Sample records for document radioactive liquid

  1. Radioactive liquid wastes discharged to ground in the 200 Areas during 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J. D.; Poremba, B. E.

    1979-03-26

    This document is issued quarterly for the purpose of summarizing the radioactive liquid wastes that have been discharged to the ground in the 200 Areas. In addition to data for 1978, cumulative data since plant startup are presented. Also, in this document is a listing of decayed activity to the various plant sites.

  2. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less

  3. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tankmore » inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.« less

  4. Radioactive waste management and practice in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.; Rahman, M.M.

    1993-12-31

    A large amount of low- and medium-level radioactive wastes are being generated in different parts of Bangladesh. The solid wastes are being collected in steel containers and liquid wastes are collected in plastic carboys and drums. Gaseous Ar-41 is discharged into the atmosphere through the 25 m height stack under controlled conditions after proper monitoring. The solid radioactive wastes collected are approximately 5 m{sup 3} (1988--1992) with gross beta-gamma surface dose rates from 0.30 {micro}Sv/h to 250 {micro}Sv/h. The liquid radioactive wastes are approximately 200 liters (1988--1992) with gross-beta-gamma surface dose rates from 0.30 {micro}Sv/h to 1 mSv/h. The solidmore » and liquid wastes presently being collected are mostly short lived and low level and safely stored according to international safety codes of practice. Radioactive waste packages collected during the 5-yrs study totaled 16, representing a collective volume of {approximately} 7.5 m{sup 3}. The problem of management of radioactive waste in Bangladesh is not so serious at present because the wastes arising are small now. A computerized data base has been developed to document inventory of all radioactive waste arising in the country. The current practices of collection, handling, safe storage and management of the radioactive wastes are reported in this paper.« less

  5. A summary description of the flammable gas tank safety program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.D.; Sherwood, D.J.

    1994-10-01

    Radioactive liquid waste may produce hydrogen as result of the interaction of gamma radiation and water. If the waste contains organic chelating agents, additional hydrogen as well as nitrous oxide and ammonia may be produced by thermal and radiolytic decomposition of these organics. Several high-level radioactive liquid waste storage tanks, located underground at the Hanford Site in Washington State, are on a Flammable Gas Watch List. Some contain waste that produces and retains gases until large quantities of gas are released rapidly to the tank vapor space. Tanks nearly-filled to capacity have relatively little vapor space; therefore if the wastemore » suddenly releases a large amount of hydrogen and nitrous oxide, a flammable gas mixture could result. The most notable example of a Hanford waste tank with a flammable gas problem is tank 241-SY-101. Upon occasion waste stored in this tank has released enough flammable gas to burn if an ignition source had been present inside of the tank. Several, other Hanford waste tanks exhibit similar behavior although to a lesser magnitude. Because this behavior was hot adequately-addressed in safety analysis reports for the Hanford Tank Farms, an unreviewed safety question was declared, and in 1990 the Flammable Gas Tank Safety Program was established to address this problem. The purposes of the program are a follows: (1) Provide safety documents to fill gaps in the safety analysis reports, and (2) Resolve the safety issue by acquiring knowledge about gas retention and release from radioactive liquid waste and developing mitigation technology. This document provides the general logic and work activities required to resolve the unreviewed safety question and the safety issue of flammable gas mixtures in radioactive liquid waste storage tanks.« less

  6. Test report dot 7A type a liquid packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E. T.; Brandjes, C.; Benoit, T. J.

    This test report documents the performance of Savannah River National Laboratory’s (SRNL’s) U.S. Department of Transportation (DOT) Specification 7A; General Packaging, Type A shielded liquid shipping packaging and compliance with the regulatory requirements of Title 49 of the Code of Federal Regulations (CFR). The primary use of this packaging design is for the transport of radioactive liquids of up to 1.3 liters in an unshielded configuration and up to 113 mL of radioactive liquids in a shielded configuration, with no more than an A2 quantity in either configuration, over public highways and/or commercial aircraft. The contents are liquid radioactive materialsmore » sufficiently shielded and within the activity limits specified in173.435 or 173.433 for A2 (normal form) materials, as well as within the analyzed thermal heat limits. Any contents must be compatibly packaged and must be compatible with the packaging. The basic packaging design is based on the U.S. Department of Energy’s (DOE’s) Model 9979 Type A fissile shipping packaging designed and tested by SRNL. The shielded liquid configuration consists of the outer and inner drums of the 9979 package with additional low density polyethylene (LDPE) dunnage nesting a tungsten shielded cask assembly (WSCA) within the 30-gallon inner drum. The packaging model for the DOT Specification 7A, Type A liquids packaging is HVYTAL.« less

  7. High-level waste tank farm set point document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, J.A. III

    1995-01-15

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREASmore » listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.« less

  8. Radiological impact of 2016 operations at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minter, K. L.; Jannik, G. T.; Dixon, K. M.

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2016 Savannah River Site (SRS) air and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios, such as the consumption of wildlife or goat milk.

  9. Process for decontaminating radioactive liquids using a calcium cyanamide-containing composition. [Patent application

    DOEpatents

    Silver, G.L.

    1980-09-24

    The present invention provides a process for decontaminating a radioactive liquid containing a radioactive element capable of forming a hydroxide. This process includes the steps of contacting the radioactive liquid with a decontaminating composition and separating the resulting radioactive sludge from the resulting liquid. The decontaminating composition contains calcium cyanamide.

  10. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, G. T.; Dixon, K. L.

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  11. Natural diatomite process for removal of radioactivity from liquid waste.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  12. 300 Area dangerous waste tank management system: Compliance plan approach. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixedmore » waste.« less

  13. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LUECK, K.J.

    2004-10-18

    A forecast of the radioactive, dangerous liquid effluents expected to be produced by the Waste Treatment Plant (WTP) was provided by Bechtel National, Inc. (BNI 2004). The forecast represents the liquid effluents generated from the processing of Tank Farm waste through the end-of-mission for the WTP. The WTP forecast is provided in the Appendices. The WTP liquid effluents will be stored, treated, and disposed of in the Liquid Effluent Retention Facility (LERF) and the Effluent Treatment Facility (ETF). Both facilities are located in the 200 East Area and are operated by Fluor Hanford, Inc. (FH) for the US. Department ofmore » Energy (DOE). The treatability of the WTP liquid effluents in the LERF/ETF was evaluated. The evaluation was conducted by comparing the forecast to the LERF/ETF treatability envelope (Aromi 1997), which provides information on the items which determine if a liquid effluent is acceptable for receipt and treatment at the LERF/ETF. The format of the evaluation corresponds directly to the outline of the treatability envelope document. Except where noted, the maximum annual average concentrations over the range of the 27 year forecast was evaluated against the treatability envelope. This is an acceptable approach because the volume capacity in the LERF Basin will equalize the minimum and maximum peaks. Background information on the LERF/ETF design basis is provided in the treatability envelope document.« less

  14. 78 FR 6149 - Final Interim Staff Guidance Assessing the Radiological Consequences of Accidental Releases of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Accidental Releases of Radioactive Materials From Liquid Waste Tanks in Ground and Surface Waters for... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications...

  15. Sampling and analysis for radon-222 dissolved in ground water and surface water

    USGS Publications Warehouse

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  16. DWPF Safely Dispositioning Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-01-05

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  17. Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.

    A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less

  18. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less

  19. DWPF Safely Dispositioning Liquid Waste

    ScienceCinema

    None

    2018-06-21

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  20. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, developmentmore » of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)« less

  1. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Meltermore » Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling« less

  2. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposedmore » Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.« less

  3. Removal of radioactive contaminants by polymeric microspheres.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2016-11-01

    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.

  4. Method and apparatus for removing iodine from a nuclear reactor coolant

    DOEpatents

    Cooper, Martin H.

    1980-01-01

    A method and apparatus for removing iodine-131 and iodine-125 from a liquid sodium reactor coolant. Non-radioactive iodine is dissolved in hot liquid sodium to increase the total iodine concentration. Subsequent precipitation of the iodine in a cold trap removes both the radioactive iodine isotopes as well as the non-radioactive iodine.

  5. Therapeutic applications of radioactive (131)iodine: Procedures and incidents with capsules.

    PubMed

    Al Aamri, Marwa; Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Balushi, Naima

    2016-01-01

    Treatments for thyrotoxicosis and carcinoma thyroid are carried out by oral administration of radioactive iodine ((131)I) in the form of liquid or capsules. The liquid form of (131)I has higher risk factors such as vapourization, spillage and need for management of higher activity wastes. Use of (131)I in capsule form simplify procedures of handling compared to liquid form of (131)I. The guidelines of safe handling and quality assurance aspects for therapeutic use (131)I are well outlined by International Atomic Energy Agency (IAEA) reports. A few unusual incidents with I-131 capsules encountered in the past need to be highlighted from health physics point of view. In Royal Hospital, Oman, I-131 is imported in capsules, and the total activity handled/year steadily increased over 10 years. Discrete activities range from 185 MBq (5 mCi) up to 7.4 GBq (200 mCi). In four incidents deviations in standard operational procedures were recorded. Nature of incidents is described as follows: (1) After assay of activity, the capsule was directly put in the lead container with missing of inner cap. (2) Patient poured water in the Perspex tube, when the capsule was handed over to her, making an emergency situation. (3) In 3 high activity capsules (2 nos 2.96 GBq, 1 no. 4.26 GBq), observed sticky behavior in capsule holder on the 2(nd) day post receipt, which were in order on the 1(st) day. (4) A capsule could not be swallowed by a patient, which was taken back from the mouth. Monitoring of patient later did not show residual ingested activity. The report documents some of the unusual incidents for information to other centers engaged in such radioactive administrations.

  6. SELF SINTERING OF RADIOACTIVE WASTES

    DOEpatents

    McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

    1959-12-29

    A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

  7. Radioactive cobalt removal from Salem liquid radwaste with cobalt selective media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maza R.; Wilson, J.A.; Hetherington, R.

    This paper reports results of benchtop tests using ion exchange material to selectively remove radioactive cobalt from high conductivity liquid radwaste at the Salem Nuclear Generating Station. The purpose of this test program is to reduce the number of curies in liquid releases without increasing the solid waste volume. These tests have identified two cobalt selective materials that together remove radioactive cobalt more effectively than the single component currently used. All test materials were preconditioned by conversion to the divalent calcium or sulfate form to simulate chemically exhausted media.

  8. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.S.; Diamante, J.M.; Duffey, R.B.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to processmore » high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.« less

  9. Solvent for the simultaneous recovery of radionuclides from liquid radioactive wastes

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2002-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  10. Method for the simultaneous recovery of radionuclides from liquid radioactive wastes using a solvent

    DOEpatents

    Romanovskiy, Valeriy Nicholiavich; Smirnov, Igor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

    2001-01-01

    The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

  11. Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castiglioni, Andrew J.; Gelis, Artem V.

    This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.

  12. Apparatuses and methods for detecting, identifying and quantitating radioactive nuclei and methods of distinguishing neutron stimulation of a radiation particle detector from gamma-ray stimulation of a detector

    DOEpatents

    Cole, Jerald D.; Drigert, Mark W.; Reber, Edward L.; Aryaeinejad, Rahmat

    2001-01-01

    In one aspect, the invention encompasses a method of detecting radioactive decay, comprising: a) providing a sample comprising a radioactive material, the radioactive material generating decay particles; b)providing a plurality of detectors proximate the sample, the detectors comprising a first set and a second set, the first set of the detectors comprising liquid state detectors utilizing liquid scintillation material coupled with photo tubes to generate a first electrical signal in response to decay particles stimulating the liquid scintillation material, the second set of the detectors comprising solid state detectors utilizing a crystalline solid to generate a second electrical signal in response to decay particles stimulating the crystalline solid; c) stimulating at least one of the detectors to generate at least one of the first and second electrical signals, the at least one of the first and second electrical signals being indicative of radioactive decay in the sample. In another aspect, the invention encompasses an apparatus for identifying and quantitating radioactive nuclei of a sample comprising radioactive material that decays to generate neutrons and high-energy .gamma.-rays.

  13. Radiological effluents released and public doses from nuclear power plants in Korea.

    PubMed

    Son, Jung Kwon; Kim, Hee Geun; Kong, Tae Young; Ko, Jong Hyun; Lee, Goung Jin

    2013-08-01

    As of the end of 2010, there were 20 commercially operating nuclear reactors in Korea. Releases of radioactive effluents from nuclear power plants (NPPs) have increased continuously; the total radioactivity of effluent amount released in 2010 was 547.12 TBq. From 2001 to 2010, the annual average radioactivity of gaseous and liquid effluents per reactor was 11.61 TBq for pressurised water reactors and 118.12 TBq for pressurised heavy water reactors. Most of the radioactivity from gaseous and liquid effluents came from tritium. Based on the results of release trends and analyses, the characteristics of effluents have been investigated to improve the management of radioactive effluents from NPPs.

  14. Collective dose estimates by the marine food pathway from liquid radioactive wastes dumped in the Sea of Japan.

    PubMed

    Togawa, O; Povinec, P P; Pettersson, H B

    1999-09-30

    IAEA-MEL has been engaged in an assessment programme related to radioactive waste dumping by the former USSR and other countries in the western North Pacific Ocean and its marginal seas. This paper focuses on the Sea of Japan and on estimation of collective doses from liquid radioactive wastes. The results from the Japanese-Korean-Russian joint expeditions are summarized, and collective doses for the Japanese population by the marine food pathway are estimated from liquid radioactive wastes dumped in the Sea of Japan and compared with those from global fallout and natural radionuclides. The collective effective dose equivalents by the annual intake of marine products caught in each year show a maximum a few years after the disposals. The total dose from all radionuclides reaches a maximum of 0.8 man Sv in 1990. Approximately 90% of the dose derives from 137Cs, most of which is due to consumption of fish. The total dose from liquid radioactive wastes is approximately 5% of that from global fallout, the contribution of which is below 0.1% of that of natural 210Po.

  15. RADIOACTIVE CONCENTRATOR AND RADIATION SOURCE

    DOEpatents

    Hatch, L.P.

    1959-12-29

    A method is presented for forming a permeable ion exchange bed using Montmorillonite clay to absorb and adsorb radioactive ions from liquid radioactive wastes. A paste is formed of clay, water, and a material that fomns with clay a stable aggregate in the presence of water. The mixture is extruded into a volume of water to form clay rods. The rods may then be used to remove radioactive cations from liquid waste solutions. After use, the rods are removed from the solution and heated to a temperature of 750 to 1000 deg C to fix the ratioactive cations in the clay.

  16. Position sensitive radioactivity detection for gas and liquid chromatography

    DOEpatents

    Cochran, Joseph L.; McCarthy, John F.; Palumbo, Anthony V.; Phelps, Tommy J.

    2001-01-01

    A method and apparatus are provided for the position sensitive detection of radioactivity in a fluid stream, particularly in the effluent fluid stream from a gas or liquid chromatographic instrument. The invention represents a significant advance in efficiency and cost reduction compared with current efforts.

  17. Method for solidifying liquid radioactive wastes

    DOEpatents

    Berreth, Julius R.

    1976-01-01

    The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

  18. Development of a universal solvent for the decontamination of acidic liquid radioactive wastes

    NASA Astrophysics Data System (ADS)

    Todd, T. A.; Brewer, K. N.; Law, J. D.; Wood, D. J.; Herbest, R. S.; Romanovskiy, V. N.; Esimantovskiy, V. M.; Smirnov, I. V.; Babain, V. A.

    1999-01-01

    A teritiary solvent containing chlorinated cobalt dicarbollide, polyethylene glycol and diphenylcarbamoylmethylphosphine oxide was evaluated in different non-nitroaromatic diluents for the separation of cesium, strontium, actinides and rare earth elements from acidic liquid radioactive waste. Decontamination factors of >95% for Cs, 99.7% for Sr, and 99.99% for actinides were achieved in four successive batch contacts using actual radioactive waste. Pilot plant testing in centrifugal contactors using simulated wastes, has demonstrated removal of >99% of all targeted ions.

  19. ESTIMATION OF RADIOACTIVE CALCIUM-45 BY LIQUID SCINTILLATION COUNTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutwak, L.

    1959-03-01

    A liquid sclntillation counting method is developed for determining radioactive calcium-45 in biological materials. The calcium-45 is extracted, concentrated, and dissolved in absolute ethyl alcohol to which is added 0.4% diphenyloxazol in toluene. Counting efficiency is about 65 percent with standard deviation of the J-57 engin 7.36 percent. (auth)

  20. Measuring the radioactivity of drinking water with the liquid counters M2H in combination with contamination meters IM 4457

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanhemmen, J.J.; Vanhoek, L.P.; Aten, J.B.T.

    1976-01-01

    The relationship between the meter indications and the radioactivity of fission products in drinking water for the combination contamination meter IM 4457 and liquid counter M2H was investigated. The experimental setup is presented, the efficiency of the liquid counter for a mixture of fission products is briefly dealt with, and the use of the combination counter/meter in the field is discussed.

  1. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2006-09-01

    Liquid radioactive waste has been generated from the use of radioactive materials in industrial applications, research and medicine in Turkey. Natural zeolites (clinoptilolite) have been studied for the removal of several key radionuclides ((137)Cs, (60)Co, (90)Sr and (110m)Ag) from liquid radioactive waste. The aim of the present study is to investigate effectiveness of zeolite treatment on decontamination factor (DF) in a combined process (chemical precipitation and adsorption) at the laboratory tests and scale up to the waste treatment plant. In this study, sorption and precipitation techniques were adapted to decontamination of liquid low level waste (LLW). Effective decontamination was achieved when sorbents are used during the chemical precipitation. Natural zeolite samples were taken from different zeolite formations in Turkey. Comparison of the ion-exchange properties of zeolite minerals from different formations shows that Gordes clinoptilolite was the most suitable natural sorbent for radionuclides under dynamic treatment conditions and as an additive for chemical precipitation process. Clinoptilolite were shown to have a high selectivity for (137)Cs and (110m)Ag as sorbent. In the absence of potassium ions, native clinoptilolite removed (60)Co and (90)Sr very effectively from the liquid waste. In the end of this liquid waste treatment, decontamination factor was provided as 430 by using 0.5 mm clinoptilolite at 30 degrees C.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  3. Separation science and technology. Semiannual progress report, October 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandegrift, G.F.; Aase, S.B.; Buchholz, B.

    1997-12-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generatedmore » by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.« less

  4. Partitioning of K, U, and Th between sulfide and silicate liquids - Implications for radioactive heating of planetary cores

    NASA Technical Reports Server (NTRS)

    Murrell, M. T.; Burnett, D. S.

    1986-01-01

    Experimental partitioning studies are reported of K, U, and Th between silicate and FeFeS liquids designed to test the proposal that actinide partitioning into sulfide liquids is more important then K partitioning in the radioactive heating of planetary cores. For a basaltic liquid at 1450 C and 1.5 GPa, U partitioning into FeFeS liquids is five times greater than K partitioning. A typical value for the liquid partition coefficient for U from a granitic silicate liquid at one atmosphere at 1150 C and low fO2 is about 0.02; the coefficient for Th is similar. At low fO2 and higher temperature, experiments with basaltic liquids produce strong Ca and U partitioning into the sulfide liquid with U coefficient greater than one. The Th coefficient is less strongly affected.

  5. Applying Separations Science to Waste Problems.

    DTIC Science & Technology

    1998-01-01

    inert cathode. Centrifugal Contactor for Processing Liquid Radioactive Waste We have developed an annular centrifugal contactor for use in liquid...radioactive waste. The CMT-designed centrifugal contactor has several advantages over other solvent-extraction equipment currently in use. It requires less...Y-12 Plant, Savannah River Site, and Oak Ridge National Laboratory. The benefits that make the centrifugal contactor the equipment of choice in the

  6. Radioactive liquid wastes discharged to ground in the 200 Areas during 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirabella, J.E.

    An overall summary is presented giving the radioactive liquid wastes discharged to ground during 1976 and since startup (for both total and decayed depositions) within the Production and Waste Management Division control zone (200 Area plateau). Overall summaries are also presented for 200 East Area and for 200 West Area. The data contain an estimate of the radioactivity discharged to individual ponds, cribs and specific retention sites within the Production and Waste Management Division during 1976 and from startup through December 31, 1976; an estimate of the decayed activities from startup through 1976; the location and reference drawings of eachmore » disposal site; and the usage dates of each disposal site. The estimates for the radioactivity discharged and for decayed activities dicharged from startup through December 31, 1976 are based upon Item 4 of the Bibliography. The volume of liquid discharged to the ponds also includes major nonradioactive streams. The wastes discharged during 1976 to each active disposal site are detailed on a month-to-month basis, along with the monthly maximum concentration and average concentration data. An estimate of the radioactivity discharged to each active site along with the remaining decayed activities is given.« less

  7. Production of 35S for a Liquid Semiconductor Betavoltaic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, David E.; Garnov, A. Y.; Robertson, J. D.

    2009-10-01

    The specific energy density from radioactive decay is five to six orders of magnitude greater than the specific energy density in conventional chemical battery and fuel cell technologies. We are currently investigating the use of liquid semiconductor based betavoltaics as a way to directly convert the energy of radioactive decay into electrical power and potentially avoid the radiation damage that occurs in solid state semiconductor devices due to non-ionizing energy loss. Sulfur-35 was selected as the isotope for the liquid semiconductor demonstrations because it can be produced in high specific activity and it is chemically compatible with known liquid semiconductormore » media.« less

  8. Method for solidification of radioactive and other hazardous waste

    DOEpatents

    Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  9. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  10. Cold Test Operation of the German VEK Vitrification Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleisch, J.; Schwaab, E.; Weishaupt, M.

    2008-07-01

    In 2007 the German High-Level Liquid Waste (HLLW) Vitrification plant VEK (Verglasungseinrichtung Karlsruhe) has passed a three months integral cold test operation as final step before entering the hot phase. The overall performance of the vitrification process equipment with a liquid-fed ceramic glass melter as main component proved to be completely in line with the requirements of the regulatory body. The retention efficiency of main radioactive-bearing elements across melter and wet off-gas treatment system exceeded the design values distinctly. The strategy to produce a specified waste glass could be successfully demonstrated. The results of the cold test operation allow enteringmore » the next step of hot commissioning, i.e. processing of approximately 2 m{sup 3} of diluted HLLW. In summary: An important step of the VEK vitrification plant towards hot operation has been the performance of the cold test operation from April to July 2007. This first integral operation was carried out under boundary conditions and rules established for radioactive operation. Operation and process control were carried out following the procedure as documented in the licensed operational manuals. The function of the process technology and the safe operation could be demonstrated. No severe problems were encountered. Based on the positive results of the cold test, application of the license for hot operation has been initiated and is expected in the near future. (authors)« less

  11. CENDRILLON CONTAINERS FOR THE TRANSPORT AND DISPENSING OF RADIOACTIVE LIQUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vertut, J.

    1963-01-01

    Pumpkin-shaped containers were developed for safe transport and dispensing of radioactive liquids. Four different sizes varying in capacity from 3.5 to 50 liters are available, However, liquids with criticality hazards cannot be handled in these containers. The shape was chosen to make the container rest firmly on a flat surface and to prevent it from being turned over and remaining upset. The liquid is held in an inner container of stainless steel. It is surrounded by a protective lead shell made in two halves, so that the upper half can be taken off. The lead itself is cast into steelmore » shells to provide additional strength. Both halves are rendered liquid tight by asbestos packing. (M.C.G.)« less

  12. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    PubMed

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA).

  13. Site environmental report for calendar year 2002. DOE operations at the Boeing Company, Rocketdyne Propulsion and Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2003-09-30

    This Annual Site Environmental Report (ASER) for 2002 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing' s Santa Susana Field Laboratory (SSFL)). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988, and,more » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2002 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property ( land, structures, waste), and recycling. All radioactive w astes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes are released into the environment, and no structural debris from buildings w as transferred to municipal landfills or recycled in 2002.« less

  14. SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. C. Khamankar

    2000-06-20

    The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less

  15. Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products

    DOEpatents

    Barney, Gary S.; Brownell, Lloyd E.

    1977-01-01

    A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

  16. 49 CFR 173.469 - Tests for special form Class 7 (radioactive) materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prescribed in the International Organization for Standardization document ISO 9978-1992(E): “Radiation... not less than 90%. (v) The process in paragraphs (c)(2)(i), (c)(2)(ii), and (c)(2)(iii) of this... International Organization for Standardization document ISO 2919-1980(e), “Sealed Radioactive Sources...

  17. Rapid screening of radioactivity in food for emergency response.

    PubMed

    Bari, A; Khan, A J; Semkow, T M; Syed, U-F; Roselan, A; Haines, D K; Roth, G; West, L; Arndt, M

    2011-06-01

    This paper describes the development of methods for the rapid screening of gross alpha (GA) and gross beta (GB) radioactivity in liquid foods, specifically, Tang drink mix, apple juice, and milk, as well as screening of GA, GB, and gamma radioactivity from surface deposition on apples. Detailed procedures were developed for spiking of matrices with (241)Am (alpha radioactivity), (90)Sr/(90)Y (beta radioactivity), and (60)Co, (137)Cs, and (241)Am (gamma radioactivity). Matrix stability studies were performed for 43 days after spiking. The method for liquid foods is based upon rapid digestion, evaporation, and flaming, followed by gas proportional (GP) counting. For the apple matrix, surface radioactivity was acid-leached, followed by GP counting and/or gamma spectrometry. The average leaching recoveries from four different apple brands were between 63% and 96%, and have been interpreted on the basis of ion transport through the apple cuticle. The minimum detectable concentrations (MDCs) were calculated from either the background or method-blank (MB) measurements. They were found to satisfy the required U.S. FDA's Derived Intervention Levels (DILs) in all but one case. The newly developed methods can perform radioactivity screening in foods within a few hours and have the potential to capacity with further automation. They are especially applicable to emergency response following accidental or intentional contamination of food with radioactivity. Published by Elsevier Ltd.

  18. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  19. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  20. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Daniel I.

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less

  2. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  3. Site Environmental Report for Calendar Year 2000. DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Phil; Samuels, Sandy; Lee, Majelle

    2001-09-01

    This Annual Site Environmental Report (ASER) for 2000 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned company-operated, test facility within Area IV. All nuclear work was terminated in 1988, andmore » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2000 continue to indicate no significant releases of radioactive material from Rocketdyne sites. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway.« less

  4. Method for magnesium sulfate recovery

    DOEpatents

    Gay, Richard L.; Grantham, LeRoy F.

    1987-01-01

    A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  5. Method for magnesium sulfate recovery

    DOEpatents

    Gay, R.L.; Grantham, L.F.

    1987-08-25

    A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  6. Biochemical process of low level radioactive liquid simulation waste containing detergent

    NASA Astrophysics Data System (ADS)

    Kundari, Noor Anis; Putra, Sugili; Mukaromah, Umi

    2015-12-01

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive element in the waste was thorium with activity of 5.10-5 Ci/m3. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod's model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour-1.

  7. Biochemical process of low level radioactive liquid simulation waste containing detergent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundari, Noor Anis, E-mail: nooranis@batan.go.id; Putra, Sugili; Mukaromah, Umi

    Research of biochemical process of low level radioactive liquid waste containing detergent has been done. Thse organic liquid wastes are generated in nuclear facilities such as from laundry. The wastes that are cotegorized as hazard and poison materials are also radioactive. It must be treated properly by detoxification of the hazard and decontamination of the radionuclides to ensure that the disposal of the waste meets the requirement of standard quality of water. This research was intended to determine decontamination factor and separation efficiensies, its kinetics law, and to produce a supernatant that ensured the environmental quality standard. The radioactive elementmore » in the waste was thorium with activity of 5.10{sup −5} Ci/m{sup 3}. The radioactive liquid waste which were generated in simulation plant contains detergents that was further processed by aerobic biochemical process using SGB 103 bacteria in a batch reactor equipped with aerators. Two different concentration of samples were processed and analyzed for 212 hours and 183 hours respectively at a room temperature. The product of this process is a liquid phase called as supernatant and solid phase material called sludge. The chemical oxygen demand (COD), biological oxygen demand (BOD), suspended solid (SS), and its alpha activity were analyzed. The results show that the decontamination factor and the separation efficiency of the lower concentration samples are higher compared to the samples with high concentration. Regarding the decontamination factor, the result for 212 hours processing of waste with detergent concentration of 1.496 g/L was 3.496 times, whereas at the detergent concentration of 0.748 g/L was 15.305 times for 183 hours processing. In case of the separation efficiency, the results for both samples were 71.396% and 93.465% respectively. The Bacterial growth kinetics equation follow Monod’s model and the decreasing of COD and BOD were first order with the rate constant of 0.01 hour{sup −1}.« less

  8. Free Radical Polymerization of Styrene: A Radiotracer Experiment

    ERIC Educational Resources Information Center

    Mazza, R. J.

    1975-01-01

    Describes an experiment designed to acquaint the chemistry student with polymerization reactions, vacuum techniques, liquid scintillation counting, gas-liquid chromatography, and the handling of radioactive materials. (MLH)

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, L.D.

    Oak Ridge National Laboratory (ORNL) is a principle Department of Energy (DOE) Research Institution operated by the Union Carbide Corporation - Nuclear Division (UCC-ND) under direction of the DOE Oak Ridge Operations Office (DOE-ORO). The Laboratory was established in east Tennessee, near what is now the city of Oak Ridge, in the mid 1940s as a part of the World War II effort to develop a nuclear weapon. Since its inception, disposal of radioactively contaminated materials, both solid and liquid, has been an integral part of Laboratory operations. The purpose of this document is to provide a detailed description ofmore » the ORNL Solid Waste Storage Areas, to describe the practice and procedure of their operation, and to address the health and safety impacts and concerns of that operation.« less

  10. Highly efficient method for production of radioactive silver seed cores for brachytherapy.

    PubMed

    Cardoso, Roberta Mansini; de Souza, Carla Daruich; Rostelato, Maria Elisa Chuery Martins; Araki, Koiti

    2017-02-01

    A simple and highly efficient (shorter reaction time and almost no rework) method for production of iodine based radioactive silver seed cores for brachytherapy is described. The method allows almost quantitative deposition of iodine-131 on dozens of silver substrates at once, with even distribution of activity per core and insignificant amounts of liquid and solid radioactive wastes, allowing the fabrication of cheaper radioactive iodine seeds for brachytherapy. Copyright © 2016. Published by Elsevier Ltd.

  11. Genetic and Biochemical Basis for the Transformation of Energetic Materials (RDX, TNT, DNTs) by Plants

    DTIC Science & Technology

    2007-04-01

    for bound radioactivity in the plants. 14C Distribution in Hydroponic Systems. Plants grown in half-strength Hoagland solutions (29) were used to...sterile hydroponic solutions . In axenic liquid cultures, less than 10% of the initial radioactivity remained in liquid media of live plants while over...poplars at a concentration of 5 mg/L in hydroponic solution (Thompson and Schnoor, 1998) and at 50 mg/kg soil there were adverse effects to seed

  12. Removal of radioactive and other hazardous material from fluid waste

    DOEpatents

    Tranter, Troy J [Idaho Falls, ID; Knecht, Dieter A [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Burchfield, Larry A [W. Richland, WA; Anshits, Alexander G [Krasnoyarsk, RU; Vereshchagina, Tatiana [Krasnoyarsk, RU; Tretyakov, Alexander A [Zheleznogorsk, RU; Aloy, Albert S [St. Petersburg, RU; Sapozhnikova, Natalia V [St. Petersburg, RU

    2006-10-03

    Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

  13. Treatability Variance for Containerised Liquids in Mixed Debris Waste - 12101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstatt, Catherine M.

    2012-07-01

    The TRU Waste Processing Center (TWPC) is a Department of Energy facility whose mission is to receive and process for appropriate disposal legacy Contact Handled (CH) and Remote Handled (RH) waste, including debris waste stored at various DOE Oak Ridge facilities. Acceptable Knowledge (AK) prepared for the waste characterizes the waste as mixed waste, meaning it is both radioactive and regulated under the Resource Conservation and Recovery Act (RCRA). The AK also indicates that a number of the debris waste packages contain small amounts of containerised liquids. The documentation indicates liquid wastes generated in routine lab operations were typically collectedmore » for potential recovery of valuable isotopes. However, during activities associated with decontamination and decommissioning (D and D), some containers with small amounts of liquids were placed into the waste containers with debris waste. Many of these containers now hold from 2.5 milliliters (ml) to 237 ml of liquid; a few contain larger volumes. At least some of these containers were likely empty at the time of generation, but documentation of this condition is lacking. Since WIPP compliant AK is developed on a waste stream basis, rather than an individual container basis, and includes every potential RCRA hazardous constituent within the waste stream, it is insufficient for the purpose of characterizing individual containers of liquid. Debris waste is defined in 40 CFR 268.2(g) as 'solid material exceeding a 60 mm particle size that is intended for disposal and that is: a manufactured object; or plant or animal matter; or natural geologic material'. The definition further states that intact containers of hazardous waste that are not ruptured and that retain at least 75% of their original volume are not debris. The prescribed treatment is removal of intact containers from the debris waste, and treatment of their contents to meet specific Land Disposal Restrictions (LDR) standards. This is true for containers with incidental amounts of liquids, even if the liquid is less than 50% of the total waste volume. Under the proposed variance, all free or containerised liquids (up to 3.8 liters(L)) found in the debris would be treated and returned in solid form to the debris waste stream from which they originated. The waste would then be macro-encapsulated. (author)« less

  14. Safety evaluation for packaging (onsite) concrete-lined waste packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, T.

    1997-09-25

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.

  15. Radiological characterization of skyshine from a retired, low-level, radioactive liquid effluent disposal facility at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.; Perkins, C.J.

    1991-02-01

    The 1301-N Liquid Waste Disposal Facility, located on the Hanford Site received N Reactor low-level radioactive liquid process effluent from 1962 to 1985. Radiation emanating from the top of the trench sections was not significant because of the sediments were normally under several meters of water, which provided the necessary shielding. Following retirement of the facility, the liquid in the trench sections percolated into the ground leaving the residual radioactively contaminated sediments unshielded along the bottom and sides of the trench sections. The radioactive constituents of the contaminated sediments include the gamma-emitting isotopes Co-60 and Cs-137. Because of the lackmore » of water covering, some of the gamma photons that were emitted upward were scattered downward due to Compton interaction with atmospheric constituents. This phenomenon is known as skyshine.'' A radiological characterization was required to provide guidance for determining the effectiveness of interim stabilization alternatives that would not adversely affect future Resource Conservation and Recovery Act site closure activities, (e.g., filling in trench sections with spoils from excavation activities). A noninvasive radiological characterization of this disposal facility and the affected area of the Columbia River shoreline was conducted. This characterization confirmed that skyshine is the cause of the elevated shoreline exposure rates and provided a model that could be used to rate the effectiveness of alternative interim stabilization measures. 4 refs., 5 figs.« less

  16. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  17. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  18. Radioactive Iodine Treatment for Hyperthyroidism

    MedlinePlus

    ... other parts of the body. RAI, also called iodine 131 (I-131), is given as a single-dose capsule or liquid. Most often, you will not need a hospital stay. It can take 6 to ... Know? Radioactive iodine is a generally safe treatment that can cure ...

