan, Khalid M; Alharthy, Rima D; Furtmann, Norbert; Bajorath, Jürgen; Tahir, Muhammad N; Iqbal, Jamshed

    2015-11-01

    Cholinesterases, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), have a role in cholinergic deficit which evidently leads to Alzheimer's disease (AD). Inhibition of cholinesterases with small molecules is an attractive strategy in AD therapy. This study demonstrates synthesis of pyrido[2,3-b]pyrazines (6a-6q) series, their inhibitory activities against both cholinesterases, AChE and BChE, and molecular docking studies. The bioactivities data of pyrido[2,3-b]pyrazines showed 3-(3'-nitrophenyl)pyrido[2,3-b]pyrazine 6n a potent dual inhibitor among the series against both AChE and BChE with IC50 values of 0.466 ± 0.121 and 1.89 ± 0.05 μm, respectively. The analogues 3-(3'-methylphenyl)pyrido[2,3-b]pyrazine 6c and 3-(3'-fluorophenyl)pyrido[2,3-b]pyrazine 6f were found to be selective inhibition for BChE with IC50 values of 0.583 ± 0.052 μm and AChE with IC50 value of 0.899 ± 0.10 μm, respectively. Molecular docking studies of the active compounds suggested the putative binding modes with cholinesterases. The potent compounds among the series could potentially serves as good leads for the development of new cholinesterase inhibitors. © 2015 John Wiley & Sons A/S.

  4. Acute peg in hole docking in the management of infected non-union of long bones

    PubMed Central

    Mir, Mohammed Ramzan; Ahmed, Molvi Sajjad; Afzal, Suhail; Butt, Mohammed Farooq; Badoo, A. R.; Dar, Irshad Tabasum; Hussain, Anwar

    2007-01-01

    The Ilizarov method has been studied extensively in the management of non-union of long bones. In most cases this involves filling of defects present primarily or after débridement by bone transport. Acute docking over gaps longer than 2 cm has not been adequately studied, however. The purpose of this paper is to report the efficacy of acute peg in hole docking as a bone graft-sparing modality in the management of infected non-union of long bones. PMID:17387474

  5. Binding site and affinity prediction of general anesthetics to protein targets using docking.

    PubMed

    Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G

    2012-05-01

    The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explored whether a computational method, AutoDock, could serve as such a tool. High-resolution crystal data of water-soluble proteins (cytochrome C, apoferritin, and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus [GLIC]) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (http://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants were compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent cocrystallization data. Docking calculations for 6 general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known 50% effective concentration (EC(50)) values were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC(50) values and octanol/water partition coefficients for the 6 general anesthetics. All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (P = 0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site located in the extracellular domain of GLIC. The predicted affinities correlated significantly with the known EC(50) values for the 6 frequently used anesthetics in GLIC for the site identified in the experimental crystal data (P = 0.006). However, predicted affinities in apoferritin, human serum albumin, and cytochrome C did not correlate with these 6 anesthetics' known experimental EC(50) values. A weak correlation between the predicted affinities and the octanol/water partition coefficients was observed for the sites in GLIC. We demonstrated that anesthetic binding sites and relative affinities can be predicted using docking calculations in an automatic docking server (AutoDock) for both water-soluble and membrane proteins. Correlation of predicted affinity and EC(50) for 6 frequently used general anesthetics was only observed in GLIC, a member of a protein family relevant to anesthetic mechanism.

  6. A combined spectroscopic, molecular docking and molecular dynamic simulation study on the interaction of quercetin with β-casein nanoparticles.

    PubMed

    Mehranfar, Fahimeh; Bordbar, Abdol-Khalegh; Parastar, Hadi

    2013-10-05

    The interaction of quercetin with β-casein nanoparticle micelle was studied at various temperatures in order to do a complete thermodynamic and molecular analysis on the binding process. The results of fluorescence studies showed the possibility of fluorescence energy transfer between excited tryptophan and quercetin. The determined values of critical transfers distance and the mean distance of ligand from Trp-143 residues in β-casein micelle represents a non-radiative energy transfer mechanism for quenching and the existence of a significant interaction between this flavonoid and β-casein nanoparticle. The equilibrium binding of quercetin with β-casein micelle at different temperatures was studied by using UV-Vis absorption spectroscopy. The chemometric analysis (principal component analysis (PCA) and multivariate curve resolution-alternating least squares (MCR-ALS) methods) on spectrophotometric data revealed the existence of two components in solution (quercetin and β-casein-quercetin complex) and resolved their pure concentration and spectral profiles. This information let us to calculate the equilibrium binding constant at various temperatures and the relevant thermodynamic parameters of interaction (enthalpy, entropy and Gibbs free energy) with low uncertainty. The negative values of entropy and enthalpy changes represent the predominate role of hydrogen binding and van der Waals interactions in the binding process. Docking calculations showed the probable binding site of quercetin is located in the hydrophobic core of β-casein where the quercetin molecule is lined by hydrophobic residues and make five hydrogen bonds and several van der Waals contacts with them. Moreover, molecular dynamic (MD) simulation results suggested that this flavonoid can interact with β-casein, without affecting the secondary structure of β-casein. Simulations, molecular docking and experimental data reciprocally supported each other. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Inhibition of Urease Enzyme Production and some Other Virulence Factors Expression in Proteus mirabilis by N-Acetyl Cysteine and Dipropyl Disulphide.

    PubMed

    Abdel-Baky, Rehab Mahmoud; Ali, Mohamed Abdullah; Abuo-Rahma, Gamal El-Din Ali A; AbdelAziz, Neveen

    2017-01-01

    Proteus mirabilis is one of the important pathogens that colonize the urinary tract and catheters resulting in various complications, such as blockage of the catheters and the formation of infective stones. In this study we evaluated the effect of N-acetyl cysteine (NAC) and dipropyl disulphide on some virulence factors expressed by a Proteus mirabilis strain isolated from a catheterized patient. Antibacterial activity of both compounds was determined by broth microdilution method. Their effect on different types of motility was determined by LB medium with variable agar content and sub-MIC of each drug. Their effect on adherence and mature biofilms was tested by tissue culture plate assay. Inhibitory effect on urease production was determined and supported by molecular docking studies. The minimum inhibitory concentration (MIC) of NAC and dipropyl disulphide was 25 mM and 100 mM, respectively. Both compounds decreased the swarming ability and biofilm formation of the tested isolate in a dose-dependent manner. NAC had higher urease inhibitory activity (IC50 249 ±0.05 mM) than that shown by dipropyl disulphide (IC 50 10±0.2 mM). Results were supported by molecular docking studies which showed that NAC and dipropyl disulphide interacted with urease enzyme with binding free energy of -4.8 and -8.528 kcal/mol, respectively. Docking studies showed that both compounds interacted with Ni ion and several amino acids (His-138, Gly-279, Cysteine-321, Met-366 and His-322) which are essential for the enzyme activity. NAC and dipropyl disulphide could be used in the control of P. mirabilis urinary tract infections.

