Sample records for documents gut decontamination

  1. Variability in the quality of overdose advice in Summary of Product Characteristics (SPC) documents: gut decontamination recommendations for CNS drugs.

    PubMed

    Wall, Andrew J B; Bateman, D N; Waring, W S

    2009-01-01

    Deliberate self-poisoning is a major cause of morbidity and mortality. The Summary of Product Characteristics (SPC) document is a legal requirement for all drugs, and Section 4.9 addresses the features of toxicity and clinical advice on management of overdose. The quality and appropriateness of this advice have received comparatively little attention. Section 4.9 of the SPC was examined for all drugs in the central nervous system (CNS) category of the British National Formulary. Advice concerning gut decontamination was examined with respect to specific interventions: induced vomiting, oral activated charcoal, gastric lavage, and other interventions. Data were compared with standard reference sources for clinical management advice in poisoning. These were graded 'A' if no important differences existed, 'B' if differences were noted but not thought clinically important, and 'C' if differences were thought to be clinically significant. SPC documents were examined for 258 medications from 67 manufacturers. The overall agreement was 'A' in 23 (8.9%), 'B' in 28 (10.9%) and 'C' in 207 (80.2%). Discrepancies were due to inappropriate recommendation of induced emesis in 21.7% (95% confidence interval 17.1, 27.1), gastric lavage in 38.4% (32.7, 44.4), other gut decontamination in 5.8% (3.6, 9.4) and failure to recommend oral activated charcoal in 57.4% (51.1, 63.4). Gut decontamination advice in SPC documents with respect to CNS drugs was inadequate. Possible reasons for the observed discrepancies and ways of improving the consistency of advice are proposed.

  2. Effects of selective digestive decontamination (SDD) on the gut resistome.

    PubMed

    Buelow, Elena; Gonzalez, Teresita Bello; Versluis, Dennis; Oostdijk, Evelien A N; Ogilvie, Lesley A; van Mourik, Maaike S M; Oosterink, Els; van Passel, Mark W J; Smidt, Hauke; D'Andrea, Marco Maria; de Been, Mark; Jones, Brian V; Willems, Rob J L; Bonten, Marc J M; van Schaik, Willem

    2014-08-01

    Selective digestive decontamination (SDD) is an infection prevention measure for critically ill patients in intensive care units (ICUs) that aims to eradicate opportunistic pathogens from the oropharynx and intestines, while sparing the anaerobic flora, by the application of non-absorbable antibiotics. Selection for antibiotic-resistant bacteria is still a major concern for SDD. We therefore studied the impact of SDD on the reservoir of antibiotic resistance genes (i.e. the resistome) by culture-independent approaches. We evaluated the impact of SDD on the gut microbiota and resistome in a single ICU patient during and after an ICU stay by several metagenomic approaches. We also determined by quantitative PCR the relative abundance of two common aminoglycoside resistance genes in longitudinally collected samples from 12 additional ICU patients who received SDD. The patient microbiota was highly dynamic during the hospital stay. The abundance of antibiotic resistance genes more than doubled during SDD use, mainly due to a 6.7-fold increase in aminoglycoside resistance genes, in particular aph(2″)-Ib and an aadE-like gene. We show that aph(2″)-Ib is harboured by anaerobic gut commensals and is associated with mobile genetic elements. In longitudinal samples of 12 ICU patients, the dynamics of these two genes ranged from a ∼10(4) fold increase to a ∼10(-10) fold decrease in relative abundance during SDD. ICU hospitalization and the simultaneous application of SDD has large, but highly individualized, effects on the gut resistome of ICU patients. Selection for transferable antibiotic resistance genes in anaerobic commensal bacteria could impact the risk of transfer of antibiotic resistance genes to opportunistic pathogens. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Gross decontamination experiment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, R.; Kinney, K.; Dettorre, J.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established formore » the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.« less

  4. Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects.

    PubMed

    Buelow, Elena; Bello González, Teresita D J; Fuentes, Susana; de Steenhuijsen Piters, Wouter A A; Lahti, Leo; Bayjanov, Jumamurat R; Majoor, Eline A M; Braat, Johanna C; van Mourik, Maaike S M; Oostdijk, Evelien A N; Willems, Rob J L; Bonten, Marc J M; van Passel, Mark W J; Smidt, Hauke; van Schaik, Willem

    2017-08-14

    The gut microbiota is a reservoir of opportunistic pathogens that can cause life-threatening infections in critically ill patients during their stay in an intensive care unit (ICU). To suppress gut colonization with opportunistic pathogens, a prophylactic antibiotic regimen, termed "selective decontamination of the digestive tract" (SDD), is used in some countries where it improves clinical outcome in ICU patients. Yet, the impact of ICU hospitalization and SDD on the gut microbiota remains largely unknown. Here, we characterize the composition of the gut microbiota and its antimicrobial resistance genes ("the resistome") of ICU patients during SDD and of healthy subjects. From ten patients that were acutely admitted to the ICU, 30 fecal samples were collected during ICU stay. Additionally, feces were collected from five of these patients after transfer to a medium-care ward and cessation of SDD. Feces from ten healthy subjects were collected twice, with a 1-year interval. Gut microbiota and resistome composition were determined using 16S rRNA gene phylogenetic profiling and nanolitre-scale quantitative PCRs. The microbiota of the ICU patients differed from the microbiota of healthy subjects and was characterized by lower microbial diversity, decreased levels of Escherichia coli and of anaerobic Gram-positive, butyrate-producing bacteria of the Clostridium clusters IV and XIVa, and an increased abundance of Bacteroidetes and enterococci. Four resistance genes (aac(6')-Ii, ermC, qacA, tetQ), providing resistance to aminoglycosides, macrolides, disinfectants, and tetracyclines, respectively, were significantly more abundant among ICU patients than in healthy subjects, while a chloramphenicol resistance gene (catA) and a tetracycline resistance gene (tetW) were more abundant in healthy subjects. The gut microbiota of SDD-treated ICU patients deviated strongly from the gut microbiota of healthy subjects. The negative effects on the resistome were limited to selection

  5. Selective decontamination of the digestive tract.

    PubMed

    Krueger, Wolfgang A; Unertl, Klaus E

    2002-04-01

    Ventilator-associated pneumonia usually originates from the patient's oropharyngeal microflora. In selective digestive decontamination, topical antibiotics are applied to the oropharynx and stomach for prevention of pneumonia and other infections, possibly reducing infection-related mortality. Selective digestive decontamination is also used for the prevention of gut-derived infections in acute necrotizing pancreatitis and liver transplantation. Despite numerous clinical trials, selective digestive decontamination remains controversial. Reduction of the incidence of pneumonia is accepted, but the extent of reduction is debated. Mortality was not reduced in most individual trials, but this finding was calculated in meta-analyses, especially for combined use of topical and systemic antibiotics in surgical ICU patients. Some investigators reported increased resistance and a shift to Gram-positive pathogens. Today, it appears that selective means not only selective suppression of pathogenic bacteria but also selection of appropriate groups of patients for underlying diseases and severity of illness, and selection of ICUs, where the endemic resistance patterns might allow the use of selective digestive decontamination at a relatively low risk for increased selection pressure.

  6. Effectiveness of a decontamination method for donor corneas.

    PubMed

    Badenoch, P R; Alfrich, S J; Wedding, T R; Coster, D J

    1988-03-01

    A retrospective study was made of the effectiveness of an eye bank decontamination and storage method. A comparison was made between microbial cultures taken from the limbus at enucleation and from scleral remnants recovered after surgery. Organisms were isolated from the limbus of 73% of donor eyes and from 4% of remnants. Standard eye bank procedures were found to eradicate gut and skin organisms, including candida, from donor tissue.

  7. Enzymatic Decontamination of Environmental Organophosphorus Compounds

    DTIC Science & Technology

    2006-12-04

    ABSTRACT (Maximum 200 words) The abstract is below since many authors do not follow the 200 word limit 14. SUBJECT TERMS organophosphorus compounds ...5404 Enzymatic decontamination of environmental organophosphorus compounds REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION ON THIS PAGE...239-18 298-102 15. NUMBER OF PAGES 20. LIMITATION OF ABSTRACT UL - 4-Dec-2006 Enzymatic decontamination of environmental organophosphorus compounds

  8. Gut microbiota and allogeneic transplantation.

    PubMed

    Wang, Weilin; Xu, Shaoyan; Ren, Zhigang; Jiang, Jianwen; Zheng, Shusen

    2015-08-23

    The latest high-throughput sequencing technologies show that there are more than 1000 types of microbiota in the human gut. These microbes are not only important to maintain human health, but also closely related to the occurrence and development of various diseases. With the development of transplantation technologies, allogeneic transplantation has become an effective therapy for a variety of end-stage diseases. However, complications after transplantation still restrict its further development. Post-transplantation complications are closely associated with a host's immune system. There is also an interaction between a person's gut microbiota and immune system. Recently, animal and human studies have shown that gut microbial populations and diversity are altered after allogeneic transplantations, such as liver transplantation (LT), small bowel transplantation (SBT), kidney transplantation (KT) and hematopoietic stem cell transplantation (HTCT). Moreover, when complications, such as infection, rejection and graft versus host disease (GVHD) occur, gut microbial populations and diversity present a significant dysbiosis. Several animal and clinical studies have demonstrated that taking probiotics and prebiotics can effectively regulate gut microbiota and reduce the incidence of complications after transplantation. However, the role of intestinal decontamination in allogeneic transplantation is controversial. This paper reviews gut microbial status after transplantation and its relationship with complications. The role of intervention methods, including antibiotics, probiotics and prebiotics, in complications after transplantation are also discussed. Further research in this new field needs to determine the definite relationship between gut microbial dysbiosis and complications after transplantation. Additionally, further research examining gut microbial intervention methods to ameliorate complications after transplantation is warranted. A better understanding of the

  9. Field Equipment Cleaning and Decontamination

    EPA Pesticide Factsheets

    EPA Region 4 Science and Ecosystem Support Division (SESD), Nov. 1, 2007, document describes general and specific procedures, methods and considerations when cleaning and decontaminating sampling equipment during the course of field investigations.

  10. No effect of preoperative selective gut decontamination on endotoxemia and cytokine activation during cardiopulmonary bypass: a randomized, placebo-controlled study.

    PubMed

    Bouter, Hens; Schippers, Emile F; Luelmo, Saskia A C; Versteegh, Michael I M; Ros, Peter; Guiot, Henri F L; Frölich, Marijke; van Dissel, Jaap T

    2002-01-01

    Cardiopulmonary bypass predisposes the splanchnic region to inadequate perfusion and increases in gut permeability. Related to these changes, circulating endotoxin has been shown to rise during cardiac surgery, and may contribute to cytokine activation, high oxygen consumption, and fever ("postperfusion syndrome"). To a large extent, free endotoxin in the gut is a product of the proliferation of aerobic gram-negative bacteria and may be reduced by nonabsorbable antibiotics. To evaluate the effect of preoperative selective gut decontamination (SGD) on the incidence of endotoxemia and cytokine activation in patients undergoing open heart surgery. Prospective, randomized, placebo-controlled double-blind trial. Tertiary-care university teaching hospital. Preoperative administration for 5 to 7 days of oral nonabsorbable antibiotics (polymyxin B and neomycin) vs. placebo. The efficacy of SGD was assessed by culture of rectal swabs. Forty-four patients (median age 65 yrs, 29 males) were included in a pilot study to establish the sampling points of perioperative measurements. Seventy-eight consecutive patients (median age 65 yrs, 55 males) were enrolled for the prospective study; of these, 51 were randomly allocated to take SGD (n = 24) or placebo (n = 27); 27 were included in a control group (no medication). SGD but not placebo effectively reduced the number of rectal swabs that grew aerobic gram-negative bacteria (27% vs. 93%, respectively; p < .001). SGD did not affect the occurrence of perioperative endotoxemia, nor did it reduce the tumor necrosis factor-alpha, interleukin-10, or interleukin-6 concentrations (p > .20), as determined before surgery, upon aorta declamping, 30 mins into reperfusion, or 2 hrs after surgery. Also, SGD did not alter the incidence of postoperative fever or clinical outcome measures such as duration of artificial ventilation and intensive care unit and hospital stay. SGD effectively reduces the aerobic gram-negative bowel flora in cardiac

  11. Mass Casualty Decontamination Guidance and Psychosocial Aspects of CBRN Incident Management: A Review and Synthesis

    PubMed Central

    Carter, Holly; Amlôt, Richard

    2016-01-01

    Introduction: Mass casualty decontamination is an intervention employed by first responders at the scene of an incident involving noxious contaminants.  Many countries have sought to address the challenge of decontaminating large numbers of affected casualties through the provision of rapidly deployable temporary showering structures, with accompanying decontamination protocols.  In this paper we review decontamination guidance for emergency responders and associated research evidence, in order to establish to what extent psychosocial aspects of casualty management have been considered within these documents. The review focuses on five psychosocial aspects of incident management: likely public behaviour; responder management style; communication strategy; privacy/ modesty concerns; and vulnerable groups. Methods: Two structured literature reviews were carried out; one to identify decontamination guidance documents for first responders, and another to identify evidence which is relevant to the understanding of the psychosocial aspects of mass decontamination.  The guidance documents and relevant research were reviewed to identify whether the guidance documents contain information relating to psychosocial issues and where it exists, that the guidance is consistent with the existing evidence-base. Results: Psychosocial aspects of incident management receive limited attention in current decontamination guidance.  In addition, our review has identified a number of gaps and inconsistencies between guidance and research evidence.  For each of the five areas we identify: what is currently presented in guidance documents, to what extent this is consistent with the existing research evidence and where it diverges.  We present a series of evidence-based recommendations for updating decontamination guidance to address the psychosocial aspects of mass decontamination. Conclusions: Effective communication and respect for casualties’ needs are critical in ensuring

  12. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernandomore » Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.« less

  13. Altered gut microbiome in a mouse model of Gulf War Illness causes neuroinflammation and intestinal injury via leaky gut and TLR4 activation.

    PubMed

    Alhasson, Firas; Das, Suvarthi; Seth, Ratanesh; Dattaroy, Diptadip; Chandrashekaran, Varun; Ryan, Caitlin N; Chan, Luisa S; Testerman, Traci; Burch, James; Hofseth, Lorne J; Horner, Ronnie; Nagarkatti, Mitzi; Nagarkatti, Prakash; Lasley, Stephen M; Chatterjee, Saurabh

    2017-01-01

    Many of the symptoms of Gulf War Illness (GWI) that include neurological abnormalities, neuroinflammation, chronic fatigue and gastrointestinal disturbances have been traced to Gulf War chemical exposure. Though the association and subsequent evidences are strong, the mechanisms that connect exposure to intestinal and neurological abnormalities remain unclear. Using an established rodent model of Gulf War Illness, we show that chemical exposure caused significant dysbiosis in the gut that included increased abundance of phylum Firmicutes and Tenericutes, and decreased abundance of Bacteroidetes. Several gram negative bacterial genera were enriched in the GWI-model that included Allobaculum sp. Altered microbiome caused significant decrease in tight junction protein Occludin with a concomitant increase in Claudin-2, a signature of a leaky gut. Resultant leaching of gut caused portal endotoxemia that led to upregulation of toll like receptor 4 (TLR4) activation in the small intestine and the brain. TLR4 knock out mice and mice that had gut decontamination showed significant decrease in tyrosine nitration and inflammatory mediators IL1β and MCP-1 in both the small intestine and frontal cortex. These events signified that gut dysbiosis with simultaneous leaky gut and systemic endotoxemia-induced TLR4 activation contributes to GW chemical-induced neuroinflammation and gastrointestinal disturbances.

  14. Role of Gut Microbiota in Liver Disease.

    PubMed

    Brenner, David A; Paik, Yong-Han; Schnabl, Bernd

    2015-01-01

    Many lines of research have established a relationship between the gut microbiome and patients with liver disease. For example, patients with cirrhosis have increased bacteremia, increased blood levels of lipopolysaccharide, and increased intestinal permeability. Patients with cirrhosis have bacterial overgrowth in the small intestine. Selective intestinal decontamination with antibiotics is beneficial for patients with decompensated cirrhosis. In experimental models of chronic liver injury with fibrosis, several toll-like receptors (TLR) are required to make mice sensitive to liver fibrosis. The presumed ligand for the TLRs are bacterial products derived from the gut microbiome, and TLR knockout mice are resistant to liver inflammation and fibrosis. We and others have characterized the association between preclinical models of liver disease in mice with the microbial diversity in their gut microbiome. In each model, including intragastric alcohol, bile duct ligation, chronic carbon tetrachloride (CCl4), administration, and genetic obesity, there is a significant change in the gut microbiome from normal control mice. However, there is not a single clear bacterial strain or pattern that distinguish mice with liver injury from controlled mice. So how can the gut microbiota affect liver disease? We can identify at least 6 changes that would result in liver injury, inflammation, and/or fibrosis. These include: (1) changes in caloric yield of diet; (2) regulation of gut permeability to release bacterial products; (3) modulation of choline metabolism; (4) production of endogenous ethanol; (5) regulation of bile acid metabolism; and (6) regulation in lipid metabolism.

  15. Effect of bowel decontamination with metronidazole and vancomycin on gastroduodenal myoelectric activity.

    PubMed

    Królczyk, Grzegorz; Czupryna, Antoni; Sobocki, Jacek; Nowak, Lukasz; Zurowski, Daniel; Szatyłowiczi, Jadwiga; Strus, Magdalena; Thor, Piotr J

    2004-01-01

    It is well recognized that prolonged antibiotic therapy leading to gut decontamination often results in side effects and may lead to colonization of gut with pathologic bacteria. Changes of a gut microflora could play a role in dysmotility of gastrointestinal tract. The aim of the study was to evaluate influence of intraluminal colon anaerobic and aerobic bacterial flora on myoelectric activity of duodenum and stomach. A myoelectric activity recordings using electrodes implanted on small bowel of the conscious rats were performed. Group I was scheduled for control recording, group II for recordings in 4th day after metronidazole (M) administration (30 mg/kg) and group III for recordings after vancomycin (V) administration (15 mg/kg) respectively. Rat's stools were cultured for confirmation of changes in colon flora composition. Recordings were previously filtered digitally with bandwidth filter 0.01-0.1 Hz and 0.1-1.0 Hz to extract gastric and duodenal slow wave respectively and than analyzed with Fast Fourier Transformation. Baseline duodenal slow wave frequency in control group revealed 0.60 +/- 0.05 Hz. M increased slow waves frequency to 0.64 +/- 0.13 Hz and V did not 0.58 +/- 0.09 Hz (p > 0.05). Slow wave dominant frequency of the stomach showed decrease of frequency from control 0.035 +/- 0.04 to 0.025 +/- 0.06 Hz after M (p < 0.05). Pretreatment with V also did not influence slow wave dominant frequency in comparison to control group (0.036 +/- 0.07 Hz, p > 0.05). Only pretreatment with M significantly decreased gastric slow wave frequency. One can speculate that M effects are related not only to gut decontamination but also directly affects ENS. We propose hypothesis that M influence on slow wave frequency may be related not only to its antimicrobial activity but to its potential neurotoxic action on intramural ENS neurons.

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE /NV

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 252: Area 25 Engine Test Stand-1 Decontamination Pad, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Located at the Nevada Test Site in Nevada, CAU 252 consists of only one Corrective Action Site (25-07-04, Decontamination Pad). This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) recommendation that no corrective action is deemed necessary at CAU 252. The Corrective Action Decision Document and Closure Report have been combined into one report because the potential contaminants of concern weremore » either not detected during the corrective action investigation or were only present at naturally occurring concentrations. Based on the field results, neither corrective action or a corrective action plan is required at this site. A Notice of Completion to DOE/NV is being requested from the Nevada Division of Environmental Protection for closure of CAU 252, as well as a request that this site be moved from Appendix III to Appendix IV of the FFACO. Further, no use restrictions are required to be placed on this CAU.« less

  17. Bacteriological aspects of selective decontamination of the digestive tract as a method of infection prevention in granulocytopenic patients.

    PubMed Central

    de Vries-Hospers, H G; Sleijfer, D T; Mulder, N H; van der Waaij, D; Neiweg, H O; van Saene, H K

    1981-01-01

    We describe the bacteriological results of a controlled clinical trial of selective decontamination of the digestive tract as a method of infection prevention in granulocytopenic patients. Selective elimination of Enterobacteriaceae and Pseudomonadaceae species was accomplished by the oral administration of nalidixic acid, co-trimoxazole, or polymyxin. Yeasts were eliminated selectively by amphotericin B or nystatin treatment. The drugs used in this study were chosen because of their capacities to selectively eliminate gram-negative rods and yeast without affecting the anaerobic part of the gut flora which is responsible for colonization resistance. Compared with the control group, the selectively decontaminated patients had significantly fewer (P less than 0.0005) gram-negative rods or yeasts or both in their throat swab cultures and in their feces. This reduction may explain the clinical effectiveness of selective decontamination. PMID:7027923

  18. Environmental decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  19. Removing external DNA decontamination from arthropod predators destined for molecular gut-content analysis

    USDA-ARS?s Scientific Manuscript database

    Molecular gut-content analysis enables detection of arthropod predation with minimal disruption of ecosystem processes. Field and laboratory experiments have demonstrated that mass-collection methods, such as sweep-netting, vacuum sampling, and foliage beating, can lead to contamination of fed pred...

  20. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    PubMed Central

    Stratilo, Chad W.; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes. PMID:26394165

  1. APSIC Guidelines for environmental cleaning and decontamination.

    PubMed

    Ling, Moi Lin; Apisarnthanarak, Anucha; Thu, Le Thi Anh; Villanueva, Victoria; Pandjaitan, Costy; Yusof, Mohamad Yasim

    2015-01-01

    This document is an executive summary of APSIC Guidelines for Environmental Cleaning and Decontamination. It describes best practices in routine cleaning and decontamination in healthcare facilities as well as in specific settings e.g. management of patients with isolation precautions, food preparation areas, construction and renovation, and following a flood. It recommends the implementation of environmental hygiene program to keep the environment safe for patients, staff and visitors visiting a healthcare facility. Objective assessment of cleanliness and quality is an essential component of this program as a method for identifying quality improvement opportunities. Recommendations for safe handling of linen and bedding; as well as occupational health and safety issues are included in the guidelines. A training program is vital to ensure consistent adherence to best practices.

  2. [Advances in peroxide-based decontaminating technologies].

    PubMed

    Xi, Hai-ling; Zhao, San-ping; Zhou, Wen

    2013-05-01

    With the boosting demand for eco-friendly decontaminants, great achievements in peroxide-based decontaminating technologies have been made in recent years. These technologies have been applied in countering chemical/biological terrorist attacks, dealing with chemical/biological disasters and destructing environmental pollutants. Recent research advances in alpha-nucleophilic/oxidative reaction mechanisms of peroxide-based decontamination against chemical warfare agents were reviewed, and some classical peroxide-based decontaminants such as aqueous decontaminating solution, decontaminating foam, decontaminating emulsions, decontaminating gels, decontaminating vapors, and some newly developed decontaminating media (e.g., peroxide-based self-decontaminating materials and heterogeneous nano-catalytic decontamination systems) were introduced. However, currently available peroxide-based decontaminants still have some deficiencies. For example, their decontamination efficiencies are not as high as those of chlorine-containing decontaminants, and some peroxide-based decontaminants show relatively poor effect against certain agents. More study on the mechanisms of peroxide-based decontaminants and the interfacial interactions in heterogeneous decontamination media is suggested. New catalysts, multifunctional surfactants, self-decontaminating materials and corrosion preventing technologies should be developed before peroxide-based decontaminants really become true "green" decontaminants.

  3. Reactive decontamination formulation

    DOEpatents

    Giletto, Anthony [College Station, TX; White, William [College Station, TX; Cisar, Alan J [Cypress, TX; Hitchens, G Duncan [Bryan, TX; Fyffe, James [Bryan, TX

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  4. Recruitment and establishment of the gut microbiome in arctic shorebirds.

    PubMed

    Grond, Kirsten; Lanctot, Richard B; Jumpponen, Ari; Sandercock, Brett K

    2017-12-01

    Gut microbiota play a key role in host health. Mammals acquire gut microbiota during birth, but timing of gut microbial recruitment in birds is unknown. We evaluated whether precocial chicks from three species of arctic-breeding shorebirds acquire gut microbiota before or after hatching, and then documented the rate and compositional dynamics of accumulation of gut microbiota. Contrary to earlier reports of microbial recruitment before hatching in chickens, quantitative PCR and Illumina sequence data indicated negligible microbiota in the guts of shorebird embryos before hatching. Analyses of chick feces indicated an exponential increase in bacterial abundance of guts 0-2 days post-hatch, followed by stabilization. Gut communities were characterized by stochastic recruitment and convergence towards a community dominated by Clostridia and Gammaproteobacteria. We conclude that guts of shorebird chicks are likely void of microbiota prior to hatch, but that stable gut microbiome establishes as early as 3 days of age, probably from environmental inocula. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate.

    PubMed

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Prevost, Philippe; Maloni, Pascal; Torre, Franck; Asia, Laurence; Josse, Denis; Doumenq, Pierre

    2017-04-01

    Chemical warfare agents are an actual threat and victims' decontamination is a main concern when mass exposure occurs. Skin decontamination with current protocols has been widely documented, as well as surface decontamination. However, considering hair ability to trap chemicals in vapour phase, we investigated hair decontamination after exposure to sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. Four decontamination protocols were tested on hair, combining showering and emergency decontamination (use of Fuller's earth or Reactive Skin Decontamination Lotion RSDL ® ). Both simulants were recovered from hair after treatment, but contents were significantly reduced (42-85% content allowance). Showering alone was the least efficient protocol. Concerning 2-chloroethyl ethyl sulphide, protocols did not display significant differences in decontamination efficacy. For MeS, use of emergency decontaminants significantly increased showering efficacy (10-20% rise), underlining their usefulness before thorough decontamination. Our results highlighted the need to extensively decontaminate hair after chemical exposure. Residual amounts after decontamination are challenging, as their release from hair could lead to health issues. Copyright © 2016. Published by Elsevier B.V.

  6. Lessons Learned from Decontamination Experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who weremore » decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.« less

  7. SUPERFUND TREATABILITY CLEARINGHOUSE: PCB SEDIMENT DECONTAMINATION PROCESS-SELECTION FOR TEST AND EVALUATION

    EPA Science Inventory

    This document is a report describing the assessment of seven alternative treatment processes that show potential for decontaminating polychlorinated biphenyl (PCB)-contaminated sediments. The processes are KPEG, MODAR Supercritical Water Oxidation, Bio-Clean, Ultrasonics/UV, C...

  8. Comparative study on decontamination treatment of paper-based materials in corona discharge and HF cold plasma

    NASA Astrophysics Data System (ADS)

    Ioanid, E. G.; Dunca, S.; Rusu, D.; Tǎnase, C.

    2012-04-01

    Documents decontamination using dry methods, less invasive than the wet ones implying toxic nocuous substances for cellulose-based materials, has been the object of numerous studies. In recent years mixed researchers teams have been studying the possibility of one-step document decontamination performed by a dry treatment, the risks of repeated wet manipulation thus being reduced. Among physical methods appropriate to this end, high-frequency cold plasma and corona effect can be mentioned. Our studies were carried out on samples taken from ancient books with no cultural heritage value. The decontamination efficiency and the impact on paper of the two types of treatments were determined by: microbiological analysis, scanning electron microscopy, FTIR, chromatic alterations and gloss determination. The above-mentioned procedures eliminate the use of chemical conservation substances, nocuous for the paper support. At the same time the health risk for conservators, restorers, archivists or archive's users is removed.

  9. Comparison of skin decontamination efficacy of commercial decontamination products following exposure to VX on human skin.

    PubMed

    Thors, L; Koch, M; Wigenstam, E; Koch, B; Hägglund, L; Bucht, A

    2017-08-01

    The decontamination efficacy of four commercially available skin decontamination products following exposure to the nerve agent VX was evaluated in vitro utilizing a diffusion cell and dermatomed human skin. The products included were Reactive Skin Decontamination Lotion (RSDL), the Swedish decontamination powder 104 (PS104), the absorbent Fuller's Earth and the aqueous solution alldecontMED. In addition, various decontamination procedures were assessed to further investigate important mechanisms involved in the specific products, e.g. decontamination removal from skin, physical removal by sponge swabbing and activation of degradation mechanisms. The efficacy of each decontamination product was evaluated 5 or 30 min after dermal application of VX (neat or diluted to 20% in water). The RSDL-lotion was superior in reducing the penetration of VX through human skin, both when exposed as neat agent and when diluted to 20% in water. Swabbing with the RSDL-sponge during 2 min revealed decreased efficacy compared to applying the RSDL-lotion directly on the skin for 30 min. Decontamination with Fuller's Earth and alldecontMED significantly reduced the penetration of neat concentration of VX through human skin. PS104-powder was insufficient for decontamination of VX at both time-points, independently of the skin contact time of PS104. The PS104-slurry (a mixture of PS104-powder and water), slightly improved the decontamination efficacy. Comparing the time-points for initiated decontamination revealed less penetrated VX for RSDL and Fuller's Earth when decontamination was initiated after 5 min compared to 30 min post-exposure, while alldecontMED displayed similar efficacy at both time-points. Decontamination by washing with water only resulted in a significant reduction of penetrated VX when washing was performed 5 min after exposure, but not when decontamination was delayed to 30 min post-exposure of neat VX. In conclusion, early initiated decontamination with the

  10. Experience with chemical system decontamination by the CORD process and electrochemical decontamination of pipe ends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wille, H.; Bertholdt, H.O.; Operschall, H.

    Efforts to reduce occupational radiation exposure during inspection and repair work in nuclear power plants turns steadily increasing attention to the decontamination of systems and components. Due to the advanced age of nuclear power plants resulting in increasing dose rates, the decontamination of components, or rather of complete systems, or loops to protect operating and inspection personnel becomes demanding. Besides, decontaminating complete primary loops is in many cases less difficult than cleaning large components. Based on experience gained in nuclear power plants, an outline of two different decontamination methods performed recently are given. For the decontamination of complete systems ormore » loops, Kraftwerk Union AG has developed CORD, a low-concentration process. For the decontamination performance of a subsystem, such as the steam generator (SG) channel heads of a pressurized water reactor or the recirculation loops of a boiling water reactor the automated mobile decontamination appliance is used. The electrochemical decontamination process is primarily applicable for the treatment of specially limited surface areas.« less

  11. Independent verification of plutonium decontamination on Johnston Atoll (1992--1996)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson-Nichols, M.J.; Wilson, J.E.; McDowell-Boyer, L.M.

    1998-05-01

    The Field Command, Defense Special Weapons Agency (FCDSWA) (formerly FCDNA) contracted Oak Ridge National Laboratory (ORNL) Environmental Technology Section (ETS) to conduct an independent verification (IV) of the Johnston Atoll (JA) Plutonium Decontamination Project by an interagency agreement with the US Department of Energy in 1992. The main island is contaminated with the transuranic elements plutonium and americium, and soil decontamination activities have been ongoing since 1984. FCDSWA has selected a remedy that employs a system of sorting contaminated particles from the coral/soil matrix, allowing uncontaminated soil to be reused. The objective of IV is to evaluate the effectiveness ofmore » remedial action. The IV contractor`s task is to determine whether the remedial action contractor has effectively reduced contamination to levels within established criteria and whether the supporting documentation describing the remedial action is adequate. ORNL conducted four interrelated tasks from 1992 through 1996 to accomplish the IV mission. This document is a compilation and summary of those activities, in addition to a comprehensive review of the history of the project.« less

  12. Public experiences of mass casualty decontamination.

    PubMed

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2012-09-01

    In this article, we analyze feedback from simulated casualties who took part in field exercises involving mass decontamination, to gain an understanding of how responder communication can affect people's experiences of and compliance with decontamination. We analyzed questionnaire data gathered from 402 volunteers using the framework approach, to provide an insight into the public's experiences of decontamination and how these experiences are shaped by the actions of emergency responders. Factors that affected casualties' experiences of the decontamination process included the need for greater practical information and better communication from responders, and the need for privacy. Results support previous findings from small-scale incidents that involved decontamination in showing that participants wanted better communication from responders during the process of decontamination, including more practical information, and that the failure of responders to communicate effectively with members of the public led to anxiety about the decontamination process. The similarity between the findings from the exercises described in this article and previous research into real incidents involving decontamination suggests that field exercises provide a useful way to examine the effect of responder communication strategies on the public's experiences of decontamination. Future exercises should examine in more detail the effect of various communication strategies on the public's experiences of decontamination. This will facilitate the development of evidence-based communication strategies intended to reduce anxiety about decontamination and increase compliance among members of the public during real-life incidents that involve mass decontamination.

  13. Non-destructive decontamination of building materials

    NASA Astrophysics Data System (ADS)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  14. In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using Dermal Decontamination Gel (DDGel) and Reactive Skin Decontamination Lotion (RSDL).

    PubMed

    Cao, Yachao; Hui, Xiaoying; Zhu, Hanjiang; Elmahdy, Akram; Maibach, Howard

    2018-07-01

    This study compared the efficiency for in vitro human skin decontamination using DDGel and RSDL. Experiments were performed using in vitro human skin models, in which skin was mounted onto Flow-Through diffusion cells. The mass of 14 -C CEES removed from skin surface after decontamination was quantitated by measuring radioactivity with a liquid scintillation spectrometer. Both decontaminants removed more than 82% of CEES from skin. DDGel skin decontamination significantly reduced toxicant amount when compared to RSDL. Mean CEES remaining in stratum corneum (SC), viable epidermis, dermis, and systemic absorption of DDGel and RSDL were, 0.12 and 0.55% (P < 0.01), 0.31 and 0.95% (p < 0.01), 1.08 and 2.92% (p < 0.05), 3.13 and 6.34% (p < 0.05), respectively. DDGel showed higher decontamination efficiency (twice decontamination efficacy factor, DEF) than RSDL and efficiently removed chemicals from the skin surface, importantly back-extracted from the SC, and significantly reduced both chemical penetration into skin and systemic absorption. Thus, DDGel can offer a potential as a next generation skin decontamination platform technology for military and civilian applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. 40 CFR 170.150 - Decontamination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Decontamination. 170.150 Section 170... PROTECTION STANDARD Standard for Workers § 170.150 Decontamination. (a)(1) Requirement. The agricultural employer must provide decontamination supplies for workers in accordance with this section whenever: (i...

  16. The Role of the Gut Microbiota in Childhood Obesity.

    PubMed

    Pihl, Andreas Friis; Fonvig, Cilius Esmann; Stjernholm, Theresa; Hansen, Torben; Pedersen, Oluf; Holm, Jens-Christian

    2016-08-01

    Childhood and adolescent obesity has reached epidemic proportions worldwide. The pathogenesis of obesity is complex and multifactorial, in which genetic and environmental contributions seem important. The gut microbiota is increasingly documented to be involved in the dysmetabolism associated with obesity. We conducted a systematic search for literature available before October 2015 in the PubMed and Scopus databases, focusing on the interplay between the gut microbiota, childhood obesity, and metabolism. The review discusses the potential role of the bacterial component of the human gut microbiota in childhood and adolescent-onset obesity, with a special focus on the factors involved in the early development of the gut bacterial ecosystem, and how modulation of this microbial community might serve as a basis for new therapeutic strategies in combating childhood obesity. A vast number of variables are influencing the gut microbial ecology (e.g., the host genetics, delivery method, diet, age, environment, and the use of pre-, pro-, and antibiotics); but the exact physiological processes behind these relationships need to be clarified. Exploring the role of the gut microbiota in the development of childhood obesity may potentially reveal new strategies for obesity prevention and treatment.

  17. [Assessment of decontamination processes: cleaning, disinfection and sterilization in dental practice in Poland in the years 2011-2012].

    PubMed

    Röhm-Rodowald, Ewa; Jakimiak, Bozenna; Chojecka, Agnieszka; Zmuda-Baranowska, Magdalena; Kanclerski, Krzysztof

    2012-01-01

    Effective decontamination of instruments is a key element of infection control and the provision of high quality in dental care. The aim of the study was to evaluate the efficiency of decontamination procedures including cleaning, disinfection and sterilization of re-usable instruments in dental practices in Poland. The efficiency of disinfection and sterilization processes have been evaluated on the results of the questionnaires. The following information were taken into account: setting where disinfection and sterilization had been performed, preparation of dental equipment for sterilization (disinfection, washing and cleaning, packaging), the types of autoclaves and used types of sterilization cycles, routine monitoring and documentation of sterilization processes, treatment of handpieces and the frequency of surface decontamination. Data were collected from 43 dental practices (35 dental offices and 8 clinics). Disinfection and cleaning processes were performed manually in 63% of dental offices and ultrasonic baths were used in 53% of settings. Washer disinfectors were used in 23% of dental practices: in every researched clinic and in a few dental offices. All sterilization processes were performed in steam autoclaves, mainly in small steam sterilizers (81%). Dental handpieces were sterilized in 72% of practices, but only 33% of them performed sterilization in recommended cycle B. Sterilization processes were monitored with chemical indicators in 33% of practices. Biological monitoring of the processes was carried out at different intervals. Incorrect documentation of instruments and surfaces decontamination was recorded in several settings. There is still a need for improvement of decontamination processes in dental practice in Poland. Areas for improvement include: replacement of manual cleaning and disinfection processes with automatic processes, sterilization of dental handpieces after each patient, monitoring of a sterilization process with chemical and

  18. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity.

    PubMed

    Madsen, Lise; Myrmel, Lene S; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity.

  19. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity

    PubMed Central

    Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal studies confirm that different protein sources vary in their ability to either prevent or induce obesity. Different sources of protein such as beans, vegetables, dairy, seafood, and meat differ in amino acid composition. Further, the type and level of other factors, such as fatty acids and persistent organic pollutants (POPs) vary between dietary protein sources. All these factors can modulate the composition of the gut microbiota and may thereby influence their obesogenic properties. This review summarizes evidence of how different protein sources affect energy efficiency, obesity development, and the gut microbiota, linking protein-dependent changes in the gut microbiota with obesity. PMID:29311977

  20. Comparative analysis of gut microbiota of Culex restuans (Diptera: Culicidae) females from different parents

    USDA-ARS?s Scientific Manuscript database

    The potential for gut microbiota to impede or enhance pathogen transmission is well-documented but the factors that shape this microbiota in mosquito vectors are poorly understood. We characterized and compared the gut microbiota of adult females of Culex restuans Theobald from different parents. Cu...

  1. Decontamination Efficacy Testing of COTS SteriFx Prodcuts for Mass Personnel and Casualty Decontamination

    DTIC Science & Technology

    2011-09-01

    low‐cost, lightweight, single‐use individual product for field self ‐decontamination. Surface (skin) decontamination of Bacillus subtilis spores has...field spray decontamination unit was previously demonstrated in 2003 at Guantanamo Bay, Cuba (Dankert, 2003), and for wound healing with repeated...Technology on plastics, rubber and plastic tubing, and clothing. Demonstrate ability of CleanseFx to function as skin cleanser in military setting

  2. Long lasting decontamination foam

    DOEpatents

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  3. Nurses' infection-control practice: hand decontamination, the use of gloves and sharp instruments.

    PubMed

    Gould, D; Wilson-Barnett, J; Ream, E

    1996-04-01

    Infection is an acknowledged hospital problem. Micro-organisms are disseminated mainly via hands but there is evidence that hand decontamination, the most important means of prevention, is performed too seldom, and not always after activities likely to result in heavy contamination. Nurses themselves are exposed to risks of infection, chiefly through contact with blood and body fluids, yet it has also been reported that gloves are not always worn during contact with patients' secretions and that the handling and disposal of sharp instruments may be performed unsafely. The study reported in this paper documents nursing behaviour in relation to hand decontamination, the use of gloves and sharps, taking into consideration a number of variables which could influence practice: availability of the expertise afforded by an infection-control nurse, clinical setting, nursing workload, knowledge and the resources available to control infection. Hands were decontaminated after 28.78% of patient contacts. Hands were decontaminated after 49.85% of activities likely to result in heavy contamination. Performance was related to nursing workload and the availability of hand decontaminating agents, especially when the nurses became busy. Use of gloves when they were available also proved good, with little evidence of wasteful use. The handling and disposal of sharps were commendable for most subjects but a few grossly unsafe incidents were nevertheless witnessed, apparently not associated with any of the variables examined.

  4. Selective decontamination of the digestive tract ameliorates severe burn-induced insulin resistance in rats.

    PubMed

    Li, Jun; Zhu, Liang; Xu, Ming; Han, Juntao; Bai, Xiaozhi; Yang, Xuekang; Zhu, Huayu; Xu, Jie; Zhang, Xing; Gong, Yangfan; Hu, Dahai; Gao, Feng

    2015-08-01

    Severe burns often initiate the prevalence of hyperglycemia and insulin resistance, significantly contributing to adverse clinical outcomes. However, there are limited treatment options. This study was designed to investigate the role and the underlying mechanisms of oral antibiotics to selectively decontaminate the digestive tract (SDD) on burn-induced insulin resistance. Rats were subjected to 40% of total body surface area full-thickness burn or sham operation with or without SDD treatment. Translocation of FITC-labeled LPS was measured at 4h after burn. Furthermore, the effect of SDD on post-burn quantity of gram-negative bacteria in gut was investigated. Serum or muscle LPS and proinflammatory cytokines were measured. Intraperitoneal glucose tolerance test and insulin tolerance test were used to determine the status of systemic insulin resistance. Furthermore, intracellular insulin signaling (IRS-1 and Akt) and proinflammatory related kinases (JNK and IKKβ) were assessed by western blot. Burn increased the translocation of LPS from gut 4h after injury. SDD treatment effectively inhibited post-burn overgrowth of gram-negative enteric bacilli in gut. In addition, severe burns caused significant increases in the LPS and proinflammatory cytokines levels, activation of proinflammatory related kinases, and systemic insulin resistance as well. But SDD treatment could significantly attenuate burn-induced insulin resistance and improve the whole-body responsiveness to insulin, which was associated with the inhibition of gut-derived LPS, cytokines, proinflammatory related kinases JNK and IKKβ, as well as activation of IRS-1 and Akt. SDD appeared to have an effect on proinflammatory signaling cascades and further reduced severe burn-induced insulin resistance. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  5. Analysis of chemical weapons decontamination waste from old ton containers from Johnston Atoll using multiple analytical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creasy, W.R.; Brickhouse, M.D.; Morrisse, K.M.

    1999-07-01

    Decontamination waste from chemical weapons (CW) agents has been stored in ton containers on Johnston Atoll since 1971. The waste was recently sampled and analyzed to determine its chemical composition in preparation for future cleanups. Due to the range of products and analytical requirements, multiple chromatographic and spectroscopic methods were necessary, including gas chromatography/mass spectrometry (GC/MS), gas chromatography/atomic emission detection (GC/AED), liquid chromatography/mass spectrometry (LC/MS), capillary electrophoresis (CE), and nuclear magnetic resonance spectroscopy (NMR). The samples were screened for residual agents. No residual sarin (GB) or VX was found to detection limits of 20 ng/mL, but 3% of the samplesmore » contained residual sulfur mustard (HD) at < 140 ng/mL. Decontamination products of agents were identified. The majority (74%) of the ton containers were documented correctly, in that the observed decontamination products were in agreement with the labeled agent type, but for a number of the containers, the contents were not in agreement with the labels. In addition, arsenic compounds that are decontamination products of the agent lewisite (L) were observed in a few ton containers, suggesting that lewisite was originally present but not documented. This study was a prototype to demonstrate the level of effort required to characterize old bulk CW-related waste.« less

  6. Chemical Decontaminant Testing

    DTIC Science & Technology

    2014-10-20

    make certain that the amine group on the VX is entirely in the freebase form needed for complete extraction into the chloroform. (3) When other...information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for information on ...material effects of decontaminants on fielded military equipment (material effects are defined as hardness). Mechanisms of decontaminating equipment

  7. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    PubMed

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  8. Hospital Decontamination: What Nurses Need to Know.

    PubMed

    Cox, Brent

    2016-12-01

    Incidents involving the release of hazardous materials challenge medical providers with safely, quickly, and correctly removing contaminants from the victim. While doing so, the safety of the first receiver, current patients, bystanders, as well as the victim all have to be considered. Key challenges with hospital decontamination include, but are not limited to, selection of team members, training protocols, employee turnover, and funding. Best practices, based on the available literature and evidence, include administration buy-in and support; strong policy and procedure documentation; equipment maintenance programs; and team member recruitment, retention, and education. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and (b...

  10. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and (b...

  11. CBRN Decontamination: Multiservice Tactics, Techniques, and Procedures for Chemical, Biological, Radiological, and Nuclear Decontamination

    DTIC Science & Technology

    2006-04-01

    b. Principles of Decontamination Operations. Decontaminate immediately for an agent on the skin . Perform higher levels of decontamination as a...the mask and hood with paper towels or rags. NOTE: Cool, soapy water is not as effective for removing contamination, but it can be used if you scrub ...N/A N/A 5 N/A Sponge, cellulose II Each As required N/A N/A N/A N/A 2 N/A 4 6 Brush, scrub II Each As required N/A N/A N/A N/A 2 N/A 2 N/A Towels

  12. Aptamers as the Agent in Decontamination Assays (Apta-Decontamination Assays): From the Environment to the Potential Application In Vivo

    PubMed Central

    Bilibana, Mawethu Pascoe; Yeoh, Tzi Shien; Tang, Thean-Hock

    2017-01-01

    The binding specificity and affinity of aptamers have long been harnessed as the key elements in the development of aptamer-based assays, particularly aptasensing application. One promising avenue that is currently explored based on the specificity and affinity of aptamers is the application of aptamers in the decontamination assays. Aptamers have been successfully harnessed as the decontamination agents to remove contaminants from the environment and to decontaminate infectious elements. The reversible denaturation property inherent in aptamers enables the repeated usage of aptamers, which can immensely save the cost of decontamination. Analogous to the point-of-care diagnostics, there is no doubt that aptamers can also be deployed in the point-of-care aptamer-based decontamination assay, whereby decontamination can be performed anywhere and anytime for instantaneous decision-making. It is also prophesied that aptamers can also serve more than as a decontaminant, probably as a tool to capture and kill hazardous elements, particularly pathogenic agents. PMID:29225967

  13. Oxidative Tritium Decontamination System

    DOEpatents

    Gentile, Charles A. , Guttadora, Gregory L. , Parker, John J.

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  14. Decontamination of Subway Railcar and Related Materials ...

    EPA Pesticide Factsheets

    Report In the event of a biological incident in a transportation hub such as a subway system, effective remediation of railcars, subway tunnels and stations will require the use of various decontamination approaches. One potential decontamination tool that could be used in such an event is the fogging of sporicidal liquids. The study described in this report builds on previous fogging decontamination research, but with a focus on decontaminating subway railcars and related materials.

  15. A cross-sectional comparative study of gut bacterial community of Indian and Finnish children.

    PubMed

    Kumbhare, Shreyas V; Kumar, Himanshu; Chowdhury, Somak P; Dhotre, Dhiraj P; Endo, Akihito; Mättö, Jaana; Ouwehand, Arthur C; Rautava, Samuli; Joshi, Ruchi; Patil, Nitinkumar P; Patil, Ravindra H; Isolauri, Erika; Bavdekar, Ashish R; Salminen, Seppo; Shouche, Yogesh S

    2017-09-05

    The human gut microbiome plays a crucial role in the compositional development of gut microbiota. Though well documented in western pediatrics population, little is known about how various host conditions affect populations in different geographic locations such as the Indian subcontinent. Given the impact of distinct environmental conditions, our study assess the gut bacterial diversity of a small cohort of Indian and Finnish children and investigated the influence of FUT2 secretor status and birth mode on the gut microbiome of these populations. Using multiple profiling techniques, we show that the gut bacterial community structure in 13-14-year-old Indian (n = 47) and Finnish (n = 52) children differs significantly. Specifically, Finnish children possessed higher Blautia and Bifidobacterium, while genera Prevotella and Megasphaera were predominant in Indian children. Our study also demonstrates a strong influence of FUT2 and birth mode variants on specific gut bacterial taxa, influence of which was noticed to differ between the two populations under study.

  16. Gut Microbiota-brain Axis

    PubMed Central

    Wang, Hong-Xing; Wang, Yu-Ping

    2016-01-01

    Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198

  17. Skin decontamination: principles and perspectives.

    PubMed

    Chan, Heidi P; Zhai, Hongbo; Hui, Xiaoying; Maibach, Howard I

    2013-11-01

    Skin decontamination is the primary intervention needed in chemical, biological and radiological exposures, involving immediate removal of the contaminant from the skin performed in the most efficient way. The most readily available decontamination system on a practical basis is washing with soap and water or water only. Timely use of flushing with copious amounts of water may physically remove the contaminant. However, this traditional method may not be completely effective, and contaminants left on the skin after traditional washing procedures can have toxic consequences. This article focuses on the principles and practices of skin decontamination.

  18. Excimer laser decontamination

    NASA Astrophysics Data System (ADS)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.

    2000-04-01

    The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.

  19. Nuclear reactor cooling system decontamination reagent regeneration

    DOEpatents

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  20. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  1. Studies on residue-free decontaminants for chemical warfare agents.

    PubMed

    Wagner, George W

    2015-03-17

    Residue-free decontaminants based on hydrogen peroxide, which decomposes to water and oxygen in the environment, are examined as decontaminants for chemical warfare agents (CWA). For the apparent special case of CWA on concrete, H2O2 alone, without any additives, effectively decontaminates S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate (VX), pinacolyl methylphosphorofluoridate (GD), and bis(2-choroethyl) sulfide (HD) in a process thought to involve H2O2 activation by surface-bound carbonates/bicarbonates (known H2O2 activators for CWA decontamination). A plethora of products are formed during the H2O2 decontamination of HD on concrete, and these are characterized by comparison to synthesized authentic compounds. As a potential residue-free decontaminant for surfaces other than concrete (or those lacking adsorbed carbonate/bicarbonate) H2O2 activation for CWA decontamination is feasible using residue-free NH3 and CO2 as demonstrated by reaction studies for VX, GD, and HD in homogeneous solution. Although H2O2/NH3/CO2 ("HPAC") decontaminants are active for CWA decontamination in solution, they require testing on actual surfaces of interest to assess their true efficacy for surface decontamination.