  19. Liquid sodium dip seal maintenance system

    DOEpatents

    Briggs, Richard L.; Meacham, Sterling A.

    1980-01-01

    A system for spraying liquid sodium onto impurities associated with liquid dip seals of nuclear reactors. The liquid sodium mixing with the impurities dissolves the impurities in the liquid sodium. The liquid sodium having dissolved and diluted the impurities carries the impurities away from the site thereby cleaning the liquid dip seal and surrounding area. The system also allows wetting of the metallic surfaces of the dip seal thereby reducing migration of radioactive particles across the wetted boundary.

  20. RadNet Air Quality (Fixed Station) Data

    EPA Pesticide Factsheets

    RadNet is a national network of monitoring stations that regularly collect air for analysis of radioactivity. The RadNet network, which has stations in each State, has been used to track environmental releases of radioactivity from nuclear weapons tests and nuclear accidents. RadNet also documents the status and trends of environmental radioactivity

  1. 75 FR 17111 - Hazardous Materials Regulations: Combustible Liquids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... non-bulk packagings in a revised set of requirements for Class 3 materials, thereby eliminating the... material classed as a combustible liquid in a non-bulk packaging unless the combustible liquid is a... package for limited quantities for Class 7 (radioactive materials) could be transported as a combustible...

  2. HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.

    2003-02-27

    This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less

  3. Title list of documents made publicly available, October 1-31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    This monthly publication describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). It includes: (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) non-docketed material received and published. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number index. Seven docketed items are included which pertain to licensing, radioactive waste, nuclear power plant design. The 26 non-docketed items include committee reports; NRC correspondence, issuances, and reports; inspections and deficiency findings; and waste management documents.

  4. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  5. Baseline ecological risk assessment Salmon Site, Lamar County, Mississippi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The Salmon Site (SS), formerly the Tatum Dome Test Site, located in Mississippi was the site of two nuclear and two gas explosion tests conducted between 1964 and 1970. A consequence of these testing activities is that radionuclides were released into the salt dome, where they are presently contained. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. As part of the remedial investigation effort, a Baseline Ecological Risk Assessment was conducted at the SS. The purpose is to gauge ecological and othermore » environmental impacts attributable to past activities at the former test facility. The results of this facility-specific baseline risk assessment are presented in this document.« less

  6. Detection of free liquid in drums of radioactive waste. [Patent application

    DOEpatents

    Not Available

    1979-10-16

    A nondestructive thermal imaging method for detecting the presence of a liquid such as water within a sealed container is described. The process includes application of a low amplitude heat pulse to an exterior surface area of the container, terminating the heat input and quickly mapping the resulting surface temperatures. The various mapped temperature values can be compared with those known to be normal for the container material and substances in contact. The mapped temperature values show up in different shades of light or darkness that denote different physical substances. The different substances can be determined by direct observation or by comparison with known standards. The method is particularly applicable to the detection of liquids above solidified radioactive wastes stored in sealed containers.

  7. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-04

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards formore » all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabedian, G.

    This document details the decontamination and decommissioning (D&D) process of Rooms 248 and 250 of Building 62 at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL). The document describes the D&D efforts for the rooms, their contents, and adjacent areas containing ancillary equipment. The rooms and equipment, before being released, were required to meet the unrestricted release criteria and requirements set forth in DOE orders 5400.5 and 5480.11, LBNL`s internal release-criteria procedure (EH&S Procedure 708), and the LBNL Radiological Control Manual. The radioactive material and items not meeting the release criteria were either sent to the Hazardous Waste Handling Facilitymore » (HWHF) for disposal or transferred to other locations approved for radioactive material. The D&D was undertaken by the Radiation Protection Group of LBNL`s Environment, Health and Safety (EH&S) Division at the request of the Materials Sciences Division. Current and past use of radioactive material in both Rooms 248 and 250 necessitated the D&D in order to release both rooms for nonradioactive work. (1) Room 248 was designated a {open_quotes}controlled area.{close_quotes} There was contained radioactive material in some of the equipment. The previous occupants of Room 248 had worked with radioactive materials. (2) Room 250 was designated a {open_quotes}Radioactive Materials Management Area{close_quotes} (RMMA) because the current occupants used potentially dispersible radioisotopes. Both laboratories, during the occupancy of U.C. Berkeley Professor Leo Brewer and Ms. Karen Krushwitz, were kept in excellent condition. There was a detailed inventory of all radioactive materials and chemicals. All work and self surveys were documented. The labs were kept extremely orderly, clean, and in compliance. In October 1993 Ms. Krushwitz received an award in recognition of her efforts in Environmental Protection, Health, and Safety at LBNL.« less

  9. Resistance of class C fly ash belite cement to simulated sodium sulphate radioactive liquid waste attack.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-01-30

    The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined.

  10. Site Environmental Report for Calendar Year 2007. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Lenox, Art

    2008-09-30

    This Annual Site Environmental Report (ASER) for 2007 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequentmore » radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended until DOE completes the SSFL Area IV Environmental Impact Statement (EIS). The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2007 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2007.« less

  11. Site Environmental Report for Calendar Year 2001. DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherford, Phil; Samuels, Sandy; Leee, Majelle

    2002-09-01

    This Annual Site Environmental Report (ASER) for 2001 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Boeing Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988,more » and subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Closure of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2001 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway. No structural debris from buildings, released for unrestricted use, was transferred to municipal landfills or recycled in 2001.« less

  12. Site Environmental Report for Calendar Year 2013. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-06-30

    This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2013.« less

  13. Partitioning of K, U, and TH between sulfide and silicate liquids: Implications for radioactive heating of planetary cores

    NASA Astrophysics Data System (ADS)

    Murrell, M. T.; Burnett, D. S.

    1986-07-01

    The possibility of heating of planetary cores by K radioactivity has been extensively discussed, as well as the possibility that K partitioning into the terrestrial core is the reason for the difference between the terrestrial and chondritic K/U. We had previously suggested that U and Th partitioning into FeFeS liquids was more important than K. Laboratory FeFeS liquid, silicate liquid partition coefficient measurements (D) for K, U, and Th were made to test this suggestion. For a basaltic liquid at 1450°C and 1.5 GPa, DU is 0.013 and DK is 0.0026; thus U partitioning into FeFeS liquids is 5 times greater than K partitioning under these conditions. There are problems with 1-atm experiments in that they do not appear to equilibrate or reverse. However, measurable U and Th partitioning into sulfide was nearly always observed, but K partitioning was normally not observed (DK <~ 10-4). A typical value for DU from a granitic silicate liquid at one atmosphere, 1150°C, and low f02 is about 0.02; DTh is similar. At low f02 and higher temperature, experiments with basaltic liquids produce strong Ca and U partitioning into the sulfide liquid with DU > 1. DTh is less strongly affected. Because of the consistently low DK/DU, pressure effects near the core-mantle boundary would need to increase DK by factors of ~103 with much smaller increases in DU in order to have the terrestrial K and U abundances at chondritic levels. In addition, if radioactive heating is important for planetary cores, U and Th will be more important than K unless the lower mantle has K/U greater than 10 times chondritic or large changes in partition coefficients with conditions reverse the relative importance of K versus U and Th from our measurements.

  14. Waste certification program plan for Oak Ridge National Laboratory. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrin, R.C.

    1997-05-01

    This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls)more » waste. Program activities will be conducted according to ORNL Level 1 document requirements.« less

  15. Radioactive contamination in the environs of the Hanford Works for the period April, May, June 1949

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paas, H.J.; Singlevich, W.

    1950-04-03

    This report summarizes the measurements made for radioactive contamination in the environs of the Hanford Works for the quarter April through June 1949. This belated document is issued for the records to fill in the gap for the quarterly reports not issued in 1949 because of personnel shortage at that time. Although the data summarized in this report were already reported in the H. I. Evirons Reports for the months involved, it is still of value to study the data combining the three months of data which give better opportunity to evaluate the trends and patterns of the levels ofmore » radioactive contamination emanating from the various sources at the Hanford Works. This document discusses: meteorological data and radioactive contamination in vegetation, the atmosphere, rain, Hanford wastes, the Columbia River, and in drinking water and test wells.« less

  16. Thirty-year solid waste generation forecast for facilities at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less

  17. Novel Fission-Product Separation based on Room-Temperature Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Robin D.

    2004-12-31

    U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cationsmore » and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.« less

  18. SU-G-PinS Room/Hall E-00: HAZMAT Training for the Medical Physicist - Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Medical Physicists are frequently involved in shipping radioactive materials or supervising those who do. Current U.S. Department of Transportation Hazardous Material Regulations, 49 CFR Parts 171 - 185, require hazmat employees to have documented training specified in 49 CFR 172 Subpart H. A hazmat employee is defined as an individual who: (1) loads, unloads or handles hazardous material; (2) manufactures, tests, reconditions, repairs, modifies, marks or otherwise represents containers, drums or packagings as qualified for use in the transportation of hazardous materials; (3) prepares hazardous materials for transportation; (4) is responsible for safety of transporting hazardous materials; or (5) operatesmore » a vehicle used to transport hazardous materials. Recurrent training is required at least once every three years. (The IATA two year training interval is not applicable and is generally misunderstood.) FAA has escalated inspection and enforcement. Facilities who ship radiopharmaceuticals to other laboratories, return radiopharmaceuticals or radioactive sources to suppliers, or otherwise ship radioactive materials have been cited for failure to provide and document the required training. The interrelationship of transportation regulations, 49 CFR, IATA, ICAO and other transportation regulations, which are frequently misunderstood, will be explained. The course will cover typical shipments by air and highway which are encountered in a medical institution. Items such as fissile materials, highway route controlled quantities, rail shipments, vessel shipments and such will be omitted; although specific questions may be addressed. A major objective of the course is to present the process of shipping radioactive material in a sequential and logical fashion. How radioactive materials for transportation purposes are defined by activity concentrations for exempt materials and activity limits for exempt consignments will be explained. Radioactive material shipments of excepted packages and Type A packages will be emphasized. The program is designed to meet the function specific DOT training requirements for shippers of medical radioactive materials. General awareness training and security awareness training can be obtained from two free DOT training CDs. Safety training and security awareness training is generally satisfied by the training required under the institution’s radioactive material license. For shippers of radioactive Yellow III labeled packages an in-depth written security plan and training are no longer required as of April 8, 2010. In general almost all shippers of medical radioactive material are now not required to have an in-depth security plan. Contents of general awareness training, security awareness training and in-depth security plans will be briefly outlined. It is the hazmat employer’s responsibility to ensure that each hazmat employee is properly trained. No third party can fulfill that requirement. It is the hazmat employer’s responsibility to determine the degree to which this course meets the employer’s requirements, including contents of the course and the examination. Participants will gain sufficient knowledge to prepare hazmat training programs for others in their institutions. A handout will be posted which should be printed out and brought to the course for reference during the presentation. The handout will also satisfy part of the training documentation required by DOT. A feature handout section is a composite table which provides A1, A2, RQ, Exempt Concentration, and Exempt Consignment values in a single table in both Becquerel and Curie units. Course attendance will be certified through the AAPM CEU documentation system. Learning Objectives: Understand the regulatory requirements for shipping radioactive materials. Understand the regulatory requirements for training of hazmat employees. Comprehend how to classify, package, mark, label, document, placard, and transport radioactive materials.« less

  19. SU-CD-PinS Room/Hall E-00: HAZMAT Training for the Medical Physicist - Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Medical Physicists are frequently involved in shipping radioactive materials or supervising those who do. Current U.S. Department of Transportation Hazardous Material Regulations, 49 CFR Parts 171 - 185, require hazmat employees to have documented training specified in 49 CFR 172 Subpart H. A hazmat employee is defined as an individual who: (1) loads, unloads or handles hazardous material; (2) manufactures, tests, reconditions, repairs, modifies, marks or otherwise represents containers, drums or packagings as qualified for use in the transportation of hazardous materials; (3) prepares hazardous materials for transportation; (4) is responsible for safety of transporting hazardous materials; or (5) operatesmore » a vehicle used to transport hazardous materials. Recurrent training is required at least once every three years. (The IATA two-year training interval is not applicable and is generally misunderstood.) FAA has escalated inspection and enforcement. Facilities who ship radiopharmaceuticals to other laboratories, return radiopharmaceuticals or radioactive sources to suppliers, or otherwise ship radioactive materials have been cited for failure to provide and document the required training. The interrelationship of transportation regulations, 49 CFR, IATA, ICAO and other transportation regulations, which are frequently misunderstood, will be explained. The course will cover typical shipments by air and highway which are encountered in a medical institution. Items such as fissile materials, highway route controlled quantities, rail shipments, vessel shipments and such will be omitted; although specific questions may be addressed. A major objective of the course is to present the process of shipping radioactive material in a sequential and logical fashion. How radioactive materials for transportation purposes are defined by activity concentrations for exempt materials and activity limits for exempt consignments will be explained. Radioactive material shipments of excepted packages and Type A packages will be emphasized. The program is designed to meet the function specific DOT training requirements for shippers of medical radioactive materials. General awareness training and security awareness training can be obtained from two free DOT training CDs. Safety training and security awareness training is generally satisfied by the training required under the institution’s radioactive material license. For shippers of radioactive Yellow III labeled packages an in-depth written security plan and training are no longer required as of April 8, 2010. In general almost all shippers of medical radioactive material are now not required to have an in-depth security plan. Contents of general awareness training, security awareness training and in-depth security plans will be briefly outlined. It is the hazmat employer’s responsibility to ensure that each hazmat employee is properly trained. No third party can fulfill that requirement. It is the hazmat employer’s responsibility to determine the degree to which this course meets the employer’s requirements, including contents of the course and the examination. Participants will gain sufficient knowledge to prepare hazmat training programs for others in their institutions. A handout will be posted which should be printed out and brought to the course for reference during the presentation. The handout will also satisfy part of the training documentation required by DOT. A feature handout section is a composite table which provides A1, A2, RQ, Exempt Concentration, and Exempt Consignment values in a single table in both Becquerel and Curie units. Course attendance will be certified through the AAPM CEU documentation system. Learning Objectives: Understand the regulatory requirements for shipping radioactive materials. Understand the regulatory requirements for training of hazmat employees. Comprehend how to classify, package, mark, label, document, placard, and transport radioactive materials.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R.

    Medical Physicists are frequently involved in shipping radioactive materials or supervising those who do. Current U.S. Department of Transportation Hazardous Material Regulations, 49 CFR Parts 171 - 185, require hazmat employees to have documented training specified in 49 CFR 172 Subpart H. A hazmat employee is defined as an individual who: (1) loads, unloads or handles hazardous material; (2) manufactures, tests, reconditions, repairs, modifies, marks or otherwise represents containers, drums or packagings as qualified for use in the transportation of hazardous materials; (3) prepares hazardous materials for transportation; (4) is responsible for safety of transporting hazardous materials; or (5) operatesmore » a vehicle used to transport hazardous materials. Recurrent training is required at least once every three years. (The IATA two-year training interval is not applicable and is generally misunderstood.) FAA has escalated inspection and enforcement. Facilities who ship radiopharmaceuticals to other laboratories, return radiopharmaceuticals or radioactive sources to suppliers, or otherwise ship radioactive materials have been cited for failure to provide and document the required training. The interrelationship of transportation regulations, 49 CFR, IATA, ICAO and other transportation regulations, which are frequently misunderstood, will be explained. The course will cover typical shipments by air and highway which are encountered in a medical institution. Items such as fissile materials, highway route controlled quantities, rail shipments, vessel shipments and such will be omitted; although specific questions may be addressed. A major objective of the course is to present the process of shipping radioactive material in a sequential and logical fashion. How radioactive materials for transportation purposes are defined by activity concentrations for exempt materials and activity limits for exempt consignments will be explained. Radioactive material shipments of excepted packages and Type A packages will be emphasized. The program is designed to meet the function specific DOT training requirements for shippers of medical radioactive materials. General awareness training and security awareness training can be obtained from two free DOT training CDs. Safety training and security awareness training is generally satisfied by the training required under the institution’s radioactive material license. For shippers of radioactive Yellow III labeled packages an in-depth written security plan and training are no longer required as of April 8, 2010. In general almost all shippers of medical radioactive material are now not required to have an in-depth security plan. Contents of general awareness training, security awareness training and in-depth security plans will be briefly outlined. It is the hazmat employer’s responsibility to ensure that each hazmat employee is properly trained. No third party can fulfill that requirement. It is the hazmat employer’s responsibility to determine the degree to which this course meets the employer’s requirements, including contents of the course and the examination. Participants will gain sufficient knowledge to prepare hazmat training programs for others in their institutions. A handout will be posted which should be printed out and brought to the course for reference during the presentation. The handout will also satisfy part of the training documentation required by DOT. A feature handout section is a composite table which provides A1, A2, RQ, Exempt Concentration, and Exempt Consignment values in a single table in both Becquerel and Curie units. Course attendance will be certified through the AAPM CEU documentation system. Learning Objectives: Understand the regulatory requirements for shipping radioactive materials. Understand the regulatory requirements for training of hazmat employees. Comprehend how to classify, package, mark, label, document, placard, and transport radioactive materials.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R.

    Medical Physicists are frequently involved in shipping radioactive materials or supervising those who do. Current U.S. Department of Transportation Hazardous Material Regulations, 49 CFR Parts 171 - 185, require hazmat employees to have documented training specified in 49 CFR 172 Subpart H. A hazmat employee is defined as an individual who: (1) loads, unloads or handles hazardous material; (2) manufactures, tests, reconditions, repairs, modifies, marks or otherwise represents containers, drums or packagings as qualified for use in the transportation of hazardous materials; (3) prepares hazardous materials for transportation; (4) is responsible for safety of transporting hazardous materials; or (5) operatesmore » a vehicle used to transport hazardous materials. Recurrent training is required at least once every three years. (The IATA two year training interval is not applicable and is generally misunderstood.) FAA has escalated inspection and enforcement. Facilities who ship radiopharmaceuticals to other laboratories, return radiopharmaceuticals or radioactive sources to suppliers, or otherwise ship radioactive materials have been cited for failure to provide and document the required training. The interrelationship of transportation regulations, 49 CFR, IATA, ICAO and other transportation regulations, which are frequently misunderstood, will be explained. The course will cover typical shipments by air and highway which are encountered in a medical institution. Items such as fissile materials, highway route controlled quantities, rail shipments, vessel shipments and such will be omitted; although specific questions may be addressed. A major objective of the course is to present the process of shipping radioactive material in a sequential and logical fashion. How radioactive materials for transportation purposes are defined by activity concentrations for exempt materials and activity limits for exempt consignments will be explained. Radioactive material shipments of excepted packages and Type A packages will be emphasized. The program is designed to meet the function specific DOT training requirements for shippers of medical radioactive materials. General awareness training and security awareness training can be obtained from two free DOT training CDs. Safety training and security awareness training is generally satisfied by the training required under the institution’s radioactive material license. For shippers of radioactive Yellow III labeled packages an in-depth written security plan and training are no longer required as of April 8, 2010. In general almost all shippers of medical radioactive material are now not required to have an in-depth security plan. Contents of general awareness training, security awareness training and in-depth security plans will be briefly outlined. It is the hazmat employer’s responsibility to ensure that each hazmat employee is properly trained. No third party can fulfill that requirement. It is the hazmat employer’s responsibility to determine the degree to which this course meets the employer’s requirements, including contents of the course and the examination. Participants will gain sufficient knowledge to prepare hazmat training programs for others in their institutions. A handout will be posted which should be printed out and brought to the course for reference during the presentation. The handout will also satisfy part of the training documentation required by DOT. A feature handout section is a composite table which provides A1, A2, RQ, Exempt Concentration, and Exempt Consignment values in a single table in both Becquerel and Curie units. Course attendance will be certified through the AAPM CEU documentation system. Learning Objectives: Understand the regulatory requirements for shipping radioactive materials. Understand the regulatory requirements for training of hazmat employees. Comprehend how to classify, package, mark, label, document, placard, and transport radioactive materials.« less

  2. Liquid xenon purification, de-radonation (and de-kryptonation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pocar, Andrea, E-mail: pocar@umass.edu; Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon aremore » addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.« less

  3. Radioactive waste from decommissioning of fast reactors (through the example of BN-800)

    NASA Astrophysics Data System (ADS)

    Rybin, A. A.; Momot, O. A.

    2017-01-01

    Estimation of volume of radioactive waste from operating and decommissioning of fast reactors is introduced. Preliminary estimation has shown that the volume of RW from decommissioning of BN-800 is amounted to 63,000 cu. m. Comparison of the amount of liquid radioactive waste derived from operation of different reactor types is performed. Approximate costs of all wastes disposal for complete decommissioning of BN-800 reactor are estimated amounting up to approx. 145 million.

  4. Precursor–product relationship between intrahepatic albumin and plasma albumin

    PubMed Central

    LeBouton, A. V.

    1968-01-01

    Rats were injected with [3H]leucine, and at various times thereafter labelled albumin was isolated by electrophoresis from their livers and blood plasma. The specific radioactivity of each protein was determined by spectrophotometry and liquid-scintillation spectrometry. Intrahepatic albumin was shown to be identical with plasma albumin by its electrophoretic mobility and antigenicity. It was found that intrahepatic albumin was the direct precursor of plasma albumin. Comparison of their specific radioactivities showed that intrahepatic albumin attained a higher specific radioactivity before plasma albumin. When plasma albumin reached its maximum specific radioactivity, that of intrahepatic albumin had decreased to a similar value. Thereafter, the specific radioactivity of intrahepatic albumin remained lower than that of plasma albumin. PMID:4966084

  5. Process for immobilizing radioactive boric acid liquid wastes

    DOEpatents

    Greenhalgh, Wilbur O.

    1986-01-01

    A method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  6. Radioactivity in returned lunar materials

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The H-3, Ar-37, and Ar-39 radioactivities were measured at several depths in the large documented lunar rocks 14321 and 15555. The comparison of the Ar-37 activities from similar locations in rocks 12002, 14321, and 15555 gives direct measures of the amount of Ar-37 produced by the 2 November 1969 and 24 January 1971 solar flares. The tritium contents in the documented rocks decreased with increasing depths. The solar flare intensity averaged over 30 years obtained from the tritium depth dependence was approximately the same as the flare intensity averaged over 1000 years obtained from the Ar-37 measurements. Radioactivities in two Apollo 15 soil samples, H-3 in several Surveyor 3 samples, and tritium and radon weepage were also measured.

  7. Ab initio quantum chemical calculations of the interaction between radioactive elements and imidazolium based ionic liquids

    NASA Astrophysics Data System (ADS)

    Saravanan, A. V. Sai; Abishek, B.; Anantharaj, R.

    2018-04-01

    The fundamental natures of the molecular level interaction and charge transfer between specific radioactive elements and ionic liquids of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([BMIM]+[NTf2]-), 1-Butyl-3-methylimidazolium ethylsulfate ([BMIM]+[ES]-) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]-) were investigated utilising HF theory and B3LYP hybrid DFT. The ambiguity in reaction mechanism of the interacting species dictates to employ Effective Core Potential (ECP) basis sets such as UGBS, SDD, and SDDAll to account for the relativistic effects of deep core electrons in the system involving potential, heavy and hazardous radioactive elements present in nuclear waste. The SCF energy convergence of each system validates the characterisation of the molecular orbitals as a linear combination of atomic orbitals utilising fixed MO coefficients and the optimized geometry of each system is visualised based on which Mulliken partial charge analysis is carried out to account for the polarising behaviour of the radioactive element and charge transfer between the IL phase by comparison with the bare IL species.

  8. Resource Management Plan for the US Department of Energy Oak Ridge Reservation. Volume 15, Appendix P: waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B.A.

    1984-07-01

    Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less

  9. Process for immobilizing radioactive boric acid liquid wastes

    DOEpatents

    Greenhalgh, W.O.

    1984-05-10

    Disclosed is a method of immobilizing boric acid liquid wastes containing radionuclides by neutralizing the solution and evaporating the resulting precipitate to near dryness. The dry residue is then fused into a reduced volume, insoluble, inert, solid form containing substantially all the radionuclides.

  10. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    NASA Astrophysics Data System (ADS)

    Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O`Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  11. Transient thermal analysis for radioactive liquid mixing operations in a large-scaled tank

    DOE PAGES

    Lee, S. Y.; Smith, III, F. G.

    2014-07-25

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on radioactive liquid temperature during the process of waste mixing and removal for the high-level radioactive materials stored in Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing longshaft mixer pumps used during waste removal. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermalmore » response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%.« less

  12. Magnesium fluoride recovery method

    DOEpatents

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  13. Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, M.D.

    1995-06-13

    This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench beganmore » in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations.« less

  14. A high-performance liquid chromatography method for the serotonin release assay is equivalent to the radioactive method.

    PubMed

    Sono-Koree, N K; Crist, R A; Frank, E L; Rodgers, G M; Smock, K J

    2016-02-01

    The serotonin release assay (SRA) is considered the gold standard laboratory test for heparin-induced thrombocytopenia (HIT). The historic SRA method uses platelets loaded with radiolabeled serotonin to evaluate platelet activation by HIT immune complexes. However, a nonradioactive method is desirable. We report the performance characteristics of a high-performance liquid chromatography (HPLC) SRA method. We validated the performance characteristics of an HPLC-SRA method, including correlation with a reference laboratory using the radioactive method. Serotonin released from reagent platelets was quantified by HPLC using fluorescent detection. Results were expressed as % release and classified as positive, negative, or indeterminate based on previously published cutoffs. Serum samples from 250 subjects with suspected HIT were tested in the HPLC-SRA and with the radioactive method. Concordant classifications were observed in 230 samples (92%). Sera from 41 healthy individuals tested negative. Between-run imprecision studies showed standard deviation of <6 (% release) for positive, weak positive, and negative serum pools. Stability studies demonstrated stability after two freeze-thaw cycles or up to a week of refrigeration. The HPLC-SRA has robust performance characteristics, equivalent to the historic radioactive method, but avoids the complexities of working with radioactivity. © 2015 John Wiley & Sons Ltd.

  15. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.« less

  16. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  17. Low-level radioactive waste technology: a selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinentmore » references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.« less

  18. The Accumulation of Radioactive Contaminants in Drinking Water Distribution Systems

    EPA Science Inventory

    The accumulation of trace contaminants in drinking water distribution systems has been documented and the subsequent release of the contaminants back to the water is a potential exposure pathway. Radioactive contaminants are of particular concern because of their known health eff...

  19. Authorized limits for Fernald copper ingots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frink, N.; Kamboj, S.; Hensley, J.

    This development document contains data and analysis to support the approval of authorized limits for the unrestricted release of 59 t of copper ingots containing residual radioactive material from the U.S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP). The analysis presented in this document comply with the requirements of DOE Order 5400.5, {open_quotes}Radiation Protection of the Public and the Environment,{close_quotes} as well as the requirements of the proposed promulgation of this order as 10 CFR Part 834. The document was developed following the step-by-step process described in the Draft Handbook for Controlling Release for Reuse or Recycle Propertymore » Containing Residual Radioactive Material.« less

  20. Separation and quantitation of polyethylene glycols 400 and 3350 from human urine by high-performance liquid chromatography.

    PubMed

    Ryan, C M; Yarmush, M L; Tompkins, R G

    1992-04-01

    Polyethylene glycol 3350 (PEG 3350) is useful as an orally administered probe to measure in vivo intestinal permeability to macromolecules. Previous methods to detect polyethylene glycol (PEG) excreted in the urine have been hampered by inherent inaccuracies associated with liquid-liquid extraction and turbidimetric analysis. For accurate quantitation by previous methods, radioactive labels were required. This paper describes a method to separate and quantitate PEG 3350 and PEG 400 in human urine that is independent of radioactive labels and is accurate in clinical practice. The method uses sized regenerated cellulose membranes and mixed ion-exchange resin for sample preparation and high-performance liquid chromatography with refractive index detection for analysis. The 24-h excretion for normal individuals after an oral dose of 40 g of PEG 3350 and 5 g of PEG 400 was 0.12 +/- 0.04% of the original dose of PEG 3350 and 26.3 +/- 5.1% of the original dose of PEG 400.

  1. Radioactive nondestructive test method

    NASA Technical Reports Server (NTRS)

    Obrien, J. R.; Pullen, K. E.

    1971-01-01

    Various radioisotope techniques were used as diagnostic tools for determining the performance of spacecraft propulsion feed system elements. Applications were studied in four tasks. The first two required experimental testing involving the propellant liquid oxygen difluoride (OF2): the neutron activation analysis of dissolved or suspended metals, and the use of radioactive tracers to evaluate the probability of constrictions in passive components (orifices and filters) becoming clogged by matter dissolved or suspended in the OF2. The other tasks were an appraisal of the applicability of radioisotope techniques to problems arising from the exposure of components to liquid/gas combinations, and an assessment of the applicability of the techniques to other propellants.

  2. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  3. Laboratory studies on the removal of radon-born lead from KamLAND's organic liquid scintillator

    NASA Astrophysics Data System (ADS)

    Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; Takeuchi, S.; Mauger, C.; Zhang, C.; Schweitzer, G.; Berger, B. E.; Dazeley, S.; Decowski, M. P.; Detwiler, J. A.; Djurcic, Z.; Dwyer, D. A.; Efremenko, Y.; Enomoto, S.; Freedman, S. J.; Fujikawa, B. K.; Furuno, K.; Gando, A.; Gando, Y.; Gratta, G.; Hatakeyama, S.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Inoue, K.; Iwamoto, T.; Kamyshkov, Y.; Karwowski, H. J.; Koga, M.; Kozlov, A.; Lane, C. E.; Learned, J. G.; Maricic, J.; Markoff, D. M.; Matsuno, S.; McKee, D.; McKeown, R. D.; Miletic, T.; Mitsui, T.; Motoki, M.; Nakajima, Kyo; Nakajima, Kyohei; Nakamura, K.; O`Donnell, T.; Ogawa, H.; Piquemal, F.; Ricol, J.-S.; Shimizu, I.; Suekane, F.; Suzuki, A.; Svoboda, R.; Tajima, O.; Takemoto, Y.; Tamae, K.; Tolich, K.; Tornow, W.; Watanabe, Hideki; Watanabe, Hiroko; Winslow, L. A.; Yoshida, S.

    2015-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon-born lead from liquid scintillator.

  4. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefer, G.; Grant, C.; Piepke, A.

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  5. Laboratory studies on the removal of radon-born lead from KamLAND׳s organic liquid scintillator

    DOE PAGES

    Keefer, G.; Grant, C.; Piepke, A.; ...

    2014-09-28

    We studied the removal of radioactivity from liquid scintillator in preparation of a low background phase of KamLAND. We describe the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. Lastly, we report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  6. Documenting Ground-Water Modeling at Sites Contaminated with Radioactive Substances

    EPA Pesticide Factsheets

    This report is the product of the Interagency Environmental Pathway Modeling Working Group. This report demonstrates how to document model applications in a consistent manner and is intended to assist technical staff.

  7. Removal of actinide elements from liquid scintillation cocktail wastes using liquid-liquid extraction and demulsification techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, K.; Landsberger, S.; Srinivasan, B.

    1994-12-31

    A method for the separation of radionuclides with Z greater than 88, from lower-level radioactive wastes (liquid scintillation cocktail or LSC wastes), is described. The method is liquid-liquid extraction (LLX) and demulsification. The actinide elements are removed from the LSC wastes by extraction into an aqueous phase after the cocktail has been demulsified. The aqueous and organic phases are separated, then the wastes type remaining may be incinerated. Future experiments will be performed to study the effects of pH and temperature and to extend the study to wastes containing americium.

  8. An automated LS(β)- NaI(Tl)(γ) coincidence system as absolute standard for radioactivity measurements.

    PubMed

    Joseph, Leena; Das, A P; Ravindra, Anuradha; Kulkarni, D B; Kulkarni, M S

    2018-07-01

    4πβ-γ coincidence method is a powerful and widely used method to determine the absolute activity concentration of radioactive solutions. A new automated liquid scintillator based coincidence system has been designed, developed, tested and established as absolute standard for radioactivity measurements. The automation is achieved using PLC (programmable logic controller) and SCADA (supervisory control and data acquisition). Radioactive solution of 60 Co was standardized to compare the performance of the automated system with proportional counter based absolute standard maintained in the laboratory. The activity concentrations determined using these two systems were in very good agreement; the new automated system can be used for absolute measurement of activity concentration of radioactive solutions. Copyright © 2018. Published by Elsevier Ltd.

  9. Chromatographic separation of radioactive noble gases from xenon

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.

    2018-01-01

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopes 85Kr and 39Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search experiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.

  10. Chromatographic separation of radioactive noble gases from xenon

    DOE PAGES

    Akerib, DS; Araújo, HM; Bai, X; ...

    2017-10-31

    The Large Underground Xenon (LUX) experiment operates at the Sanford Underground Research Facility to detect nuclear recoils from the hypothetical Weakly Interacting Massive Particles (WIMPs) on a liquid xenon target. Liquid xenon typically contains trace amounts of the noble radioactive isotopesmore » $$^{85}$$Kr and $$^{39}$$Ar that are not removed by the in situ gas purification system. The decays of these isotopes at concentrations typical of research-grade xenon would be a dominant background for a WIMP search exmperiment. To remove these impurities from the liquid xenon, a chromatographic separation system based on adsorption on activated charcoal was built. 400 kg of xenon was processed, reducing the average concentration of krypton from 130 ppb to 3.5 ppt as measured by a cold-trap assisted mass spectroscopy system. A 50 kg batch spiked to 0.001 g/g of krypton was processed twice and reduced to an upper limit of 0.2 ppt.« less

  11. 75 FR 20582 - Record of Decision: Final Environmental Impact Statement for Decommissioning and/or Long-Term...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... storage tanks and facilities used in the solidification of high-level radioactive waste, and any material... Act (Pub. L. 96-368, 42 U.S.C. 2021a). The WVDP Act requires DOE to demonstrate that the liquid high... take the following actions: 1. Solidify high-level radioactive waste by vitrification or such other...

  12. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  13. Purification of lanthanides for double beta decay experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polischuk, O. G.; Barabash, A. S.; Belli, P.

    2013-08-08

    There are several potentially double beta active isotopes among the lanthanide elements. However, even high purity grade lanthanide compounds contain {sup 238}U, {sup 226}Ra and {sup 232,228}Th typically on the level of ∼ (0.1 - 1) Bq/kg. The liquid-liquid extraction technique was used to remove traces of U, Ra and Th from CeO{sub 2}, Nd{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe γ spectrometry at the underground Gran Sasso National Laboratories of the INFN (Italy). After the purification the radioactive contamination of gadolinium oxidemore » by Ra and Th was decreased at least one order of magnitude. The efficiency of the approach to purify cerium oxide from Ra was on same level, while the radioactive contamination of neodymium sample before and after the purification is below the sensitivity of analytical methods. The purification method is much less efficient for chemically very similar radioactive elements like lanthanum, lutetium and actinium. R and D of the methods to remove the pollutions with improved efficiency is in progress.« less

  14. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, J.D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet. 5 figures.