  8. Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera's key metabolite Withaferin A.

    PubMed

    Saha, Sanjib; Islam, Md Khirul; Shilpi, Jamil A; Hasan, Shihab

    2013-01-01

    Angiogenesis, or new blood vessel formation from existing one, plays both beneficial and detrimental roles in living organisms in different aspects. Vascular endothelial growth factor (VEGF), a signal protein, well established as key regulator of vasculogenesis and angiogenesis. VEGF ensures oxygen supply to the tissues when blood supply is not adequate, or tissue environment is in hypoxic condition. Limited expression of VEGF is necessary, but if it is over expressed, then it can lead to serious disease like cancer. Cancers that have ability to express VEGF are more efficient to grow and metastasize because solid cancers cannot grow larger than a limited size without adequate blood and oxygen supply. Anti-VEGF drugs are already available in the market to control angiogenesis, but they are often associated with severe side-effects like fetal bleeding and proteinuria in the large number of patients. To avoid such side-effects, new insight is required to find potential compounds as anti-VEGF from natural sources. In the present investigation, molecular docking studies were carried out to find the potentiality of Withaferin A, a key metabolite of Withania somnifera, as an inhibitor of VEGF. Molecular Docking studies were performed in DockingServer and SwissDock. Bevacizumab, a commercial anti-VEGF drug, was used as reference to compare the activity of Withaferin A. X-ray crystallographic structure of VEGF, was retrieved from Protein Data Bank (PDB), and used as drug target protein. Structure of Withaferin A and Bevacizumab was obtained from PubChem and ZINC databases. Molecular visualization was performed using UCSF Chimera. Withaferin A showed favorable binding with VEGF with low binding energy in comparison to Bevacizumab. Molecular Docking studies also revealed potential protein-ligand interactions for both Withaferin A and Bevacizumab. Conclusively our results strongly suggest that Withaferin A is a potent anti-VEGF agent as ascertained by its potential interaction with VEGF. This scientific hypothesis might provide a better insight to control angiogenesis as well as to control solid cancer growth and metastasis.

  9. Molecular docking.

    PubMed

    Morris, Garrett M; Lim-Wilby, Marguerita

    2008-01-01

    Molecular docking is a key tool in structural molecular biology and computer-assisted drug design. The goal of ligand-protein docking is to predict the predominant binding mode(s) of a ligand with a protein of known three-dimensional structure. Successful docking methods search high-dimensional spaces effectively and use a scoring function that correctly ranks candidate dockings. Docking can be used to perform virtual screening on large libraries of compounds, rank the results, and propose structural hypotheses of how the ligands inhibit the target, which is invaluable in lead optimization. The setting up of the input structures for the docking is just as important as the docking itself, and analyzing the results of stochastic search methods can sometimes be unclear. This chapter discusses the background and theory of molecular docking software, and covers the usage of some of the most-cited docking software.

  10. An autonomous rendezvous and docking system using cruise missile technology

    NASA Technical Reports Server (NTRS)

    Jones, ED; Nicholson, Bruce

    1991-01-01

    In November 1990 General Dynamics demonstrated an AR&D system for members of the Strategic Avionics Technology Working Group. This simulation utilized prototype hardware derived from the Cruise Missile and Centaur avionics systems. The object of this proof of concept demonstration was to show that all the accuracy, reliability, and operational requirements established for a spacecraft to dock with Space Station Freedom could be met by the proposed AR&D system.

  11. Six degree of freedom FORTRAN program, ASTP docking dynamics, users guide

    NASA Technical Reports Server (NTRS)

    Mount, G. O., Jr.; Mikhalkin, B.

    1974-01-01

    The digital program ASTP Docking Dynamics as outlined is intended to aid the engineer using the program to determine the docking system loads and attendant vehicular motion resulting from docking two vehicles that have an androgynous, six-hydraulic-attenuator, guide ring, docking interface similar to that designed for the Apollo/Soyuz Test Project (ASTP). This program is set up to analyze two different vehicle combinations: the Apollo CSM docking to Soyuz and the shuttle orbiter docking to another orbiter. The subroutine modifies the vehicle control systems to describe one or the other vehicle combinations; the rest of the vehicle characteristics are changed by input data. To date, the program has been used to predict and correlate ASTP docking loads and performance with docking test program results from dynamic testing. The program modified for use on IBM 360 computers. Parts of the original docking system equations in the areas of hydraulic damping and capture latches are modified to better describe the detail design of the ASTP docking system.

  12. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    PubMed

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Small-GTPase-associated signaling by the guanine nucleotide exchange factors CpDock180 and CpCdc24, the GTPase effector CpSte20, and the scaffold protein CpBem1 in Claviceps purpurea.

    PubMed

    Herrmann, Andrea; Tillmann, Britta A M; Schürmann, Janine; Bölker, Michael; Tudzynski, Paul

    2014-04-01

    Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea.

  14. A Comparison of Workers Employed in Hazardous Jobs in Terms of Job Satisfaction, Perceived Job Risk and Stress: Turkish Jean Sandblasting Workers, Dock Workers, Factory Workers and Miners

    ERIC Educational Resources Information Center

    Sunal, Ayda Buyuksahin; Sunal, Onur; Yasin, Fatma

    2011-01-01

    The purpose of this study is to compare job satisfaction, perception of job risk, stress symptoms and vulnerability to stress of miners, dock workers, jean sandblasting workers and factory workers. A job satisfaction scale and stress audit scale were applied to 220 workers. Results revealed that dock and jean sandblasting workers perceived their…

  15. Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Abdelhameed, Ali S.; Alanazi, Amer M.; Bakheit, Ahmed H.; Darwish, Hany W.; Ghabbour, Hazem A.; Darwish, Ibrahim A.