  2. Antimicrobial prophylaxis in acute pancreatitis: selective decontamination versus antibiotics.

    PubMed

    Luiten, E J; Bruining, H A

    1999-07-01

    The results of several controlled clinical trials, published during the last 5 years, provide evidence of a beneficial role for early antimicrobial prophylaxis in severe acute pancreatitis. Pancreatic infections, especially gram-negative, which are of major importance with regard to morbidity and mortality, are gut-derived. Early enteral administration of antibiotics therefore seems the most logical measure to nip the danger in the bud. Intravenous antibiotics should adequately penetrate (peri)pancreatic tissues, i.e. necrotic tissues, and should be effective against the prevalent flora in infected necrotic tissues. However, the optimal route of administration is still a matter of debate. In contrast to one clinical trial using selective decontamination (SD) (i.e. enteral antibiotics combined with short systemic prophylaxis until SD is established), no clinical trial using intravenous antibiotics has been reported in which both pancreatic infections as well as mortality were reduced. Although the evidence supporting enteral administration, i.e. SD, is not unimpressive, further controlled clinical trials, in which the different ways of administration are compared, are warranted.

  3. Anthrax Sampling and Decontamination: Technology Trade-Offs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination methodmore » in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?« less

  4. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  5. Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax

    NASA Astrophysics Data System (ADS)

    Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; João Trigo, Maria; Ferreira, Armando; Manuela Carolino, Maria; Portugal, António; Luísa Botelho, Maria

    2012-12-01

    Parchments are important documents that give testimony for History; therefore these materials should be respected and preserved. Considering incremental biodeterioration problems that have to be faced daily, the Archive of the University of Coimbra (AUC) is involved in different scientific projects in order to evaluate and determine new methods for document decontamination and preservation. The aim of this study was to evaluate gamma radiation effects on the colour and texture of the AUC parchment documents. The assessment of these effects was used to estimate the maximum gamma radiation dose (Dmax) that could guarantee parchment documents' decontamination treatment, without significant alteration of their physical properties. Parchment samples were exposed to gamma radiation doses ranging from 10 to 30 kGy. The texture and colour of samples were assessed before and after the irradiation procedure, using a texture analyser and an electronic colorimeter. Hardness and springiness were determined based on texture spectra. Lightness (L*), Chroma (C), greenness vs. redness (a*) and yellowness vs. blueness (b*) values were obtained from colorimetric measures. Results indicate no significant effects of gamma radiation on the texture and colour of parchment for the studied doses.

  6. SURFACE DECONTAMINATION EFFICACY STUDIES FOR ...

    EPA Pesticide Factsheets

    Technical Brief This Technical Brief summarizes the findings from three studies in which the decontamination efficacy was determined for various liquid contaminants when applied to various surfaces that are contaminated with blister agents (vesicants).This may provide decision-makers with practical information on surface decontaminations options during a blister agent response.

  7. The effect of quercetin on genetic expression of the commensal gut microbes bifidobacterium catenulatum, enterococcus caccae and ruminococcus gauvreauii

    USDA-ARS?s Scientific Manuscript database

    Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of que...

  8. [Fungi in the gut - the gut mycobiome].

    PubMed

    Hof, Herbert

    2017-08-01

    Many different fungi, including yeasts and molds, can be found in the intestinal tract of humans constituting the gut mycobiome. In case the bacterial flora is altered, the fungal flora may react inversely. By a so-called fungal diet, however, the composition of the mycobiome can hardly be influenced. Whereas some fungi are only transiently present in the gut after oral uptake, others, such as Candida, Saccharomyces, Rhodotorula, Trichosporon, Geotrichum, amongst others, are members of the residential, autochthonous gut flora. Some of these fungi exert beneficial effects, for example by synthesizing useful materials. Rhodotorula can produce fatty acids and carotenoids. Others are able to metabolize toxic compounds, for example mycotoxins as well as procarcinogenic items in food. Toxins, as well as pathogenic bacteria, can be bound to mannans on the surface of fungi und can consequently be exported. Some fungi are said to exert probiotic activities. Certain fungal constituents, such as glucans, may even stimulate the immune system. On the other hand, some fungi cannot only colonize the gut asymptomatically but can also be noxious under certain conditions when, for example, the bacterial flora is disturbed. By means of their virulence factors, they can damage the gut epithelium and even penetrate into the Mukosa inducing inflammation, They can also aggravate chronic inflammatory processes. Fungi play a role in the development of obesity. Lastly, fungi in the gut represent a reservoir from which they may spread to other sites when the conditions are favorable. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Individual diet has sex-dependent effects on vertebrate gut microbiota.

    PubMed

    Bolnick, Daniel I; Snowberg, Lisa K; Hirsch, Philipp E; Lauber, Christian L; Org, Elin; Parks, Brian; Lusis, Aldons J; Knight, Rob; Caporaso, J Gregory; Svanbäck, Richard

    2014-07-29

    Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition ('dysbiosis'). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet-microbiota associations are sex dependent. We document similar sex-specific diet-microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects.

  10. MRSA decontamination using octenidine-based products.

    PubMed

    Danilevicius, Mindaugas; Juzéniené, Audra; Juzénaité-Karneckiené, Indré; Veršinina, Anželika

    Methicillin-resistant Staphylococcus aureus (MRSA) infections are an increasing problem worldwide with a high risk of severe illness and mortality in hospitalised patients. Patients with chronic wounds are at particular risk of developing MRSA infections. As octenidine-based products have shown promising success in decontamination in the past, the aim of the present study was to determine its efficacy, safety, and tolerability in decontaminating hospitalised MRSA-positive patients. From 1 April 2011 until 9 November 2012, 36 patients were screened MRSA-positive at the Republican Vilnius University Hospital, Vilnius, Lithuania. At least three swab tests were performed for each patient to screen for MRSA, one from each nostril and one from the perineum. In patients with wounds, an additional swab was taken from the wound surface. In the affected patients octenidine-based products were used in one or two cycles of 7 days each. In addition, adverse events were recorded and the tolerability was assessed using a 4-point scale ranging from 'very good' to 'poor'. Complete decontamination was achieved in 24 patients (67%) following treatment with the octenidine-based products. None of the patients experienced side-effects or secondary symptoms such as skin irritation or allergic reactions during the course of the study. In addition, octenidine was very well tolerated in the majority of patients (n=31; 86%). The results demonstrate that octenidine-based products are highly efficient in the multifaceted decontamination of hospitalised MRSA-positive patients. Having a range of products that can be used for full body decontamination (including the scalp and nasal passages) is of particular significance when developing an MRSA decontamination protocol, as multiple parts of the body can be affected. Combined with a favourable safety and tolerability profile, octenidine-based products thus represent a good choice in multifaceted MRSA decontamination regimes, which are necessary to

  11. A biological decontamination process for small, privately owned buildings.

    PubMed

    Krauter, Paula; Tucker, Mark

    2011-09-01

    An urban wide-area recovery and restoration effort following a large-scale biological release will require extensive resources and tax the capabilities of government authorities. Further, the number of private decontamination contractors available may not be sufficient to respond to the needs. These resource limitations could create the need for decontamination by the building owner/occupant. This article provides owners/occupants with a simple method to decontaminate a building or area following a wide-area release of Bacillus anthracis using liquid sporicidal decontamination materials, such as pH-amended bleach or activated peroxide; simple application devices; and high-efficiency particulate air-filtered vacuums. Owner/occupant decontamination would be recommended only after those charged with overseeing decontamination-the Unified Command/Incident Command-identify buildings and areas appropriate for owner/occupant decontamination based on modeling and environmental sampling and conduct health and safety training for cleanup workers.

  12. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.

    PubMed

    Kim, Namhee; Yun, Misun; Oh, Young Joon; Choi, Hak-Jong

    2018-03-01

    It is increasingly evident that bidirectional interactions exist among the gastrointestinal tract, the enteric nervous system, and the central nervous system. Recent preclinical and clinical trials have shown that gut microbiota plays an important role in these gut-brain interactions. Furthermore, alterations in gut microbiota composition may be associated with pathogenesis of various neurological disorders, including stress, autism, depression, Parkinson's disease, and Alzheimer's disease. Therefore, the concepts of the microbiota-gut-brain axis is emerging. Here, we review the role of gut microbiota in bidirectional interactions between the gut and the brain, including neural, immune-mediated, and metabolic mechanisms. We highlight recent advances in the understanding of probiotic modulation of neurological and neuropsychiatric disorders via the gut-brain axis.

  13. Decontamination of Soil Contaminated with Bacillus anthracis ...

    EPA Pesticide Factsheets

    Technical Brief This technical summary will provide decontamination personnel rapid access to information on which decontamination approaches are most effective for soils contaminated with B anthracis.

  14. The human gut resistome

    PubMed Central

    van Schaik, Willem

    2015-01-01

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium. PMID:25918444

  15. The human gut resistome.

    PubMed

    van Schaik, Willem

    2015-06-05

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.

  16. Showering effectiveness for human hair decontamination of the nerve agent VX.

    PubMed

    Josse, Denis; Wartelle, Julien; Cruz, Catherine

    2015-05-05

    In this work, our goals were to establish whether hair decontamination by showering one hour post-exposure to the highly toxic organophosphate nerve agent VX was effective, whether it required the addition of a detergent to water and, if it could be improved by using the adsorbent Fuller's Earth (FE) or the Reactive Skin Decontamination Lotion (RSDL) 30 min prior to showering. Hair exposure to VX and decontamination was performed by using an in vitro model. Hair showering led to 72% reduction of contamination. Addition of detergent to water slightly increased the decontamination effectiveness. Hair treatment with FE or RSDL improved the decontamination rate. Combination of FE use and showering, which yielded a decontamination factor of 41, was demonstrated to be the most effective hair decontamination procedure. Hair wiping after showering was shown to contribute to hair decontamination. Altogether, our results highlighted the importance of considering hair decontamination as an important part of body surface decontamination protocols. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Individual diet has sex-dependent effects on vertebrate gut microbiota

    PubMed Central

    Bolnick, Daniel I.; Snowberg, Lisa K.; Hirsch, Philipp E.; Lauber, Christian L.; Org, Elin; Parks, Brian; Lusis, Aldons J.; Knight, Rob; Caporaso, J. Gregory; Svanbäck, Richard

    2014-01-01

    Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition (‘dysbiosis’). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet–microbiota associations are sex dependent. We document similar sex-specific diet–microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects. PMID:25072318

  18. Chemical and Biological Substances Decontamination Study for Mars Missions and Terrestrial Applications

    NASA Astrophysics Data System (ADS)

    Pottage, Thomas; Walker, James; Bennett, Allan; Vrublevskis, John; Hovland, Scott

    This study, funded by the European Space Agency (ESA) and undertaken by the Health Protec-tion Agency, UK supported by Systems Engineering and Assessment Ltd., was devised to select suitable current decontamination technologies for development for future manned missions to the Moon and Mars. There is a requirement to decontaminate the habitat module due to the concerns about astronaut ill health, microbial deterioration of materials and potential forward contamination in the case of Mars. In the case of the MIR space station, biodeterioration of components and materials occurred, and dangerous levels of airborne microorganisms were detected during air sampling procedures which lead to the introduction of microbial exposure limits (as MORD SSP 50260) to ensure the health of the crew. COSPAR planetary protection guidelines highlight the need to reduce any potential forward or backwards contamination issues that may occur through the use of Extra Vehicular Activity (EVA) suits whilst on Mars. Decontamination of the suit exterior must be completed before any EVA activity on Mars, whilst a further decontamination cycle must be completed after entry to the airlock following EVA. Technologies and techniques have also been investigated for the microbial reduction of the interior surfaces of the EVA suit to stop biodeterioration of the materials and protect the user from pathogenic microbe accumulation. The first work package reviewed the systems description and requirements as detailed in the statement of work. The requirements were broken down into 12 further requirement sections, where they were updated and expanded, resulted in Technical Note (TN) 1 which was then used as the base document for WP2 and WP3. WP2 investigated the current technologies available for the decontamination of the habitat module interior on missions of up to 6 months and missions that have durations of greater than 6 months. A comprehensive review was carried out for the different methods that

  19. Atmospheric-pressure plasma decontamination/sterilization chamber

    DOEpatents

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  20. Tail gut cyst.

    PubMed

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  1. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    PubMed

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  2. Report of decontamination at Tominari Elementary School.

    PubMed

    Katsumi, S

    2016-12-01

    On 19 April 2011, the Ministry of Education, Culture, Sports, Science, and Technology designated 13 elementary schools, including Tominari Elementary School in Date city, as high-dose schools that needed to restrict outdoor activities due to the effects of the accident at Fukushima Daiichi nuclear power plant. Approximately 1 week later, the municipal government took action to remove the topsoil from the school grounds, and the prohibition of outdoor activities at Tominari Elementary School was lifted. The school staff continued to work on decontaminating the surrounding areas using high-pressure washers and brushes. There were certain positive outcomes, but a more effective decontamination method was required. In July 2011, the municipal government started an environmental remediation project, both inside and outside the school buildings, with researchers and decontamination workers at Tominari Elementary School, involving members of the Parent-Teacher Association (PTA), local communities, and volunteers using various effective and specialised forms of decontamination. As a result, Tominari Elementary School was able to recommence swimming lessons at the end of the first semester, which had been thought to be impossible. This article will provide information about the importance of 'dialogue' for decontamination, how engagement of the experts gave members of the PTA and the local community a feeling of 'security and safety', and how the decontamination work was an ever-expanding collaborative work of a large number of people.

  3. Chemical Decontamination at Browns Ferry Unit 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartwig, Ed; Reid, Richard

    2003-09-01

    In May, 2002, the Tennessee Valley Authority's (TVA) Board of Directors approved the recovery and restart of Unit 1 at Browns Ferry Nuclear Station. As an initial step in the site characterization and restart feasibility review, a majority of the primary reactor circuit was chemically decontaminated. Close cooperation between TVA and vendor personnel resulted in project completion ahead of schedule with outstanding results. The final average decontamination factors were excellent, and the final dose rates were very low, with contact readings on most points between one and three mRem/hr. In addition to allowing TVA to do a complete and thoroughmore » job of determining the feasibility of the Unit 1 restart, the decontamination effort will greatly reduce personnel exposure during plant recovery, both whole body exposure to gamma radiation and airborne exposure during pipe replacement efforts. The implementation of lessons learned from previous decontamination work performed at Browns Ferry, as well as decontamination efforts at other plants aided greatly in the success. Specific items of note are: (1) The initial leak check of the temporary decontamination system should include ancillary systems such as the spent resin system, as well as the main circulation loop. This could save time and dose exposure if leaks are discovered before the use of such systems is required. (2) Due to the quick turnaround time from the award of contract, a vendor representative was onsite early in the project to help with engineering efforts and procedures. This aided greatly in completing preparations for the decontamination. (3) The work was performed under a single maintenance activity. This resulted in great craft and plant support. (4) The constant coverage by the site's decontamination flush directors provided timely plant support and interface. (5) The FPC system isolation and back flushing to prevent residual chemicals from being left in the FPC system should have been addressed

  4. Metal Surface Decontamination by the PFC Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui-Jun Won; Gye-Nam Kim; Wang-Kyu Choi

    2006-07-01

    PFC (per-fluorocarbon) spray decontamination equipment was fabricated and its decontamination behavior was investigated. Europium oxide powder was mixed with the isotope solution which contains Co-60 and Cs-137. The different shape of metal specimens artificially contaminated with europium oxide powder was used as the surrogate contaminants. Before and after the application of the PFC spray decontamination method, the radioactivity of the metal specimens was measured by MCA. The decontamination factors were in the range from 9.6 to 62.4. The spent PFC solution was recycled by distillation. Before and after distillation, the turbidity of PFC solution was also measured. From the testmore » results, it was found that more than 98% of the PFC solution could be recycled by a distillation. (authors)« less

  5. Recent developments in chemical decontamination technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, C.J.

    1995-03-01

    Chemical decontamination of parts of reactor coolant systems is a mature technology, used routinely in many BWR plants, but less frequently in PWRs. This paper reviews recent developments in the technology - corrosion minimization, waste processing and full system decontamination, including the fuel. Earlier work was described in an extensive review published in 1990.

  6. Material Compatibility for Historic Items Decontaminated with ...

    EPA Pesticide Factsheets

    Report This project continued research of the effects of decontamination methods for biological agents on materials identified as representative of types of irreplaceable objects or works of art found in museums and/or archive settings. In the previous research, surrogate materials were checked for compatibility with four decontamination methods: chlorine dioxide, hydrogen peroxide vapor, methyl bromide, and ethylene oxide gas. This project investigated the effects of gamma irradiation, which has also been shown to be an effective decontamination method for biological agents, on the surrogate test materials.

  7. A human gut phage catalog correlates the gut phageome with type 2 diabetes.

    PubMed

    Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli

    2018-02-01

    Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.

  8. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences

    PubMed Central

    Ackroff, Karen

    2012-01-01

    The discovery of taste and nutrient receptors (chemosensors) in the gut has led to intensive research on their functions. Whereas oral sugar, fat, and umami taste receptors stimulate nutrient appetite, these and other chemosensors in the gut have been linked to digestive, metabolic, and satiating effects that influence nutrient utilization and inhibit appetite. Gut chemosensors may have an additional function as well: to provide positive feedback signals that condition food preferences and stimulate appetite. The postoral stimulatory actions of nutrients are documented by flavor preference conditioning and appetite stimulation produced by gastric and intestinal infusions of carbohydrate, fat, and protein. Recent findings suggest an upper intestinal site of action, although postabsorptive nutrient actions may contribute to flavor preference learning. The gut chemosensors that generate nutrient conditioning signals remain to be identified; some have been excluded, including sweet (T1R3) and fatty acid (CD36) sensors. The gut-brain signaling pathways (neural, hormonal) are incompletely understood, although vagal afferents are implicated in glutamate conditioning but not carbohydrate or fat conditioning. Brain dopamine reward systems are involved in postoral carbohydrate and fat conditioning but less is known about the reward systems mediating protein/glutamate conditioning. Continued research on the postoral stimulatory actions of nutrients may enhance our understanding of human food preference learning. PMID:22442194

  9. Diet, gut microbiota and cognition.

    PubMed

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  10. Benefits of automated surface decontamination of a radioiodine ward.

    PubMed

    Westcott, Eliza; Broadhurst, Alicia; Crossley, Steven; Lee, Lloyd; Phan, Xuyen; Scharli, Rainer; Xu, Yan

    2012-02-01

    A floor-washing robot has been acquired to assist physicists with decontamination of radioiodine therapy ward rooms after discharge of the patient at Sir Charles Gairdner Hospital. The effectiveness of the robot in decontaminating the ward has been evaluated. A controlled experiment was performed by deliberately contaminating a polyvinyl chloride flooring offcut with 131I followed by automated decontamination with the robot. The extent of fixed and removable contamination was assessed before and after decontamination by two methods: (1) direct Geiger-Mueller counting and (2) beta-counting wipe tests. Surface contamination was also assessed in situ on the ward by Geiger-Mueller counting and wipe testing. Contamination maps confirmed that contamination was removed rather than spread around by the robot. Wipe testing revealed that the robot was successful in clearing approximately 60-80% of removable contamination. The robotic floor-washing device was considered suitable to provide effective automated decontamination of the radioiodine ward. In addition, the robot affords other benefits: the time spent by the physicists decontaminating the room is greatly reduced offering financial and occupational safety and health benefits. The robot has also found utility in other decontamination applications in the healthcare environment.

  11. Developments in Decontamination Technologies of Military Personnel and Equipment

    NASA Astrophysics Data System (ADS)

    Sata, Utkarsh R.; Ramkumar, Seshadri S.

    Individual protection is important for warfighters, first responders and civilians to meet the current threat of toxic chemicals and chemical warfare (CW) agents. Within the realm of individual protection, decontamination of warfare agents is not only required on the battlefield but also in laboratory, pilot plants, production and agent destruction sites. It is of high importance to evaluate various decontaminants and decontamination techniques for implementing the best practices in varying scenarios such as decontamination of personnel, sites and sensitive equipment.

  12. Minerals in the gut: scoping a Cambrian digestive system

    NASA Astrophysics Data System (ADS)

    Strang, K. M.; Armstrong, H. A.; Harper, D. A. T.

    2016-11-01

    The Sirius Passet Lagerstätte of North Greenland contains the first exceptionally preserved mat-ground community of the Cambrian, dominated, in terms of abundance, by trilobites but particularly characterized by iconic arthropods and lobopods, some also occurring in the Burgess shale. High-resolution photography, scanning electron imaging and elemental mapping have been carried out on a variety of specimens of the non-mineralized arthropod Campanamuta mantonae (Budd 2011 J. Syst. Palaeontol. 9, 217-260 (doi:10.1080/14772019.2010.492644)) which has three-dimensional gut and muscle preservation. Results show that the guts contain a high concentration of calcium phosphate (approximating to the mineral francolite), whereas the adjacent muscles are silicified. This indicates a unique, tissue-specific taphonomy for this Cambrian taxon. We hypothesize that the precipitation of calcium phosphate in the guts occurs rapidly after death by `crystal seed' processes in suboxic, slightly acidic conditions; critically, the gut wall remained intact during precipitation. We postulate that the calcium phosphate was derived from ingested cellular material. Silicification of the muscles followed as the localized water chemistry became saturated in silica, high in Fe2+, and low in oxygen and sulfate. We document here the unique occurrence of two distinct but mechanistically similar taphonomic pathways within a diverse suite of possibilities in an Early Cambrian Lagerstätte.

  13. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOEpatents

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  14. Novel Laser Ablation Technology for Surface Decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chung H.

    2004-06-01

    Laser ablation for surface cleaning has been pursued for the removal of paint on airplanes. It has also been pursued for the cleaning of semiconductor surfaces. However, all these approaches have been pursued by laser ablation in air. For highly contaminated surface, laser ablation in air can easily cause secondary contamination. Thus it is not suitable to apply to achieve surface decontamination for DOE facilities since many of these facilities have radioactive contaminants on the surface. Any secondary contamination will be a grave concern. The objective of this project is to develop a novel technology for laser ablation in liquidmore » for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination and to evaluate the economic feasibility for large scale surface decontamination with laser ablation in liquid. When laser ablation is pursued in the solution, all the desorbed contaminants will be confined in liquid. The contaminants can be precipitated and subsequently contained in a small volume for disposal. It can reduce the risk of the decontamination workers. It can also reduce the volume of contaminants dramatically.« less

  15. The role of gut peptides in the gut-brain-axis of livestock

    USDA-ARS?s Scientific Manuscript database

    Gut peptides are small hormones produced within the gut that are involved in many biological processes including, but not limited to, appetite regulation, mucosal growth, and metabolism regulation. Some peptides, such as cholecystokinin (CCK) and xenin-25 may affect appetite by altering gut motilit...

  16. Decontamination and decorporation: the clinical experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poda, G.A.

    1979-01-01

    Decontamination and decorporation are quite interrelated when dealing with a contaminated person. Some clinical experiences from a transuranium production facility are offered. Skin decontamination is accomplished by washing with detergent and water. Stubborn cases are treated with sodium hypochlorite followed by rinsing, and emery cloth is used on more stubborn nail or finger pad contamination. If inhaled, the usual skin cleansing followed by nasal douche with normal saline decontaminates reachable areas and one of the DTPA salts given via aerosol both decontaminates and decorporates the inner recesses. Saline laxative reduces the time inhaled, and ingested particles remain in the gastro-intestinalmore » tract. Conservatism prevails in general, but most persons found to have inhaled contamination are given a single chelation within the hour of discovery and if subsequently found to have over 10% M.P.P.B. of a soluble actinide are offered further chelation. Single dose chelation has been found to be relatively innocuous and usually sufficient. The longest case of chelation therapy spanned 2-1/4 years and encompassed 123 doses of CaNa-DTPA.« less

  17. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism

    PubMed Central

    Mikkelsen, Kristian H.; Frost, Morten; Bahl, Martin I.; Licht, Tine R.; Jensen, Ulrich S.; Rosenberg, Jacob; Pedersen, Oluf; Hansen, Torben; Rehfeld, Jens F.; Holst, Jens J.; Vilsbøll, Tina; Knop, Filip K.

    2015-01-01

    Objective The gut microbiota has been designated as an active regulator of glucose metabolism and metabolic phenotype in a number of animal and human observational studies. We evaluated the effect of removing as many bacteria as possible by antibiotics on postprandial physiology in healthy humans. Methods Meal tests with measurements of postprandial glucose tolerance and postprandial release of insulin and gut hormones were performed before, immediately after and 6 weeks after a 4-day, broad-spectrum, per oral antibiotic cocktail (vancomycin 500 mg, gentamycin 40 mg and meropenem 500 mg once-daily) in a group of 12 lean and glucose tolerant males. Faecal samples were collected for culture-based assessment of changes in gut microbiota composition. Results Acute and dramatic reductions in the abundance of a representative set of gut bacteria was seen immediately following the antibiotic course, but no changes in postprandial glucose tolerance, insulin secretion or plasma lipid concentrations were found. Apart from an acute and reversible increase in peptide YY secretion, no changes were observed in postprandial gut hormone release. Conclusion As evaluated by selective cultivation of gut bacteria, a broad-spectrum 4-day antibiotics course with vancomycin, gentamycin and meropenem induced shifts in gut microbiota composition that had no clinically relevant short or long-term effects on metabolic variables in healthy glucose-tolerant males. Trial Registration clinicaltrials.gov NCT01633762 PMID:26562532

  18. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    PubMed

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The gut in trauma.

    PubMed

    Patel, Jayshil J; Rosenthal, Martin D; Miller, Keith R; Martindale, Robert G

    2016-08-01

    The purpose of this review is to describe established and emerging mechanisms of gut injury and dysfunction in trauma, describe emerging strategies to improve gut dysfunction, detail the effect of trauma on the gut microbiome, and describe the gut-brain connection in traumatic brain injury. Newer data suggest intraluminal contents, pancreatic enzymes, and hepatobiliary factors disrupt the intestinal mucosal layer. These mechanisms serve to perpetuate the inflammatory response leading to multiple organ dysfunction syndrome (MODS). To date, therapies to mitigate acute gut dysfunction have included enteral nutrition and immunonutrition; emerging therapies aimed to intestinal mucosal layer disruption, however, include protease inhibitors such as tranexamic acid, parenteral nutrition-supplemented bombesin, and hypothermia. Clinical trials to demonstrate benefit in humans are needed before widespread applications can be recommended. Despite resuscitation, gut dysfunction promotes distant organ injury. In addition, postresuscitation nosocomial and iatrogenic 'hits' exaggerate the immune response, contributing to MODS. This was a provocative concept, suggesting infectious and noninfectious causes of inflammation may trigger, heighten, and perpetuate an inflammatory response culminating in MODS and death. Emerging evidence suggests posttraumatic injury mechanisms, such as intestinal mucosal disruption and shifting of the gut microbiome to a pathobiome. In addition, traumatic brain injury activates the gut-brain axis and increases intestinal permeability.

  20. Analysis of sepsis in allogeneic bone marrow transplant recipients: a single-center study.

    PubMed

    Mitsui, Hideki; Karasuno, Takahiro; Santo, Taisuke; Fukushima, Kentaro; Matsunaga, Hitomi; Nakamura, Hiroyuki; Hiraoka, Akira

    2003-09-01

    We reviewed the records of 235 consecutive recipients of allogeneic bone marrow transplantation (allo-BMT) at our center between February 1983 and October 2000. Sepsis occurred in 25 patients (10.6%) at a median of 10 days (range, 1-280 days) after BMT. Five of the 25 patients (20%) died of sepsis. Pathogens isolated from blood culture were gram-positive cocci in 19 patients, gram-negative rods in 7, fungi in 2, and others in 1 patient. Two pathogens were detected concomitantly in 4 patients. Univariate analysis revealed that risk factors for sepsis were selective gut decontamination using lomefloxacin hydrochloride and nystatin, an unrelated donor, HLA mismatched BMT, and stomatitis. Multivariate logistic regression analysis revealed that an unrelated donor was the only significant independent risk factor, with a relative risk of 5.432. In 12 of 25 patients with sepsis, the pathogens of sepsis were sensitive to antibiotics used for gut decontamination. Selective gut decontamination significantly increased the incidence of sepsis, especially that with gram-positive cocci, but not the mortality rate of sepsis, compared with total gut decontamination using vancomycin. We also found a significant relationship between pathogens isolated from blood culture and those isolated from surveillance cultures of stool, urine, and gargled water in the period before sepsis occurred. The present study revealed an independent risk factor for sepsis (unrelated donor), the feasibility of selective gut decontamination, and the importance of surveillance culture.

  1. Decontamination of Subway Infrastructure Materials ...

    EPA Pesticide Factsheets

    Report This report provides the results of an assessment to determine the decontamination efficacy of methyl bromide (MB) fumigant in inactivating Bacillus anthracis (B.a.; causative agent for anthrax) spores on materials typically found in subway system infrastructure. To facilitate future decontaminations employing MB in a subway environment, this investigation focused on finding efficacious conditions when using MB at temperatures that may be encountered in an underground subway system (i.e., temperatures lower than used in previous studies).

  2. Gut microbiota and obesity.

    PubMed

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  3. Reducing Risk of Salmonellosis through Egg Decontamination Processes.

    PubMed

    Keerthirathne, Thilini Piushani; Ross, Kirstin; Fallowfield, Howard; Whiley, Harriet

    2017-03-22

    Eggs have a high nutritional value and are an important ingredient in many food products. Worldwide foodborne illnesses, such as salmonellosis linked to the consumption of eggs and raw egg products, are a major public health concern. This review focuses on previous studies that have investigated the procedures for the production of microbiologically safe eggs. Studies exploring pasteurization and decontamination methods were investigated. Gamma irradiation, freeze drying, hot air, hot water, infra-red, atmospheric steam, microwave heating and radiofrequency heating are all different decontamination methods currently considered for the production of microbiologically safe eggs. However, each decontamination procedure has different effects on the properties and constituents of the egg. The pasteurization processes are the most widely used and best understood; however, they influence the coagulation, foaming and emulsifying properties of the egg. Future studies are needed to explore combinations of different decontamination methods to produce safe eggs without impacting the protein structure and usability. Currently, eggs which have undergone decontamination processes are primarily used in food prepared for vulnerable populations. However, the development of a decontamination method that does not affect egg properties and functionality could be used in food prepared for the general population to provide greater public health protection.

  4. Reducing Risk of Salmonellosis through Egg Decontamination Processes

    PubMed Central

    Keerthirathne, Thilini Piushani; Ross, Kirstin; Fallowfield, Howard; Whiley, Harriet

    2017-01-01

    Eggs have a high nutritional value and are an important ingredient in many food products. Worldwide foodborne illnesses, such as salmonellosis linked to the consumption of eggs and raw egg products, are a major public health concern. This review focuses on previous studies that have investigated the procedures for the production of microbiologically safe eggs. Studies exploring pasteurization and decontamination methods were investigated. Gamma irradiation, freeze drying, hot air, hot water, infra-red, atmospheric steam, microwave heating and radiofrequency heating are all different decontamination methods currently considered for the production of microbiologically safe eggs. However, each decontamination procedure has different effects on the properties and constituents of the egg. The pasteurization processes are the most widely used and best understood; however, they influence the coagulation, foaming and emulsifying properties of the egg. Future studies are needed to explore combinations of different decontamination methods to produce safe eggs without impacting the protein structure and usability. Currently, eggs which have undergone decontamination processes are primarily used in food prepared for vulnerable populations. However, the development of a decontamination method that does not affect egg properties and functionality could be used in food prepared for the general population to provide greater public health protection. PMID:28327524

  5. DISPOSAL OF RESIDUES FROM BUILDING DECONTAMINATION ACTIVITIES

    EPA Science Inventory

    After a building has gone through decontamination activities from a chemical attack there will be a significant amount of building decontamination residue that will need to undergo disposal. This project consists of a fundamental study to investigate the desorption of simulated c...

  6. Application and utilization of a space chamber for the drying and decontamination of books, documents and other materials

    NASA Technical Reports Server (NTRS)

    Koesterer, M. G.; Geating, J. A.

    1975-01-01

    Truckloads of materials such as rare books, papers, engineering drawings, blue prints, art work, leather objects such as shoes, and clothing were successfully dried, decontaminated and impregnated against future infestation by microorganisms in a large 12 x 24 foot vacuum chamber designed originally for testing unmanned spacecraft. The process is unique in that it allows either frozen or wet material, soaked by some castastrophic event to be dried and sterilized in the same chamber with a minimum of handling and transportation.

  7. Physics of the gut: How polymers dynamically structure the gut environment

    NASA Astrophysics Data System (ADS)

    Preska Steinberg, Asher; Datta, Sujit; Bogatyrev, Said; Ismagilov, Rustem

    While the gut microbiome and biological regulation of the gut environment is being exhaustively studied by the microbiology community, little is known about the rich physics that governs the macro- and microstructure of the gut environment. The mammalian gut abounds in soft materials; ranging from soluble polymers (e.g. dietary fibers, therapeutic polymers and mucins) to colloidal matter (e.g. bacteria, viruses and nanoparticles carrying drugs). We have found experimentally that soluble polymers can dynamically re-structure the colonic mucus hydrogel by modulating its degree of swelling. We implemented a mean-field Flory-Huggins model to reveal that these polymer-mucus interactions can be captured using a simple, first principles thermodynamics model. In this model, the amount of deswelling increases with polymer concentration and size. We then used these physical principles to make predictions about how different polymer solutions affect the structure of mucus. Lastly, we explore applying this framework and similar physical principles to a variety of biological problems in the gut.

  8. Evaluation of Millstone-2 steam generator chemical decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, D.T.; Blok, J.

    The steam generator channel heads at Millstone-2 were decontaminated prior to carrying out extensive maintenance work in 1983. Isotopic gamma ray measurements were made of the inner channel head surfaces before and after the decontamination to evaluate the effectiveness of the process. The Combustion Engineering/Kraftwerk Union chemical decontamination, by itself, provided a decontamination factor ranging from 2.7 to 6.6 for the various steam generator surfaces. The corresponding average dose rate reduction factor, based on gross-gamma radiation surveys, was approximately 1.5 to 2.5. Following the chemical treatment, high pressure water flushing reduced the radiation levels still further, to an average overallmore » dose reduction factor of 5.3 to 7.2.« less

  9. Probiotics: Interaction with gut microbiome and antiobesity potential.

    PubMed

    Arora, Tulika; Singh, Satvinder; Sharma, Raj Kumar

    2013-04-01

    Obesity is a metabolic disorder afflicting people globally. There has been a pivotal advancement in the understanding of the intestinal microbiota composition and its implication in extraintestinal (metabolic) diseases. Therefore, any agent modulating gut microbiota may produce an influential effect in preventing the pathogenesis of disease. Probiotics are live microbes that, when administered in adequate amounts, have been shown to confer health benefits to the host. Over the years, probiotics have been a part of the human diet in the form of different fermented foods consumed around the world. Their influence on different physiologic functions in the host is increasingly being documented. The antiobesity potential of probiotics is also gaining wide attention because of increasing evidence of the role of gut microbiota in energy homeostasis and fat accumulation. Probiotics have also been shown to interact with the resident bacterial members already present in the gut by altering their properties, which may also affect the metabolic pathways involved in the regulation of fat metabolism. The underlying pathways governing the antiobesity effects of probiotics remain unclear. However, it is hoped that the evidence presented and discussed in this review will encourage and thus drive more extensive research in this field. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Development of haemostatic decontaminants for the treatment of wounds contaminated with chemical warfare agents. 2: evaluation of in vitro topical decontamination efficacy using undamaged skin.

    PubMed

    Dalton, Christopher H; Hall, Charlotte A; Lydon, Helen L; Chipman, J K; Graham, John S; Jenner, John; Chilcott, Robert P

    2015-05-01

    The risk of penetrating, traumatic injury occurring in a chemically contaminated environment cannot be discounted. Should a traumatic injury be contaminated with a chemical warfare (CW) agent, it is likely that standard haemostatic treatment options would be complicated by the need to decontaminate the wound milieu. Thus, there is a need to develop haemostatic products that can simultaneously arrest haemorrhage and decontaminate CW agents. The purpose of this study was to evaluate a number of candidate haemostats for efficacy as skin decontaminants against three CW agents (soman, VX and sulphur mustard) using an in vitro diffusion cell containing undamaged pig skin. One haemostatic product (WoundStat™) was shown to be as effective as the standard military decontaminants Fuller's earth and M291 for the decontamination of all three CW agents. The most effective haemostatic agents were powder-based and use fluid absorption as a mechanism of action to sequester CW agent (akin to the decontaminant Fuller's earth). The envisaged use of haemostatic decontaminants would be to decontaminate from within wounds and from damaged skin. Therefore, WoundStat™ should be subject to further evaluation using an in vitro model of damaged skin. Copyright © 2014 Crown copyright. Journal of Applied Toxicology © 2014 John Wiley & Sons, Ltd.

  11. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heiser,J.; Sullivan, T.

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of riskmore » and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers

  12. Purge- and intensive-purge decontamination of dental units contaminated with biofilm

    PubMed Central

    Kramer, Axel; Assadian, Ojan; Bachfeld, Danny; Meyer, Georg

    2012-01-01

    Introduction: During hygienic-microbiological monitoring of the water quality in dental units, the total bacterial colony count was found to exceed the limits for drinking water quality; in addition, mold contamination was detected. The presumed cause was irregular decontamination of the units through purging and intensive decontamination. Methods: To decontaminate the units, the manufacturer’s recommended program for cleaning and intensive decontamination was intensified by shortened intervals over a 2-week period. For Sirona units, instead of once a day, the automatic purge program was run every morning and evening for 20 min each time, and instead of once a month, intensive decontamination was performed every two weeks; this schedule has been maintained since then. For KaVo units, cleaning with the hydroclean function was carried out for 2.5 min every morning and evening. The automatic intensive decontamination was run daily instead of weekly. A maintenance log book was introduced, in which decontamination/cleaning was confirmed by the operator’s signature. Results: Within 5 weeks, all previously contaminated units were decontaminated. Discussion: By shortening the cleaning and intensive decontamination intervals in a 2-week period with subsequent control that the recommended maintenance intervals were kept, it was possible to guarantee drinking-water quality in the dental units of both manufacturers. PMID:22558045

  13. Establishment of Normal Gut Microbiota Is Compromised under Excessive Hygiene Conditions

    PubMed Central

    Schmidt, Bettina; Mulder, Imke E.; Musk, Corran C.; Aminov, Rustam I.; Lewis, Marie; Stokes, Christopher R.; Bailey, Mick; Prosser, James I.; Gill, Bhupinder P.; Pluske, John R.; Kelly, Denise

    2011-01-01

    Background Early gut colonization events are purported to have a major impact on the incidence of infectious, inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure during early life on the development of the pig gut microbiota. Methodology/Principal Findings Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four phyla Firmicutes (67.5% of all sequences), Proteobacteria (17.7%), Bacteroidetes (13.5%) and to a lesser extent, Actinobacteria (0.1%). Although the initial maternal and environmental microbial inoculum of isolator-reared animals was identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly diverse containing a large number of distinct phylotypes. Conclusions/Significance The results documented here indicate that establishment and development of the normal gut microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under conditions of excessive hygiene. PMID:22164261

  14. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan.

    PubMed

    Yasutaka, Tetsuo; Naito, Wataru

    2016-01-01

    Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53-5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55-2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. RSDL decontamination of human skin contaminated with the nerve agent VX.

    PubMed

    Thors, L; Lindberg, S; Johansson, S; Koch, B; Koch, M; Hägglund, L; Bucht, A

    2017-03-05

    Dermal exposure to low volatile organophosphorus compounds (OPC) may lead to penetration through the skin and uptake in the blood circulation. Skin decontamination of toxic OPCs, such as pesticides and chemical warfare nerve agents, might therefore be crucial for mitigating the systemic toxicity following dermal exposure. Reactive skin decontamination lotion (RSDL) has been shown to reduce toxic effects in animals dermally exposed to the nerve agent VX. In the present study, an in vitro flow-through diffusion cell was utilized to evaluate the efficacy of RSDL for decontamination of VX exposed to human epidermis. In particular, the impact of timing in the initiation of decontamination and agent dilution in water was studied. The impact of the lipophilic properties of VX in the RSDL decontamination was additionally addressed by comparing chemical degradation in RSDL and decontamination efficacy between the VX and the hydrophilic OPC triethyl phosphonoacetate (TEPA). The epidermal membrane was exposed to 20, 75 or 90% OPC diluted in deionized water and the decontamination was initiated 5, 10, 30, 60 or 120min post-exposure. Early decontamination of VX with RSDL, initiated 5-10min after skin exposure, was very effective. Delayed decontamination initiated 30-60min post-exposure was less effective but still the amount of penetrated agent was significantly reduced, while further delayed start of decontamination to 120min resulted in very low efficacy. Comparing RSDL decontamination of VX with that of TEPA showed that the decontamination efficacy at high agent concentrations was higher for VX. The degradation mechanism of VX and TEPA during decontamination was dissected by 31 P NMR spectroscopy of the OPCs following reactions with RSDL and its three nucleophile components. The degradation rate was clearly associated with the high pH of the specific solution investigated; i.e. increased pH resulted in a more rapid degradation. In addition, the solubility of the OPC in RSDL

  16. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis.

    PubMed

    Freedman, Samantha N; Shahi, Shailesh K; Mangalam, Ashutosh K

    2018-01-01

    Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.

  17. Gut microbiome and bone.

    PubMed

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  18. Comparative gut physiology symposium: The microbe-gut-brain axis

    USDA-ARS?s Scientific Manuscript database

    The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...

  19. Decontamination and disposal of PCB wastes.

    PubMed Central

    Johnston, L E

    1985-01-01

    Decontamination and disposal processes for PCB wastes are reviewed. Processes are classed as incineration, chemical reaction or decontamination. Incineration technologies are not limited to the rigorous high temperature but include those where innovations in use of oxident, heat transfer and residue recycle are made. Chemical processes include the sodium processes, radiant energy processes and low temperature oxidations. Typical processing rates and associated costs are provided where possible. PMID:3928363

  20. Planning guidance for nuclear-power-plant decontamination. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munson, L.F.; Divine, J.R.; Martin, J.B.

    1983-06-01

    Direct and indirect costs of decontamination are considered in the benefit-cost analysis. A generic form of the benefit-cost ratio is evaluated in monetary and nonmonetary terms, and values of dollar per man-rem are cited. Federal and state agencies that may have jurisiction over various aspects of decontamination and waste disposal activities are identified. Methods of decontamination, their general effectiveness, and the advantages and disadvantages of each are outlined. Dilute or concentrated chemical solutions are usually used in-situ to dissolve the contamination layer and a thin layer of the underlying substrate. Electrochemical techniques are generally limited to components but show highmore » decontamination effectiveness with uniform corrosion. Mechanical agents are particularly appropriate for certain out-of-system surfaces and disassembled parts. These processes are catagorized and specific concerns are discussed. The treatment, storage, and disposal or discharge or discharge of liquid, gaseous, and solid wastes generated during the decontamination process are discussed. Radioactive and other hazardous chemical wastes are considered. The monitoring, treatment, and control of radioactive and nonradioactive effluents, from both routine operations and possible accidents, are discussed. Protecting the health and safety of personnel onsite during decontamination is of prime importance and should be considered in each facet of the decontamination process. The radiation protection philosophy of reducing exposure to levels as low as reasonably achievable should be stressed. These issues are discussed.« less

  1. Gut microbiota and metabolic syndrome.

    PubMed

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  2. Laser decontamination and decomposition of PCB-containing paint

    NASA Astrophysics Data System (ADS)

    Anthofer, A.; Kögler, P.; Friedrich, C.; Lippmann, W.; Hurtado, A.

    2017-01-01

    Decontamination of concrete surfaces contaminated with paint containing polychlorinated biphenyls is an elaborate and complex task that must be performed within the scope of nuclear power plant dismantling as well as conventional pollutant cleanup in buildings. The state of the art is mechanical decontamination, which generates dust as well as secondary waste and is both dangerous and physically demanding. Moreover, the ablated PCB-containing paint has to be treated in a separate process step. Laser technology offers a multitude of possibilities for contactless surface treatment with no restoring forces and a high potential for automation. An advanced experimental setup was developed for performing standard laser decontamination investigations on PCB-painted concrete surfaces. As tested with epoxy paints, a high-power diode laser with a laser power of 10 kW in continuous wave (CW) mode was implemented and resulted in decontamination of the concrete surfaces as well as significant PCB decomposition. The experimental results showed PCB removal of 96.8% from the concrete surface and PCB decomposition of 88.8% in the laser decontamination process. Significant PCDD/F formation was thereby avoided. A surface ablation rate of approx. 7.2 m2/h was realized.

  3. APPR-1 RESEARCH AND DEVELOPMENT PROGRAM DECONTAMINATION PROGRAM. TASK II. VOLUME II. EVALUATION OF CHEMICAL AGENTS FOR NUCLEAR REACTOR DECONTAMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zegger, J.L.; Pancer, G.P.

    1959-02-15

    The caustic permanganante-rinse decontamination studies were performed to determine optimum operating conditions as well as the metallurgical effects of the treatment. A treatment with 10% NaOH and 5% potassium by a rinse with a 5% ammorium citrate, 2% citric acid and 1/2% Versene solution was chosen for the decontamination of a stainless steel steam generator, Decontamination factors of greater than 50 were obtained in loop tests using the above treatment. Corrosion and metallurgical results indicated a total penetration of less than 0.01 mil on annealed type 304 stainless steel with no evidence of any deleterious effects. (auth)

  4. Liver Transplantation and Gut Microbiota Profiling in a Child Colonized by a Multi-Drug Resistant Klebsiella pneumoniae: A New Approach to Move from Antibiotic to "Eubiotic" Control of Microbial Resistance.

    PubMed

    Del Chierico, Federica; Cardile, Sabrina; Pietrobattista, Andrea; Liccardo, Daniela; Russo, Alessandra; Candusso, Manila; Basso, Maria Sole; Grimaldi, Chiara; Pansani, Laura; Bernaschi, Paola; Torre, Giuliano; Putignani, Lorenza

    2018-04-25

    The increase of microorganisms multi-drug resistant (MDR) to antibiotics (ATBs) is becoming a global emergency, especially in frail subjects. In chronic liver disease (LD) with indications for liver transplantation (LT), MDR colonization can significantly affect the LT outcome. However, no clear guidelines for microbial management are available. A novel approach toward MDR-colonized patients undergoing LT was developed at our Center refraining from ATBs use during the transplant waiting list, and use of an intensive perioperative prophylaxis cycle. This study aimed to couple clinical evaluation with monitoring of gut microbiota in a pediatric LD patient colonized with MDR Klebsiella pneumoniae (KP) who underwent LT. No peri-transplant complications were reported, and a decontamination from the MDR bacteria occurred during follow-up. Significant changes in gut microbiota, especially during ATB treatment, were reported by microbiota profiling. Patterns of Klebsiella predominance and microbiota diversity revealed opposite temporal trends, with Klebsiella ecological microbiota niches linked to ATB-driven selection. Our infection control program appeared to control complications following LT in an MDR-KP-colonized patient. The perioperative ATB regimen, acting as LT prophylaxis, triggered MDR-KP overgrowth and gut dysbiosis, but buffered infectious processes. Mechanisms modulating the gut ecosystem should be taken into account in MDR colonization clinical management.

  5. Gut Microbiome-based Therapeutics in Liver Cirrhosis: Basic Consideration for the Next Step.

    PubMed

    Fukui, Hiroshi

    2017-09-28

    Infections account for significant morbidity and mortality in liver cirrhosis and most are related to the gut microbiome. Fecal dysbiosis, characterized by an overgrowth of potentially pathogenic bacteria and a decrease in autochthonous non-pathogenic bacteria, becomes prominent with the progression of liver cirrhosis. In cirrhotic patients, disruption of the intestinal barrier causes intestinal hyperpermeability (i.e. leaky gut), which is closely related to gut dysmotility, dysbiosis and small intestinal bacterial overgrowth and may induce pathological bacterial translocation. Although the involved microbial taxa are somewhat different between the cirrhotic patients from the East and the West, the common manifestation of a shortage of bacteria that contribute to the production of short-chain fatty acids and secondary bile acids may facilitate intestinal inflammation, leaky gut and gut dysbiosis. Translocated endotoxin and bacterial DNA are capable of provoking potent inflammation and affecting the metabolic and hemodynamic systems, which may ultimately enhance the progression of liver cirrhosis and its various complications, such as hepatic encephalopathy (HE), variceal bleeding, infection and renal disturbances. Among studies on the microbiome-based therapeutics, findings of probiotic effects on HE have been contradictory in spite of several supportive results. However, the effects of synbiotics and prebiotics are substantially documented. The background of their effectiveness should be evaluated again in relation to the cirrhosis-related changes in gut microbiome and their metabolic effects. Strict indications for the antibiotic rifaximin remain unestablished, although its effect is promising, improving HE and other complications with little influence on microbial populations. The final goal of microbiome-based therapeutics is to adjust the gut-liver axis to the maximal benefit of cirrhotic patients, with the aid of evolving metagenomic and metabolomic analyses.

  6. ELECTROSTATICALLY CHARGED AEROSOL DECONTAMINATION SYSTEM FOR SMALL BUILDING DECONTAMINATION - PHASE I

    EPA Science Inventory

    Existing decontamination procedures are time-consuming, labor-intensive, and produce low-yielding results, and they have a high risk of personnel exposure and equipment damage. Foster-Miller, Inc., has teamed with Lawrence Livermore National Laboratory and other reagent suppl...