  15. Critically safe volume vacuum pickup for use in wet or dry cleanup of radioactive enclosures

    DOEpatents

    Zeren, Joseph D.

    1993-12-28

    A physical compact vacuum pickup device of critically safe volume and geometric shape is provided for use in radioactive enclosures, such as a small glove box, to facilitate manual cleanup of either wet or dry radioactive material. The device is constructed and arranged so as to remain safe when filled to capacity with plutonium-239 oxide. Two fine mesh filter bags are supported on the exterior of a rigid fine mesh stainless steel cup. This assembly is sealed within, and spaced from, the interior walls of a stainless steel canister. An air inlet communicates with the interior of the canister. A modified conventional vacuum head is physically connected to, and associated with, the interior of the mesh cup. The volume of the canister, as defined by the space between the mesh cup and the interior walls of the canister, forms a critically safe volume and geometric shape for dry radioactive particles that are gathered within the canister. A critically safe liquid volume is maintained by operation of a suction terminating float valve, and/or by operation of redundant vacuum check/liquid drain valves and placement of the air inlet.

  16. Management of low-level radioactive waste in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabtai, B.; Brenner, S.; Ne`eman, E.

    1995-12-31

    Radioactive materials are used extensively in Israel in many areas and applications for medicine, industry, agriculture, research and development and others. Israel`s primary concern in waste management is population safety and environmental protection. The Ministry of The Environment (MOE), in cooperation with the Israeli Atomic Energy Commission (IAEC), supervise over the disposal system, and ensure an effective control. The MOE is responsible for the granting of permits to users of radioactive elements in about 300 plants and institutes, with about 2,200 installations. The MOE operates a computerized database management system (DBMS) on radioactive materials, with data on licensing, import andmore » distribution, waste disposal and transportation. Supervision over the disposal of LLRW has deepened recently, and periodic reports, based on the number of drums containing LLRW, which were transferred from all institutes in Israel to the NRWDS, were prepared. Draft regulations on the disposal of LLRW from institutes of research and education, hospitals, medical laboratories and other, have been recently prepared. These regulations include instructions on the disposal of solid and liquid LLRW as well as radioactive gases and vapors. As a general rule, no LLRW of any sort will be disposed of through the ordinary waste system or general sewage. However, in some extraordinary cases, residues of liquid LLRW are allowed to be disposed in this manner, if the requirements for disposal are satisfied. There are some conditions, in which solid LLRW might be treated as a conventional waste, as well as for safe emission of radioactive gases and aerosols. In light of these considerations, a new and more specific approach to radiation protection organizations and management of low-level radioactive waste problems, supervision and optimization is presented.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Fan, A.; Fiorillo, G.

    Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors thatmore » can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. Lastly, the introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this article.« less

  18. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  19. Radiological assessment of target materials for accelerator transmutation of waste (ATW) applications

    NASA Astrophysics Data System (ADS)

    Vickers, Linda Diane

    This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future studies should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this dissertation may be applied to any target material of a high-energy particle accelerator.

  20. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    DOE PAGES

    Banks, T. I.; Freedman, S. J.; Wallig, J.; ...

    2014-10-14

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealedmore » housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. Finally, an infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable’s motion, and the system was controlled via a graphical user interface.« less

  1. Radioactive scrap metal decontamination technology assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for themore » liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.« less

  2. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas, R.A.; Suzuki, H.; Hirota, Y.

    This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed thatmore » the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.« less

  3. 40 CFR 761.65 - Storage for disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... storage of non-liquid PCB/ radioactive wastes must be designed to prevent the buildup of liquids if such... conditions: (i) The waste is placed in a pile designed and operated to control dispersal of the waste by wind...) A run-on control system designed, constructed, operated, and maintained such that: (1) It prevents...

  4. PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

  5. Living With and Learning about Radioactivity: A Comparative Conceptual Study.

    ERIC Educational Resources Information Center

    Alsop, Steve

    2001-01-01

    Documents a quasi-scientific comparative study of two groups of 'recent school leavers' in the UK. Studies non-science university undergraduates and explores whether people living with the immediacy and relevance of higher-than-average levels of radioactivity were more knowledgeable and emotionally detached than a similar group removed from this…

  6. 76 FR 44619 - In the Matter of Bozeman Deaconess Foundation, dba Bozeman Deaconess Hospital, Bozeman, MT...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... radioactive materials from unauthorized access or removal from the facility's nuclear medicine laboratory (hot... secure radioactive material during periods when authorized personnel were absent from the hot lab. Based... E-Filing system time-stamps the document and sends the submitter an e-mail notice confirming receipt...

  7. A workshop on developing risk assessment methods for medical use of radioactive material. Volume 2: Supporting documents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tortorelli, J.P.

    A workshop was held at the Idaho National Engineering Laboratory, August 16--18, 1994 on the topic of risk assessment on medical devices that use radioactive isotopes. Its purpose was to review past efforts to develop a risk assessment methodology to evaluate these devices, and to develop a program plan and a scoping document for future methodology development. This report contains presentation material and a transcript of the workshop. Participants included experts in the fields of radiation oncology, medical physics, risk assessment, human-error analysis, and human factors. Staff from the US Nuclear Regulatory Commission (NRC) associated with the regulation of medicalmore » uses of radioactive materials and with research into risk-assessment methods participated in the workshop. The workshop participants concurred in NRC`s intended use of risk assessment as an important technology in the development of regulations for the medical use of radioactive material and encouraged the NRC to proceed rapidly with a pilot study. Specific recommendations are included in the executive summary and the body of this report.« less

  8. Radiometry of liquids: characteristics and systematization of the requirements imposed on it (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isakov, L.M.; El'tsin, G.I.

    1972-01-01

    The requirements imposed on the measurement of the radioactivity of liquids are differentiated as a function of the purpose of the instrument. Five groups of radiometers were examined and for each the individual requirements were characterized. The proposed systematization was oriented toward the ordering of the development of liquid radiometers and a reduction in the number of models without limiting their range of applicability. (tr-auth)

  9. Radiometric liquid level gauge with linear-detection (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaeser, M.; Emmelmann, K.P.

    1973-09-01

    A description is given of a radiometric liquid level gauge with linear detection. It consists of a set of radioactive sources (e.g., /sup 137/Cs) with quadratic graduation in their activities, of a scintillation counter with electronic back-up unit and of a slender tube. The tube, sources and scintillation counter form a compact snd easily transportsble liquid level gauge. It is-especially adapted for liquid level measurements in slender, difficulty accessible and opaque containers. The device supplements the different methods for liquid level measurement with a new variant which is adopted for many cases in practice. (auth)

  10. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, D.R.

    1993-03-23

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  11. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, Donald R.

    1993-01-01

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  12. Chemical purification of lanthanides for low-background experiments

    NASA Astrophysics Data System (ADS)

    Boiko, R. S.

    2017-10-01

    There are many potentially active isotopes among the lanthanide elements which are possible to use for low-background experiments to search for double β decay, dark matter, to investigate rare α and β decays. These kind of experiments require very low level of radioactive contamination, but commercially available compounds of lanthanides are always contamined by uranium, thorium, radium, potassium, etc. A simple chemical method based on liquid-liquid extraction has been applied for the purification of CeO2, Nd2O3 and Gd˙2O˙3 from radioactive traces. Detailed schemes of purification procedure are described. Measurements by using HPGe spectrometry demonstrate high efficiency in K, Ra, Th, U contaminations reduction on at least one order of magnitude.

  13. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  14. Detection of free liquid in containers of solidified radioactive waste

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    A method of nondestructively detecting the presence of free liquid within a sealed enclosure containing solidified waste by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solidified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  15. The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2.

    PubMed

    Reyoung Kim, Hee

    2013-09-01

    The radioactivity of (14)C and (3)H in graphite samples from the dismantled Korea Research Reactor-2 (the KRR-2) site was analyzed by high-temperature oxidation and liquid scintillation counting, and the graphite waste was suggested to be disposed of as a low-level radioactive waste. The graphite samples were oxidized at a high temperature of 800 °C, and their counting rates were measured by using a liquid scintillation counter (LSC). The combustion ratio of the graphite was about 99% on the sample with a maximum weight of 1g. The recoveries from the combustion furnace were around 100% and 90% in (14)C and (3)H, respectively. The minimum detectable activity was 0.04-0.05 Bq/g for the (14)C and 0.13-0.15 Bq/g for the (3)H at the same background counting time. The activity of (14)C was higher than that of (3)H over all samples with the activity ratios of the (14)C to (3)H, (14)C/(3)H, being between 2.8 and 25. The dose calculation was carried out from its radioactivity analysis results. The dose estimation gave a higher annual dose than the domestic legal limit for a clearance. It was thought that the sampled graphite waste from the dismantled research reactor was not available for reuse or recycling and should be monitored as low-level radioactive waste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Radioactive materials released from nuclear power plants. Annual report, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  17. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  18. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.

  19. Radioactive materials released from nuclear power plants: Annual report, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  20. Radioactive materials released from nuclear power plants: Annual report, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1985 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1985 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  1. Radioactive materials released from nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.

  2. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOEpatents

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  3. 75 FR 38168 - Hazardous Materials: International Regulations for the Safe Transport of Radioactive Material (TS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... (IAEA) ``Regulations for the Safe Transport of Radioactive Material'' (TS-R-1), which is scheduled for... comments on the draft document to the IAEA. We are requesting input from the public to assist in developing....gov . SUPPLEMENTARY INFORMATION: I. Background The IAEA works with its Member States and multiple...

  4. 10 CFR 961.11 - Text of the contract.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... characteristic, of a specific or technical nature. It may, for example, document research, experimental... computer software documentation). Examples of technical data include research and engineering data... repository, to take title to the spent nuclear fuel or high-level radioactive waste involved as expeditiously...

  5. 10 CFR 961.11 - Text of the contract.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... characteristic, of a specific or technical nature. It may, for example, document research, experimental... computer software documentation). Examples of technical data include research and engineering data... repository, to take title to the spent nuclear fuel or high-level radioactive waste involved as expeditiously...

  6. Characterization of biocenoses in the storage reservoirs of liquid radioactive wastes of Mayak PA. Initial descriptive report.

    PubMed

    Pryakhin, E A; Mokrov, Yu G; Tryapitsina, G A; Ivanov, I A; Osipov, D I; Atamanyuk, N I; Deryabina, L V; Shaposhnikova, I A; Shishkina, E A; Obvintseva, N A; Egoreichenkov, E A; Styazhkina, E V; Osipova, O F; Mogilnikova, N I; Andreev, S S; Tarasov, O V; Geras'kin, S A; Trapeznikov, A V; Akleyev, A V

    2016-01-01

    As a result of operation of the Mayak Production Association (Mayak PA), Chelyabinsk Oblast, Russia, an enterprise for production and separation of weapon-grade plutonium in the Soviet Union, ecosystems of a number of water bodies have been radioactively contaminated. The article presents information about the current state of ecosystems of 6 special industrial storage reservoirs of liquid radioactive waste from Mayak PA: reservoirs R-3, R-4, R-9, R-10, R-11 and R-17. At present the excess of the radionuclide content in the water of the studied reservoirs and comparison reservoirs (Shershnyovskoye and Beloyarskoye reservoirs) is 9 orders of magnitude for (90)Sr and (137)Cs, and 6 orders of magnitude for alpha-emitting radionuclides. According to the level of radioactive contamination, the reservoirs of the Mayak PA could be arranged in the ascending order as follows: R-11, R-10, R-4, R-3, R-17 and R-9. In 2007-2012 research of the status of the biocenoses of these reservoirs in terms of phytoplankton, zooplankton, bacterioplankton, zoobenthos, aquatic plants, ichthyofauna, avifauna parameters was performed. The conducted studies revealed decrease in species diversity in reservoirs with the highest levels of radioactive and chemical contamination. This article is an initial descriptive report on the status of the biocenoses of radioactively contaminated reservoirs of the Mayak PA, and is the first article in a series of publications devoted to the studies of the reaction of biocenoses of the fresh-water reservoirs of the Mayak PA to a combination of natural and man-made factors, including chronic radiation exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Feasibility study of SiGHT: a novel ultra low background photosensor for low temperature operation

    DOE PAGES

    Wang, Y.; Fan, A.; Fiorillo, G.; ...

    2017-02-27

    Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive background of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors thatmore » can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. Lastly, the introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this article.« less

  8. Modeling and risk assessment of a 30-Year-old subsurface radioactive-liquid drain field

    NASA Astrophysics Data System (ADS)

    Dawson, Lon A.; Pohl, Phillip I.

    1997-11-01

    The contamination from a 30-year-old radioactive liquid drain field was assessed for movement in the subsurface and potential risks to humans. This assessment included determining field concentrations of cesium 137 (137Cs) and other inorganic contaminants and modeling of the flow and transport of the liquid waste that was sent to the drain field. The field investigation detected no contamination deeper than 15 feet (4.6 m) from the bottom of the drain field. Prediction of the water content of the vadose zone showed no saturated conditions for times greater than 10 years after the known infiltration. Sensitivity analysis of the modeling parameters showed the equilibrium sorption coefficient to be the most important factor in predicting the contaminant plumes. Calibration of modeling results with field data gave a 137Cs sorption coefficient that is within the range of values found in the literature. The risk assessment for the site showed that the contamination poses no significant risk to human health.

  9. Development of characterization protocol for mixed liquid radioactive waste classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakaria, Norasalwa, E-mail: norasalwa@nuclearmalaysia.gov.my; Wafa, Syed Asraf; Wo, Yii Mei

    2015-04-29

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this studymore » is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.« less

  10. Low-level radioactive waste management handbook series: Low-level radioactive waste management in medical and biomedical research institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was amore » result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release.« less

  11. Preliminary guidelines and recommendations for the development of material and process specifications for carbon fiber-reinforced liquid resin molded materials.

    DOT National Transportation Integrated Search

    2007-05-01

    This document recommends guidance and criteria for the development of material and process specifications and material acceptance documents for liquid resins and continuous carbon fiber reinforcement materials used in liquid molding processes to manu...

  12. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.

    PubMed

    Guerrero, A; Goñi, S; Allegro, V R

    2009-06-15

    The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 degrees C and 40 degrees C during a period of 180 days. The durability has been evaluated by the changes of the flexural strength of mortar, fabricated with this cement, immersed in a simulated radioactive liquid waste rich in sulfate (0.5M), chloride (0.5M) and sodium (1.5M) ions--catalogued like severely aggressive for the traditional Portland cement--and demineralised water, which was used as reference. The reaction mechanism of sulphate, chloride and sodium ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the chloride binding and formation of Friedel's salt was inhibited by the presence of sulphate. Sulphate ion reacts preferentially with the calcium aluminate hydrates forming non-expansive ettringite which precipitated inside the pores; the microstructure was refined and the mechanical properties enhanced. This process was faster and more marked at 40 degrees C.

  13. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0218] Comparative Environmental Evaluation of Alternatives... public comment the Draft Comparative Environmental Evaluation of Alternatives for Handling Low-Level.... Availability of Documents ADAMS Accession No. Document title ML12256A965 Draft Comparative Environmental...

  14. 40 CFR 141.25 - Analytical methods for radioactivity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... obtaining these documents can be obtained from the Safe Drinking Water Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, EPA West, 1301 Constitution Avenue, NW., Room 3334...

  15. 40 CFR 141.25 - Analytical methods for radioactivity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... obtaining these documents can be obtained from the Safe Drinking Water Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, EPA West, 1301 Constitution Avenue, NW., Room 3334...

  16. 40 CFR 141.25 - Analytical methods for radioactivity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... obtaining these documents can be obtained from the Safe Drinking Water Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, EPA West, 1301 Constitution Avenue, NW., Room 3334...

  17. 40 CFR 141.25 - Analytical methods for radioactivity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... obtaining these documents can be obtained from the Safe Drinking Water Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, EPA West, 1301 Constitution Avenue, NW., Room 3334...

  18. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  19. Nevada Test Site Waste Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  20. Review of nuclear pharmacy practice in hospitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawada, T.K.; Tubis, M.; Ebenkamp, T.

    1982-02-01

    An operational profile for nuclear pharmacy practice is presented, and the technical and professional role of nuclear pharmacists is reviewed. Key aspects of nuclear pharmacy practice in hospitals discussed are the basic facilities and equipment for the preparation, quality control, and distribution of radioactive drug products. Standards for receiving, storing, and processing radioactive material are described. The elements of a radiopharmaceutical quality assurance program, including the working procedures, documentation systems, data analysis, and specific control tests, are presented. Details of dose preparation and administration and systems of inventory control for radioactive products are outlined.

  1. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  2. Radioactive materials released from nuclear power plants. Annual report 1991, Volume 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1991 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1991 release data are summarized in tabular form. Data Covering specific radionuclides are summarized.

  3. Radioactive materials released from nuclear power plants. Annual report, 1982. Volume 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1982 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1982 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  4. Radioactive materials released from nuclear power plants. Volume 11: Annual report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1990 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1990 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  5. Radioactive materials released from nuclear power plants. Annual report 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.

  6. Radioactive materials released from nuclear power plants. Annual report 1981. Vol. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Benkovitz, C.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1981 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1981 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  7. Radioactive materials released from nuclear power plants. Annual report, 1983. Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1983 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1983 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  8. [Problems of safety regulation under radioactive waste management in Russia].

    PubMed

    Monastyrskaia, S G; Kochetkov, O A; Barchukov, V G; Kuznetsova, L I

    2012-01-01

    Analysis of the requirements of Federal Law N 190 "About radioactive waste management and incorporation of changes into some legislative acts of the Russian Federation", as well as normative-legislative documents actual and planned to be published related to provision of radiation protection of the workers and the public have been done. Problems of safety regulation raised due to different approaches of Rospotrebnadzor, FMBA of Russia, Rostekhnadzor and Minprirody with respect to classification and categorization of the radioactive wastes, disposal, exemption from regulatory control, etc. have been discussed in the paper. Proposals regarding improvement of the system of safety regulation under radioactive waste management and of cooperation of various regulatory bodies have been formulated.

  9. Radioactive waste disposal in the marine environment

    NASA Astrophysics Data System (ADS)

    Anderson, D. R.

    In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.

  10. Calcination process for radioactive wastes

    DOEpatents

    Kilian, Douglas C.

    1976-05-04

    The present invention provides a method for minimizing the volatilization of chlorides during solidification in a fluidized-bed calciner of liquids containing sodium, nitrate and chloride ions. Zirconium and fluoride are introduced into the liquid, and one-half mole of calcium nitrate is added per mole of fluoride present in the liquid mixture. The mixture is calcined in the fluidized-bed calciner at about 500.degree.C., producing a high bulk density calcine product containing the chloride, thus tying up the chloride in the solid product and minimizing chloride volatilization.

  11. SAMPLING SYSTEM

    DOEpatents

    Hannaford, B.A.; Rosenberg, R.; Segaser, C.L.; Terry, C.L.

    1961-01-17

    An apparatus is given for the batch sampling of radioactive liquids such as slurries from a system by remote control, while providing shielding for protection of operating personnel from the harmful effects of radiation.

  12. Multiple criteria approach to site selection of radioactive waste disposal facility in the Republic of Croatia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaller, A.; Skanata, D.

    1995-12-31

    Site selection approach to radioactive waste disposal facility, which is under way in Croatia, is presented in the paper. This approach is based on application of certain relevant terrestrial and technical criteria in the site selection process. Basic documentation used for this purpose are regional planning documents prepared by the Regional Planning Institute of Croatia. The basic result of research described in the paper is the proposal of several potential areas which are suitable for siting a radioactive waste repository. All relevant conclusions are based on both data groups -- generic and on-field experienced (measured). Out of a dozen potentialmore » areas, four have been chosen as representative by the authors. The presented comparative analysis was made by means of the VISA II computer code, developed by the V. Belton and SPV Software Products. The code was donated to the APO by the IAEA. The main objective of the paper is to initiate and facilitate further discussions on possible ways of evaluation and comparison of potential areas for sitting of radioactive waste repository in this country, as well as to provide additional contributions to the current site selection process in the Republic of Croatia.« less

  13. The nitrate to ammonia and ceramic (NAC) process for the denitration and immobilization of low-level radioactive liquid waste (LLW)

    NASA Astrophysics Data System (ADS)

    Muguercia, Ivan

    Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings.

  14. Repository of not readily available documents for project W-320

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.C.

    1997-04-18

    The purpose of this document is to provide a readily available source of the technical reports needed for the development of the safety documentation provided for the waste retrieval sluicing system (WRSS), designed to remove the radioactive and chemical sludge from tank 241-C-106, and transport that material to double-shell tank 241-AY-102 via a new, temporary, shielded, encased transfer line.

  15. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are 13 physics experiments/demonstrations applicable to introductory physics courses. Activities include: improved current balance, division circuits, liquid pressure, convection, siphons, oscillators and modulation, electrical resistance, soap films, Helmholtz coils, radioactive decay, and springs. (SL)

  16. Optical Design Considerations for Efficient Light Collection from Liquid Scintillation Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Douglas, Matthew; Erchinger, Jennifer L.

    2015-01-01

    Liquid scintillation counters measure charged particle-emitting radioactive isotopes and are used for environmental studies, nuclear chemistry, and life science. Alpha and beta emissions arising from the material under study interact with the scintillation cocktail to produce light. The prototypical liquid scintillation counter employs low-level photon-counting detectors to measure the arrival of the scintillation light produced as a result of the dissolved material under study interacting with the scintillation cocktail. For reliable operation the counting instrument must convey the scintillation light to the detectors efficiently and predictably. Current best practices employ the use of two or more detectors for coincidence processingmore » to discriminate true scintillation events from background events due to instrumental effects such as photomultiplier tube dark rates, tube flashing, or other light emission not generated in the scintillation cocktail vial. In low background liquid scintillation counters additional attention is paid to shielding the scintillation cocktail from naturally occurring radioactive material (NORM) present in the laboratory and within the instruments construction materials. Low background design is generally at odds with optimal light collection. This study presents the evolution of a light collection design for liquid scintillation counting in a low background shield. The basic approach to achieve both good light collection and a low background measurement is described. The baseline signals arising from the scintillation vial are modeled and methods to efficiently collect scintillation light are presented as part of the development of a customized low-background, high sensitivity liquid scintillation counting system.« less

  17. Low-Level Waste Regulation: Putting Principles Into Practice - 13297 - The Richard S. Hodes, M.D., Honor Lecture Award

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, James E.

    2013-07-01

    In carrying out its mission to ensure the safe use of radioactive materials for beneficial civilian purposes while protecting people and the environment, the U.S. Nuclear Regulatory Commission (NRC) adheres to its Principles of Good Regulation. The Principles-Independence, Openness, Efficiency, Clarity, and Reliability-apply to the agency as a whole in its decision-making and to the individual conduct of NRC employees. This paper describes the application of the Principles in a real-life staff activity, a guidance document used in the NRC's low-level radioactive waste (LLW) program, the Concentration Averaging and Encapsulation Branch Technical Position (CA BTP). The staff's process to revisemore » the document, as well as the final content of the document, were influenced by following the Principles. For example, consistent with the Openness Principle, the staff conducted a number of outreach activities and received many comments on three drafts of the document. Stakeholder comments affected the final staff positions in some cases. The revised CA BTP, once implemented, is expected to improve management and disposal of LLW in the United States. Its positions have an improved nexus to health and safety; are more performance-based than previously, thus providing licensees with options for how they achieve the required outcome of protecting an inadvertent human intruder into a disposal facility; and provide for disposal of more sealed radioactive sources, which are a potential threat to national security. (author)« less

  18. METHOD OF SEPARATING FROTHS FROM LIQUIDS

    DOEpatents

    Monet, G.P.

    1958-01-21

    A method for separating solids and precipitates from liquids is described. The method is particularly adapted for and valuable in processing highly radioactive solutions. It consists in essence, in employing the principles of froth flotation to effect the separation of approximately 99% of the solids present. An apparatus, consisting of a system of pipes, valves and vessels, for carrying out the process of this patent is also described therein.

  19. 41 CFR 109-40.5005 - Description of property for shipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...

  20. 41 CFR 109-40.5005 - Description of property for shipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...

  1. 41 CFR 109-40.5005 - Description of property for shipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...

  2. 41 CFR 109-40.5005 - Description of property for shipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...

  3. 41 CFR 109-40.5005 - Description of property for shipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 40-TRANSPORTATION AND TRAFFIC MANAGEMENT 40.50-Bills of Lading... explosives, radioactive materials, flammable liquids, flammable solids, oxidizers, or poison A or poison B...

  4. Transdiaphragmatic transport of tracer albumin from peritoneal to pleural liquid measured in rats.

    PubMed

    Lai-Fook, Stephen J; Houtz, Pamela K; Jones, Philip D

    2005-12-01

    In conscious Wistar-Kyoto rats, we studied the uptake of radioactive tracer (125)I-albumin into the pleural space and circulation after intraperitoneal (IP) injections with 1 or 5 ml of Ringer solution (3 g/dl albumin). Postmortem, we sampled pleural liquid, peritoneal liquid, and blood plasma 2-48 h after IP injection and measured their radioactivity and protein concentration. Tracer concentration was greater in pleural liquid than in plasma approximately 3 h after injection with both IP injection volumes. This behavior indicated transport of tracer through the diaphragm into the pleural space. A dynamic analysis of the tracer uptake with 5-ml IP injections showed that at least 50% of the total pleural flow was via the diaphragm. A similar estimate was derived from an analysis of total protein concentrations. Both estimates were based on restricted pleural capillary filtration and unrestricted transdiaphragmatic transport. The 5-ml IP injections did not change plasma protein concentration but increased pleural and peritoneal protein concentrations from control values by 22 and 30%, respectively. These changes were consistent with a small (approximately 8%) increase in capillary filtration and a small (approximately 20%) reduction in transdiaphragmatic flow from control values, consistent with the small (3%) decrease in hydration measured in diaphragm muscle. Thus the pleural uptake of tracer via the diaphragm with the IP injections occurred by the near-normal transport of liquid and protein.

  5. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  6. Recent Improvement Of The Institutional Radioactive Waste Management System In Slovenia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sueiae, S.; Fabjan, M.; Hrastar, U.

    2008-07-01

    The task of managing institutional radioactive waste was assigned to the Slovenian National Agency for Radwaste Management by the Governmental Decree of May 1999. This task ranges from the collection of waste at users' premises to the storage in the Central Storage Facility in (CSF) and afterwards to the planned Low and Intermediate Level Waste (LILW) repository. By this Decree ARAO also became the operator of the CSF. The CSF has been in operation since 1986. Recent improvements of the institutional radioactive waste management system in Slovenia are presented in this paper. ARAO has been working on the reestablishment ofmore » institutional radioactive waste management since 1999. The Agency has managed to prepare the most important documents and carry out the basic activities required by the legislation to assure a safe and environmentally acceptable management of the institutional radioactive waste. With the aim to achieve a better organized operational system, ARAO took the advantage of the European Union Transition Facility (EU TF) financing support and applied for the project named 'Improvement of the management of institutional radioactive waste in Slovenia via the design and implementation of an Information Business System'. Through a public invitation for tenders one of the Slovenian largest software company gained the contract. Two international radwaste experts from Belgium were part of their project team. The optimization of the operational system has been carried out in 2007. The project was executed in ten months and it was divided into two phases. The first phase of the project was related with the detection of weaknesses and implementation of the necessary improvements in the current ARAO operational system. With the evaluation of the existing system, possible improvements were identified. In the second phase of the project the software system Information Business System (IBS) was developed and implemented by the group of IT experts. As a software development life-cycle methodology the Waterfall methodology was used. The reason for choosing this methodology lied in its simple approach: analyze the problem, design the solution, implement the code, test the code, integrate and deploy. ARAO's institutional radioactive waste management process was improved in the way that it is more efficient, better organized, allowing traceability and availability of all documents and operational procedures within the field of institutional radioactive waste. The tailored made IBS system links all activities of the institutional radioactive waste management process: collection, transportation, takeover, acceptance, storing, treatment, radiation protection, etc. into one management system. All existing and newly designed evidences, operational procedures and other documents can be searched and viewed via secured Internet access from different locations. (authors)« less

  7. NONDESTRUCTIVE QUALITY CONTROL: SOME SPECIAL METHODS OF IRRADIATION TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Klis, T.

    1961-06-10

    S>Various methods, using open radioactive sources are discussed. In one method, oil is used containing Pd/sup 109/ which is adsorbed by Mg compounds with which the object to be tested is covered after it has been enveloped in a photographic film. Another method consists of coking the material in the radioactive oil and then scanning it with a suitable detector. A third method, applied especially to porous materials, uses pressure to promote the penetration of the radioactive oil into the cracks and fissures. The filtered particle technique is also used for detection of cracks or cavities in porous materials, suchmore » as ceramics, cement, graphite pressed powdered metals, and sintered carbides. In this method, radioactive liquids are used along with fluid fluorescent substances. Finally, a method is mentioned in which radioactive powder is made to adhere to the surface of the investigated objects by means of an electrostatic charge. This method is used for quality control of china, glass, email, and electric insulation material. (OID)« less

  8. Bolt failure detection

    DOEpatents

    Sutton, Jr., Harry G.

    1984-01-01

    Bolts of a liquid metal fast breeder reactor, each bolt provided with an internal chamber filled with a specific, unique radioactive tag gas. Detection of the tag gas is indicative of a crack in an identifiable bolt.

  9. ISDP salt batch #2 supernate qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Nash, C. A.; Fink, S. D.

    2009-01-05

    This report covers the laboratory testing and analyses of the second Integrated Salt Disposition Project (ISDP) salt supernate samples, performed in support of initial radioactive operations of Actinide Removal Process (ARP) and Modular Caustic-Side Solvent Extraction Unit (MCU). Major goals of this work include characterizing Tank 22H supernate, characterizing Tank 41H supernate, verifying actinide and strontium adsorption with a standard laboratory-scale test using monosodium titanate (MST) and filtration, and checking cesium mass transfer behavior for the MCU solvent performance when contacted with the liquid produced from MST contact. This study also includes characterization of a post-blend Tank 49H sample asmore » part of the Nuclear Criticality Safety Evaluation (NCSE). This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP). In addition, a sampling plan will be written to guide analytical future work. Safety and environmental aspects of the work were documented in a Hazard Assessment Package.« less

  10. The 144Ce source for SOX

    NASA Astrophysics Data System (ADS)

    Durero, M.; Vivier, M.; Agostini, M.; Altenmüller, K.; Appel, S.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonqueres, N.; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Lehnert, B.; Link, J.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Scola, L.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Veyssiére, C.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    The SOX (Short distance neutrino Oscillations with BoreXino) project aims at testing the light sterile neutrino hypothesis. To do so, two artificials sources of antineutrinos and neutrinos respectively will be consecutively deployed at the Laboratori Nazionali del Gran Sasso (LNGS) in close vicinity to Borexino, a large liquid scintillator detector. This document reports on the source production and transportation. The source should exhibit a long lifetime and a high decay energy, a requirement fullfilled by the 144Ce-144Pr pair at secular equilibrium. It will be produced at FSUE “Mayak” PA using spent nuclear fuel. It will then be shielded and packed according to international regulation and shipped to LNGS across Europe. Knowledge of the Cerium antineutrino generator (CeANG) parameters is crucial for SOX as it can strongly impact the experiment sensitivity. Several apparatuses are being used or designed to characterize CeANG activity, radioactive emission and content. An overview of the measurements performed so far is presented here.

  11. Investigation of three-dimensional localisation of radioactive sources using a fast organic liquid scintillator detector

    NASA Astrophysics Data System (ADS)

    Gamage, K. A. A.; Joyce, M. J.; Taylor, G. C.

    2013-04-01

    In this paper we discuss the possibility of locating radioactive sources in space using a scanning-based method, relative to the three-dimensional location of the detector. The scanning system comprises an organic liquid scintillator detector, a tungsten collimator and an adjustable equatorial mount. The detector output is connected to a bespoke fast digitiser (Hybrid Instruments Ltd., UK) which streams digital samples to a personal computer. A radioactive source has been attached to a vertical wall and the data have been collected in two stages. In the first case, the scanning system was placed a couple of metres away from the wall and in the second case it moved few centimetres from the previous location, parallel to the wall. In each case data were collected from a grid of measurement points (set of azimuth angles for set of elevation angles) which covered the source on the wall. The discrimination of fast neutrons and gamma rays, detected by the organic liquid scintillator detector, is carried out on the basis of pulse gradient analysis. Images are then produced in terms of the angular distribution of events for total counts, gamma rays and neutrons for both cases. The three-dimensional location of the neutron source can be obtained by considering the relative separation of the centres of the corresponding images of angular distribution of events. The measurements have been made at the National Physical Laboratory, Teddington, Middlesex, UK.

  12. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. B. Campbell

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are locatedmore » in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are inactive or abandoned. However, some leachfields may still receive liquids from runoff during storm events. Results from the 2000-2001 site characterization activities conducted by International Technology (IT) Corporation, Las Vegas Office are documented in the Corrective Action Investigation Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. This document is located in Appendix A of the Corrective Action Decision Document for CAU 262. Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. (DOE/NV, 2001).« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  14. Behavior of radioactive iodine and technetium in the spray calcination of high-level waste

    NASA Astrophysics Data System (ADS)

    Knox, C. A.; Farnsworth, R. K.

    1981-08-01

    The Remote Laboratory-Scale Waste Treatment Facility (RLSWTF) was designed and built as a part of the High-Level Waste Immobilization Program (now the High-Level Waste Process Development Program) at the Pacific Northwest Laboratory. In facility, installed in a radiochemical cell, is described in which installed in a radiochemical cell is described in which small volumes of radioactive liquid wastes can be solidified, the process off gas can be analyzed, and the methods for decontaminating this off gas can be tested. During the spray calcination of commercial high-level liquid waste spiked with Tc-99 and I-131 and 31 wt% loss of I-131 past the sintered-metal filters. These filters and venturi scrubber were very efficient in removing particulates and Tc-99 from the the off-gas stream. Liquid scrubbers were not efficient in removing I-131 as 25% of the total lost went to the building off-gas system. Therefore, solid adsorbents are needed to remove iodine. For all future operations where iodine is present, a silver zeolite adsorber is to be used.

  15. Production of radioactive isotopes through cosmic muon spallation in KamLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, S.; Furuno, K.; Gando, Y.

    2010-02-15

    Radioactive isotopes produced through cosmic muon spallation are a background for rare-event detection in nu detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka liquid-scintillator antineutrino detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillators, and for checking estimates from current simulations based upon MUSIC, FLUKA, and GEANT4. Using the time correlation between detected muons and neutron captures, themore » neutron production yield in the KamLAND liquid scintillator is measured to be Y{sub n}=(2.8+-0.3)x10{sup -4} mu{sup -1} g{sup -1} cm{sup 2}. For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.« less

  16. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KamLAND Collaboration; Abe, S.; Enomoto, S.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutronmore » captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.« less

  17. Radioactive materials released from nuclear power plants. Volume 13, Annual report 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Lucadamo, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1992 have been compiled and reported. The summary data for the years 1973 through 1991 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1992 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  18. Radioactive materials released from nuclear power plants. Annual report 1989: Volume 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Congemi, J.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1989 have been compiled and reported. The summary data for the years 1970 through 1988 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1989 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  19. Radioactive materials released from nuclear power plants: Annual report, 1993. Volume 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Doty, K.; Lucadamo, K.