    2017-01-01

    Binding of the recently introduced anti-cancer drug, crizotinib (CRB) with the bovine serum albumin (BSA) was comprehensively studied with the aid of fluorescence and UV-Vis spectroscopic as well as molecular docking techniques. The collective results of the study under the simulated physiological conditions proposed a static type of binding occurring between the CRB and BSA with binding constants of 104 L mol- 1. BSA conformational changes were investigated using three dimensional (3D) and synchronous fluorescence measurements. Moreover, the results of site marker competitive experiments and molecular docking, it could be deduced that CRB was inserted into the subdomain IIA (site I) of BSA yielding a more stabilized system. This was further confirmed with the molecular docking results which revealed that CRB is located in the active site residues Try149, Glu152, Ser191, Arg194, Arg198, Trp213, Arg217, Arg256, His287, Ala290, Glu291, Ser343, Asp450 within a radius of 6 Å. Combining the molecular docking studies and the computed thermodynamic parameters, it can be inferred that hydrophobic and electrostatic interactions are the major binding forces involved in formation of the CRB-BSA complex.

  16. Structural prediction and comparative docking studies of psychrophilic β- Galactosidase with lactose, ONPG and PNPG against its counter parts of mesophilic and thermophilic enzymes.

    PubMed

    Kumar, Ponnada Suresh; Pulicherla, Kk; Ghosh, Mrinmoy; Kumar, Anmol; Rao, Krs Sambasiva

    2011-01-01

    Enzymes from psychrophiles catalyze the reactions at low temperatures with higher specific activity. Among all the psychrophilic enzymes produced, cold active β-galactosidase from marine psychrophiles revalorizes a new arena in numerous areas at industrial level. The hydrolysis of lactose in to glucose and galactose by cold active β-galactosidase offers a new promising approach in removal of lactose from milk to overcome the problem of lactose intolerance. Herein we propose, a 3D structure of cold active β-galactosidase enzyme sourced from Pseudoalteromonas haloplanktis by using Modeler 9v8 and best model was developed having 88% of favourable region in ramachandran plot. Modelling was followed by docking studies with the help of Auto dock 4.0 against the three substrates lactose, ONPG and PNPG. In addition, comparative docking studies were also performed for the 3D model of psychrophilic β-galactosidase with mesophilic and thermophilic enzymes. Docking studies revealed that binding affinity of enzyme towards the three different substrates is more for psychrophilic enzyme when compared with mesophilic and thermophilic enzymes. It indicates that the enzyme has high specific activity at low temperature when compared with mesophilic and thermophilic enzymes.

  17. JADOPPT: java based AutoDock preparing and processing tool.

    PubMed

    García-Pérez, Carlos; Peláez, Rafael; Therón, Roberto; Luis López-Pérez, José

    2017-02-15

    AutoDock is a very popular software package for docking and virtual screening. However, currently it is hard work to visualize more than one result from the virtual screening at a time. To overcome this limitation we have designed JADOPPT, a tool for automatically preparing and processing multiple ligand-protein docked poses obtained from AutoDock. It allows the simultaneous visual assessment and comparison of multiple poses through clustering methods. Moreover, it permits the representation of reference ligands with known binding modes, binding site residues, highly scoring regions for the ligand, and the calculated binding energy of the best ranked results. JADOPPT, supplementary material (Case Studies 1 and 2) and video tutorials are available at http://visualanalytics.land/cgarcia/JADOPPT.html. carlosgarcia@usal.es or pelaez@usal.es. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. Pharmacophore, QSAR, and binding mode studies of substrates of human cytochrome P450 2D6 (CYP2D6) using molecular docking and virtual mutations and an application to chinese herbal medicine screening.

    PubMed

    Mo, Sui-Lin; Liu, Wei-Feng; Li, Chun-Guang; Zhou, Zhi-Wei; Luo, Hai-Bin; Chew, Helen; Liang, Jun; Zhou, Shu-Feng

    2012-07-01

    The highly polymorphic human cytochrome P450 2D6 (CYP2D6) metabolizes about 25% of currently used drugs. In this study, we have explored the interaction of a large number of substrates (n = 120) with wild-type and mutated CYP2D6 by molecular docking using the CDOCKER module. Before we conducted the molecular docking and virtual mutations, the pharmacophore and QSAR models of CYP2D6 substrates were developed and validated. Finally, we explored the interaction of a traditional Chinese herbal formula, Fangjifuling decoction, with CYP2D6 by virtual screening. The optimized pharmacophore model derived from 20 substrates of CYP2D6 contained two hydrophobic features and one hydrogen bond acceptor feature, giving a relevance ratio of 76% when a validation set of substrates were tested. However, our QSAR models gave poor prediction of the binding affinity of substrates. Our docking study demonstrated that 117 out of 120 substrates could be docked into the active site of CYP2D6. Forty one out of 117 substrates (35.04%) formed hydrogen bonds with various active site residues of CYP2D6 and 53 (45.30%) substrates formed a strong π-π interaction with Phe120 (53/54), with only carvedilol showing π-π interaction with Phe483. The active site residues involving hydrogen bond formation with substrates included Leu213, Lys214, Glu216, Ser217, Gln244, Asp301, Ser304, Ala305, Phe483, and Phe484. Furthermore, the CDOCKER algorithm was further applied to study the impact of mutations of 28 active site residues (mostly non-conserved) of CYP2D6 on substrate binding modes using five probe substrates including bufuralol, debrisoquine, dextromethorphan, sparteine, and tramadol. All mutations of the residues examined altered the hydrogen bond formation and/or aromatic interactions, depending on the probe used in molecular docking. Apparent changes of the binding modes have been observed with the Glu216Asp and Asp301Glu mutants. Overall, 60 compounds out of 130 from Fangjifuling decoction matched our pharmacophore model for CYP2D6 substrates. Fifty four out of these 60 compounds could be docked into the active site of CYP2D6 and 24 of 54 compounds formed hydrogen bonds with Glu216, Asp301, Ser304, and Ala305 in CYP2D6. These results have provided further insights into the factors that determining the binding modes of substrates to CYP2D6. Screening of high-affinity ligands for CYP2D6 from herbal formula using computational models is a useful approach to identify potential herb-drug interactions.