  7. Decontamination of Drinking Water Infrastructure ...

    EPA Pesticide Factsheets

    Technical Brief This study examines the effectiveness of decontaminating corroded iron and cement-mortar coupons that have been contaminated with spores of Bacillus atrophaeus subsp. globigii (B. globigii), which is often used as a surrogate for pathogenic B. anthracis (anthrax) in disinfection studies. Bacillus spores are persistent on common drinking water material surfaces like corroded iron, requiring physical or chemical methods to decontaminate the infrastructure. In the United States, free chlorine and monochloramine are the primary chemical disinfectants used by the drinking water industry to inactivate microorganisms. Flushing is also a common, easily implemented practice in drinking water distribution systems, although large volumes of contaminated water needing treatment could be generated. Identifying readily available alternative disinfectant formulations for infrastructure decontamination could give water utilities options for responding to specific types of contamination events. In addition to presenting data on flushing alone, which demonstrated the persistence of spores on water infrastructure in the absence of high levels of disinfectants, data on acidified nitrite, chlorine dioxide, free chlorine, monochloramine, ozone, peracetic acid, and followed by flushing are provided.

  8. Electrolytic decontamination of conductive materials

    NASA Astrophysics Data System (ADS)

    Campbell, George M.; Nelson, Timothy O.; Parker, John L.; Getty, Richard H.; Hergert, Tom R.; Lindahl, Kirk A.; Peppers, Larry G.

    1994-10-01

    Using the electrolytic method, we have demonstrated removal of Pu and Am from contaminated conductive material. At EG and G /Rocky Flats, we electrolytically decontaminated stainless steel. Results from this work show removal of fixed contamination, including the following geometries: planar, large radius, bolt holes, glove ports, and protruding studs. More specifically, fixed contamination was reduced from levels ranging from greater than 1 000 000 counts per minute (cpm) down to levels ranging from 1500 to 250 cpm using the electrolytic method. More recently, the electrolytic work has continued at Los Alamos National Laboratory as a joint project with EG and G/Rocky Flats. Impressively, electrolytic decontamination of Pu /Am from U surfaces (10 sq cm per side) shows decreases in swipable contamination from 500 000-1 500 000 disintegrations per minute (dpm) down to 0-2 dpm. Moreover, the solid waste product of the electrolytic method is reduced in volume by more than 50 times compared with the liquid waste produced by the previous U decontamination method -- a hot concentrated acid spray leach process.

  9. Decontamination of radioisotopes

    PubMed Central

    Domínguez-Gadea, Luis; Cerezo, Laura

    2011-01-01

    Contaminations with radioactive material may occur in several situations related to medicine, industry or research. Seriousness of the incident depends mainly on the radioactive element involved; usually there are no major acute health effects, but in the long term can cause malignancies, leukemia, genetic defects and teratogenic anomalies. The most common is superficial contamination, but the radioactive material can get into the body and be retained by the cells of target organs, injuring directly and permanently sensitive elements of the body. Rapid intervention is very important to remove the radioactive material without spreading it. Work must be performed in a specially prepared area and personnel involved should wear special protective clothing. For external decontamination general cleaning techniques are used, usually do not require chemical techniques. For internal decontamination is necessary to use specific agents, according to the causative element, as well physiological interventions to enhance elimination and excretion. PMID:24376972

  10. Regulation of Lactobacillus casei Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM▿

    PubMed Central

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.

    2008-01-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  11. The effect of quercetin on genetic expression of the commensal gut microbes Bifidobacterium catenulatum, Enterococcus caccae and Ruminococcus gauvreauii.

    PubMed

    Firrman, Jenni; Liu, LinShu; Zhang, Liqing; Arango Argoty, Gustavo; Wang, Minqian; Tomasula, Peggy; Kobori, Masuko; Pontious, Sherri; Xiao, Weidong

    2016-12-01

    Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of quercetin on the commensal gut microbes Ruminococcus gauvreauii, Bifidobacterium catenulatum and Enterococcus caccae were determined through evaluation of growth patterns and cell morphology, and analysis of genetic expression profiles between quercetin treated and non-treated groups using Single Molecule RNA sequencing via Helicos technology. Results of this study revealed that phenotypically, quercetin did not prevent growth of Ruminococcus gauvreauii, mildly suppressed growth of Bifidobacterium catenulatum, and moderately inhibited growth of Enterococcus caccae. Genetic analysis revealed that in response to quercetin, Ruminococcus gauvreauii down regulated genes responsible for protein folding, purine synthesis and metabolism. Bifidobacterium catenulatum increased expression of the ABC transport pathway and decreased metabolic pathways and cell wall synthesis. Enterococcus caccae upregulated genes responsible for energy production and metabolism, and downregulated pathways of stress response, translation and sugar transport. For the first time, the effect of quercetin on the growth and genetic expression of three different commensal gut bacteria was documented. The data provides insight into the interactions between genetic regulation and growth. This is also a unique demonstration of how RNA single molecule sequencing can be used to study the gut microbiota. Published by Elsevier Ltd.

  12. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health.

    PubMed

    Malmuthuge, Nilusha; Guan, Le Luo

    2017-07-01

    Early gut microbiota plays a vital role in the long-term health of the host. However, understanding of these microbiota is very limited in livestock species, especially in dairy calves. Neonatal calves are highly susceptible to enteric infections, one of the major causes of calf death, so approaches to improving gut health and overall calf health are needed. An increasing number of studies are exploring the microbial composition of the gut, the mucosal immune system, and early dietary interventions to improve the health of dairy calves, revealing possibilities for effectively reducing the susceptibility of calves to enteric infections while promoting growth. Still, comprehensive understanding of the effect of dietary interventions on gut microbiota-one of the key aspects of gut health-is lacking. Such knowledge may provide in-depth understanding of the mechanisms behind functional changes in response to dietary interventions. Understanding of host-microbial interactions with dietary interventions and the role of the gut microbiota during pathogenesis at the site of infection in early life is vital for designing effective tools and techniques to improve calf gut health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. A systematic methodology for selecting decontamination strategies following a biocontamination event.

    PubMed

    Krauter, Paula; Edwards, Donna; Yang, Lynn; Tucker, Mark

    2011-09-01

    Decontamination and recovery of a facility or outdoor area after a wide-area biological incident involving a highly persistent agent (eg, Bacillus anthracis spores) is a complex process that requires extensive information and significant resources, which are likely to be limited, particularly if multiple facilities or areas are affected. This article proposes a systematic methodology for evaluating information to select the decontamination or alternative treatments that optimize use of resources if decontamination is required for the facility or area. The methodology covers a wide range of approaches, including volumetric and surface decontamination, monitored natural attenuation, and seal and abandon strategies. A proposed trade-off analysis can help decision makers understand the relative appropriateness, efficacy, and labor, skill, and cost requirements of the various decontamination methods for the particular facility or area needing treatment--whether alone or as part of a larger decontamination effort. Because the state of decontamination knowledge and technology continues to evolve rapidly, the methodology presented here is designed to accommodate new strategies and materials and changing information.

  14. [Gut microbiome and psyche: paradigm shift in the concept of brain-gut axis].

    PubMed

    Konturek, Peter C; Zopf, Yurdagül

    2016-05-25

    The concept of the brain-gut axis describes the communication between the central and enteric nervous system. The exchange of information takes place in both directions. The great advances in molecular medicine in recent years led to the discovery of an enormous number of microorganisms in the intestine (gut microbiome), which greatly affect the function of the brain-gut axis. Overview Numerous studies indicate that the dysfunction of the brain-gut axis could lead to both inflammatory and functional diseases of the gastrointestinal tract. Moreover, it was shown that a faulty composition of the gut microbiota in childhood influences the maturation of the central nervous system and thus may favor the development of mental disorders such as autism, depression, or other. An exact causal relationship between psyche and microbiome must be clarified by further studies in order to find new therapeutic options.

  15. Mass Casualty Decontamination in the United States: An Online Survey of Current Practice

    PubMed Central

    Power, Sarah; Symons, Charles; Carter, Holly; Jones, Emma; Larner, Joanne; Matar, Hazem; Chilcott, Robert P.

    2016-01-01

    Mass casualty decontamination is a public health intervention that would be employed by emergency responders following a chemical, biological, or radiological incident. The decontamination of large numbers of casualties is currently most often performed with water to remove contaminants from the skin surface. An online survey was conducted to explore US fire departments' decontamination practices and their preparedness for responding to incidents involving mass casualty decontamination. Survey respondents were asked to provide details of various aspects of their decontamination procedures, including expected response times to reach casualties, disrobing procedures, approaches to decontamination, characteristics of the decontamination showering process, provision for special populations, and any actions taken following decontamination. The aim of the survey was to identify any differences in the way in which decontamination guidance is implemented across US states. Results revealed that, in line with current guidance, many US fire departments routinely use the “ladder-pipe system” for conducting rapid, gross decontamination of casualties. The survey revealed significant variability in ladder-pipe construction, such as the position and number of fire hoses used. There was also variability in decontamination characteristics, such as water temperature and water pressure, detergent use, and shower duration. The results presented here provide important insights into the ways in which implementation of decontamination guidance can vary between US states. These inconsistencies are thought to reflect established perceived best practices and local adaptation of response plans to address practical and logistical constraints. These outcomes highlight the need for evidence-based national guidelines for conducting mass casualty decontamination. PMID:27442794

  16. Gut-Brain Axis and Behavior.

    PubMed

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  17. Gut microbiota and metabolic syndrome

    PubMed Central

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-01-01

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal “superorganism” seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host’s immune system could culminate in the intestinal translocation of bacterial fragments and the development of “metabolic endotoxemia”, leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use. PMID:25473159

  18. Gut microbiota and liver diseases

    PubMed Central

    Minemura, Masami; Shimizu, Yukihiro

    2015-01-01

    Several studies revealed that gut microbiota are associated with various human diseases, e.g., metabolic diseases, allergies, gastroenterological diseases, and liver diseases. The liver can be greatly affected by changes in gut microbiota due to the entry of gut bacteria or their metabolites into the liver through the portal vein, and the liver-gut axis is important to understand the pathophysiology of several liver diseases, especially non-alcoholic fatty liver disease and hepatic encephalopathy. Moreover, gut microbiota play a significant role in the development of alcoholic liver disease and hepatocarcinogenesis. Based on these previous findings, trials using probiotics have been performed for the prevention or treatment of liver diseases. In this review, we summarize the current understanding of the changes in gut microbiota associated with various liver diseases, and we describe the therapeutic trials of probiotics for those diseases. PMID:25684933

  19. Carbohydrates and the human gut microbiota.

    PubMed

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  20. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  1. Evaluation of Hydrogel Technologies for the Decontamination ...

    EPA Pesticide Factsheets

    Report This current research effort was developed to evaluate intermediate level (between bench-scale and large-scale or wide-area implementation) decontamination procedures, materials, technologies, and techniques used to remove radioactive material from different surfaces. In the event of such an incident, application of this technology would primarily be intended for decontamination of high-value buildings, important infrastructure, and landmarks.

  2. Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children

    PubMed Central

    Wu, Guojun; Zhang, Chenhong; Wang, Jing; Zhang, Feng; Wang, Ruirui; Shen, Jian; Wang, Linghua; Pang, Xiaoyan; Zhang, Xiaojun; Zhao, Liping; Zhang, Menghui

    2016-01-01

    The gut microbiome represents an important reservoir of antibiotic resistance genes (ARGs). Effective methods are urgently needed for managing the gut resistome to fight against the antibiotic resistance threat. In this study, we show that a gut microbiota-targeted dietary intervention, which shifts the dominant fermentation of gut bacteria from protein to carbohydrate, significantly diminished the gut resistome and alleviated metabolic syndrome in obese children. Of the non-redundant metagenomic gene catalog of ~2 × 106 microbial genes, 399 ARGs were identified in 131 gene types and conferred resistance to 47 antibiotics. Both the richness and diversity of the gut resistome were significantly reduced after the intervention. A total of 201 of the 399 ARGs were carried in 120 co-abundance gene groups (CAGs) directly binned from the gene catalog across both pre-and post-intervention samples. The intervention significantly reduced several CAGs in Klebsiella, Enterobacter and Escherichia, which were the major hubs for multiple resistance gene types. Thus, dietary intervention may become a potentially effective method for diminishing the gut resistome. PMID:27044409

  3. Diminution of the gut resistome after a gut microbiota-targeted dietary intervention in obese children.

    PubMed

    Wu, Guojun; Zhang, Chenhong; Wang, Jing; Zhang, Feng; Wang, Ruirui; Shen, Jian; Wang, Linghua; Pang, Xiaoyan; Zhang, Xiaojun; Zhao, Liping; Zhang, Menghui

    2016-04-05

    The gut microbiome represents an important reservoir of antibiotic resistance genes (ARGs). Effective methods are urgently needed for managing the gut resistome to fight against the antibiotic resistance threat. In this study, we show that a gut microbiota-targeted dietary intervention, which shifts the dominant fermentation of gut bacteria from protein to carbohydrate, significantly diminished the gut resistome and alleviated metabolic syndrome in obese children. Of the non-redundant metagenomic gene catalog of ~2 × 10(6) microbial genes, 399 ARGs were identified in 131 gene types and conferred resistance to 47 antibiotics. Both the richness and diversity of the gut resistome were significantly reduced after the intervention. A total of 201 of the 399 ARGs were carried in 120 co-abundance gene groups (CAGs) directly binned from the gene catalog across both pre-and post-intervention samples. The intervention significantly reduced several CAGs in Klebsiella, Enterobacter and Escherichia, which were the major hubs for multiple resistance gene types. Thus, dietary intervention may become a potentially effective method for diminishing the gut resistome.

  4. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome.

    PubMed

    Hu, Yi; Sanders, Jon G; Łukasik, Piotr; D'Amelio, Catherine L; Millar, John S; Vann, David R; Lan, Yemin; Newton, Justin A; Schotanus, Mark; Kronauer, Daniel J C; Pierce, Naomi E; Moreau, Corrie S; Wertz, John T; Engel, Philipp; Russell, Jacob A

    2018-03-06

    Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants.

  5. All-Weather Hydrogen Peroxide-Based Decontamination of CBRN Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, George W.; Procell, Lawrence R.; Sorrick, David C.

    2010-03-11

    A hydrogen peroxide-based decontaminant, Decon Green, is efficacious for the decontamination of chemical agents VX (S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (mustard, bis(2-chloroethyl) sulfide); the biological agent anthrax (Bacillus anthracis); and radiological isotopes Cs-137 and Co-60; thus demonstrating the ability of this decontamination approach to ameliorate the aftermath of all three types of weapons of mass destruction (WMD). Reaction mechanisms afforded for the chemical agents are discussed as are rationales for the enhanced removal efficacy of recalcitrant 60Co on certain surfaces. Decontaminants of this nature can be deployed, and are effective, at very low temperatures (-32 °C),more » as shown for studies done with VX and HD simulants, without the need for external heat sources. Finally, the efficacy of a lower-logistics, dry decontaminant powder concentrate (utilizing the solid active-oxygen compounds peracetyl borate and Peroxydone) which can be reconstituted with water in the field prior to use, is presented.« less

  6. Results of chemical decontamination of DOE`s uranium-enrichment scrap metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levesque, R.G.

    1997-02-01

    The CORPEX{reg_sign} Nuclear Decontamination Processes were used to decontaminate representative scrap metal specimens obtained from the existing scrap metal piles located at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. In September 1995, under contract to Lockheed Martin Energy Systems, MELE Associates, Inc. performed the on-site decontamination demonstration. The decontamination demonstration proved that significant amounts of the existing DOE scrap metal can be decontaminated to levels where the scrap metal could be economically released by DOE for beneficial reuse. This simple and environmentally friendly process can be used as an alternative, or in addition to, smeltingmore » radiologically contaminated scrap metal.« less

  7. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...

  8. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...

  9. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...

  10. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...

  11. 40 CFR 761.79 - Decontamination standards and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disassembled electrical equipment), concrete, and non-porous surfaces covered with a porous surface, such as... person decontaminating porous surfaces other than concrete under paragraph (b)(4) of this section and non..., concrete, or non-porous surfaces. (1) The decontamination standard for water containing PCBs is: (i) Less...

  12. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  13. Design of dental surgeries in relation to instrument decontamination.

    PubMed

    Smith, A J; Lockhart, D E A; McDonald, E; Creanor, S; Hurrell, D; Bagg, J

    2010-12-01

    Recent guidelines advise that the decontamination of dental instruments should be undertaken outwith the treatment area. The aim of this study was to determine the physical area of rooms in dental surgeries that decontaminate instruments within and outwith the treatment area respectively, and other factors relating to practice layout and ventilation. Data were collected by interview and observation of dental healthcare workers in dental practice in Scotland, UK. Room layouts were recorded and measured at floor, benchtop and above benchtop heights. Thirteen surgeries with instrument decontamination processes occurring in the treatment area and seven surgeries with instrument decontamination outwith the treatment area were selected at random for detailed analysis of room dimensions. Of the 179 dental surgeries surveyed, 55% were located in converted residential premises and most practitioners (91%) did not share premises with other healthcare providers. The median number of rooms in the practices was 8 (range: 2-21) and the median number of surgeries present was 3 (range: 1-6). Regardless of whether instrument decontamination facilities were housed within the treatment area or not, the average treatment area room size for both was 15.8m(2) (range: 7.3-23.9) (P=0.862), with 20% of the room area available as work surfaces. The median size of the seven instrument decontamination rooms (local decontamination units) was 7.6m(2) (range: 2.9-16.0), with, on average, 63% of the room used for work surfaces. This survey suggests that the historical location of dental surgeries in converted residential properties places many restrictions on appropriate design for healthcare premises. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Pesticides water decontamination in oxygen-limited conditions.

    PubMed

    Suciu, Nicoleta Alina; Ferrari, Federico; Vasileiadis, Sotirios; Merli, Annalisa; Capri, Ettore; Trevisan, Marco

    2013-01-01

    This study was undertaken to develop a laboratory bioreactor, with a functioning principle similar with that of biobed systems but working in oxygen-limited conditions, suitable for decontaminating wastewater mixtures with pesticides. The system is composed by two cylindrical plastic containers. The first one, where the pesticides solution is collected, is open, whereas the second one, where the biomass is disposed, is closed. The pesticides solution was pumped at the biomass surface and subsequently recollected and disposed in the first container. Four pesticides with different physical-chemical characteristics were tested. The results obtained showed a relatively good capacity of the developed prototype to decontaminate waste water containing the mixture of pesticides. The time of the experiment, the number of cycles that the solution made in the system and the environmental temperature have a significantly influence for the decontamination of acetochlor and chlorpyrifos whereas for the decontamination of terbuthylazine and metalaxyl no significant influence was observed. Even if the present prototype could represent a valid solution to manage the water pesticides residues in a farm and to increase the confidence of bystanders and residents, the practical difficulties when replacing the biomass could represent a limit of the system.

  15. Gut Microbiome-based Therapeutics in Liver Cirrhosis: Basic Consideration for the Next Step

    PubMed Central

    Fukui, Hiroshi

    2017-01-01

    Abstract Infections account for significant morbidity and mortality in liver cirrhosis and most are related to the gut microbiome. Fecal dysbiosis, characterized by an overgrowth of potentially pathogenic bacteria and a decrease in autochthonous non-pathogenic bacteria, becomes prominent with the progression of liver cirrhosis. In cirrhotic patients, disruption of the intestinal barrier causes intestinal hyperpermeability (i.e. leaky gut), which is closely related to gut dysmotility, dysbiosis and small intestinal bacterial overgrowth and may induce pathological bacterial translocation. Although the involved microbial taxa are somewhat different between the cirrhotic patients from the East and the West, the common manifestation of a shortage of bacteria that contribute to the production of short-chain fatty acids and secondary bile acids may facilitate intestinal inflammation, leaky gut and gut dysbiosis. Translocated endotoxin and bacterial DNA are capable of provoking potent inflammation and affecting the metabolic and hemodynamic systems, which may ultimately enhance the progression of liver cirrhosis and its various complications, such as hepatic encephalopathy (HE), variceal bleeding, infection and renal disturbances. Among studies on the microbiome-based therapeutics, findings of probiotic effects on HE have been contradictory in spite of several supportive results. However, the effects of synbiotics and prebiotics are substantially documented. The background of their effectiveness should be evaluated again in relation to the cirrhosis-related changes in gut microbiome and their metabolic effects. Strict indications for the antibiotic rifaximin remain unestablished, although its effect is promising, improving HE and other complications with little influence on microbial populations. The final goal of microbiome-based therapeutics is to adjust the gut-liver axis to the maximal benefit of cirrhotic patients, with the aid of evolving metagenomic and metabolomic

  16. Gut-liver axis: gut microbiota in shaping hepatic innate immunity.

    PubMed

    Wu, Xunyao; Tian, Zhigang

    2017-11-01

    Gut microbiota play an essential role in shaping immune cell responses. The liver was continuously exposed to metabolic products of intestinal commensal bacterial through portal vein and alteration of gut commensal bateria was always associated with increased risk of liver inflammation and autoimmune disease. Considered as a unique immunological organ, the liver is enriched with a large number of innate immune cells. Herein, we summarize the available literature of gut microbiota in shaping the response of hepatic innate immune cells including NKT cells, NK cells, γδ T cells and Kupffer cells during health and disease. Such knowledge might help to develop novel and innovative strategies for the prevention and therapy of innate immune cell-related liver disease.

  17. [Alteration of intestinal permeability: the missing link between gut microbiota modifications and inflammation in obesity?].

    PubMed

    Genser, Laurent; Poitou, Christine; Brot-Laroche, Édith; Rousset, Monique; Vaillant, Jean-Christophe; Clément, Karine; Thenet, Sophie; Leturque, Armelle

    2016-05-01

    The increasing incidence of obesity and associated metabolic complications is a worldwide public health issue. The role of the gut in the pathophysiology of obesity, with an important part for microbiota, is becoming obvious. In rodent models of diet-induced obesity, the modifications of gut microbiota are associated with an alteration of the intestinal permeability increasing the passage of food or bacterial antigens, which contribute to low-grade inflammation and insulin resistance. In human obesity, intestinal permeability modification, and its role in the crosstalk between gut microbiota changes and inflammation at systemic and tissular levels, are still poorly documented. Hence, further characterization of the triggering mechanisms of such inflammatory responses in obese subjects could enable the development of personalized intervention strategies that will help to reduce the risk of obesity-associated diseases. © 2016 médecine/sciences – Inserm.

  18. Binding affinity and decontamination of dermal decontamination gel to model chemical warfare agent simulants.

    PubMed

    Cao, Yachao; Elmahdy, Akram; Zhu, Hanjiang; Hui, Xiaoying; Maibach, Howard

    2018-05-01

    Six chemical warfare agent simulants (trimethyl phosphate, dimethyl adipate, 2-chloroethyl methyl sulfide, diethyl adipate, chloroethyl phenyl sulfide and diethyl sebacate) were studied in in vitro human skin to explore relationship between dermal penetration/absorption and the mechanisms of simulant partitioning between stratum corneum (SC) and water as well as between dermal decontamination gel (DDGel) and water. Both binding affinity to and decontamination of simulants using DDGel were studied. Partition coefficients of six simulants between SC and water (Log P SC/w ) and between DDGel and water (Log P DDGel/w ) were determined. Results showed that DDGel has a similar or higher binding affinity to each simulant compared to SC. The relationship between Log P octanol/water and Log P SC/w as well as between Log P octanol/water and Log P DDGel/w demonstrated that partition coefficient of simulants correlated to their lipophilicity or hydrophilicity. Decontamination efficiency results with DDGel for these simulants were consistent with binding affinity results. Amounts of percentage dose of chemicals in DDGel of trimethyl phosphate, dimethyl adipate, 2-chloroethyl methyl sulfide, diethyl adipate, chloroethyl phenyl sulfide and diethyl sebacate were determined to be 61.15, 85.67, 75.91, 53.53, 89.89 and 76.58, with corresponding amounts absorbed in skin of 0.96, 0.65, 1.68, 0.72, 0.57 and 1.38, respectively. In vitro skin decontamination experiments coupled with a dermal absorption study demonstrated that DDGel can efficiently remove chemicals from skin surface, back-extract from the SC, and significantly reduced chemical penetration into skin or systemic absorption for all six simulants tested. Therefore, DDGel offers a great potential as a NextGen skin Decon platform technology for both military and civilian use. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Decontaminating metal surfaces

    DOEpatents

    Childs, E.L.

    1984-01-23

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g., >600 g/1 of NaNO/sub 3/, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH < 6.

  20. Decontaminating metal surfaces

    DOEpatents

    Childs, Everett L.

    1984-11-06

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g.,>600 g/l of NaNO.sub.3, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH<6.

  1. A rapid and inexpensive bioassay to evaluate the decontamination of organophosphates.

    PubMed

    Claborn, David M; Martin-Brown, Skylar A; Sagar, Sanjay Gupta; Durham, Paul

    2012-01-01

    An inexpensive and rapid bioassay using adult red flour beetles was developed for use in assessing the decontamination of environments containing organophosphates and related chemicals. A decontamination protocol was developed which demonstrated that 2 to 3 applications of 5% bleach solution were required to obtain nearly complete decontamination of malathion. The bioassay was also used to screen common household cleaners as potential decontaminating agents, but only 5% bleach was effective at improving survival of insects on steel plates treated with 25% malathion. A toxic degradation product (malaoxon) was detected using gas chromatography/mass spectrophotometry; this toxin affected the decontamination efficacy and resulted in continued toxicity to the beetles until subsequent decontaminations. The bioassay provides evidence to support the use of red flour beetles as a sensitive, less expensive method for determining safety levels of environments contaminated with malathion and other toxins, and may have application in the study of chemical warfare agents.

  2. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    PubMed

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  3. Improvement in ultraviolet based decontamination rate using meta-materials

    NASA Astrophysics Data System (ADS)

    Enaki, Nicolae A.; Bazgan, Sergiu; Ciobanu, Nellu; Turcan, Marina; Paslari, Tatiana; Ristoscu, Carmen; Vaseashta, Ashok; Mihailescu, Ion N.

    2017-09-01

    We propose a method of decontamination using photon-crystals consisting of microspheres and fiber optics structures with various geometries. The efficient decontamination using the surface of the evanescent zone of meta-materials opens a new perspective in the decontamination procedures. We propose different topological structures of meta-materials to increase the contact surface of UV radiation with contaminated liquid. Recent observation of the trapping of dielectric particles along the fibers help us propose a new perspective on the new possibilities to trap the viruses, bacteria and other microorganisms from liquids, in this special zone, where the effective UV coherent Raman decontamination becomes possible. The nonlinear theory of the excitation of vibration modes of bio-molecule of viruses and bacteria is revised, taking into consideration the bimodal coherent states in coherent Raman excitation of biomolecules.

  4. Decontamination of chemical tracers in droplets by a submerging thin film flow

    NASA Astrophysics Data System (ADS)

    Landel, Julien R.; McEvoy, Harry; Dalziel, Stuart B.

    2016-11-01

    We investigate the decontamination of chemical tracers contained in small viscous drops by a submerging falling film. This problem has applications in the decontamination of hazardous chemicals, following accidental releases or terrorist attacks. Toxic droplets lying on surfaces are cleaned by spraying a liquid decontaminant over the surface. The decontaminant film submerges the droplets, without detaching them, in order to neutralize toxic chemicals in the droplets. The decontamination process is controlled by advection, diffusion and reaction processes near the drop-film interface. Chemical tracers dissolve into the film flow forming a thin diffusive boundary layer at the interface. The chemical tracers are then neutralized through a reaction with a chemical decontaminant transported in the film. We assume in this work that the decontamination process occurs mainly in the film phase owing to low solubility of the decontaminant in the drop phase. We analyze the impact of the reaction time scale, assuming first-order reaction, in relation with the characteristic advection and diffusion time scales in the case of a single droplet. Using theoretical, numerical and experimental means, we find that the reaction time scale need to be significantly smaller than the characteristic time scale in the diffusive boundary layer in order to enhance noticeably the decontamination of a single toxic droplet. We discuss these results in the more general case of the decontamination of a large number of droplets. This material is based upon work supported by the Defense Threat Reduction Agency under Contract No. HDTRA1-12-D-0003-0001.

  5. Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia.

    PubMed

    Daulatzai, Mak Adam

    2015-01-01

    The non-celiac gluten sensitivity (NCGS) is a chronic functional gastrointestinal disorder which is very common world wide. The human gut harbors microbiota which has a wide variety of microbial organisms; they are mainly symbiotic and important for well being. However, "dysbiosis" - i.e. an alteration in normal commensal gut microbiome with an increase in pathogenic microbes, impacts homeostasis/health. Dysbiosis in NCGS causes gut inflammation, diarrhea, constipation, visceral hypersensitivity, abdominal pain, dysfunctional metabolic state, and peripheral immune and neuro-immune communication. Thus, immune-mediated gut and extra-gut dysfunctions, due to gluten sensitivity with comorbid diarrhea, may last for decades. A significant proportion of NCGS patients may chronically consume alcohol, non-steroidal anti-inflammatory drugs, and fatty diet, as well as suffer from various comorbid disorders. The above pathophysiological substrate and dysbiosis are underpinned by dysfunctional bidirectional "Gut-Brain Axis" pathway. Pathogenic gut microbiota is known to upregulate gut- and systemic inflammation (due to lipopolysaccharide from pathogenic bacteria and synthesis of pro-inflammatory cytokines); they enhance energy harvest, cause obesity, insulin resistance, and dysfunctional vago-vagal gut-brain axis. Conceivably, the above cascade of pathology may promote various pathophysiological mechanisms, neuroinflammation, and cognitive dysfunction. Hence, dysbiosis, gut inflammation, and chronic dyshomeostasis are of great clinical relevance. It is argued here that we need to be aware of NCGS and its chronic pathophysiological impact. Therapeutic measures including probiotics, vagus nerve stimulation, antioxidants, alpha 7 nicotinic receptor agonists, and corticotropin-releasing factor receptor 1 antagonist may ameliorate neuroinflammation and oxidative stress in NCGS; they may therefore, prevent cognitive dysfunction and vulnerability to Alzheimer's disease.

  6. Percutaneous toxicity and decontamination of soman, VX, and paraoxon in rats using detergents.

    PubMed

    Misík, Jan; Pavliková, Růžena; Kuča, Kamil

    2013-06-01

    Highly toxic organophosphorus compounds (OPs) were originally developed for warfare or as agricultural pesticides. Today, OPs represent a serious threat to military personnel and civilians. This study investigates the in vivo decontamination of male Wistar rats percutaneously exposed to paraoxon and two potent nerve agents--soman (GD) and VX. Four commercial detergents were tested as decontaminants--Neodekont(TM), Argos(TM), Dermogel(TM), and FloraFree(TM). Decontamination performed 2 min after exposure resulted in a higher survival rate in comparison with non-decontaminated controls. The decontamination effectiveness was expressed as protective ratio (PR, median lethal dose of agent in decontaminated animals divided by the median lethal dose of agent in untreated animals). The highest decontamination effectiveness was consistently achieved with Argos(TM) (PR=2.3 to 64.8), followed by Dermogel(TM) (PR=2.4 to 46.1). Neodekont(TM) and FloraFree(TM) provided the lowest decontamination effectiveness, equivalent to distilled water (PR=1.0 to 43.2).

  7. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    PubMed

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  8. The Green Gut: Chlorophyll Degradation in the Gut of Spodoptera littoralis.

    PubMed

    Badgaa, Amarsanaa; Büchler, Rita; Wielsch, Natalie; Walde, Marie; Heintzmann, Rainer; Pauchet, Yannik; Svatos, Ales; Ploss, Kerstin; Boland, Wilhelm

    2015-11-01

    Chlorophylls, the most prominent natural pigments, are part of the daily diet of herbivorous insects. The spectrum of ingested and digested chlorophyll metabolites compares well to the pattern of early chlorophyll-degradation products in senescent plants. Intact chlorophyll is rapidly degraded by proteins in the front- and midgut. Unlike plants, insects convert both chlorophyll a and b into the corresponding catabolites. MALDI-TOF/MS imaging allowed monitoring the distribution of the chlorophyll catabolites along the gut of Spodoptera littoralis larvae. The chlorophyll degradation in the fore- and mid-gut is strongly pH dependent, and requires alkaline conditions. Using LC-MS/MS analysis we identified a lipocalin-type protein in the intestinal fluid of S. littoralis homolog to the chlorophyllide a binding protein from Bombyx mori. Widefield and high-resolution autofluorescence microscopy revealed that the brush border membranes are covered with the chlorophyllide binding protein tightly bound via its GPI-anchor to the gut membrane. A function in defense against gut microbes is discussed.

  9. Effectiveness of Spray-Based Decontamination Methods for ...

    EPA Pesticide Factsheets

    Report The objective of this project was to assess the effectiveness of spray-based common decontamination methods for inactivating Bacillus (B.) atrophaeus (surrogate for B. anthracis) spores and bacteriophage MS2 (surrogate for foot and mouth disease virus [FMDV]) on selected test surfaces (with or without a model agricultural soil load). Relocation of viable viruses or spores from the contaminated coupon surfaces into aerosol or liquid fractions during the decontamination methods was investigated. This project was conducted to support jointly held missions of the U.S. Department of Homeland Security (DHS) and the U.S. Environmental Protection Agency (EPA). Within the EPA, the project supports the mission of EPA’s Homeland Security Research Program (HSRP) by providing relevant information pertinent to the decontamination of contaminated areas resulting from a biological incident.

  10. DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL

    DOEpatents

    Buyers, A.G.; Rosen, F.D.; Motta, E.E.

    1959-12-22

    A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

  11. Comparison of Four Skin Decontamination Procedures Using Reactive Skin Decontamination Lotion (RSDL) Following Cutaneous VX Exposure in Guinea Pigs

    DTIC Science & Technology

    2016-01-01

    DC) product following cutaneous exposure to VX was affected by the DC procedure. Fur-clipped, male, unanesthetized guinea pigs were used as subjects...RSDL) Following Cutaneous VX Exposure in Guinea Pigs Irwin Koplovitz Susan Schulz Julia Morgan Robert Reed Edward Clarkson C. Gary Hurst...Decontamination Procedures Using Reactive Skin 5a. CONTRACT NUMBER Decontamination Lotion (RSDL) Following Cutaneous VX Exposure in Guinea Pigs 5b

  12. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease.

    PubMed

    Yang, Tao; Richards, Elaine M; Pepine, Carl J; Raizada, Mohan K

    2018-07-01

    Crosstalk between the gut microbiota and the host has attracted considerable attention owing to its involvement in diverse diseases. Chronic kidney disease (CKD) is commonly associated with hypertension and is characterized by immune dysregulation, metabolic disorder and sympathetic activation, which are all linked to gut dysbiosis and altered host-microbiota crosstalk. In this Review, we discuss the complex interplay between the brain, the gut, the microbiota and the kidney in CKD and hypertension and explain our brain-gut-kidney axis hypothesis for the pathogenesis of these diseases. Consideration of the role of the brain-gut-kidney axis in the maintenance of normal homeostasis and of dysregulation of this axis in CKD and hypertension could lead to the identification of novel therapeutic targets. In addition, the discovery of unique microbial communities and their associated metabolites and the elucidation of brain-gut-kidney signalling are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials and treatments for CKD and hypertension.

  13. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota.

    PubMed

    Bauer, Paige V; Hamr, Sophie C; Duca, Frank A

    2016-02-01

    Despite significant progress in understanding the homeostatic regulation of energy balance, successful therapeutic options for curbing obesity remain elusive. One potential target for the treatment of obesity is via manipulation of the gut-brain axis, a complex bidirectional communication system that is crucial in maintaining energy homeostasis. Indeed, ingested nutrients induce secretion of gut peptides that act either via paracrine signaling through vagal and non-vagal neuronal relays, or in an endocrine fashion via entry into circulation, to ultimately signal to the central nervous system where appropriate responses are generated. We review here the current hypotheses of nutrient sensing mechanisms of enteroendocrine cells, including the release of gut peptides, mainly cholecystokinin, glucagon-like peptide-1, and peptide YY, and subsequent gut-to-brain signaling pathways promoting a reduction of food intake and an increase in energy expenditure. Furthermore, this review highlights recent research suggesting this energy regulating gut-brain axis can be influenced by gut microbiota, potentially contributing to the development of obesity.

  14. Cognitive Impairment by Antibiotic-Induced Gut Dysbiosis: Analysis of Gut Microbiota-Brain Communication

    PubMed Central

    Fröhlich, Esther E.; Farzi, Aitak; Mayerhofer, Raphaela; Reichmann, Florian; Jačan, Angela; Wagner, Bernhard; Zinser, Erwin; Bordag, Natalie; Magnes, Christoph; Fröhlich, Eleonore; Kashofer, Karl; Gorkiewicz, Gregor; Holzer, Peter

    2016-01-01

    Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-D-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis. PMID:26923630

  15. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  16. Cospeciation of gut microbiota with hominids

    PubMed Central

    Moeller, Andrew H.; Caro-Quintero, Alejandro; Mjungu, Deus; Georgiev, Alexander V.; Lonsdorf, Elizabeth V.; Muller, Martin N.; Pusey, Anne E.; Peeters, Martine; Hahn, Beatrice H.; Ochman, Howard

    2016-01-01

    The evolutionary origins of the bacterial lineages that populate the human gut are unknown. Here we show that multiple lineages of the predominant bacterial taxa in the gut arose via cospeciation with humans, chimpanzees, bonobos, and gorillas over the past 15 million years. Analyses of strain-level bacterial diversity within hominid gut microbiomes revealed that clades of Bacteroidaceae and Bifidobacteriaceae have been maintained exclusively within host lineages across hundreds of thousands of host generations. Divergence times of these cospeciating gut bacteria are congruent with those of hominids, indicating that nuclear, mitochondrial, and gut bacterial genomes diversified in concert during hominid evolution. This study identifies human gut bacteria descended from ancient symbionts that speciated simultaneously with humans and the African apes. PMID:27463672

  17. Postmortem succession of gut microbial communities in deceased human subjects

    PubMed Central

    Hauther, Kathleen A.

    2017-01-01

    The human microbiome has demonstrated an importance for the health and functioning in living individuals. However, the fate of the microbiome after death is less understood. In addition to a better understanding of microbe-mediated decomposition processes, postmortem succession of human-associated microbial communities has been suggested as a possible forensic tool for estimating time since death, or postmortem interval (PMI). The objective of our study was to document postmortem changes in human gut bacterial communities. Gut microflora were repeatedly sampled from the caeca of cadavers as they decayed under natural environmental conditions. 16S rRNA gene amplicon sequencing revealed that over time, bacterial richness significantly increased (rs = 0.449) while diversity decreased (rs =  − 0.701). The composition of gut bacterial communities changed in a similar manner over time towards a common decay community. OTUs belonging to Bacteroidales (Bacteroides, Parabacteroides) significantly declined while Clostridiales (Clostridium, Anaerosphaera) and the fly-associated Gammaproteobacteria Ignatzschineria and Wohlfahrtiimonas increased. Our examination of human caeca microflora in decomposing cadavers adds to the growing literature on postmortem microbial communities, which will ultimately contribute to a better understanding of decomposition processes. PMID:28626612

  18. The feasibility study of hot cell decontamination by the PFC spray method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-15

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to bemore » reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the

  19. Probiotics, gut microbiota and health.

    PubMed

    Butel, M-J

    2014-01-01

    The human gut is a huge complex ecosystem where microbiota, nutrients, and host cells interact extensively, a process crucial for the gut homeostasis and host development with a real partnership. The various bacterial communities that make up the gut microbiota have many functions including metabolic, barrier effect, and trophic functions. Hence, any dysbiosis could have negative consequences in terms of health and many diseases have been associated to impairment of the gut microbiota. These close relationships between gut microbiota, health, and disease, have led to great interest in using probiotics (i.e. live micro-organisms), or prebiotics (i.e. non-digestible substrates) to positively modulate the gut microbiota to prevent or treat some diseases. This review focuses on probiotics, their mechanisms of action, safety, and major health benefits. Health benefits remain to be proven in some indications, and further studies on the best strain(s), dose, and algorithm of administration to be used are needed. Nevertheless, probiotic administration seems to have a great potential in terms of health that justifies more research. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Evaluation of time required for water-only decontamination of an oil-based agent.

    PubMed

    Moffett, Peter M; Baker, Benjamin L; Kang, Christopher S; Johnson, Melinda S

    2010-03-01

    The objective was to evaluate the time to decontaminate an area of skin exposed to an oil-based agent using a water-only decontamination protocol. A fluorescent mock chemical/biological agent was created. Each of 20 subjects had his/her forearm sprayed with the agent. Each subject placed his/her arm under a decontamination shower, which provided water at a pressure of 60-70 psi and 35 degrees C. After 30 sec a black light was used by three evaluators to determine whether the agent was removed. The process of 30 sec decontamination and re-evaluation was repeated for a total of 5 min. The primary endpoint was proportion decontaminated over time. After 90 sec, 100% of subjects were decontaminated. Whereas the data suggest the possibility of rapid water-only decontamination, the applicability of this data in current form is doubtful, but provides a model as a basis for future study.

  1. Food decontamination using nanomaterials

    USDA-ARS?s Scientific Manuscript database

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  2. Decontamination in a Russian settlement.

    PubMed

    Fogh, C L; Andersson, K G; Barkovsky, A N; Mishine, A S; Ponamarjov, A V; Ramzaev, V P; Roed, J

    1999-04-01

    Decontamination was carried out in an area with three houses in Novo Bobovichi, Bryansk region, Russia, in the autumn of 1995. It was demonstrated that significant reductions in the dose rate both indoor (DRF = 0.34) and outdoor (DRF = 0.20) can be achieved when a controlled cleaning is undertaken. This paper describes the decontamination work carried out and the results obtained. The roofs of the houses were swept and cleaned by special roof cleaning equipment. The soil around the houses was removed by hand while carefully monitoring the ground for residual contamination. By monitoring the decline in the dose rate during the different stages of the work the dose reducing effect of each action has been measured.

  3. Commercial Cleaning Products for Chemical Decontamination: A Scoping Study

    DTIC Science & Technology

    2014-05-01

    way to decontaminate food preparation surfaces in homes, restaurants, and processing plants that are tainted with ricin (http://www.acs.org/content...acs/en/pressroom/newsreleases/2011/march/hou sehold-bleach-can-decontaminate-food-prep-surfaces-in- ricin -bioterrorist- attack.html). Israel also

  4. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    PubMed

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. System decontamination as a tool to control radiation fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riess, R.; Bertholdt, H.O.

    1995-03-01

    Since chemical decontamination of the Reactor Coolant Systems (RCS) and subsystems has the highest potential to reduce radiation fields in a short term this technology has gained an increasing importance. The available decontamination process at Siemens, i.e., the CORD processes, will be described. It is characterized by using permanganic acid for preoxidation and diluted organic acid for the decontamination step. It is a regenerative process resulting in very low waste volumes. This technology has been used frequently in Europe and Japan in both RCS and subsystems. An overview will be given i.e. on the 1993 applications. This overview will includemore » plant, scope, date of performance, system volume specal features of the process removed activities, decon factor time, waste volumes, and personnel dose during decontamination. This overview will be followed by an outlook on future developments in this area.« less

  6. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    PubMed Central

    Kumar, Vinod; Goel, Rajeev; Chawla, Raman; Silambarasan, M.; Sharma, Rakesh Kumar

    2010-01-01

    Chemical, biological, radiological, and nuclear (CBRN) decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination. PMID:21829318

  7. Skin decontamination cream for radiological contaminants: Formulation development and evaluation

    PubMed Central

    Khan, Abdul Wadood; Kotta, Sabna; Rana, Sudha; Ansari, Shahid Husain; Sharma, Rakesh Kumar; Ali, Javed

    2013-01-01

    Background: Increased use of the radioactive materials in the field of research, medical, nuclear power plant, and industry has increased the risk of accidental exposure. Intentional use of the radioisotopes by terrorist organizations could cause exposure/contamination of a number of the population. In view of the accidental contamination, there is a need to develop self-usable decontamination formulations that could be used immediately after contamination is suspected. Materials and Methods: Present work was planned to optimize and develop self-usable radiation decontamination cream formulation. Various pharmaceutical parameters were characterized. 99mTc-sodium pertechnetate was used as radiocontaminant. Static counts were recorded before and after decontamination using single photon emission computed tomography. Results: Decontamination efficacy of the cream was found to be 42% ± 3% at 0-0.5 h after the exposure. Primary skin irritancy test was satisfactory as no erythema or edema was observed visually after 2 weeks of the formulation application. Conclusion: The decontamination studies proved the potential of EDTA to remove the radiological contaminants effectively. PMID:23799206

  8. Role of the normal gut microbiota.

    PubMed

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  9. Comparison of four different fuller's earth formulations in skin decontamination.

    PubMed

    Roul, Annick; Le, Cong-Anh-Khanh; Gustin, Marie-Paule; Clavaud, Emmanuel; Verrier, Bernard; Pirot, Fabrice; Falson, Françoise

    2017-12-01

    Industrial accidents, wars and terrorist threats are potential sources of skin contamination by highly toxic chemical warfare agents and manufacturing compounds. We have compared the time-dependent adsorption capacity and decontamination efficiency of fuller's earth (FE) for four different formulations for the molecular tracer, 4-cyanophenol (4-CP), in vitro and ex vivo using water decontamination as standard. The adsorption capacity of FE was assessed in vitro for 4-CP aqueous solutions whereas decontamination efficiency was investigated ex vivo by tracking porcine skin 4-CP content using attenuated total reflectance Fourier transform infrared spectroscopy. Decontamination was performed on short time, exposed porcine skin to 4-CP by application of FE: (1) as free powder; (2) loaded on adhesive tape; (3) on powdered glove; or (4) in suspension. Removal rate of 4-CP from aqueous solutions correlates with the amount of FE and its contact time. Decontamination efficiency estimated by the percentage of 4-CP recovery from contaminated porcine skin, achieved 54% with water, ranged between ~60 and 70% with dry FE and reached ~90% with FE suspension. Successful decontamination of the FE suspension, enabling a dramatic reduction of skin contamination after a brief exposure scenario, appears to be rapid, reliable and should be formulated in a new device ready to use for self-application. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Decontamination Equipment Standards Workshop for Civilian First Responders

    DTIC Science & Technology

    2009-12-01

    Hazardous Materials Decontamination Radiological Survey Nuclear Chemical 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT u c. THIS...Washington, DC) sponsored the production of this material under an Interagency Agreement with the National Institute of Standards and Technology...responders currently use wet decontamination (i.e., soap and water) to remove contamination from personnel, the standard will not be specific to the

  11. Gut Microbiota and Metabolic Disorders

    PubMed Central

    Hur, Kyu Yeon

    2015-01-01

    Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders. PMID:26124989

  12. Gut microbiota signatures of longevity.

    PubMed

    Kong, Fanli; Hua, Yutong; Zeng, Bo; Ning, Ruihong; Li, Ying; Zhao, Jiangchao

    2016-09-26

    An aging global population poses substantial challenges to society [1]. Centenarians are a model for healthy aging because they have reached the extreme limit of life by escaping, surviving, or delaying chronic diseases [2]. The genetics of centenarians have been extensively examined [3], but less is known about their gut microbiotas. Recently, Biagi et al.[4] characterized the gut microbiota in Italian centenarians and semi-supercentenarians. Here, we compare the gut microbiota of Chinese long-living people with younger age groups, and with the results from the Italian population [4], to identify gut-microbial signatures of healthy aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such asmore » Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these

  14. Decontamination of the pediatric patient.

    PubMed

    Zhao, Xian; Dughly, Omar; Simpson, Joelle

    2016-06-01

    This article will review current guidelines for decontamination procedures for chemical, biological, and radiologic exposures with a focus on pediatric specific considerations. There has been a global increase in terrorist incidents that expose large populations to toxic agents associated with significant morbidity and mortality. The pathophysiology, treatment, and management of these toxic exposures may be unfamiliar to the healthcare provider. Additionally, children are particularly vulnerable to terrorist threats as they have unique anatomical, physiological, psychological, and developmental characteristics distinct from the adult population. Because pediatric patients are at greater risk than the general population, providers should be prepared to deliver age-appropriate care. Additionally, the ideal decontamination protocol is designed to maintain family units to maximize efficiency and minimize psychological trauma.

  15. Immune-modulatory genomic properties differentiate gut microbiota of infants with and without eczema.

    PubMed

    Oh, Seungdae; Yap, Gaik Chin; Hong, Pei-Ying; Huang, Chiung-Hui; Aw, Marion M; Shek, Lynette Pei-Chi; Liu, Wen-Tso; Lee, Bee Wah

    2017-01-01

    Gut microbiota play an important role in human immunological processes, potentially affecting allergic diseases such as eczema. The diversity and structure of gut microbiota in infants with eczema have been previously documented. This study aims to evaluate by comparative metagenomics differences in genetic content in gut microbiota of infants with eczema and their matched controls. Stools were collected at the age of one month old from twelve infants from an at risk birth cohort in a case control manner. Clinical follow up for atopic outcomes were carried out at the age of 12 and 24 months. Microbial genomic DNA were extracted from stool samples and used for shotgun sequencing. Comparative metagenomic analysis showed that immune-regulatory TCAAGCTTGA motifs were significantly enriched in the six healthy controls (C) communities compared to the six eczema subjects (E), with many encoded by Bifidobacterium (38% of the total motifs in the C communities). Draft genomes of five Bifidobacterium species populations (B. longum, B. bifidum, B. breve, B. dentium, and B. pseudocatenulatum) were recovered from metagenomic datasets. The B. longum BFN-121-2 genome encoded more TCAAGCTTGA motifs (4.2 copies per one million genome sequence) than other Bifidobacterium genomes. Additionally, the communities in the stool of controls (C) were also significantly enriched in functions associated with tetrapyrrole biosynthesis compared to those of eczema (E). Our results show distinct immune-modulatory genomic properties of gut microbiota in infants associated with eczema and provide new insights into potential role of gut microbiota in affecting human immune homeostasis.