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1993 have been compiled and reported. The summary data for the years 1974 through 1992 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1993 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  20. A Collison nebulizer as an ion source for mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.

    2014-12-01

    It is proposed to use a Collison nebulizer as a source of ionization for mass-spectrometry with ionization at atmospheric pressure. This source does not require an electric voltage, radioactive sources, heaters, or liquid pumps. It is shown that the number of ions produced by the Collison nebulizer is ten times greater than the quantity of ions produced by the 63Ni radioactive source and three to four times greater than the number of ions produced with sonic ionization devices.

  1. A Programmable Liquid Collimator for Both Coded Aperture Adaptive Imaging and Multiplexed Compton Scatter Tomography

    DTIC Science & Technology

    2012-03-01

    environments where a source is either weak or shielded. A vehicle of this type could survey large areas after a nuclear attack or a nuclear reactor accident...to prevent its detection by γ-rays. The best application for unmanned vehicles is the detection of radioactive material after a nuclear reactor ...accident or a nuclear weapon detonation [70]. Whether by a nuclear detonation or a nuclear reactor accident, highly radioactive substances could be dis

  2. Cigarette smoke radioactivity and lung cancer risk.

    PubMed

    Karagueuzian, Hrayr S; White, Celia; Sayre, James; Norman, Amos

    2012-01-01

    To determine the tobacco industry's policy and action with respect to radioactive polonium 210 ((210)Po) in cigarette smoke and to assess the long-term risk of lung cancer caused by alpha particle deposits in the lungs of regular smokers. Analysis of major tobacco industries' internal secret documents on cigarette radioactivity made available online by the Master Settlement Agreement in 1998. The documents show that the industry was well aware of the presence of a radioactive substance in tobacco as early as 1959. Furthermore, the industry was not only cognizant of the potential "cancerous growth" in the lungs of regular smokers but also did quantitative radiobiological calculations to estimate the long-term (25 years) lung radiation absorption dose (rad) of ionizing alpha particles emitted from the cigarette smoke. Our own calculations of lung rad of alpha particles match closely the rad estimated by the industry. According to the Environmental Protection Agency, the industry's and our estimate of long-term lung rad of alpha particles causes 120-138 lung cancer deaths per year per 1,000 regular smokers. Acid wash was discovered in 1980 to be highly effectively in removing (210)Po from the tobacco leaves; however, the industry avoided its use for concerns that acid media would ionize nicotine converting it into a poorly absorbable form into the brain of smokers thus depriving them of the much sought after instant "nicotine kick" sensation. The evidence of lung cancer risk caused by cigarette smoke radioactivity is compelling enough to warrant its removal.

  3. Air and smear sample calculational tool for Fluor Hanford Radiological control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAUMANN, B.L.

    2003-07-11

    A spreadsheet calculation tool was developed to automate the calculations performed for determining the concentration of airborne radioactivity and smear counting as outlined in HNF-13536, Section 5.2.7, ''Analyzing Air and Smear Samples''. This document reports on the design and testing of the calculation tool. Radiological Control Technicians (RCTs) will save time and reduce hand written and calculation errors by using an electronic form for documenting and calculating work place air samples. Current expectations are RCTs will perform an air sample and collect the filter or perform a smear for surface contamination. RCTs will then survey the filter for gross alphamore » and beta/gamma radioactivity and with the gross counts utilize either hand calculation method or a calculator to determine activity on the filter. The electronic form will allow the RCT with a few key strokes to document the individual's name, payroll, gross counts, instrument identifiers; produce an error free record. This productivity gain is realized by the enhanced ability to perform mathematical calculations electronically (reducing errors) and at the same time, documenting the air sample.« less

  4. Tritium plume dynamics in the shallow unsaturated zone in an arid environment

    USGS Publications Warehouse

    Maples, S.R.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Pohll, G.; Michel, R.L.

    2014-01-01

    The spatiotemporal variability of a tritium plume in the shallow unsaturated zone and the mechanisms controlling its transport were evaluated during a 10-yr study. Plume movement was minimal and its mass declined by 68%. Upward-directed diffusive-vapor tritium fluxes and radioactive decay accounted for most of the observed plume-mass declines.Effective isolation of tritium (3H) and other contaminants at waste-burial facilities requires improved understanding of transport processes and pathways. Previous studies documented an anomalously widespread (i.e., theoretically unexpected) distribution of 3H (>400 m from burial trenches) in a dry, sub-root-zone gravelly layer (1–2-m depth) adjacent to a low-level radioactive waste (LLRW) burial facility in the Amargosa Desert, Nevada, that closed in 1992. The objectives of this study were to: (i) characterize long-term, spatiotemporal variability of 3H plumes; and (ii) quantify the processes controlling 3H behavior in the sub-root-zone gravelly layer beneath native vegetation adjacent to the facility. Geostatistical methods, spatial moment analyses, and mass flux calculations were applied to a spatiotemporally comprehensive, 10-yr data set (2001–2011). Results showed minimal bulk-plume advancement during the study period and limited Fickian spreading of mass. Observed spreading rates were generally consistent with theoretical vapor-phase dispersion. The plume mass diminished more rapidly than would be expected from radioactive decay alone, indicating net efflux from the plume. Estimates of upward 3H efflux via diffusive-vapor movement were >10× greater than by dispersive-vapor or total-liquid movement. Total vertical fluxes were >20× greater than lateral diffusive-vapor fluxes, highlighting the importance of upward migration toward the land surface. Mass-balance calculations showed that radioactive decay and upward diffusive-vapor fluxes contributed the majority of plume loss. Results indicate that plume losses substantially exceeded any continuing 3H contribution to the plume from the LLRW facility during 2001 to 2011 and suggest that the widespread 3H distribution resulted from transport before 2001.

  5. Workplan/RCRA Facility Investigation/Remedial Investigation Report for the Old Radioactive Waste Burial Ground 643-E, S01-S22 - Volume I - Text and Volume II - Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, K.R.

    This document presents the assessment of environmental impacts resulting from releases of hazardous substances from the facilities in the Old Radioactive Waste Burial Ground 643-E, including Solvent Tanks 650-01E to 650-22E, also referred to as Solvent Tanks at the Savannah River Site, Aiken, South Carolina.

  6. Environmental Releases for Calendar Year 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DYEKMAN, D L

    2002-08-01

    This report fulfills the annual reporting requirements of US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program. The report contains tabular data summaries on air emissions and liquid effluents released to the environment as well as nonroutine releases during calendar year (CY) 2001. These releases, bearing radioactive and hazardous substances, were from Bechtel Hanford, Inc. (BHI), CH2M HILL Hanford Group, Inc. (CHG), and Fluor Hanford (FH) managed facilities and activities. These data were obtained from direct sampling and analysis and from estimates based upon approved release factors. This report further serves as a supplemental resource to the Hanfordmore » Site Environmental Report (HSER PNNL-13910), published by the Pacific Northwest National Laboratory. HSER includes a yearly accounting of the impacts on the surrounding populace and environment from major activities at the Hanford Site. HSER also summarizes the regulatory compliance status of the Hanford Site. Tables ES-1 through ES-5 display comprehensive data summaries of CY2001 air emission and liquid effluent releases. The data displayed in these tables compiles the following: Radionuclide air emissions; Nonradioactive air emissions; Radionuclides in liquid effluents discharged to ground; Total volumes and flow rates of radioactive liquid effluents discharged to ground; and Radionuclides discharged to the Columbia River.« less

  7. Environmental surveillance at Los Alamos during 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This report describes environmental monitoring activities at Los Alamos National Laboratory for 1994. Data were collected to assess external penetrating radiation, airborne emissions, liquid effluents, radioactivity of environmental materials and food stuffs, and environmental compliance.

  8. Maintenance Free Fluidic Transfer and Mixing Devices for Highly Radioactive Applications - Design, Development, Deployment and Operational Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, C.; Richardson, J. E.; Fallows, P.

    2006-07-01

    Power Fluidics is the generic name for a range of maintenance-free fluid transfer and mixing devices, capable of handling a wide range of highly radioactive fluids, jointly developed by British Nuclear Group, its US-based subsidiary BNG America, and AEA Technology. Power Fluidic devices include Reverse Flow Diverters (RFDs), Vacuum Operated Slug Lifts (VOSLs), and Air Lifts, all of which have an excellent proven record for pumping radioactive liquids and sludges. Variants of the RFD, termed Pulse Jet Mixers (PJMs) are used to agitate and mix tank contents, where maintenance-free equipment is desirable, and where a high degree of homogenization ismore » necessary. The equipment is designed around the common principle of using compressed air to provide the motive force to transfer liquids and sludges. These devices have no moving parts in contact with the radioactive medium and therefore require no maintenance in radioactive areas of processing plants. Once commissioned, Power Fluidic equipment has been demonstrated to operate for the life of the facility. Over 800 fluidic devices continue to operate safely and reliably in British Nuclear Group's nuclear facilities at the Sellafield site in the United Kingdom, and some of these have done so for almost 40 years. More than 400 devices are being supplied by AEA Technology and BNG America for the Waste Treatment Plant (WTP) at the Hanford Site in southeastern Washington State, USA. This paper discusses: - Principles of operation of fluidic pumps and mixers. - Selection criteria and design of fluidic pumps and mixers. - Operational experience of fluidic pumps and mixers in the United Kingdom. - Applications of fluidic pumps and mixers at the U.S. Department of Energy nuclear sites. (authors)« less

  9. ONDRAF/NIRAS and high-level radioactive waste management in Belgium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decamps, F.

    1993-12-31

    The National Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, is a public body with legal personality in charge of managing all radioactive waste on Belgian territory, regardless of its origin and source. It is also entrusted with tasks related to the management of enriched fissile materials, plutonium containing materials and used or unused nuclear fuel, and with certain aspects of the dismantling of closed down nuclear facilities. High-level radioactive waste management comprises essentially and for the time being the storage of high-level liquid waste produced by the former EUROCHEMIC reprocessing plant and of high-level and very high-level heatmore » producing waste resulting from the reprocessing in France of Belgian spent fuel, as well as research and development (R and D) with regard to geological disposal in clay of this waste type.« less

  10. Seasonal changes in mRNA encoding for cell stress markers in the oyster Crassostrea gigas exposed to radioactive discharges in their natural environment.

    PubMed

    Farcy, Emilie; Voiseux, Claire; Lebel, Jean-Marc; Fievet, Bruno

    2007-03-15

    The North Cotentin area (Normandy, France) hosts several nuclear facilities among which the AREVA reprocessing plant of La Hague is responsible for controlled discharges of liquid radioactive wastes into the marine environment. The resulting increase in radioactivity is very small compared to natural radioactivity. However, concerns about environment protection prompted the scientific community to focus on the effects of the chronic exposure to low concentrations of radionuclides in non-human biota. This study contributes to the evaluation of the possible impact of radioactive discharges on the oyster Crassostrea gigas in the field. Real-time polymerase chain reaction was used to quantify the expression levels of genes involved in cell stress in the oyster. They included members of the heat shock protein family (Hsp70, Hsc72, Hsp90), superoxide dismutase (SOD) and metallothionein (MT). Times series measurements were built from periodic samplings in the natural environment in order to characterize the natural variability as well as possible seasonal fluctuations. The genes studied exhibited a general seasonal expression pattern with a peak value in winter. The data inversely correlated with seawater temperature and the nature of the relationship between gene expression and temperature is discussed. In parallel, oysters were collected in four locations on the French shores, exposed or not to radioactive liquid wastes from the nuclear facilities hosted in the North Cotentin. The comparison of data obtained in the reference location on the Atlantic coast (not exposed) and data from oysters of the English Channel (exposed) gave no evidence for any statistical difference. However, because of the complexity of the natural environment, we cannot rule out the possibility that other parameters may have masked the impact of radioactive discharges. This dense set of data is a basis for the use of the expression levels of those genes as biomarkers to address the question of the possible effects of chronic exposure of the oyster to low concentrations of radionuclides in controlled laboratory experimental conditions.

  11. Treatment of radioactive liquid waste (Co-60) by sorption on Zeolite Na-A prepared from Iraqi kaolin.

    PubMed

    Mustafa, Yasmen A; Zaiter, Maysoon J

    2011-11-30

    Iraqi synthetic zeolite type Na-A has been suggested as ion exchange material to treat cobalt-60 in radioactive liquid waste which came from neutron activation for corrosion products. Batch experiments were conducted to find out the equilibrium isotherm for source sample. The equilibrium isotherm for radioactive cobalt in the source sample showed unfavorable type, while the equilibrium isotherm for the total cobalt (the radioactive and nonradioactive cobalt) in the source sample showed a favorable type. The ability of Na-A zeolite to remove cobalt from wastewater was checked for high cobalt concentration (822 mg/L) in addition to low cobalt concentration in the source sample (0.093 mg/L). A good fitting for the experimental data with Langmuir equilibrium model was observed. Langmuir constant qm which is related to monolayer adsorption capacity for low and high cobalt concentration was determined to be 0.021 and 140 mg/g(zeolite). The effects of important design variables on the zeolite column performance were studied these include initial concentration, flow rate, and bed depth. The experimental results have shown that high sorption capacity can be obtained at high influent concentration, low flow rate, and high bed depth. Higher column performance was obtained at higher bed depth. Thomas model was employed to predict the breakthrough carves for the above variables. A good fitting was observed with correlation coefficients between 0.915 and 0.985. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Liquid discharges from patients undergoing 131I treatments.

    PubMed

    Barquero, R; Basurto, F; Nuñez, C; Esteban, R

    2008-10-01

    This work discusses the production and management of liquid radioactive wastes as excretas from patients undergoing therapy procedures with 131I radiopharmaceuticals in Spain. The activity in the sewage has been estimated with and without waste radioactive decay tanks. Two common therapy procedures have been considered, the thyroid cancer (4.14 GBq administered per treatment), and the hyperthyroidism (414 MBq administered per treatment). The calculations were based on measurements of external exposure around the 244 hyperthyroidism patients and 23 thyroid cancer patients. The estimated direct activity discharged to the sewage for two thyroid carcinomas and three hyperthyroidisms was 14.57 GBq and 1.27 GBq, respectively, per week; the annual doses received by the most exposed individual (sewage worker) were 164 microSv and 13 microSv, respectively. General equations to calculate the activity as a function of the number of patient treated each week were also obtained.

  13. Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.

    PubMed

    Utkin, S S; Linge, I I

    2016-11-22

    The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m 3 of liquid radioactive waste with a total activity of some 5 × 10 15 Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Laboratory-scale integrated ARP filter test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    2016-03-01

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. There is a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. This task attempted to simulate the entire ARP process, including multiple batches (5), washing, chemical cleaning, andmore » blending the feed with heels and recycle streams. The objective of the tests was to determine whether one of these processes is causing excessive fouling of the crossflow or secondary filter. The authors conducted the tests with feed solutions containing 6.6 M sodium Salt Batch 6 simulant supernate with no MST.« less

  15. Boron removal in radioactive liquid waste by forward osmosis membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron.more » No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)« less

  16. Concentration gradient of oxalate from cortex to papilla in rat kidney.

    PubMed

    Nakatani, Tatsuya; Ishii, Keiichi; Sugimoto, Toshikado; Kamikawa, Sadanori; Yamamoto, Keisuke; Yoneda, Yukio; Kanazawa, Toshinao; Kishimoto, Taketoshi

    2003-02-01

    The kidney eliminates the major fraction of plasma oxalate. It is well known that oxalate is freely filtered by glomeruli and secreted by the proximal tubules. However, the renal handling of oxalate in distal nephrons, which is considered as playing an important role in stone formation, remains obscure. At 15-180 min after intravenous injection of 14C-oxalate to rats, the intrarenal localization of radioactivity was quantitatively measured by the radioluminographic method using a bioimaging analyzer. Tissue radioactivity was compared with plasma, and urinary radioactivities were measured by a liquid scintillation counter. The control study was conducted with 14C-inulin. The radioactivity of 14C-oxalate in the papilla was 10 times greater than in the cortex and eight times greater than in the medulla 180 min after injection when almost no radioactivity was present in the urine. In contrast, the radioactivity of 14C-inulin was nine times less in the papilla than in the cortex at the same time. Oxalate remains in the renal papilla for an extended period. This accumulation of oxalate may be attributed to calcium oxalate crystal fixation along the deep nephron which is considered to be the first step of stone formation.

  17. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions.

    PubMed

    Yang, Dongjiang; Liu, Hongwei; Liu, Long; Sarina, Sarina; Zheng, Zhanfeng; Zhu, Huaiyong

    2013-11-21

    Iodine radioisotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials. The (129)I(-) anion is one of the more mobile radioactive species due to a long half-life, and it is a great challenge to design long-term management solutions for such radioactive waste. In this study, a new adsorbent structure with the potential to efficiently remove radioactive iodine anions (I(-)) from water is devised: silver oxide (Ag2O) nanocrystals firmly anchored on the surface of titanate nanotubes and nanofibers via coherent interfaces between Ag2O and titanate phases. I(-) anions in fluids can easily access the Ag2O nanocrystals and be efficiently trapped by forming AgI precipitate that firmly attaches to the adsorbent. Due to their one-dimensional morphology, the new adsorbents can be readily dispersed in liquids and easily separated after purification; and the adsorption beds loaded with the adsorbents can permit high flux. This significantly enhances the adsorption efficiency and reduces the separation costs. The proposed structure reveals a new direction in developing efficient adsorbents for the removal of radioactive anions from wastewater.

  18. Guide to radioactive waste management literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houser, B.L.; Holoway, C.F.; Madewell, D.G.

    Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principallymore » at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.« less

  19. Title list of documents made publicly available. Volume 17, No. 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  20. Title list of documents made publicly available, September 1--30, 1994. Volume 16, No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-11-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  1. Title list of documents made publicly available, November 1--30, 1994. Volume 16, No. 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  2. Hanford Soil Inventory Model (SIM-v2) Calculated Radionuclide Inventory of Direct Liquid Discharges to Soil in the Hanford Site's 200 Areas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, William E.; Zaher, U.; Agnew, S.

    The Hanford soil inventory model (SIM) provides the basic radionuclide and chemical soil inventories from historical liquid discharges to about 400 sites at the Hanford Site. Although liquid discharge inventory for chemicals is part of the SIM implementation, only radionuclide inventory is discussed here since the focus of this ECF is on providing radionuclides inputs for the composite analysis (CA) per DOE Order 435.1, Radioactive Waste Management, requirements. Furthermore, discharged inventories are only estimated for the soluble portions of the liquid discharges to waste sites/waste management areas located on the 200 Area of the Hanford Site (Central Plateau).

  3. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale.

    PubMed

    Nelson, Andrew W; Eitrheim, Eric S; Knight, Andrew W; May, Dustin; Mehrhoff, Marinea A; Shannon, Robert; Litman, Robert; Burnett, William C; Forbes, Tori Z; Schultz, Michael K

    2015-07-01

    The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of "produced fluids" generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element-radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides.

  4. Existing data on the 216-Z liquid waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, K.W.

    1981-05-01

    During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing datamore » together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.« less

  5. Behavior of radionuclides in sanitary landfills.

    PubMed

    Chang, K C; Chian, E S; Pohland, F G; Cross, W H; Roland, L; Kahn, B

    1984-01-01

    his study was undertaken to evaluate the possibility of disposing low-level radioactive waste in sanitary landfills with leachate containment to prevent environmental releases. To meet this objective, two simulated landfills, each 200 l. in volume and containing 55 kg of municipal refuse, were operated in the laboratory with simulated rainfall additions for a 9-month period to observe the extent to which radio-cobalt, -cesium, -strontium and tritium were leached into the liquid phase. One of the units was operated with leachate recycle, the other as a single pass control. Liquid samples were analyzed weekly for 3H, 58Co, 85Sr and 134Cs tracers. Weekly analyses were also performed for approximately 30 parameters to define the degree of stabilization of the waste. Major parameters included BOD, COD, pH and concentrations of specific organics, metals and gases. Concentrations of stable cobalt, strontium and cesium were also measured periodically. Soluble radioactivity levels in both systems were reduced by factors of 50 for 58Co, 5 for 85Sr and 7 for 134Cs, taking radioactive decay and dilution into account. Some radionuclide removal from the liquid phase was associated with major chemical changes in the landfills that occurred within 80 days for the control system and within 130 days for the recycle unit. Observed acid, sulfide, and CO2 concentrations suggested mechanisms for removing some of the radionuclides from leachate. Detection of 3H in the off-gas indicated that less than 1% of tritiated waste became airborne. The waste in the leachate recycle unit was more completely stabilized than in the control unit.

  6. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penzin, R.A.; Sarychev, G.A.

    This paper presents the results of research activities aimed at creation of a principally new LRW distilling treatment method. The new process is based on the instantaneous evaporation method widely used in distillation units. The main difference of the proposed process is that the vapor condensation is conducted without using heat exchangers in practically ideal mode by way of direct contacting in a vapor-liquid system. This process is conducted in a specially designed ejector unit in supersonic mode. Further recuperation of excess heat of vaporization is carried out in a standard heat exchanger. Such an arrangement of the process, togethermore » with use of the barometric height principle, allows to carry out LRW evaporation under low temperatures, which enables to use excess heat from NPS for heating initial LRW. Thermal calculations and model experiments have revealed that, in this case, the expenditure of energy for LRW treatment by distilling will not exceed 3 kilowatt-hour/m{sup 3}, which is comparable with the reverse-osmosis desalination method. Besides, the proposed devices are 4 to 5 times less metal-intensive than standard evaporation units. These devices are also characterized by versatility. Experiments have revealed that the new method can be used for evaporation of practically any types of LRW, including those containing a considerable amount of oil products. Owing to arrangement of the evaporation process at low temperatures, the new devices are not sensitive to 'scale formation'. This is why, they can be used for concentrating brines of up to 500-600 g/l. New types of such evaporating devices can be required both for LRW treatment processes at nuclear-power plants under design and for treating 'non-standard' LRW with complex physicochemical and radionuclide composition resulting from the disaster at the Fukushima I Nuclear Power Plant.) As a result of accidents at nuclear energy objects, as it has recently happened at NPP 'Fukushima-1', personnel faces the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical composition, including those containing hardness salts, resulted in generation of LRW concentrate 300-600 g/l. The method is based on utilization of supersonic ejector for intensification of thermal physic processes and performance of evaporation in brine recycling mode. All proposed technological solutions are totally based on patented Russian developments. Proposed work will allow to construct modular plants, which will be totally prepared for efficient purification of any types of liquid radioactive wastes from radionuclides in case of force majeure. According to proposed scheme concentration level of cesium radionuclides in safe-for-storage form will make up not less than 5000. With respect to purification from cesium radionuclides of liquid radioactive wastes stored at NPP 'Fukushima' about 10 t of inorganic sorbents, loaded in 160 protective filter-containers, will be required for solving this problem. The amount of secondary wastes will be reduced approximately in 5 times in comparison with traditional schemes, applied in purification of secondary LRW of Fukushima-1 by Areva (France) and Kurion (USA) companies. All units of modular plants will be constructed and manufactured as totally automated, providing their twenty-four-hour safe operation. Modular design will ensure efficiency and let optimize the costs of secondary LRW treatment. In order to ensure off-line operation in emergency conditions the plant should be equipped with auxiliary modules: energy and ventilation ones. Under normal conditions these modules can be stored in 'mothballed' condition at special warehouses under the authority of federal bodies. It will be reasonable to choose required transport facilities, the most suitable for transportation of modules to target destination beforehand, using vessel classification list.« less

  7. DECAY OF INCORPORATED RADIOACTIVE PHOSPHORUS DURING REPRODUCTION OF BACTERIOPHAGE T2

    PubMed Central

    Stent, Gunther S.

    1955-01-01

    The multiplication of vegetative T2 bacteriophage in B/r bacteria has been followed by studying the lethal effects of decay of incorporated radiophosphorus P32 at various stages of the eclipse period. Experiment I. Non-radioactive B/r bacteria were infected with highly radioactive (i.e. P32-unstable) T2 and infection allowed to proceed at 37°C. for various numbers of minutes before freezing the infected cells and storing them in liquid nitrogen. The longer development had been allowed to proceed at 37°C. before freezing, the slower the inactivation of the frozen infective centers by P32 decay. Samples which were frozen after incubation for 9 minutes were completely stable. Experiment II. Radioactive B/r bacteria in radioactive growth medium were infected with non-radioactive (i.e. stable) T2 and incubated for various lengths of time before being frozen and stored in liquid nitrogen, like those of Experiment I. In this case, the infective centers were stable to P32 decay as long as they were frozen before the end of the eclipse period. The T2 progeny phages issuing from the infected bacteria were P32-unstable. Experiment III. Radioactive B/r bacteria in radioactive medium were infected with radioactive (i.e. P32-unstable) T2 and otherwise incubated and frozen like those of the first two experiments. In this case, the same progressive stabilization, of the infective centers towards inactivation by P32 decay was observed as that found in Experiment I. The ability to yield infective progeny of infected bacteria incubated for 10 minutes at 37°C. before freezing could no longer be destroyed by P32 decay. The progeny issuing from the infected cells were as unstable as the parental phage. These results could be explained by one of three general hypotheses. As vegetative phage begins to multiply, it is possible that: (a) there is a high probability that any part of the vegetative phage already duplicated can be saved after its destruction by P32 decay through a process analogous to multiplicity reactivation or, (b) there occurs a change in state of the deoxyribonucleic acid (DNA) preliminary to or in the course of its replication that renders it refractory to destruction by P32 decay, or, finally (c) there occurs a transfer of the genetic factors from the DNA of the infecting phage to another substance not sensitive to destruction by P32 decay. PMID:13242767

  8. Filtration device for active effluents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, M.; Meunier, G.

    1994-12-31

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter.

  9. Inventory Data Package for Hanford Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.

    2006-06-01

    This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might makemore » a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.« less

  10. Viscous Particle Breakup within a Cooling Nuclear Fireball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J. T.; Knight, K. B.; Dai, Z.

    2016-10-04

    Following the surface detonation of a nuclear weapon, the Earth’s crust and immediate surroundings are drawn into the fireball and form melts. Fallout is formed as these melts incorporate radioactive material from the bomb vapor and cool rapidly. The resultant fallout plume and dispersion of radioactive contamination is a function of several factors including weather patterns and fallout particle shapes and size distributions. Accurate modeling of the size distributions of fallout forms an important data point for dispersion codes that calculate the aerial distribution of fallout. While morphological evidence for aggregation of molten droplets is well documented in fallout glassmore » populations, the breakup of these molten droplets has not been similarly studied. This study documents evidence that quenched fallout populations preserve evidence of molten breakup mechanisms.« less

  11. Status of ecosystems in radioactive waste reservoirs of the Mayak Production Association in 2009.

    PubMed

    Pryakhin, Evgeny A; Tryapitsina, Galina A; Deryabina, Larisa V; Atamanyuk, Natalia I; Stukalov, Pavel M; Ivanov, Ivan A; Kostyuchenko, Vladimir A; Akleyev, Alexander V

    2012-07-01

    Liquid radioactive waste from the Mayak Production Association (Chelyabinsk Region, Russia) is contained in industrial reservoirs (R-11, R-10, R-4, R-17, and R-9) that have different levels of radioactive contamination, increased from R-11 to R-17. A study of the ecosystems in these reservoirs was performed in 2009 to determine if there was any association with the level of contamination. No significant change in the status of biota was found in the reservoir with the lowest radionuclide concentrations (R-11) in comparison to other reservoirs in the region with a similar geography that are unaffected by radioactive contamination. In reservoir R-10, changes in the zoobenthos indices were registered. In reservoir R-4, changes in the zoobenthos and zooplankton communities were registered. In reservoir R-17, there was no ichthyofauna, but strong changes in the phytoplankton, zooplankton, and zoobenthos communities were registered. In reservoir R-9, under the conditions of the heaviest radioactive contamination of water ecosystems in the biosphere, there was no ichthyofauna, and phytoplankton and zooplankton consisted of almost a monoculture of cyanobacteriae and rotifers.

  12. Synthesis and characterization of a radiolabeled derivative of the phencyclidine/N-methyl-D-aspartate receptor ligand (+)MK-801 with high specific radioactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keana, J.F.W.; Scherz, M.W.; Quarum, M.

    1988-01-01

    A (/sup 3/H)-labelled derivative of the drug (+)MK-801 with a high specific radioactivity was synthesized by first preparing a tribromo derivative of (+)MK-801 followed by catalytic reduction in the presence of (/sup 3/H)-gas and subsequent purification of the radioactive product by reversed-phase high performance liquid chromatography (RP-HPLC). This resulted in pure (+) (/sup 3/H)MK-801 with a specific radioactivity of 97 Ci/mmol. The (+) (/sup 3/H)MK-801 was shown to interact with high affinity and selectivity with the phencyclidine (PCP) receptor in guinea pig brain membrane suspensions. The PCP receptor is associated with a cation channel that is chemically gated by glutamatemore » and N-methyl-D-aspartate (NMDA). Drugs that interact with the PCP receptor block this channel. The (+) (/sup 3/H)MK-801 described here will be useful to investigate the biochemistry of PCP/NMDA receptors in experiments where a high specific radioactivity is essential.« less

  13. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  14. Chemical composition of Hanford Tank SY-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnbaum, E.; Agnew, S.; Jarvinen, G.

    1993-12-01

    The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposalmore » in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.« less

  15. Site Environmental Report for Calendar Year 2004. DOE Operations at The Boeing Company Santa Susana Field Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Lee, Majelle

    2005-09-01

    This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  16. Site Environmental Report for Calendar Year 2006. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil

    2007-09-01

    This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  17. Site Environmental Report for Calendar Year 2003 DOE Operations at The Boeing Company, Rocketdyne Propulsion & Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Samuels, Sandy

    2004-09-30

    This Annual Site Environmental Report (ASER) for 2003 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing Rocketdyne’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2003 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  18. Disposal of radioactive iodine in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Defield, J. G.

    1978-01-01

    The possibility of space disposal of iodine waste from nuclear power reactors is investigated. The space transportation system utilized relies upon the space shuttle, a liquid hydrogen/liquid oxygen orbit transfer vehicle, and a solid propellant final stage. The iodine is assumed to be in the form of either an iodide or an iodate, and calculations assume that the final destination is either solar orbit or solar system escape. It is concluded that space disposal of iodine is feasible.

  19. Control Algorithms For Liquid-Cooled Garments

    NASA Technical Reports Server (NTRS)

    Drew, B.; Harner, K.; Hodgson, E.; Homa, J.; Jennings, D.; Yanosy, J.

    1988-01-01

    Three algorithms developed for control of cooling in protective garments. Metabolic rate inferred from temperatures of cooling liquid outlet and inlet, suitably filtered to account for thermal lag of human body. Temperature at inlet adjusted to value giving maximum comfort at inferred metabolic rate. Applicable to space suits, used for automatic control of cooling in suits worn by workers in radioactive, polluted, or otherwise hazardous environments. More effective than manual control, subject to frequent, overcompensated adjustments as level of activity varies.

  20. Enhancement of light yield and stability of radio-pure tetraphenyl-butadiene based coatings for VUV light detection in cryogenic environments

    NASA Astrophysics Data System (ADS)

    Baudis, L.; Benato, G.; Dressler, R.; Piastra, F.; Usoltsev, I.; Walter, M.

    2015-09-01

    The detection of VUV scintillation light in (liquid) argon (LAr) detectors commonly includes a reflector with a fluorescent coating, converting UV photons to visible light. The light yield of these detectors depends directly on the conversion efficiency. Several coating/reflector combinations were produced using VM2000, a specular reflecting multi-layer polymer, and Tetratex®, a diffuse reflecting PTFE fabric, as reflector foils. The light yield of these coatings was optimised and has been measured in a dedicated liquid argon setup built at the University of Zurich. It employs a small, 1.3 kg LAr cell viewed by a 3-inch, low radioactivity PMT of type R11065-10 from Hamamatsu. The cryogenic stability of these coatings was additionally studied. The optimum reflector/coating combination was found to be Tetratex® dip-coated with Tetraphenyl-butadiene with a thickness of 0.9 mg/cm2, resulting in a 3.6 times higher light yield compared to uncoated VM2000. Its performance was stable in long-term measurements, performed up to 100 days in liquid argon. This coated reflector was also investigated concerning radioactive impurities and found to be suitable for current and upcoming low-background experiments. Therefore it is used for the liquid argon veto in Phase II of the GERDA neutrinoless double beta decay experiment.

  1. Maximum Potential Hydrogen Gas Retention in the sRF Resin Ion Exchange Column for the LAWPS Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Wells, Beric E.; Bottenus, Courtney LH

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogenmore » gas is being generated by radiolysis. In normal operations, the generated hydrogen is expected to remain dissolved in the liquid and be continuously removed by liquid flow. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin and below the bottom screen that supports the resin within the column. The purpose of this report is to summarize calculations that estimate the upper-bound volume of hydrogen gas that can be retained in the column and potentially be released to the headspace of the IX column or to process equipment connected to the IX column and, thus, pose a flammability hazard.« less

  2. Title list of documents made publicly available: December 1--31, 1996. Volume 18, Number 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  3. Title List of documents made publicly available, September 1--30, 1993. Volume 15, No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principals Documents.

  4. Title list of documents made publicly available: November 1--30, 1997. Volume 19, Number 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  5. Handbook explaining the fundamentals of nuclear and atomic physics

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1969-01-01

    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.

  6. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and resultsmore » of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.« less

  7. The Radioactivity Characteristics of the NPP Charcoal Sample Contaminated by Carbon-14 - 13531

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hee Reyoung

    2013-07-01

    The radioactivity of {sup 14}C-contaminated charcoal sample was analyzed by using a high temperature oxidation and liquid scintillation counting method. The radioactivity of the sample was monotonically increased according to the increase of the combustion time at each temperature where the experimental uncertainty was calculated in the 95 % confidence level. It showed that the {sup 14}C radioactivity was not completely extracted from the sample by simply increasing the combustion time unless the combustion temperature was high enough. The higher the combustion temperature was, the higher the recovery during the first 30 minutes was. The first 30 minute recoveries weremore » 100 % at a temperature equal to or greater than 450 deg. C. The ratios of the recovery during the first 30 minutes to the total recovery during whole duration were more than 90 % at each experiment temperature. It was understood that the temperature was a critical factor for the complete removal of the {sup 14}C from the waste sample. (authors)« less

  8. A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector.

    PubMed

    Ukaegbu, Ikechukwu Kevin; Gamage, Kelum A A

    2018-05-18

    This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore, the model also successfully estimated the depth of a 9-kBq Co-60 source buried up to 3 cm in sand. This confirms that this remote depth estimation method can be used with other radionuclides and wastes with very low activity. Finally, the paper proposes a performance parameter for evaluating radiation detection systems that implement this remote depth estimation method.