  19. BP-Dock: A Flexible Docking Scheme for Exploring Protein–Ligand Interactions Based on Unbound Structures

    PubMed Central

    Bolia, Ashini; Gerek, Z. Nevin; Ozkan, S. Banu

    2016-01-01

    Molecular docking serves as an important tool in modeling protein–ligand interactions. However, it is still challenging to incorporate overall receptor flexibility, especially backbone flexibility, in docking due to the large conformational space that needs to be sampled. To overcome this problem, we developed a novel flexible docking approach, BP-Dock (Backbone Perturbation-Dock) that can integrate both backbone and side chain conformational changes induced by ligand binding through a multi-scale approach. In the BP-Dock method, we mimic the nature of binding-induced events as a first-order approximation by perturbing the residues along the protein chain with a small Brownian kick one at a time. The response fluctuation profile of the chain upon these perturbations is computed using the perturbation response scanning method. These response fluctuation profiles are then used to generate binding-induced multiple receptor conformations for ensemble docking. To evaluate the performance of BP-Dock, we applied our approach on a large and diverse data set using unbound structures as receptors. We also compared the BP-Dock results with bound and unbound docking, where overall receptor flexibility was not taken into account. Our results highlight the importance of modeling backbone flexibility in docking for recapitulating the experimental binding affinities, especially when an unbound structure is used. With BP-Dock, we can generate a wide range of binding site conformations realized in nature even in the absence of a ligand that can help us to improve the accuracy of unbound docking. We expect that our fast and efficient flexible docking approach may further aid in our understanding of protein–ligand interactions as well as virtual screening of novel targets for rational drug design. PMID:24380381

  20. Combined 3D-QSAR, molecular docking and molecular dynamics study on thyroid hormone activity of hydroxylated polybrominated diphenyl ethers to thyroid receptors β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaolin; Ye, Li; Wang, Xiaoxiang

    2012-12-15

    Several recent reports suggested that hydroxylated polybrominated diphenyl ethers (HO-PBDEs) may disturb thyroid hormone homeostasis. To illuminate the structural features for thyroid hormone activity of HO-PBDEs and the binding mode between HO-PBDEs and thyroid hormone receptor (TR), the hormone activity of a series of HO-PBDEs to thyroid receptors β was studied based on the combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) methods. The ligand- and receptor-based 3D-QSAR models were obtained using Comparative Molecular Similarity Index Analysis (CoMSIA) method. The optimum CoMSIA model with region focusing yielded satisfactory statistical results: leave-one-out cross-validation correlation coefficient (q{sup 2}) was 0.571 andmore » non-cross-validation correlation coefficient (r{sup 2}) was 0.951. Furthermore, the results of internal validation such as bootstrapping, leave-many-out cross-validation, and progressive scrambling as well as external validation indicated the rationality and good predictive ability of the best model. In addition, molecular docking elucidated the conformations of compounds and key amino acid residues at the docking pocket, MD simulation further determined the binding process and validated the rationality of docking results. -- Highlights: ► The thyroid hormone activities of HO-PBDEs were studied by 3D-QSAR. ► The binding modes between HO-PBDEs and TRβ were explored. ► 3D-QSAR, molecular docking, and molecular dynamics (MD) methods were performed.« less

  1. Shipbuilding Docks as Experimental Systems for Realistic Assessments of Anthropogenic Stressors on Marine Organisms

    PubMed Central

    Harding, Harry R.; Bunce, Tom; Birch, Fiona; Lister, Jessica; Spiga, Ilaria; Benson, Tom; Rossington, Kate; Jones, Diane; Tyler, Charles R.; Simpson, Stephen D.

    2017-01-01

    Abstract Empirical investigations of the impacts of anthropogenic stressors on marine organisms are typically performed under controlled laboratory conditions, onshore mesocosms, or via offshore experiments with realistic (but uncontrolled) environmental variation. These approaches have merits, but onshore setups are generally small sized and fail to recreate natural stressor fields, whereas offshore studies are often compromised by confounding factors. We suggest the use of flooded shipbuilding docks to allow studying realistic exposure to stressors and their impacts on the intra- and interspecific responses of animals. Shipbuilding docks permit the careful study of groups of known animals, including the evaluation of their behavioral interactions, while enabling full control of the stressor and many environmental conditions. We propose that this approach could be used for assessing the impacts of prominent anthropogenic stressors, including chemicals, ocean warming, and sound. Results from shipbuilding-dock studies could allow improved parameterization of predictive models relating to the environmental risks and population consequences of anthropogenic stressors. PMID:29599545

  2. Shipbuilding Docks as Experimental Systems for Realistic Assessments of Anthropogenic Stressors on Marine Organisms.

    PubMed

    Bruintjes, Rick; Harding, Harry R; Bunce, Tom; Birch, Fiona; Lister, Jessica; Spiga, Ilaria; Benson, Tom; Rossington, Kate; Jones, Diane; Tyler, Charles R; Radford, Andrew N; Simpson, Stephen D

    2017-09-01

    Empirical investigations of the impacts of anthropogenic stressors on marine organisms are typically performed under controlled laboratory conditions, onshore mesocosms, or via offshore experiments with realistic (but uncontrolled) environmental variation. These approaches have merits, but onshore setups are generally small sized and fail to recreate natural stressor fields, whereas offshore studies are often compromised by confounding factors. We suggest the use of flooded shipbuilding docks to allow studying realistic exposure to stressors and their impacts on the intra- and interspecific responses of animals. Shipbuilding docks permit the careful study of groups of known animals, including the evaluation of their behavioral interactions, while enabling full control of the stressor and many environmental conditions. We propose that this approach could be used for assessing the impacts of prominent anthropogenic stressors, including chemicals, ocean warming, and sound. Results from shipbuilding-dock studies could allow improved parameterization of predictive models relating to the environmental risks and population consequences of anthropogenic stressors.

  3. Molecular Docking, Molecular Dynamics Simulations, Computational Screening to Design Quorum Sensing Inhibitors Targeting LuxP of Vibrio harveyi and Its Biological Evaluation.