  16. Immune-modulatory genomic properties differentiate gut microbiota of infants with and without eczema

    PubMed Central

    Oh, Seungdae; Yap, Gaik Chin; Hong, Pei-Ying; Huang, Chiung-Hui; Aw, Marion M.; Shek, Lynette Pei-Chi; Liu, Wen-Tso; Lee, Bee Wah

    2017-01-01

    Gut microbiota play an important role in human immunological processes, potentially affecting allergic diseases such as eczema. The diversity and structure of gut microbiota in infants with eczema have been previously documented. This study aims to evaluate by comparative metagenomics differences in genetic content in gut microbiota of infants with eczema and their matched controls. Stools were collected at the age of one month old from twelve infants from an at risk birth cohort in a case control manner. Clinical follow up for atopic outcomes were carried out at the age of 12 and 24 months. Microbial genomic DNA were extracted from stool samples and used for shotgun sequencing. Comparative metagenomic analysis showed that immune-regulatory TCAAGCTTGA motifs were significantly enriched in the six healthy controls (C) communities compared to the six eczema subjects (E), with many encoded by Bifidobacterium (38% of the total motifs in the C communities). Draft genomes of five Bifidobacterium species populations (B. longum, B. bifidum, B. breve, B. dentium, and B. pseudocatenulatum) were recovered from metagenomic datasets. The B. longum BFN-121-2 genome encoded more TCAAGCTTGA motifs (4.2 copies per one million genome sequence) than other Bifidobacterium genomes. Additionally, the communities in the stool of controls (C) were also significantly enriched in functions associated with tetrapyrrole biosynthesis compared to those of eczema (E). Our results show distinct immune-modulatory genomic properties of gut microbiota in infants associated with eczema and provide new insights into potential role of gut microbiota in affecting human immune homeostasis. PMID:29049378

  17. The Maternal Gut Microbiome During Pregnancy.

    PubMed

    Edwards, Sara M; Cunningham, Solveig A; Dunlop, Anne L; Corwin, Elizabeth J

    The gut microbiome is a critical component of an individual's metabolism and overall health. The prenatal period is marked by unique inflammatory and immune changes that alter maternal gut function and bacterial composition as the pregnancy advances. The composition of the maternal gut microbiome contributes to obstetric outcomes with long-term health sequelae for mother and child. Estrogen and progesterone also have an impact on gut function, especially during the prenatal period. These physiologic changes in pregnancy allow for adjustments in maternal metabolism and weight necessary to support the pregnancy. Normal hormonal, metabolic, and immunologic changes to the maternal gut microbiome throughout the prenatal period are reviewed, including relevant implications for nurses providing care for pregnant women.

  18. Decontamination, decommissioning, and vendor advertorial issue, 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnihotri, Newal

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: An interesting year ahead of us, by Tom Christopher, AREVA NP Inc.; U.S.-India Civil Nuclear Cooperation; Decontamination and recycling of retired components, by Sean P. Brushart, Electric Power Research Institute; and, ANO is 33 and going strong, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The industry innovation article is: Continuous improvement process, by ReNae Kowalewski, Arkansas Nuclear One.

  19. Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System.

    PubMed

    Cong, Xiaomei; Henderson, Wendy A; Graf, Joerg; McGrath, Jacqueline M

    2015-10-01

    Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.

  20. The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease

    PubMed Central

    Hartmann, Phillipp; Chen, Wei-Chung; Schnabl, Bernd

    2012-01-01

    Alcoholic liver disease (ALD) encompasses hepatic steatosis, which may progress to alcoholic hepatitis, fibrosis, and cirrhosis. It remains a leading cause of morbidity and mortality in the US and worldwide. The severity of liver disease correlates with plasma levels of bacterial products in patients, and experimental ALD depends on the level of gut derived bacterial products in rodents. Since intestinal decontamination and deficiency of bacterial product receptors or their downstream signaling molecules protect from alcohol-induced liver disease, bacterial translocation (BT), qualitative, and quantitative changes of the enteric microbiome are considered as being of fundamental importance in the pathogenesis of ALD. Recent enhancements in diagnostic technologies provide a better insight into these shifts. This review highlights vital events in ALD such as BT, the importance of Toll-like receptor (TLR) signaling, intestinal bacterial overgrowth (IBO), and changes in the intestinal microbiome. Furthermore, a treatment trial section of patients reviews possible future options of therapy for ALD modifying the enteric microbiome. PMID:23087650

  1. Understanding Mechanism of Photocatalytic Microbial Decontamination of Environmental Wastewater

    PubMed Central

    Regmi, Chhabilal; Joshi, Bhupendra; Ray, Schindra K.; Gyawali, Gobinda; Pandey, Ramesh P.

    2018-01-01

    Several photocatalytic nanoparticles are synthesized and studied for potential application for the degradation of organic and biological wastes. Although these materials degrade organic compounds by advance oxidation process, the exact mechanisms of microbial decontamination remains partially known. Understanding the real mechanisms of these materials for microbial cell death and growth inhibition helps to fabricate more efficient semiconductor photocatalyst for large-scale decontamination of environmental wastewater or industries and hospitals/biomedical labs generating highly pathogenic bacteria and toxic molecules containing liquid waste by designing a reactor. Recent studies on microbial decontamination by photocatalytic nanoparticles and their possible mechanisms of action is highlighted with examples in this mini review. PMID:29541632

  2. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes.

    PubMed

    Sato, Junko; Kanazawa, Akio; Ikeda, Fuki; Yoshihara, Tomoaki; Goto, Hiromasa; Abe, Hiroko; Komiya, Koji; Kawaguchi, Minako; Shimizu, Tomoaki; Ogihara, Takeshi; Tamura, Yoshifumi; Sakurai, Yuko; Yamamoto, Risako; Mita, Tomoya; Fujitani, Yoshio; Fukuda, Hiroshi; Nomoto, Koji; Takahashi, Takuya; Asahara, Takashi; Hirose, Takahisa; Nagata, Satoru; Yamashiro, Yuichiro; Watada, Hirotaka

    2014-08-01

    Mounting evidence indicates that the gut microbiota are an important modifier of obesity and diabetes. However, so far there is no information on gut microbiota and "live gut bacteria" in the systemic circulation of Japanese patients with type 2 diabetes. Using a sensitive reverse transcription-quantitative PCR (RT-qPCR) method, we determined the composition of fecal gut microbiota in 50 Japanese patients with type 2 diabetes and 50 control subjects, and its association with various clinical parameters, including inflammatory markers. We also analyzed the presence of gut bacteria in blood samples. The counts of the Clostridium coccoides group, Atopobium cluster, and Prevotella (obligate anaerobes) were significantly lower (P < 0.05), while the counts of total Lactobacillus (facultative anaerobes) were significantly higher (P < 0.05) in fecal samples of diabetic patients than in those of control subjects. Especially, the counts of Lactobacillus reuteri and Lactobacillus plantarum subgroups were significantly higher (P < 0.05). Gut bacteria were detected in blood at a significantly higher rate in diabetic patients than in control subjects (28% vs. 4%, P < 0.01), and most of these bacteria were Gram-positive. This is the first report of gut dysbiosis in Japanese patients with type 2 diabetes as assessed by RT-qPCR. The high rate of gut bacteria in the circulation suggests translocation of bacteria from the gut to the bloodstream. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Radioactive scrap metal decontamination technology assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for themore » liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.« less

  4. DECONTAMINATION AND BENEFICIAL USE OF DREDGED MATERIALS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STERN, E.A.; LODGE, J.; JONES, K.W.

    2000-12-03

    Our group is leading a large-sale demonstration of dredged material decontamination technologies for the New York/New Jersey Harbor. The goal of the project is to assemble a complete system for economic transformation of contaminated dredged material into an environmentally-benign material used in the manufacture of a variety of beneficial use products. This requires the integration of scientific, engineering, business, and policy issues on matters that include basic knowledge of sediment properties, contaminant distribution visualization, sediment toxicity, dredging and dewatering techniques, decontamination technologies, and product manufacturing technologies and marketing. A summary of the present status of the system demonstrations including themore » use of both existing and new manufacturing facilities is given here. These decontamination systems should serve as a model for use in dredged material management plans of regions other than NY/NJ Harbor, such as Long Island Sound, where new approaches to the handling of contaminated sediments are desirable.« less

  5. [Decontamination of chemical warfare agents by photocatalysis].

    PubMed

    Hirakawa, Tsutomu; Mera, Nobuaki; Sano, Taizo; Negishi, Nobuaki; Takeuchi, Koji

    2009-01-01

    Photocatalysis has been widely applied to solar-energy conversion and environmental purification. Photocatalyst, typically titanium dioxide (TiO(2)), produces active oxygen species under irradiation of ultraviolet light, and can decompose not only conventional pollutants but also different types of hazardous substances at mild conditions. We have recently started the study of photocatalytic decontamination of chemical warfare agents (CWAs) under collaboration with the National Research Institute of Police Science. This article reviews environmental applications of semiconductor photocatalysis, decontamination methods for CWAs, and previous photocatalytic studies applied to CWA degradation, together with some of our results obtained with CWAs and their simulant compounds. The data indicate that photocatalysis, which may not always give a striking power, certainly helps detoxification of such hazardous compounds. Unfortunately, there are not enough data obtained with real CWAs due to the difficulty in handling. We will add more scientific data using CWAs in the near future to develop useful decontamination systems that can reduce the damage caused by possible terrorism.

  6. Systems analysis of decontamination options for civilian vehicles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposedmore » to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.« less

  7. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A laboratory investigation of the effectiveness of various skin and surface decontaminants for aliphatic polyisocyanates.

    PubMed

    Bello, Dhimiter; Woskie, Susan R; Streicher, Robert P; Stowe, Meredith H; Sparer, Judy; Redlich, Carrie A; Cullen, Mark R; Liu, Youcheng

    2005-07-01

    Isocyanates may cause contact dermatitis and respiratory sensitization leading to asthma. Dermal exposure to aliphatic isocyanates in auto body shops is very common. However, little is known about the effectiveness of available commercial products used for decontaminating aliphatic polyisocyanates. This experimental study evaluated the decontamination effectiveness of aliphatic polyisocyanates for several skin and surface decontaminants available for use in the auto body industry. The efficiency of two major decontamination mechanisms, namely (i) consumption of free isocyanate groups via chemical reactions with active hydrogen components of the decontaminant and (ii) physical removal processes such as dissolution were studied separately for each decontaminant. Considerable differences were observed among surface decontaminants in their rate of isocyanate consumption, of which those containing free amine groups performed the best. Overall, Pine-Sol(R) MEA containing monoethanolamine was the most efficient surface decontaminant, operating primarily via chemical reaction with the isocyanate group. Polypropylene glycol (PPG) had the highest physical removal efficiency and the lowest reaction rate with isocyanates. All tested skin decontaminants performed similarly, accomplishing decontamination primarily via physical processes and removing 70-80% of isocyanates in one wiping. Limitations of these skin decontaminants are discussed and alternatives presented. In vitro testing using animal skins and in vivo testing with field workers are being conducted to further assess the efficiency and identify related determinants.

  9. Decontamination and Management of Human Remains Following Incidents of Hazardous Chemical Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauschild, Veronique; Watson, Annetta Paule; Bock, Robert Eldon

    2012-01-01

    Abstract Objective: To provide specific procedural guidance and resources for identification, assessment, control, and mitigation of compounds that may contaminate human remains resulting from chemical attack or release. Design: A detailed technical, policy, and regulatory review is summarized. Setting: Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present. Settings would include sites of transportation accidents, natural disasters, terrorist or military operations, mortuary affairs or medical examiner processing and decontamination points, and similar. Patients, Participants: While recommended procedures have not been validated with actual human remains, guidance has been developed frommore » data characterizing controlled experiments with fabrics, materiel, and laboratory animals. Main Outcome Measure(s): Presentation of logic and specific procedures for remains management, protection and decontamination of mortuary affairs personnel, as well as decision criteria for determining when remains are sufficiently decontaminated so as to pose no chemical health hazard. Results: Established procedures and existing equipment/materiel available for decontamination and verification provide appropriate and reasonable means to mitigate chemical hazards from remains. Extensive characterization of issues related to remains decontamination indicates that supra-lethal concentrations of liquid chemical warfare agent VX may prove difficult to decontaminate and verify in a timely fashion. Specialized personnel can and should be called upon to assist with monitoring necessary to clear decontaminated remains for transport and processing. Conclusions: Once appropriate decontamination and verification have been accomplished, normal procedures for remains processing and transport to the decedent s family and the continental United States can be followed.« less

  10. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis.

    PubMed

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G; Cryan, John F

    2016-04-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult. © The Author(s) 2016.

  11. Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis

    PubMed Central

    McVey Neufeld, Karen-Anne; Luczynski, Pauline; Dinan, Timothy G.

    2016-01-01

    Human adolescence is arguably one of the most challenging periods of development. The young adult is exposed to a variety of stressors and environmental stimuli on a backdrop of significant physiological change and development, which is especially apparent in the brain. It is therefore unsurprising that many psychiatric disorders are first observable during this time. The human intestine is inhabited by trillions of microorganisms, and evidence from both preclinical and clinical research focusing on the established microbiota-gut-brain axis suggests that the etiology and pathophysiology of psychiatric disorders may be influenced by intestinal dysbiosis. Provocatively, many if not all of the challenges faced by the developing teen have a documented impact on these intestinal commensal microbiota. In this review, we briefly summarize what is known about the developing adolescent brain and intestinal microbiota, discuss recent research investigating the microbiota-gut-brain axis during puberty, and propose that pre- and probiotics may prove useful in both the prevention and treatment of psychiatric disorders specifically benefitting the young adult. PMID:27254413

  12. Gut microbiome and its role in cardiovascular diseases.

    PubMed

    Ahmadmehrabi, Shadi; Tang, W H Wilson

    2017-11-01

    In recent years, an interest in intestinal microbiota-host interactions has increased due to many findings about the impact of gut bacteria on human health and disease. Dysbiosis, a change in the composition of the gut microbiota, has been associated with much pathology, including cardiovascular diseases (CVD). This article will review normal functions of the gut microbiome, its link to CVD, and potential therapeutic interventions. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention towards the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, arguably the largest, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to much pathology including chronic kidney disease, atherosclerosis, and hypertension. Although our understanding of gut microbiota-host interactions has increased recently; many questions remain about the mechanistic links between the gut microbiome and CVD. With further research, we may one day be able to add gut microbiota profiles as an assessable risk factor for CVD and target therapies towards the gut microbiota.

  13. DNA decontamination methods for internal quality management in clinical PCR laboratories.

    PubMed

    Wu, Yingping; Wu, Jianyong; Zhang, Zhihui; Cheng, Chen

    2018-03-01

    The polymerase chain reaction (PCR) technique, one of the most commonly applied methods in diagnostic and molecular biology, has a frustrating downside: the occurrence of false-positive signals due to contamination. In previous research, various DNA decontamination methods have been developed to overcome this limitation. Unfortunately, the use of random or poorly focused sampling methods for monitoring air and/or object surfaces leads to the incomplete elimination during decontamination procedures. We herein attempted to develop a novel DNA decontamination method (environmental surveillance, including surface and air sampling) and quality management program for clinical molecular diagnostic laboratories (or clinical PCR laboratories). Here, we performed a step-by-step evaluation of current DNA decontamination methods and developed an effective procedure for assessing the presence of decontaminating DNA via PCR analysis. Performing targeted environmental surveillance by sampling, which reached optimal performance over 2 weeks, and the decontamination process had been verified as reliable. Additionally, the process was validated to not affect PCR amplification efficiency based on a comparative study. In this study, effective guidelines for DNA decontamination were developed. The method employed ensured that surface DNA contamination could be effectively identified and eliminated. Furthermore, our study highlighted the importance of overall quality assurance and good clinical laboratory practices for preventing contamination, which are key factors for compliance with regulatory or accreditation requirements. Taken together, we provided the evidence that the presented scheme ranged from troubleshooting to the elimination of surface contamination, could serve as critical foundation for developing regular environmental surveillance guidelines for PCR laboratories. © 2017 Wiley Periodicals, Inc.

  14. Decontamination of dental implant surface in peri-implantitis treatment: A literature review

    PubMed Central

    Buitrago-Vera, Pedro; Solá-Ruiz, María F.; Ferrer-García, Juan C.

    2013-01-01

    Etiological treatment of peri-implantitis aims to reduce the bacterial load within the peri-implant pocket and decontaminate the implant surface in order to promote osseointegration. The aim of this literature review was to evaluate the efficacy of different methods of implant surface decontamination. A search was conducted using the PubMed (Medline) database, which identified 36 articles including in vivo and in vitro studies, and reviews of different decontamination systems (chemical, mechanical, laser and photodynamic therapies). There is sufficient consensus that, for the treatment of peri-implant infections, the mechanical removal of biofilm from the implant surface should be supplemented by chemical decontamination with surgical access. However, more long-term research is needed to confirm this and to establish treatment protocols responding to different implant characterics. Key words:Peri-implantitis, treatment, decontamination, implant surface, laser. PMID:23986023

  15. 33 CFR 117.537 - Townsend Gut.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Townsend Gut. 117.537 Section 117... OPERATION REGULATIONS Specific Requirements Maine § 117.537 Townsend Gut. The draw of the Southport (SR27) Bridge, at mile 0.7, across Townsend Gut between Boothbay Harbor and Southport, Maine shall open on...

  16. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    PubMed

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  17. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment

    PubMed Central

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being. PMID:27416027

  18. Decontamination and management of human remains following incidents of hazardous chemical release.

    PubMed

    Hauschild, Veronique D; Watson, Annetta; Bock, Robert

    2012-01-01

    To provide specific guidance and resources for systematic and orderly decontamination of human remains resulting from a chemical terrorist attack or accidental chemical release. A detailed review and health-based decision criteria protocol is summarized. Protocol basis and logic are derived from analyses of compound-specific toxicological data and chemical/physical characteristics. Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present, such as sites of transportation accidents, terrorist operations, or medical examiner processing points. Guidance is developed from data-characterizing controlled experiments with laboratory animals, fabrics, and materiel. Logic and specific procedures for decontamination and management of remains, protection of mortuary affairs personnel, and decision criteria to determine when remains are sufficiently decontaminated are presented. Established procedures as well as existing materiel and available equipment for decontamination and verification provide reasonable means to mitigate chemical hazards from chemically exposed remains. Unique scenarios such as those involving supralethal concentrations of certain liquid chemical warfare agents may prove difficult to decontaminate but can be resolved in a timely manner by application of the characterized systematic approaches. Decision criteria and protocols to "clear" decontaminated remains for transport and processing are also provided. Once appropriate decontamination and verification have been accomplished, normal procedures for management of remains and release can be followed.

  19. Pathogen Decontamination of Food Crop Soil: A Review.

    PubMed

    Gurtler, Joshua B

    2017-09-01

    The purpose of this review is to delineate means of decontaminating soil. This information might be used to mitigate soil-associated risks of foodborne pathogens. The majority of the research in the published literature involves inactivation of plant pathogens in soil, i.e., those pathogens harmful to fruit and vegetable production and ornamental plants. Very little has been published regarding the inactivation of foodborne human pathogens in crop soil. Nevertheless, because decontamination techniques for plant pathogens might also be useful methods for eliminating foodborne pathogens, this review also includes inactivation of plant pathogens, with appropriate discussion and comparisons, in the hopes that these methods may one day be validated against foodborne pathogens. Some of the major soil decontamination methods that have been investigated and are covered include chemical decontamination (chemigation), solarization, steaming, biofumigation, bacterial competitive exclusion, torch flaming, microwave treatment, and amendment with biochar. Other innovative means of inactivating foodborne pathogens in soils may be discovered and explored in the future, provided that these techniques are economically feasible in terms of chemicals, equipment, and labor. Food microbiology and food safety researchers should reach out to soil scientists and plant pathologists to create links where they do not currently exist and strengthen relationships where they do exist to take advantage of multidisciplinary skills. In time, agricultural output and the demand for fresh produce will increase. With advances in the sensitivity of pathogen testing and epidemiological tracebacks, the need to mitigate preharvest bacterial contamination of fresh produce will become paramount. Hence, soil decontamination technologies may become more economically feasible and practical in light of increasing the microbial safety of fresh produce.

  20. How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota.

    PubMed

    Bost, Alyssa; Franzenburg, Soeren; Adair, Karen L; Martinson, Vincent G; Loeb, Greg; Douglas, Angela E

    2018-04-01

    Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution. © 2017 John Wiley & Sons Ltd.

  1. Gut immunity in Lepidopteran insects.

    PubMed

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Healthy human gut phageome

    PubMed Central

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; van der Oost, John; de Vos, Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20–50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health. PMID:27573828

  3. Healthy human gut phageome.

    PubMed

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T; van der Oost, John; de Vos, Willem M; Young, Mark J

    2016-09-13

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20-50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health.

  4. The capability of accident and emergency departments to safely decontaminate victims of chemical incidents

    PubMed Central

    Horby, P.; Murray, V.; Cummins, A.; Mackway-Jones, K.; Euripidou, R.

    2000-01-01

    Objectives—To evaluate the capability of accident and emergency (A&E) departments in six health regions of England to safely decontaminate casualties exposed to hazardous chemicals. Methods—In January 1999 a postal questionnaire was sent to the clinical director of all A&E departments in Trent, North and South Thames, South and West, North West and, Anglia and Oxford Health Regions. The questionnaire inquired about characteristics of the department, decontamination facilities and equipment, and staff training. Non-responders were sent a second questionnaire and contacted by telephone if they failed to respond to the second mailing. Results—308 of 326 departments identified (94%) returned a questionnaire. There was no significant difference in response rate by region (p = 0.99). Analysis was restricted to 154 major departments seeing more than 20 000 new attendances per year. Of these 154 departments, 109 (71%) had a written chemical incident plan but only 55 (36%) maintained a list of nearby industrial chemical sites. Fifty nine departments (38%) stated that members of staff had received training in the management of chemically contaminated casualties in the preceding year. Eighteen departments (12%) possessed the level of personal protective equipment (PPE) recommended for decontamination by the Ambulance Services Association. Ninety six departments (62%) had a designated decontamination room but only seven (7%) of them incorporated all the features generally considered necessary for safe decontamination. Forty one units (27%) had the capability to decontaminate casualties outside of the department either with warm water from a shower attachment or with a mobile decontamination unit. Thirty six departments (23%) had neither a decontamination room nor the ability to decontaminate casualties outside the department. Only 16 units (10%) had both adequate PPE and either a decontamination room or the capability to decontaminate outside the department. Conclusions

  5. A Survey and Evaluation of Chemical Warfare Agent-Decontaminants and Decontamination

    DTIC Science & Technology

    1984-10-15

    0.21 citric acid monohydrate, 0.05% detergent, and 98.251 water) all contain calcium hypochlorite and have been used for decontaminating agents from...water repellent chemicals consist of an aluminum salt of a saturated carboxylic acid (such as format, acetate, palmitate, or stearate) mixed with...been conducted. Sawdust, soil, silicone, coal dust, amine or sulfonic acid -containing polymers, organic and inorganic ion-exchange materials, and metal

  6. Brain Gut Microbiome Interactions and Functional Bowel Disorders

    PubMed Central

    Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.

    2014-01-01

    Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088

  7. Hairy skin exposure to VX in vitro: effectiveness of delayed decontamination.

    PubMed

    Rolland, P; Bolzinger, M-A; Cruz, C; Josse, D; Briançon, S

    2013-02-01

    The chemical warfare agents such as VX represent a threat for both military and civilians, which involves an immediate need of effective decontamination systems. Since human scalp is usually unprotected compared to other body regions covered with clothes, it could be a preferential site of exposure in case of terrorist acts. The purpose of this study was to determine if skin decontamination could be efficient when performed more than 1h after exposure. In addition, the impact of hairs in skin contamination was investigated. By using in vitro skin models, we demonstrated that about 75% of the applied quantity of VX was recovered on the skin surface 2h after skin exposition, which means that it is worth decontaminating even if contamination occurred 2h before. The stratum corneum reservoir for VX was quickly established and persistent. In addition, the presence of hairs modified the percutaneous penetration of the nerve agent by binding of VX to hairs. Hair shaft has thus to be taken into account in the decontamination process. Reactive Skin Decontamination Lotion (RSDL) and Fuller's Earth (FE) were active in the skin decontamination 45min post-exposure, but RSDL was more efficient in reducing the amount of VX either in the skin or in the hair. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data

    PubMed Central

    Egan, Joseph R.; Amlôt, Richard

    2012-01-01

    In the event of a large-scale chemical release in the UK decontamination of ambulant casualties would be undertaken by the Fire and Rescue Service (FRS). The aim of this study was to track the movement of volunteer casualties at two mass decontamination field exercises using passive Radio Frequency Identification tags and detection mats that were placed at pre-defined locations. The exercise data were then used to inform a computer model of the FRS component of the mass decontamination process. Having removed all clothing and having showered, the re-dressing (termed re-robing) of casualties was found to be a bottleneck in the mass decontamination process during both exercises. Computer simulations showed that increasing the capacity of each lane of the re-robe section to accommodate 10 rather than five casualties would be optimal in general, but that a capacity of 15 might be required to accommodate vulnerable individuals. If the duration of the shower was decreased from three minutes to one minute then a per lane re-robe capacity of 20 might be necessary to maximise the throughput of casualties. In conclusion, one practical enhancement to the FRS response may be to provide at least one additional re-robe section per mass decontamination unit. PMID:23202768

  9. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live?

    PubMed Central

    Tasnim, Nishat; Abulizi, Nijiati; Pither, Jason; Hart, Miranda M.; Gibson, Deanna L.

    2017-01-01

    Global comparisons reveal a decrease in gut microbiota diversity attributed to Western diets, lifestyle practices such as caesarian section, antibiotic use and formula-feeding of infants, and sanitation of the living environment. While gut microbial diversity is decreasing, the prevalence of chronic inflammatory diseases such as inflammatory bowel disease, diabetes, obesity, allergies and asthma is on the rise in Westernized societies. Since the immune system development is influenced by microbial components, early microbial colonization may be a key factor in determining disease susceptibility patterns later in life. Evidence indicates that the gut microbiota is vertically transmitted from the mother and this affects offspring immunity. However, the role of the external environment in gut microbiome and immune development is poorly understood. Studies show that growing up in microbe-rich environments, such as traditional farms, can have protective health effects on children. These health-effects may be ablated due to changes in the human lifestyle, diet, living environment and environmental biodiversity as a result of urbanization. Importantly, if early-life exposure to environmental microbes increases gut microbiota diversity by influencing patterns of gut microbial assembly, then soil biodiversity loss due to land-use changes such as urbanization could be a public health threat. Here, we summarize key questions in environmental health research and discuss some of the challenges that have hindered progress toward a better understanding of the role of the environment on gut microbiome development. PMID:29056933

  10. Innate immunity and gut-microbe mutualism in Drosophila.

    PubMed

    Ryu, Ji-Hwan; Ha, Eun-Mi; Lee, Won-Jae

    2010-04-01

    Metazoan guts face a wide variety of microorganisms upon exposure to the environment, including beneficial symbionts, non-symbionts, food-borne microbes and life-threatening pathogens. Recent evidence has shown that the innate immunity of gut epithelia, such as anti-microbial peptide- and reactive oxygen species-based immune systems, actively participate in gut-microbe homeostasis by shaping the commensal community while efficiently eliminating unwanted bacteria. Therefore, elucidation of the regulatory mechanism by which gut innate immunity occurs at the molecular level will provide a novel perspective of gut-microbe mutualisms as well as of gut diseases caused by alterations in the innate immunity.

  11. Gut microbiota and malnutrition.

    PubMed

    Million, Matthieu; Diallo, Aldiouma; Raoult, Didier

    2017-05-01

    Malnutrition is the leading cause of death worldwide in children under the age of five, and is the focus of the first World Health Organization (WHO) Millennium Development Goal. Breastfeeding, food and water security are major protective factors against malnutrition and critical factors in the maturation of healthy gut microbiota, characterized by a transient bifidobacterial bloom before a global rise in anaerobes. Early depletion in gut Bifidobacterium longum, a typical maternal probiotic, known to inhibit pathogens, represents the first step in gut microbiota alteration associated with severe acute malnutrition (SAM). Later, the absence of the Healthy Mature Anaerobic Gut Microbiota (HMAGM) leads to deficient energy harvest, vitamin biosynthesis and immune protection, and is associated with diarrhea, malabsorption and systemic invasion by microbial pathogens. A therapeutic diet and infection treatment may be unable to restore bifidobacteria and HMAGM. Besides refeeding and antibiotics, future trials including non-toxic missing microbes and nutrients necessary to restore bifidobacteria and HMAGM, including prebiotics and antioxidants, are warranted in children with severe or refractory disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Process for decontaminating radioactive liquids using a calcium cyanamide-containing composition. [Patent application

    DOEpatents

    Silver, G.L.

    1980-09-24

    The present invention provides a process for decontaminating a radioactive liquid containing a radioactive element capable of forming a hydroxide. This process includes the steps of contacting the radioactive liquid with a decontaminating composition and separating the resulting radioactive sludge from the resulting liquid. The decontaminating composition contains calcium cyanamide.

  13. Adaptive immune education by gut microbiota antigens.

    PubMed

    Zhao, Qing; Elson, Charles O

    2018-05-01

    Host-microbiota mutualism has been established during long-term co-evolution. A diverse and rich gut microbiota plays an essential role in the development and maturation of the host immune system. Education of the adaptive immune compartment by gut microbiota antigens is important in establishing immune balance. In particular, a critical time frame immediately after birth provides a 'window of opportunity' for the development of lymphoid structures, differentiation and maturation of T and B cells and, most importantly, establishment of immune tolerance to gut commensals. Depending on the colonization niche, antigen type and metabolic property of different gut microbes, CD4 T-cell responses vary greatly, which results in differentiation into distinct subsets. As a consequence, certain bacteria elicit effector-like immune responses by promoting the production of pro-inflammatory cytokines such as interferon-γ and interleukin-17A, whereas other bacteria favour the generation of regulatory CD4 T cells and provide help with gut homeostasis. The microbiota have profound effects on B cells also. Gut microbial exposure leads to a continuous diversification of B-cell repertoire and the production of T-dependent and -independent antibodies, especially IgA. These combined effects of the gut microbes provide an elegant educational process to the adaptive immune network. Contrariwise, failure of this process results in a reduced homeostasis with the gut microbiota, and an increased susceptibility to various immune disorders, both inside and outside the gut. With more definitive microbial-immune relations waiting to be discovered, modulation of the host gut microbiota has a promising future for disease intervention. © 2018 John Wiley & Sons Ltd.

  14. Automated decontamination of surface-adherent prions.

    PubMed

    Schmitt, A; Westner, I M; Reznicek, L; Michels, W; Mitteregger, G; Kretzschmar, H A

    2010-09-01

    At present there is no routinely available decontamination procedure in washer-disinfectors to allow the reliable inactivation and/or elimination of prions present on reusable surgical instruments. This means that is not possible to provide assurance for preventing iatrogenic transmission of prion diseases. We need effective procedures in prion decontamination that can be integrated into the usual routine of reprocessing surgical instruments. This article reports on the evaluation of an automated process designed to decontaminate prions in washer-disinfectors using a quantitative, highly sensitive in vivo assay for surface-adherent 22L prions. The automated process showed great advantages when compared with conventional alkaline cleaning. In contrast, the new process was as effective as autoclaving at 134 degrees C for 2h and left no detectable prion infectivity, even for heavily contaminated surfaces. This indicates a reduction of surface-adherent prion infectivity of >7 log units. Due to its compatibility with even delicate surgical instruments, the process can be integrated into the large scale reprocessing of instruments in a central sterile supply department. The system could potentially make an important contribution to the prevention of iatrogenic transmission of prions. Copyright 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. Radiocesium decontamination of a riverside in Fukushima, Japan.

    PubMed

    Nishikiori, Tatsuhiro; Suzuki, Satoshi

    2017-10-01

    Extensive decontamination measures have been implemented in the area affected by the Fukushima Dai-ichi nuclear disaster. Typical decontamination measures, such as removing topsoil of several centimeters in depth, are not suitable for rivers where contaminated sediments have been deposited. A decontamination measure was tested that considered the spatial distribution of radiocesium at the lower part of a tributary of the Abukuma River in Fukushima. The radiocesium distribution in the flood channel was vertically and horizontally highly heterogeneous. In some parts, the activity concentration was high (>10 kBq/kg for 137 Cs) even at depths of 25 cm in the sediment. This may be due to plant growth in the flood channel favoring the deposition of sediment with high activity concentration. On the basis of the radiocesium distribution, the flood channel sediment was removed to a depth of 15-35 cm, which accumulated the most radiocesium (>3.0 kBq/kg for the sum of 134 Cs and 137 Cs). The upper 5 cm of soil was removed from the dike slopes. The river bed was not decontaminated because the activity concentration was low (<1 kBq/kg) in the river bed sediment and because the water shields gamma rays emitted from the sediment. The test decontamination measure reduced the air dose rate by a factor of approximately two, demonstrating the effectiveness of our measures. Annual external doses were calculated for when this part of the dike and the flood channel is used for commuting to school and outdoor education. The doses during the activities at the test site accounted for only 1-2% of the value during daily life in the surrounding area, indicating that radiation exposure during riverside activities is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, Lien-Mow; Kilpatrick, Lester L.

    1984-01-01

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  17. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  18. Gut dysfunction in Parkinson's disease

    PubMed Central

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  19. Case of a strangulated right paraduodenal fossa hernia in a malrotated gut.

    PubMed

    Ong, Michelle; Roberts, Matthew; Perera, Marlon; Pretorius, Casper

    2017-07-24

    We report an unusual case of a strangulated internal hernia resulting from a right paraduodenal fossa hernia (PDH) in the context of bowel malrotation. There are few documented cases of PDHs associated with a concomitant gut malrotation. Emergency laparotomy was performed based on clinical and radiological. Intraoperatively, the proximal jejunum was seen to enter a hernia sac formed by an aberrant duodenojejunal flexure located to the right of the aorta. This was presumed to be a strangulated internal hernia of the paraduodenal recess in a malrotated gut. The hernia neck was widened and the sac obliterated to allow reduction of the contents. On reduction and warming, the insulted small bowel appeared viable and returned to the abdominal cavity without resection. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. The gut microbiota, obesity and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  1. Decontamination training: with and without virtual reality simulation.

    PubMed

    Farra, Sharon Lee; Smith, Sherrill; Gillespie, Gordon Lee; Nicely, Stephanie; Ulrich, Deborah L; Hodgson, Eric; French, DeAnne

    2015-01-01

    Nurses must be prepared to care for patients following a disaster, including patients exposed to hazardous contaminants. The purpose of this study was to examine the use of virtual reality simulation (VRS) to teach the disaster-specific skill of decontamination. A quasi-experimental design was used to assign nursing students from 2 baccalaureate nursing programs to 1 of 2 groups to learn the disaster skill of decontamination-printed written directions or VRS. Performance, knowledge, and self-efficacy were outcome measures. Although students in the treatment group had significantly lower performance scores than the control group (p = 0.004), students taking part in VRS completed the skill in a significantly shorter amount of time (p = 0.008). No significant group differences were found for self-efficacy (p = 0.172) or knowledge (p = 0.631). However, students in the VRS treatment group reported high levels of satisfaction with VRS as a training method. The disaster-specific skill of decontamination is a low-volume, high-risk skill that must be performed with accuracy to protect both exposed patients and providers performing decontamination. As frontline providers for casualties following a disaster event, emergency nurses must be prepared to perform this skill when needed. Preparation requires cost-effective, timely, and evidence-based educational opportunities that promote positive outcomes. Further investigation is needed to determine the benefits and long-term effects of VRS for disaster education.

  2. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  3. Cold plasma decontamination using flexible jet arrays

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory

    2010-04-01

    Arrays of atmospheric discharge cold plasma jets have been used to decontaminate surfaces of a wide range of microorganisms quickly, yet not damage that surface. Its effectiveness in decomposing simulated chemical warfare agents has also been demonstrated, and may also find use in assisting in the cleanup of radiological weapons. Large area jet arrays, with short dwell times, are necessary for practical applications. Realistic situations will also require jet arrays that are flexible to adapt to contoured or irregular surfaces. Various large area jet array prototypes, both planar and flexible, are described, as is the application to atmospheric decontamination.

  4. Gut instinct.

    PubMed

    Bion, Julian

    2013-12-19

    Barriers to the use of selective digestive decontamination include concerns about emergence of resistant organisms, over-estimation of current performance in preventing ventilator-associated pneumonia (VAP), alternative methods of preventing VAP, and misunderstanding of mechanisms of action. A definitive cluster-randomised trial should be undertaken that incorporates practitioner concerns and effect-size preferences.

  5. Nonacid meat decontamination technologies: model studies and commercial applications.

    PubMed

    Sofos, J N; Smith, G C

    1998-11-10

    Increased consumer awareness and concern about microbial foodborne diseases has resulted in intensified efforts to reduce contamination of raw meat, as evidenced by new meat and poultry inspection regulations being implemented in the United States. In addition to requiring operation of meat and poultry slaughtering and processing plants under the principles of the hazard analysis critical control point (HACCP) system, the new regulations have established microbiological testing criteria for Escherichia coli and Salmonella, as a means of evaluating plant performance. These developments have renewed and intensified interest in the development and commercial application of meat and poultry decontamination procedures. Technologies developed and evaluated for decontamination include live animal cleaning/washing, chemical dehairing, carcass knife-trimming to remove physical contaminants, steam/hot water-vacuuming for spot-cleaning/decontamination of carcasses, spray washing/rinsing of carcasses with water of low or high pressures and temperatures or chemical solutions, and exposure of carcass sides to pressurized steam. Under appropriate conditions, the technologies applied to carcasses may reduce mean microbiological counts by approximately one-three log colony forming units (cfu)/cm2, and some of them have been approved and are employed in commercial applications (i.e., steam-vacuuming; carcass spray-washing with water, chlorine, organic acid or trisodium phosphate solutions; hot water deluging/spraying/rinsing, and pressurized steam). The contribution of these decontamination technologies to the enhancement of food safety will be determined over the long term, as surveillance data on microbial foodborne illness are collected. This review examines carcass decontamination technologies, other than organic acids, with emphasis placed on recent advances and commercial applications.

  6. Brain-gut-microbiota axis in Parkinson's disease.

    PubMed

    Mulak, Agata; Bonaz, Bruno

    2015-10-07

    Parkinson's disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.

  7. Mycotoxin: Its Impact on Gut Health and Microbiota

    PubMed Central

    Liew, Winnie-Pui-Pui; Mohd-Redzwan, Sabran

    2018-01-01

    The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and

  8. Soil removal as a decontamination practice and radiocesium accumulation in tadpoles in rice paddies at Fukushima.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Nunokawa, Masanori; Wakahara, Taeko; Onda, Yuichi

    2014-04-01

    We investigated the biological accumulation of radiocesium in tadpoles [Rana (Pelophylax) porosa porosa] in rice paddies with and without decontamination practice at Fukushima. Radiocesium was accumulated in surface part of soils both in the control and decontaminated paddies one year after decontamination. Mean (134)Cs and (137)Cs concentrations in tadpoles in the control and decontaminated paddies were 3000 and 4500, and 600 and 890 Bq/kg dry weight, respectively. Radiocesium concentrations in surface soil (0-5 cm depth) and tadpoles in the decontaminated paddy were five times smaller than in the control paddy. These results suggest that decontamination practice can reduce radiocesium concentrations in both soil and tadpoles. However, at the decontaminated paddy, radiocesium concentrations in surface soils became 3.8 times greater one year after decontamination, which indicates that monitoring the subsequent movement of radiocesium in rice paddies and surrounding areas is essential for examining contamination propagation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Calculational Schemes in GUTs

    NASA Astrophysics Data System (ADS)

    Kounnas, Costas

    The following sections are included: * Introduction * Mass Spectrum in a Spontaneously Broken-Theory SU(5) - Minimal Model * Renormalization and Renormalization Group Equation (R.G.E.) * Step Approximation and Decoupling Theorem * Notion of the Effective Coupling Constant * First Estimation of MX, α(MX) and sin2θ(MW) * Renormalization Properties and Photon-Z Mixing * β-Function Definitions * Threshold Functions and Decoupling Theorem * MX-Determination * Proton Lifetime * sin2θ(μ)-Determination * Quark-Lepton Mass Relations (mb/mτ) * Overview of the Conventional GUTs - Hierarchy Problem * Stability of Hierarchy - Supersymmetric GUTS * Cosmologically Acceptable SUSY GUT Models * Radiative Breaking of SU(2) × U(1) — MW/MX Hierarchy Generation * No Scale Supergravity Models^{56,57} Dynamical Determination of M_{B}-M_{F} * Conclusion * References

  10. The pharmacological activity of medical herbs after microbiological decontamination by irradiation

    NASA Astrophysics Data System (ADS)

    Owczarczyk, H. B.; Migdał, W.; K ȩdzia, B.

    2000-03-01

    In the Institute of Nuclear Chemistry and Technology research on microbiological decontamination of medicinal herbs by irradiation has been carried out since 1996. It was shown that using ionizing radiation (a dose of 10 kGy) can obtain satisfactory results of microbiological decontamination of these products. The content of essential biologically active substances such as essential oils, flavonoids, glycosides, anthocyans, antra-compounds, poliphenoloacids, triterpene saponins, oleanosides and plants mucus did not change significantly after irradiation. Pharmacological activity of medicinal herbs has been found satisfactory after microbiological decontamination by irradiation.

  11. Skin decontamination with mineral cationic carrier against sarin determined in vivo.

    PubMed

    Vucemilović, Ante; Hadzija, Mirko; Jukić, Ivan

    2009-06-01

    Our Institute's nuclear, biological, and chemical defense research team continuously investigates and develops preparations for skin decontamination against nerve agents. In this in vivo study, we evaluated skin decontamination efficacy against sarin by a synthetic preparation called Mineral Cationic Carrier (MCC) with known ion exchange, absorption efficacy and bioactive potential. Mice were treated with increasing doses of sarin applied on their skin, and MCC was administered immediately after contamination. The results showed that decontamination with MCC could achieve therapeutic efficacy corresponding to 3 x LD(50) of percutaneous sarin and call for further research.

  12. Decontamination of VX, GD, and HD on a surface using modified vaporized hydrogen peroxide.

    PubMed

    Wagner, George W; Sorrick, David C; Procell, Lawrence R; Brickhouse, Mark D; Mcvey, Iain F; Schwartz, Lewis I

    2007-01-30

    Vaporized hydrogen peroxide (VHP) has proven efficacy for biological decontamination and is a common gaseous sterilant widely used by industry. Regarding chemical warfare agent decontamination, VHP is also effective against HD and VX, but not GD. Simple addition of ammonia gas to VHP affords reactivity toward GD, while maintaining efficacy for HD (and bioagents) and further enhancing efficacy for VX. Thus, modified VHP is a broad-spectrum CB decontaminant suitable for fumigant-type decontamination scenarios, i.e., building, aircraft, and vehicle interiors and sensitive equipment. Finally, as an interesting aside to the current study, commercial ammonia-containing cleaners are also shown to be effective surface decontaminants for GD, but not for VX or HD.

  13. Cellulose digestion in primitive hexapods: Effect of ingested antibiotics on gut microbial populations and gut cellulase levels in the firebrat,Thermobia domestica (Zygentoma, Lepismatidae).

    PubMed

    Treves, D S; Martin, M M

    1994-08-01

    Antibiotic feeding studies were conducted on the firebrat,Thermobia domestica (Zygentoma, Lepismatidae) to determine if the insect's gut cellulases were of insect or microbial origin. Firebrats were fed diets containing either nystatin, metronidazole, streptomycin, tetracycline, or an antibiotic cocktail consisting of all four antibiotics, and then their gut microbial populations and gut cellulase levels were monitored and compared with the gut microbial populations and gut cellulase levels in firebrats feeding on antibiotic-free diets. Each antibiotic significantly reduced the firebrat's gut micro-flora. Nystatin reduced the firebrat's viable gut fungi by 89%. Tetracycline and the antibiotic cocktail reduced the firebrat's viable gut bacteria by 81% and 67%, respectively, and metronidazole, streptomycin, tetracycline, and the antibiotic cocktail reduced the firebrat's total gut flora by 35%, 32%, 55%, and 64%, respectively. Although antibiotics significantly reduced the firebrat's viable and total gut flora, gut cellulase levels in firebrats fed antibiotics were not significantly different from those in firebrats on an antibiotic-free diet. Furthermore, microbial populations in the firebrat's gut decreased significantly over time, even in firebrats feeding on the antibiotic-free diet, without corresponding decreases in gut cellulase levels. Based on this evidence, we conclude that the gut cellulases of firebrats are of insect origin. This conclusion implies that symbiont-independent cellulose digestion is a primitive trait in insects and that symbiont-mediated cellulose digestion is a derived condition.

  14. Symposium on Toxic Substance Control: Decontamination, April 22 - 24, 1980, Columbus, Ohio.

    DTIC Science & Technology

    1981-06-01

    standard decontaminants is used. TABLE 1. Standard Chemical Decontaminants Decontaminant Agents Used On STB Blister and nerve agents DS-2 All chemical... agents M258 Kit Sodium Hydroxide, Ethanol, G-Series nerve agents Phenol, Water Chloramine B, ZnCI2, Blister ana V-Series Ethanol, Water nerve agents A...is a point source alarm that actively samples ambient air and reacts to low concentrations of nerve agents . The M-8 alarm detector also detects several

  15. Skin decontamination efficacy of potassium ketoxime on rabbits exposed to sulfur mustard.

    PubMed

    Sun, Jing-Hai; Sun, Pei-Pei; Zheng, Wei; Han, Song; Ying, Ying; Liu, Hong-Yan; Zhang, Cheng; Zhao, Bao-Quan; Zuo, Guo-Min; Lu, Hong; Zhong, Yu-Xu

    2015-03-01

    The chemical weapon sulfur mustard (SM) is a blister agent, and currently, there is no effective antidote. To evaluate the decontamination efficacy of potassium ketoxime against SM and preliminarily elucidate its decontamination mechanism. Potassium ketoxime reacted with SM, and SM residues were tested at different time intervals by T-135 colorimetry after the reaction. Rabbit skin was topically exposed to 2 mg/cm(2) SM, treated with potassium ketoxime 1 min later, and observed after 6, 12, and 24 h. Gas chromatography-mass spectroscopy was employed to screen and identify the main products of potassium ketoxime decontamination of SM. Potassium ketoxime had a great effect against SM contamination. With a mass ratio of decontaminant: SM of 50:1, decontamination rates against SM were 87.5% after 30 s, 95.9% after 1 min, and 99.0% after 5 min. Fifteen minutes after exposure to SM, the untreated group showed clear erythema lesions, whereas the experimental group showed no clear erythema lesions within 6 h. After 12 and 24 h, the areas of damaged skin in the experimental group were 0.038 and 0.125 cm(2), respectively, compared with 2.21 and 2.65 cm(2) in the control group. Histopathological analysis revealed that treatment with potassium ketoxime also reduced inflammation-induced damage. The results of this study indicate that potassium ketoxime reacted rapidly and completely with SM, and thus, it was found to be a suitable and effective skin decontaminant against SM. The decontamination reaction mechanism is mainly related to nucleophilic substitution.

  16. Evaluation of Microwave Steam Bags for the Decontamination of Filtering Facepiece Respirators

    PubMed Central

    Fisher, Edward M.; Williams, Jessica L.; Shaffer, Ronald E.

    2011-01-01

    Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens. PMID:21525995

  17. Electrolytic decontamination of conductive materials for hazardous waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wedman, D.E.; Martinez, H.E.; Nelson, T.O.

    1996-12-31

    Electrolytic removal of plutonium and americium from stainless steel and uranium surfaces has been demonstrated. Preliminary experiments were performed on the electrochemically based decontamination of type 304L stainless steel in sodium nitrate solutions to better understand the metal removal effects of varying cur-rent density, pH, and nitrate concentration parameters. Material removal rates and changes in surface morphology under these varying conditions are reported. Experimental results indicate that an electropolishing step before contamination removes surface roughness, thereby simplifying later electrolytic decontamination. Sodium nitrate based electrolytic decontamination produced the most uniform stripping of material at low to intermediate pH and at sodiummore » nitrate concentrations of 200 g L{sup -1} and higher. Stirring was also observed to increase the uniformity of the stripping process.« less

  18. No-scale SU( 5) super-GUTs

    DOE PAGES

    Ellis, John; Evans, Jason L.; Nagata, Natsumi; ...