  9. Supported liquid inorganic membranes for nuclear waste separation

    DOEpatents

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  10. Waking a sleeping giant: the tobacco industry's response to the polonium-210 issue.

    PubMed

    Muggli, Monique E; Ebbert, Jon O; Robertson, Channing; Hurt, Richard D

    2008-09-01

    The major tobacco manufacturers discovered that polonium was part of tobacco and tobacco smoke more than 40 years ago and attempted, but failed, to remove this radioactive substance from their products. Internal tobacco industry documents reveal that the companies suppressed publication of their own internal research to avoid heightening the public's awareness of radioactivity in cigarettes. Tobacco companies continue to minimize their knowledge about polonium-210 in cigarettes in smoking and health litigation. Cigarette packs should carry a radiation-exposure warning label.

  11. Emulsion Liquid Membrane Removal of Arsenic and Strontium from Wastewater: AN Experimental and Theoretical Study.

    NASA Astrophysics Data System (ADS)

    Zhou, Ding-Wei

    The emulsion liquid membrane (ELM) technique has been successfully applied on the removal of arsenic (As) from metallurgical wastewater and the removal of strontium (Sr) from radioactive wastewater. This study consisted of experimental work and mathematical modeling. Extraction of arsenic by an emulsion liquid membrane was firstly investigated. The liquid membrane used was composed of 2-ethylhexyl alcohol (2EHA) as the extractant, ECA4360J as the surfactant, and Exxsol D-80 solvent (or heptane) as the diluent. The sulfuric acid and sodium hydroxide solutions were used as the external and internal phases, respectively. The arsenic removal efficiency reached 92% within 15 minutes in one stage. Extraction and stripping chemistries were postulated and investigated. It was observed that extraction efficiency and rate increase with the increase of acidic strength and alkali strength in the external and internal phases, respectively. It was also observed that the removal selectivity of arsenic over copper is extremely high. Strontium-90 is one of the major radioactive metals appearing in nuclear wastewater. The emulsion liquid membrane process was investigated as a separation method by using the non-radioactive ^{87}Sr as its substitute. In our study, the membrane phase was composed of di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant, ECA4360J as the surfactant and Exxsol D-80 as the diluent. A sulfuric acid solution was used in the internal phase as the stripping agent. The pH range in the external phase was determined by the extraction isotherm. Under the most favorable operating condition, the strontium removal efficiency can reach 98% in two minutes. Mass transfer of the emulsion liquid membrane (ELM) system was modeled mathematically. Our model took into account the following: mass transfer of solute across the film between the external phase and the membrane phase, chemical equilibrium of the extraction reaction at the external phase-membrane interface, simultaneous diffusion of the solute-carrier complex inside the globule membrane phase and stripping of the complex at the membrane-internal phase interface, chemical equilibrium of the stripping reaction at the membrane-internal phase interface and leakage of the solute from the internal phase to the external phase. Resulting simultaneous partial differential equations were solved analytically by the Laplace transform method. Four dimensionless groups were found with special physical meanings to characterize the emulsion liquid membrane systems. It not only predicted the concentration of solute in the external phase versus time, but also gave the concentration profile inside the membrane globule and the interfacial concentration at the external-membrane phase interface at different time. The model predicted very well the experimental data obtained from the removal of arsenic and strontium by the emulsion liquid membranes.

  12. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    PubMed

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  13. Composite analysis E-area vaults and saltstone disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less

  14. Geoscience parameter data base handbook: granites and basalts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-12-01

    The Department of Energy has the responsibility for selecting and constructing Federal repositories for radioactive waste. The Nuclear Regulatory Commission must license such repositories prior to construction. The basic requirement in the geologic disposal of radioactive waste is stated as: placement in a geologic host whereby the radioactive waste is not in mechanical, thermal or chemical equilibrium with the object of preventing physical or chemical migration of radionuclides into the biosphere or hydrosphere in hazardous concentration (USGS, 1977). The object of this report is to document the known geologic parameters of large granite and basalt occurrences in the coterminous Unitedmore » States, for future evaluation in the selection and licensing of radioactive waste repositories. The description of the characteristics of certain potential igneous hosts has been limited to existing data pertaining to the general geologic character, geomechanics, and hydrology of identified occurrences. A description of the geochemistry is the subject of a separate report.« less

  15. Potential Nano-Enabled Environmental Applications for Radionuclides

    EPA Pesticide Factsheets

    This document provides information about nanotechnology materials and processes that may be applicable when cleaning up radioactively contaminated sites or materials, and presents a snapshot of lessons learned in nano-science and engineering.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.

  17. Mineral resource potential map of the Bighorn Mountains Wilderness Study Area (CDCA-217), San Bernardino County, California

    USGS Publications Warehouse

    Matti, Jonathan C.; Cox, Brett F.; Rodriguez, Eduardo A.; Obi, Curtis M.; Powell, Robert E.; Hinkle, Margaret E.; Griscom, Andrew; Sabine, Charles; Cwick, Gary J.

    1982-01-01

    Geological, geochemical, and geophysical evidence, together with a review of historical mining and prospecting activities, suggests that most of the Bighorn Mountains Wilderness Study Area has low potential for the discovery of all types of mineral and energy resources-including precious and base metals, building stone and aggregate, fossil fuels, radioactive-mineral resources, and geothermal resources. Low-grade mineralization has been documented in one small area near Rattlesnake Canyon, and this area has low to moderate potential for future small-scale exploration and development of precious and base metals. Thorium and uranium enrichment have been documented in two small areas in the eastern part of the wilderness study area; these two areas have low to moderate potential for future small-scale exploration and development of radioactive-mineral resources.

  18. CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  19. CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, Xi.; Xiao, X.; Xu, J.; Yang, C.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-12-01

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  20. CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment

    DOE PAGES

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...

    2017-12-18

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; et al.

    The DarkSide-50 experiment, located at the “Laboratori Nazionali del Gran Sasso (INFN)”, is based on low-radioactivity argon double phase time projection chamber, surrounded by an active liquid scintillator veto, designed for the zero background achievement. The liquid argon features sufficient self shielding and easy scalability to multi-tons scale. The impressive reduction of the 39Ar isotope (compared to the atmospheric argon), along with the excellent pulse shape discrimination, make this technology a possible candidate for the forthcoming generation of multi-ton Dark Matter experiments.

  2. Secondary Waste Form Down Selection Data Package – Ceramicrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantrell, Kirk J.; Westsik, Joseph H.

    2011-08-31

    As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.« less

  3. ICPP tank farm closure study. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.

    1998-02-01

    The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less

  4. Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium

    USGS Publications Warehouse

    Pollock, David W.

    1986-01-01

    Many parts of the Great Basin have thick zones of unsaturated alluvium which might be suitable for disposing of high-level radioactive wastes. A mathematical model accounting for the coupled transport of energy, water (vapor and liquid), and dry air was used to analyze one-dimensional, vertical transport above and below an areally extensive repository. Numerical simulations were conducted for a hypothetical repository containing spent nuclear fuel and located 100 m below land surface. Initial steady state downward water fluxes of zero (hydrostatic) and 0.0003 m yr−1were considered in an attempt to bracket the likely range in natural water flux. Predicted temperatures within the repository peaked after approximately 50 years and declined slowly thereafter in response to the decreasing intensity of the radioactive heat source. The alluvium near the repository experienced a cycle of drying and rewetting in both cases. The extent of the dry zone was strongly controlled by the mobility of liquid water near the repository under natural conditions. In the case of initial hydrostatic conditions, the dry zone extended approximately 10 m above and 15 m below the repository. For the case of a natural flux of 0.0003 m yr−1 the relative permeability of water near the repository was initially more than 30 times the value under hydrostatic conditions, consequently the dry zone extended only about 2 m above and 5 m below the repository. In both cases a significant perturbation in liquid saturation levels persisted for several hundred years. This analysis illustrates the extreme sensitivity of model predictions to initial conditions and parameters, such as relative permeability and moisture characteristic curves, that are often poorly known.

  5. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale

    PubMed Central

    Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.

    2015-01-01

    Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: an analysis of produced fluids from the Marcellus Shale. Environ Health Perspect 123:689–696; http://dx.doi.org/10.1289/ehp.1408855 PMID:25831257

  6. Increased brain radioactivity by intranasal 32P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels

    PubMed Central

    Perez, Ana Paula; Mundiña-Weilenmann, Cecilia; Romero, Eder Lilia; Morilla, Maria Jose

    2012-01-01

    Background Molecules taken up by olfactory and trigeminal nerve neurons directly access the brain by the nose-to-brain pathway. In situ-forming mucoadhesive gels would increase the residence time of intranasal material, favoring the nose-to-brain delivery. In this first approach, brain radioactivity after intranasal administration of 32P-small interference RNA (siRNA) complexed with poly(amidoamine) G7 dendrimers (siRNA dendriplexes) within in situ-forming mucoadhesive gels, was determined. Materials 32P-siRNA dendriplexes were incorporated into in situ-forming mucoadhesive gels prepared by blending thermosensitive poloxamer (23% w/w) with mucoadhesive chitosan (1% w/w, PxChi) or carbopol (0.25% w/w, PxBCP). Rheological properties, radiolabel release profile, and local toxicity in rat nasal mucosa were determined. The best-suited formulation was intranasally administered to rats, and blood absorption and brain distribution of radioactivity were measured. Results The gelation temperature of both formulations was 23°C. The PxChi liquid showed non-Newtonian pseudoplastic behavior of high consistency and difficult manipulation, and the gel retained 100% of radiolabel after 150 minutes. The PxCBP liquid showed a Newtonian behavior of low viscosity and easy manipulation, while in the gel phase showed apparent viscosity similar to that of the mucus but higher than that of aqueous solution. The gel released 35% of radiolabel and the released material showed silencing activity in vitro. Three intranasal doses of dendriplexes in PxCBP gel did not damage the rat nasal mucosa. A combination of 32P-siRNA complexation with dendrimers, incorporation of the dendriplexes into PxCBP gel, and administration of two intranasal doses was necessary to achieve higher brain radioactivity than that achieved by intravenous dendriplexes or intranasal naked siRNA. Conclusion The increased radioactivity within the olfactory bulb suggested that the combination above mentioned favored the mediation of a direct brain delivery. PMID:22457595

  7. Radioactive emission data from Canadian nuclear generating stations, 1988 to 1997. Report number INFO-0210/Rev.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-31

    This edition incorporates histograms for each nuclear generating station (NGS) displaying the annual gaseous emissions containing tritium, in the form of tritium oxide, noble gases, iodine-131, and radioactive particulates, as well as the annual liquid emissions containing tritium, in the form of tritiated water, and gross beta-gamma activity. For Pickering NGS A and Gentilly 2, annual emissions of carbon-14 are depicted; and for Darlington NGS A, airborne emissions of elemental tritium since 1988 are shown. In each case, the emission data are compared to the derived emission limits.

  8. SUNLAB - The Project of a Polish Underground Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisiel, J.; Dorda, J.; Konefall, A.

    2010-11-24

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  9. SUNLAB-The Project of a Polish Underground Laboratory

    NASA Astrophysics Data System (ADS)

    Kisiel, J.; Budzanowski, M.; Chorowski, M.; Cygan, S.; Dorda, J.; Hanzel, S.; Harańczyk, M.; Horoszczak, L.; Januszewska, K.; Jaroń, L.; Konefalł, A.; Kozak, K.; Lankof, L.; Mania, S.; Markiewicz, A.; Markowski, P.; Mazur, J.; Mertuszka, P.; Mietelski, J. W.; Poliński, J.; Puchalska, M.; Pytel, W.; Raczyński, M.; Sadecki, Z.; Sadowski, A.; Ślizowski, J.; Sulej, R.; Szarska, M.; Szeglowski, T.; Tomankiewicz, E.; Urbańczyk, K.; Zalewska, A.

    2010-11-01

    The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedź S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector-GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

  10. LANL Environmental ALARA Program Status Report for CY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whicker, Jeffrey Jay; Mcnaughton, Michael; Ruedig, Elizabeth

    2017-02-24

    Los Alamos National Laboratory (LANL) ensures that radiation exposures to members of the public and the environment from LANL operations, past and present, are below regulatory thresholds and are as low as reasonably achievable (ALARA) through compliance with DOE Order 458.1 Radiation Protection for the Public and the Environment, and LANL Policy 412 Environmental Radiation Protection (LANL2016a). In 2007, a finding (RL.2-F-1) and observation (RL.2-0-1) in the NNSA/ LASO report, September 2007, Release of Property (Land) Containing Residual Radioactive Material Self-Assessment Report, indicated that LANL had no policy or documented process in place for the release of property containing residualmore » radioactive material. In response, LANL developed PD410, Los Alamos National Laboratory Environmental ALARA Program. The most recent version of this document became effective in 2014 (LANL 2014a). The document provides program authorities, responsibilities, descriptions, processes, and thresholds for conducting qualitative and quantitative ALARA analyses for prospective and actual radiation exposures to the public and t o the environment resulting from DOE activities conducted on the LANL site.« less

  11. A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldiges, Olaf; Blenski, Hans-Juergen

    2003-02-27

    Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decidedmore » to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.« less

  12. Photochemical oxidation: A solution for the mixed waste dilemma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A.

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposedmore » of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.« less

  13. MEANS FOR SHIELDING AND COOLING REACTORS

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.; Young, G.J.; Weinberg, A.M.

    1959-02-10

    Reactors of the water-cooled type and a means for shielding such a rcactor to protect operating personnel from harmful radiation are discussed. In this reactor coolant tubes which contain the fissionable material extend vertically through a mass of moderator. Liquid coolant enters through the bottom of the coolant tubes and passes upwardly over the fissionable material. A shield tank is disposed over the top of the reactor and communicates through its bottom with the upper end of the coolant tubes. A hydrocarbon shielding fluid floats on the coolant within the shield tank. With this arrangements the upper face of the reactor can be opened to the atmosphere through the two superimposed liquid layers. A principal feature of the invention is that in the event radioactive fission products enter thc coolant stream. imposed layer of hydrocarbon reduces the intense radioactivity introduced into the layer over the reactors and permits removal of the offending fuel material by personnel shielded by the uncontaminated hydrocarbon layer.

  14. Determination of 241Pu in low-level radioactive wastes from reactors.

    PubMed

    Martin, J E

    1986-11-01

    Plutonium-241 is unique in low-level radioactive wastes (LLW) from nuclear power plants because it is the only significant beta-emitting transuranic nuclide in LLW, has a relatively short half-life of 14.4 y, and has a fairly high allowable concentration for shallow land burial. Radiochemical separation of Pu followed by liquid scintillation analysis was used to quantitate 241Pu in a wide range of solid, semi-solid, and liquid LLW samples from two nuclear plants in Michigan. The 241Pu concentrations varied considerably by sample type and reactor operational period as did their correlation with 137Cs, 144Ce, 239Pu and 240Pu concentrations in the same sample. These patterns were also found in reported data for 241Pu in LLW from other reactors, raising the difficulty of accurately determining the inventory (or source term) in a LLW shallow land burial site and its implications for predicting and controlling the future environmental and public health impacts of such disposal.

  15. The radioactive waste management policy and practice in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucerka, M.

    1996-12-31

    In recent period, the new Czech Atomic Law is in the final stage of preparation, and the author expects that Parliament of the Czech Republic will approve it in the first half of the year 1996. Partly the law deals with new distribution of responsibilities among bodies involved in utilization of nuclear energy and ionizing radiation, the state and local authorities. The new provisions include also radioactive waste management activities. These provisions clarify the relations between radioactive waste generators and state, and define explicitly duties of waste generators. One of the most important duties is to cover all expenses formore » radioactive waste management now and in the future, including radioactive waste disposal and decommissioning of nuclear facilities. The law establishes radioactive waste management and decommissioning funds and the new, on waste generators independent radioactive waste management organization, controlled by state, to ensure the safety of inhabitants and the environment, and a optimization of expenses. Parallel to the preparation of the law, the Ministry of Industry and Trade prepares drafts of a statute of the radioactive waste management organization and its control board, and of the methodology and rules of management the radioactive waste fund. First drafts of these documents are expected to be complete in January 1996. The paper will describe recent practice and policy of the radioactive waste management including uranium mining and milling tailings, amounts of waste and its activities, economical background, and safety. A special attention will be paid to description of expected changes in connection with the new Atomic Law and expected steps and time schedule of reorganization of the radioactive waste management structure in the Czech Republic.« less

  16. Federal Guidance Report No. 10: The Radioactivity Concentration Guides

    EPA Pesticide Factsheets

    This document provides the calculation of derived limits for the 1960 Radiation Protection Guides reflecting updated models for dosimetry and biological transport. This report has been superseded by Federal Guidance Report No. 11.

  17. Waste certification program plan for Oak Ridge National Laboratory. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1997-09-01

    This document defines the waste certification program (WCP) developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements for mixed (both radioactive and hazardous) and hazardous [including polychlorinated biphenyls (PCB)] waste. Program activities will be conducted according to ORNL Level 1 document requirements.

  18. Liquid Fuels Market Module - NEMS Documentation

    EIA Publications

    2017-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public. This edition of the LFMM reflects changes made to the module over the past two years for the Annual Energy Outlook 2016.

  19. Title list of documents made publicly available, July 1--31, 1996: Volume 18, No. 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This monthly publication describes information received and published by US NRC. This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. Following indexes are included: personal author, corporate source, report number, and cross reference of enclosures to principal documents.

  20. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  1. An overview of radioactive waste disposal procedures of a nuclear medicine department

    PubMed Central

    Ravichandran, R.; Binukumar, J. P.; Sreeram, Rajan; Arunkumar, L. S.

    2011-01-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented. PMID:21731225

  2. An overview of radioactive waste disposal procedures of a nuclear medicine department.

    PubMed

    Ravichandran, R; Binukumar, J P; Sreeram, Rajan; Arunkumar, L S

    2011-04-01

    Radioactive wastes from hospitals form one of the various types of urban wastes, which are managed in developed countries in a safe and organized way. In countries where growth of nuclear medicine services are envisaged, implementations of existing regulatory policies and guidelines in hospitals in terms of handling of radioactive materials used in the treatment of patients need a good model. To address this issue, a brief description of the methods is presented. A designed prototype waste storage trolley is found to be of great help in decaying the I-131 solid wastes from wards before releasing to waste treatment plant of the city. Two delay tanks with collection time of about 2 months and delay time of 2 months alternately result in 6 releases of urine toilet effluents to the sewage treatment plant (STP) of the hospital annually. Samples of effluents collected at releasing time documented radioactive releases of I-131 much below recommended levels of bi-monthly release. External counting of samples showed good statistical correlation with calculated values. An overview of safe procedures for radioactive waste disposal is presented.

  3. Remedial site evaluation report for the waste area grouping 10 wells associated with the new hydrofracture facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Evaluation, interpretation, and data summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-08-01

    The Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is operated for the U.S. Department of Energy (DOE) by Lockheed Martin Energy System (Energy Systems). ORNL has pioneered waste disposal technologies since World War II as part of its DOE mission. In the late 1950s, at the request of the National Academy of Sciences, efforts were made to develop a permanent disposal alternative to the surface and tanks at ORNL. One such technology, the hydrofracture process, involved inducing fractures in a geologic host formation (a low-permeability shale) at depths of up to 1100 ft and injecting a radioactive groutmore » slurry containing low-level liquid or tank sludge waste, cement, and other additives at an injection pressure of 2000 to 8500 psi. The objective of the effort was to develop a grout dig could be injected as a slurry and would solidify after injection, thereby entombing the radioisotopes contained in the low-level liquid or tank sludge waste. Four sites at ORNL were used: two experimental (HF-1 and HF-2); one developmental, later converted to batch process [Old Hydrofracture Facility (BF-3)]; and one production facility [New Hydrofracture Facility (BF-4)]. This document provides the environmental, restoration program with information about the the results of an evaluation of WAG 10 wells associated with the New Hydrofracture Facility at ORNL.« less

  4. 49 CFR 171.8 - Definitions and abbreviations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... definitions relating to radioactive materials. Rail car means a car designed to carry freight or non-passenger... Materials Safety Administration. Aerosol means any non-refillable receptacle containing a gas compressed... Division 6.1 Packing Group III material) liquid, paste, or powder and fitted with a self-closing release...

  5. 49 CFR 171.8 - Definitions and abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... definitions relating to radioactive materials. Rail car means a car designed to carry freight or non-passenger... Materials Safety Administration. Aerosol means any non-refillable receptacle containing a gas compressed... Division 6.1 Packing Group III material) liquid, paste, or powder and fitted with a self-closing release...

  6. 49 CFR 171.8 - Definitions and abbreviations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... definitions relating to radioactive materials. Rail car means a car designed to carry freight or non-passenger... Materials Safety Administration. Aerosol means any non-refillable receptacle containing a gas compressed... Division 6.1 Packing Group III material) liquid, paste, or powder and fitted with a self-closing release...

  7. 49 CFR 171.8 - Definitions and abbreviations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... definitions relating to radioactive materials. Rail car means a car designed to carry freight or non-passenger... Materials Safety Administration. Aerosol means any non-refillable receptacle containing a gas compressed... Division 6.1 Packing Group III material) liquid, paste, or powder and fitted with a self-closing release...

  8. Radioactive-gas separation technique

    NASA Technical Reports Server (NTRS)

    Haney, R.; King, K. J.; Nellis, D. O.; Nisson, R. S.; Robling, P.; Womack, W.

    1977-01-01

    Cryogenic technique recovers gases inexpensively. Method uses differences in vapor pressures, melting points, and boiling points of components in gaseous mixture. Series of temperature and pressure variations converts gases independently to solid and liquid states, thereby simplifying separation. Apparatus uses readily available cryogen and does not require expensive refrigeration equipment.

  9. Eleventh international CODATA conference, scientific and technical data in a new era, Karlsruhe, Federal Republic of Germany, 26--29 September 1988: Foreign trip report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.L.

    Information on release of radioactive materials in airborne and liquid effluents, solid waste shipments and selected operating information from commercial nuclear power plants in the United States is maintained in a computer data base at Brookhaven National Laboratory (BNL) for the United States Nuclear Regulatory Commission (USNRC). The information entered into the data base is obtained from semiannual reports submitted by the operators of the plants to the USNRC in compliance with the USNRC Regulatory Guide 1.21, ''Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants.''more » The data on releases in the calendar year 1986 include information from 69 plants representing 87 reactors and contain approximately 19,000 entries. Since all the information is contained in a computer data base management system, entry and rapidly respond to inquiries about the data set and to generate computer readable subsets of the data. Such a subset is used as input to the computer program which generates the annual report, ''Population Dose Commitments Due to Radioactive Releases from Nuclear Power Plant Sites,'' prepared by Pacific Northwest Laboratory for the USNRC. BNL began maintaining this data base for the USNRC with the 1978 information and has added information to the data base for each succeeding year. An annual report summarizing the information for each year, prepared by BNL, and published by the USNRC, is available to the general public. Prior to 1978, annual reports were prepared by the USNRC and are available for the years 1972--1977; however, the information for these years is not in a computer accessible data base.« less

  10. Facility effluent monitoring plan for the plutonium uranium extraction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegand, D.L.

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of themore » effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.« less

  11. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, R.

    1996-06-01

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellitemore » Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.« less

  12. National briefing summaries: Nuclear fuel cycle and waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactivemore » waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.« less

  13. National briefing summaries: Nuclear fuel cycle and waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awarenessmore » to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.« less

  14. Utilization of natural hematite as reactive barrier for immobilization of radionuclides from radioactive liquid waste.

    PubMed

    El Afifi, E M; Attallah, M F; Borai, E H

    2016-01-01

    Potential utilization of hematite as a natural material for immobilization of long-lived radionuclides from radioactive liquid waste was investigated. Hematite ore has been characterized by different analytical tools such as Fourier transformer infrared (FTIR), X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetry (TG) and differential thermal (DT) analysis, scanning electron microscopy (SEM) and BET-surface area. In this study, europium was used as REEs(III) and as a homolog of Am(III)-isotopes (such as (241)Am of 432.6 y, (242m)Am of 141 y and (243)Am of 7370 y). Micro particles of the hematite ore were used for treatment of radioactive waste containing (152+154)Eu(III). The results indicated that 96% (4.1 × 10(4) Bq) of (152+154)Eu(III) was efficiently retained onto hematite ore. Kinetic experiments indicated that the processes could be simulated by a pseudo-second-order model and suggested that the process may be chemisorption in nature. The applicability of Langmuir, Freundlich and Temkin models was investigated. It was found that Langmuir isotherm exhibited the best fit with the experimental results. It can be concluded that hematite is an economic and efficient reactive barrier for immobilization of long-lived radio isotopes of actinides and REEs(III). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Background for protective action recommendations: accidental radioactive contamination of food and animal feeds. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shleien, B.; Schmidt, G.D.; Chiacchierini, R.P.

    This report provides background material for the development of FDA's Protective Action Recommendations: Accidental Radioactive Contamination of Food and Animal Feeds. The rationale, dosimetric and agricultural transport models for the Protective Action Guides are presented, along with information on dietary intake. In addition, the document contains a discussion of field methods of analysis of radionuclides deposited on the ground or contained in milk and herbage. Various protective actions are described and evaluated, and a cost-effectiveness analysis for the recommendations performed.

  16. Waking a Sleeping Giant: The Tobacco Industry’s Response to the Polonium-210 Issue

    PubMed Central

    Muggli, Monique E.; Ebbert, Jon O.; Robertson, Channing; Hurt, Richard D.

    2008-01-01

    The major tobacco manufacturers discovered that polonium was part of tobacco and tobacco smoke more than 40 years ago and attempted, but failed, to remove this radioactive substance from their products. Internal tobacco industry documents reveal that the companies suppressed publication of their own internal research to avoid heightening the public’s awareness of radioactivity in cigarettes. Tobacco companies continue to minimize their knowledge about polonium-210 in cigarettes in smoking and health litigation. Cigarette packs should carry a radiation-exposure warning label. PMID:18633078

  17. Feasibility of Using Radioactive Tracers for Studies of Permeation of Chemicals through Protective Clothing Materials

    DTIC Science & Technology

    1991-10-01

    minutes, 100x and 1000x magnification. letflon Coated Nomex, Methylene chloride 15 MINm ea p D ~ecant Freda 113 10 N2 70 d %~ C (gg / 󈧒 v 2 10 a. 11 56...Report No. CG- D -10-91 AD-A246 192 Feasibility of Using Radioactive Tracers for Studies of Permeation of Chemicals Through Protective Clothing...Connecticut 06340-6096 ii Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CG- D -10-91 I 4

  18. Methods and Data Used to Investigate Polonium-210 as a Source of Excess Gross-Alpha Radioactivity in Ground Water, Churchill County, Nevada

    USGS Publications Warehouse

    Seiler, Ralph L.

    2007-01-01

    Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.

  19. METHOD FOR THE RECOVERY OF CESIUM VALUES

    DOEpatents

    Rimshaw, S.J.

    1960-02-16

    A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.

  20. Liquid-metal dip seal with pneumatic spring

    DOEpatents

    Poindexter, Allan M.

    1977-01-01

    An improved liquid-metal dip seal for sealing the annulus between rotating plugs in the reactor vessel head of a liquid-metal fast-breeder nuclear reactor has two legs of differing widths communicating under a seal blade; the wide leg is also in communication with cover gas of the reactor and the narrow leg is also in communication with an isolated plug annulus above the seal. The annulus contains inert gas which acts as a pneumatic spring. Upon increasing cover gas pressure which depresses the level in the wide leg and greatly increases the level in the narrow leg, the pneumatic spring is compressed, and resists further level changes, thus preventing radioactive cover gas from bubbling through the seal.

  1. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit applicationmore » guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.« less

  2. 75 FR 57987 - Evaluation of the Groundwater Task Force Report: Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0302] Evaluation of the Groundwater Task Force Report... Task Force (GTF) in March 2010 to determine whether past, current, and planned actions should be... recommendations made in the Liquid Radioactive Release Lessons Learned Task Force Final Report dated September 1...

  3. Lincoln County nuclear waste project. Quarterly progress report, October 1, 1991--December 31, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This document included the following three progress reports to the Yucca Mountain Project Office on radioactive waste storage in Lincoln County, Nevada: financial status report; federal cash transactions report; and technical progress report.

  4. Lincoln County nuclear waste project. Quarterly progress report, January 1, 1992--March 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This document included the following three progress reports to the Yucca Mountain Project Office on radioactive waste storage in Lincoln County, Nevada: financial status report; federal cash transactions report; and technical progress report.

  5. Lincoln County nuclear waste project quarterly progress report, April 1, 1992--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    This document included the following three progress reports to the Yucca Mountain Project Office on radioactive waste storage in Lincoln County, Nevada: financial status report; federal cash transactions report; and technical progress report.

  6. Environmental Characteristics of EPA, NRC, and DOE Sites Contaminated with Radioactive Substances

    EPA Pesticide Factsheets

    This report is one of several documents developed cooperatively by the Interagency Environmental Pathway Modeling Workgroup to help bring a uniform approach to solving environmental modeling problems common to site remediation and restoration efforts.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, E.B.

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes: (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  8. Title of documents made publicly available, August 1--31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanez, V.E.

    1996-10-01

    This publication describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes: (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  9. Preparation of 14C-Labeled Sterigmatocystin in Liquid Media

    PubMed Central

    Hsieh, Dennis P. H.; Yang, Susie L.

    1975-01-01

    14C-labeled sterigmatocystin was prepared from surface cultures of Aspergillus versicolor A-18074 maintained in liquid media by multiple additions of [1-14C]acetate to the cultures. The highest yield of 7.75 mg/10 ml was found with a sucrose-asparagine-ammonium medium in which more than 3% of the radioactivity of the added [1-14C]acetate was recovered in the purified [ring-14C] sterigmatocystin. The method offers an easy way to prepare 14C-labeled sterigmatocystin for studies of this mycotoxin. PMID:1110489

  10. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... package (IP-1, IP-2 or IP-3; § 173.411), subject to the limitations of Table 6; (2) In a DOT Specification... use shipment 1. LSA-I: Solid IP-1 IP-1 Liquid IP-1 IP-2 2. LSA-II: Solid IP-2 IP-2 Liquid and gas IP-2 IP-3 3. LSA-III IP-2 IP-3 4. SCO-I IP-1 IP-1 5. SCO-II IP-2 IP-2 [69 FR 3676, Jan. 26, 2004; 69 FR...

  11. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... package (IP-1, IP-2 or IP-3; § 173.411), subject to the limitations of Table 6; (2) In a DOT Specification... use shipment 1. LSA-I: Solid IP-1 IP-1 Liquid IP-1 IP-2 2. LSA-II: Solid IP-2 IP-2 Liquid and gas IP-2 IP-3 3. LSA-III IP-2 IP-3 4. SCO-I IP-1 IP-1 5. SCO-II IP-2 IP-2 [69 FR 3676, Jan. 26, 2004; 69 FR...

  12. A Model for Remote Depth Estimation of Buried Radioactive Wastes Using CdZnTe Detector

    PubMed Central

    2018-01-01

    This paper presents the results of an attenuation model for remote depth estimation of buried radioactive wastes using a Cadmium Zinc Telluride (CZT) detector. Previous research using an organic liquid scintillator detector system showed that the model is able to estimate the depth of a 329-kBq Cs-137 radioactive source buried up to 12 cm in sand with an average count rate of 100 cps. The results presented in this paper showed that the use of the CZT detector extended the maximum detectable depth of the same radioactive source to 18 cm in sand with a significantly lower average count rate of 14 cps. Furthermore, the model also successfully estimated the depth of a 9-kBq Co-60 source buried up to 3 cm in sand. This confirms that this remote depth estimation method can be used with other radionuclides and wastes with very low activity. Finally, the paper proposes a performance parameter for evaluating radiation detection systems that implement this remote depth estimation method. PMID:29783644

  13. Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment

    DOE PAGES

    Aprile, E.; Agostini, F.; Alfonsi, M.; ...

    2015-11-23

    The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, wemore » detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.« less

  14. Declassification of radioactive water from a pool type reactor after nuclear facility dismantling

    NASA Astrophysics Data System (ADS)

    Arnal, J. M.; Sancho, M.; García-Fayos, B.; Verdú, G.; Serrano, C.; Ruiz-Martínez, J. T.

    2017-09-01

    This work is aimed to the treatment of the radioactive water from a dismantled nuclear facility with an experimental pool type reactor. The main objective of the treatment is to declassify the maximum volume of water and thus decrease the volume of radioactive liquid waste to be managed. In a preliminary stage, simulation of treatment by the combination of reverse osmosis (RO) and evaporation have been performed. Predicted results showed that the combination of membrane and evaporation technologies would result in a volume reduction factor higher than 600. The estimated time to complete the treatment was around 650 h (25-30 days). For different economical and organizational reasons which are explained in this paper, the final treatment of the real waste had to be reduced and only evaporation was applied. The volume reduction factor achieved in the real treatment was around 170, and the time spent for treatment was 194 days.

  15. Histologic Findings and Cytological Alterations in Thyroid Nodules After Radioactive Iodine Treatment for Graves' Disease: A Diagnostic Dilemma.

    PubMed

    El Hussein, Siba; Omarzai, Yumna

    2017-06-01

    Unlike the well-documented relation between radiation to the neck and development of papillary thyroid carcinoma, a causal association between radioactive iodine treatment for Graves' disease and development of thyroid malignancy is less defined. However, patients with a background of thyroid dysfunction presenting with clinically palpable thyroid nodules are followed more closely than the average population, and fine needle aspiration is recommended in such circumstances. Cytological examination of aspirates, and histologic examination of tissue provided from patients with a known history of Graves' disease, managed by radioactive iodine therapy can create a diagnostic dilemma, as the distinction between radiation effect and a malignant primary thyroid neoplasm can be very challenging. Thus, pathologists should be aware of the existence of these changes in the setting of radiation therapy for Graves' disease. Providing pathologists with appropriate clinical history of Graves' disease treated with radioactive iodine is of paramount importance in order to prevent an overdiagnosis of malignancy.

  16. Geochemical Aspects of Radioactive Waste Disposal

    NASA Astrophysics Data System (ADS)

    Moody, Judith B.

    1984-04-01

    The author's stated purpose in writing this book is to summarize the large number of government-sponsored research reports on the geochemical aspects of high-level nuclear waste isolation. Although this book has a 1984 publication date, the majority of the cited documents were published before 1982. Unfortunately, passage of the Nuclear Waste Policy Act (NWPA) of 1982 and its signing into law by President Reagan (January 1983) [U.S. Congress, 1983] has significantly altered the U.S. Department of Energy (DOE) Civilian Radioactive Waste Management (CRWM) Program. Therefore this book does not accurately reflect the present U.S. program in geologic disposal of high-level nuclear waste. For example, chapter 2, “Radioactive Waste Management,” is almost 3 years out of date in a field that is changing rapidly (see U.S. DOE [1984a] for the current status of the CRWM Program). Additionally, the source material, which forms the input for this book, is chiefly grey literature, i.e., the referenced documents may or may not have undergone peer review and therefore do not represent the technical judgment of the scientific community. Also, this book only presents a selective sampling of information because the literature cited does not include a representative selection of the widespread available literature on this topic.