    PubMed

    Rajamanikandan, Sundaraj; Jeyakanthan, Jeyaraman; Srinivasan, Pappu

    2017-01-01

    Quorum sensing (QS) plays an important role in the biofilm formation, production of virulence factors and stress responses in Vibrio harveyi. Therefore, interrupting QS is a possible approach to modulate bacterial behavior. In the present study, three docking protocols, such as Rigid Receptor Docking (RRD), Induced Fit Docking (IFD), and Quantum Polarized Ligand Docking (QPLD) were used to elucidate the binding mode of boronic acid derivatives into the binding pocket of LuxP protein in V. harveyi. Among the three docking protocols, IFD accurately predicted the correct binding mode of the studied inhibitors. Molecular dynamics (MD) simulations of the protein-ligand complexes indicates that the inter-molecular hydrogen bonds formed between the protein and ligand complex remains stable during the simulation time. Pharmacophore and shape-based virtual screening were performed to find selective and potent compounds from ChemBridge database. Five hit compounds were selected and subjected to IFD and MD simulations to validate the binding mode. In addition, enrichment calculation was performed to discriminate and separate active compounds from the inactive compounds. Based on the computational studies, the potent Bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid-2,6-dimethylpyridine 1-oxide (ChemBridge_5144368) was selected for in vitro assays. The compound exhibited dose dependent inhibition in bioluminescence and also inhibits biofilm formation in V. harveyi to the level of 64.25 %. The result from the study suggests that ChemBridge_5144368 could serve as an anti-quorum sensing molecule for V. harveyi.

  4. American & Soviet engineers examine ASTP docking set-up following tests

    NASA Image and Video Library

    1974-07-10

    S74-25394 (10 July 1974) --- A group of American and Soviet engineers of the Apollo-Soyuz Test Project working group three examines an ASTP docking set-up following a docking mechanism fitness test conducted in Building 13 at the Johnson Space Center. Working Group No. 3 is concerned with ASTP docking problems and techniques. The joint U.S.-USSR ASTP docking mission in Earth orbit is scheduled for the summer of 1975. The Apollo docking mechanism is atop the Soyuz docking mechanism.

  5. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Vladimir B.; Serbin, Alexander V.

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  6. ProSelection: A Novel Algorithm to Select Proper Protein Structure Subsets for in Silico Target Identification and Drug Discovery Research.

    PubMed

    Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun

    2017-11-27

    Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.

  7. A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D- QSAR analysis, molecular docking, density functional and molecular dynamics simulation study.

    PubMed

    Choubey, Sanjay K; Jeyaraman, Jeyakanthan

    2016-11-01

    Deregulated epigenetic activity of Histone deacetylase 1 (HDAC1) in tumor development and carcinogenesis pronounces it as promising therapeutic target for cancer treatment. HDAC1 has recently captured the attention of researchers owing to its decisive role in multiple types of cancer. In the present study a multistep framework combining ligand based 3D-QSAR, molecular docking and Molecular Dynamics (MD) simulation studies were performed to explore potential compound with good HDAC1 binding affinity. Four different pharmacophore hypotheses Hypo1 (AADR), Hypo2 (AAAH), Hypo3 (AAAR) and Hypo4 (ADDR) were obtained. The hypothesis Hypo1 (AADR) with two hydrogen bond acceptors (A), one hydrogen bond donor (D) and one aromatics ring (R) was selected to build 3D-QSAR model on the basis of statistical parameter. The pharmacophore hypothesis produced a statistically significant QSAR model, with co-efficient of correlation r 2 =0.82 and cross validation correlation co-efficient q 2 =0.70. External validation result displays high predictive power with r 2 (o) value of 0.88 and r 2 (m) value of 0.58 to carry out further in silico studies. Virtual screening result shows ZINC70450932 as the most promising lead where HDAC1 interacts with residues Asp99, His178, Tyr204, Phe205 and Leu271 forming seven hydrogen bonds. A high docking score (-11.17kcal/mol) and lower docking energy -37.84kcal/mol) displays the binding efficiency of the ligand. Binding free energy calculation was done using MM/GBSA to access affinity of ligands towards protein. Density Functional Theory was employed to explore electronic features of the ligands describing intramolcular charge transfer reaction. Molecular dynamics simulation studies at 50ns display metal ion (Zn)-ligand interaction which is vital to inhibit the enzymatic activity of the protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Isolation, characterization and in silico docking studies of synergistic estrogen receptor a anticancer polyphenols from Syzygium alternifolium (Wt.) Walp.

    PubMed Central

    Yugandhar, Pulicherla; Kumar, Konidala Kranthi; Neeraja, Pabbaraju; Savithramma, Nataru

    2017-01-01

    Aim: This study aims to isolate, characterize, and in silico evaluate of anticancer polyphenols from different parts of Syzygium alternifolium. Materials and Methods: The polyphenols were isolated by standard protocol and characterized using Fourier-transform infrared (FT-IR), High performance liquid chromatography - Photodiode array detector coupled with Electrospray ionization - mass spectrometry (MS/MS). The compounds were elucidated based on retention time and molecular ions (m/z) either by [M+H]+/[M-H]− with the comparison of standard phenols as well as ReSpect software tool. Furthermore, absorption, distribution, metabolism, and excretion (ADME)/toxicity properties of selected phenolic scaffolds were screened using OSIRIS and SwissADME programs, which incorporate toxicity risk assessments, pharmacokinetics, and rule of five principles. Molecular docking studies were carried out for selected toxicity filtered compounds against breast cancer estrogen receptor a (ERa) structure (protein data bank-ID: 1A52) through AutoDock scoring functions by PyRx virtual screening program. Results: The obtained results showed two intensive peaks in each polyphenol fraction analyzed with FT-IR, confirms O-H/C-O stretch of the phenolic functional group. A total of 40 compounds were obtained, which categorized as 9 different classes. Among them, flavonol group represents more number of polyphenols. In silico studies suggest seven compounds have the possibility to use as future nontoxic inhibitors. Molecular docking studies with ERa revealed the lead molecules unequivocally interact with Leu346, Glu353, Leu391, Arg394, Gly521, Leu525 residues, and Phe404 formed atomic π-stacking with dihydrochromen-4-one ring of ligands as like estrodial, which stabilizes the receptor structure and complicated to generate a single mutation for drug resistance. Conclusion: Overall, these results significantly proposed that isolated phenolics could be served as potential ER mitigators for breast cancer therapy. PMID:28894629

  9. Alanine rich peptide from Populus trichocarpa inhibit growth of Staphylococcus aureus via targetting its extracellular domain of Sensor Histidine Kinase YycGex protein.