    2017-04-12

    We reconsider the minimal SU( 5) grand unified theory (GUT) in the context of no-scale supergravity inspired by string compactification scenarios, assuming that the soft supersymmetry-breaking parameters satisfy universality conditions at some input scale M in above the GUT scale M GUT. When setting up such a no-scale super-GUT model, special attention must be paid to avoiding the Scylla of rapid proton decay and the Charybdis of an excessive density of cold dark matter, while also having an acceptable mass for the Higgs boson. Furthermore, we do not find consistent solutions if none of the matter and Higgs fields aremore » assigned to twisted chiral supermultiplets, even in the presence of Giudice–Masiero terms. But, consistent solutions may be found if at least one fiveplet of GUT Higgs fields is assigned to a twisted chiral supermultiplet, with a suitable choice of modular weights. Spin-independent dark matter scattering may be detectable in some of these consistent solutions.« less

  19. Drug-Gut Microbiota Interactions: Implications for Neuropharmacology.

    PubMed

    Walsh, Jacinta; Griffin, Brendan T; Clarke, Gerard; Hyland, Niall P

    2018-05-21

    The fate and activity of drugs are frequently dictated not only by the host per se but also by the microorganisms present in the gastrointestinal tract. The gut microbiome is known to, both directly and indirectly, affect drug metabolism. More evidence now hints at the impact that drugs can have on the function and composition of the gut microbiome. Both microbiota-mediated alterations in drug metabolism and drug-mediated alterations in the gut microbiome can have beneficial or detrimental effects on the host. Greater insights into the mechanisms driving these reciprocal drug-gut microbiota interactions are needed, to guide the development of microbiome-targeted dietary or pharmacological interventions, with the potential to enhance drug efficacy or reduce drug side-effects. In this review, we explore the relationship between drugs and the gut microbiome, with a specific focus on potential mechanisms underpinning the drug-mediated alterations on the gut microbiome and the potential implications for psychoactive drugs. This article is protected by copyright. All rights reserved.

  20. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    PubMed

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  1. Assessment of microwave-based clinical waste decontamination unit.

    PubMed

    Hoffman, P N; Hanley, M J

    1994-12-01

    A clinical waste decontamination unit that used microwave-generated heat was assessed for operator safety and efficacy. Tests with loads artificially contaminated with aerosol-forming particles showed that no particles were detected outside the machine provided the seals and covers were correctly seated. Thermometric measurement of a self-generated steam decontamination cycle was used to determine the parameters needed to ensure heat disinfection of the waste reception hopper, prior to entry for maintenance or repair. Bacterial and thermometric test pieces were passed through the machine within a full load of clinical waste. These test pieces, designed to represent a worst case situation, were enclosed in aluminium foil to shield them from direct microwave energy. None of the 100 bacterial test pieces yielded growth on culture and all 100 thermal test pieces achieved temperatures in excess of 99 degrees C during their passage through the decontamination unit. It was concluded that this method may be used to render safe the bulk of of ward-generated clinical waste.

  2. Microbiota-gut-brain axis and the central nervous system.

    PubMed

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  3. Classifying the bacterial gut microbiota of termites and cockroaches: A curated phylogenetic reference database (DictDb).

    PubMed

    Mikaelyan, Aram; Köhler, Tim; Lampert, Niclas; Rohland, Jeffrey; Boga, Hamadi; Meuser, Katja; Brune, Andreas

    2015-10-01

    Recent developments in sequencing technology have given rise to a large number of studies that assess bacterial diversity and community structure in termite and cockroach guts based on large amplicon libraries of 16S rRNA genes. Although these studies have revealed important ecological and evolutionary patterns in the gut microbiota, classification of the short sequence reads is limited by the taxonomic depth and resolution of the reference databases used in the respective studies. Here, we present a curated reference database for accurate taxonomic analysis of the bacterial gut microbiota of dictyopteran insects. The Dictyopteran gut microbiota reference Database (DictDb) is based on the Silva database but was significantly expanded by the addition of clones from 11 mostly unexplored termite and cockroach groups, which increased the inventory of bacterial sequences from dictyopteran guts by 26%. The taxonomic depth and resolution of DictDb was significantly improved by a general revision of the taxonomic guide tree for all important lineages, including a detailed phylogenetic analysis of the Treponema and Alistipes complexes, the Fibrobacteres, and the TG3 phylum. The performance of this first documented version of DictDb (v. 3.0) using the revised taxonomic guide tree in the classification of short-read libraries obtained from termites and cockroaches was highly superior to that of the current Silva and RDP databases. DictDb uses an informative nomenclature that is consistent with the literature also for clades of uncultured bacteria and provides an invaluable tool for anyone exploring the gut community structure of termites and cockroaches. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Gut Microbiota of Nonalcoholic Fatty Liver Disease.

    PubMed

    Abdou, Reham M; Zhu, Lixin; Baker, Robert D; Baker, Susan S

    2016-05-01

    The prevalence of nonalcoholic fatty liver disease has been rapidly increasing worldwide. It has become a leading cause of liver transplantation. Accumulating evidence suggests a significant role for gut microbiota in its development and progression. Here we review the effect of gut microbiota on developing hepatic fatty infiltration and its progression. Current literature supports a possible role for gut microbiota in the development of liver steatosis, inflammation and fibrosis. We also review the literature on possible interventions for NAFLD that target the gut microbiota.

  5. The Gut Microbiota and Autism Spectrum Disorders

    PubMed Central

    Li, Qinrui; Han, Ying; Dy, Angel Belle C.; Hagerman, Randi J.

    2017-01-01

    Gastrointestinal (GI) symptoms are a common comorbidity in patients with autism spectrum disorder (ASD), but the underlying mechanisms are unknown. Many studies have shown alterations in the composition of the fecal flora and metabolic products of the gut microbiome in patients with ASD. The gut microbiota influences brain development and behaviors through the neuroendocrine, neuroimmune and autonomic nervous systems. In addition, an abnormal gut microbiota is associated with several diseases, such as inflammatory bowel disease (IBD), ASD and mood disorders. Here, we review the bidirectional interactions between the central nervous system and the gastrointestinal tract (brain-gut axis) and the role of the gut microbiota in the central nervous system (CNS) and ASD. Microbiome-mediated therapies might be a safe and effective treatment for ASD. PMID:28503135

  6. The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies.

    PubMed

    West, Christina E; Renz, Harald; Jenmalm, Maria C; Kozyrskyj, Anita L; Allen, Katrina J; Vuillermin, Peter; Prescott, Susan L

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity for multisystem effects. Changes in microbial composition are implicated in the increasing propensity for a broad range of inflammatory diseases, such as allergic disease, asthma, inflammatory bowel disease (IBD), obesity, and associated noncommunicable diseases (NCDs). There are also suggestive implications for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti-inflammatory properties. Specific probiotics also have immunomodulatory and metabolic effects. However, when evaluated in clinical trials, the effects are variable, preliminary, or limited in magnitude. Fecal microbiota transplantation is another emerging therapy that regulates inflammation in experimental models. In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Method and coating composition for protecting and decontaminating surfaces

    DOEpatents

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  8. METHOD AND COATING COMPOSITION FOR PROTECTING AND DECONTAMINATING SURFACES

    DOEpatents

    Overhold, D.C.; Peterson, M.D.

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is presented. This coating is placed on the surface before use and is soluble in waters allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  9. Cost and Effectiveness of Decontamination Strategies in Radiation Contaminated Areas in Fukushima in Regard to External Radiation Dose

    PubMed Central

    Yasutaka, Tetsuo; Naito, Wataru; Nakanishi, Junko

    2013-01-01

    The objective of the present study is to evaluate the cost and effectiveness of decontamination strategies in the special decontamination areas in Fukushima in regard to external radiation dose. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, analysis of cost and effectiveness suggests that decontamination costs for agricultural areas account for approximately 80% of the total decontamination cost, of which approximately 60% is associated with storage. In addition, the costs of decontamination per person per unit area are estimated to vary greatly. Appropriate selection of decontamination methods may significantly decrease decontamination costs, allowing more meaningful decontamination in terms of the limited budget. Our analysis can help in examining the prioritization of decontamination areas from the viewpoints of cost and effectiveness in reducing the external dose. Decontamination strategies should be determined according to air dose rates and future land-use plans. PMID:24069398

  10. Cost and effectiveness of decontamination strategies in radiation contaminated areas in Fukushima in regard to external radiation dose.

    PubMed

    Yasutaka, Tetsuo; Naito, Wataru; Nakanishi, Junko

    2013-01-01

    The objective of the present study is to evaluate the cost and effectiveness of decontamination strategies in the special decontamination areas in Fukushima in regard to external radiation dose. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, analysis of cost and effectiveness suggests that decontamination costs for agricultural areas account for approximately 80% of the total decontamination cost, of which approximately 60% is associated with storage. In addition, the costs of decontamination per person per unit area are estimated to vary greatly. Appropriate selection of decontamination methods may significantly decrease decontamination costs, allowing more meaningful decontamination in terms of the limited budget. Our analysis can help in examining the prioritization of decontamination areas from the viewpoints of cost and effectiveness in reducing the external dose. Decontamination strategies should be determined according to air dose rates and future land-use plans.

  11. [Gut microbiota: Description, role and pathophysiologic implications].

    PubMed

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  12. GUT MICROBIOTA DYSBIOSIS IS LINKED TO HYPERTENSION

    PubMed Central

    Yang, Tao; Santisteban, Monica M.; Rodriguez, Vermali; Li, Eric; Ahmari, Niousha; Carvajal, Jessica Marulanda; Zadeh, Mojgan; Gong, Minghao; Qi, Yanfei; Zubcevic, Jasenka; Sahay, Bikash; Pepine, Carl J.; Raizada, Mohan K.; Mohamadzadeh, Mansour

    2015-01-01

    Emerging evidence suggests that gut microbiota is critical in the maintenance of physiological homeostasis. The present study was designed to test the hypothesis that dysbiosis in gut microbiota is associated with hypertension since genetic, environmental, and dietary factors profoundly influence both gut microbiota and blood pressure. Bacterial DNA from fecal samples of two rat models of hypertension and a small cohort of patients was used for bacterial genomic analysis. We observed a significant decrease in microbial richness, diversity, and evenness in the spontaneously hypertensive rat, in addition to an increased Firmicutes to Bacteroidetes ratio. These changes were accompanied with decreases in acetate- and butyrate-producing bacteria. Additionally, the microbiota of a small cohort of human hypertension patients was found to follow a similar dysbiotic pattern, as it was less rich and diverse than that of control subjects. Similar changes in gut microbiota were observed in the chronic angiotensin II infusion rat model, most notably decreased microbial richness and an increased Firmicutes to Bacteroidetes ratio. In this model, we evaluated the efficacy of oral minocycline in restoring gut microbiota. In addition to attenuating high blood pressure, minocycline was able to rebalance the dysbiotic hypertension gut microbiota by reducing the Firmicutes to Bacteroidetes ratio. These observations demonstrate that high BP is associated with gut microbiota dysbiosis, both in animal and human hypertension. They suggest that dietary intervention to correct gut microbiota could be an innovative nutritional therapeutic strategy for hypertension. PMID:25870193

  13. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 2: guinea pigs challenged with soman.

    PubMed

    Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D

    2011-03-01

    This report, the second in a series of five, directly compares the efficacy of Reactive Skin Decontamination Lotion (RSDL), the M291 Skin Decontamination Kit (SDK), 0.5% bleach (sodium or calcium hypochlorite solution), 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to soman (GD). In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with GD and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Positive control animals were challenged with GD in the same manner as the treated animals, except that they received no treatment. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the derived probit dose-response curves established for each treatment group and nontreated control animals. SERPACWA was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with GD. After a 2-hour challenge, any remaining GD was blotted off the animal, but no additional decontamination was done. Significance in this report is defined as p <.05. Neat (undiluted) GD was used to challenge all animals in these studies. In the standard 2-minute GD decontamination experiments, the calculated PRs for RSDL, 0.5% bleach, 1% soapy water, and M291 SDK were 14, 2.7, 2.2, and 2.6, respectively. RSDL was by far the most effective decontamination product tested and significantly better than any of the other products. Bleach, soapy water, and the M291 SDK provided equivalent and modest protection. Since only RSDL provided at least good protection (PR > 5), it was the only

  14. An Efficient Multistrategy DNA Decontamination Procedure of PCR Reagents for Hypersensitive PCR Applications

    PubMed Central

    Pruvost, Mélanie; Bennett, E. Andrew; Grange, Thierry; Geigl, Eva-Maria

    2010-01-01

    Background PCR amplification of minute quantities of degraded DNA for ancient DNA research, forensic analyses, wildlife studies and ultrasensitive diagnostics is often hampered by contamination problems. The extent of these problems is inversely related to DNA concentration and target fragment size and concern (i) sample contamination, (ii) laboratory surface contamination, (iii) carry-over contamination, and (iv) contamination of reagents. Methodology/Principal Findings Here we performed a quantitative evaluation of current decontamination methods for these last three sources of contamination, and developed a new procedure to eliminate contaminating DNA contained in PCR reagents. We observed that most current decontamination methods are either not efficient enough to degrade short contaminating DNA molecules, rendered inefficient by the reagents themselves, or interfere with the PCR when used at doses high enough to eliminate these molecules. We also show that efficient reagent decontamination can be achieved by using a combination of treatments adapted to different reagent categories. Our procedure involves γ- and UV-irradiation and treatment with a mutant recombinant heat-labile double-strand specific DNase from the Antarctic shrimp Pandalus borealis. Optimal performance of these treatments is achieved in narrow experimental conditions that have been precisely analyzed and defined herein. Conclusions/Significance There is not a single decontamination method valid for all possible contamination sources occurring in PCR reagents and in the molecular biology laboratory and most common decontamination methods are not efficient enough to decontaminate short DNA fragments of low concentration. We developed a versatile multistrategy decontamination procedure for PCR reagents. We demonstrate that this procedure allows efficient reagent decontamination while preserving the efficiency of PCR amplification of minute quantities of DNA. PMID:20927390

  15. Radioactivity decontamination of materials commonly used as surfaces in general-purpose radioisotope laboratories.

    PubMed

    Leonardi, Natalia M; Tesán, Fiorella C; Zubillaga, Marcela B; Salgueiro, María J

    2014-12-01

    In accord with as-low-as-reasonably-achievable and good-manufacturing-practice concepts, the present study evaluated the efficiency of radioactivity decontamination of materials commonly used in laboratory surfaces and whether solvent spills on these materials affect the findings. Four materials were evaluated: stainless steel, a surface comprising one-third acrylic resin and two-thirds natural minerals, an epoxy cover, and vinyl-based multipurpose flooring. Radioactive material was eluted from a (99)Mo/(99m)Tc generator, and samples of the surfaces were control-contaminated with 37 MBq (100 μL) of this eluate. The same procedure was repeated with samples of surfaces previously treated with 4 solvents: methanol, methyl ethyl ketone, acetone, and ethanol. The wet radioactive contamination was allowed to dry and then was removed with cotton swabs soaked in soapy water. The effectiveness of decontamination was defined as the percentage of activity removed per cotton swab, and the efficacy of decontamination was defined as the total percentage of activity removed, which was obtained by summing the percentages of activity in all the swabs required to complete the decontamination. Decontamination using our protocol was most effective and most efficacious for stainless steel and multipurpose flooring. Moreover, treatment with common organic solvents seemed not to affect the decontamination of these surfaces. Decontamination of the other two materials was less efficient and was interfered with by the organic solvents; there was also great variability in the overall results obtained for these other two materials. In expanding our laboratory, it is possible for us to select those surface materials on which our decontamination protocol works best. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. Laser decontamination of the radioactive lightning rods

    NASA Astrophysics Data System (ADS)

    Potiens, A. J.; Dellamano, J. C.; Vicente, R.; Raele, M. P.; Wetter, N. U.; Landulfo, E.

    2014-02-01

    Between 1970 and 1980 Brazil experienced a significant market for radioactive lightning rods (RLR). The device consists of an air terminal with one or more sources of americium-241 attached to it. The sources were used to ionize the air around them and to increase the attraction of atmospheric discharges. Because of their ineffectiveness, the nuclear regulatory authority in Brazil suspended the license for manufacturing, commerce and installation of RLR in 1989, and determined that the replaced RLR were to be collected to a centralized radioactive waste management facility for treatment. The first step for RLR treatment is to remove the radioactive sources. Though they can be easily removed, some contaminations are found all over the remaining metal scrap that must decontaminated for release, otherwise it must be treated as radioactive waste. Decontamination using various chemicals has proven to be inefficient and generates large amounts of secondary wastes. This work shows the preliminary results of the decontamination of 241Am-contaminated metal scrap generated in the treatment of radioactive lightning rods applying laser ablation. A Nd:YAG nanoseconds laser was used with 300 mJ energy leaving only a small amount of secondary waste to be treated.

  17. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    PubMed

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  18. Posttransplant complications in adult recipients of intestine grafts without bowel decontamination.

    PubMed

    Clouse, Jared W; Kubal, Chandrashekhar A; Fridell, Jonathan A; Mangus, Richard S

    2018-05-01

    Selective digestive decontamination is commonly used to decrease lumenal bacterial flora. Preoperative bowel decontamination may be associated with a lower wound infection rate but has not been shown to decrease risk of intra-abdominal abscess or lower leak rate for enteric anastomoses. Alternatively, the decontamination disrupts the normal flora of the gastrointestinal tract and may affect normal physiology, including immunologic function. This study reports complication rates of an intestine transplant program that has never used bowel decontamination. All adult patients who underwent intestine transplant from 2003 to 2015 at a single center were reviewed. Posttransplant complications included intra-abdominal abscess, enteric fistula, and leak from the enteric anastomosis. Viral, fungal, and bacterial infections in the first year after transplant are reported. There were 184 adult patients who underwent deceased donor intestine transplant during the study period. Among these patients, 30% developed an infected postoperative fluid collection, 4 developed an enteric fistula (2%), and 16 had an enteric or anastomotic leak (8%). The rate of any bacterial infection was 91% in the first year, with a wound infection rate of 25%. Fungal infection occurred in 47% of patients. Rejection rates were 55% at 1 y for isolated intestine patients and 17% for multivisceral (liver inclusive) patients. Among this population of intestine transplant patients in which no bowel decontamination was used, rates of surgical complications, infections, and rejection were similar to those reported by other centers. Bowel decontamination provides no identifiable benefit in intestine transplantation. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Gut-Bioreactor and Human Health in Future.

    PubMed

    Purohit, Hemant J

    2018-03-01

    Gut-microbiome provides the complementary metabolic potential to the human system. To understand the active participation and the performance of the microbial community in human health, the concept of gut as a plug-flow reactor with the fed-batch mode of operation can provide better insight. The concept suggests the virtual compartmentalized gut with sequential stratification of the microbial community in response to a typical host genotype. It also provides the analysis plan for gut microbiome; and its relevance in developing health management options under the identified clinical conditions.

  20. Gut dysbiosis impairs recovery after spinal cord injury

    PubMed Central

    Wang, Lingling; Mo, Xiaokui

    2016-01-01

    The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid–producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI. PMID:27810921

  1. Villification of the gut

    NASA Astrophysics Data System (ADS)

    Tallinen, Tuomas; Shyer, Amy E.; Tabin, Clifford J.; Mahadevan, L.

    2014-03-01

    The villi of the human and chick gut are formed in similar stepwise progressions, wherein the mesenchyme and attached epithelium first fold into longitudinal ridges, then a zigzag pattern, and lastly individual villi. We combine biological manipulations and quantitative modeling to show that these steps of villification depend on the sequential differentiation of the distinct smooth muscle layers of the gut, which restrict the expansion of the growing endoderm and mesenchyme, generating compressive stresses that lead to their buckling and folding. Our computational model incorporates measured elastic properties and growth rates in the developing gut, recapitulating the morphological patterns seen during villification in a variety of species. Our study provides a mechanical basis for the genesis of these epithelial protrusions that are essential for providing sufficient surface area for nutrient absorption.

  2. Influence of gut microbiota on neuropsychiatric disorders.

    PubMed

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  3. Influence of gut microbiota on neuropsychiatric disorders

    PubMed Central

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-01-01

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson’s disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors

  4. A decontamination study of simulated chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  5. The impact of skin decontamination on the time window for effective treatment of percutaneous VX exposure.

    PubMed

    Joosen, M J A; van den Berg, R M; de Jong, A L; van der Schans, M J; Noort, D; Langenberg, J P

    2017-04-01

    The main goal of the present study was to obtain insight into depot formation and penetration following percutaneous VX poisoning, in order to identify an appropriate decontamination window that can enhance or support medical countermeasures. The study was executed in two phases, using the hairless guinea pig as an animal model. In the first phase the effect of various decontamination regimens on levels of free VX in skin and plasma were studied as well as on blood cholinesterase levels. Animals were exposed to 0.5 mg/kg VX and were not decontaminated (control), decontaminated with RSDL once at 15 or 90 min after exposure or three times at 15, 25 and 35 (10-min interval) or 15, 45 and 75 min after exposure (30-min interval). There was no significant effect of any of the decontamination regimens on the 6-h survival rate of the animals. However, all animals that had been decontaminated 15 min after exposure, showed a survival rate of more than 90%, compared to 50-60% in animals that were not decontaminated or decontaminated at 90 min after exposure. In the second phase of the study, hairless guinea pigs were exposed to 1 mg/kg VX on the shoulder, followed either by decontamination with RSDL (10 min interval), conventional treatment on indication of clinical signs or a combination thereof. It appeared that a thorough, repeated decontamination alone could not save the majority of the animals. A 100% survival rate was observed in the group that received a combination of decontamination and treatment. In conclusion, the effects of VX exposure could be influenced by various RSDL decontamination regimens. The results in freely moving animals showed that skin decontamination, although not fully effective in removing all VX from the skin and skin depot is crucial to support pharmacological intervention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Gut microbiota and host metabolism in liver cirrhosis

    PubMed Central

    Usami, Makoto; Miyoshi, Makoto; Yamashita, Hayato

    2015-01-01

    The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulating the activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probiotics-treated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics

  7. Gut microbiota and host metabolism in liver cirrhosis.

    PubMed

    Usami, Makoto; Miyoshi, Makoto; Yamashita, Hayato

    2015-11-07

    The gut microbiota has the capacity to produce a diverse range of compounds that play a major role in regulating the activity of distal organs and the liver is strategically positioned downstream of the gut. Gut microbiota linked compounds such as short chain fatty acids, bile acids, choline metabolites, indole derivatives, vitamins, polyamines, lipids, neurotransmitters and neuroactive compounds, and hypothalamic-pituitary-adrenal axis hormones have many biological functions. This review focuses on the gut microbiota and host metabolism in liver cirrhosis. Dysbiosis in liver cirrhosis causes serious complications, such as bacteremia and hepatic encephalopathy, accompanied by small intestinal bacterial overgrowth and increased intestinal permeability. Gut dysbiosis in cirrhosis and intervention with probiotics and synbiotics in a clinical setting is reviewed and evaluated. Recent studies have revealed the relationship between gut microbiota and host metabolism in chronic metabolic liver disease, especially, non-alcoholic fatty liver disease, alcoholic liver disease, and with the gut microbiota metabolic interactions in dysbiosis related metabolic diseases such as diabetes and obesity. Recently, our understanding of the relationship between the gut and liver and how this regulates systemic metabolic changes in liver cirrhosis has increased. The serum lipid levels of phospholipids, free fatty acids, polyunsaturated fatty acids, especially, eicosapentaenoic acid, arachidonic acid, and docosahexaenoic acid have significant correlations with specific fecal flora in liver cirrhosis. Many clinical and experimental reports support the relationship between fatty acid metabolism and gut-microbiota. Various blood metabolome such as cytokines, amino acids, and vitamins are correlated with gut microbiota in probiotics-treated liver cirrhosis patients. The future evaluation of the gut-microbiota-liver metabolic network and the intervention of these relationships using probiotics

  8. The Gut Microbiota of Marine Fish.

    PubMed

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research.

  9. Molecular Insight into Gut Microbiota and Rheumatoid Arthritis.

    PubMed

    Wu, Xiaohao; He, Bing; Liu, Jin; Feng, Hui; Ma, Yinghui; Li, Defang; Guo, Baosheng; Liang, Chao; Dang, Lei; Wang, Luyao; Tian, Jing; Zhu, Hailong; Xiao, Lianbo; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-03-22

    Rheumatoid arthritis (RA) is a systemic, inflammatory, and autoimmune disorder. Gut microbiota play an important role in the etiology of RA. With the considerable progress made in next-generation sequencing techniques, the identified gut microbiota difference between RA patients and healthy individuals provides an updated overview of the association between gut microbiota and RA. We reviewed the reported correlation and underlying molecular mechanisms among gut microbiota, the immune system, and RA. It has become known that gut microbiota contribute to the pathogenesis of RA via multiple molecular mechanisms. The progressive understanding of the dynamic interaction between gut microbiota and their host will help in establishing a highly individualized management for each RA patient, and achieve a better efficacy in clinical practice, or even discovering new drugs for RA.

  10. Mechanisms of inflammation-driven bacterial dysbiosis in the gut

    PubMed Central

    Zeng, MY; Inohara, N; Nuñez, G

    2018-01-01

    The gut microbiota has diverse and essential roles in host metabolism, development of the immune system and as resistance to pathogen colonization. Perturbations of the gut microbiota, termed gut dysbiosis, are commonly observed in diseases involving inflammation in the gut, including inflammatory bowel disease, infection, colorectal cancer and food allergies. Importantly, the inflamed microenvironment in the gut is particularly conducive to blooms of Enterobacteriaceae, which acquire fitness benefits while other families of symbiotic bacteria succumb to environmental changes inflicted by inflammation. Here we summarize studies that examined factors in the inflamed gut that contribute to blooms of Enterobacterieaceae, and highlight potential approaches to restrict Enterobacterial blooms in treating diseases that are otherwise complicated by overgrowth of virulent Enterobacterial species in the gut. PMID:27554295

  11. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    PubMed

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Measurement of internal radiation exposure among decontamination workers in villages near the crippled Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Tsubokura, Masaharu; Nihei, Masahiko; Sato, Katsumi; Masaki, Shin; Sakuma, Yu; Kato, Shigeaki; Sugimoto, Amina; Nomura, Shuhei; Matsumura, Tomoko; Miyazaki, Makoto; Hayano, Ryugo; Shibuya, Kenji; Kami, Masahiro; Sasaki, Taro

    2013-10-01

    Decontamination workers may face a high risk of exposure to internal irradiation through inhalation during decontamination activities; there is, however, little previous research on the levels of internal contamination during decontamination procedures. The authors reviewed the medical records, including whole body counter measurements, of decontamination workers in villages near the crippled Fukushima Daiichi Nuclear Power Plant to assess their levels of internal radiation exposure. In total, 83 decontamination workers were enrolled in this study. They were regularly engaged in decontamination activities in highly contaminated areas where surface 137Cs deposition density was over 100 kBq m-2. The present study showed low levels of internal exposure among the decontamination workers near the Fukushima Daiichi nuclear plant. The cesium burdens of all the decontamination workers were below detection limits. They had reported no acute health problems. The resuspension of radioactive materials may cause minimal internal contamination during decontamination activities.

  13. [Glucose homeostasis and gut-brain connection].

    PubMed

    De Vadder, Filipe; Mithieux, Gilles

    2015-02-01

    Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.

  14. Introduction to the human gut microbiota.

    PubMed

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  15. Introduction to the human gut microbiota

    PubMed Central

    Thursby, Elizabeth

    2017-01-01

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions. PMID:28512250

  16. Microbiota-gut-brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers.

    PubMed

    Bhattarai, Y

    2018-06-01

    The gastrointestinal barrier and the blood brain barrier represent an important line of defense to protect the underlying structures against harmful external stimuli. These host barriers are composed of epithelial and endothelial cells interconnected by tight junction proteins along with several other supporting structures. Disruption in host barrier structures has therefore been implicated in various diseases of the gastrointestinal tract and the central nervous system. While there are several factors that influence host barrier, recently there is an increasing appreciation of the role of gut microbiota and their metabolites in regulating barrier integrity. In the current issue of Neurogastroenterology and Motility, Marungruang et al. describe the effect of gastrointestinal barrier maturation on gut microbiota and the blood brain barrier adding to the growing evidence of microbiota-barrier interactions. In this mini-review I will discuss the effect of gut microbiota on host epithelial barriers and its implications for diseases associated with disrupted gut-brain axis. © 2018 John Wiley & Sons Ltd.

  17. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics.

    PubMed

    Geurts, L; Neyrinck, A M; Delzenne, N M; Knauf, C; Cani, P D

    2014-03-01

    Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and

  18. Chemical, Biological, Radiological, and Nuclear Consequence Management: Ways to Improve Fixed-Site Decontamination Capability

    DTIC Science & Technology

    2007-05-10

    objective is achieved through consequence management and fixed-site decontamination operations. The effectiveness of CBRN consequence management...decontamination operations. The effectiveness of CBRN consequence management and fixed-site decontamination executed in the Joint Security Area can be...when faced with Chemical, Biological, Radiological, or Nuclear (CBRN) contaminated ports of debarkation. The effectiveness of CBRN consequence

  19. The human gut microbiota and virome: Potential therapeutic implications.

    PubMed

    Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio

    2015-12-01

    Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  20. Fighting Ebola with novel spore decontamination technologies for the military

    DOE PAGES

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; ...

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO 2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercializedmore » as a dry mixed-chemical for bacterial spore decontamination.« less

  1. Decontamination of biological warfare agents by a microwave plasma torch

    NASA Astrophysics Data System (ADS)

    Lai, Wilson; Lai, Henry; Kuo, Spencer P.; Tarasenko, Olga; Levon, Kalle

    2005-02-01

    A portable arc-seeded microwave plasma torch running stably with airflow is described and applied for the decontamination of biological warfare agents. Emission spectroscopy of the plasma torch indicated that this torch produced an abundance of reactive atomic oxygen that could effectively oxidize biological agents. Bacillus cereus was chosen as a simulant of Bacillus anthracis spores for biological agent in the decontamination experiments. Decontamination was performed with the airflow rate of 0.393l/s, corresponding to a maximum concentration of atomic oxygen produced by the torch. The experimental results showed that all spores were killed in less than 8 s at 3 cm distance, 12 s at 4 cm distance, and 16 s at 5 cm distance away from the nozzle of the torch.

  2. Fighting Ebola with novel spore decontamination technologies for the military

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO 2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercializedmore » as a dry mixed-chemical for bacterial spore decontamination.« less

  3. Mechanisms Linking the Gut Microbiome and Glucose Metabolism

    PubMed Central

    Kratz, Mario; Damman, Chris J.; Hullarg, Meredith

    2016-01-01

    Context: Type 2 diabetes mellitus is associated with gastrointestinal dysbiosis involving both compositional and functional changes in the gut microbiome. Changes in diet and supplementation with probiotics and prebiotics (ie, fermentable fibers) can induce favorable changes in gut bacterial species and improve glucose homeostasis. Objective: This paper will review the data supporting several potential mechanisms whereby gut dysbiosis contributes to metabolic dysfunction, including microbiota driven increases in systemic lipopolysaccharide concentrations, changes in bile acid metabolism, alterations in short chain fatty acid production, alterations in gut hormone secretion, and changes in circulating branched-chain amino acids. Methods: Data for this review were identified by searching English language references from PubMed and relevant articles. Conclusions: Understanding the mechanisms linking the gut microbiome to glucose metabolism, and the relevant compositional and functional characteristics of the gut microbiome, will help direct future research to develop more targeted approaches or novel compounds aimed at restoring a more healthy gut microbiome as a new approach to prevent and treat type 2 diabetes mellitus and related metabolic conditions. PMID:26938201

  4. Microbiota in fermented feed and swine gut.

    PubMed

    Wang, Cheng; Shi, Changyou; Zhang, Yu; Song, Deguang; Lu, Zeqing; Wang, Yizhen

    2018-04-01

    Development of alternatives to antibiotic growth promoters (AGP) used in swine production requires a better understanding of their impacts on the gut microbiota. Supplementing fermented feed (FF) in swine diets as a novel nutritional strategy to reduce the use of AGP and feed price, can positively affect the porcine gut microbiota, thereby improving pig productivities. Previous studies have noted the potential effects of FF on the shift in benefit of the swine microbiota in different regions of the gastrointestinal tract (GIT). The positive influences of FF on swine gut microbiota may be due to the beneficial effects of both pre- and probiotics. Necessarily, some methods should be adopted to properly ferment and evaluate the feed and avoid undesired problems. In this mini-review, we mainly discuss the microbiota in both fermented feed and swine gut and how FF influences swine gut microbiota.

  5. Air Activated Self-Decontaminating Polydicyclopentadiene PolyHIPE Foams for Rapid Decontamination of Chemical Warfare Agents.

    PubMed

    McGann, Christopher L; Daniels, Grant C; Giles, Spencer L; Balow, Robert B; Miranda-Zayas, Jorge L; Lundin, Jeffrey G; Wynne, James H

    2018-06-01

    The threat of chemical warfare agents (CWA) compels research into novel self-decontaminating materials (SDM) for the continued safety of first-responders, civilians, and active service personnel. The capacity to actively detoxify, as opposed to merely sequester, offending agents under typical environmental conditions defines the added value of SDMs in comparison to traditional adsorptive materials. Porous polymers, synthesized via the high internal phase emulsion (HIPE) templating, provide a facile fabrication method for materials with permeable open cellular structures that may serve in air filtration applications. PolyHIPEs comprising polydicyclopentadiene (polyDCPD) networks form stable hydroperoxide species following activation in air under ambient conditions. The hydroperoxide-containing polyDCPD materials react quickly with CWA simulants, Demeton-S and 2-chloroethyl ethyl sulfide, forming oxidation products as confirmed via gas chromatography mass spectrometry. The simplicity of the detoxification chemistry paired with the porous foam form factor presents an exciting opportunity for the development of self-decontaminating filter media. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Gut Microbiota of Marine Fish

    PubMed Central

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research. PMID:29780377

  7. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    PubMed

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and

  8. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    PubMed

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  9. Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes.

    PubMed

    Jacquet, Pauline; Daudé, David; Bzdrenga, Janek; Masson, Patrick; Elias, Mikael; Chabrière, Eric

    2016-05-01

    Organophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its catalytic and stability properties.

  10. Technical Improvements to an Absorbing Supergel for Radiological Decontamination in Tropical Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.; Mertz, Carol J.; Kivenas, Nadia

    Argonne National Laboratory (Argonne) developed a superabsorbing gel-based process (SuperGel) for the decontamination of cesium from concrete and other porous building materials. Here, we report on results that tested the gel decontamination technology on specific concrete and ceramic formulations from a coastal city in Southeast Asia, which may differ significantly from some U.S. sources. Results are given for the evaluation of americium and cesium sequestering agents that are commercially available at a reasonable cost; the evaluation of a new SuperGel formulation that combines the decontamination properties of cesium and americium; the variation of the contamination concentration to determine the effectsmore » on the decontamination factors with concrete, tile, and brick samples; and pilot-scale testing (0.02–0.09 m2 or 6–12 in. square coupons).« less

  11. Infections and exposures: reported incidents associated with unsuccessful decontamination of reusable surgical instruments.

    PubMed

    Southworth, P M

    2014-11-01

    Reusable surgical instruments provide a potential route for the transmission of pathogenic agents between patients in healthcare facilities. As such, the decontamination process between uses is a vital component in the prevention of healthcare-associated infections. This article reviews reported outbreaks and incidents associated with inappropriate, inadequate, or unsuccessful decontamination of surgical instruments, indicating potential pitfalls of decontamination practices worldwide. To the author's knowledge, this is the first review of surgical instrument decontamination failures. Databases of medical literature, Medline and Embase, were searched systematically. Articles detailing incidents associated with unsuccessful decontamination of surgical instruments were identified. Twenty-one articles were identified reporting incidents associated with failures in decontamination. A large proportion of incidents involved the attempted disinfection, rather than sterilization, of surgical instruments (43% of articles), counter to a number of national guidelines. Instruments used in eye surgery were most frequently reported to be associated with decontamination failures (29% of articles). Of the few articles detailing potential or confirmed pathogenic transmission, Pseudomonas aeruginosa and Mycobacterium spp. were most represented. One incident of possible variant Creutzfeldt-Jakob disease transmission was also identified. Limitations of analysing only published incidents mean that the likelihood of under-reporting (including reluctance to publish failure) must be considered. Despite these limitations, the small number of articles identified suggests a relatively low risk of cross-infection through reusable surgical instruments when cleaning/sterilization procedures are adhered to. The diverse nature of reported incidents also suggests that failures are not systemic. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  12. Decontamination Efficacy of Three Commercial-Off-The-Shelf (COTS) Sporicidal Disinfectants on Medium-Sized Panels Contaminated with Surrogate Spores of Bacillus anthracis

    PubMed Central

    Sabol, Jonathan P.

    2014-01-01

    In the event of a wide area release and contamination of a biological agent in an outdoor environment and to building exteriors, decontamination is likely to consume the Nation’s remediation capacity, requiring years to cleanup, and leading to incalculable economic losses. This is in part due to scant body of efficacy data on surface areas larger than those studied in a typical laboratory (5×10-cm), resulting in low confidence for operational considerations in sampling and quantitative measurements of prospective technologies recruited in effective cleanup and restoration response. In addition to well-documented fumigation-based cleanup efforts, agencies responsible for mitigation of contaminated sites are exploring alternative methods for decontamination including combinations of disposal of contaminated items, source reduction by vacuuming, mechanical scrubbing, and low-technology alternatives such as pH-adjusted bleach pressure wash. If proven effective, a pressure wash-based removal of Bacillus anthracis spores from building surfaces with readily available equipment will significantly increase the readiness of Federal agencies to meet the daunting challenge of restoration and cleanup effort following a wide-area biological release. In this inter-agency study, the efficacy of commercial-of-the-shelf sporicidal disinfectants applied using backpack sprayers was evaluated in decontamination of spores on the surfaces of medium-sized (∼1.2 m2) panels of steel, pressure-treated (PT) lumber, and brick veneer. Of the three disinfectants, pH-amended bleach, Peridox, and CASCAD evaluated; CASCAD was found to be the most effective in decontamination of spores from all three panel surface types. PMID:24940605

  13. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change

    PubMed Central

    Chen, Po-Cheng; Weng, Francis Cheng-Hsuan; Shaw, Grace Tzun-Wen

    2017-01-01

    Growing evidence points out that the capacity of organisms to acclimate or adapt to new habitat conditions basically depends on their phenomic plasticity attributes, of which their gut commensal microbiota might be an essential impact factor. Especially in aquatic organisms, which are in direct and continual contact with the aquatic environment, the complex and dynamic microbiota have significant effects on health and development. However, an understanding of the relative contribution of internal sorting (host genetic) and colonization (environmental) processes is still unclear. To understand how microbial communities differ in response to rapid environmental change, we surveyed and studied the environmental and gut microbiota of native and habitat-exchanged shrimp (Macrobrachium nipponense) using 16S rRNA amplicon sequencing on the Illumina MiSeq platform. Corresponding with microbial diversity of their living water areas, the divergence in gut microbes of lake-to-river shrimp (CK) increased, while that of river-to-lake shrimp (KC) decreased. Importantly, among the candidate environment specific gut microbes in habitat-exchanged shrimp, over half of reads were associated with the indigenous bacteria in native shrimp gut, yet more candidates presented in CK may reflect the complexity of new environment. Our results suggest that shrimp gut microbiota has high plasticity when its host faces environmental changes, even over short timescales. Further, the changes in external environment might influence the gut microbiome not just by providing environment-associated microbes directly, but also by interfering with the composition of indigenous gut bacteria indirectly. PMID:28715471

  14. Gut hormones: the future of obesity treatment?

    PubMed Central

    McGavigan, Anne K; Murphy, Kevin G

    2012-01-01

    Obesity is a major worldwide health problem. The treatment options are severely limited. The development of novel anti-obesity drugs is fraught with efficacy and safety issues. Consequently, several investigational anti-obesity drugs have failed to gain marketing approval in recent years. Anorectic gut hormones offer a potentially safe and viable option for the treatment of obesity. The prospective utility of gut hormones has improved drastically in recent years with the development of longer acting analogues. Additionally, specific combinations of gut hormones have been demonstrated to have additive anorectic effects. This article reviews the current stage of anti-obesity drugs in development, focusing on gut hormone-based therapies. PMID:22452339

  15. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides.

    PubMed

    Lach, Gilliard; Schellekens, Harriet; Dinan, Timothy G; Cryan, John F

    2018-01-01

    The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.

  16. The Role of Microbiota on the Gut Immunology.

    PubMed

    Min, Yang Won; Rhee, Poong-Lyul

    2015-05-01

    The human gut contains >100 trillion microbes. This microbiota plays a crucial role in the gut homeostasis. Importantly, the microbiota contributes to the development and regulation of the gut immune system. Dysbiosis of the gut microbiota could also cause several intestinal and extraintestinal diseases. Many experimental studies help us to understand the complex interplay between the host and microbiota. This review presents our current understanding of the mucosal immune system and the role of gut microbiota for the development and functionality of the mucosal immunity, with a particular focus on gut-associated lymphoid tissues, mucosal barrier, TH17 cells, regulatory T cells, innate lymphoid cells, dendritic cells, and IgA-producing B cells and plasma cells. Comparative studies using germ-free and conventionally-raised animals reveal that the presence of microbiota is important for the development and regulation of innate and adaptive immune systems. The host-microbial symbiosis seems necessary for gut homeostasis. However, the precise mechanisms by which microbiota contributes to development and functionality of the immune system remain to be elucidated. Understanding the complex interplay between the host and microbiota and further investigation of the host-microbiota relationship could provide us the insight into the therapeutic and/or preventive strategy for the disorders related to dysbiosis of the gut microbiota. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  17. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes.

    PubMed

    Saad, Rama; Rizkallah, Mariam R; Aziz, Ramy K

    2012-11-30

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine.

  18. Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls

    NASA Astrophysics Data System (ADS)

    Kleinhammes, Alfred; Wagner, George W.; Kulkarni, Harsha; Jia, Yuanyuan; Zhang, Qi; Qin, Lu-Chang; Wu, Yue

    2005-08-01

    Titanate nanoscrolls, a recently discovered variant of TiO 2 nanocrystals, are tested as reactive sorbent for chemical warfare agent (CWA) decontamination. The large surface area of the uncapped tubules provides the desired rapid absorption of the contaminant while water molecules, intrinsic constituents of titanate nanoscrolls, provide the necessary chemistry for hydrolytic reaction. In this study the decomposition of 2-chloroethyl ethylsulfide (CEES), a simulant for the CWA mustard, was monitored using 13C NMR. The NMR spectra reveal reaction products as expected from the hydrolysis of CEES. This demonstrates that titanate nanoscrolls could potentially be employed as a decontaminant for CWAs.

  19. The giant panda gut microbiome.

    PubMed

    Wei, Fuwen; Wang, Xiao; Wu, Qi

    2015-08-01

    Giant pandas (Ailuropoda melanoleuca) are bamboo specialists that evolved from carnivores. Their gut microbiota probably aids in the digestion of cellulose and this is considered an example of gut microbiota adaptation to a bamboo diet. However, this issue remains unresolved and further functional and compositional studies are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Early gut mycobiota and mother-offspring transfer.

    PubMed

    Schei, Kasper; Avershina, Ekaterina; Øien, Torbjørn; Rudi, Knut; Follestad, Turid; Salamati, Saideh; Ødegård, Rønnaug Astri

    2017-08-24

    The fungi in the gastrointestinal tract, the gut mycobiota, are now recognised as a significant part of the gut microbiota, and they may be important to human health. In contrast to the adult gut mycobiota, the establishment of the early gut mycobiota has never been described, and there is little knowledge about the fungal transfer from mother to offspring. In a prospective cohort, we followed 298 pairs of healthy mothers and offspring from 36 weeks of gestation until 2 years of age (1516 samples) and explored the gut mycobiota in maternal and offspring samples. Half of the pregnant mothers were randomised into drinking probiotic milk during and after pregnancy. The probiotic bacteria included Lactobacillus rhamnosus GG (LGG), Bifidobacterium animalis subsp. lactis Bb-12 and Lactobacillus acidophilus La-5. We quantified the fungal abundance of all the samples using qPCR of the fungal internal transcribed spacer (ITS)1 segment, and we sequenced the 18S rRNA gene ITS1 region of 90 high-quantity samples using the MiSeq platform (Illumina). The gut mycobiota was detected in most of the mothers and the majority of the offspring. The offspring showed increased odds of having detectable faecal fungal DNA if the mother had detectable fungal DNA as well (OR = 1.54, p = 0.04). The fungal alpha diversity in the offspring gut increased from its lowest at 10 days after birth, which was the earliest sampling point. The fungal diversity and fungal species showed a succession towards the maternal mycobiota as the child aged, with Debaryomyces hansenii being the most abundant species during breast-feeding and Saccharomyces cerevisiae as the most abundant after weaning. Probiotic consumption increased the gut mycobiota abundance in pregnant mothers (p = 0.01). This study provides the first insight into the early fungal establishment and the succession of fungal species in the gut mycobiota. The results support the idea that the fungal host phenotype is transferred from

  1. A high-resolution map of the gut microbiota in Atlantic salmon (Salmo salar): A basis for comparative gut microbial research.

    PubMed

    Gajardo, Karina; Rodiles, Ana; Kortner, Trond M; Krogdahl, Åshild; Bakke, Anne Marie; Merrifield, Daniel L; Sørum, Henning

    2016-08-03

    Gut health challenges, possibly related to alterations in gut microbiota, caused by plant ingredients in the diets, cause losses in Atlantic salmon production. To investigate the role of the microbiota for gut function and health, detailed characterization of the gut microbiota is needed. We present the first in-depth characterization of salmon gut microbiota based on high-throughput sequencing of the 16S rRNA gene's V1-V2 region. Samples were taken from five intestinal compartments: digesta from proximal, mid and distal intestine and of mucosa from mid and distal intestine of 67.3 g salmon kept in seawater (12-14 °C) and fed a commercial diet for 4 weeks. Microbial richness and diversity differed significantly and were higher in the digesta than the mucosa. In mucosa, Proteobacteria dominated the microbiota (90%), whereas in digesta both Proteobacteria (47%) and Firmicutes (38%) showed high abundance. Future studies of diet and environmental impacts on gut microbiota should therefore differentiate between effects on mucosa and digesta in the proximal, mid and the distal intestine. A core microbiota, represented by 22 OTUs, was found in 80% of the samples. The gut microbiota of Atlantic salmon showed similarities with that of mammals.

  2. Diet and Gut Microbiota in Health and Disease.

    PubMed

    Shen, Ting-Chin David

    2017-01-01

    Gut microbiota plays an important role in host health maintenance and disease pathogenesis. The development of a stable and diverse gut microbiota is essential to various host physiologic functions such as immunoregulation, pathogen prevention, energy harvest, and metabolism. At the same time, a dysbiotic gut microbiota associated with disease is altered in structure and function, and often characterized by a decrease in species richness and proliferation of pathogenic bacterial taxa. As a shared substrate between the host and the gut microbiota, diet significantly impacts the health and disease states of the host both directly and through gut microbial metabolite production. This is demonstrated in the examples of short-chain fatty acid and trimethylamine production via bacterial metabolism of dietary complex carbohydrates and choline, respectively. In disorders related to mucosal immune dysregulation such as inflammatory bowel disease, the dysbiotic gut microbiota and diet contribute to its pathogenesis. Reversal of dysbiosis through fecal microbiota transplantation and dietary interventions may thus represent important strategies to modify the gut microbiota and its metabolite production for health maintenance as well as disease prevention and management. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  3. 40 CFR 170.150 - Decontamination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and temperature that will not cause illness or injury when it contacts the skin or eyes or if it is... worker contacts anything that has been treated with the pesticide, including, but not limited to soil... permitted by § 170.112 and involving contact with treated surfaces and the decontamination supplies would...

  4. DEVELOPMENT OF AGENTS AND PROCEDURES FOR DECONTAMINATION OF THE YANKEE REACTOR PRIMARY COOLANT SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, R.M.

    1959-03-01

    Developments relative to decontamination achieved under the Yankee Reasearch and Development program are reported. The decontamination of a large test loop which had been used to conduct corrosion rate studies for the Yankee reactor program is described. The basic permanganate-citrate decontamination procedure suggested for application in Yankee reactor primary system cleanup was used. A study of the chemistry of this decontamination operation is presented, together with conclusions pertaining to the effectiveness of the solutions under the conditions studied. In an attempt to further improve the efficiency of the procedure, an additional series of static and dynamic tests was performcd usingmore » contaminated sections of stainless steel tubing from the original SlW steam generator. Survival variables in the process (reagent composition, contact time, temperature, and flow velocity) were studied. The changes in decontamination efficiency produced by these variations are discussed and compared with results obtained throughthe use of similar procedures. Based on the observations made, conclusions are drawn concerning the optimum conditions for this cleanup process, a new set of suggested basic permanganate-citrate decontamination instructions is presented, and recommendations are made concerning future studies involving this procedure. (auth)« less

  5. Determination of the Efficacy of Two Building Decontamination Strategies by Surface Sampling with Culture and Quantitative PCR Analysis

    PubMed Central

    Buttner, Mark P.; Cruz, Patricia; Stetzenbach, Linda D.; Klima-Comba, Amy K.; Stevens, Vanessa L.; Cronin, Tracy D.

    2004-01-01

    The efficacy of currently available decontamination strategies for the treatment of indoor furnishings contaminated with bioterrorism agents is poorly understood. Efficacy testing of decontamination products in a controlled environment is needed to ensure that effective methods are used to decontaminate domestic and workplace settings. An experimental room supplied with materials used in office furnishings (i.e., wood laminate, painted metal, and vinyl tile) was used with controlled dry aerosol releases of endospores of Bacillus atrophaeus (“Bacillus subtilis subsp. niger,” also referred to as BG), a Bacillus anthracis surrogate. Studies were performed using two test products, a foam decontaminant and chlorine dioxide gas. Surface samples were collected pre- and posttreatment with three sampling methods and analyzed by culture and quantitative PCR (QPCR). Additional aerosol releases with environmental background present on the surface materials were also conducted to determine if there was any interference with decontamination or sample analysis. Culture results indicated that 105 to 106 CFU per sample were present on surfaces before decontamination. After decontamination with the foam, no culturable B. atrophaeus spores were detected. After decontamination with chlorine dioxide gas, no culturable B. atrophaeus was detected in 24 of 27 samples (89%). However, QPCR analysis showed that B. atrophaeus DNA was still present after decontamination with both methods. Environmental background material had no apparent effect on decontamination, but inhibition of the QPCR assay was observed. These results demonstrate the effectiveness of two decontamination methods and illustrate the utility of surface sampling and QPCR analysis for the evaluation of decontamination strategies. PMID:15294810

  6. Determination of the efficacy of two building decontamination strategies by surface sampling with culture and quantitative PCR analysis.