  17. Gallium-67 complexes as radioactive markers to assess gastric and colonic transit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellen, J.C.; Chatterton, B.E.; Penglis, S.

    1995-03-01

    Constipation and gastroparesis are gastrointestinal tract disorders that can be assessed by using radioactive markers in conjunction with scintigraphic techniques. Indium-111-DTPA is the radiopharmaceutical of choice for treating colonic transit in constipated patients, but it is an expensive product and its availability has been unreliable. Indium-113m-DTPA was the tracer used in our study to determine the liquid gastric emptying rate in dual-isotope solid-liquid emptying studies, however, cessation of the {sup 113}Sn/{sup 113m}In generator production makes it unavailable. Thus, development of alternative tracers to {sup 111}In-DTPA and {sup 113m}In-DTPA was essential. Gallium-67-citrate and {sup 67}Ga-EDTA were compared to {sup 111}In-DTPA tomore » assess their efficacy for exclusive retention in the GI tract. These markers were orally administered into rats and their three-day cumulative fecal excretion, urine excretion and carcass retention were measured. An in vitro gastric emptying model was used to determine liquid phase partitioning of {sup 113m}In-DTPA, {sup 67}Ga-citrate and {sup 67}Ga-EDTA at 37{degrees}. Gallium-67-citrate was predominantly excreted in the feces (97.2% {+-} 0.2%) after three days, with negligible urine excretion (0.1% {+-} 0.0%) and carcass retention (0.6% {+-} 0.2%). These results are analogous to those obtained for {sup 111}In-DTPA for fecal excretion (96.7% {+-} 2.6%), urine excretion (0.6% {+-} 0.0%) and retention in the carcass (0.2% {+-} 0.0%). Gallium-67-EDTA showed similar partitioning in the liquid phase of the gastric emptying model compared with {sup 113m}In-DTPA. Gallium-67-citrate is an economical and readily available alternative to {sup 111}In-DTPA as a colonic transit radiopharmaceutical. Gallium-67-EDTA is also an alternative to {sup 113m}In-DTPA for assessing liquid-phase emptying in a dual-isotope solid/liquid gastric emptying study. 17 refs., 3 figs., 2 tabs.« less

  18. Surplus Highly Enriched Uranium Disposition Program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The purpose of this document is to provide upper level guidance for the program that will downblend surplus highly enriched uranium for use as commercial nuclear reactor fuel or low-level radioactive waste. The intent of this document is to outline the overall mission and program objectives. The document is also intended to provide a general basis for integration of disposition efforts among all applicable sites. This plan provides background information, establishes the scope of disposition activities, provides an approach to the mission and objectives, identifies programmatic assumptions, defines major roles, provides summary level schedules and milestones, and addresses budget requirements.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This monthly publication contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index. NRC documents that are publicly available may be examined without charge atmore » the NRC Public Document Room (PDR).« less

  20. Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Robert O.; Aulich, Ted R.

    1997-12-31

    Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less

  1. 10 CFR 71.75 - Qualification of special form radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... temperature of 30°C (86°F) or greater; (v) The process in paragraph (c)(2)(i), (ii), and (iii) of this section... test specified in the International Organization for Standardization document ISO 2919-1980(e), “Sealed...

  2. The Spanish General Radioactive Waste Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espejo, J.M.; Abreu, A.

    This paper mainly describes the strategies, the necessary actions and the technical solutions to be developed by ENRESA in the short, medium and long term, aimed at ensuring the adequate management of radioactive waste, the dismantling and decommissioning of nuclear and radioactive facilities and other activities, including economic and financial measures required to carry them out. Starting with the Spanish administrative organization in this field, which identifies the different agents involved and their roles, and after referring to the waste generation, the activities to be performed in the areas of LILW, SF and HLW management, decommissioning of installations and othersmore » are summarized. Finally, the future management costs are estimated and the financing system currently in force is explained. The so-called Sixth General Radioactive Waste Plan (6. GRWP), approved by the Spanish Government, is the 'master document' of reference where all the above mentioned issues are contemplated. In summary: The 6. GRWP includes the strategies and actions to be performed by Enresa in the coming years. The document, revised by the Government and subject to a process of public information, underlines the fact that Spain possesses an excellent infrastructure for the safe and efficient management of radioactive waste, from the administrative, technical and economic-financial points of view. From the administrative point of view there is an organisation, supported by ample legislative developments, that contemplates and governs the main responsibilities of the parties involved in the process (Government, CSN, ENRESA and waste producers). As regards the technical aspect, the experience accumulated to date by Enresa is particularly significant, as are the technologies now available in the field of management and for dismantling processes. As regards the economic-financial basis, a system is in place that guarantees the financing of radioactive waste management costs. This system is based on the generation of funds up front, during the operating lifetime of the facilities, through the application of fees established by Statutory provisions. Finally, a mandatory mechanism of annual revision for both technical issues and economic and financial aspects, allows to have updated all the courses of action. (authors)« less

  3. 17 CFR 75.3 - Prohibition on proprietary trading.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) PROPRIETARY TRADING AND CERTAIN INTERESTS IN AND RELATIONSHIPS WITH COVERED FUNDS Proprietary... of liquidity management in accordance with a documented liquidity management plan of the banking... liquidity management purposes, the amount, types, and risks of these securities that are consistent with...

  4. 17 CFR 255.3 - Prohibition on proprietary trading.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) PROPRIETARY TRADING AND CERTAIN INTERESTS IN AND RELATIONSHIPS WITH COVERED FUNDS Proprietary... purpose of liquidity management in accordance with a documented liquidity management plan of the banking... liquidity management purposes, the amount, types, and risks of these securities that are consistent with...

  5. Yeast Metabolism of D-[U-14C]-Glucose: A Student Study of the Early Stages of Glycolysis.

    ERIC Educational Resources Information Center

    Taber, Richard L.; Harwood, Betty G.

    1983-01-01

    Describes an experiment which gives students experience with uncertainties encountered in studying metabolic pathways; handling/use of radioisotopes; application of thin layer chromatography; and liquid scintillation counting and fluorography as methods of detecting radioactivity. The experiment can be accomplished in two to three laboratory…

  6. Quantitation of Lipase Activity from a Bee: An Introductory Enzyme Experiment.

    ERIC Educational Resources Information Center

    Farley, Kathleen A.; Jones, Marjorie A.

    1989-01-01

    This four-hour experiment uses a bee as a source of the enzyme which is reacted with a radioactive substrate to determine the specific activity of the enzyme. Uses thin layer chromatography, visible spectrophotometry, and liquid scintillation spectrometry (if not available a Geiger-Muller counter can be substituted). (MVL)

  7. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was amore » significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.« less

  8. Expected background in the LZ experiment

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Vitaly A.

    2015-08-01

    The LZ experiment, featuring a 7-tonne active liquid xenon target, is aimed at achieving unprecedented sensitivity to WIMPs with the background expected to be dominated by astrophysical neutrinos. To reach this goal, extensive simulations are carried out to accurately calculate the electron recoil and nuclear recoil rates in the detector. Both internal (from target material) and external (from detector components and surrounding environment) backgrounds are considered. A very efficient suppression of background rate is achieved with an outer liquid scintillator veto, liquid xenon skin and fiducialisation. Based on the current measurements of radioactivity of different materials, it is shown that LZ can achieve the reduction of a total background for a WIMP search down to about 2 events in 1000 live days for 5.6 tonne fiducial mass.

  9. NDE of PWA 1480 single crystal turbine blade material

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Orange, Thomas W.; Dreshfield, Robert L.

    1993-01-01

    Cantilever bending fatigue specimens were examined by fluorescent liquid penetrant and radioactive gas penetrant (Krypton) non-destructive evaluation (NDE) methods and tested. Specimens with cast, ground, or polished surface were evaluated to study the effect of surface condition on NDE and fatigue crack initiation. Fractographic and metallurgical analyses were performed to determine the nature of crack precursors. Preliminary results show that fatigue strength was lower for specimens with cast surfaces than for specimens with machined surfaces. The liquid penetrant and gas penetrant techniques both provided indications of a large population of defects on the cast surfaces. On ground or polished specimen surfaces, the gas penetrant appeared to estimate the actual number of voids more accurately than the liquid penetrant.

  10. 10 CFR 2.1009 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... to provide electronic files of documentary material ; (2) Establish procedures to implement the... responsibility to provide electronic files of documentary material; (4) Ensure that all documents carry the...

  11. 10 CFR 2.1009 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... to provide electronic files of documentary material ; (2) Establish procedures to implement the... responsibility to provide electronic files of documentary material; (4) Ensure that all documents carry the...

  12. 10 CFR 2.1009 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Applicable to Proceedings for the Issuance of Licenses for the Receipt of High-Level Radioactive Waste at a... to provide electronic files of documentary material ; (2) Establish procedures to implement the... responsibility to provide electronic files of documentary material; (4) Ensure that all documents carry the...

  13. Fact Sheet: Documenting Ground-Water Models Selection at Site Contaminated with Radioactive Substance

    EPA Pesticide Factsheets

    This fact sheet summarizes the report by a joint Interagency Environmental Pathway Modeling Working Group. It was designed to be used by technical staff responsible for identifying and implementing flow and transport models to support cleanup decisions.

  14. 10 CFR 71.1 - Communications and records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Communications and records. 71.1 Section 71.1 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL General... addressed: ATTN: Document Control Desk, Director, Spent Fuel Project Office, Office of Nuclear Material...

  15. 10 CFR 830.204 - Documented safety analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and accident conditions, including consideration of natural and man-made external events... radioactive and other hazardous materials, and consideration of the need for analysis of accidents which may... preparedness, fire protection, waste management, and radiation protection; and (6) With respect to a nonreactor...

  16. 10 CFR 830.204 - Documented safety analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., and accident conditions, including consideration of natural and man-made external events... radioactive and other hazardous materials, and consideration of the need for analysis of accidents which may... preparedness, fire protection, waste management, and radiation protection; and (6) With respect to a nonreactor...

  17. 10 CFR 830.204 - Documented safety analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and accident conditions, including consideration of natural and man-made external events... radioactive and other hazardous materials, and consideration of the need for analysis of accidents which may... preparedness, fire protection, waste management, and radiation protection; and (6) With respect to a nonreactor...

  18. 10 CFR 830.204 - Documented safety analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and accident conditions, including consideration of natural and man-made external events... radioactive and other hazardous materials, and consideration of the need for analysis of accidents which may... preparedness, fire protection, waste management, and radiation protection; and (6) With respect to a nonreactor...

  19. HANDBOOK: APPROACHES FOR REMEDIATION OF ...

    EPA Pesticide Factsheets

    This publication was developed by the Center for Environmental Research Information (CERI), Office of Research and Development, of the U.S. Environmental Protection Agency (EPA). The information in the document is based primarily on presentations at two technology transfer seminar series: Technologies for Remediating Sites Contaminated with Explosive and Radioactive Wastes, sponsored jointly by EPA and the U.S. Department of Defense (DOD) in spring and summer 1993; and Radioactive Site Remediation, sponsored by EPA and the Department of Energy (DOE) in summer 1992. Additional information has been provided by technical experts from EPA, DOD, DOE, academia, and private industry. present information

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virginia Finley

    This report presents the results of environmental activities and monitoring programs at the Princeton Plasma Physics Laboratory (PPPL) for Calendar Years 2009-2010. The report provides the U.S. Department of Energy (DOE) and the public with information on the level of radioactive and non-radioactive pollutants, if any, that are released into the environment as a result of PPPL operations. The report also summarizes environmental initiatives, assessments, and programs that were undertaken in 2009-2010. The objective of the Site Environmental Report is to document PPPL's efforts to protect the public's health and the environment through its environmental protection, safety, and health programs.more » __________________________________________________« less

  1. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  2. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through themore » DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.« less

  3. Exploring Radioactive Decay and Geochronology through Hydrostatic Principles

    NASA Astrophysics Data System (ADS)

    Claiborne, L. L.; Miller, C. F.

    2008-12-01

    One of the most essential tools to unraveling Earth's history and the processes involved in shaping our planet is an understanding of deep time and the timescales involved in geologic processes. The primary process that allows quantification of this history is radioactive decay of unstable isotopes within earth materials, and as one of the most essential tools in geology, this concept is taught at all levels of geoscience education. The concept of radioactive decay contains nuances that are often lost on students during lectures, and students often express low confidence in their comprehension of the concept. The goal of this laboratory activity is for students to understand radioactive decay including what controls it, how it proceeds and what information it provides, along with developing higher level scientific skills including making observations and predictions, and creating and interpreting quantitative graphical representations of data. The activity employs graduated beakers, shampoo, and stopwatches. Students pour shampoo put into an upper beaker (representing the parent isotope) with a hole in the base and allow it to flow into a lower beaker (representing the daughter isotope). Students measure changes in liquid depth with time, relating this to the amount of decay and its dependence on the amount of parent available (depth of liquid) and the decay constant (area of the hole in the beaker). Several beakers with varying sized holes illustrate variations specific to the different parent isotopes. They then explore graphical representations of their "decay" data, discovering for themselves which kinds of plots yield the equations and constants that control the decay process and the derived quantity of the "half-life", and are therefore the most useful. Making their own measurements, creating graphs, and then calculating these fundamental quantities is both enlightening and empowering. An advanced variation of this experiment involves students predicting the results and/or designing an experiment to address complex decay chains, where the daughter products are radioactive themselves. This permits them to investigate connections between 'activity' and equilibrium and to understand how disequilibrium can develop and be used for dating. In order to evaluate the success of the activity, each student participates in pre and post assessment including stating their confidence in their understanding of the concept.

  4. Site Environmental Report for Calendar Year 2009. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2010-09-01

    This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  5. Site Environmental Report for Calendar Year 2011. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2012-09-01

    This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  6. Site Environmental Report for Calendar Year 2010. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2011-09-01

    This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, andmore » all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  7. Site Environmental Report For Calendar Year 2012. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2013-09-01

    This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpita, N.C.

    We have just completed the second year of a three-year project entitled Biosynthesis assembly of cell wall polysaccharides in cereal grasses.'' We made significant progress on two aspects of cell wall synthesis in grasses and greatly refined gas-liquid and high- performance liquid chromatographic techniques necessary to identify the products of synthesis in vitro and in vivo. First, Dr. David Gibeaut, a post-doctoral associate, devised a convenient procedure for the enrichment of Golgi membranes by flotation centrifugation following initial downward rate-zonal separation. Based on comparison of the IDPase marker enzyme, flotation centrifugation enriched the Golgi apparatus almost 7-fold after the initialmore » downward separation. This system is now used in our studies of the synthesis in vitro of the mixed-linkage {beta}-D-glucan. Second, Gibeaut and I have devised a simple technique to feed radioactive sugars into intact growing seedlings and follow incorporation of radioactivity into and turnover from specific cell wall polysaccharides. The project has also provided a few spin-off projects that have been productive as well. First, in collaboration with the group of Prof. Peter Kaufman, University of Michigan, we examined changes in cell wall structure concomitant with reaction to gravistimulation in the gravisensing oat pulvinus. Second, Dr. Gibeaut developed a simple clean-up procedure for partially methylated alditol derivatives to remove a large amount of undesirable interfering compounds that confound separation of the derivatives by gas-liquid chromatography. 5 refs.« less

  9. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, Raymond A.

    1994-01-01

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  10. METHOD FOR MANUFACTURING LAMINATED SHEETS FOR PROTECTION AGAINST RADIOACTIVE WASTES, AND PROTECTING AND PACKAGING MEANS MANUFACTURED WITH THESE SHEETS; Papierfabrik Wilhemstal Wilhelm Ernst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-07-15

    A description is given of laminated sheet, consisting of a first layer of absorbing and preferably fibrous material (e.g., filter or blotting paper, or felt), a second layer of adhesive, impermeable, and hydrophobic material (e.g., wax, bitumen, a polyvinyl or polyacrylic compound, or a polyhydrocarbon), and a third (and fourth) layer of rigid material more or less impermeable to liquids (e.g., metal (aluminum), polyvinyl chloride, polyethylene, or cardboard). These sheets can be used for covering laboratory tables and walls, for radiation protection (manufacture of clothes, etc.), or for packaging radioactive waste (manufacture of boxes, bags, etc.). (NPO)

  11. Evaluation of Radiation Doses Due to Consumption of Contaminated Food Items and Calculation of Food Class-Specific Derived Intervention Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinzelman, K M; Mansfield, W G

    This document evaluates the expected radiation dose due to the consumption of several specific food classes (dairy, meat, produce, etc.) contaminated with specific radionuclides, and relates concentration levels in food to the detection abilities of typical aboratory analysis/measurement methods. The attached charts present the limiting organ dose as a function of the radionuclide concentration in a particular food class, and allow the user to compare these concentrations and doses to typical analytical detection apabilities. The expected radiation dose depends on several factors: the age of the individual; the radionuclide present in the food; the concentration of the radionuclide in themore » food; and the amount of food consumed. Food consumption rates for individuals of various ges were taken from the 1998 United States Food and Drug Administration (FDA) document, Accidental Radioactive Contamination of HUman Food and Animal Feeds: Recommendations for State and Local Agencies. In that document, the FDA defines the erived Intervention Level (DIL), which is the concentration of a particular radionuclide in food that if consumed could result in an individual receiving a radiation dose exceeding the Protection Action Guide (PAG) thresholds for intervention. This document also resents odified, food class specific DIL, which is calculated using a somewhat modified version of the FDA's procedure. This document begins with an overview of the FDA's DIL calculation, followed by a description of the food class specific DIL calculations, and finally charts of the radiation dose per radioactivity concentration for several food class/radionuclide combinations.« less

  12. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for Highmore » Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.« less

  13. Measurement of tritium with high efficiency by using liquid scintillation counter with plastic scintillator.

    PubMed

    Furuta, Etsuko; Ohyama, Ryu-ichiro; Yokota, Shigeaki; Nakajo, Toshiya; Yamada, Yuka; Kawano, Takao; Uda, Tatsuhiko; Watanabe, Yasuo

    2014-11-01

    The detection efficiencies of tritium samples by using liquid scintillation counter with hydrophilic plastic scintillator (PS) was approximately 48% when the sample of 20 μL was held between 2 PS sheets treated by plasma. The activity and count rates showed a good relationship between 400 Bq to 410 KBq mL(-1). The calculated detection limit of 2 min measurement by the PS was 13 Bq mL(-1) when a confidence was 95%. The plasma method for PS produces no radioactive waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Radon background in liquid xenon detectors

    NASA Astrophysics Data System (ADS)

    Rupp, N.

    2018-02-01

    The radioactive daughters isotope of 222Rn are one of the highest risk contaminants in liquid xenon detectors aiming for a small signal rate. The noble gas is permanently emanated from the detector surfaces and mixed with the xenon target. Because of its long half-life 222Rn is homogeneously distributed in the target and its subsequent decays can mimic signal events. Since no shielding is possible this background source can be the dominant one in future large scale experiments. This article provides an overview of strategies used to mitigate this source of background by means of material selection and on-line radon removal techniques.

  15. TWO-WAY FREEZE VALVE

    DOEpatents

    Lantz, K.D.; Clark, P.M.

    1960-01-01

    A valve for closing off the flow of radioactive and corrosive gases and liquids or mixtures thereof and forming a leak tight barrier is described. This valve has no mechanical moving parts which would require design to close tolerances and retention of the usual seal tighthess. Instead, there is provided a cavity in which a fusible metal is contained. Heating and cooling are provided to exercise control over the state of the metal. Baffle chambers are utilized to separate the molten fusible metal from the gas or liquid which is being passed through and return the molten metal to its cavity.

  16. Analysis of radioactive strontium-90 in food by Čerenkov liquid scintillation counting.

    PubMed

    Pan, Jingjing; Emanuele, Kathryn; Maher, Eileen; Lin, Zhichao; Healey, Stephanie; Regan, Patrick

    2017-08-01

    A simple liquid scintillation counting method using DGA/TRU resins for removal of matrix/radiometric interferences, Čerenkov counting for measuring 90 Y, and EDXRF for quantifying Y recovery was validated for analyzing 90 Sr in various foods. Analysis of samples containing energetic β emitters required using TRU resin to avoid false detection and positive bias. Additional 34% increase in Y recovery was obtained by stirring the resin while eluting Y with H 2 C 2 O 4 . The method showed acceptable accuracy (±10%), precision (10%), and detectability (~0.09Bqkg -1 ). Published by Elsevier Ltd.

  17. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, P.H.

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  18. Fluid sampling system

    DOEpatents

    Houck, Edward D.

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  19. Fluid sampling system

    DOEpatents

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  20. Scalability, Scintillation Readout and Charge Drift in a Kilogram Scale Solid Xenon Particle Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, J.; Cease, H.; Jaskierny, W. F.

    2014-10-23

    We report a demonstration of the scalability of optically transparent xenon in the solid phase for use as a particle detector above a kilogram scale. We employ a liquid nitrogen cooled cryostat combined with a xenon purification and chiller system to measure the scintillation light output and electron drift speed from both the solid and liquid phases of xenon. Scintillation light output from sealed radioactive sources is measured by a set of high quantum efficiency photomultiplier tubes suitable for cryogenic applications. We observed a reduced amount of photons in solid phase compared to that in liquid phase. We used amore » conventional time projection chamber system to measure the electron drift time in a kilogram of solid xenon and observed faster electron drift speed in the solid phase xenon compared to that in the liquid phase.« less

  1. Title list of documents made publicly available, December 1-31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report includes the information received and published by the U.S. Nuclear Regulatory Commission (NRC) in December 1997. It includes: (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. This series of documents is indexed by author, corporate source, and report number. This report includes six docketed items and 24 non-docketed items.

  2. Title list of documents made publicly available, June 1-30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document is a monthly publication describing information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, {open_quotes}docketed{close_quotes} does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records.

  3. W-320 Department of Health documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J.W.

    1998-08-07

    The purpose of this document is to gather information required to show that Project W-320 is in compliance with Washington State Department of Health requirements as specified in Radioactive Air Emissions Notice of Construction Project W-320, Tank 241-C-106 Sluicing, DOE/RL-95-45. Specifically, that W-320 is in compliance with ASME N509-1989 (Nuclear Power Plant Air-Cleaning Units and Components) and ASME N5 10-1989 (Testing of Nuclear Air Treatment Systems) for the 296-C-006 exhaust system.

  4. Technical Basis Document for Internal Dosimetry at Sandia National Laboratories Revision 2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Charles A.

    2014-09-01

    The RPID Project will be implemented at all SNL facilities for activities involving the processing and/or storing of radioactive materials. This project includes activities at the Tech Area (TA) I, TA II, TA III, TA IV, TA V, Coyote Test Field, and environmental restoration sites at SNL, located in Albuquerque, New Mexico, and the Kauai Test Facility(SNL/KTF). Reference to SNL throughout this document includes facilities and activities at the Albuquerque location and at SNL/KTF.

  5. 76 FR 14386 - Environmental Management Site-Specific Advisory Board, Hanford

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ...: Red Lion Hotel on the River, Jantzen Beach, 909 North Hayden Island Drive, Portland, Oregon 97217... Committee; Public Involvement Committee; and Budgets and Contracts Committee Potential Board Advice [cir] 2011-2013 Budget [cir] Regulatory document timelines/review [cir] Radioactive solid waste burial...

  6. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less

  7. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, G.; Yucel, V.; Desotell, L.

    2006-07-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less

  8. Disposition and metabolism of a novel prostanoid antiglaucoma medication, tafluprost, following ocular administration to rats.

    PubMed

    Fukano, Y; Kawazu, K

    2009-08-01

    The disposition and metabolism of tafluprost, an ester prodrug of the 15,15-difluoro-prostaglandin F(2alpha) antiglaucoma agent, have been studied in rats after ocular administration. Radioactivity was absorbed very rapidly into the eye and systemic circulation after a single ocular dose of 0.005% [(3)H]tafluprost ophthalmic solution, with maximum levels in plasma and most eye tissues occurring within 15 min. The absorption ratio of radioactivity was approximately 75%, suggesting the high availability of ocular administration of tafluprost. Approximately 10% of the dose was present in cornea at this time, and radioactivity concentrations in this tissue exceeded those in aqueous humor and iris/ciliary body throughout the 24-h study period. After repeated daily ocular doses, radioactivity levels remained greatest in cornea, followed by iris/ciliary body that replaced aqueous humor as the eye tissue containing the second highest radioactivity concentration. In female rats, radioactivity was excreted equally between urine and feces after a single ocular dose, whereas in male rats more was excreted in feces, reflecting the greater biliary excretion in males rats (50% dose) compared with females rats (33% dose). Tafluprost was extensively metabolized in the rat, such that intact prodrug was not detected in plasma, tissues, or excreta by radio-high-performance liquid chromatography. On the other hand, the active moiety, tafluprost acid, was the only noteworthy radioactive component in cornea, aqueous humor, and iris/ciliary body for at least 8 h after the ocular dose, and it was also a major plasma metabolite in early time points. The gender differences in conjugation reactions resulted in the differences in the excretion.

  9. Gas Retention, Gas Release, and Fluidization of Spherical Resorcinol-Formaldehyde (sRF) Ion Exchange Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Rassat, Scot D.; Linn, Diana

    The Low-Activity Waste Pretreatment System (LAWPS) is being developed to provide treated supernatant liquid from the Hanford tank farms directly to the Low-Activity Waste (LAW) Vitrification Facility at the Hanford Tank Waste Treatment and Immobilization Plant. The design and development of the LAWPS is being conducted by Washington River Protection Solutions, LLC. A key process in LAWPS is the removal of radioactive Cs in ion exchange (IX) columns filled with spherical resorcinol-formaldehyde (sRF) resin. When loaded with radioactive Cs, radiolysis of water in the LAW liquid will generate hydrogen gas. In normal operations, the generated hydrogen is expected to remainmore » dissolved in the liquid and be continuously removed by liquid flow. One accident scenario being evaluated is the loss of liquid flow through the sRF resin bed after it has been loaded with radioactive Cs and hydrogen gas is being generated by radiolysis. For an accident scenario with a loss of flow, hydrogen gas can be retained within the IX column both in the sRF resin bed and below the bottom screen that supports the resin within the column, which creates a hydrogen flammability hazard. Because there is a potential for a large fraction of the retained hydrogen to be released over a short duration as a gas release event, there is a need to quantify the size and rate of potential gas release events. Due to the potential for a large, rapid gas release event, an evaluation of mitigation methods to eliminate the hydrogen hazard is also needed. One method being considered for mitigating the hydrogen hazard during a loss of flow accident is to have a secondary flow system, with two redundant pumps operating in series, that re-circulates liquid upwards through the bed and into a vented break tank where hydrogen gas is released from the liquid and removed by venting the headspace of the break tank. The mechanism for inducing release of gas from the sRF bed is to fluidize the bed, which should allow retained bubbles to rise and be carried to the break tank. The overall conclusion of the testing is that fluidization is an effective method to remove hydrogen gas from a bed of sRF resin, but that a single fluidization velocity that is adequate to release gas in 55 ºC water will over-fluidize sRF resin in most LAW liquids, including both nominal and high-limit LAW simulants used in testing. An upper packed bed can retain hydrogen gas and pose a flammability hazard. Using periodic on:off fluidization, such as 5:55 min. on:off cycles, is effective at releasing gas while not creating an upper packed bed. Note that lengthening the fluidization duration in a one-hour cycle did result in a stable upper packed bed in one case with the nominal LAW simulant, so testing focused on shorter “on” periods which are needed for effective hydrogen release with periodic on:off fluidization« less

  10. Drum Centrifuge Study of the Transport of Leachates from Landfill Sites.

    DTIC Science & Technology

    1988-05-05

    Radioactive decay and 5 reactions within the liquid phase itself will also contribute to changes in solute concentration. Such changes may affect the...7]m p A.2 AmIDII II Tue 133 Or A Luomew TRACu It would be possible to use a model polutant which might be present in a Ypercentage of Department of

  11. Spent fuel and high-level radioactive waste transportation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educatedmore » layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less

  12. Spent fuel and high-level radioactive waste transportation report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educatedmore » layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less

  13. Spent Fuel and High-Level Radioactive Waste Transportation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or nomore » background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less

  14. Conservaton and retrieval of information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, M.

    This is a summary of the findings of a Nordic working group formed in 1990 and given the task of establishing a basis for a common Nordic view of the need for information conservation for nuclear waste repositories by investigating the following: (1) the type of information that should be conserved; (2) the form in which the information should be kept; (3) the quality of the information as regards both type and form; and (4) the problems of future retrieval of information, including retrieval after very long periods of time. High-level waste from nuclear power generation will remain radioactive formore » very long times even though the major part of the radioactivity will have decayed within 1000 yr. Certain information about the waste must be kept for long time periods because future generations may-intentionally or inadvertently-come into contact with the radioactive waste. Current day waste management would benefit from an early identification of documents to be part of an archive for radioactive waste repositories. The same reasoning is valid for repositories for other toxic wastes.« less

  15. Toxic Substances Control Act (TSCA) Polychlorinated Biphenyl (PCB)/Radioactive Waste Annual Inventory for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    no author on report

    2014-06-01

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) tomore » submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutter, J.D.; O`Hara, F.A.; Rodenburg, W.W.

    A calorimeter is a device to measure evolved or adsorbed heat. For our purposes, the heat measured is that associated with radioactive decay and the unit of measurement is the watt. Each time an atom decays, energy is released and absorbed by the surroundings and heat generated. For each isotope, this heat is a constant related to the energy of the decay particles and the half-life of the isotope. A point which is often overlooked is that calorimetry is one of the oldest techniques known for measuring radioactivity. In 1903, Pierre Curie and A. Laborde used a twin microcalorimeter tomore » determine that one gram of radium generates about 100 calories per hour. Several months later, Curie and Dewar used liquid oxygen and hydrogen to show that the amount of energy developed by radium and other radioactive elements did not depend on temperature. At that time, this observation was extremely important. It indicated that the nature of radioactivity is entirely different and cannot be compared with any known phenomena. In all other thermal processes known in physics and chemistry, the rate at which heat is developed changes with temperature. In 1942, Monsanto was asked by General Leslie Groves, Head of the Manhattan Project, to accept the responsibility for the chemistry and metallurgy of radioactive polonium. Late in 1943, two Monsanto scientists began a study of the half-life of polonium-210 using calorimetry.« less

  17. Safety and Security of Radioactive Sealed and Disused/Orphan Sources in Ukraine - German Contribution - 13359

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasser, Thomas; Hertes, Uwe; Meyer, Thorsten

    2013-07-01

    Within the scope of 'Nuclear Security of Radioactive Sources', the German government implemented the modernization of Ukrainian State Production Company's transport and storage facility for radioactive sources (TSF) in Kiev. The overall management of optimizing the physical protection of the storage facility (including the construction of a hot cell for handling the radioactive sources) is currently carried out by the German Federal Foreign Office (AA). AA jointly have assigned Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Germany's leading expert institution in the area of nuclear safety and waste management, to implement the project and to ensure transparency by financial andmore » technical monitoring. Sealed radioactive sources are widely used in industry, medicine and research. Their life cycle starts with the production and finally ends with the interim/long-term storage of the disused sources. In Ukraine, IZOTOP is responsible for all radioactive sources throughout their life cycle. IZOTOP's transport and storage facility (TSF) is the only Ukrainian storage facility for factory-fresh radioactive sources up to an activity of about 1 million Ci (3.7 1016 Bq). The TSF is specially designed for the storage and handling of radioactive sources. Storage began in 1968, and is licensed by the Ukrainian state authorities. Beside the outdated state of TSF's physical protection and the vulnerability of the facility linked with it, the lack of a hot cell for handling and repacking radioactive sources on the site itself represents an additional potential hazard. The project, financed by the German Federal Foreign Office, aims to significantly improve the security of radioactive sources during their storage and handling at the TSF site. Main tasks of the project are a) the modernization of the physical protection of the TSF itself in order to prevent any unauthorized access to radioactive sources as well as b) the construction of a hot cell to reduce the number of transports of radioactive sources within the city of Kiev. In future, the new established hot cell at IZOTOP's transport and storage facility will be useful for identification and characterization of orphan/disused radioactive sources. The projects implemented are performed in accordance with international recommendations (e. g. IAEA) and national normative documents and will make a crucial contribution towards an improved safety and security management of radioactive sources in Ukraine. (authors)« less

  18. Medium-Sized Mammals around a Radioactive Liquid Waste Lagoon at Los Alamos National Laboratory: Uptake of Contaminants and Evaluation of Radio-Frequency Identification Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson

    1999-11-01

    Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium,more » cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and background locations. However, the committed effective dose equivalent estimated from the potential human consumption of the muscle and bone tissue from these rock squirrels did not suggest any human health risk. Indirect routes of tritium uptake, possibly through consumption of vegetation, are important for animals in the lagoon area.« less

  19. HANDBOOK: APPROACHES FOR REMEDIATION OF FEDERAL FACILITY SITES CONTAMINATED WITH EXPLOSIVE OR RADIOACTIVE WASTE

    EPA Science Inventory

    This publication was developed by the Center for Environmental Research Information (CERI), Office of Research and Development, of the U.S. Environmental Protection Agency (EPA). The information in the document is based primarily on presentations at two technology transfer semina...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCone, John A.

    The document represents the first annual reporting versus semiannual reporting of the Atomic Energy Commission (AEC) to Congress. The report consists of three parts: Part One, The Atomic Energy Industry in 1959 and Related Activities; Part Two, Major Activities in Atomic Energy Programs; and Part Three, Management of Radioactive Wastes. Nineteen appendices are also included.

  1. Collective doses to man from dumping of radioactive waste in the Arctic Seas.

    PubMed

    Nielsen, S P; Iosjpe, M; Strand, P

    1997-08-25

    A box model for the dispersion of radionuclides in the marine environment covering the Arctic Ocean and the North Atlantic Ocean has been constructed. Collective doses from ingestion pathways have been calculated from unit releases of the radionuclides 3H, 60Co, 63Ni, 90Sr, 129I, 137Cs, 239Pu and 241Am into a fjord on the east coast of NovayaZemlya. The results show that doses for the shorter-lived radionuclides (e.g. 137Cs) are derived mainly from seafood production in the Barents Sea. Doses from the longer-lived radionuclides (e.g. 239Pu) are delivered through marine produce further away from the Arctic Ocean. Collective doses were calculated for two release scenarios, both of which are based on information of the dumping of radioactive waste in the Barents and Kara Seas by the former Soviet Union and on preliminary information from the International Arctic Sea Assessment Programme. A worst-case scenario was assumed according to which all radionuclides in liquid and solid radioactive waste were available for dispersion in the marine environment at the time of dumping. Release of radionuclides from spent nuclear fuel was assumed to take place by direct corrosion of the fuel ignoring the barriers that prevent direct contact between the fuel and the seawater. The second scenario selected assumed that releases of radionuclides from spent nuclear fuel do not occur until after failure of the protective barriers. All other liquid and solid radioactive waste was assumed to be available for dispersion at the time of discharge in both scenarios. The estimated collective dose for the worst-case scenario was about 9 manSv and that for the second scenario was about 3 manSv. In both cases, 137Cs is the radionuclide predicted to dominate the collective doses as well as the peak collective dose rates.