    PubMed

    Al Akeel, Raid; Mateen, Ayesha; Syed, Rabbani; Alqahtani, Mohammed S; Alqahtani, Ali S

    2018-05-22

    Due to growing concern towards microbial resistance, ongoing search for developing novel bioactive compounds such as peptides is on rise. The aim of this study was to evaluate antimicrobial effect of Populus trichocarpa extract, chemically identify the active peptide fraction and finds its target in Staphylococcus aureus. In this study the active fraction of P. trichocarpa crude extract was purified and characterized using MS/MS. This peptide PT13 antimicrobial activity was confirmed by in-vitro agar based disk diffusion and in-vivo infection model of G. mellonella. The proteomic expression analysis of S. aureus under influence of PT13 was studied using LTQ-Orbitrap-MS in-solution digestion and identity of target protein was acquired with their quantified expression using label-free approach of Progenesis QI software. Docking study was performed with peptide PT13 and its target YycG protein using CABS-dock. The active fraction PT13 sequence was identified as KVPVAAAAAAAAAVVASSMVVAAAK, with 25 amino acid including 13 alanine having M/Z 2194.2469. PT13 was uniformly inhibited growth S. aureus SA91 and MIC was determined 16 μg/mL for SA91 S. aureus strain. Sensor histidine kinase (YycG) was most significant target found differentially expressed under influence of PT13. G. mellonella larvae were killed rapidly due to S aureus infection, whereas death in protected group was insignificant in compare to control. The docking models showed ten docking models with RMSD value 1.89 for cluster 1 and RMSD value 3.95 for cluster 2 which is predicted to be high quality model. Alanine rich peptide could be useful in constructing as antimicrobial peptide for targeting extracellular Domain of Sensor Histidine Kinase YycG from S. aureus used in the study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Flavonoids-Rich Orthosiphon stamineus Extract as New Candidate for Angiotensin I-Converting Enzyme Inhibition: A Molecular Docking Study.

    PubMed

    Shafaei, Armaghan; Sultan Khan, Md Shamsuddin; F A Aisha, Abdalrahim; Abdul Majid, Amin Malik Shah; Hamdan, Mohammad Razak; Mordi, Mohd Nizam; Ismail, Zhari

    2016-11-09

    This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action based on structure-activity relationships and molecular docking. The in vitro ACE inhibition activity relied on determining hippuric acid (HA) formation from ACE-specific substrate (hippuryl-histidyl-leucine (HHL)) by the action of ACE enzyme. A High Performance Liquid Chromatography method combined with UV detection was developed and validated for measurement the concentration of produced HA. The chelation ability of OS extract and its reference compounds was evaluated by tetramethylmurexide reagent. Furthermore, molecular docking study was performed by LeadIT-FlexX : BioSolveIT's LeadIT program. OS ethanolic extract (OS-E) exhibited highest inhibition and lowest IC 50 value (45.77 ± 1.17 µg/mL) against ACE compared to the other extracts. Among the tested reference compounds, EUP with IC 50 15.35 ± 4.49 µg/mL had highest inhibition against ACE and binding ability with Zn (II) (56.03% ± 1.26%) compared to RA, TMF and SIN. Molecular docking studies also confirmed that flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. In this study, we have demonstrated that changes in flavonoids active core affect their capacity to inhibit ACE. Moreover, we showed that ACE inhibition activity of flavonoids compounds is directly related to their ability to bind with zinc ion in the active site of ACE enzyme. It was also revealed that OS extract contained high amount of flavonoids other than RA, TMF, SIN and EUP. As such, application of OS extract is useful as inhibitors of ACE.

  11. Investigating inhibitory activity of novel synthetic sericin peptide on α-D-glucosidase: kinetics and interaction mechanism study using a docking simulation.

    PubMed

    Xie, Fan; Wang, Shaoyun; Zhang, Li; Wu, Jinhong; Wang, Zhengwu

    2018-03-01

    We synthesised a novel sericin peptide (SP-GI) with α-d-glucosidase inhibitory activity, which has a sequence of SEDSSEVDIDLGN. The kinetics of its peptide-induced inhibition on α-d-glucosidase activity and its interaction mechanism merging with molecular docking were both investigated. SP-GI exhibited significant inhibitory activity with an IC 50 of 2.9 ± 0.1 µmol L -1 and this inhibition was reversible and non-competitive with a K i value of 1.0 ± 0.1 µmol L -1 . An interaction study with SP-GI revealed it bound to α-d-glucosidase at a single binding site, resulting in alterations in α-d-glucosidase secondary structure. This led to quenching of intrinsic α-d-glucosidase fluorescence by a static quenching mechanism. Molecular docking results showed that the SP-GI binding site on α-d-glucosidase differed from acarbose, with hydrogen bonding and van der Waals forces being the main binding drivers. These findings suggest the potential use for SP-GI or other natural sericin peptides as dietary supplements for the treatment of type 2 diabetes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Computational Exploration for Lead Compounds That Can Reverse the Nuclear Morphology in Progeria

    PubMed Central

    Baek, Ayoung; Son, Minky; Zeb, Amir; Park, Chanin; Kumar, Raj; Lee, Gihwan; Kim, Donghwan; Choi, Yeonuk; Cho, Yeongrae; Park, Yohan

    2017-01-01

    Progeria is a rare genetic disorder characterized by premature aging that eventually leads to death and is noticed globally. Despite alarming conditions, this disease lacks effective medications; however, the farnesyltransferase inhibitors (FTIs) are a hope in the dark. Therefore, the objective of the present article is to identify new compounds from the databases employing pharmacophore based virtual screening. Utilizing nine training set compounds along with lonafarnib, a common feature pharmacophore was constructed consisting of four features. The validated Hypo1 was subsequently allowed to screen Maybridge, Chembridge, and Asinex databases to retrieve the novel lead candidates, which were then subjected to Lipinski's rule of 5 and ADMET for drug-like assessment. The obtained 3,372 compounds were forwarded to docking simulations and were manually examined for the key interactions with the crucial residues. Two compounds that have demonstrated a higher dock score than the reference compounds and showed interactions with the crucial residues were subjected to MD simulations and binding free energy calculations to assess the stability of docked conformation and to investigate the binding interactions in detail. Furthermore, this study suggests that the Hits may be more effective against progeria and further the DFT studies were executed to understand their orbital energies. PMID:29226142

  13. Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds.