    PubMed

    Buttner, Mark P; Cruz, Patricia; Stetzenbach, Linda D; Klima-Comba, Amy K; Stevens, Vanessa L; Cronin, Tracy D

    2004-08-01

    The efficacy of currently available decontamination strategies for the treatment of indoor furnishings contaminated with bioterrorism agents is poorly understood. Efficacy testing of decontamination products in a controlled environment is needed to ensure that effective methods are used to decontaminate domestic and workplace settings. An experimental room supplied with materials used in office furnishings (i.e., wood laminate, painted metal, and vinyl tile) was used with controlled dry aerosol releases of endospores of Bacillus atrophaeus ("Bacillus subtilis subsp. niger," also referred to as BG), a Bacillus anthracis surrogate. Studies were performed using two test products, a foam decontaminant and chlorine dioxide gas. Surface samples were collected pre- and posttreatment with three sampling methods and analyzed by culture and quantitative PCR (QPCR). Additional aerosol releases with environmental background present on the surface materials were also conducted to determine if there was any interference with decontamination or sample analysis. Culture results indicated that 10(5) to 10(6) CFU per sample were present on surfaces before decontamination. After decontamination with the foam, no culturable B. atrophaeus spores were detected. After decontamination with chlorine dioxide gas, no culturable B. atrophaeus was detected in 24 of 27 samples (89%). However, QPCR analysis showed that B. atrophaeus DNA was still present after decontamination with both methods. Environmental background material had no apparent effect on decontamination, but inhibition of the QPCR assay was observed. These results demonstrate the effectiveness of two decontamination methods and illustrate the utility of surface sampling and QPCR analysis for the evaluation of decontamination strategies.

  7. RE-ENTERING BUILDING FOLLOWING CHEMICAL ATTACK: MEASURING THE EFFECTIVENESS OF SURFACE DECONTAMINATION

    EPA Science Inventory

    Prior to re-entering a building following a chemical attack, decontamination and testing must be conducted to determine whether toxic agents have been eliminated or reduced to safe levels. Building contents must also be decontaminated and tested or destroyed. Recent incidents i...

  8. Reactive decontamination of absorbing thin film polymer coatings: model development and parameter determination

    NASA Astrophysics Data System (ADS)

    Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew

    2014-03-01

    A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.

  9. Dwell time considerations for large area cold plasma decontamination

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory

    2009-05-01

    Atmospheric discharge cold plasmas have been shown to be effective in the reduction of pathogenic bacteria and spores and in the decontamination of simulated chemical warfare agents, without the generation of toxic or harmful by-products. Cold plasmas may also be useful in assisting cleanup of radiological "dirty bombs." For practical applications in realistic scenarios, the plasma applicator must have both a large area of coverage, and a reasonably short dwell time. However, the literature contains a wide range of reported dwell times, from a few seconds to several minutes, needed to achieve a given level of reduction. This is largely due to different experimental conditions, and especially, different methods of generating the decontaminating plasma. We consider these different approaches and attempt to draw equivalencies among them, and use this to develop requirements for a practical, field-deployable plasma decontamination system. A plasma applicator with 12 square inches area and integral high voltage, high frequency generator is described.

  10. Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination.

    PubMed

    Kim, Sohee; Ying, Wu Bin; Jung, Hyunsook; Ryu, Sam Gon; Lee, Bumjae; Lee, Kyung Jin

    2017-03-16

    Diverse innovative fabrics with specific functionalities have been developed for requirements such as self-decontamination of chemical/biological pollutants and toxic nerve agents. In this work, Zr(OH) 4 -coated nylon-6,6 nanofiber mats were fabricated for the decontamination of nerve agents. Nylon-6,6 fabric was prepared via the electrospinning process, followed by coating with Zr(OH) 4 , which was obtained by the hydrolysis of Zr(OBu) 4 by a sol-gel reaction on nanofiber surfaces. The reaction conditions were optimized by varying the amounts of Zr(OBu) 4 ,the reaction time, and the temperature of the sol-gel reaction. The composite nanofibers show high decontamination efficiency against diisopropylfluorophosphate, which is a nerve agent analogue, due to its high nucleophilicity that aids in the catalysis of the hydrolysis of the phosphonate ester bonds. Composite nanofiber mats have a large potential and can be applied in specific fields such as military and medical markets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Engineering the gut microbiota to treat hyperammonemia.

    PubMed

    Shen, Ting-Chin David; Albenberg, Lindsey; Bittinger, Kyle; Chehoud, Christel; Chen, Ying-Yu; Judge, Colleen A; Chau, Lillian; Ni, Josephine; Sheng, Michael; Lin, Andrew; Wilkins, Benjamin J; Buza, Elizabeth L; Lewis, James D; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Bushman, Frederic D; Wu, Gary D

    2015-07-01

    Increasing evidence indicates that the gut microbiota can be altered to ameliorate or prevent disease states, and engineering the gut microbiota to therapeutically modulate host metabolism is an emerging goal of microbiome research. In the intestine, bacterial urease converts host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-associated neurotoxicity and encephalopathy in patients with liver disease. Here, we engineered murine gut microbiota to reduce urease activity. Animals were depleted of their preexisting gut microbiota and then inoculated with altered Schaedler flora (ASF), a defined consortium of 8 bacteria with minimal urease gene content. This protocol resulted in establishment of a persistent new community that promoted a long-term reduction in fecal urease activity and ammonia production. Moreover, in a murine model of hepatic injury, ASF transplantation was associated with decreased morbidity and mortality. These results provide proof of concept that inoculation of a prepared host with a defined gut microbiota can lead to durable metabolic changes with therapeutic utility.

  12. Decontamination of biological agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of biological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some biological agents, but data gaps remain. Data on bacterial spore persistence on common water infrastructure materials such as iron and cement-mortar lined iron show that spores can be persistent for weeks after contamination. Decontamination data show that common disinfectants such as free chlorine have limited effectiveness. Decontamination results with germinant and alternate disinfectants such as chlorine dioxide are more promising. Persistence and decontamination data were collected on vegetative bacteria, such as coliforms, Legionella and Salmonella. Vegetative bacteria are less persistent than spores and more susceptible to disinfection, but the surfaces and water quality conditions in many studies were only marginally related to drinking water systems. However, results of real-world case studies on accidental contamination of water systems with E. coli and Salmonella contamination show that flushing and chlorination can help return a water system to service. Some viral persistence data were found, but decontamination data were lacking. Future research suggestions focus on expanding the available biological persistence data to other common infrastructure materials. Further exploration of non-traditional drinking water disinfectants is recommended for future studies. Published by Elsevier Ltd.

  13. Early-life gut microbiome and egg allergy.

    PubMed

    Fazlollahi, M; Chun, Y; Grishin, A; Wood, R A; Burks, A W; Dawson, P; Jones, S M; Leung, D Y M; Sampson, H A; Sicherer, S H; Bunyavanich, S

    2018-07-01

    Gut microbiota may play a role in egg allergy. We sought to examine the association between early-life gut microbiota and egg allergy. We studied 141 children with egg allergy and controls from the multicenter Consortium of Food Allergy Research study. At enrollment (age 3 to 16 months), fecal samples were collected, and clinical evaluation, egg-specific IgE measurement, and egg skin prick test were performed. Gut microbiome was profiled by 16S rRNA sequencing. Analyses for the primary outcome of egg allergy at enrollment, and the secondary outcomes of egg sensitization at enrollment and resolution of egg allergy by age 8 years, were performed using Quantitative Insights into Microbial Ecology, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, and Statistical Analysis of Metagenomic Profiles. Compared to controls, increased alpha diversity and distinct taxa (PERMANOVA P = 5.0 × 10 -4 ) characterized the early-life gut microbiome of children with egg allergy. Genera from the Lachnospiraceae, Streptococcaceae, and Leuconostocaceae families were differentially abundant in children with egg allergy. Predicted metagenome functional analyses showed differential purine metabolism by the gut microbiota of egg-allergic subjects (Kruskal-Wallis P adj  = 0.021). Greater gut microbiome diversity and genera from Lachnospiraceae and Ruminococcaceae were associated with egg sensitization (PERMANOVA P = 5.0 × 10 -4 ). Among those with egg allergy, there was no association between early-life gut microbiota and egg allergy resolution by age 8 years. The distinct early-life gut microbiota in egg-allergic and egg-sensitized children identified by our study may point to targets for preventive or therapeutic intervention. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  14. The gut microbiota and its relationship to diet and obesity

    PubMed Central

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  15. Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling

    PubMed Central

    Aguirre, Marisol; Venema, Koen

    2015-01-01

    Increasing evidence suggests that gut microbiota is an environmental factor that plays a crucial role in obesity. However, the aetiology of obesity is rather complex and depends on different factors. Furthermore, there is a lack of consensus about the exact role that this microbial community plays in the host. The aim of this review is to present evidence about what has been characterized, compositionally and functionally, as obese gut microbiota. In addition, the different reasons explaining the so-far unclear role are discussed considering evidence from in vitro, animal and human studies. PMID:27682087

  16. Low-Level Analytical Methodology Updates to Support Decontaminant Performance Evaluations

    DTIC Science & Technology

    2011-06-01

    from EPDM and tire rubber coupon materials that were spiked with a known amount of the chemical agent VX, treated with bleach decontaminant, and...to evaluate the performance of bleach decontaminant on EPDM and tire rubber coupons. Dose-confirmation or Tool samples were collected by delivering...components • An aging or damaged analytical column • Dirty detector • Other factors related to general instrument and/or sample analysis performance

  17. Why do larval helminths avoid the gut of intermediate hosts?

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2009-10-07

    In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be

  18. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise in...

  19. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise in...

  20. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise in...

  1. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise in...

  2. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise in...

  3. ASSESSING THE POTENTIAL EFFECTS OF FUNGICIDES ON NONTARGET GUT FUNGI (TRICHOMYCETES) AND THEIR ASSOCIATED LARVAL BLACK FLY HOSTS

    PubMed Central

    Wilson, Emma R.; Smalling, Kelly L.; Reilly, Timothy J.; Gray, Elmer; Bond, Laura; Steele, Lance; Kandel, Prasanna; Chamberlin, Alison; Gause, Justin; Reynolds, Nicole; Robertson, Ian; Novak, Stephen; Feris, Kevin; White, Merlin M.

    2015-01-01

    Fungicides are moderately hydrophobic and have been detected in water and sediment, particularly in agricultural watersheds, but typically are not included in routine water quality monitoring efforts. This is despite their widespread use and frequent application to combat fungal pathogens. Whereas the efficacy of these compounds on fungal pathogens is well documented, little is known about their effects on nontarget fungi. This pilot study, a field survey in southwestern Idaho from April to December 2010 on four streams with varying pesticide inputs (two agricultural and two reference sites), was conducted to assess nontarget impact of fungicides on gut fungi, or trichomycetes. Tissues of larval black flies (Diptera: Simuliidae), hosts of gut fungi, were analyzed for pesticide accumulation. Fungicides were detected in hosts from streams within agricultural watersheds but were not detected in hosts from reference streams. Gut fungi from agricultural sites exhibited decreased percent infestation, density within the gut, and sporulation, and black fly tissues had elevated pesticide concentrations. Differences observed between the sites demonstrate a potential effect on this symbiotic system. Future research is needed to parse out the details of the complex biotic and abiotic relationships; however, these preliminary results indicate that impacts to nontarget organisms could have far-reaching consequences within aquatic ecosystems. PMID:26380545

  4. Assessing the potential effects of fungicides on nontarget gut fungi (trichomycetes) and their associated larval black fly hosts

    USGS Publications Warehouse

    Wilson, Emma R.; Smalling, Kelly L.; Reilly, Timothy J.; Gray, Elmer; Bond, Laura; Steele, Lance; Kandel, Prasanna; Chamberlin, Alison; Gause, Justin; Reynolds, Nicole; Robertson, Ian; Novak, Stephen; Feris, Kevin; White, Merlin M.

    2014-01-01

    Fungicides are moderately hydrophobic and have been detected in water and sediment, particularly in agricultural watersheds, but typically are not included in routine water quality monitoring efforts. This is despite their widespread use and frequent application to combat fungal pathogens. Although the efficacy of these compounds on fungal pathogens is well documented, little is known about their effects on nontarget fungi. This pilot study, a field survey in southwestern Idaho from April to December 2010 on four streams with varying pesticide inputs (two agricultural and two reference sites), was conducted to assess nontarget impact of fungicides on gut fungi, or trichomycetes. Tissues of larval black flies (Diptera: Simuliidae), hosts of gut fungi, were analyzed for pesticide accumulation. Fungicides were detected in hosts from streams within agricultural watersheds but were not detected in hosts from reference streams. Gut fungi from agricultural sites exhibited decreased percent infestation, density and sporulation within the gut, and black fly tissues had elevated pesticide concentrations. Differences observed between the sites demonstrate a potential effect on this symbiotic system. Future research is needed to parse out the details of the complex biotic and abiotic relationships; however, these preliminary results indicate that impacts to nontarget organisms could have far-reaching consequences within aquatic ecosystems.

  5. Electron beam irradiation for biological decontamination of Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Brasoveanu, Mirela; Nemtanu, Monica; Minea, R.; Grecu, Maria Nicoleta; Mazilu, Elena; Radulescu, Nora

    2005-10-01

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  6. Efficacy of decontamination protocol by antimicrobial treatment in Iranian Tissue Bank (ITB).

    PubMed

    Dashti-Khavidaki, Simin; Dabardani, Fariba; Mahdavi-Mazdeh, Mitra; Ravanasa, Elham; Hosseini, Seyed Kazem

    2015-09-01

    Iranian Tissue Bank established in 1994 provides soft tissues for implantation in Iran. This study was designed to evaluate the efficacy of decontamination process of cardiac and soft tissues in Iranian Tissue Bank. In this bank after initial assessments, the tissues were incubated in a 5-antibiotic cocktail at room temperature for 24 h and then at 4 °C for 14 days. Contamination status was compared before and after antibiotic cocktail incubation. Of 3,315 assessed tissues, 1,057 were pericardia, 1,051 were fascia and 1,207 were other soft tissues including tibialis and aorta. The initial contamination rate was 36.86%. Pericardia showed the highest contamination rate. Klebsiella species was the most prevalent organism causing contamination. Decontamination rate after antibiotic incubation was 86.91% with the highest successful decontamination rate for fascia tissue. Klebsiella species was the major source of contamination in tissues that remained contaminated after antibiotic incubation. This may be due to resistance of this organism to applied antibiotics in the decontamination cocktail possibly due to a negative drug interaction between aminoglycoside and penicillin derivatives in this antibiotic cocktail. In conclusion collected data shows comparable efficacy of the decontamination process that is used in ITB compared with homograft banks of other countries.

  7. Brain-gut-microbiota axis: challenges for translation in psychiatry.

    PubMed

    Kelly, John R; Clarke, Gerard; Cryan, John F; Dinan, Timothy G

    2016-05-01

    The accruing data linking the gut microbiome to the development and function of the central nervous system has been proposed as a paradigm shift in neuroscience. The gut microbiota can communicate with the brain via neuroimmune, neuroendocrine, and neural pathways comprising the brain-gut-microbiota axis. Dysfunctional neuroimmune pathways are implicated in stress-related psychiatric disorders. Using depression as our primary example, we review both the preclinical and clinical evidence supporting the possible role played by the gut microbiota in stress-related psychiatric disorders. We consider how this can inform future treatment strategies and outline the challenges and necessary studies for moving the field forward. The role played by the gut microbiota has not been fully elucidated in psychiatric populations. Although tempting to speculate that psychiatric patients may benefit from therapeutic modulation of the brain-gut-microbiota axis, the translational applications of the results obtained in rodent studies have yet to be demonstrated. Evidence of altered gut microbiota composition and function in psychiatric patients is limited and cannot be regarded as proven. Moreover the efficacy of targeting the gut microbiota has not yet been established, and needs further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surgical gut suture. (a) Identification. An absorbable surgical gut suture, both plain and chromic, is an...

  9. Influence of functional food components on gut health.

    PubMed

    Wan, Murphy L Y; Ling, K H; El-Nezami, Hani; Wang, M F

    2018-01-30

    Intestinal epithelial cells (IECs) lining the gastrointestinal tract establish a barrier between external environments and the internal milieu. An intact intestinal barrier maintains gut health and overall good health of the body by preventing from tissue injury, pathogen infection and disease development. When the intestinal barrier function is compromised, bacterial translocation can occur. Our gut microbiota also plays a fundamentally important role in health, for example, by maintaining intestinal barrier integrity, metabolism and modulating the immune system, etc. Any disruption of gut microbiota composition (also termed dysbiosis) can lead to various pathological conditions. In short, intestinal barrier and gut microbiota are two crucial factors affecting gut health. The gastrointestinal tract is a complex environment exposed to many dietary components and commensal bacteria. Dietary components are increasingly recognized to play various beneficial roles beyond basic nutrition, resulting in the development of the functional food concepts. Various dietary modifiers, including the consumption of live bacteria (probiotics) and ingestible food constituents such as prebiotics, as well as polyphenols or synbiotics (combinations of probiotics and prebiotics) are the most well characterized dietary bioactive compounds and have been demonstrated to beneficially impact the gut health and the overall well-being of the host. In this review we depict the roles of intestinal epithelium and gut microbiota in mucosal defence responses and the influence of certain functional food components on the modulation of gut health, with a particular focus on probiotics, prebiotics and polyphenols.

  10. Challenges of metabolomics in human gut microbiota research.

    PubMed

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Global F-theory GUTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.

    2010-08-26

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also providemore » a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.« less

  12. An improved method for emergent decontamination of ocular and dermal hydrofluoric acid splashes.

    PubMed

    Soderberg, Kjell; Kuusinen, Petri; Mathieu, Laurence; Hall, Alan H

    2004-08-01

    Accidental hydrofluoric acid (HF) splashes often occur in industrial settings. HF easily penetrates into tissues by initial acid action allowing fluoride ions to penetrate deeply, chelating calcium and magnesium. Resultant hypocalcemia and hypomagnesemia can be fatal. This report describes the utilization of Hexafluorine--a hypertonic, amphoteric, chelating decontamination solution--in workplaces where water decontamination followed by calcium gluconate inunction failed to prevent HF burns and systemic toxicity. Between 1998 and 1999, 16 cases of ocular and dermal HF splashes with either 70% HF or 6% HF/15% nitric acid (HNO3) were decontaminated with Hexafluorine at the worksite. HF burns did not develop and medical treatment other than initial decontamination was not reQuired in 12/16 (75%). In 7/16 (44%) cases, lost work time corresponded to duration of hospital observation (mean < 1 d).

  13. Biofilm on the tracheoesophageal voice prosthesis: considerations for oral decontamination.

    PubMed

    Somogyi-Ganss, Eszter; Chambers, Mark S; Lewin, Jan S; Tarrand, Jeffrey J; Hutcheson, Katherine A

    2017-01-01

    The tracheoesophageal puncture (TEP) restores verbal communication after total laryngectomy using a one-way valved voice prosthesis (VP). Microbial colonization can shorten VP device life. Our aims were to investigate patterns of prosthetic and oral colonization, and record changes in VP device life after targeted decontamination. We conducted a retrospective review of TEP clinic patients who underwent microbial analysis of the VP between 01/2003 and 07/2013. Two subgroups were analyzed: (1) patients with microbial analysis of the VP and the mouth were analyzed to identify patterns of common contamination, and (2) patients who were prescribed targeted oral decontamination on the basis of the microbial analysis of the VP were analyzed to evaluate effects on device life. Among 42 patients, 3 patients had only fungal, 5 only bacterial, and 33 had polyspecies fungal and bacterial colonization. In the TEP-oral microflora subgroup (n = 15), 7 had common microorganisms in the mouth and on the VP. Among the decontamination subgroup (n = 23), 6 patients received broad spectrum rinse, 16 antifungal agents and 13 antibiotics, or a combination thereof. After targeted decontamination, the median device life of prostheses improved from 7.89 to 10.82 weeks (p = 0.260). The majority of patients with a suboptimal VP device life in this pilot had polyspecies bacterial and fungal colonization. VPs rarely had fungal contamination alone (3 %), and non-albicans fungal species were more common than expected. For these reasons, we are exploring the use of targeted decontamination regimens that were associated with 1.4-fold improvement in VP duration.

  14. Timing of decontamination and treatment in case of percutaneous VX poisoning: a mini review.

    PubMed

    Joosen, Marloes J A; van der Schans, Marcel J; Kuijpers, Willem C; van Helden, Herman P M; Noort, Daan

    2013-03-25

    Low volatile organophosphorous nerve agents such as VX, will most likely enter the body via the skin. The pharmacokinetics of drugs such as oximes, atropine and diazepam, are not aligned with the variable and persistent toxicokinetics of the agent. Repeated administration of these drugs showed to improve treatment efficacy compared to a single injection treatment. Because of the effectiveness of continuous treatment, it was investigated to what extent a subchronic pretreatment with carbamate (pyridostigmine or physostigmine combined with either procyclidine or scopolamine) would protect against percutaneous VX exposure. Inclusion of scopolamine in the pretreatment prevented seizures in all animals, but none of the pretreatments affected survival time or the onset time of cholinergic signs. These results indicate that percutaneous poisoning with VX requires additional conventional treatment in addition to the current pretreatment regimen. Decontamination of VX-exposed skin is one of the most important countermeasures to mitigate the effects of the exposure. To evaluate the window of opportunity for decontamination, the fielded skin decontaminant Reactive Skin Decontaminant Lotion (RSDL) was tested at different times in hairless guinea pigs percutaneously challenged with 4× LD50 VX in IPA. The results showed that RSDL decontamination at 15 min after exposure could not prevent progressive blood cholinesterase inhibition and therefore would still require additional treatment. A similar decontamination regimen with RSDL at 90 min showed that it still might effectively increase the time window of opportunity for treatment. In conclusion, the delay in absorption presents a window of opportunity for decontamination and treatment. The continuous release of VX from the skin presents a significant challenge for efficacious therapy, which should ideally consist of thorough decontamination and continuous treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Application of sorption technique for decontamination of liquid radwaste and natural water from cesium and strontium radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milyutin, V.V.; Gelis, V.M.; Penzin, R.A.

    1995-12-31

    In this paper the results obtained in field tests of decontaminating radioactive natural and industrial solutions of different chemical and radionuclide composition from cesium and strontium radionuclides are reported. Decontamination of industrial reservoir water at the Production Association Mayak (Chelyabinsk Region, Russia) was performed using CMP synthetic zeolite. Efficient decontamination of the feed water is achieved after preliminary precipitation of hardness salts in the form of carbonates. Decontamination of water from the pool for spent fuel element storage from {sup 137}Cs was conducted using NGA ferricyanide sorbent. Decontamination factors with respect to {sup 137}Cs of 400 have been reached, themore » installation throughput being 100,000 by (bed volumes). Decontamination of liquid radwaste at Murmansk Shipping Co was conducted with CFB, CMP synthetic zeolites and NGA ferricyanide sorbent as well. Decontamination of D and D solutions and wastes of the special laundry resulted in decontamination factors within the range of 20--400, 10--100, and 10--30 with respect to {sup 137}Cs, {sup 90}Sr, and total {beta}-activity, respectively. Installation throughput of 3,000--5,000 bv for zeolites and 8,000--10,000 bv for ferrocyanide sorbents has been reached. Results obtained prove the high efficiency of sorption technique for decontaminating solutions from cesium and strontium radionuclides.« less

  16. Xenobiotic Metabolism and Gut Microbiomes

    PubMed Central

    Das, Anubhav; Srinivasan, Meenakshi; Ghosh, Tarini Shankar; Mande, Sharmila S.

    2016-01-01

    Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome) in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs) also indicate geographic as well as age specific trends. PMID:27695034

  17. Impacts of Gut Bacteria on Human Health and Diseases

    PubMed Central

    Zhang, Yu-Jie; Li, Sha; Gan, Ren-You; Zhou, Tong; Xu, Dong-Ping; Li, Hua-Bin

    2015-01-01

    Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases. PMID:25849657

  18. Gut Pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes

    PubMed Central

    2012-01-01

    The influence of resident gut microbes on xenobiotic metabolism has been investigated at different levels throughout the past five decades. However, with the advance in sequencing and pyrotagging technologies, addressing the influence of microbes on xenobiotics had to evolve from assessing direct metabolic effects on toxins and botanicals by conventional culture-based techniques to elucidating the role of community composition on drugs metabolic profiles through DNA sequence-based phylogeny and metagenomics. Following the completion of the Human Genome Project, the rapid, substantial growth of the Human Microbiome Project (HMP) opens new horizons for studying how microbiome compositional and functional variations affect drug action, fate, and toxicity (pharmacomicrobiomics), notably in the human gut. The HMP continues to characterize the microbial communities associated with the human gut, determine whether there is a common gut microbiome profile shared among healthy humans, and investigate the effect of its alterations on health. Here, we offer a glimpse into the known effects of the gut microbiota on xenobiotic metabolism, with emphasis on cases where microbiome variations lead to different therapeutic outcomes. We discuss a few examples representing how the microbiome interacts with human metabolic enzymes in the liver and intestine. In addition, we attempt to envisage a roadmap for the future implications of the HMP on therapeutics and personalized medicine. PMID:23194438

  19. The influence of gut microbiota on drug metabolism and toxicity

    PubMed Central

    Li, Houkai; He, Jiaojiao; Jia, Wei

    2017-01-01

    Introduction Gut microbiota plays critical roles in drug metabolism. The individual variation of gut microbiota contributes to the interindividual differences towards drug therapy including drug-induced toxicity and efficacy. Accordingly, the investigation and elucidation of gut microbial impacts on drug metabolism and toxicity will not only facilitate the way of personalized medicine, but also improve the rational drug design. Areas covered This review provide an overview on the microbiota-host cometabolism on drug metabolism and summarize 30 clinical drugs which are co-metabolized by host and gut microbiota. Moreover, this review is specifically focused on elucidating the gut microbial modulation on some clinical drugs, in which the gut microbial influences on drug metabolism, drug-induced toxicity and efficacy are intensively discussed. Expert opinion The gut microbial contribution to drug metabolism and toxicity is increasingly recognized, but remains largely unexplored due to the extremely complex relationship between gut microbiota and host. The mechanistic elucidation of gut microbiota in drug metabolism is critical before any practical progress in drug design or personalized medicine could be made by modulating human gut microbiota, which is predominantly relied on the technical innovations such as metagenomics and metabolomics, as well as the integration of multi-disciplinary knowledge. PMID:26569070

  20. The severity of NAFLD is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota

    PubMed Central

    Boursier, Jérôme; Mueller, Olaf; Barret, Matthieu; Machado, Mariana; Fizanne, Lionel; Araujo-Perez, Felix; Guy, Cynthia D.; Seed, Patrick C.; Rawls, John F.; David, Lawrence A.; Hunault, Gilles; Oberti, Frédéric; Calès, Paul; Diehl, Anna Mae

    2016-01-01

    Background & aims Several animal studies have emphasized the role of gut microbiota in non-alcoholic fatty liver disease (NAFLD). However, data about gut dysbiosis in human NAFLD remains scarce in the literature, especially studies including the whole spectrum of NAFLD lesions. We aimed to evaluate the association between gut dysbiosis and severe NAFLD lesions, i.e. non-alcoholic steatohepatitis (NASH) and fibrosis, in a well-characterized population of adult NAFLD. Methods 57 patients with biopsy-proven NAFLD were enrolled. The taxonomic composition of gut microbiota was determined using 16S ribosomal RNA gene sequencing of stool samples. Results 30 patients had F0/1 fibrosis stage at liver biopsy (10 with NASH), and 27 patients had significant F≥2 fibrosis (25 with NASH). Bacteroides abundance was significantly increased in NASH and F≥2 patients, whereas Prevotella abundance was decreased. Ruminococcus abundance was significantly higher in F≥2 patients. By multivariate analysis, Bacteroides abundance was independently associated with NASH and Ruminococcus with F≥2 fibrosis. Stratification according to the abundance of these 2 bacteria generated 3 patient subgroups with increasing severity of NAFLD lesions. Based on imputed metagenomic profiles, KEGG pathways significantly related to NASH and fibrosis F≥2 were mostly related to carbohydrate, lipid, and amino acid metabolism. Conclusion NAFLD severity associates with gut dysbiosis and a shift in metabolic function of the gut microbiota. We identified Bacteroides as independently associated with NASH and Ruminococcus with significant fibrosis. Thus, gut microbiota analysis adds information to classical predictors of NAFLD severity and suggests novel metabolic targets for pre/probiotics therapies. PMID:26600078

  1. Developmental biology of gut-probiotic interaction

    PubMed Central

    Patel, Ravi Mangal

    2010-01-01

    While our current knowledge of probiotic interaction in the developing gut remains poorly understood, emerging science is providing greater biological insight into their mechanism of action and therapeutic potential for human disease. Given their beneficial effects, probiotics remain promising agents in neonatal gastrointestinal disorders. Probiotics may restore or supply essential bacterial strains needed for gut maturation and homeostasis, particularly in hosts where this process has been disrupted. Here we highlight the unique characteristics of developing intestinal epithelia with a focus on gut development and colonization as well as the inflammatory propensity of immature epithelia. Additionally, we review potential mechanisms of beneficial probiotic interaction with immature intestinal epithelia including immunomodulation, upregulation of cytoprotective genes, prevention and regulation of apoptosis and maintenance of barrier function. Improved knowledge of gut-probiotic interaction in developing epithelia will allow for a better understanding of how probiotics exert their beneficial effects and help guide their therapeutic use. PMID:21327024

  2. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut.

    PubMed

    Zhao, Yi; Su, Jian-Qiang; An, Xin-Li; Huang, Fu-Yi; Rensing, Christopher; Brandt, Kristian Koefoed; Zhu, Yong-Guan

    2018-04-15

    Antibiotic resistance genes (ARGs) are emerging environmental contaminants posing a threat to public health. Antibiotics and metals are widely used as feed additives and could consequently affect ARGs in swine gut. In this study, high-throughput quantitative polymerase chain reaction (HT-qPCR) based ARG chip and next-generation 16S rRNA gene amplicon sequencing data were analyzed using multiple statistical approaches to profile the antibiotic resistome and investigate its linkages to antibiotics and metals used as feed additives and to the microbial community composition in freshly collected swine manure samples from three large-scale Chinese pig farms. A total of 146 ARGs and up to 1.3×10 10 total ARG copies per gram of swine feces were detected. ARGs conferring resistance to aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB) and tetracycline were dominant in pig gut. Total abundance of ARGs was positively correlated with in-feed antibiotics, microbial biomass and abundance of mobile genetic elements (MGEs) (P<0.05). A significant correlation between microbial communities and ARG profiles was observed by Procrustes analysis. Network analysis revealed that Bacteroidetes and Firmicutes were the most dominant phyla co-occurring with specific ARGs. Partial redundancy analysis indicated that the variance in ARG profiles could be primarily attributed to antibiotics and metals in feed (31.8%), gut microbial community composition (23.3%) and interaction between feed additives and community composition (16.5%). These results suggest that increased levels of in-feed additives could aggravate the enrichment of ARGs and MGEs in swine gut. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mastracchio installs MSG LSAH Decontamination System

    NASA Image and Video Library

    2014-02-10

    ISS038-E-044829 (10 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, prepares to use an ultraviolet light to decontaminate hardware used for life science experiments inside the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.

  4. Depletion of Cultivatable Gut Microbiota by Broad-Spectrum Antibiotic Pretreatment Worsens Outcome After Murine Stroke

    PubMed Central

    Winek, Katarzyna; Engel, Odilo; Koduah, Priscilla; Heimesaat, Markus M.; Fischer, André; Bereswill, Stefan; Dames, Claudia; Kershaw, Olivia; Gruber, Achim D.; Curato, Caterina; Oyama, Naoki; Meisel, Christian; Meisel, Andreas

    2016-01-01

    Background and Purpose— Antibiotics disturbing microbiota are often used in treatment of poststroke infections. A bidirectional brain–gut microbiota axis was recently suggested as a modulator of nervous system diseases. We hypothesized that gut microbiota may be an important player in the course of stroke. Methods— We investigated the outcome of focal cerebral ischemia in C57BL/6J mice after an 8-week decontamination with quintuple broad-spectrum antibiotic cocktail. These microbiota-depleted animals were subjected to 60 minutes middle cerebral artery occlusion or sham operation. Infarct volume was measured using magnetic resonance imaging, and mice were monitored clinically throughout the whole experiment. At the end point, tissues were preserved for further analysis, comprising histology and immunologic investigations using flow cytometry. Results— We found significantly decreased survival in the middle cerebral artery occlusion microbiota-depleted mice when the antibiotic cocktail was stopped 3 days before surgery (compared with middle cerebral artery occlusion specific pathogen-free and sham-operated microbiota-depleted mice). Moreover, all microbiota-depleted animals in which antibiotic treatment was terminated developed severe acute colitis. This phenotype was rescued by continuous antibiotic treatment or colonization with specific pathogen-free microbiota before surgery. Further, infarct volumes on day one did not differ between any of the experimental groups. Conclusions— Conventional microbiota ensures intestinal protection in the mouse model of experimental stroke and prevents development of acute and severe colitis in microbiota-depleted mice not given antibiotic protection after cerebral ischemia. Our experiments raise the clinically important question as to whether microbial colonization or specific microbiota are crucial for stroke outcome. PMID:27056982

  5. Kynurenine pathway metabolism and the microbiota-gut-brain axis.

    PubMed

    Kennedy, P J; Cryan, J F; Dinan, T G; Clarke, G

    2017-01-01

    It has become increasingly clear that the gut microbiota influences not only gastrointestinal physiology but also central nervous system (CNS) function by modulating signalling pathways of the microbiota-gut-brain axis. Understanding the neurobiological mechanisms underpinning the influence exerted by the gut microbiota on brain function and behaviour has become a key research priority. Microbial regulation of tryptophan metabolism has become a focal point in this regard, with dual emphasis on the regulation of serotonin synthesis and the control of kynurenine pathway metabolism. Here, we focus in detail on the latter pathway and begin by outlining the structural and functional dynamics of the gut microbiota and the signalling pathways of the brain-gut axis. We summarise preclinical and clinical investigations demonstrating that the gut microbiota influences CNS physiology, anxiety, depression, social behaviour, cognition and visceral pain. Pertinent studies are drawn from neurogastroenterology demonstrating the importance of tryptophan and its metabolites in CNS and gastrointestinal function. We outline how kynurenine pathway metabolism may be regulated by microbial control of neuroendocrine function and components of the immune system. Finally, preclinical evidence demonstrating direct and indirect mechanisms by which the gut microbiota can regulate tryptophan availability for kynurenine pathway metabolism, with downstream effects on CNS function, is reviewed. Targeting the gut microbiota represents a tractable target to modulate kynurenine pathway metabolism. Efforts to develop this approach will markedly increase our understanding of how the gut microbiota shapes brain and behaviour and provide new insights towards successful translation of microbiota-gut-brain axis research from bench to bedside. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    PubMed

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures

    PubMed Central

    Rosenfeld, Cheryl S.

    2017-01-01

    The gut microbiome consists of over 103–104 microorganism inhabitants that together possess 150 times more genes that the human genome and thus should be considered an “organ” in of itself. Such communities of bacteria are in dynamic flux and susceptible to changes in host environment and body condition. In turn, gut microbiome disturbances can affect health status of the host. Gut dysbiosis might result in obesity, diabetes, gastrointestinal, immunological, and neurobehavioral disorders. Such host diseases can originate due to shifts in microbiota favoring more pathogenic species that produce various virulence factors, such as lipopolysaccharide. Bacterial virulence factors and metabolites may be transmitted to distal target sites, including the brain. Other potential mechanisms by which gut dysbiosis can affect the host include bacterial-produced metabolites, production of hormones and factors that mimic those produced by the host, and epimutations. All animals, including humans, are exposed daily to various environmental chemicals that can influence the gut microbiome. Exposure to such chemicals might lead to downstream systemic effects that occur secondary to gut microbiome disturbances. Increasing reports have shown that environmental chemical exposures can target both host and the resident gut microbiome. In this review, we will first consider the current knowledge of how endocrine disrupting chemicals (EDCs), heavy metals, air pollution, and nanoparticles can influence the gut microbiome. The second part of the review will consider how potential environmental chemical-induced gut microbiome changes might subsequently induce pathophysiological responses in the host, although definitive evidence for such effects is still lacking. By understanding how these chemicals result in gut dysbiosis, it may open up new remediation strategies in animals, including humans, exposed to such chemicals. PMID:28936425

  8. Tumor Grafting Induces Changes of Gut Microbiota in Athymic Nude Mice in the Presence and Absence of Medicinal Gynostemma Saponins

    PubMed Central

    Chen, Lei; Tai, William C. S.; Brar, Manreetpal S.; Leung, Frederick C. C.; Hsiao, W. L. Wendy

    2015-01-01

    Recent findings have revealed that gut microbiota plays a substantial role in modulating diseases such as autism, rheumatoid arthritis, allergies, and cancer that occur at sites distant to the gut. Athymic nude mice have been employed for tumorigenic research for decades; however, the relationships between the gut microbiome and host’s response in drug treatment to the grafted tumors have not been explored. In this study, we analyzed the fecal microbiome of nonxenograft and xenograft nude mice treated with phytosaponins from a popular medicinal plant, Gynostemma pentaphyllum (Gp). Analysis of enterobacterial repetitive intergenic consensus (ERIC)-PCR data showed that the microbiota profile of xenograft mice departed from that of the nonxenograft mice. After ten days of treatment with Gp saponins (GpS), the microbiota of the treated mice was closer to the microbiota at Day 0 before the implantation of the tumor. Data obtained from 16S pyrosequencing of fecal samples reiterates the differences in microbiome between the nonxenograft and xenograft mice. GpS markedly increased the relative abundance of Clostridium cocleatum and Bacteroides acidifaciens, for which the beneficial effects on the host have been well documented. This study, for the first time, characterizes the properties of gut microbiome in nude mice responding to tumor implant and drug treatment. We also demonstrate that dietary saponins such as GpS can potentially regulate the gut microbial ecosystem by increasing the number of symbionts. Interestingly, this regulation of the gut ecosystem might, at least in part, be responsible for or contribute to the anticancer effect of GpS. PMID:25992551

  9. Gut Microbiota as a Therapeutic Target for Metabolic Disorders.

    PubMed

    Okubo, Hirofumi; Nakatsu, Yusuke; Kushiyama, Akifumi; Yamamotoya, Takeshi; Matsunaga, Yasuka; Inoue, Masa-Ki; Fujishiro, Midori; Sakoda, Hideaki; Ohno, Haruya; Yoneda, Masayasu; Ono, Hiraku; Asano, Tomoichiro

    2018-01-01

    Gut microbiota play a vital role not only in the digestion and absorption of nutrients, but also in homeostatic maintenance of host immunity, metabolism and the gut barrier. Recent evidence suggests that gut microbiota alterations contribute to the pathogenesis of metabolic disorders. In this review, we discuss the association between the gut microbiota and metabolic disorders, such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease, and the contribution of relevant modulating interventions, focusing on recent human studies. Several studies have identified potential causal associations between gut microbiota and metabolic disorders, as well as the underlying mechanisms. The effects of modulating interventions, such as prebiotics, probiotics, fecal microbiota transplantation, and other new treatment possibilities on these metabolic disorders have also been reported. A growing body of evidence highlights the role of gut microbiota in the development of dysbiosis, which in turn influences host metabolism and disease phenotypes. Further studies are required to elucidate the precise mechanisms by which gut microbiota-derived mediators induce metabolic disorders and modulating interventions exert their beneficial effects in humans. The gut microbiota represents a novel potential therapeutic target for a range of metabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Exercise, fitness, and the gut.

    PubMed

    Cronin, Owen; Molloy, Michael G; Shanahan, Fergus

    2016-03-01

    Exercise and gut symptomatology have long been connected. The possibility that regular exercise fosters intestinal health and function has been somewhat overlooked in the scientific literature. In this review, we summarize current knowledge and discuss a selection of recent, relevant, and innovative studies, hypotheses and reviews that elucidate a complex topic. The multiorgan benefits of regular exercise are extensive. When taken in moderation, these benefits transcend improved cardio-respiratory fitness and likely reach the gut in a metabolic, immunological, neural, and microbial manner. This is applicable in both health and disease. However, further work is required to provide safe, effective recommendations on physical activity in specific gastrointestinal conditions. Challenging methodology investigating the relationship between exercise and gut health should not deter from exploring exercise in the promotion of gastrointestinal health.

  11. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia

    PubMed Central

    2014-01-01

    Background TiO2 particles are commonly used as dietary supplements and may contain up to 36% of nano-sized particles (TiO2-NPs). Still impact and translocation of NPs through the gut epithelium is poorly documented. Results We show that, in vivo and ex vivo, agglomerates of TiO2-NPs cross both the regular ileum epithelium and the follicle-associated epithelium (FAE) and alter the paracellular permeability of the ileum and colon epithelia. In vitro, they accumulate in M-cells and mucus-secreting cells, much less in enterocytes. They do not cause overt cytotoxicity or apoptosis. They translocate through a model of FAE only, but induce tight junctions remodeling in the regular ileum epithelium, which is a sign of integrity alteration and suggests paracellular passage of NPs. Finally we prove that TiO2-NPs do not dissolve when sequestered up to 24 h in gut cells. Conclusions Taken together these data prove that TiO2-NPs would possibly translocate through both the regular epithelium lining the ileum and through Peyer’s patches, would induce epithelium impairment, and would persist in gut cells where they would possibly induce chronic damage. PMID:24666995

  12. Relative gut lengths of coral reef butterflyfishes (Pisces: Chaetodontidae)

    NASA Astrophysics Data System (ADS)

    Berumen, M. L.; Pratchett, M. S.; Goodman, B. A.

    2011-12-01

    Variation in gut length of closely related animals is known to generally be a good predictor of dietary habits. We examined gut length in 28 species of butterflyfishes (Chaetodontidae), which encompass a wide range of dietary types (planktivores, omnivores, and corallivores). We found general dietary patterns to be a good predictor of relative gut length, although we found high variation among groups and covariance with body size. The longest gut lengths are found in species that exclusively feed on the living tissue of corals, while the shortest gut length is found in a planktivorous species. Although we tried to control for phylogeny, corallivory has arisen multiple times in this family, confounding our analyses. The butterflyfishes, a speciose family with a wide range of dietary habits, may nonetheless provide an ideal system for future work studying gut physiology associated with specialization and foraging behaviors.

  13. Redefining the gut as the motor of critical illness

    PubMed Central

    Mittal, Rohit; Coopersmith, Craig M.

    2013-01-01

    The gut is hypothesized to play a central role in the progression of sepsis and multiple organ dysfunction syndrome. Critical illness alters gut integrity by increasing epithelial apoptosis and permeability and by decreasing epithelial proliferation and mucus integrity. Additionally, toxic gut-derived lymph induces distant organ injury. Although the endogenous microflora ordinarily exist in a symbiotic relationship with the gut epithelium, severe physiologic insults alter this relationship, leading to induction of virulence factors in the microbiome, which, in turn, can perpetuate or worsen critical illness. This review highlights newly discovered ways in which the gut acts as the motor that perpetuates the systemic inflammatory response in critical illness. PMID:24055446

  14. Changes in Composition of the Gut Bacterial Microbiome after Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection in a Pediatric Heart Transplant Patient.

    PubMed

    Flannigan, Kyle L; Rajbar, Taylor; Moffat, Andrew; McKenzie, Leanna S; Dicke, Frank; Rioux, Kevin; Workentine, Matthew L; Louie, Thomas J; Hirota, Simon A; Greenway, Steven C

    2017-01-01

    The microbiome is increasingly recognized as an important influence on human health and many of the comorbidities that affect patients after solid organ transplantation (SOT) have been shown to involve changes in gut bacterial populations. Thus, microbiome changes in an individual patient may have important health implications after SOT but this area remains understudied. We describe changes in the composition of the fecal microbiome from a pediatric heart transplant recipient before and >2.5 years after he underwent repeated fecal microbiota transplantation (FMT) for recurrent Clostridium difficile infection (CDI). With both documented episodes of CDI, there was marked loss of bacterial diversity with overgrowth of Proteobacteria (>98.9% of phyla identified) associated with symptomatic colitis that was corrected after FMT. We hypothesize that a second CDI occurring after FMT was related to incomplete restoration of normal bowel flora post-FMT with relative deficiencies of the phyla Firmicutes and Bacteroidetes and the families Lachnospiraceae and Ruminococcaceae . Following the second FMT, there was a gradual shift in gut bacterial composition coincident with the recipient developing lymphonodular hyperplasia of the colon and painless hematochezia that resolved with discontinuation of mycophenolate mofetil (MMF). This case documents dynamic changes in the bacterial microbiome after FMT and suggests that MMF may influence the gut microbiome with consequences for the patient.

  15. Fighting Ebola with novel spore decontamination technologies for the military.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  16. Fighting Ebola with novel spore decontamination technologies for the military

    PubMed Central

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  17. α-Conotoxin Decontamination Protocol Evaluation: What Works and What Doesn’t

    DOE PAGES

    Turner, Matthew; Cort, John; McDougal, Owen

    2017-09-14

    Nine publically available biosafety protocols for safely handling conotoxin peptides were tested to evaluate their decontamination efficacy. Circular dichroism (CD) spectroscopy and mass spectrometry (MS) were used to assess the effect of each chemical treatment on the secondary and primary structure of α-CTx MII [L10V, E11A]. Of the nine decontamination methods tested, treatment with 1% (m/v) solution of the enzymatic detergent Contrex™ EZ resulted in a 76.8% decrease in α-helical content as assessed by the mean residue ellipticity at 222 nm, and partial peptide digestion was demonstrated using high performance liquid chromatography mass spectrometry (HPLC-MS). Additionally, treatment with 6% sodiummore » hypochlorite (m/v) resulted in 80.5% decrease in α-helical content and complete digestion of the peptide. The Contrex™ EZ treatment was repeated with three additional α-conotoxins (α-CTxs), α-CTxs LvIA, ImI and PeIA, which verified the decontamination method was reasonably robust. These results support the use of either 1% Contrex™ EZ solution or 6% sodium hypochlorite in biosafety protocols for the decontamination of α- CTxs in research laboratories.« less

  18. α-Conotoxin Decontamination Protocol Evaluation: What Works and What Doesn’t

    PubMed Central

    Turner, Matthew W.; Cort, John R.; McDougal, Owen M.

    2017-01-01

    Nine publically available biosafety protocols for safely handling conotoxin peptides were tested to evaluate their decontamination efficacy. Circular dichroism (CD) spectroscopy and mass spectrometry (MS) were used to assess the effect of each chemical treatment on the secondary and primary structure of α-CTx MII (L10V, E11A). Of the nine decontamination methods tested, treatment with 1% (m/v) solution of the enzymatic detergent Contrex™ EZ resulted in a 76.8% decrease in α-helical content as assessed by the mean residue ellipticity at 222 nm, and partial peptide digestion was demonstrated using high performance liquid chromatography mass spectrometry (HPLC-MS). Additionally, treatment with 6% sodium hypochlorite (m/v) resulted in 80.5% decrease in α-helical content and complete digestion of the peptide. The Contrex™ EZ treatment was repeated with three additional α-conotoxins (α-CTxs), α-CTxs LvIA, ImI and PeIA, which verified the decontamination method was reasonably robust. These results support the use of either 1% Contrex™ EZ solution or 6% sodium hypochlorite in biosafety protocols for the decontamination of α-CTxs in research laboratories. PMID:28906461

  19. α-Conotoxin Decontamination Protocol Evaluation: What Works and What Doesn’t

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Matthew; Cort, John; McDougal, Owen

    Nine publically available biosafety protocols for safely handling conotoxin peptides were tested to evaluate their decontamination efficacy. Circular dichroism (CD) spectroscopy and mass spectrometry (MS) were used to assess the effect of each chemical treatment on the secondary and primary structure of α-CTx MII [L10V, E11A]. Of the nine decontamination methods tested, treatment with 1% (m/v) solution of the enzymatic detergent Contrex™ EZ resulted in a 76.8% decrease in α-helical content as assessed by the mean residue ellipticity at 222 nm, and partial peptide digestion was demonstrated using high performance liquid chromatography mass spectrometry (HPLC-MS). Additionally, treatment with 6% sodiummore » hypochlorite (m/v) resulted in 80.5% decrease in α-helical content and complete digestion of the peptide. The Contrex™ EZ treatment was repeated with three additional α-conotoxins (α-CTxs), α-CTxs LvIA, ImI and PeIA, which verified the decontamination method was reasonably robust. These results support the use of either 1% Contrex™ EZ solution or 6% sodium hypochlorite in biosafety protocols for the decontamination of α- CTxs in research laboratories.« less

  20. Gut Microbiota in Cardiovascular Health and Disease.

    PubMed

    Tang, W H Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-03-31

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity, and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through many pathways, including the trimethylamine/trimethylamine N -oxide pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these metabolism-dependent pathways, metabolism-independent processes are suggested to also potentially contribute to cardiovascular disease pathogenesis. For example, heart failure-associated splanchnic circulation congestion, bowel wall edema, and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are thought to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites, and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. © 2017 American Heart

  1. Gut Microbiota in Cardiovascular Health and Disease

    PubMed Central

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  2. Bacterial decontamination using ambient pressure nonthermal discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemicalmore » and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.« less

  3. Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts

    PubMed Central

    Karunatilaka, Krishanthi S.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. PMID:25389179

  4. HAZARDOUS WASTE DECONTAMINATION WITH PLASMA REACTORS

    EPA Science Inventory

    The use of electrical energy in the form of plasma has been considered as a potentially efficient means of decontaminating hazardous waste, although to date only a few attempts have been made to do so. There are a number of relative advantages and some potential disadvantages to...