  2. Radiological Exposure Devices (RED) Technical Basis for Threat Profile.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Jesse John; Potter, Charles A.; Homann, Steven

    Facilities that manufacture, store or transport significant quantities of radiological material must protect against the risk posed by sabotage events. Much of the analysis of this type of event has been focused on the threat from a radiological dispersion device (RDD) or "dirty bomb" scenario, in which a malicious assailant would, by explosives or other means, loft a significant quantity of radioactive material into a plume that would expose and contaminate people and property. Although the consequences in cost and psychological terror would be severe, no intentional RDD terrorism events are on record. Conversely, incidents in which a victim ormore » victims were maliciously exposed to a Radiological Exposure Device (RED), without dispersal of radioactive material, are well documented. This paper represents a technical basis for the threat profile related to the risk of nefarious use of an RED, including assailant and material characterization. Radioactive materials of concern are detailed in Appendix A.« less

  3. Radioactive Waste Management Complex low-level waste radiological performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsitemore » receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.« less

  4. Expected background in the LZ experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryavtsev, Vitaly A.

    2015-08-17

    The LZ experiment, featuring a 7-tonne active liquid xenon target, is aimed at achieving unprecedented sensitivity to WIMPs with the background expected to be dominated by astrophysical neutrinos. To reach this goal, extensive simulations are carried out to accurately calculate the electron recoil and nuclear recoil rates in the detector. Both internal (from target material) and external (from detector components and surrounding environment) backgrounds are considered. A very efficient suppression of background rate is achieved with an outer liquid scintillator veto, liquid xenon skin and fiducialisation. Based on the current measurements of radioactivity of different materials, it is shown thatmore » LZ can achieve the reduction of a total background for a WIMP search down to about 2 events in 1000 live days for 5.6 tonne fiducial mass.« less

  5. High level radioactive waste vitrification process equipment component testing

    NASA Astrophysics Data System (ADS)

    Siemens, D. H.; Health, W. C.; Larson, D. E.; Craig, S. N.; Berger, D. N.; Goles, R. W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessment under shielded cell conditions. The equipment tested will be applied to immobilize high level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conduucted to evaluate liquid metals for use in a liquid metal sealing system.

  6. The effectiveness of wastewater treatment in nuclear medicine: Performance data and radioecological considerations.

    PubMed

    Sudbrock, F; Schomäcker, K; Drzezga, A

    2017-01-01

    For planned and ongoing storage of liquid radioactive waste in a designated plant for a nuclear medicine therapy ward (decontamination system/decay system), detailed knowledge of basic parameters such as the amount of radioactivity and the necessary decay time in the plant is required. The design of the plant at the Department of Nuclear Medicine of the University of Cologne, built in 2001, was based on assumptions about the individual discharge of activity from patients, which we can now retrospectively validate. The decontamination factor of the plant is at present in the order of 10 -9 for 131 I. The annual discharges have been continuously reduced over the period of operation and are now in the region of a few kilobecquerels. This work emphasizes the high efficacy of the decontamination plant to reduce the amount of radioactivity released from the nuclear medicine ward into the environment to almost negligible levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Principles of Product Quality Control of German Radioactive Waste Forms from the Reprocessing of Spent Fuel: Vitrification, Compaction and Numerical Simulation - 12529

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya

    2012-07-01

    The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste residues. The immediate benefit is the independent assessment of radio-active inventory declarations and much facilitated product quality control of waste residues that need to be returned to Germany and submitted to a German HLW-repository requirements. Wherever possible, internationally accepted standard programs are used and embedded. The innovative coupling of burn-up calculations (SCALE) with neutron and gamma transport codes (MCPN-X) allows an application in the world of virtual waste properties. If-then-else scenarios of hypothetical waste material compositions and distributions provide valuable information of long term nuclide property propagation under repository conditions over a very long time span. Benchmarking the program with real residue data demonstrates the power and remarkable accuracy of this numerical approach, boosting the reliability of the confidence aforementioned numerous applications, namely the proof tool set for on-the-spot production quality checking and data evaluation and independent verification. Moreover, using the numerical bottom-up approach helps to avoid the accumulation of fake activities that may gradually build up in a repository from the so-called conservative or penalizing nuclide inventory declarations. The radioactive waste properties and the hydrolytic and chemical stability can be predicted. The interaction with invasive chemicals can be assessed and propagation scenarios can be developed from reliable and sound data and HLW properties. Hence, the appropriate design of a future HLW repository can be based upon predictable and quality assured waste characteristics. (authors)« less

  8. Commandant's international technical series. Volume 9. International regulations on the prevention of pollution from ships carrying hazardous chemicals in bulk. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-12-01

    MARPOL was developed to minimize accidental and operational pollution from ships carrying noxious liquid substances in bulk. Accidental pollution could result from a collision, a grounding, or an overflow of a cargo tank. Operational pollution results from the disposal of cargo tank washings. Major amendments were made to the original Annex II by the International Maritime Organization. The United States and other States party to MARPOL will implement Annex II, as amended, on April 7, 1987. Implementation will affect seagoing ships transporting noxious liquid substances to and from such ships. The attached documents contain internationally agreed requirements, interpretations, and guidelinesmore » necessary for the implementation of Annex II. The documents attached include: (1) MARPOL Annex II as amended by amendments adopted by the twenty-second session of the IMO Marine Environment Protection Committee; (2) Unified Interpretations of Annex II; (3) Standards for the Procedures and Arrangements for the Discharge of Noxious Liquid Substances; (4) Ammendments to the Bulk Chemical Code and the International Bulk Chemical Code to include marine pollution concerns; (5) Guidelines on the Provision of Adequate Reception Facilities in Ports, Part II (Noxious Liquid Substances). The contents of these documents are being placed in regulations. The purpose of this document is to give members of the interested public advance notification of impending regulations.« less

  9. Current situation and future plans in radioactive waste management in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, H.; Jimenez, M.

    1992-01-01

    A brief introduction is offered in this document in order to explain the importance which is given in Mexico to the safe management of radioactive wastes. The Secretaria de Energia, Minas e Industria Paraestatal is the organization responsible for this issue. Also, a brief historical background is offered so as to understand the evolution of these activities since they were originated. This background allows us to describe the present situation, which consists in a substantial change in the volume of produced radioactive wastes; in other words, before the present situation only the, nuclear wastes from the application of radioisotopes weremore » generated whereas currently, with the starting of commercial operation of the first unit of Laguna Verde Nuclear Power Plant (LVNPP), large volumes of industrial radioactive wastes are being generated. A mention is given as well of the acquired experience during more than 20 years of waste management and of the technologies which have been applied or practiced in the use and disposal of such wastes. Finally, some general trends in relation to the future planning are indicated, which essentially consist in the siting and characterization of a site so as to, design and construct a permanent disposal facility in order to dispose the operational radioactive wastes from LVNPP.« less

  10. Two Phase 1, Open‐Label, Mass Balance Studies to Determine the Pharmacokinetics of 14C‐Labeled Isavuconazonium Sulfate in Healthy Male Volunteers

    PubMed Central

    Kato, Kota; Hale, Christine; Kowalski, Donna; Lademacher, Christopher; Yamazaki, Takao; Akhtar, Shahzad; Desai, Amit

    2017-01-01

    Abstract Isavuconazonium sulfate is the water‐soluble prodrug of the active triazole isavuconazole. Two phase 1 studies were conducted to identify the metabolic profile and mass balance of isavuconazole and BAL8728 (inactive cleavage product). Seven subjects in study 1 (isavuconazole mass balance) received a single oral dose of [cyano‐14C]isavuconazonium sulfate corresponding to 200 mg isavuconazole. Six subjects in study 2 (BAL8728 mass balance) received a single intravenous dose of [pyridinylmethyl‐14C]isavuconazonium sulfate corresponding to 75 mg BAL8728. Pharmacokinetic parameters of radioactivity in whole blood and plasma and of isavuconazole and BAL8728 in plasma were assessed. Radioactivity ratio of blood/plasma, percentage of dose, and cumulative percentage of radioactive dose recovered in urine and feces for isavuconazole and BAL8728 were assessed. Metabolic profiling was carried out by high‐performance liquid chromatography and mass spectrometry. Mean plasma isavuconazole pharmacokinetic parameters included apparent clearance (2.3 ± 0.7 L/h), apparent volume of distribution (301.8 ± 105.7 L), and terminal elimination half‐life (99.9 ± 44.6 hours). In study 1, isavuconazole‐derived radioactivity was recovered approximately equally in urine and feces (46.1% and 45.5%, respectively). In study 2, BAL8728‐derived radioactivity was predominantly recovered in urine (96.0%). Isavuconazole (study 1) and M4 (cleavage metabolite of BAL8728; study 2) were the predominant circulating components of radioactivity in plasma. PMID:28750160

  11. OFFSITE ENVIRONMENTAL MONITORING REPORT. RADIATION MONITORING AROUND UNITED STATES NUCLEAR TEST AREAS, CALENDAR YEAR 1982

    EPA Science Inventory

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify tre...

  12. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NSO Waste Management Project

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  13. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  14. Cleanup Verification Package for the 100-F-20, Pacific Northwest Laboratory Parallel Pits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel

    2007-01-22

    This cleanup verification package documents completion of remedial action for the 100-F-20, Pacific Northwest Laboratory Parallel Pits waste site. This waste site consisted of two earthen trenches thought to have received both radioactive and nonradioactive material related to the 100-F Experimental Animal Farm.

  15. An open-label, single-dose, phase 1 study of the absorption, metabolism and excretion of quizartinib, a highly selective and potent FLT3 tyrosine kinase inhibitor, in healthy male subjects, for the treatment of acute myeloid leukemia.

    PubMed

    Sanga, Madhu; James, Joyce; Marini, Joseph; Gammon, Guy; Hale, Christine; Li, Jianke

    2017-10-01

    1. Quizartinib absorption, metabolism and excretion were characterized in six healthy men receiving a single oral dose of 60 mg (≈100 μCi) of [ 14 C]-quizartinib. Blood, plasma, urine and faeces were collected ≤336 h postdose. 2. Four hours postdose, maximum mean ± SD blood radioactivity concentrations were 296 ± 67.4 ng equivalents/g. A mean ± SD of 1.64 ± 0.482% and 76.3 ± 6.23% of the dose was recovered in urine and faeces, respectively, within 336 h postdose. 3. Radio-detector high-performance liquid chromatography (radio-HPLC) and liquid chromatography-mass spectrometry (LC-MS) showed two main radioactive peaks in plasma, unchanged quizartinib and mono-oxidative metabolite, AC886. Five additional metabolites in plasma were identified by LC-MS, but low levels prevented radio-HPLC detection. Although unchanged quizartinib was the main radioactive component in faeces (mean, 4.0% of administered dose), 15 metabolites representing a mean of 1.0-3.5% of administered dose were found. Quizartinib was predominantly metabolized by phase I biotransformations (oxidation, reduction, dealkylation, deamination, hydrolysis and combinations thereof). 4. This study indicated that quizartinib was rapidly and orally bioavailable, extensively metabolized, with AC886 as the major circulating metabolite, and predominantly eliminated in faeces. Quizartinib was well tolerated in the subjects.

  16. Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.

    2011-11-01

    Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less

  17. Evolution of water chemistry during Marcellus Shale gas development: A case study in West Virginia.

    PubMed

    Ziemkiewicz, Paul F; Thomas He, Y

    2015-09-01

    Hydraulic fracturing (HF) has been used with horizontal drilling to extract gas and natural gas liquids from source rock such as the Marcellus Shale in the Appalachian Basin. Horizontal drilling and HF generates large volumes of waste water known as flowback. While inorganic ion chemistry has been well characterized, and the general increase in concentration through the flowback is widely recognized, the literature contains little information relative to organic compounds and radionuclides. This study examined the chemical evolution of liquid process and waste streams (including makeup water, HF fluids, and flowback) in four Marcellus Shale gas well sites in north central West Virginia. Concentrations of organic and inorganic constituents and radioactive isotopes were measured to determine changes in waste water chemistry during shale gas development. We found that additives used in fracturing fluid may contribute to some of the constituents (e.g., Fe) found in flowback, but they appear to play a minor role. Time sequence samples collected during flowback indicated increasing concentrations of organic, inorganic and radioactive constituents. Nearly all constituents were found in much higher concentrations in flowback water than in injected HF fluids suggesting that the bulk of constituents originate in the Marcellus Shale formation rather than in the formulation of the injected HF fluids. Liquid wastes such as flowback and produced water, are largely recycled for subsequent fracturing operations. These practices limit environmental exposure to flowback. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Apparatus and method for detecting gamma radiation

    DOEpatents

    Sigg, R.A.

    1994-12-13

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  19. 300 GPM Solids Removal System A True Replacement for Back Flushable Powdered Filter Systems - 13607

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Mark R.; Lewis, Mark

    2013-07-01

    The EnergySolutions Solids Removal System (SRS) utilizes stainless steel cross-flow ultra-filtration (XUF) technology which allows it to reliably remove suspended solids greater than one (1) micron from liquid radwaste streams. The SRS is designed as a pre-treatment step for solids separation prior to processing through other technologies such as Ion Exchange Resin (IER) and/or Reverse Osmosis (RO), etc. Utilizing this pre-treatment approach ensures successful production of reactor grade water while 1) decreasing the amount of radioactive water being discharged to the environment; and 2) decreasing the amount of radioactive waste that must ultimately be disposed of due to the eliminationmore » of spent powdered filter media. (authors)« less

  20. Natural and man-made radioactivity in soils and plants around the research reactor of Inshass.

    PubMed

    Higgy, R H; Pimpl, M

    1998-12-01

    The specific radioactivities of the U-series, 232Th, 137Cs and 40K were measured in soil samples around the Inshass reactor in Cairo, using a gamma-ray spectrometer with a HpGe detector. The alpha activity of 238U, 234U and 235U was measured in the same soil samples by surface barrier detectors after radiochemical separation and the obtained results were compared with the specific activities determined by gamma-measurements. The alpha-activity of 238Pu, 239+240Pu, 241Am, 242Cm and 244Cm was measured after radiochemical separation by surface barrier detectors for both soil and plant samples. Then beta-activity of 241Pu was measured using liquid scintillation spectrometry.

  1. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmerkus, Felix; Rittmeyer, Cornelia

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less

  2. Absorption, Distribution, and Excretion of 14C-APX001 after Single-Dose Administration to Rats and Monkeys

    PubMed Central

    Mansbach, Robert; Shaw, Karen J; Hodges, Michael R; Coleman, Samantha; Fitzsimmons, Michael E

    2017-01-01

    Abstract Background APX001 is a small-molecule therapeutic agent in clinical development for the treatment of invasive fungal infections (IFI). Methods The absorption, distribution and excretion profiles of [14C]APX001-derived radioactivity were determined in rats (albino and pigmented) and monkeys. Rats (some implanted with bile duct cannulae) were administered a single 100 mg/kg oral dose or a 30 mg/kg intravenous (IV) dose. Monkeys were administered a single 6 mg/kg IV dose. Samples of blood, urine, feces and bile, as well as carcasses, were collected through 168 hours after dosing. Samples were analyzed for total radioactivity content by liquid scintillation counting, and carcasses were analyzed by quantitative whole-body autoradiography. Results [14C]APX001-derived radioactivity was rapidly and extensively absorbed and extensively distributed to most tissues for both routes of administration in both species. In rats, tissues with the highest radioactivity Cmax values included bile, abdominal fat, reproductive fat, subcutaneous fat, and liver, but radioactivity was also detected in tissues associated with IFI, including lung, brain and eye. In monkeys, the highest Cmax values were in bile, urine, uveal tract, bone marrow, abdominal fat, liver, and kidney cortex. Liver and kidney were the tissues with highest radioactivity, but as in the rat, radioactivity was also detected in lung, brain and eye tissues. In pigmented rats, radiocarbon was densely distributed into pigmented tissue and more slowly cleared than from other tissues. Mean recovery of radioactivity in rats was approximately 95–100%. In bile duct-intact rats, >90% of radioactivity was recovered in feces. In cannulated rats, biliary excretion of radioactivity was the major route of elimination and accounted for 88.8% of the dose, whereas urinary and fecal excretion of radioactivity was minor and accounted for 2.56% and 5.42% of the dose, respectively. In monkeys, the overall recovery of radioactivity was 87.6%, and was eliminated in feces (49.8% of dose) and to a lesser extent in urine (20.6% of dose). Conclusion Together, the results indicate that APX001-related radioactivity is extensively distributed to major tissues (including tissues relevant to IFI) in both rats and monkeys and cleared primarily by biliary/fecal excretion. Disclosures R. Mansbach, Amplyx Pharmaceuticals Inc.: Consultant, Consulting fee; K. J. Shaw, Amplyx Pharmaceuticals Inc.: Employee, Salary; M. R. Hodges, Amplyx Pharmaceuticals: Employee, Salary; S. Coleman, Covance Laboratories: Employee, Salary; M. E. Fitzsimmons, Covance Laboratories: Employee, Salary

  3. Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats.

    PubMed

    Cossum, P A; Sasmor, H; Dellinger, D; Truong, L; Cummins, L; Owens, S R; Markham, P M; Shea, J P; Crooke, S

    1993-12-01

    5'-TTGCTTCCATCTTCCTCGTC-3' (ISIS 2105) is a phosphorothioate oligodeoxynucleotide currently being evaluated as an intralesional antiviral drug for the treatment of genital warts that are caused by the human papillomavirus. ISIS 2105, labeled with 14C (at the carbon-2 position of thymine) was administered as a single i.v. injection (3.6 mg/kg) to female Sprague-Dawley rats to assess the disposition of the drug. After i.v. administration of [14C]2105, blood radioactivity disappeared in a multiexponential manner with the half-lives of the phases equal to 0.4, 1.9, 7.1 and 5.1 hr. The initial volume of distribution was 22 ml and the postdistribution volume of distribution was 1076 ml, which indicated an extensive distribution of radioactivity. The apparent blood clearance was 14.7 ml/hr. The radioactivity in the expired air accounted for 51% of the administered dose over the 10-day period. Urinary and fecal radioactivity accounted for 15% and 5% of the administered dose, respectively. The major sites of radioactivity uptake were the liver (up to 22.6% of the dose), kidneys (renal cortex, up to 14% of the dose), bone marrow (up to 14% of the dose), skin (up to 13% of the dose) and skeletal muscle (up to 9% of the dose). Other tissues contained approximately 1% or less of the dose. The overall recovery of radioactivity 10 days postdosing was 95.1 +/- 7.5% (mean +/- S.D.) of the administered single dose. The radioactivity in the blood was almost completely in the plasma during the course of the study. In the plasma, the radioactivity was extensively bound to proteins, as assessed by size-exclusion high-performance liquid chromatography (HPLC), in samples up to 8 hr postdosing. Retention data on size-exclusion HPLC and in vitro incubations using purified proteins suggested that the plasma proteins that bound [14C]2105 were albumin and alpha 2-macroglobulin. The complex formed between the plasma proteins and [14C]2105-derived radioactivity was dissociated on anion-exchange HPLC to indicate that the great majority of plasma radioactivity coeluted with intact [14C]2105 in samples that contained sufficient radioactivity for analysis. There was a time-dependent decrease in the proportion of hepatic and renal radioactivity that coeluted with the intact [14C]2105 during the course of the study. The urine did not contain radioactivity that eluted with intact [14C]2105 on anion-exchange HPLC.

  4. SEPARATING LIQUID MODERATOR FROM A SLURRY TYPE REACTOR

    DOEpatents

    Vernon, H.C.

    1961-07-01

    A system for evaporating moderator such as D/sub 2/O from an irradiated slurry or sloution characterized by two successive evaproators is described. In the first of these the most troublesome radioactivity dissipates before the slurry becomes too thick to be pumped out; in the second the slurry, now easier to handle, can be safely reduced to a sludge.

  5. Test of the electric charge conservation law with Borexino detector

    NASA Astrophysics Data System (ADS)

    Vishneva, A.; Agostini, M.; Appel, S.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chepurnov, A.; D' Angelo, D.; Davini, S.; Derbin, A.; Di Noto, L.; Drachnev, I.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jedrzejczak, K.; Kaiser, M.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Muratova, V.; Neumair, B.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schonert, S.; Semenov, D.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Winter, J.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2016-02-01

    The new limit on the electron lifetime is obtained from data of the Borexino experiment. The expected signal from the e → γν decay mode is a 256 keV photon detected in liquid scintillator. Because of the extremely low radioactive background level in the Borexino detector it was possible to improve the previous measurement by two orders of magnitude.

  6. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2018-05-23

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  7. Radiation doses to members of the public near to Sellafield, Cumbria, from liquid discharges 1952-98.

    PubMed

    Jackson, D; Lambers, B; Gray, J

    2000-06-01

    Liquid wastes containing low levels of radioactivity have been discharged to the Irish Sea from the nuclear fuel reprocessing site at Sellafield since operations began in the early 1950s, and monitoring of radioactivity in foodstuffs has been undertaken over many years. Based on the best available monitoring data, supplemented by modelled values where necessary, doses to local critical groups have been reassessed using the most recent dosimetry. Contemporary habits data have been used where available, again supplemented by assumed habits where necessary. During the 1950s and 1960s the highest doses were received by individuals consuming Cumbrian Porphyra as laverbread, and peak doses around 0.8 to 1.0 mSv year(-1) have been estimated. During the 1970s and 1980s the critical exposure group switched to consumers of local fish and shellfish, with peak doses possibly reaching 2.5 to 3.0 mSv year(-1). Latterly, doses to all marine-related groups have declined to less than 150 to 200 microSv year(-1). At all times, doses have been within the appropriate limits set for members of the public.

  8. Results from the first use of low radioactivity argon in a dark matter search

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  9. Concentration and immobilization of 137Cs from liquid radioactive waste using sorbents based on hydrated titanium and zirconium oxides

    NASA Astrophysics Data System (ADS)

    Voronina, A. V.; Noskova, A. Y.; Gritskevich, E. Y.; Mashkovtsev, M. A.; Semenishchev, V. S.

    2017-09-01

    The possibility of use of sorbents based on hydrated titanium and zirconium oxides (T-3A, T-35, NPF-HTD) for concentration and immobilization of 137Cs from liquid radioactive waste of various chemical composition (fresh water, seawater, solutions containing NaNO3, ammonium acetate, EDTA) was evaluated. It was shown that the NPF-HTD and T-35 sorbents separate 137Cs from fresh water and seawater with distribution coefficients as high as 6.2.104 and 6.1.104, 4.0.105 and 1.6.105 L kg-1 respectively; in 1 M ammonium acetate these values were 2.0.103 and 1.0.103 L kg-1. The NPF-HTD sorbent showed the highest selectivity for cesium in NaNO3 solution: cesium distribution coefficients in 1M NaNO3 was 1.4.106 L kg-1. All studied sorbents are suitable for deactivation of solutions containing EDTA. Cesium distribution coefficients were around 102-103 L kg-1 depending on EDTA concentration. Chemical stability of the sorbents was also studied. It was shown that 137Cs leaching rate from all sorbents meet the requirements for matrix materials.

  10. Results from the first use of low radioactivity argon in a dark matter search

    DOE PAGES

    Agnes, P.

    2016-04-08

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10 3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data,more » accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10 -44 cm 2 (8.6 x 10 -44 cm 2, 8.0 x 10 -43 cm 2) for a WIMP mass of 100 GeV/c 2 (1 TeV/c 2 , 10 TeV/c 2).« less

  11. Tank depletion flow controller

    DOEpatents

    Georgeson, Melvin A.

    1976-10-26

    A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.

  12. [Medical protection during radiation accidents: some results and lessons of the Chernobyl accident].

    PubMed

    Legeza, V I; Grebeniuk, A N; Zatsepin, V V

    2011-01-01

    Actions of medical radiation protection of liquidators of consequences of on Chernobyl atomic power station accident are analysed. It is shown, that during the early period of the accident medical protection of liquidators was provided by administration of radioprotectors, means of prophylaxis: of radioactive iodine incorporation and agent for preventing psychological and emotional stress. When carrying out decontamination and regenerative works, preparations which action is caused by increase of nonspecific resistance of an organism were applied. The lessons taken from the results of the Chernobyl accident, have allowed one to improve the system of medical protection and to introduce in practice new highly effective radioprotective agents.

  13. Title list of documents made publicly available. Volume 17, No. 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-01

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (3) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index.« less

  14. Title list of documents made publicly available, December 1--31, 1993, Volume 15, No. 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index.« less

  15. Title list of documents made publicly available: May 1--31, 1997. Volume 19, Number 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index.« less

  16. Title list of documents made publicly available, September 1-30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index.« less

  17. Title list of documents made publicly available. Volume 17, No. 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index.« less

  18. Title list of documents made publicly available, March 1--31, 1998. Volume 20, Number 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a personal author index, a corporate source index, and amore » report number index.« less

  19. Title list of documents made publicly available, January 1, 1997--January 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index.« less

  20. Nuclear waste disposal: Gambling on Yucca Mountain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginsburg, S.

    1995-05-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Bradley R.

    The Hidden Cost of Nuclear Weapons The Cold War arms race drove an intense plutonium production program in the U.S. This campaign produced approximately 100 tons of plutonium over 40 years. The epicenter of plutonium production in the United States was the Hanford site, a 586 square mile reservation owned by the Department of Energy and located on the Colombia River in Southeastern Washington. Plutonium synthesis relied on nuclear reactors to convert uranium to plutonium within the reactor fuel rods. After a sufficient amount of conversion occurred, the rods were removed from the reactor and allowed to cool. They weremore » then dissolved in an acid bath and chemically processed to separate and purify plutonium from the rest of the constituents in the used reactor fuel. The acidic waste was then neutralized using sodium hydroxide and the resulting mixture of liquids and precipitates (small insoluble particles) was stored in huge underground waste tanks. The byproducts of the U.S. plutonium production campaign include over 53 million gallons of high-level radioactive waste stored in 177 large underground tanks at Hanford and another 34 million gallons stored at the Savannah River Site in South Carolina. This legacy nuclear waste represents one of the largest environmental clean-up challenges facing the world today. The nuclear waste in the Hanford tanks is a mixture of liquids and precipitates that have settled into sludge. Some of these tanks are now over 60 years old and a small number of them are leaking radioactive waste into the ground and contaminating the environment. The solution to this nuclear waste challenge is to convert the mixture of solids and liquids into a durable material that won't disperse into the environment and create hazards to the biosphere. What makes this difficult is the fact that the radioactive half-lives of some of the radionuclides in the waste are thousands to millions of years long. (The half-life of a radioactive substance is the amount of time it takes for one-half of the material to undergo radioactive decay.) In general, the ideal material would need to be durable for approximately 10 half-lives to allow the activity to decay to negligible levels. However, the potential health effects of each radionuclide vary depending on what type of radiation is emitted, the energy of that emission, and the susceptibility for the human body to accumulate and concentrate that particular element. Consequently, actual standards tend to be based on limiting the dose (energy deposited per unit mass) that is introduced into the environment. The Environmental Protection Agency (EPA) has the responsibility to establish standards for nuclear waste disposal to protect the health and safety of the public. For example, the Energy Policy Act of 1992 directed the EPA to establish radiation protection standards for the Yucca Mountain geologic repository for nuclear wastes. The standards for Yucca Mountain were promulgated in 2008, and limit the dose to 15 millirem per year for the first 10,000 years, and 100 milirem per year between 10,000 years and 1 million years (40 CFR Part 197; http://www.epa.gov/radiation/yucca/2008factsheet.html). So, the challenge is two-fold: (1) develop a material (a waste form) that is capable of immobilizing the waste over geologic time scales, and (2) develop a process to convert the radioactive sludge in the tanks into this durable waste form material. Glass: Hard, durable, inert, and with infinite chemical versatility Molten glass is a powerful solvent liquid, which can be designed to dissolve almost anything. When solidified, it can be one of the most chemically inert substances known to man. Nature's most famous analogue to glass is obsidian, a vitreous product of volcanic activity; formations over 17 million years old have been found. Archaeologists have found man-made glass specimens that are five thousand years old.« less

  2. Development of a low background liquid scintillation counter for a shallow underground laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erchinger, Jennifer L.; Aalseth, Craig E.; Bernacki, Bruce E.

    2015-08-20

    Pacific Northwest National Laboratory has recently opened a shallow underground laboratory intended for measurement of lowconcentration levels of radioactive isotopes in samples collected from the environment. The development of a low-background liquid scintillation counter is currently underway to further augment the measurement capabilities within this underground laboratory. Liquid scintillation counting is especially useful for measuring charged particle (e.g., B, a) emitting isotopes with no (orvery weak) gamma-ray yields. The combination of high-efficiency detection of charged particle emission in a liquid scintillation cocktail coupled with the low-background environment of an appropriately-designed shield located in a clean underground laboratory provides the opportunitymore » for increased-sensitivity measurements of a range of isotopes. To take advantage of the 35-meter water-equivalent overburden of the underground laboratory, a series of simulations have evaluated the instrumental shield design requirements to assess the possible background rate achievable. This report presents the design and background evaluation for a shallow underground, low background liquid scintillation counter design for sample measurements.« less

  3. Radiological Risk Assessment for King County Wastewater Treatment Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways andmore » water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus, or moisture density gages may get into wastewater and be carried to a treatment plant. Other scenarios might include a terrorist deliberately putting a dispersible radioactive material into wastewater. Alternatively, a botched terrorism preparation of an RDD may result in radioactive material entering wastewater without anyone's knowledge. Drinking water supplies may also be contaminated, with the result that some or most of the radioactivity ends up in wastewater.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, J.

    This document is a report of the analytical results for samples collected from the radioactive wastes in Tank 241-U-202 at the Hanford Reservation. Core samples were collected from the solid wastes in the tank and underwent safety screening analyses including differential scanning calorimetry, thermogravimetric analysis, and total alpha analysis. Results indicate that no safety screening notification limits were exceeded.

  5. 76 FR 40352 - National Nuclear Security Administration; Amended Record of Decision: Site-Wide Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... similar to those estimated for transportation of radioactive material in other DOE NEPA documents. The air... radiological materials located at civilian sites worldwide. Part of the GTRI mission is implemented through... specific actions analyzed in DOE/EIS-0380-SA-02 include packaging the sealed sources (sometimes with a part...

  6. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM- 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B; Ruel Waltz, R

    2008-06-05

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. The 2007 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. A very small amount of material had seeped from Tank 12 from a previously identified leaksite. The material observed had dried on the tank wall and did not reach the annulus floor. A total of 5945 photographs were made and 1221 visual and video inspections were performed during 2007. Additionally, ultrasonic testing was performed on four Waste Tanksmore » (15, 36, 37 and 38) in accordance with approved inspection plans that met the requirements of WSRC-TR-2002- 00061, Revision 2 'In-Service Inspection Program for High Level Waste Tanks'. The Ultrasonic Testing (UT) In-Service Inspections (ISI) are documented in a separate report that is prepared by the ISI programmatic Level III UT Analyst. Tanks 15, 36, 37 and 38 are documented in 'Tank Inspection NDE Results for Fiscal Year 2007'; WSRC-TR-2007-00064.« less

  7. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    EIA Publications

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  8. ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, B.; Waltz, R.

    2010-06-21

    Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program formore » High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.« less

  9. Two Phase 1, Open-Label, Mass Balance Studies to Determine the Pharmacokinetics of 14 C-Labeled Isavuconazonium Sulfate in Healthy Male Volunteers.

    PubMed

    Townsend, Robert; Kato, Kota; Hale, Christine; Kowalski, Donna; Lademacher, Christopher; Yamazaki, Takao; Akhtar, Shahzad; Desai, Amit

    2018-02-01

    Isavuconazonium sulfate is the water-soluble prodrug of the active triazole isavuconazole. Two phase 1 studies were conducted to identify the metabolic profile and mass balance of isavuconazole and BAL8728 (inactive cleavage product). Seven subjects in study 1 (isavuconazole mass balance) received a single oral dose of [cyano- 14 C]isavuconazonium sulfate corresponding to 200 mg isavuconazole. Six subjects in study 2 (BAL8728 mass balance) received a single intravenous dose of [pyridinylmethyl- 14 C]isavuconazonium sulfate corresponding to 75 mg BAL8728. Pharmacokinetic parameters of radioactivity in whole blood and plasma and of isavuconazole and BAL8728 in plasma were assessed. Radioactivity ratio of blood/plasma, percentage of dose, and cumulative percentage of radioactive dose recovered in urine and feces for isavuconazole and BAL8728 were assessed. Metabolic profiling was carried out by high-performance liquid chromatography and mass spectrometry. Mean plasma isavuconazole pharmacokinetic parameters included apparent clearance (2.3 ± 0.7 L/h), apparent volume of distribution (301.8 ± 105.7 L), and terminal elimination half-life (99.9 ± 44.6 hours). In study 1, isavuconazole-derived radioactivity was recovered approximately equally in urine and feces (46.1% and 45.5%, respectively). In study 2, BAL8728-derived radioactivity was predominantly recovered in urine (96.0%). Isavuconazole (study 1) and M4 (cleavage metabolite of BAL8728; study 2) were the predominant circulating components of radioactivity in plasma. © 2017 The Authors. Clinical Pharmacology in Drug Development Published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monreal, Benjamin; Stuart, David; Nelson, Harry

    The R&D efforts of the UCSB Detector R&D program in the 2015--2017 period are reported. These were to develop a liquid scintillator based detector to be used for characterizing radioactive impurities in samples for rapid and effective screening of low background materials for direct dark matter detection experiments; complete engineering and simulation work investigating the feasibility of constructing large detectors in salt caverns; and provide engineering innovation for development of new ideas.

  11. Analysis of rocket engine injection combustion processes

    NASA Technical Reports Server (NTRS)

    Salmon, J. W.

    1976-01-01

    A critique is given of the JANNAF sub-critical propellant injection/combustion process analysis computer models and application of the models to correlation of well documented hot fire engine data bases. These programs are the distributed energy release (DER) model for conventional liquid propellants injectors and the coaxial injection combustion model (CICM) for gaseous annulus/liquid core coaxial injectors. The critique identifies model inconsistencies while the computer analyses provide quantitative data on predictive accuracy. The program is comprised of three tasks: (1) computer program review and operations; (2) analysis and data correlations; and (3) documentation.

  12. Documentation of liquid de-icing agents utilized during the winter of 2005-2006.

    DOT National Transportation Integrated Search

    2006-01-01

    During the winter of 2005-2006, the Maine Department of Transportation (MaineDOT), Bureau of : Maintenance and Operations experimented with several liquid de-icing products designed to pre-wet : granular materials. This experimentation was undertaken...