    PubMed

    Ngo, Trieu-Du; Tran, Thanh-Dao; Le, Minh-Tri; Thai, Khac-Minh

    2016-11-01

    The human P-glycoprotein (P-gp) efflux pump is of great interest for medicinal chemists because of its important role in multidrug resistance (MDR). Because of the high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of this transmembrane protein, ligand-based, and structure-based approaches which were machine learning, homology modeling, and molecular docking were combined for this study. In ligand-based approach, individual two-dimensional quantitative structure-activity relationship models were developed using different machine learning algorithms and subsequently combined into the Ensemble model which showed good performance on both the diverse training set and the validation sets. The applicability domain and the prediction quality of the developed models were also judged using the state-of-the-art methods and tools. In our structure-based approach, the P-gp structure and its binding region were predicted for a docking study to determine possible interactions between the ligands and the receptor. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening using prediction models and molecular docking in an attempt to restore cancer cell sensitivity to cytotoxic drugs.

  14. Upper extremity musculoskeletal discomfort among occupational notebook personal computer users: work interference, associations with risk factors and the use of notebook computer stand and docking station.

    PubMed

    Erdinc, Oguzhan

    2011-01-01

    This study explored the prevalence and work interference (WI) of upper extremity musculoskeletal discomfort (UEMSD) and investigated the associations of individual and work-related risk factors and using a notebook stand or docking station with UEMSD among symptomatic occupational notebook personal computer (PC) users. The participant group included 45 Turkish occupational notebook PC users. The study used self-reports of participants. The Turkish version of the Cornell Musculoskeletal Discomfort Questionnaire (T-CMDQ) was used to collect symptom data. UEMSD prevailed mostly in the neck, the upper back, and the lower back with prevalence rates of 77.8%, 73.3%, and 60.0% respectively, and with WI rates of 28.9%, 24.4%, and 26.7% respectively. Aggregated results showed that 44% of participants reported WI due to UEMSD in at least one body region. Significant risk factors were: being female, being aged <31 years, having computer work experience <10 years, and physical discomfort during computer use. UEMSD prevalence and WI rates were considerable in the neck, the upper back, and the lower back. Significant associations between certain risk factors and UEMSD were identified, but no association was found between using notebook stand and docking station and UEMSD among participants.

  15. Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: A CASP‐CAPRI experiment

    PubMed Central

    Velankar, Sameer; Kryshtafovych, Andriy; Huang, Shen‐You; Schneidman‐Duhovny, Dina; Sali, Andrej; Segura, Joan; Fernandez‐Fuentes, Narcis; Viswanath, Shruthi; Elber, Ron; Grudinin, Sergei; Popov, Petr; Neveu, Emilie; Lee, Hasup; Baek, Minkyung; Park, Sangwoo; Heo, Lim; Rie Lee, Gyu; Seok, Chaok; Qin, Sanbo; Zhou, Huan‐Xiang; Ritchie, David W.; Maigret, Bernard; Devignes, Marie‐Dominique; Ghoorah, Anisah; Torchala, Mieczyslaw; Chaleil, Raphaël A.G.; Bates, Paul A.; Ben‐Zeev, Efrat; Eisenstein, Miriam; Negi, Surendra S.; Weng, Zhiping; Vreven, Thom; Pierce, Brian G.; Borrman, Tyler M.; Yu, Jinchao; Ochsenbein, Françoise; Guerois, Raphaël; Vangone, Anna; Rodrigues, João P.G.L.M.; van Zundert, Gydo; Nellen, Mehdi; Xue, Li; Karaca, Ezgi; Melquiond, Adrien S.J.; Visscher, Koen; Kastritis, Panagiotis L.; Bonvin, Alexandre M.J.J.; Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Li, Jilong; Ma, Zhiwei; Cheng, Jianlin; Zou, Xiaoqin; Shen, Yang; Peterson, Lenna X.; Kim, Hyung‐Rae; Roy, Amit; Han, Xusi; Esquivel‐Rodriguez, Juan; Kihara, Daisuke; Yu, Xiaofeng; Bruce, Neil J.; Fuller, Jonathan C.; Wade, Rebecca C.; Anishchenko, Ivan; Kundrotas, Petras J.; Vakser, Ilya A.; Imai, Kenichiro; Yamada, Kazunori; Oda, Toshiyuki; Nakamura, Tsukasa; Tomii, Kentaro; Pallara, Chiara; Romero‐Durana, Miguel; Jiménez‐García, Brian; Moal, Iain H.; Férnandez‐Recio, Juan; Joung, Jong Young; Kim, Jong Yun; Joo, Keehyoung; Lee, Jooyoung; Kozakov, Dima; Vajda, Sandor; Mottarella, Scott; Hall, David R.; Beglov, Dmitri; Mamonov, Artem; Xia, Bing; Bohnuud, Tanggis; Del Carpio, Carlos A.; Ichiishi, Eichiro; Marze, Nicholas; Kuroda, Daisuke; Roy Burman, Shourya S.; Gray, Jeffrey J.; Chermak, Edrisse; Cavallo, Luigi; Oliva, Romina; Tovchigrechko, Andrey

    2016-01-01

    ABSTRACT We present the results for CAPRI Round 30, the first joint CASP‐CAPRI experiment, which brought together experts from the protein structure prediction and protein–protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact‐sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology‐built subunit models and the smaller pair‐wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323–348. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27122118

  16. Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies.

    PubMed

    Honmore, Varsha S; Kandhare, Amit D; Kadam, Parag P; Khedkar, Vijay M; Sarkar, Dhiman; Bodhankar, Subhash L; Zanwar, Anand A; Rojatkar, Supada R; Natu, Arun D