  5. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent.

    PubMed

    Waysbort, Daniel; McGarvey, David J; Creasy, William R; Morrissey, Kevin M; Hendrickson, David M; Durst, H Dupont

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) < or = 4 min), 1:10 for HD (t(1/2) < 2 min with molybdate), and 1:10 for GD (t(1/2) < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  6. Handling stress may confound murine gut microbiota studies.

    PubMed

    Allen-Blevins, Cary R; You, Xiaomeng; Hinde, Katie; Sela, David A

    2017-01-01

    Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO), the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the human infant but are able to be metabolized by certain species of gut microbiota, including Bifidobacterium longum subsp. infantis (B. infantis) , a species sensitive to host stress (Bailey & Coe, 2004). Exposure to gut bacteria like B. infantis during critical neurodevelopment windows in early life appears to have behavioral consequences; however, environmental, physical, and social stress during this period can also have behavioral and microbial consequences. While rodent models are a useful method for determining causal relationships between HMO, gut microbiota, and behavior, murine studies of gut microbiota usually employ oral gavage, a technique stressful to the mouse. Our aim was to develop a less-invasive technique for HMO administration to remove the potential confound of gavage stress. Under the hypothesis that stress affects gut microbiota, particularly B. infantis , we predicted the pups receiving a prebiotic solution in a less-invasive manner would have the highest amount of Bifidobacteria in their gut. This study was designed to test two methods, active and passive, of solution administration to mice and the effects on their gut microbiome. Neonatal C57BL/6J mice housed in a specific-pathogen free facility received increasing doses of fructooligosaccharide (FOS) solution or deionized, distilled water. Gastrointestinal (GI) tracts were collected from five dams, six sires, and 41 pups over four time points. Seven fecal pellets from unhandled pups and two pellets from unhandled dams were also collected. Qualitative real-time polymerase chain reaction (qRT-PCR) was used to quantify and compare the amount of Bifidobacterium , Bacteroides , Bacteroidetes, and Firmicutes. Our results

  7. Decontamination Supplies Under the Worker Protection Standard

    EPA Pesticide Factsheets

    Employers at agricultural establishments must make sure that decontamination supplies for washing off pesticides and pesticide residues are available to workers and handlers. Learn about specific requirements for the type and location of these supplies.

  8. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens

    PubMed Central

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-01-01

    Background Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. Aim We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Methods Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFPtg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium. Results SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC)TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. Conclusions SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. PMID:28341747

  9. Chemical & Biological Point Detection Decontamination

    DTIC Science & Technology

    2002-04-01

    high priority in biological defense. Research on multivalent assays is also ongoing. Biased libraries, generated from immunized animals, or unbiased ...2003 TBD decontamination and modeling and simulation I I The Chem-Bio Point Detection Roadmap The summary level updated and expanded Bio Point... Molecular Imprinted Polymer Sensor, Dendrimer-based Antibody Assays, Pyrolysis-GC-ion mobility spectrometry, and surface enhanced Raman spectroscopy. Data

  10. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability.

    PubMed

    Cani, P D; Possemiers, S; Van de Wiele, T; Guiot, Y; Everard, A; Rottier, O; Geurts, L; Naslain, D; Neyrinck, A; Lambert, D M; Muccioli, G G; Delzenne, N M

    2009-08-01

    Obese and diabetic mice display enhanced intestinal permeability and metabolic endotoxaemia that participate in the occurrence of metabolic disorders. Our recent data support the idea that a selective increase of Bifidobacterium spp. reduces the impact of high-fat diet-induced metabolic endotoxaemia and inflammatory disorders. Here, we hypothesised that prebiotic modulation of gut microbiota lowers intestinal permeability, by a mechanism involving glucagon-like peptide-2 (GLP-2) thereby improving inflammation and metabolic disorders during obesity and diabetes. Study 1: ob/ob mice (Ob-CT) were treated with either prebiotic (Ob-Pre) or non-prebiotic carbohydrates as control (Ob-Cell). Study 2: Ob-CT and Ob-Pre mice were treated with GLP-2 antagonist or saline. Study 3: Ob-CT mice were treated with a GLP-2 agonist or saline. We assessed changes in the gut microbiota, intestinal permeability, gut peptides, intestinal epithelial tight-junction proteins ZO-1 and occludin (qPCR and immunohistochemistry), hepatic and systemic inflammation. Prebiotic-treated mice exhibited a lower plasma lipopolysaccharide (LPS) and cytokines, and a decreased hepatic expression of inflammatory and oxidative stress markers. This decreased inflammatory tone was associated with a lower intestinal permeability and improved tight-junction integrity compared to controls. Prebiotic increased the endogenous intestinotrophic proglucagon-derived peptide (GLP-2) production whereas the GLP-2 antagonist abolished most of the prebiotic effects. Finally, pharmacological GLP-2 treatment decreased gut permeability, systemic and hepatic inflammatory phenotype associated with obesity to a similar extent as that observed following prebiotic-induced changes in gut microbiota. We found that a selective gut microbiota change controls and increases endogenous GLP-2 production, and consequently improves gut barrier functions by a GLP-2-dependent mechanism, contributing to the improvement of gut barrier functions

  11. Breaking down the gut microbiome composition in multiple sclerosis.

    PubMed

    Budhram, Adrian; Parvathy, Seema; Kremenchutzky, Marcelo; Silverman, Michael

    2017-04-01

    The gut microbiome, which consists of a highly diverse ecologic community of micro-organisms, has increasingly been studied regarding its role in multiple sclerosis (MS) immunopathogenesis. This review critically examines the literature investigating the gut microbiome in MS. A comprehensive search was performed of PubMed databases and ECTRIMS meeting abstracts for literature relating to the gut microbiome in MS. Controlled studies examining the gut microbiome in patients with MS were included for review. Identified studies were predominantly case-control in their design and consistently found differences in the gut microbiome of MS patients compared to controls. We examine plausible mechanistic links between these differences and MS immunopathogenesis, and discuss the therapeutic implications of these findings. Review of the available literature reveals potential immunopathogenic links between the gut microbiome and MS, identifies avenues for therapeutic advancement, and emphasizes the need for further systematic study in this emerging field.

  12. The Gut Microbiome and the Brain

    PubMed Central

    Galland, Leo

    2014-01-01

    Abstract The human gut microbiome impacts human brain health in numerous ways: (1) Structural bacterial components such as lipopolysaccharides provide low-grade tonic stimulation of the innate immune system. Excessive stimulation due to bacterial dysbiosis, small intestinal bacterial overgrowth, or increased intestinal permeability may produce systemic and/or central nervous system inflammation. (2) Bacterial proteins may cross-react with human antigens to stimulate dysfunctional responses of the adaptive immune system. (3) Bacterial enzymes may produce neurotoxic metabolites such as D-lactic acid and ammonia. Even beneficial metabolites such as short-chain fatty acids may exert neurotoxicity. (4) Gut microbes can produce hormones and neurotransmitters that are identical to those produced by humans. Bacterial receptors for these hormones influence microbial growth and virulence. (5) Gut bacteria directly stimulate afferent neurons of the enteric nervous system to send signals to the brain via the vagus nerve. Through these varied mechanisms, gut microbes shape the architecture of sleep and stress reactivity of the hypothalamic-pituitary-adrenal axis. They influence memory, mood, and cognition and are clinically and therapeutically relevant to a range of disorders, including alcoholism, chronic fatigue syndrome, fibromyalgia, and restless legs syndrome. Their role in multiple sclerosis and the neurologic manifestations of celiac disease is being studied. Nutritional tools for altering the gut microbiome therapeutically include changes in diet, probiotics, and prebiotics. PMID:25402818

  13. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 1: guinea pigs challenged with VX.

    PubMed

    Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D

    2011-03-01

    This report, first in a series of five, directly compares the efficacy of 4 decontamination products and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to VX. In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with VX and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Skin Exposure Reduction Paste Against Chemical Warfare Agents was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with VX. After a 2-hour challenge, any remaining VX was blotted off the animal, but no additional decontamination was done. Positive control animals were challenged with VX in the same manner as the treated animals, except that they received no treatment. In addition, the positive control animals were always challenged with 5% VX in isopropyl alcohol (IPA) solution, whereas the treatment animals received either neat (undiluted) VX or 5% VX in IPA solution. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the probit dose-response curves established for each treatment group and nontreated control animals. Significance in this report was defined as p < .05. In the standard 2-minute neat VX decontamination experiments, the calculated PRs for Reactive Skin Decontamination Lotion (RSDL), 0.5% bleach, 1% soapy water, and the M291 Skin Decontamination Kit (SDK) were 66, 17, 16, and 1.1, respectively. Reactive Skin Decontamination Lotion was by far the most effective decontamination product tested and was significantly better than any of the other products. Bleach and

  14. Compartmentalization of Inflammatory Response Following Gut Ischemia Reperfusion.

    PubMed

    Collange, O; Charles, A-L; Lavaux, T; Noll, E; Bouitbir, J; Zoll, J; Chakfé, N; Mertes, M; Geny, B

    2015-01-01

    Gut ischemia reperfusion (IR) is thought to trigger systemic inflammation, multiple organ failure, and death. The aim of this study was to investigate inflammatory responses in blood and in two target organs after gut IR. This was a controlled animal study. Adult male Wistar rats were randomized into two groups of eight rats: control group and gut IR group (60 minutes of superior mesenteric artery occlusion followed by 60 minutes of reperfusion). Lactate and four cytokines (tumor necrosis factor-a, interleukin [IL]-1b, IL-6, and IL-10) were measured in mesenteric and systemic blood. The relative gene expression of these cytokines was determined by real time polymerase chain reaction in the gut, liver, and lung. Gut IR significantly increased lactate levels in mesenteric (0.9 ± 0.4 vs. 3.7 ± 1.8 mmol/L; p < .001) and in systemic blood (1.3 ± 0.2 vs. 4.0 ± 0.3 mmol/L; p < .001). Gut IR also increased the levels of four cytokines in mesenteric and systemic blood. IL-6 and IL-10 were the main circulating cytokines; there were no significant differences between mesenteric and systemic cytokine levels. IL-10 was upregulated mainly in the lung,suggesting that this organ could play a major role during gut reperfusion. The predominance of IL-10 over other cytokines in plasma and the dissimilar organ responses,especially of the lung, might be a basis for the design of therapies, for example lung protective ventilation strategies, to limit the deleterious effects of the inflammatory cascade. A multi-organ protective approach might involve gut directed therapies, protective ventilation, hemodynamic optimization, and hydric balance.

  15. Redefining the gut as the motor of critical illness.

    PubMed

    Mittal, Rohit; Coopersmith, Craig M

    2014-04-01

    The gut is hypothesized to play a central role in the progression of sepsis and multiple organ dysfunction syndrome. Critical illness alters gut integrity by increasing epithelial apoptosis and permeability and by decreasing epithelial proliferation and mucus integrity. Additionally, toxic gut-derived lymph induces distant organ injury. Although the endogenous microflora ordinarily exist in a symbiotic relationship with the gut epithelium, severe physiological insults alter this relationship, leading to induction of virulence factors in the microbiome, which, in turn, can perpetuate or worsen critical illness. This review highlights newly discovered ways in which the gut acts as the motor that perpetuates the systemic inflammatory response in critical illness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Targeting gut microbiome: A novel and potential therapy for autism.

    PubMed

    Yang, Yongshou; Tian, Jinhu; Yang, Bo

    2018-02-01

    Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Neutrino assisted GUT baryogenesis revisited

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan

    2018-03-01

    Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.

  18. The super-GUT CMSSM revisited

    DOE PAGES

    Ellis, John; Evans, Jason L.; Mustafayev, Azar; ...

    2016-10-28

    Here, we revisit minimal supersymmetric SU(5) grand unification (GUT) models in which the soft supersymmetry-breaking parameters of the minimal supersymmetric Standard Model (MSSM) are universal at some input scale, M in, above the supersymmetric gauge-coupling unification scale, M GUT. As in the constrained MSSM (CMSSM), we assume that the scalar masses and gaugino masses have common values, m 0 and m 1/2, respectively, at M in, as do the trilinear soft supersymmetry-breaking parameters A 0. Going beyond previous studies of such a super-GUT CMSSM scenario, we explore the constraints imposed by the lower limit on the proton lifetime and themore » LHC measurement of the Higgs mass, m h. We find regions of m 0, m 1/2 A 0 and the parameters of the SU(5) superpotential that are compatible with these and other phenomenological constraints such as the density of cold dark matter, which we assume to be provided by the lightest neutralino. Typically, these allowed regions appear for m 0 and m 1/2 in the multi-TeV region, for suitable values of the unknown SU(5) GUT-scale phases and superpotential couplings, and with the ratio of supersymmetric Higgs vacuum expectation values tan β≲6.« less

  19. [Current view on gut microbiota].

    PubMed

    Bourlioux, P

    2014-01-01

    Gut microbiota is more and more important since metagenomic research have brought new knowledge on this topic especially for human health. Firstly, gut microbiota is a key element for our organism he lives in symbiosis with. Secondly, it interacts favorably with many physiological functions of our organism. Thirdly, at the opposite, it can be an active participant in intestinal pathologies linked to a dysbiosis mainly in chronic inflammatory bowel diseases like Crohn disease or ulcerative colitis but also in obesity, metabolic syndrome, and more prudently in autism and behavioral disorders. In order to keep a good health, it is essential to protect our gut microbiota as soon as our young age and maintain it healthy. Face to a more and more important number of publications for treating certain digestive diseases with fecal microbial transplantation, it needs to be very careful and recommend further studies in order to assess risks and define standardized protocols. Gut microbiota metabolic capacities towards xenobiotics need to be developed, and we must take an interest in the modifications they induce on medicinal molecules. On the other hand, it is essential to study the potent effects of pesticides and other pollutants on microbiota functions. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Decontamination methods for samples preserved in cetylpyridinium chloride and cultured on thin-layer agar.

    PubMed

    Ardizzoni, E; Mulders, W; Sanchez-Padilla, E; Varaine, F; de Jong, B C; Rigouts, L

    2014-08-01

    Long transportation times of samples to culture laboratories can lead to higher contamination rates and significant loss of viability, resulting in lower culture positivity rates. Thin-layer agar (TLA) is a sensitive culture method for the isolation of Mycobacterium tuberculosis that has been optimised with N-acetyl-L-cysteine-sodium hydroxide (NALC-NaOH) decontaminated samples. The combination of the TLA culture method and other decontamination procedures has not been extensively validated. Among 390 smear-positive samples, we compared the culture positivity of samples decontaminated using the Petroff method vs. NALC-NaOH neutralised with phosphate buffer (PBS), applied to samples preserved with cetylpyridinium chloride (CPC) or CPC-free, and then of CPC-preserved samples decontaminated with NALC-NaOH neutralised using Difco neutralising buffer. The sediments were inoculated on TLA, and then on MGIT 960 or Löwenstein-Jensen (LJ) as gold standards. Decontamination with NALC-NaOH yielded higher culture positivity in TLA than in the Petroff method, which was further enhanced by neutralising CPC with the Difco buffer. Surprisingly, culture positivity on LJ also increased after using Difco buffer, suggesting that CPC may not be completely neutralised in egg-based medium. After transportation in CPC, decontamination using NALC-NaOH followed by neutralisation using Difco buffer resulted in the best recovery rates for samples inoculated on TLA and on LJ.

  1. Gut microbiota-bone axis.

    PubMed

    Villa, Christopher R; Ward, Wendy E; Comelli, Elena M

    2017-05-24

    The gut microbiota (GM) is an important regulator of body homeostasis, including intestinal and extra-intestinal effects. This review focuses on the GM-bone axis, which we define as the effect of the gut-associated microbial community or the molecules they synthesize, on bone health. While research in this field is limited, findings from preclinical studies support that gut microbes positively impact bone mineral density and strength parameters. Moreover, administration of beneficial bacteria (probiotics) in preclinical models has demonstrated higher bone mineralization and greater bone strength. The preferential bacterial genus that has shown these beneficial effects in bone is Lactobacillus and thus lactobacilli are among the best candidates for future clinical intervention trials. However, their effectiveness is dependent on stage of development, as early life constitutes an important time for impacting bone health, perhaps via modulation of the GM. In addition, sex-specific difference also impacts the efficacy of the probiotics. Although auspicious, many questions regarding the GM-bone axis require consideration of potential mechanisms; sex-specific efficacy; effective dose of probiotics; and timing and duration of treatment.

  2. Mining the Human Gut Microbiota for Immunomodulatory Organisms.

    PubMed

    Geva-Zatorsky, Naama; Sefik, Esen; Kua, Lindsay; Pasman, Lesley; Tan, Tze Guan; Ortiz-Lopez, Adriana; Yanortsang, Tsering Bakto; Yang, Liang; Jupp, Ray; Mathis, Diane; Benoist, Christophe; Kasper, Dennis L

    2017-02-23

    Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. [Decontamination of dental unit waterlines using disinfectants and filters].

    PubMed

    Monarca, S; Garusi, G; Gigola, P; Spampinato, L; Zani, C; Sapelli, P L

    2002-10-01

    Bacterial contamination of the dental unit water system can become a health problem for patients, particularly if they are immunodepressed. The present study has had the purpose of evaluating the effectiveness of methods of chemical decontamination using different disinfectants (peracetic acid, hydrogen peroxide, silver salts, chloramine T, glutaraldehyde T4) and methods of physical decontamination using synthetic membranes for the filtration of water. A preliminary removal procedure of the biofilm present in the waterline has been followed in a dental unit prepared on purpose for the research; subsequently different 2-week long maintenance procedures were applied using disinfectants injected by a pump and finally the bacterial contamination of the water flowing from the waterline was evaluated. The physical decontamination was performed using 0.22 mm membrane filters, which have been installed also in another dental unit, and the filtered water was analyzed to detect bacterial contamination. The preliminary procedure of biofilm removal succeeded obtaining germ-free water. Among the disinfectants used for the maintenance of the water quality only glutaraldehyde T4 was able to reduce the bacterial contamination under the limit suggested by the ADA. The membrane filter system was not able to purify the water, but when a disinfectant (peracetic acid) was used in the last part of the waterline good results were obtained. At present no decontamination system of dental waterline is available, and glutaraldehyde T4 seems to be the best disinfectant only if integrated with periodic biofilm removal for the maintenance of the water quality.

  4. Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity.

    PubMed

    Stephens, Richard W; Arhire, Lidia; Covasa, Mihai

    2018-05-01

    This review summarizes the current understanding of the relationship between gut microbiota and the host as it pertains to the regulation of energy balance and obesity. The paper begins with a brief description of the gut microbiota environment, distribution, and its unique symbiotic relationship with the host. The way that enviromental factors influence microbiota composition and subsequent impact on the host are then described. Next, the mechanisms linking gut dysbiosis with obesity are discussed, and finally current challenges and limitations in understanding the role of gut microbiota in control of obesity are presented. Gut microbiota has been implicated in regulation of fat storage, as well as gut dysbiosis, thus contributing to the development of obesity, insulin resistance, hyperglycemia and hyperlipidemia. However, the underlying mechanisms of these processes are far from being clear and will require complex preclinical and clinical interdisciplinary studies of bacteria and host cell-to-cell interactions. There is a need for a better understanding of how changes in gut microbiota composition can impact energy balance and thus control weight gain. This may represent a promising avenue in the race to develop nonsurgical treatments for obesity. © 2018 The Obesity Society.

  5. Effects of decontamination work on riverine radiocaesium activity concentrations in Fukushima affected area

    NASA Astrophysics Data System (ADS)

    Taniguchi, K.; Onda, Y.; Yoshimura, K.; Smith, H.; Brake, W.; Kubo, T.; Kuramoto, T.; Sato, T.; Onuma, S.

    2016-12-01

    Radionuclides such as Cs-134 and Cs-137 were widely distributed in the area affected by the accident at Fukushima Daiichi nuclear power plant. The radionuclides were deposited on the surface, absorbed by soil particles, and transported via river systems to Pacific Ocean due to rainfall events. In order to reduce air dose rate surrounding residential area, decontamination works have been conducted between 2013 and 2016 Fiscal Years. In paddy field and farmland contaminated by the fallout, 5 cm of surface soil was stripped, and then clean sands put on the surface. This work could reduce radiocaesium inventory, while the coverage of vegetation was significantly decreased. Therefore, runoff characteristics in the decontaminated area were different before and after the decontamination. Activity concentrations of particulate Cs-137 were measured in Abukuma river system and 8 small catchments located in coastal zone of Fukushima affected area. In all monitoring sites, Cs-137 concentrations have decreased over an entire monitoring period. Kuchibuto river, which is a tributary of Abukuma river showed significant effect of decontamination. In Yamakiya district, in the watershed of the tributary, the decontamination work had conducted from 2013 FY to December 2015. Particulate Cs-137 concentration at two monitoring sites located in the district showed around 30% of decline in the beginning of 2014 FY whereas the decline was not so significant at sites in lower reach of the tributary. Decontaminated paddy field and farmland can be judged as the important source of suspended sediments in the tributary.

  6. The Expensive-Tissue Hypothesis in Vertebrates: Gut Microbiota Effect, a Review.

    PubMed

    Huang, Chun Hua; Yu, Xin; Liao, Wen Bo

    2018-06-17

    The gut microbiota is integral to an organism’s digestive structure and has been shown to play an important role in producing substrates for gluconeogenesis and energy production, vasodilator, and gut motility. Numerous studies have demonstrated that variation in diet types is associated with the abundance and diversity of the gut microbiota, a relationship that plays a significant role in nutrient absorption and affects gut size. The Expensive-Tissue Hypothesis states (ETH) that the metabolic requirement of relatively large brains is offset by a corresponding reduction of the other tissues, such as gut size. However, how the trade-off between gut size and brain size in vertebrates is associated with the gut microbiota through metabolic requirements still remains unexplored. Here, we review research relating to and discuss the potential influence of gut microbiota on the ETH.

  7. Contactless decontamination of hair samples: cannabinoids.

    PubMed

    Restolho, José; Barroso, Mário; Saramago, Benilde; Dias, Mário; Afonso, Carlos A M

    2017-02-01

    Room temperature ionic liquids (ILs) have already been shown to provide efficient extraction media for several systems, and to capture volatile compounds, namely opiates. In this work, a novel, contactless, artefact-free extraction procedure for the removal of Δ 9 -tetrahrydrocannabinol (THC) from the surface of human hair is presented. To prepare in vitro cannabinoids-contaminated hair, samples were flushed with hashish smoke for 7 h. The decontamination experiments were carried at 100 °C for 24 h, according to the procedure previously described. Fifty-three ILs were screened and presented decontamination efficiencies ranging from 0 to 96 %. Although the majority of the ILs presented efficiencies above 90%, the 1-ethanol-3-methyl tetrafluoroborate (96%) was chosen for further process optimization. The Design of Experiments results demonstrated that all studied variables were significant for the process and the obtained optimum conditions were: 100 °C, 13 h and 175 mg of IL. In the work of Perrotin-Brunel et al. (J. Mol. Struct. 2011, 987, 67), it is demonstrated that, at 100 °C, full conversion of tetrahydrocannabinolic acid (THCA) into THC is obtained after 60 min. Since our decontamination takes place over 13 h at 100 °C, full conversion of THCA into THC is expected. Additionally, our method was compared with the method proposed by Cairns et al. (Forensic Sci. Int. 2004, 145, 97), through the analysis of 15 in vitro contaminated hair samples. The results demonstrated that with our method a mean extraction efficiency of 11 % higher was obtained. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Decontamination of Explosives-Contaminated Range Scrap Using a Transportable Hot Gas Decontamination System

    DTIC Science & Technology

    2003-05-01

    I I I I FINAL • Composition B (TNT, RDX and wax), • Tetryl, • Smokeless Powder ( Nitrocellulose /Nitrogylcerin), and • HBX (TNT, RDX, aluminum...operating-cost system. Because of its temporary, on-site configuration, this is an inherently low-cost method to decontaminate range residue. On... methods ) were evaluated and progressively improved during each test run. 022/masterdocument.doc 4-12 I I I I I I I I I I I I I I I I

  9. Altered gut microbiota in Rett syndrome.

    PubMed

    Strati, Francesco; Cavalieri, Duccio; Albanese, Davide; De Felice, Claudio; Donati, Claudio; Hayek, Joussef; Jousson, Olivier; Leoncini, Silvia; Pindo, Massimo; Renzi, Daniela; Rizzetto, Lisa; Stefanini, Irene; Calabrò, Antonio; De Filippo, Carlotta

    2016-07-30

    The human gut microbiota directly affects human health, and its alteration can lead to gastrointestinal abnormalities and inflammation. Rett syndrome (RTT), a progressive neurological disorder mainly caused by mutations in MeCP2 gene, is commonly associated with gastrointestinal dysfunctions and constipation, suggesting a link between RTT's gastrointestinal abnormalities and the gut microbiota. The aim of this study was to evaluate the bacterial and fungal gut microbiota in a cohort of RTT subjects integrating clinical, metabolomics and metagenomics data to understand if changes in the gut microbiota of RTT subjects could be associated with gastrointestinal abnormalities and inflammatory status. Our findings revealed the occurrence of an intestinal sub-inflammatory status in RTT subjects as measured by the elevated values of faecal calprotectin and erythrocyte sedimentation rate. We showed that, overall, RTT subjects harbour bacterial and fungal microbiota altered in terms of relative abundances from those of healthy controls, with a reduced microbial richness and dominated by microbial taxa belonging to Bifidobacterium, several Clostridia (among which Anaerostipes, Clostridium XIVa, Clostridium XIVb) as well as Erysipelotrichaceae, Actinomyces, Lactobacillus, Enterococcus, Eggerthella, Escherichia/Shigella and the fungal genus Candida. We further observed that alterations of the gut microbiota do not depend on the constipation status of RTT subjects and that this dysbiotic microbiota produced altered short chain fatty acids profiles. We demonstrated for the first time that RTT is associated with a dysbiosis of both the bacterial and fungal component of the gut microbiota, suggesting that impairments of MeCP2 functioning favour the establishment of a microbial community adapted to the costive gastrointestinal niche of RTT subjects. The altered production of short chain fatty acids associated with this microbiota might reinforce the constipation status of RTT

  10. Gut as a target for cadmium toxicity.

    PubMed

    Tinkov, Alexey A; Gritsenko, Viktor A; Skalnaya, Margarita G; Cherkasov, Sergey V; Aaseth, Jan; Skalny, Anatoly V

    2018-04-01

    The primary objective of the present study was to review the impact of Cd exposure on gut microbiota and intestinal physiology, as well as to estimate whether gut may be considered as the target for Cd toxicity. The review is based on literature search in available databases. The existing data demonstrate that the impact of Cd on gut physiology is two-sided. First, Cd exposure induces a significant alteration of bacterial populations and their relative abundance in gut (increased Bacteroidetes-to-Firmicutes ratio), accompanied by increased lipopolysaccharide (LPS) production, reflecting changed metabolic activity of the intestinal microbiome. Second, in intestinal wall Cd exposure induces inflammatory response and cell damage including disruption of tight junctions, ultimately leading to increased gut permeability. Together with increased LPS production, impaired barrier function causes endotoxinemia and systemic inflammation. Hypothetically, Cd-induced increase gut permeability may also result in increased bacterial translocation. On the one hand, bacteriolysis may be associated with aggravation of endotoxemia. At the same time, together with Cd-induced impairment of macrophage inflammatory response, increased bacterial translocation may result in increased susceptibility to infections. Such a supposition is generally in agreement with the finding of higher susceptibility of Cd-exposed mice to infections. The changed microbiome metabolic activity and LPS-induced systemic inflammation may have a significant impact on target organs. The efficiency of probiotics in at least partial prevention of the local (intestinal) and systemic toxic effects of cadmium confirms the role of altered gut physiology in Cd toxicity. Therefore, probiotic treatment may be considered as the one of the strategies for prevention of Cd toxicity in parallel with chelation, antioxidant, and anti-inflammatory therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Gut microbiota and the development of obesity.

    PubMed

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  12. Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota.

    PubMed

    Mishra, Alok Kumar; Dubey, Vinay; Ghosh, Asit Ranjan

    2016-01-01

    Obesity is one of the major challenges for public health in 21st century, with 1.9 billion people being considered as overweight and 600 million as obese. There are certain diseases such as type 2 diabetes, hypertension, cardiovascular disease, and several forms of cancer which were found to be associated with obesity. Therefore, understanding the key molecular mechanisms involved in the pathogenesis of obesity could be beneficial for the development of a therapeutic approach. Hormones such as ghrelin, glucagon like peptide 1 (GLP-1) peptide YY (PYY), pancreatic polypeptide (PP), cholecystokinin (CCK) secreted by an endocrine organ gut, have an intense impact on energy balance and maintenance of homeostasis by inducing satiety and meal termination. Glucose and energy homeostasis are also affected by lipid sensing in which different organs respond in different ways. However, there is one common mechanism i.e. formation of esterified lipids (long chain fatty acyl CoAs) and the activation of protein kinase C δ (PKC δ) involved in all these organs. The possible role of gut microbiota and obesity has been addressed by several researchers in recent years, indicating the possible therapeutic approach toward the management of obesity by the introduction of an external living system such as a probiotic. The proposed mechanism behind this activity is attributed by metabolites produced by gut microbial organisms. Thus, this review summarizes the role of various physiological factors such as gut hormone and lipid sensing involved in various tissues and organ and most important by the role of gut microbiota in weight management. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A gut (microbiome) feeling about the brain.

    PubMed

    Sherwin, Eoin; Rea, Kieran; Dinan, Timothy G; Cryan, John F

    2016-03-01

    There is an increasing realization that the microorganisms which reside within our gut form part of a complex multidirectional communication network with the brain known as the microbiome-gut-brain axis. In this review, we focus on recent findings which support a role for this axis in modulating neurodevelopment and behavior. A growing body of research is uncovering that under homeostatic conditions and in response to internal and external stressors, the bacterial commensals of our gut can signal to the brain through a variety of mechanisms to influence processes such neurotransmission, neurogenesis, microglia activation, and modulate behavior. Moreover, the mechanisms underlying the ability of stress to modulate the microbiota and also for microbiota to change the set point for stress sensitivity are being unraveled. Dysregulation of the gut microbiota composition has been identified in a number of psychiatric disorders, including depression. This has led to the concept of bacteria that have a beneficial effect upon behavior and mood (psychobiotics) being proposed for potential therapeutic interventions. Understanding the mechanisms by which the bacterial commensals of our gut are involved in brain function may lead to the development of novel microbiome-based therapies for these mood and behavioral disorders.

  14. Gut Melatonin in Vertebrates: Chronobiology and Physiology.

    PubMed

    Mukherjee, Sourav; Maitra, Saumen Kumar

    2015-01-01

    Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT) is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23 kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s) as its synchronizer. Based on mammalian findings, physiological significance of gut-derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini review is to summarize the existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  15. Inheritance and Establishment of Gut Microbiota in Chickens

    PubMed Central

    Ding, Jinmei; Dai, Ronghua; Yang, Lingyu; He, Chuan; Xu, Ke; Liu, Shuyun; Zhao, Wenjing; Xiao, Lu; Luo, Lingxiao; Zhang, Yan; Meng, He

    2017-01-01

    In mammals, the microbiota can be transmitted from the placenta, uterus, and vagina of the mother to the infant. Unlike mammals, development of the avian embryo is a process isolated from the mother and thus in the avian embryo the gut microbial developmental process remains elusive. To explore the establishment and inheritance of the gut microbiome in the avian embryo, we used the chicken as the model organism to investigate the gut microbial composition in embryos, chicks, and maternal hens. We observed: (1) 28 phyla and 162 genera of microbes in embryos where the dominated genus was Halomonas (79%). (2) 65 genera were core microbiota in all stages with 42% and 62% gut microbial genera of embryo were found in maternal hen and chick, respectively. There was a moderate correlation (0.40) between the embryo and maternal, and 0.52 between the embryo and chick at the family level. (3) Gut microbes that are involved in substance metabolism, infectious disease, and environmental adaptation are enriched in embryos, chicks, and maternal hens, respectively. (4) 94% genera of gut microbial composition were similar among three different chicken breeds which were maintained under similar conditions. Our findings provide evidence to support the hypothesis that part of the microbial colonizers harbored in early embryos were inherited from maternal hens, and the gut microbial abundance and diversity were influenced by environmental factors and host genetic variation during development. PMID:29067020

  16. A multi-parametric assessment of decontamination protocols for the subglacial Lake Ellsworth probe.

    PubMed

    Magiopoulos, I; McQuillan, J S; Burd, C L; Mowlem, M; Tsaloglou, M-N

    2016-04-01

    Direct measurement and sampling of pristine environments, such as subglacial lakes, without introducing contaminating microorganisms and biomolecules from the surface, represents a significant engineering and microbiological challenge. In this study, we compare methods for decontamination of titanium grade 5 surfaces, the material extensively used to construct a custom-made probe for reaching, measuring and sampling subglacial Lake Ellsworth in West Antarctica. Coupons of titanium were artificially contaminated with Pseudomonas fluorescens bacteria and then exposed to a number of decontamination procedures. The most effective sterilants were (i) hydrogen peroxide vapour, and (ii) Biocleanse™, a commercially available, detergent-based biocidal solution. After each decontamination procedure the bacteria were incapable of proliferation, and showed no evidence of metabolic activity based on the generation of adenosine triphosphate (ATP). The use of ultraviolet irradiation or ethyl alcohol solution was comparatively ineffective for sterilisation. Hydrogen peroxide vapour and ultraviolet irradiation, which directly damage nucleic acids, were the most effective methods for removing detectable DNA, which was measured using 16S rRNA gene copy number and fluorescence-based total DNA quantification. Our results have not only been used to tailor the Ellsworth probe decontamination process, but also hold value for subsequent engineering projects, where high standards of decontamination are required. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Firefighter attitudes, norms, beliefs, barriers, and behaviors toward post-fire decontamination processes in an era of increased cancer risk.

    PubMed

    Harrison, Tyler R; Muhamad, Jessica Wendorf; Yang, Fan; Morgan, Susan E; Talavera, Ed; Caban-Martinez, Alberto; Kobetz, Erin

    2018-04-01

    Firefighters are exposed to carcinogens such as volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during fires and from their personal protective equipment (PPE). Recent research has shown that decontamination processes can reduce contamination on both gear and skin. While firefighter cultures that honor dirty gear are changing, little is known about current attitudes and behaviors toward decontamination in the fire service. Four hundred eighty-five firefighters from four departments completed surveys about their attitudes, beliefs, perceived norms, barriers, and behaviors toward post-fire decontamination processes. Overall, firefighters reported positive attitudes, beliefs, and perceived norms about decontamination, but showering after a fire was the only decontamination process that occurred regularly, with field decontamination, use of cleansing wipes, routine gear cleaning, and other behaviors all occurring less frequently. Firefighters reported time and concerns over wet gear as barriers to decontamination.

  18. Gut symbiotic microbes imprint intestinal immune cells with the innate receptor SLAMF4 which contributes to gut immune protection against enteric pathogens.

    PubMed

    Cabinian, Allison; Sinsimer, Daniel; Tang, May; Jang, Youngsoon; Choi, Bongkum; Laouar, Yasmina; Laouar, Amale

    2018-05-01

    Interactions between host immune cells and gut microbiota are crucial for the integrity and function of the intestine. How these interactions regulate immune cell responses in the intestine remains a major gap in the field. We have identified the signalling lymphocyte activation molecule family member 4 (SLAMF4) as an immunomodulator of the intestinal immunity. The aim is to determine how SLAMF4 is acquired in the gut and what its contribution to intestinal immunity is. Expression of SLAMF4 was assessed in mice and humans. The mechanism of induction was studied using GFP tg bone marrow chimaera mice, lymphotoxin α and TNLG8A-deficient mice, as well as gnotobiotic mice. Role in immune protection was revealed using oral infection with Listeria monocytogenes and Cytobacter rodentium . SLAMF4 is a selective marker of intestinal immune cells of mice and humans. SLAMF4 induction occurs directly in the intestinal mucosa without the involvement of the gut-associated lymphoid tissue. Gut bacterial products, particularly those of gut anaerobes, and gut-resident antigen-presenting cell (APC) TNLG8A are key contributors of SLAMF4 induction in the intestine. Importantly, lack of SLAMF4 expression leads the increased susceptibility of mice to infection by oral pathogens culminating in their premature death. SLAMF4 is a marker of intestinal immune cells which contributes to the protection against enteric pathogens and whose expression is dependent on the presence of the gut microbiota. This discovery provides a possible mechanism for answering the long-standing question of how the intertwining of the host and gut microbial biology regulates immune cell responses in the gut. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Maximal sfermion flavour violation in super-GUTs

    DOE PAGES

    Ellis, John; Olive, Keith A.; Velasco-Sevilla, Liliana

    2016-10-20

    We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses m 0 specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses m 1/2, as is expected in no-scale models, the dominant effects of renormalisation between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to m 1/2 and generation independent. In this case, the input scalar masses m 0 may violate flavour maximally, amore » scenario we call MaxSFV, and there is no supersymmetric flavour problem. As a result, we illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity« less

  20. Sneutrino driven GUT inflation in supergravity

    NASA Astrophysics Data System (ADS)

    Gonzalo, Tomás E.; Heurtier, Lucien; Moursy, Ahmad

    2017-06-01

    In this paper, we embed the model of flipped GUT sneutrino inflation — in a flipped SU(5) or SO(10) set up — developed by Ellis et al. in a supergravity framework. The GUT symmetry is broken by a waterfall which could happen at early or late stage of the inflationary period. The full field dynamics is thus studied in detail and these two main inflationary configurations are exposed, whose cosmological predictions are both in agreement with recent astrophysical measurements. The model has an interesting feature where the inflaton has natural decay channels to the MSSM particles allowed by the GUT gauge symmetry. Hence it can account for the reheating after the inflationary epoch.

  1. CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes.

    PubMed

    Wiese, Maria; Khakimov, Bekzod; Nielsen, Sebastian; Sørensen, Helena; van den Berg, Frans; Nielsen, Dennis Sandris

    2018-01-01

    Driven by the growing recognition of the influence of the gut microbiota (GM) on human health and disease, there is a rapidly increasing interest in understanding how dietary components, pharmaceuticals and pre- and probiotics influence GM. In vitro colon models represent an attractive tool for this purpose. With the dual objective of facilitating the investigation of rare and expensive compounds, as well as an increased throughput, we have developed a prototype in vitro parallel gut microbial fermentation screening tool with a working volume of only 5 ml consisting of five parallel reactor units that can be expanded with multiples of five to increase throughput. This allows e.g., the investigation of interpersonal variations in gut microbial dynamics and the acquisition of larger data sets with enhanced statistical inference. The functionality of the in vitro colon model, Copenhagen MiniGut (CoMiniGut) was first demonstrated in experiments with two common prebiotics using the oligosaccharide inulin and the disaccharide lactulose at 1% (w/v). We then investigated fermentation of the scarce and expensive human milk oligosaccharides (HMOs) 3-Fucosyllactose, 3-Sialyllactose, 6-Sialyllactose and the more common Fructooligosaccharide in fermentations with infant gut microbial communities. Investigations of microbial community composition dynamics in the CoMiniGut reactors by MiSeq-based 16S rRNA gene amplicon high throughput sequencing showed excellent experimental reproducibility and allowed us to extract significant differences in gut microbial composition after 24 h of fermentation for all investigated substrates and fecal donors. Furthermore, short chain fatty acids (SCFAs) were quantified for all treatments and donors. Fermentations with inulin and lactulose showed that inulin leads to a microbiota dominated by obligate anaerobes, with high relative abundance of Bacteroidetes, while the more easily fermented lactulose leads to higher relative abundance of

  2. Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease.

    PubMed

    Sun, Meng-Fei; Shen, Yan-Qin

    2018-04-26

    Gut microbial dysbiosis and alteration of microbial metabolites in Parkinson's disease (PD) have been increasingly reported. Dysbiosis in the composition and abundance of gut microbiota can affect both the enteric nervous system and the central nervous system (CNS), indicating the existence of a microbiota-gut-brain axis and thereby causing CNS diseases. Disturbance of the microbiota-gut-brain axis has been linked to specific microbial products that are related to gut inflammation and neuroinflammation. Future directions should therefore focus on the exploration of specific gut microbes or microbial metabolites that contribute to the development of PD. Microbiota-targeted interventions, such as antibiotics, probiotics and fecal microbiota transplantation, have been shown to favorably affect host health. In this review, recent findings regarding alterations and the role of gut microbiota and microbial metabolites in PD are summarized, and potential molecular mechanisms and microbiota-targeted interventions in PD are discussed. Copyright © 2018. Published by Elsevier B.V.

  3. Impact of gut microbiota on the fly's germ line.

    PubMed

    Elgart, Michael; Stern, Shay; Salton, Orit; Gnainsky, Yulia; Heifetz, Yael; Soen, Yoav

    2016-04-15

    Unlike vertically transmitted endosymbionts, which have broad effects on their host's germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation.

  4. [Decontamination of organophosphorus compounds: Towards new alternatives].

    PubMed

    Poirier, L; Jacquet, P; Elias, M; Daudé, D; Chabrière, E

    2017-05-01

    Organophosphorus coumpounds (OP) are toxic chemicals mainly used for agricultural purpose such as insecticides and were also developed and used as warfare nerve agents. OP are inhibitors of acetylcholinesterase, a key enzyme involved in the regulation of the central nervous system. Chemical, physical and biological approaches have been considered to decontaminate OP. This review summarizes the current and emerging strategies that are investigated to tackle this issue with a special emphasis on enzymatic remediation methods. During the last decade, many studies have been dedicated to the development of biocatalysts for OP removal. Among these, recent reports have pointed out the promising enzyme SsoPox isolated from the archaea Sulfolobus solfataricus. Considering both its intrinsic stability and activity, this hyperthermostable enzyme is highly appealing for the decontamination of OP. Copyright © 2017 Académie Nationale de Pharmacie. All rights reserved.

  5. The role of diet on gut microbiota composition.

    PubMed

    Bibbò, S; Ianiro, G; Giorgio, V; Scaldaferri, F; Masucci, L; Gasbarrini, A; Cammarota, G

    2016-11-01

    Gut microbiota is characterized by an inter-individual variability due to genetic and environmental factors. Among the environmental ones, dietary habits play a key role in the modulation of gut microbiota composition. There are main differences between the intestinal microbiota of subjects fed with prevalent Western diet and that of subjects with a diet rich in fibers. Specific changes in the composition of gut microbiota have been demonstrated among subjects according to a different dietary intake. A particular diet may promote the growth of specific bacterial strains, driving hosts to a consequent alteration of fermentative metabolism, with a direct effect on intestinal pH, which can be responsible for the development of a pathogenic flora. Moreover, a high-fat diet can promote the development of a pro-inflammatory gut microbiota, with a consequent increase of intestinal permeability and, consequently, of circulating levels of lipopolysaccharides. In this review, we discuss the direct role of the diet in the composition of gut microbiota and about the possible clinical consequences.

  6. Gut microbiota and obesity: lessons from the microbiome.

    PubMed

    Cani, Patrice D

    2013-07-01

    The distal gut harbours microbial communities that outnumber our own eukaryotic cells. The contribution of the gut microbiota to the development of several diseases (e.g. obesity, type 2 diabetes, steatosis, cardiovascular diseases and inflammatory bowel diseases) is becoming clear, although the causality remains to be proven in humans. Global changes in the gut microbiota have been observed by a number of culture-dependent and culture-independent methods, and while the latter have mostly included 16S ribosomal RNA gene analyses, more recent studies have utilized DNA sequencing of whole-microbial communities. Altogether, these high-throughput methods have facilitated the identification of novel candidate bacteria and, most importantly, metabolic functions that might be associated with obesity and type 2 diabetes. This review discusses the association between specific taxa and obesity, together with the techniques that are used to characterize the gut microbiota in the context of obesity and type 2 diabetes. Recent results are discussed in the framework of the interactions between gut microbiota and host metabolism.

  7. Gene expression profiling gut microbiota in different races of humans

    PubMed Central

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-01-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome. PMID:26975620

  8. Gene expression profiling gut microbiota in different races of humans

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  9. Diets Alter the Gut Microbiome of Crocodile Lizards

    PubMed Central

    Jiang, Hai-Ying; Ma, Jing-E; Li, Juan; Zhang, Xiu-Juan; Li, Lin-Miao; He, Nan; Liu, Hai-Yang; Luo, Shu-Yi; Wu, Zheng-Jun; Han, Ri-Chou; Chen, Jin-Ping

    2017-01-01

    The crocodile lizard is a critically endangered reptile, and serious diseases have been found in this species in recent years, especially in captive lizards. Whether these diseases are caused by changes in the gut microbiota and the effect of captivity on disease remains to be determined. Here, we examined the relationship between the gut microbiota and diet and disease by comparing the fecal microbiota of wild lizards with those of sick and healthy lizards in captivity. The gut microbiota in wild crocodile lizards was consistently dominated by Proteobacteria (∼56.4%) and Bacteroidetes (∼19.1%). However, the abundance of Firmicutes (∼2.6%) in the intestine of the wild crocodile lizards was distinctly lower than that in other vertebrates. In addition, the wild samples from Guangdong Luokeng Shinisaurus crocodilurus National Nature Reserve also had a high abundance of Deinococcus–Thermus while the wild samples from Guangxi Daguishan Crocodile Lizard National Nature Reserve had a high abundance of Tenericutes. The gut microbial community in loach-fed crocodile lizards was significantly different from the gut microbial community in the earthworm-fed and wild lizards. In addition, significant differences in specific bacteria were detected among groups. Notably, in the gut microbiota, the captive lizards fed earthworms resulted in enrichment of Fusobacterium, and the captive lizards fed loaches had higher abundances of Elizabethkingia, Halomonas, Morganella, and Salmonella, all of which are pathogens or opportunistic pathogens in human or other animals. However, there is no sufficient evidence that the gut microbiota contributes to either disease A or disease B. These results provide a reference for the conservation of endangered crocodile lizards and the first insight into the relationship between disease and the gut microbiota in lizards. PMID:29118742

  10. High Molecular Weight Barley β-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk

    PubMed Central

    Wang, Yanan; Ames, Nancy P.; Tun, Hein M.; Tosh, Susan M.; Jones, Peter J.; Khafipour, Ehsan

    2016-01-01

    The physiological cholesterol-lowering benefits of β-glucan have been well documented, however, whether modulation of gut microbiota by β-glucan is associated with these physiological effects remains unknown. The objectives of this study were therefore to determine the impact of β-glucan on the composition of gut microbiota in mildly hypercholesterolemic individuals and to identify if the altered microbiota are associated with bioactivity of β-glucan in improving risk factors of cardiovascular disease (CVD). Using a randomized, controlled crossover study design, individuals received for 5-week either a treatment breakfast containing 3 g high molecular weight (HMW), 3 g low molecular weight (LMW), 5 g LMW barley β-glucan, or wheat and rice. The American Heart Association (AHA) diet served as the background diet for all treatment groups. Phases were separated by 4-week washout periods. Fecal samples were collected at the end of each intervention phase and subjected to Illumina sequencing of 16S rRNA genes. Results revealed that at the phylum level, supplementation of 3 g/d HMW β-glucan increased Bacteroidetes and decreased Firmicutes abundances compared to control (P < 0.001). At the genus level, consumption of 3 g/d HMW β-glucan increased Bacteroides (P < 0.003), tended to increase Prevotella (P < 0.1) but decreased Dorea (P < 0.1), whereas diets containing 5 g LMW β-glucan and 3 g LMW β-glucan failed to alter the gut microbiota composition. Bacteroides, Prevotella, and Dorea composition correlated (P < 0.05) with shifts of CVD risk factors, including body mass index, waist circumference, blood pressure, as well as triglyceride levels. Our data suggest that consumption of HMW β-glucan favorably alters the composition of gut microbiota and this altered microbiota profile associates with a reduction of CVD risk markers. Together, our study suggests that β-glucan induced shifts in gut microbiota in a MW-dependent manner and that might be one of the

  11. Health care facility-based decontamination of victims exposed to chemical, biological, and radiological materials.

    PubMed

    Koenig, Kristi L; Boatright, Connie J; Hancock, John A; Denny, Frank J; Teeter, David S; Kahn, Christopher A; Schultz, Carl H

    2008-01-01

    Since the US terrorist attacks of September 11, 2001, concern regarding use of chemical, biological, or radiological weapons is heightened. Many victims of such an attack would present directly to health care facilities without first undergoing field decontamination. This article reviews basic tenets and recommendations for health care facility-based decontamination, including regulatory concerns, types of contaminants, comprehensive decontamination procedures (including crowd control, triage, removal of contaminated garments, cleaning of body contaminants, and management of contaminated materials and equipment), and a discussion of methods to achieve preparedness.

  12. Mass Casualty Decontamination in a Chemical or Radiological/ Nuclear Incident: Further Guiding Principles.

    PubMed

    Carter, Holly; Amlôt, Richard; Williams, Richard; Rubin, G James; Drury, John

    2016-09-15

    This short report presents a response to an article written by Cibulsky et al. (2016). The paper by Cibulsky et al. presents a useful and timely overview of the evidence surrounding the technical and operational aspects of mass casualty decontamination. It identifies three priority targets for future research, the third of which is how casualties' needs can be met in ways that best support compliance with and effectiveness of casualty decontamination. While further investigation into behavioural, communication and privacy issues during mass decontamination is warranted, there is now a substantial body of research in this area which is not considered in detail in the succinct summary provided by Cibulsky et al. (2016). In this short report, we summarise the available evidence around likely public behaviour during mass decontamination, effective communication strategies, and potential issues resulting from a lack of privacy. Our intention is to help further focus the research needs in this area and highlight topics on which more research is needed.