  13. A historical review of additives and modifiers used in paving asphalt refining processes in the United States.

    PubMed

    Mundt, Diane J; Adams, Robert C; Marano, Kristin M

    2009-11-01

    The U.S. asphalt paving industry has evolved over time to meet various performance specifications for liquid petroleum asphalt binder (known as bitumen outside the United States). Additives to liquid petroleum asphalt produced in the refinery may affect exposures to workers in the hot mix paving industry. This investigation documented the changes in the composition and distribution of the liquid petroleum asphalt products produced from petroleum refining in the United States since World War II. This assessment was accomplished by reviewing documents and interviewing individual experts in the industry to identify current and historical practices. Individuals from 18 facilities were surveyed; the number of facilities reporting use of any material within a particular class ranged from none to more than half the respondents. Materials such as products of the process stream, polymers, elastomers, and anti-strip compounds have been added to liquid petroleum asphalt in the United States over the past 50 years, but modification has not been generally consistent by geography or time. Modifications made to liquid petroleum asphalt were made generally to improve performance and were dictated by state specifications.

  14. Successful remediation of four uranium calibration pits at Technical Area II, Sandia National Laboratories, Albuquerque, New Mexico, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, R.; Wade, M.; Tharp, T.

    1994-12-31

    The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less

  15. Sequestration and disposal of dissolved Cs+ using zeolite 13X

    NASA Astrophysics Data System (ADS)

    Park, M.; Park, J.; Jeong, H. Y.

    2017-12-01

    Low-to-intermediate level liquid radioactive wastes (LILLW) typically contain high levels of radioactive 137Cs. Due to the great radiational and thermal stability as well as the high selectivity, zeolite has been commonly utilized to sequester radioactive isotopes from nuclear wastewater effluents. In this study, an Al-rich synthetic zeolite 13X was evaluated for the sorption capacity of Cs+ as a function of pH (4.0-10.5), ionic strength (0.05 and 0.2 M), and initial Cs+ concentration (1×10-6-5×10-3 M). For safe disposal, Cs+-exchanged 13X was both thermally and hydrothermally treated under different temperature and pressure. Subsequently, the resultant materials were examined for the phase transition by X-ray diffraction (XRD) and the local coordination chemistry by X-ray absorption spectroscopy (XAS). Our experimental results will detail the Cs+ sorption behavior by 13X under varying solution compositions. Also, the structural changes of Cs+-exchanged 13X upon thermal and hydrothermal treatment will be delineated to assess the stability of Cs+ in the treated materials.

  16. Assessment of the genotoxicity of 137Cs radiation using Vicia-micronucleus, Tradescantia-micronucleus and Tradescantia-stamen-hair mutation bioassays.

    PubMed

    Minouflet, Marion; Ayrault, Sophie; Badot, Pierre-Marie; Cotelle, Sylvie; Ferard, Jean-François

    2005-01-01

    Since the middle of the 20th century, ionizing radiations from radioactive isotopes including 137Cs have been investigated to determine their genotoxic impact on living organisms. The present study was designed to compare the effectiveness of three plant bioassays to assess DNA damage induced by low doses of 137Cs: Vicia-micronucleus test (Vicia-MCN), Tradescantia-micronucleus test (Trad-MCN) and Tradescantia-stamen-hair mutation test (Trad-SH) were used. Vicia faba (broad bean) and Tradescantia clone 4430 (spiderwort) were exposed to 137Cs according to different scenarios: external and internal (contamination) irradiations. Experiments were conducted with various levels of radioactivity in solution or in soil, using solid or liquid 137Cs sources. The three bioassays showed different sensitivities to the treatments. Trad-MCN appeared to be the most sensitive test (significative response from 1.5 kBq/200 ml after 30 h of contamination). Moreover, at comparable doses, internal irradiations led to larger effects for the three bioassays. These bioassays are effective tests for assessing the genotoxic effects of radioactive 137Cs pollution.

  17. Effect of experimental variables onto Co(2+) and Sr(2+) sorption behavior in red mud-water suspensions.

    PubMed

    Milenković, Aleksandra S; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Živković, Ljiljana S; Vukelić, Nikola S

    2016-07-02

    The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged. The increase of initial cation content and pH resulted in increased equilibrium times and sorption capacity and decreased rate constants. From single metal solutions and various binary mixtures, Co(2+) was sorbed more efficiently and selectively than Sr(2+). While Sr(2+) sorption was reduced by coexisting cations in the order Al(3+) ≥ Ca(2+) >Na(+) ≥Cs(+), removal of Co(2+) was affected by Al(3+) species and complexing agents (EDTA and citrate). Desorption of Co(2+) was negligible in Ca(2+) and Sr(2+) containing media and in solutions with initial pH 4-7. Sr(2+) desorption was generally more pronounced, especially at low pH and in the presence of Co(2+). Collected macroscopic data signify that Co(2+) sorption by red mud minerals occurred via strong chemical bonds, while Sr(2+) was retained mainly by weaker ion-exchange or electrostatic interactions. Results indicate that the rinsed red mud represent an efficient, low-cost sorbent for Co(2+) and Sr(2+) immobilization.

  18. Nevada Test Site annual site environmental report for calendar year 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, S.C.; Townsend, Y.E.

    1997-10-01

    Monitoring and surveillance on and around the Nevada Test Site (NTS) by US Department of Energy (DOE) contractors and NTS user organizations during 1996 indicated that operations on the NTS were conducted in compliance with applicable DOE, state, and federal regulations and guidelines. All discharges of radioactive liquids remained onsite in containment ponds, and there was no indication of potential migration of radioactivity to the offsite area through groundwater. Surveillance around the NTS indicated that airborne radioactivity from diffusion, evaporation of liquid effluents, or resuspension of soil was not detectable offsite, and exposure above background to members of the offsitemore » population was not measured by the offsite monitoring program. Using the US Environmental Protection Agency`s (EPA) Clean Air Package 1988 (CAP88)PC model and NTS radionuclide emissions and environmental monitoring data, the calculated effective dose equivalent (EDE) to the maximally exposed individual offsite would have been 0.11 mrem. This value is less than 2 percent of the federal dose limit prescribed for radionuclide air emissions. Any person receiving this dose would also have received 144 mrem from natural background radiation. There were no nonradiological releases to the offsite area. Hazardous wastes were shipped offsite to approved disposal facilities. Compliance with the various regulations stemming from the National Environmental Policy Act (NEPA) is being achieved and, where mandated, permits for air and water effluents and waste management have been obtained from the appropriate agencies. Cooperation with other agencies has resulted in seven different consent orders and agreements. Support facilities at off-NTS locations have complied with the requirements of air quality permits and state or local wastewater discharge and hazardous waste permits as mandated for each location.« less

  19. Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsha Keister; Kathryn McBride

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge—to develop and demonstrate a transportation system that will sustain safe and efficient shipments ofmore » SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.« less

  20. Fracture mechanics based design for radioactive material transport packagings -- Historical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.A.; Salzbrenner, D.; Sorenson, K.

    1998-04-01

    The use of a fracture mechanics based design for the radioactive material transport (RAM) packagings has been the subject of extensive research for more than a decade. Sandia National Laboratories (SNL) has played an important role in the research and development of the application of this technology. Ductile iron has been internationally accepted as an exemplary material for the demonstration of a fracture mechanics based method of RAM packaging design and therefore is the subject of a large portion of the research discussed in this report. SNL`s extensive research and development program, funded primarily by the U. S. Department ofmore » Energy`s Office of Transportation, Energy Management and Analytical Services (EM-76) and in an auxiliary capacity, the office of Civilian Radioactive Waste Management, is summarized in this document along with a summary of the research conducted at other institutions throughout the world. In addition to the research and development work, code and standards development and regulatory positions are also discussed.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layton, Deborah L.

    The Toxic Substances Control Act, 40 CFR 761.65(a)(1) provides an exemption from the one year storage time limit for PCB/radioactive waste. PCB/radioactive waste may exceed the one year time limit provided that the provisions at 40 CFR 761.65(a)(2)(ii) and 40 CFR 761.65(a)(2)(iii) are followed. These two subsections require, (ii) "A written record documenting all continuing attempts to secure disposal is maintained until the waste is disposed of" and (iii) "The written record required by subsection (ii) of this section is available for inspection or submission if requested by EPA." EPA Region 10 has requested the Department of Energy (DOE) tomore » submit an inventory of radioactive-contaminated PCB waste in storage at the Idaho National Laboratory (INL) for the previous calendar year. The annual inventory is separated into two parts, INL without Advanced Mixed Waste Treatment Project (AMWTP) (this includes Battelle Energy Alliance, LLC, CH2M-WG Idaho, LLC, and the Naval Reactors Facility), and AMWTP.« less

  2. Radioisotope measurements of the liquid-gas flow in the horizontal pipeline using phase method

    NASA Astrophysics Data System (ADS)

    Hanus, Robert; Zych, Marcin; Jaszczur, Marek; Petryka, Leszek; Świsulski, Dariusz

    2018-06-01

    The paper presents application of the gamma-absorption method to a two-phase liquid-gas flow investigation in a horizontal pipeline. The water-air mixture was examined by a set of two Am-241 radioactive sources and two NaI(Tl) scintillation probes. For analysis of the electrical signals obtained from detectors the cross-spectral density function (CSDF) was applied. Results of the gas phase average velocity measurements for CSDF were compared with results obtained by application of the classical cross-correlation function (CCF). It was found that the combined uncertainties of the gas-phase velocity in the presented experiments did not exceed 1.6% for CSDF method and 5.5% for CCF.

  3. Defense waste processing facility (DWPF) liquids model: revisions for processing higher TIO 2 containing glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-compositionmore » models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. This report documents the development of revised TiO 2, Na 2O, Li 2O and Fe 2O 3 coefficients in the SWPF liquidus model and revised coefficients (a, b, c, and d).« less

  4. Failure of 307 basin transfer line and resultant ground contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denham, D.H.

    1970-01-01

    A leak of apparently long duration was discovered on December 9, 1965, in the transfer line from the 307 retention basins to the 340 contaminated waste system during the transfer of liquid from one of the 307 basins. This line was designed to carry only mildly-contaminated retention system waste. However, the uncovered line suggests that, over a period of time, the bottom half of the carbon steel transition section between the transfer line and the 340 contaminated waste system was corroded out. This permitted the highly contaminated waste to percolate into the soil beneath the missing pipe section. Since neithermore » the duration of leakage nor the exact origin or nature of the contaminants were known, this study was undertaken to: (1) estimate the amount of radioactivity released; (2) document its location with respect to the 340 Area and to the underlying groundwater; and (3) investigate its potential environmental impact. Soil samples were collected to determine the approximate location and quantity of each of the radionuclides which had leaked to the soil. One-digit accuracy was deemed sufficient to decide what, if any, action would be required. The findings from the several exploratory holes drilled at and adjacent to the site of the corroded transfer line are reported. (auth)« less

  5. Implementation of Information Management System for Radiation Safety of Personnel at the Russian Northwest Center for Radioactive Waste Management 'SevRAO' - 13131

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chizhov, K.; Simakov, A.; Seregin, V.

    2013-07-01

    The report is an overview of the information-analytical system designed to assure radiation safety of workers. The system was implemented in the Northwest Radioactive Waste Management Center 'SevRAO' (which is a branch of the Federal State Unitary Enterprise 'Radioactive Waste Management Enterprise RosRAO'). The center is located in the Northwest Russia. In respect to 'SevRAO', the Federal Medical-Biological Agency is the regulatory body, which deals with issues of radiation control. The main document to regulate radiation control is 'Reference levels of radiation factors in radioactive wastes management center'. This document contains about 250 parameters. We have developed a software toolmore » to simplify control of these parameters. The software includes: input interface, the database, dose calculating module and analytical block. Input interface is used to enter radiation environment data. Dose calculating module calculates the dose on the route. Analytical block optimizes and analyzes radiation situation maps. Much attention is paid to the GUI and graphical representation of results. The operator can enter the route at the industrial site or watch the fluctuations of the dose rate field on the map. Most of the results are presented in a visual form. Here we present some analytical tasks, such as comparison of the dose rate in some point with control levels at this point, to be solved for the purpose of radiation safety control. The program helps to identify points making the largest contribution to the collective dose of the personnel. The tool can automatically calculate the route with the lowest dose, compare and choose the best route. The program uses several options to visualize the radiation environment at the industrial site. This system will be useful for radiation monitoring services during the operation, planning of works and development of scenarios. The paper presents some applications of this system on real data over three years - from March 2009 to February 2012. (authors)« less

  6. Liquid Pipeline Operator's Control Room Human Factors Risk Assessment and Management Guide

    DOT National Transportation Integrated Search

    2008-11-26

    The purpose of this guide is to document methodologies, tools, procedures, guidance, and instructions that have been developed to provide liquid pipeline operators with an efficient and effective means of managing the human factors risks in their con...

  7. Cermets and method for making same

    DOEpatents

    Aaron, W. Scott; Kinser, Donald L.; Quinby, Thomas C.

    1983-01-01

    The present invention is directed to a method for making a wide variety of general-purpose cermets and for radioactive waste disposal from ceramic powders prepared from urea-dispersed solutions containing various metal values. The powders are formed into a compact and subjected to a rapid temperature increase in a reducing atmosphere. During this reduction, one or more of the more readily reducible oxides in the compact is reduced to a selected substoichiometric state at a temperature below the eutectic phase for that particular oxide or oxides and then raised to a temperature greater than the eutectic temperature to provide a liquid phase in the compact prior to the reduction of the liquid phase forming oxide to solid metal. This liquid phase forms at a temperature below the melting temperature of the metal and bonds together the remaining particulates in the cermet to form a solid polycrystalline cermet.

  8. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidificationmore » treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.« less

  9. Title list of documents made publicly available: June 1--30, 1995. Volume 17, Number 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    This monthly publication contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, E.B.

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed, material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index and amore » Report Number Index.« less

  11. Title list of documents made publicly available: April 1--30, 1996. Volume 18, Number 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    This publication describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.

  12. Title list of documents made publicly available July 1-31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This monthly publication describes the information received and published by the U.S. Nuclear Regulatory Commission (US NRC). This includes information on docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and non-docketed material published by the US NRC pertinent to it`s role as a regulatory agency.

  13. 10 CFR 110.70 - Public notice of receipt of an application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MATERIAL Public Notification and Availability of Documents and Records § 110.70 Public notice of receipt of... kilograms or more of heavy water. (4) Nuclear grade graphite for nuclear end use. (5) Radioactive waste. (Note: Does not apply to exports of heavy water to Canada.) (c) The Commission will also publish in the...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCCOY, J.C.

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  15. 19 CFR 159.10 - Notice of liquidation and date of liquidation for informal, mail, and baggage entries.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the merchandise is released under such an entry free of duty; and (3) The date a free entry is...-rate quota, because of a missing document which, if for free entry, is not produced prior to the... liquidation appearing on the receipt issued for any money collected on the entry will be voided. When the...

  16. 19 CFR 159.10 - Notice of liquidation and date of liquidation for informal, mail, and baggage entries.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the merchandise is released under such an entry free of duty; and (3) The date a free entry is...-rate quota, because of a missing document which, if for free entry, is not produced prior to the... liquidation appearing on the receipt issued for any money collected on the entry will be voided. When the...

  17. 19 CFR 159.10 - Notice of liquidation and date of liquidation for informal, mail, and baggage entries.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the merchandise is released under such an entry free of duty; and (3) The date a free entry is...-rate quota, because of a missing document which, if for free entry, is not produced prior to the... liquidation appearing on the receipt issued for any money collected on the entry will be voided. When the...

  18. 19 CFR 159.10 - Notice of liquidation and date of liquidation for informal, mail, and baggage entries.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... when the merchandise is released under such an entry free of duty; and (3) The date a free entry is...-rate quota, because of a missing document which, if for free entry, is not produced prior to the... liquidation appearing on the receipt issued for any money collected on the entry shall be voided. When the...

  19. 19 CFR 159.10 - Notice of liquidation and date of liquidation for informal, mail, and baggage entries.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the merchandise is released under such an entry free of duty; and (3) The date a free entry is...-rate quota, because of a missing document which, if for free entry, is not produced prior to the... liquidation appearing on the receipt issued for any money collected on the entry will be voided. When the...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.W.; Wickenden, D.A.; Roberts, E.P.L.

    Arvia{sup R}, working with Magnox Ltd, has developed the technology of adsorption coupled with electrochemical regeneration for the degradation of orphan radioactive oil wastes. The process results in the complete destruction of the organic phase where the radioactivity is transferred to liquid and solid secondary wastes that can then be processed using existing authorised on-site waste-treatment facilities.. Following on from successful laboratory and pilot scale trials, a full scale, site based demonstrator unit was commissioned at the Magnox Trawsfynydd decommissioning site to destroy 10 l of LLW and ILW radioactive oils. Over 99% of the emulsified oil was removed andmore » destroyed with the majority of activity (80 - 90%) being transferred to the aqueous phase. Secondary wastes were disposed of via existing routes with the majority being disposed of via the sites active effluent treatment plant. The regeneration energy required to destroy a litre of oil was 42.5 kWh/l oil. This on-site treatment approach eliminates the risks and cost associated with transporting the active waste oils off site for incineration or other treatment. The Arvia{sup R} process of adsorption coupled with electrochemical regeneration has successfully demonstrated the removal and destruction of LLW and ILW radioactive oils on a nuclear site. Over 99.9% of the emulsified oil was removed, with the majority of the radioactive species transferred to the aqueous, supernate, phase (typically 80 - 90 %). The exception to this is Cs-137 which appears to be more evenly distributed, with 43% associated with the liquid phase and 33 % with the Nyex, the remainder associated with the electrode bed. The situation with Plutonium may be similar, but this requires confirmation, hence further work is underway to understand the full nature of the electrode bed radioactive burden and its distribution within the body of the electrodes. - Tritium gaseous discharges were negligible; hence no off-gas treatment before direct discharge to atmosphere is necessary. All secondary wastes were suitable for disposal using existing disposal routes, with the majority of the activity being successfully discharged as active water via the site active drains. - Oil destruction was achieved at a rate of 28.2 ml/hr using a regeneration energy of 42.5 kWh/l oil. The treatment of different active and non-active oils was achieved using the same operating parameters, providing strong evidence that the process is robust and will treat a wide range of oils, organic wastes and additives. - Currently the design of a plant capable of processing 1000 ml/hr is being established in discussion with Magnox Ltd. The plant will run automatically with little operator attention and so process between 5-8 m{sup 3} of ILW oil per annum. (authors)« less

  1. The Optimized Integration of the Decontamination Plan and the Radwaste Management Plan into Decommissioning Plan to the VVR-S Research Reactor from Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barariu, G.

    2008-07-01

    The paper presents the progress of the Decontamination Plan and Radioactive Waste Management Plan which accompanies the Decommissioning Plan for research reactor VVR-S located in Magurele, Ilfov, near Bucharest, Romania. The new variant of the Decommissioning Plan was elaborated taking into account the IAEA recommendation concerning radioactive waste management. A new feasibility study for VVR-S decommissioning was also elaborated. The preferred safe management strategy for radioactive wastes produced by reactor decommissioning is outlined. The strategy must account for reactor decommissioning, as well as rehabilitation of the existing Radioactive Waste Treatment Plant and the upgrade of the Radioactive Waste Disposal Facilitymore » at Baita-Bihor. Furthermore, the final rehabilitation of the laboratories and reusing of cleaned reactor building is envisaged. An inventory of each type of radioactive waste is presented. The proposed waste management strategy is selected in accordance with the IAEA assistance. Environmental concerns are a part of the radioactive waste management strategy. In conclusion: The current version 8 of the Draft Decommissioning Plan which include the Integrated concept of Decontamination and Decommissioning and Radwaste Management, reflects the substantial work that has been incorporated by IFIN-HH in collaboration with SITON, which has resulted in substantial improvement in document The decommissioning strategy must take into account costs for VVR-S Reactor decommissioning, as well as costs for much needed refurbishments to the radioactive waste treatment plant and the Baita-Bihor waste disposal repository. Several improvements to the Baita-Bihor repository and IFIN-HH waste treatment facility were proposed. The quantities and composition of the radioactive waste generated by VVR-S Reactor dismantling were again estimated by streams and the best demonstrated practicable processing solution was proposed. The estimated quantities of materials to be managed in the near future raise some issues that need to be solved swiftly, such as treatment of aluminum and lead and graphite management. It is envisaged that these materials to be treated to Subsidiary for Nuclear Research (SCN) Pitesti. (authors)« less

  2. The history of Cesium-137 liquid emissions by Mühleberg Nuclear Power Plant (Switzerland) is recorded in Lake Biel sediments

    NASA Astrophysics Data System (ADS)

    Girardclos, Stéphanie; Faessler, Jérôme; Loizeau, Jean-Luc; Zehringer, Markus

    2014-05-01

    Lake sediments record changes happening in their upstream river catchment and regional environment which includes traces of artificial radionuclides emissions deriving from human activities. 137Cs emissions started worldwide in the early 1950's and peaked in 1963-64 due to nuclear bomb tests in the high atmosphere. A second 137Cs activity peak, due to the 1986 Chernobyl catastrophe is recorded in sediment archives from central Europe. These two events (1963/64 and 1986) serve routinely as time markers for recent lake records. Nuclear Power Plants (NPPs) are often constructed along river course for cooling purposes. Since 1972, Mühleberg NPP (central Switzerland) lies 18 km upstream Lake Biel and releases radioactive liquid emissions into the Aare river which adds to the diffuse - above mentioned - radioactive pollution, as revealed by Albrecht et al. (1995; 1998) and recently confirmed by Thevenon et al. (2013) from Lake Biel sediments. The water of Lake Biel is used as drinking water for ca. 60'000 inhabitants and its outflowing water is further used by downstream cities lying on the Aare-Rhine course such as Basel (200'000 inhab.) In this study, the 137Cs activity curve of a 90-cm-long sediment core (BIE10-8), retrieved in April 2010 from the central Lake Biel basin at ca. 50 m depth, and measured by gamma ray spectrometry using high resolution germanium detectors, confirms previous work and reveals a new peak for the year 1998-2000, as observed by Thevenon et al. (2013). This peak is most certainly due to Mühleberg NPP as shown by the good correlation with declared 137Cs liquid emissions indicating a significant increase in 1998-99. Decay corrected activity data, converted into 137Cs fluxes, point to water pollution by Mühleberg NPP in 1975-1985 as being similar to those linked to the catastrophic events in 1963-64 and 1986 (about 75%). As former study showed that Lake Biel sediments scavenge only a portion of the total radionuclide in water, i.e. 30-55% for 60Co (Albrecht et al. 1999), our results indicate that the estimated quantities of 137Cs input infered from the sediment record correspond well to historic declared liquid emissions. Overall, this study shows how lake or reservoir sediments can be used to trace back and verify the history of past liquid emissions from nuclear power plants. In the context of the Aare and Rhine course, were radionuclide liquid emissions from four NPP add-up in the same river system until the city of Basel and also further add-up downstream in Germany, it is necessary to bring new knowledge on this subject to quantify the 35-years-long exposure through river water for drinking water and irrigation to low but repeated radioactivity. This work was financed by SNF projects on Lake Biel nr. 121666 and 146889 and gamma ray analysis by the State Laboratory of Basel-City. REFERENCES Albrecht, A., Groudsmit, G. & Zeh M. 1999: Importance of lacustrine physical factors for the distribution of anthropogenic 60Co in Lake Biel. Limnol. Oceanogr., 44, 196-206. Albrecht ,A., Reichert, P., Beer, J. & Lück A. 1995: Evaluation of the importance of reservoir sediments as sinks for reactor-derived radionuclides in riverine systems. Journal of Environmental Radioactivity, 28, 239-269. Albrecht, A., Reiser, R., Lück, A., Stoll, J.-M.A. & Giger W. 1998. Radiocesium dating of sediments from lakes and reservoirs of different hydrological regimes. Environmental Science & Technology, 1882-1887. Thevenon, F., Wirth, S.B., Fujak, M., Poté, J. & Girardclos S. 2013. Human impact on the transport of terrigenous and anthropogenic elements to peri-alpine lakes (Switzerland) over the last decades. Aquatic Sciences, 75, 413-424.

  3. Safety analysis report for packaging (onsite) steel drum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, W.A.

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  4. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subchapter) cargo tank motor vehicles. Bottom outlets are not authorized. Trailer-on-flat-car service is not... conveyances 1. LSA-I No limit. 2. LSA-II and LSA-III; Non-combustible solids No limit. 3. LSA-II and LSA-III; Combustible solids and all liquids and gases 100 A2 4. SCO 100 A2 Table 6—Industrial Package Integrity...

  5. 49 CFR 173.427 - Transport requirements for low specific activity (LSA) Class 7 (radioactive) materials and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subchapter) cargo tank motor vehicles. Bottom outlets are not authorized. Trailer-on-flat-car service is not... conveyances 1. LSA-I No limit. 2. LSA-II and LSA-III; Non-combustible solids No limit. 3. LSA-II and LSA-III; Combustible solids and all liquids and gases 100 A2 4. SCO 100 A2 Table 6—Industrial Package Integrity...

  6. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    NASA Technical Reports Server (NTRS)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; hide

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  7. Impact of axial velocity and transmembrane pressure (TMP) on ARP filter performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, M.; Burket, P.

    2016-02-29

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). Recently, the low filter flux through the ARP of approximately 5 gallons per minute has limited the rate at which radioactive liquid waste can be treated. Salt Batch 6 had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. One potential method for increasing filter flux is to adjust the axial velocity andmore » transmembrane pressure (TMP). SRR requested SRNL to conduct bench-scale filter tests to evaluate the effects of axial velocity and transmembrane pressure on crossflow filter flux. The objective of the testing was to determine whether increasing the axial velocity at the ARP could produce a significant increase in filter flux. The authors conducted the tests by preparing slurries containing 6.6 M sodium Salt Batch 6 supernate and 2.5 g MST/L, processing the slurry through a bench-scale crossflow filter unit at varying axial velocity and TMP, and measuring filter flux as a function of time.« less

  8. Site Environmental Report for Calendar Year 2008. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2009-09-01

    This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; allmore » subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less

  9. Measurement of tritium with plastic scintillator surface improvement with plasma treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshihara, Y.; Furuta, E.; Ohyama, R.I.

    2015-03-15

    Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic whichmore » contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.« less

  10. [11C]metaraminol, a false neurotransmitter: preparation, metabolite studies and positron emission tomography examination in monkey.

    PubMed

    Någren, K; Halldin, C; Swahn, C G; Suhara, T; Farde, L

    1996-04-01

    No-carrier-added racemic [11C]metaraminol was prepared by a selective condensation of [11C]nitroethane with 3-hydroxy-benzaldehyde using tetrabutylammonium fluoride in tetrahydrofuran (THF) as a catalyst, followed by a reduction with Raney nickel in formic acid. [11C]Metaraminol was produced in 30 to 45% decay-corrected yield from [11C]nitroethane (13 to 20% decay corrected from [11C]CO2) within 45 to 55 min total synthesis time. Reversed phase high-performance liquid chromatography (HPLC) was used for the separation of the racemic erythro- and threo-forms of [11C]metaraminol. The radiochemical purity was higher than 98%, and the specific radioactivity at the end of synthesis was 500 to 800 Ci/mmol (18 to 30 GBq/mumol). Positron emission tomography (PET) examination of racemic erythro-[11C]metaraminol in a Cynomolgus monkey showed a high uptake of radioactivity in the heart. Following pretreatment with the selective norepinephrine reuptake inhibitor desipramine, the radioactivity uptake in the myocardium was markedly reduced (80%), demonstrating the specificity of erythro-[11C]metaraminol for the norepinephrine reuptake system of the heart. Pretreatment with desipramine had no effect on radioactivity in lung. The metabolism was rapid for [11C]metaraminol. The amounts of the total radioactivity representing [11C]metaraminol in plasma, determined by HPLC, were 14% at 6 min and 8% at 34 min. The high specific uptake of racemic erythro-[11C]metaraminol indicates that enantiomerically pure (R,S)-[11C]metaraminol has potential for detailed mapping of the sympathetic innervation of the human myocardium.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Weck, Philippe F.; Vaughn, Palmer

    Report RWEV-REP-001, Analysis of Postclosure Groundwater Impacts for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High Level Radioactive Waste at Yucca Mountain, Nye County, Nevada was issued by the DOE in 2009 and is currently being updated. Sandia National Laboratories (SNL) provided support for the original document, performing calculations and extracting data from the Yucca Mountain Performance Assessment Model that were used as inputs to the contaminant transport and dose calculations by Jason Associates Corporation, the primary developers of the DOE report. The inputs from SNL were documented in LSA-AR-037, Inputs to Jason Associates Corporation inmore » Support of the Postclosure Repository Supplemental Environmental Impact Statement. To support the updating of the original Groundwater Impacts document, SNL has reviewed the inputs provided in LSA-AR-037 to verify that they are current and appropriate for use. The results of that assessment are documented here.« less

  12. Title list of documents made publicly available, January 1-31, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index. The docketed information in the Title List includes the information formerly issued through the Department of Energy publication Power Reactor Docket Information, last published in January 1979. NRC documents that are publicly available may be examined without charge at the NRC Public Document Room (PDR). Duplicate copies in paper, microfiche, or (selectively) diskette, may be obtained for a fee.« less

  13. SU-E-I-79: Source Geometry Dependence of Gamma Well-Counter Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Belanger, A; Kijewski, M

    Purpose: To determine the effect of liquid sample volume and geometry on counting efficiency in a gamma well-counter, and to assess the relative contributions of sample geometry and self-attenuation. Gamma wellcounters are standard equipment in clinical and preclinical studies, for measuring patient blood radioactivity and quantifying animal tissue uptake for tracer development and other purposes. Accurate measurements are crucial. Methods: Count rates were measured for aqueous solutions of 99m- Tc at four liquid volume values in a 1-cm-diam tube and at six volume values in a 2.2-cm-diam vial. Total activity was constant for all volumes, and data were corrected formore » decay. Count rates from a point source in air, supported by a filter paper, were measured at seven heights between 1.3 and 5.7 cm from the bottom of a tube. Results: Sample volume effects were larger for the tube than for the vial. For the tube, count efficiency relative to a 1-cc volume ranged from 1.05 at 0.05 cc to 0.84 at 3 cc. For the vial, relative count efficiency ranged from 1.02 at 0.05 cc to 0.87 at 15 cc. For the point source, count efficiency relative to 1.3 cm from the tube bottom ranged from 0.98 at 1.8 cm to 0.34 at 5.7 cm. The relative efficiency of a 3-cc liquid sample in a tube compared to a 1-cc sample is 0.84; the average relative efficiency for the solid sample in air between heights in the tube corresponding to the surfaces of those volumes (1.3 and 4.8 cm) is 0.81, implying that the major contribution to efficiency loss is geometry, rather than attenuation. Conclusion: Volume-dependent correction factors should be used for accurate quantitation radioactive of liquid samples. Solid samples should be positioned at the bottom of the tube for maximum count efficiency.« less

  14. U.S. Department of Energy's initiatives for proliferation prevention program: solidification technologies for radioactive waste treatment in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhitonov, Y.; Kelley, D.

    Large amounts of liquid radioactive waste have existed in the U.S. and Russia since the 1950's as a result of the Cold War. Comprehensive action to treat and dispose of waste products has been lacking due to insufficient funding, ineffective technologies or no proven technologies, low priority by governments among others. Today the U.S. and Russian governments seek new, more reliable methods to treat liquid waste, in particular the legacy waste streams. A primary objective of waste generators and regulators is to find economical and proven technologies that can provide long-term stability for repository storage. In 2001, the V.G. Khlopinmore » Radium Institute (Khlopin), St. Petersburg, Russia, and Pacific Nuclear Solutions (PNS), Indianapolis, Indiana, began extensive research and test programs to determine the validity of polymer technology for the absorption and immobilization of standard and complex waste streams. Over 60 liquid compositions have been tested including extensive irradiation tests to verify polymer stability and possible degradation. With conclusive scientific evidence of the polymer's effectiveness in treating liquid waste, both parties have decided to enter the Russian market and offer the solidification technology to nuclear sites for waste treatment and disposal. In conjunction with these efforts, the U.S. Department of Energy (DOE) will join Khlopin and PNS to explore opportunities for direct application of the polymers at predetermined sites and to conduct research for new product development. Under DOE's 'Initiatives for Proliferation Prevention'(IPP) program, funding will be provided to the Russian participants over a three year period to implement the program plan. This paper will present details of U.S. DOE's IPP program, the project structure and its objectives both short and long-term, training programs for scientists, polymer tests and applications for LLW, ILW and HLW, and new product development initiatives. (authors)« less

  15. Dielectric Properties of Low-Level Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. E. Lagos; M. A. Ebadian

    1998-10-20

    The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must bemore » minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS. These include the incineration of combustibles, the evaporation of combustibles, the evaporation of liquids, and the compaction of noncombustibles. The handling of radioactive liquid waste is generally carried out within closed systems consisting of highly corrosion-resistant, welded, leak-tight pipes, tanks, and other apparatus. High power microwave processing is a promising technology for reducing risks to the environment and human health, thereby supporting the DOE's decontamination and decommissioning (D&D) objectives.« less

  16. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    PubMed

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  17. Progesterone transfer among cohabitating female big brown bats (Eptesicus fuscus).

    PubMed

    Greville, Lucas J; Pollock, Tyler; Salter, Joseph C; Faure, Paul A; deCatanzaro, Denys

    2017-06-01

    Experiments using female mice and bats have demonstrated that tritium-labeled 17β-estradiol ( 3 H-E 2 ) can be absorbed via cutaneous and intranasal routes and distributed to reproductive and neural tissues. Radioactivity has also been measured in tissues of untreated females after 48h cohabitation with 3 H-E 2 injected males. The present study was designed to quantify steroid transfer among female bats. Radioactive quantification via liquid scintillation counting revealed absorption of tritium-labeled progesterone ( 3 H-P 4 ) in adult females 1h after cutaneous and intranasal application (10μCi). Subsequently, pairs of mature females were each housed for 48h with a single mature female that had been administered 3 H-P 4 (50μCi) via intraperitoneal injection. Radioactivity was observed in all collected tissues of all non-injected females at levels significantly greater than the control group. Following the same paradigm, radioactivity was not observed in the tissues of untreated female bats that were housed with stimulus females treated with 3 H-E 2 (50μCi). Enzyme immunoassays revealed measurable levels of unconjugated progesterone and estradiol in the urine of female bats, suggesting urine as a vector for steroid transfer. Given that bats of this species live in predominantly female roosts in very close contact, progesterone transfer among individuals is likely to occur in natural roosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Rapid analysis method for the determination of 14C specific activity in irradiated graphite

    PubMed Central

    Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras

    2018-01-01

    14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1–100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample. PMID:29370233

  19. Rapid analysis method for the determination of 14C specific activity in irradiated graphite.

    PubMed

    Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Plukienė, Rita; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras

    2018-01-01

    14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1-100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample.

  20. Single Laboratory Validated Method for Determination of Cylindrospermopsin and Anatoxin-a in Ambient Freshwaters by Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)

    EPA Pesticide Factsheets

    This document is a standardized single laboratory validated liquid chromatography/tandem mass spectrometry (LC/MS/MS) method for the detection and quantification of cyanotoxins (combined intracellular and extracellular) in ambient freshwaters.

Top