    2016-04-01

    Inflammation triggered by oxidative stress can cause various ailments, such as cancer, rheumatoid arthritis, asthma, diabetes etc. In the last few years, there has been a renewed interest in studying the antioxidant and anti-inflammatory action of plant constituents such as flavonoids and diarylheptanoids. To evaluate the antioxidant, anti-inflammatory activity and the total phenolic content of isolated compounds from Alpinia officinarum rhizomes. Furthermore, molecular docking was performed to study the binding mode of these compounds into the active site of cyclooxygenase-2 (COX-2). A. officinarum rhizomes were extracted by maceration, using methanol. This extract was further fractionated by partitioning with hexane, chloroform and ethyl acetate and these fractions on further purification resulted in isolation of five pure compounds. Characterization was carried out by using (1)H NMR, (13)C NMR and MS. They were further evaluated for antioxidant and anti-inflammatory activity using carrageenan-induced paw edema model in rats. Molecular docking study was performed using Glide module integrated in Schrodinger molecular modeling software. The compounds were identified as 1,7-diphenylhept-4-en-3-one (1), 5-hydroxy-1,7-diphenyl-3-heptanone (2), 3,5,7-trihydroxyflavone (Galangin, 3), 3,5,7-trihydroxy-4'-methoxyflavone (Kaempferide, 4) and 5-hydroxy-7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-3-heptanone (5). The compound-3 and compound-5 (10mg/kg) showed significant (p<0.001) antioxidant and anti-inflammatory potential. Moreover, total phenolic content was detected as 72.96 mg and 51.18 mg gallic acid equivalent respectively. All the five isolates were found to be good binders with COX-2 (average docking score -9.03). Galangin and 5-hydroxy-7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-3-heptanone exhibited anti-inflammatory and in-vitro antioxidant activity which may be due to presence of phenolic content in it. The molecular docking study revealed that these compounds have affinity towards COX-2 active site which can further be explored as selective COX-2 inhibitors. The results obtained in this work justify the use of A. officinarum in the treatment of inflammatory disorders like rheumatoid arthritis and inflammatory bowel diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Novel anti-inflammatory and analgesic agents: synthesis, molecular docking and in vivo studies.

    PubMed

    Ugwu, David Izuchukwu; Okoro, Uchechukwu Christopher; Ukoha, Pius Onyeoziri; Gupta, Astha; Okafor, Sunday N

    2018-12-01

    Twelve new derivatives of benzothiazole bearing benzenesulphonamide and carboxamide were synthesised and investigated for their in vivo anti-inflammatory, analgesic and ulcerogenic activities. Molecular docking showed an excellent binding interaction of the synthesised compounds with the receptors, with 17c showing the highest binding energy (-12.50 kcal/mol). Compounds 17c and 17i inhibited carrageenan-induced rat paw oedema at 72, 76, and 80% and 64, 73, and 78% at 1 h, 2 h, and 3 h, respectively. In the analgesic activity experiment, compounds 17c, 17 g, and 17i had ED 50 (µM/kg) of 96, 127, and 84 after 0.5 h; 102, 134, and 72 after 1 h and 89, 156, and 69 µM/kg after 2 h, respectively, which were comparable with 156, 72, and 70 µM/kg for celecoxib. The ulcerogenic index of the most active derivatives 17c and 17i were 0.82 and 0.89, respectively, comparable to 0.92 for celecoxib. The physicochemical studies of the new derivatives showed that they will not have oral bioavailability problems.

  18. Domain requirements for the Dock adapter protein in growth- cone signaling.

    PubMed

    Rao, Y; Zipursky, S L

    1998-03-03

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons.

  19. Predicting receptor functionality of signaling lymphocyte activation molecule for measles virus hemagglutinin by docking simulation.

    PubMed

    Suzuki, Yoshiyuki

    2017-05-01

    Predicting susceptibility of various species to a virus assists assessment of risk of interspecies transmission. Evaluation of receptor functionality may be useful in screening for susceptibility. In this study, docking simulation was conducted for measles virus hemagglutinin (MV-H) and immunoglobulin-like variable domain of signaling lymphocyte activation molecule (SLAM-V). It was observed that the docking scores for MV-H and SLAM-V correlated with the activity of SLAM as an MV receptor. These results suggest that the receptor functionality may be predicted from the docking scores of virion surface proteins and cellular receptor molecules. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  20. Computational Optimization and Characterization of Molecularly Imprinted Polymers

    NASA Astrophysics Data System (ADS)

    Terracina, Jacob J.

    Molecularly imprinted polymers (MIPs) are a class of materials containing sites capable of selectively binding to the imprinted target molecule. Computational chemistry techniques were used to study the effect of different fabrication parameters (the monomer-to-target ratios, pre-polymerization solvent, temperature, and pH) on the formation of the MIP binding sites. Imprinted binding sites were built in silico for the purposes of better characterizing the receptor - ligand interactions. Chiefly, the sites were characterized with respect to their selectivities and the heterogeneity between sites. First, a series of two-step molecular mechanics (MM) and quantum mechanics (QM) computational optimizations of monomer -- target systems was used to determine optimal monomer-to-target ratios for the MIPs. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (one-target) and larger scale models (five-targets). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to evaluate the heterogeneity of the sites. The more fully surrounded sites had greater binding energies. Molecular docking was then used to measure the selectivities of the QM-optimized binding sites by comparing the binding energies of the imprinted target to that of a structural analogue. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. This represented a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Next, we sought to computationally construct and investigate binding sites for their enantioselectivity. Again, a two-step MM [special characters removed] QM optimization scheme was used to "computationally imprint" chiral molecules. Using docking techniques, the imprinted binding sites were shown to exhibit an enantioselective preference for the imprinted molecule over its enantiomer. Docking of structurally similar chiral molecules showed that the sites computationally imprinted with R- or S-tBOC-tyrosine were able to differentiate between R- and S-forms of other tyrosine derivatives. The cross-enantioselectivity did not hold for chiral molecules that did not share the tyrosine H-bonding functional group orientations. Further analysis of the individual monomer - target interactions within the binding site led us to conclude that H-bonding functional groups that are located immediately next to the target's chiral center, and therefore spatially fixed relative to the chiral center, will have a stronger contribution to the enantioselectivity of the site than those groups separated from the chiral center by two or more rotatable bonds. These models were the first computationally imprinted binding sites to exhibit this enantioselective preference for the imprinted target molecules. Finally, molecular dynamics (MD) was used to quantify H-bonding interactions between target molecules, monomers, and solvents representative of the pre-polymerization matrix. It was found that both target dimerization and solvent interference decrease the number of monomer - target H-bonds present. Systems were optimized via simulated annealing to create binding sites that were then subjected to molecular docking analysis. Docking showed that the presence of solvent had a detrimental effect on the sensitivity and selectivity of the sites, and that solvents with more H-bonding capabilities were more disruptive to the binding properties of the site. Dynamic simulations also showed that increasing the temperature of the solution can significantly decrease the number of H-bonds formed between the targets and monomers. It is believed that the monomer - target complexes formed within the pre-polymerization matrix are translated into the selective binding cavities formed during polymerization. Elucidating the nature of these interactions in silico improves our understanding of MIPs, ultimately allowing for more optimized sensing materials.

Top