  13. Mass Casualty Decontamination in a Chemical or Radiological/ Nuclear Incident: Further Guiding Principles

    PubMed Central

    Carter, Holly; Amlôt, Richard; Williams, Richard; Rubin, G. James; Drury, John

    2016-01-01

    This short report presents a response to an article written by Cibulsky et al. (2016). The paper by Cibulsky et al. presents a useful and timely overview of the evidence surrounding the technical and operational aspects of mass casualty decontamination. It identifies three priority targets for future research, the third of which is how casualties' needs can be met in ways that best support compliance with and effectiveness of casualty decontamination. While further investigation into behavioural, communication and privacy issues during mass decontamination is warranted, there is now a substantial body of research in this area which is not considered in detail in the succinct summary provided by Cibulsky et al. (2016). In this short report, we summarise the available evidence around likely public behaviour during mass decontamination, effective communication strategies, and potential issues resulting from a lack of privacy. Our intention is to help further focus the research needs in this area and highlight topics on which more research is needed. PMID:27790381

  14. Standard methods for research on Apis mellifera gut symbionts

    USDA-ARS?s Scientific Manuscript database

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  15. Standard methods for research on apis mellifera gut symbionts

    USDA-ARS?s Scientific Manuscript database

    Gut microbes can play an important role in digestion, disease resistance, and the general health of animals, but little is known about the biology of gut symbionts in Apis mellifera. This paper is part of a series on honey bee research methods, providing protocols for studying gut symbionts. We desc...

  16. The gut microbiota: A treasure for human health.

    PubMed

    Li, Daotong; Wang, Pan; Wang, Pengpu; Hu, Xiaosong; Chen, Fang

    2016-11-15

    The interplay between the host and host-associated gut microbiota is an area of increasing interest during the recent decade. From young infants to elderly people, from primitive tribes to modern societies, accumulating evidence has suggested the association of critical physiological roles of gut microbiota in the pathogenesis of a variety of human metabolic, immunological and neurological diseases. Importantly, it appears that the relationship between the gut microbiota and disease is bidirectional, instead of causal or consequential. Personalized nutritional and therapeutic strategies targeting the gut microbiota such as prebiotics, probiotics, drugs and fecal microbiota transplantation may create a new era in the human health. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Gut barrier in health and disease: focus on childhood.

    PubMed

    Viggiano, D; Ianiro, G; Vanella, G; Bibbò, S; Bruno, G; Simeone, G; Mele, G

    2015-01-01

    The gut barrier is a functional unit, organized as a multi-layer system, made up of two main components: a physical barrier surface, which prevents bacterial adhesion and regulates paracellular diffusion to the host tissues, and a deep functional barrier, that is able to discriminate between pathogens and commensal microorganisms, organizing the immune tolerance and the immune response to pathogens. Other mechanisms, such as gastric juice and pancreatic enzymes (which both have antibacterial properties) participate in the luminal integrity of the gut barrier. From the outer layer to the inner layer, the physical barrier is composed of gut microbiota (that competes with pathogens to gain space and energy resources, processes the molecules necessary to mucosal integrity and modulates the immunological activity of deep barrier), mucus (which separates the intraluminal content from more internal layers and contains antimicrobial products and secretory IgA), epithelial cells (which form a physical and immunological barrier) and the innate and adaptive immune cells forming the gut-associated lymphoid tissue (which is responsible for antigen sampling and immune responses). Disruption of the gut barrier has been associated with many gastrointestinal diseases, but also with extra-intestinal pathological condition, such as type 1 diabetes mellitus, allergic diseases or autism spectrum disorders. The maintenance of a healthy intestinal barrier is therefore of paramount importance in children, for both health and economic reasons. Many drugs or compounds used in the treatment of gastrointestinal disorders act through the restoration of a normal intestinal permeability. Several studies have highlighted the role of probiotics in the modulation and reduction of intestinal permeability, considering the strong influence of gut microbiota in the modulation of the function and structure of gut barrier, but also on the immune response of the host. To date, available weapons for the

  18. Gut Microbiome and Obesity: A Plausible Explanation for Obesity.

    PubMed

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A

    2015-06-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host's adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity.

  19. Gut Microbiome and Obesity: A Plausible Explanation for Obesity

    PubMed Central

    Sanmiguel, Claudia; Gupta, Arpana; Mayer, Emeran A.

    2015-01-01

    Obesity is a multifactorial disorder that results in excessive accumulation of adipose tissue. Although obesity is caused by alterations in the energy consumption/expenditure balance, the factors promoting this disequilibrium are incompletely understood. The rapid development of new technologies and analysis strategies to decode the gut microbiota composition and metabolic pathways has opened a door into the complexity of the guest-host interactions between the gut microbiota and its human host in health and in disease. Pivotal studies have demonstrated that manipulation of the gut microbiota and its metabolic pathways can affect host’s adiposity and metabolism. These observations have paved the way for further assessment of the mechanisms underlying these changes. In this review we summarize the current evidence for possible mechanisms underlying gut microbiota induced obesity. The review addresses some well-known effects of the gut microbiota on energy harvesting and changes in metabolic machinery, on metabolic and immune interactions and on possible changes in brain function and behavior. Although there is limited understanding on the symbiotic relationship between us and our gut microbiome, and how disturbances of this relationship affects our health, there is compelling evidence for an important role of the gut microbiota in the development and perpetuation of obesity. PMID:26029487

  20. Human gut microbiota and healthy aging: Recent developments and future prospective.

    PubMed

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  1. No Gut No Gain! Enteral Bile Acid Treatment Preserves Gut Growth but Not Parenteral Nutrition-Associated Liver Injury in a Novel Extensive Short Bowel Animal Model.

    PubMed

    Villalona, Gustavo; Price, Amber; Blomenkamp, Keith; Manithody, Chandrashekhara; Saxena, Saurabh; Ratchford, Thomas; Westrich, Matthew; Kakarla, Vindhya; Pochampally, Shruthika; Phillips, William; Heafner, Nicole; Korremla, Niraja; Greenspon, Jose; Guzman, Miguel A; Kumar Jain, Ajay

    2018-04-27

    Parenteral nutrition (PN) provides nutrition intravenously; however, this life-saving therapy is associated with significant liver disease. Recent evidence indicates improvement in PN-associated injury in animals with intact gut treated with enteral bile acid (BA), chenodeoxycholic acid (CDCA), and a gut farnesoid X receptor (FXR) agonist, which drives the gut-liver cross talk (GLCT). We hypothesized that similar improvement could be translated in animals with short bowel syndrome (SBS). Using piglets, we developed a novel 90% gut-resected SBS model. Fifteen SBS piglets receiving PN were given CDCA or control (vehicle control) for 2 weeks. Tissue and serum were analyzed posteuthanasia. CDCA increased gut FXR (quantitative polymerase chain reaction; P = .008), but not downstream FXR targets. No difference in gut fibroblast growth factor 19 (FGF19; P = .28) or hepatic FXR (P = .75), FGF19 (P = .86), FGFR4 (P = .53), or Cholesterol 7 α-hydroxylase (P = .61) was noted. PN resulted in cholestasis; however, no improvement was noted with CDCA. Hepatic fibrosis or immunostaining for Ki67, CD3, or Cytokeratin 7 was not different with CDCA. PN resulted in gut atrophy. CDCA preserved (P = .04 vs control) gut mass and villous/crypt ratio. The median (interquartile range) for gut mass for control was 0.28 (0.17-0.34) and for CDCA was 0.33 (0.26-0.46). We note that, unlike in animals with intact gut, in an SBS animal model there is inadequate CDCA-induced activation of gut-derived signaling to cause liver improvement. Thus, it appears that activation of GLCT is critically dependent on the presence of adequate gut. This is clinically relevant because it suggests that BA therapy may not be as effective for patients with SBS. © 2018 American Society for Parenteral and Enteral Nutrition.

  2. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft)more » contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return

  3. Autonomous bio-chemical decontaminator (ABCD) against weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Hyacinthe, Berg P.

    2006-05-01

    The proliferation of weapons of mass destruction (WMD) and the use of such elements pose an eminent asymmetric threat with disastrous consequences to the national security of any nation. In particular, the use of biochemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered as a very peculiar threat. Accordingly, taking a quarantine-before-inhalation approach to biochemical warfare, the author introduces the notion of autonomous biochemical decontamination against WMD. In the unfortunate event of a biochemical attack, the apparatus proposed herein is intended to automatically detect, identify, and more importantly neutralize a biochemical threat. Along with warnings concerning a cyber-WMD nexus, various sections cover discussions on human senses and computer sensors, corroborating evidence related to detection and neutralization of chemical toxins, and cyber-assisted olfaction in stand alone, peer-to-peer, and network settings. In essence, the apparatus can be used in aviation and mass transit security to initiate mass decontamination by dispersing a decontaminant aerosol or to protect the public water supply against a potential bioterrorist attack. Future effort may involve a system-on-chip (SoC) embodiment of this apparatus that allows a safer environment for the emerging phenomenon of cyber-assisted olfaction and morph cell phones into ubiquitous sensors/decontaminators. Although this paper covers mechanisms and protocols to avail a neutralizing substance, further research will need to explore the substance's various pharmacological profiles and potential side effects.

  4. Bioinspired Surface Treatments for Improved Decontamination: Slippery Omniphobic Covalently Attached Liquid (SOCAL)

    DTIC Science & Technology

    2017-12-13

    Omniphobic Covalently Attached Liquid (SOCAL) December 13, 2017 Approved for public release; distribution is unlimited. Brandy J. White Brian J. Melde...Bioinspired Surface Treatments for Improved Decontamination: Slippery Omniphobic Covalently Attached Liquid (SOCAL) Brandy J. White, Brian J. Melde, Anthony...decontamination capabilities for painted surfaces. This report details results for evaluation of a slippery omniphobic covalently attached liquid (SOCAL) and

  5. The food-gut human axis: the effects of diet on gut microbiota and metabolome.

    PubMed

    De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco

    2017-04-27

    Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Allometry and Ecology of the Bilaterian Gut Microbiome

    PubMed Central

    Sherrill-Mix, Scott; McCormick, Kevin; Lauder, Abigail; Bailey, Aubrey; Zimmerman, Laurie; Li, Yingying; Django, Jean-Bosco N.; Bertolani, Paco; Colin, Christelle; Hart, John A.; Hart, Terese B.; Georgiev, Alexander V.; Sanz, Crickette M.; Morgan, David B.; Atencia, Rebeca; Cox, Debby; Muller, Martin N.; Sommer, Volker; Piel, Alexander K.; Stewart, Fiona A.; Speede, Sheri; Roman, Joe; Wu, Gary; Taylor, Josh; Bohm, Rudolf; Rose, Heather M.; Carlson, John; Mjungu, Deus; Schmidt, Paul; Gaughan, Celeste; Bushman, Joyslin I.; Schmidt, Ella; Bittinger, Kyle; Collman, Ronald G.; Hahn, Beatrice H.

    2018-01-01

    ABSTRACT Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals (Bilateria) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction. PMID:29588401

  7. Gut hormone release after intestinal resection.

    PubMed Central

    Besterman, H S; Adrian, T E; Mallinson, C N; Christofides, N D; Sarson, D L; Pera, A; Lombardo, L; Modigliani, R; Bloom, S R

    1982-01-01

    To investigate the possible role of gut and pancreatic hormones in the adaptive responses to gut resection, plasma concentrations of the circulating hormones were measured, in response to a test breakfast, in patients with either small or large intestinal resection and in healthy control subjects. In 18 patients with partial ileal resection a significant threefold rise was found in basal and postprandial levels of pancreatic polypeptide, a fourfold increase in motilin, and more than a twofold increase in gastrin and enteroglucagon levels compared with healthy controls. In contrast, nine patients with colonic resection had a threefold rise in levels of pancreatic polypeptide only. One or more of these peptides may have a role in stimulating the adaptive changes found after gut resection. PMID:7117905

  8. Emerging Technologies for Gut Microbiome Research

    PubMed Central

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  9. Method and apparatus for the gas phase decontamination of chemical and biological agents

    DOEpatents

    O'Neill, Hugh J.; Brubaker, Kenneth L.

    2003-10-07

    An apparatus and method for decontaminating chemical and biological agents using the reactive properties of both the single atomic oxygen and the hydroxyl radical for the decontamination of chemical and biological agents. The apparatus is self contained and portable and allows for the application of gas reactants directly at the required decontamination point. The system provides for the use of ultraviolet light of a specific spectral range to photolytically break down ozone into molecular oxygen and hydroxyl radicals where some of the molecular oxygen is in the first excited state. The excited molecular oxygen will combine with water vapor to produce two hydroxyl radicals.

  10. Gut Microbes and the Brain: Paradigm Shift in Neuroscience

    PubMed Central

    Knight, Rob; Mazmanian, Sarkis K.; Cryan, John F.; Tillisch, Kirsten

    2014-01-01

    The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. PMID:25392516

  11. Gut microbiota may predict host divergence time during Glires evolution.

    PubMed

    Li, Huan; Qu, Jiapeng; Li, Tongtong; Yao, Minjie; Li, Jiaying; Li, Xiangzhen

    2017-03-01

    The gut microbial communities of animals play key roles in host evolution. However, the possible relationship between gut microbiota and host divergence time remains unknown. Here, we investigated the gut microbiota of eight Glires species (four lagomorph species and four rodent species) distributed throughout the Qinghai-Tibet plateau and Inner Mongolia grassland. Lagomorphs and rodents had distinct gut microbial compositions. Three out of four lagomorph species were dominated by Firmicutes, while rodents were dominated by Bacteroidetes in general. The alpha diversity values (Shannon diversity and evenness) exhibited significant differences between any two species within the lagomorphs, whereas there were no significant differences among rodents. The structure of the gut microbiota showed significant differences between lagomorphs and rodents. In addition, we calculated host phylogeny and divergence times, and used a phylogenetic approach to reconstruct how the animal gut microbiota has diverged from their ancestral species. Some core bacterial genera (e.g. Prevotella and Clostridium) shared by more than nine-tenths of all the Glires individuals associated with plant polysaccharide degradation showed marked changes within lagomorphs. Differences in Glires gut microbiota (based on weighted UniFrac and Bray-Curtis dissimilarity metrics) were positively correlated with host divergence time. Our results thus suggest the gut microbial composition is associated with host phylogeny, and further suggest that dissimilarity of animal gut microbiota may predict host divergence time. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Comparison of Gut Microbiota between Sasang Constitutions

    PubMed Central

    Bae, Hyo Sang; Lim, Chi-yeon; Kim, Mi Jeong; Seo, Jae-gu; Kim, Jong Yeol; Kim, Jai-eun

    2013-01-01

    The Sasang constitutional medicine has long been applied to diagnose and treat patients with various diseases. Studies have been conducted for establishment of scientific evidence supporting Sasang Constitutional (SC) diagnosis. Recent human microbiome studies have demonstrated individual variations of gut microbiota which can be dependent on lifestyle and health conditions. We hypothesized that gut microbial similarities and discrepancies may exist across SC types. We compared the difference of gut microbiota among three constitutions (So-Yang, So-Eum, and Tae-Eum), along with the investigation of anthropometric and biochemical parameters. Firmicutes and Bacteroidetes were predominant phyla in all SC types. The median plot analysis suggested that Firmicutes and Bacteroidetes appeared more abundant in SE and TE, respectively, in the male subjects of 20–29 years old. At the genus level, Bifidobacterium and Bacteroides manifested the difference between SE and TE types. For anthropometry, body weight, body mass index, and waist circumference of the TE type were significantly higher than those of the other types. Overall, findings indicated a possible link between SC types and gut microbiota within a narrow age range. Further investigations are deemed necessary to elucidate the influences of age, gender, and other factors in the context of SC types and gut microbiota. PMID:24454486

  13. Advances and perspectives in in vitro human gut fermentation modeling.

    PubMed

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Characterization of the human gut microbiome during travelers' diarrhea

    PubMed Central

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel. PMID:25695334

  15. A retrospective series of gut aspergillosis in haematology patients.

    PubMed

    Kazan, E; Maertens, J; Herbrecht, R; Weisser, M; Gachot, B; Vekhoff, A; Caillot, D; Raffoux, E; Fagot, T; Reman, O; Isnard, F; Thiebaut, A; Bretagne, S; Cordonnier, C

    2011-04-01

    Gut invasive aspergillosis is an extremely rare infection in immunocompromised patients. The goal of this retrospective multicentre study is to report on cases of gut aspergillosis in haematology patients, including clinical presentation, risk factors, and outcome. Twenty-one patients from nine centres were identified. Eight had isolated gut aspergillosis, with no evidence of other infected sites, and 13 had disseminated aspergillosis. Thirteen patients had acute leukaemia. Nine were allogeneic stem cell transplant recipients. Clinical symptoms and imaging were poorly specific. The galactomannan antigenaemia test result was positive in 16/25 (64%) patients, including in four of the eight cases of isolated gut aspergillosis. Five of 21 patients had a dietary regimen rich in spices, suggesting that, in these cases, food could have been the source of gut colonization, and then of a primary gut Aspergillus lesion. The diagnosis was made post-mortem in six patients. The mortality rate in the remaining patients at 12 weeks was 7/15 (47%). Gut aspergillosis is probably misdiagnosed and underestimated in haematology patients, owing to the poor specificity of symptoms and imaging. Patients with a persistently positive galactomannan antigenaemia finding that is unexplained by respiratory lesions should be suspected of having gut aspergillosis in the presence of abdominal symptoms, and be quickly investigated. In the absence of severe abdominal complications leading to surgery and resection of the lesions, the optimal treatment is not yet defined. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.

  16. Characterization of the human gut microbiome during travelers' diarrhea.

    PubMed

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel.

  17. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study.

    PubMed

    Azad, M B; Konya, T; Persaud, R R; Guttman, D S; Chari, R S; Field, C J; Sears, M R; Mandhane, P J; Turvey, S E; Subbarao, P; Becker, A B; Scott, J A; Kozyrskyj, A L

    2016-05-01

    Dysbiosis of the infant gut microbiota may have long-term health consequences. This study aimed to determine the impact of maternal intrapartum antibiotic prophylaxis (IAP) on infant gut microbiota, and to explore whether breastfeeding modifies these effects. Prospective pregnancy cohort of Canadian infants born in 2010-2012: the Canadian Healthy Infant Longitudinal Development (CHILD) Study. General community. Representative sub-sample of 198 healthy term infants from the CHILD Study. Maternal IAP exposures and birth method were documented from hospital records and breastfeeding was reported by mothers. Infant gut microbiota was characterised by Illumina 16S rRNA sequencing of faecal samples at 3 and 12 months. Infant gut microbiota profiles. In this cohort, 21% of mothers received IAP for Group B Streptococcus prophylaxis or pre-labour rupture of membranes; another 23% received IAP for elective or emergency caesarean section (CS). Infant gut microbiota community structures at 3 months differed significantly with all IAP exposures, and differences persisted to 12 months for infants delivered by emergency CS. Taxon-specific composition also differed, with the genera Bacteroides and Parabacteroides under-represented, and Enterococcus and Clostridium over-represented at 3 months following maternal IAP. Microbiota differences were especially evident following IAP with emergency CS, with some changes (increased Clostridiales and decreased Bacteroidaceae) persisting to 12 months, particularly among non-breastfed infants. Intrapartum antibiotics in caesarean and vaginal delivery are associated with infant gut microbiota dysbiosis, and breastfeeding modifies some of these effects. Further research is warranted to explore the health consequences of these associations. Maternal #antibiotics during childbirth alter the infant gut #microbiome. © 2015 Royal College of Obstetricians and Gynaecologists.

  18. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunkermore » currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.« less

  19. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currentlymore » stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.« less

  20. Microbiological decontamination of natural honey by irradiation

    NASA Astrophysics Data System (ADS)

    Migdał, W.; Owczarczyk, H. B.; K ȩdzia, B.; Hołderna-K ȩdzia, E.; Madajczyk, D.

    2000-03-01

    Degree of microbiological decontamination, organoleptic and physico-chemical properties of natural honeys were investigated after radiation treatment. Seven kinds of honeys were irradiated with the beams of 10 MeV electrons from a 10 kW linear accelerator "Elektronika 10-10" at the dose 10 kGy. It was shown, that after irradiation, the total count of aerobic and anaerobic bacteria and moulds decrease by 99%. The antibiotic value in investigated honeys increased in turn from 1.67 to 2.67 after irradiation. Such factors and parameters of investigated honeys as their consistency, content of water and saccharose, acidity, the diastase and 5-HMF values were not changed significantly after irradiation. Decontamination by irradiation is a process which allows us to obtain high microbiological purity of honeys. It is especially needed, when honeys are used in surgical treatment of injuries and in nutrition of babies with food deficiency.

  1. Human genetic variation and the gut microbiome in disease.

    PubMed

    Hall, Andrew Brantley; Tolonen, Andrew C; Xavier, Ramnik J

    2017-11-01

    Taxonomic and functional changes to the composition of the gut microbiome have been implicated in multiple human diseases. Recent microbiome genome-wide association studies reveal that variants in many human genes involved in immunity and gut architecture are associated with an altered composition of the gut microbiome. Although many factors can affect the microbial organisms residing in the gut, a number of recent findings support the hypothesis that certain host genetic variants predispose an individual towards microbiome dysbiosis. This condition, in which the normal microbiome population structure is disturbed, is a key feature in disorders of metabolism and immunity.

  2. The gut microbiota regulates bone mass in mice

    PubMed Central

    Sjögren, Klara; Engdahl, Cecilia; Henning, Petra; Lerner, Ulf H; Tremaroli, Valentina; Lagerquist, Marie K; Bäckhed, Fredrik; Ohlsson, Claes

    2012-01-01

    The gut microbiota modulates host metabolism and development of immune status. Here we show that the gut microbiota is also a major regulator of bone mass in mice. Germ-free (GF) mice exhibit increased bone mass associated with reduced number of osteoclasts per bone surface compared with conventionally raised (CONV-R) mice. Colonization of GF mice with a normal gut microbiota normalizes bone mass. Furthermore, GF mice have decreased frequency of CD4+ T cells and CD11b+/GR 1 osteoclast precursor cells in bone marrow, which could be normalized by colonization. GF mice exhibited reduced expression of inflammatory cytokines in bone and bone marrow compared with CONV-R mice. In summary, the gut microbiota regulates bone mass in mice, and we provide evidence for a mechanism involving altered immune status in bone and thereby affected osteoclast-mediated bone resorption. Further studies are required to evaluate the gut microbiota as a novel therapeutic target for osteoporosis. © 2012 American Society for Bone and Mineral Research. PMID:22407806

  3. Probiotics drive gut microbiome triggering emotional brain signatures.

    PubMed

    Bagga, Deepika; Reichert, Johanna Louise; Koschutnig, Karl; Aigner, Christoph Stefan; Holzer, Peter; Koskinen, Kaisa; Eichinger, Christine Moissl; Schöpf, Veronika

    2018-05-03

    Experimental manipulation of the gut microbiome was found to modify emotional and cognitive behavior, neurotransmitter expression and brain function in rodents, but corresponding human data remain scarce. The present double-blind, placebo-controlled randomised study aimed at investigating the effects of 4 weeks' probiotic administration on behavior, brain function and gut microbial composition in healthy volunteers. Forty-five healthy participants divided equally into three groups (probiotic, placebo and no intervention) underwent functional MRI (emotional decision-making and emotional recognition memory tasks). In addition, stool samples were collected to investigate the gut microbial composition. Probiotic administration for 4 weeks was associated with changes in brain activation patterns in response to emotional memory and emotional decision-making tasks, which were also accompanied by subtle shifts in gut microbiome profile. Microbiome composition mirrored self-reported behavioral measures and memory performance. This is the first study reporting a distinct influence of probiotic administration at behavioral, neural, and microbiome levels at the same time in healthy volunteers. The findings provide a basis for future investigations into the role of the gut microbiota and potential therapeutic application of probiotics.

  4. Gut microbiota, epigenetic modification and colorectal cancer

    PubMed Central

    Rezasoltani, Sama; Asadzadeh-Aghdaei, Hamid; Nazemalhosseini-Mojarad, Ehsan; Dabiri, Hossein; Ghanbari, Reza; Zali, Mohammad Reza

    2017-01-01

    Micro-organisms contain 90% of cells in human body and trillions foreign genes versus less than 30 thousand of their own. The human colon host various species of microorganisms, appraised at more than 1014 microbiota and contained of over a thousand species. Although each one’s profile is separable, the relative abundance and distribution of bacterial species is the same between healthy ones, causing conservation of each person’s overall health. Germline DNA mutations have been attributed to the less than 5% of CRC occurrence while more than 90% is associated with the epigenetic regulation. The most ubiquitous environmental factor in epigenetic modification is gut microbiota. Disruptive changes in the gut microbiome strongly contributed to the improvement of colorectal cancer. Gut microbiota may play critical role in progression of CRC via their metabolite or their structural component interacting with host intestinal epithelial cell (IEC). Herein we discuss the mechanism of epigenetic modification and its implication in CRC development, progression even metastasis by gut microbiota induction. PMID:29213996

  5. A comparison of decontamination effects of commercially available detergents in rats pre-exposed to topical sulphur mustard.

    PubMed

    Misik, Jan; Jost, Petr; Pavlikova, Ruzena; Vodakova, Eva; Cabal, Jiri; Kuca, Kamil

    2013-06-01

    The genotoxic vesicant sulphur mustard [bis-2-(chloroethyl)sulphide] is a chemical warfare agent which is easily available due to its relatively simple synthesis. Thus, sulphur mustard is a potential agent for mass contamination. In this study, we focused on sulphur mustard toxicity and decontamination in a rat model using commercially available detergent mixtures for dermal decontamination. Male Wistar rats were percutaneously treated with sulphur mustard and subjected to wet decontamination 2 min postexposure. Commercially produced detergents Neodekont™, Argos™, Dermogel™ and FloraFree™ were tested for their decontamination efficacy against an exposed group and their protective ratios determined. The results showed that all tested detergent solutions produced an increase in the median lethal dose [LD(50) = 9.83 (5.87-13.63) mg·kg(-1)] in comparison to controls, which led to increased survival of experimental animals. In general, all tested detergents provided modest decontamination efficacy (PR = 2.0-5.7). The highest protective ratio (5.7) was consistently achieved with Argos™. Accordingly, Argos™ should be considered in further investigation of mass casualty decontamination.

  6. Nuclear decontamination technology evaluation to address contamination of a municipal water system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFee, J.; Langsted, J.; Young, M.

    The US Environmental Protection Agency (EPA) and US Department of Homeland Security (DHS) are considering the impact and recovery from contamination of municipal water systems, including intentional contamination of those systems. Industrial chemicals, biological agents, drugs, pesticides, chemical warfare agents, and radionuclides all could be introduced into a municipal water system to create detrimental health effects and disrupt a community. Although unintentional, the 1993 cryptosporidium contamination of the Milwaukee WS water system resulted in 100 fatalities and disrupted the city for weeks. Shaw Environmental and Infrastructure Inc, (Shaw), as a subcontractor on a DHS contract with Michael Baker Jr., Inc.,more » was responsible for evaluation of the impact and recovery from radionuclide contamination in a municipal water system distribution system. Shaw was tasked to develop a matrix of nuclear industry decontamination technologies and evaluate applicability to municipal water systems. Shaw expanded the evaluation to include decontamination methods commonly used in the drinking water supply. The matrix compared all technologies for implementability, effectiveness, and cost. To address the very broad range of contaminants and contamination scenarios, Shaw bounded the problem by identification of specific contaminant release scenario(s) for specific water system architecture(s). A decontamination technology matrix was developed containing fifty-nine decontamination technologies potentially applicable to the water distribution system piping, pumps, tanks, associated equipment, and/or contaminated water. Qualitatively, the majority of the nuclear industry decontamination technologies were eliminated from consideration due to implementability concerns. However, inclusion of the municipal water system technologies supported recommendations that combined the most effective approaches in both industries. (authors)« less

  7. Applying Crowd Psychology to Develop Recommendations for the Management of Mass Decontamination

    PubMed Central

    Drury, John; Rubin, G. James; Williams, Richard; Amlôt, Richard

    2015-01-01

    Mass decontamination is a public health intervention employed by emergency responders following a chemical, biological, or radiological release. It involves a crowd of people whose interactions with each other and with the emergency responders managing the incident are likely to affect the success of the decontamination process. The way in which members of the public collectively experience decontamination is likely to affect their behavior and hence is crucial to the success of the decontamination process. Consequently, responders and the responsible authorities need to understand crowd psychology during mass emergencies and disasters. Recently, the social identity approach to crowd psychology has been applied to explain public perceptions and behavior during mass emergencies. This approach emphasizes that crowd events are characteristically intergroup encounters, in which the behavior of one group can affect the perceptions and behavior of another. We summarize the results from a program of research in which the social identity approach was applied to develop and test recommendations for the management of mass decontamination. The findings from this program of research show that (1) responders' perceptions of crowd behavior matter; (2) participants value greater communication and this affects their compliance; and (3) social identity processes explain the relationship between effective responder communication and relevant outcome variables, such as public compliance, public cooperation, and public anxiety. Based on this program of research, we recommend 4 responder management strategies that focus on increasing public compliance, increasing orderly and cooperative behavior among members of the public, reducing public anxiety, and respecting public needs for privacy. PMID:25812428

  8. Applying crowd psychology to develop recommendations for the management of mass decontamination.

    PubMed

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2015-01-01

    Mass decontamination is a public health intervention employed by emergency responders following a chemical, biological, or radiological release. It involves a crowd of people whose interactions with each other and with the emergency responders managing the incident are likely to affect the success of the decontamination process. The way in which members of the public collectively experience decontamination is likely to affect their behavior and hence is crucial to the success of the decontamination process. Consequently, responders and the responsible authorities need to understand crowd psychology during mass emergencies and disasters. Recently, the social identity approach to crowd psychology has been applied to explain public perceptions and behavior during mass emergencies. This approach emphasizes that crowd events are characteristically intergroup encounters, in which the behavior of one group can affect the perceptions and behavior of another. We summarize the results from a program of research in which the social identity approach was applied to develop and test recommendations for the management of mass decontamination. The findings from this program of research show that (1) responders' perceptions of crowd behavior matter; (2) participants value greater communication and this affects their compliance; and (3) social identity processes explain the relationship between effective responder communication and relevant outcome variables, such as public compliance, public cooperation, and public anxiety. Based on this program of research, we recommend 4 responder management strategies that focus on increasing public compliance, increasing orderly and cooperative behavior among members of the public, reducing public anxiety, and respecting public needs for privacy.

  9. Application of cetylpyridinium chloride and sodium chloride decontamination method for recovery of Mycobacterium tuberculosis from clinically suspected cases of pulmonary tuberculosis.

    PubMed

    Shinu, Pottathil; Singh, Varsha; Nair, Anroop; Mehrishi, Priya; Mehta, Sonia; Joshi, Ekta

    2013-10-01

    The study was designed to compare the efficacy of cetylpyridinium chloride (CPC) and sodium chloride (NaCl) decontamination method with N-acetyl L-Cystine (NALC) and sodium hydroxide (NaOH) decontamination (the reference method) method for the recovery of Mycobacterium tuberculosis (MTB) from clinically suspected cases of pulmonary tuberculosis. To evaluate CPC-NaCl and NALC-NaOH decontamination methods, sputum specimens (n = 796) were studied (culturing on Löwenstein-Jensen medium), and the performances were compared. The CPC-NaCl decontamination method demonstrated a sensitivity, specificity, negative predictive value, and positive predictive value of 97.99%, 87.53%, 70.19%, and 99.32%, respectively, when compared to NALC-NaOH decontamination method. In summary, CPC-NaCl decontamination method effectively detected significantly higher number of MTB cases (n = 208) than NALC-NaOH decontamination method (n = 149) particularly in sputum with scanty bacilli and smear-negative cases, indicating the potential of CPC-NaCl decontamination method to preserve paucibacillary cases more efficient than NALC-NaOH decontamination method. © 2013.

  10. The gut microbiota, obesity and insulin resistance.

    PubMed

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  11. Human gut microbiota and healthy aging: Recent developments and future prospective

    PubMed Central

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-01-01

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics. PMID:28035338

  12. The Gut Microbiota: Ecology and Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willing, B.P.; Jansson, J.K.

    The gastrointestinal (GI) tract is teeming with an extremely abundant and diverse microbial community. The members of this community have coevolved along with their hosts over millennia. Until recently, the gut ecosystem was viewed as black box with little knowledge of who or what was there or their specific functions. Over the past decade, however, this ecosystem has become one of fastest growing research areas of focus in microbial ecology and human and animal physiology. This increased interest is largely in response to studies tying microbes in the gut to important diseases afflicting modern society, including obesity, allergies, inflammatory bowelmore » diseases, and diabetes. Although the importance of a resident community of microorganisms in health was first hypothesized by Pasteur over a century ago (Sears, 2005), the multiplicity of physiological changes induced by commensal bacteria has only recently been recognized (Hooper et al., 2001). The term 'ecological development' was recently coined to support the idea that development of the GI tract is a product of the genetics of the host and the host's interactions with resident microbes (Hooper, 2004). The search for new therapeutic targets and disease biomarkers has escalated the need to understand the identities and functions of the microorganisms inhabiting the gut. Recent studies have revealed new insights into the membership of the gut microbial community, interactions within that community, as well as mechanisms of interaction with the host. This chapter focuses on the microbial ecology of the gut, with an emphasis on information gleaned from recent molecular studies.« less

  13. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    PubMed

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases

    PubMed Central

    Ghaisas, Shivani; Maher, Joshua; Kanthasamy, Anumantha

    2015-01-01

    The gut microbiome comprises the collective genome of the trillions of microorganisms residing in our gastrointestinal ecosystem. The interaction between the host and its gut microbiome is a complex relationship whose manipulation could prove critical to preventing or treating not only various gut disorders, like irritable bowel syndrome (IBS) and ulcerative colitis (UC), but also central nervous system (CNS) disorders, such as Alzheimer’s and Parkinson’s diseases. The purpose of this review is to summarize what is known about the gut microbiome, how it is connected to the development of disease and to identify the bacterial and biochemical targets that should be the focus of future research. Understanding the mechanisms behind the activity and proliferation of the gut microbiome will provide us new insights that may pave the way for novel therapeutic strategies. PMID:26627987

  15. In vivo decontamination of the nerve agent VX using the domestic swine model.

    PubMed

    Misik, Jan; Pavlik, Michal; Novotny, Ladislav; Pavlikova, Ruzena; Chilcott, Robert P; Cabal, Jiri; Kuca, Kamil

    2012-11-01

    The purpose of this in vivo study was to assess a new, putatively optimised method for mass casualty decontamination ("ORCHIDS protocol") for effectiveness in removing the chemical warfare agent VX from the skin of anaesthetised, domestic white pigs. ORCHIDS protocol consists of a 1.5-minute shower with a mild detergent (Argos™) supplemented by physical removal. A standard method of wet decontamination was used for comparison. Experimental animals were divided into four groups (A-D). Two groups were exposed to a supra-lethal percutaneous dose (5 × LD(50); 300 μg kg(-1)) of VX for 1 h prior to decontamination with either the ORCHIDS (C) or standard protocol (D). A third (B, positive control) group was exposed but not subject to decontamination. Blank controls (A) received anaesthesia and the corresponding dose of normal saline instead of VX. Observations of the clinical signs of intoxication were supplemented by measurements of whole blood cholinesterase (ChE) performed on samples of arterial blood acquired at 30-minute intervals for the duration of the study (up to 6 h). Untreated (B) animals displayed typical cholinergic signs consistent with VX intoxication (local fasciculation, mastication, salivation, pilo-erection and motor convulsions) and died 165-240 min post exposure. All animals in both decontamination treatment groups (C, D) survived the duration of the study and exhibited less severe signs of cholinergic poisoning. Thus, both the standard and ORCHIDS protocol were demonstrably effective against exposure to the potent nerve agent VX, even after a delay of 1 h. A critical advantage of the ORCHIDS protocol is the relatively short shower duration (1½ min compared to 3 min). In practice, this could substantially improve the rate at which individuals could be decontaminated by emergency responders following exposure to toxic materials such as chemical warfare agents.

  16. Pathogenesis and prevention of early pancreatic infection in experimental acute necrotizing pancreatitis.

    PubMed Central

    Foitzik, T; Fernández-del Castillo, C; Ferraro, M J; Mithöfer, K; Rattner, D W; Warshaw, A L

    1995-01-01

    OBJECTIVE: The authors test antibiotic strategies aimed at either mitigating bacterial translocation from the gut or delivering antibiotics specifically concentrated by the pancreas for prevention of early secondary infection after acute necrotizing pancreatitis. BACKGROUND: Infection currently is the principal cause of death after severe pancreatitis. The authors have shown that the risk of bacterial infection correlates directly with the degree of tissue injury in a rodent model of pancreatitis. Bacteria most likely arrive by translocation from the colon. METHODS: Severe acute necrotizing pancreatitis was induced in rats by a combination of low-dose controlled intraductal infusion of glycodeoxycholic acid superimposed on intravenous cerulein hyperstimulation. At 6 hours, animals were randomly allocated to five treatment groups: controls, selective gut decontamination (oral antibiotics and cefotaxime), oral antibiotics alone, cefotaxime alone, or imipenem. At 96 hours, surviving animals were killed for quantitative bacterial study of the cecum, pancreas, and kidney. RESULTS: The 96-hour mortality (35%) was unaffected by any treatment regimen. Cecal gram-negative bacteria were significantly reduced only by the oral antibiotics. Pancreatic infection was significantly reduced by full-gut decontamination and by imipenem, but not by oral antibiotics or by cefotaxime alone. Renal infection was reduced by both intravenous antibiotics. CONCLUSIONS: Early pancreatic infection after acute necrotizing pancreatitis can be reduced with a full-gut decontamination regimen or with an antibiotic concentrated by the pancreas (imipenem) but not by unconcentrated antibiotics of similar spectrum (cefotaxime) or by oral antibiotics alone. These findings suggest that 1) both direct bacterial translocation from the gut and hematogenous seeding interplay in pancreatic infection while hematogenous seeding is dominant at extrapancreatic sites and 2) imipenem may be useful in clinical

  17. Decontamination of sludge by the METIX-AC process. Part II: effects on maize growth and bioaccumulation of metals.

    PubMed

    Barraoui, Driss; Labrecque, Michel; Blais, Jean-François

    2008-03-01

    Given the fact that, according to our knowledge, no study has compared the agro-environmental use of decontaminated with non-decontaminated sludge, a greenhouse experiment was carried out to test the growth of maize (Zea mays L., G-4011 Hybrid) and bioaccumulation of metals in the presence of four different sludges (MUC, QUC, BEC and DAI), before and after their decontamination by a novel process (METIX-AC). Data showed that decontaminated sludge ameliorated plant growth and biomass production, and decreased bioaccumulation of metals, more than control soil, inorganic chemical fertilization, or conventional non-decontaminated sludge. Since chemicals used by the METIX-AC process contained S and Fe, decontaminated sludge introduced large amounts of these elements, while the overall presence of metals was reduced. Often, sludge dose also affected maize growth and bioaccumulation of metals. Overall, no toxicity to plants was noticed and bioaccumulation and transfer of many metals remained below the limits reported in the literature.

  18. Development of the preterm infant gut microbiome: A research priority

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groer, Maureen W.; Luciano, Angel A.; Dishaw, Larry J.

    The very low birth weight (VLBW) infant is at great risk for marked dysbiosis of the gut microbiome due to multiple factors, including physiological immaturity and prenatal/postnatal influences that disrupt the development of a normal gut flora. However, little is known about the developmental succession of the microbiota in preterm infants as they grow and mature. This review provides a synthesis of our understanding of the normal development of the infant gut microbiome and contrasts this with dysbiotic development in the VLBW infant. The role of human milk in normal gut microbial development is emphasized, along with the role ofmore » the gut microbiome in immune development and gastroenteric health. Current research provides evidence that the gut microbiome interacts extensively with many physiological systems and metabolic processes in the developing infant. However, to the best of our knowledge, there are currently no studies prospectively mapping the gut microbiome of VLBW infants through early childhood. This knowledge gap must be filled to inform a healthcare system that can provide for the growth, health, and development of VLBW infants. In conclusion, the study speculates about how the VLBW infants’ gut microbiome might function through host-microbe interactions to contribute to the sequelae of preterm birth, including its influence on growth, development, and general health of the infant host.« less

  19. Development of the preterm infant gut microbiome: A research priority

    DOE PAGES

    Groer, Maureen W.; Luciano, Angel A.; Dishaw, Larry J.; ...

    2014-10-13

    The very low birth weight (VLBW) infant is at great risk for marked dysbiosis of the gut microbiome due to multiple factors, including physiological immaturity and prenatal/postnatal influences that disrupt the development of a normal gut flora. However, little is known about the developmental succession of the microbiota in preterm infants as they grow and mature. This review provides a synthesis of our understanding of the normal development of the infant gut microbiome and contrasts this with dysbiotic development in the VLBW infant. The role of human milk in normal gut microbial development is emphasized, along with the role ofmore » the gut microbiome in immune development and gastroenteric health. Current research provides evidence that the gut microbiome interacts extensively with many physiological systems and metabolic processes in the developing infant. However, to the best of our knowledge, there are currently no studies prospectively mapping the gut microbiome of VLBW infants through early childhood. This knowledge gap must be filled to inform a healthcare system that can provide for the growth, health, and development of VLBW infants. In conclusion, the study speculates about how the VLBW infants’ gut microbiome might function through host-microbe interactions to contribute to the sequelae of preterm birth, including its influence on growth, development, and general health of the infant host.« less

  20. Chemical warfare agent simulants for human volunteer trials of emergency decontamination: A systematic review

    PubMed Central

    Wyke, Stacey; Marczylo, Tim; Collins, Samuel; Gaulton, Tom; Foxall, Kerry; Amlôt, Richard; Duarte‐Davidson, Raquel

    2017-01-01

    Abstract Incidents involving the release of chemical agents can pose significant risks to public health. In such an event, emergency decontamination of affected casualties may need to be undertaken to reduce injury and possible loss of life. To ensure these methods are effective, human volunteer trials (HVTs) of decontamination protocols, using simulant contaminants, have been conducted. Simulants must be used to mimic the physicochemical properties of more harmful chemicals, while remaining non‐toxic at the dose applied. This review focuses on studies that employed chemical warfare agent simulants in decontamination contexts, to identify those simulants most suitable for use in HVTs of emergency decontamination. Twenty‐two simulants were identified, of which 17 were determined unsuitable for use in HVTs. The remaining simulants (n = 5) were further scrutinized for potential suitability according to toxicity, physicochemical properties and similarities to their equivalent toxic counterparts. Three suitable simulants, for use in HVTs were identified; methyl salicylate (simulant for sulphur mustard), diethyl malonate (simulant for soman) and malathion (simulant for VX or toxic industrial chemicals). All have been safely used in previous HVTs, and have a range of physicochemical properties that would allow useful inference to more toxic chemicals when employed in future studies of emergency decontamination systems. PMID:28990191

  1. [Research advances in the relationship between childhood malnutrition and gut microbiota].

    PubMed

    Wang, Hui-Hui; Wen, Fei-Qiu; Wei, Ju-Rong

    2016-11-01

    Childhood malnutrition is an important disease threatening healthy growth of children worldwide. Gut microbiota has close links to food digestion, absorption and intestinal function. Current research considers that alterations in gut microbiota have been strongly implicated in childhood malnutrition. This review article addresses the latest understanding and evidence of interrelationship between gut microbiota and individual nutrition status, the changes of gut microbiota in different types of malnutrition, and the attribution of gut microbiota in the treatment and prognosis of malnutrition. It provides in depth understanding of childhood malnutrition from the perspective of microbiome.

  2. Gut microbes and the brain: paradigm shift in neuroscience.

    PubMed

    Mayer, Emeran A; Knight, Rob; Mazmanian, Sarkis K; Cryan, John F; Tillisch, Kirsten

    2014-11-12

    The discovery of the size and complexity of the human microbiome has resulted in an ongoing reevaluation of many concepts of health and disease, including diseases affecting the CNS. A growing body of preclinical literature has demonstrated bidirectional signaling between the brain and the gut microbiome, involving multiple neurocrine and endocrine signaling mechanisms. While psychological and physical stressors can affect the composition and metabolic activity of the gut microbiota, experimental changes to the gut microbiome can affect emotional behavior and related brain systems. These findings have resulted in speculation that alterations in the gut microbiome may play a pathophysiological role in human brain diseases, including autism spectrum disorder, anxiety, depression, and chronic pain. Ongoing large-scale population-based studies of the gut microbiome and brain imaging studies looking at the effect of gut microbiome modulation on brain responses to emotion-related stimuli are seeking to validate these speculations. This article is a summary of emerging topics covered in a symposium and is not meant to be a comprehensive review of the subject. Copyright © 2014 the authors 0270-6474/14/3415490-07$15.00/0.

  3. Gut-Liver Axis, Nutrition, and Non Alcoholic Fatty Liver Disease

    PubMed Central

    Kirpich, Irina A.; Marsano, Luis S.; McClain, Craig J.

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) represents a spectrum of diseases involving hepatic fat accumulation, inflammation with the potential progression to fibrosis and cirrhosis over time. NAFLD is often associated with obesity, insulin resistance, and diabetes. The interactions between the liver and the gut, the so-called ”gut-liver axis”, play a critical role in NAFLD onset and progression. Compelling evidence links the gut microbiome, intestinal barrier integrity, and NAFLD. The dietary factors may alter the gut microbiota and intestinal barrier function, favoring the occurrence of metabolic endotoxemia and low grade inflammation, thereby contributing to the development of obesity and obesity-associated fatty liver disease. Therapeutic manipulations with prebiotics and probiotics to modulate the gut microbiota and maintain intestinal barrier integrity are potential agents for NAFLD management. This review summarizes the current knowledge regarding the complex interplay between the gut microbiota, intestinal barrier, and dietary factors in NAFLD pathogenesis. The concepts addressed in this review have important clinical implications, although more work needs to be done to understand how dietary factors affect the gut barrier and microbiota, and to comprehend how microbe-derived components may interfere with the host’s metabolism contributing to NAFLD development. PMID:26151226

  4. Human gut microbiome: the second genome of human body.

    PubMed

    Zhu, Baoli; Wang, Xin; Li, Lanjuan

    2010-08-01

    The human body is actually a super-organism that is composed of 10 times more microbial cells than our body cells. Metagenomic study of the human microbiome has demonstrated that there are 3.3 million unique genes in human gut, 150 times more genes than our own genome, and the bacterial diversity analysis showed that about 1000 bacterial species are living in our gut and a majority of them belongs to the divisions of Firmicutes and Bacteriodetes. In addition, most people share a core microbiota that comprises 50-100 bacterial species when the frequency of abundance at phylotype level is not considered, and a core microbiome harboring more than 6000 functional gene groups is present in the majority of human gut surveyed till now. Gut bacteria are not only critical for regulating gut metabolism, but also important for host immune system as revealed by animal studies.

  5. Decontamination of 2-Chloroethyl Ethyl Sulfide by Pulsed Corona Plasma

    NASA Astrophysics Data System (ADS)

    Li, Zhanguo; Hu, Zhen; Cao, Peng; Zhao, Hongjie

    2014-11-01

    Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH3CH2SCH2CH2Cl) by pulsed corona plasma was investigated. The results show that 212.6 mg/m3 of 2-CEES, with the gas flow rate of 2 m3/h, can be decontaminated to 0.09 mg/m3. According to the variation of the inlet and outlet concentration of 2-CEES vapor with retention time, it is found that the reaction of 2-CEES in a pulsed corona plasma system follows the first order reaction, with the reaction rate constant of 0.463 s-1. The decontamination mechanism is discussed based on an analysis of the dissociation energy of chemical bonds and decontamination products. The C-S bond adjacent to the Cl atom will be destroyed firstly to form CH3CH2S· and ·CH2CH2Cl radicals. CH3CH2S· can be decomposed to ·C2H5 and ·S. ·S can be oxidized to SO2, while ·C2H5 can be finally oxidized to CO2 and H2O. The C-Cl bond in the ·CH2CH2Cl radical can be destroyed to form ·CH2CH2. and ·Cl, which can be mineralized to CO2, H2O and HCl. The H atom in the ·CH2CH2Cl radical can also be substituted by ·Cl to form CHCl2-CHCl2.

  6. Bacterial-modulated host immunity and stem cell activation for gut homeostasis.

    PubMed

    Lee, Won-Jae

    2009-10-01

    Although it is widely accepted that dynamic cross-talk between gut epithelia and microorganisms must occur to achieve gut homeostasis, the critical mechanisms by which gut-microbe interactions are regulated remain uncertain. In this issue of Genes & Development, Buchon and colleagues (pp. 2333-2344) revealed that the reaction of the gut to microorganisms is not restricted to activating immune systems, but extends to integrated responses essential for gut tissue homeostasis, including self-renewal and the differentiation of stem cells. Further investigation of the connection between immune response and stem cell regulation at the molecular level in the microbe-laden mucosal epithelia will accelerate our understanding of the regulatory mechanisms of gut homeostasis and of the pathogenesis of diseases such as chronic inflammatory diseases and colorectal cancers.

  7. A review of metabolic potential of human gut microbiome in human nutrition.

    PubMed

    Yadav, Monika; Verma, Manoj Kumar; Chauhan, Nar Singh

    2018-03-01

    The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.

  8. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages

    PubMed Central

    2017-01-01

    Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect’s life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in β-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions. PMID:28406998

  9. Noninvasive photoacoustic identification and imaging of gut microbes.

    PubMed

    Huang, Xiaoxiao; Shi, Ying; Liu, Yajing; Xu, Hongzhi; Liu, Yu; Xiao, Chuanxing; Ren, Jianlin; Nie, Liming

    2017-08-01

    Homeostasis of the gut microbiota is indispensable for various physiological functions. Its composition and activity co-develop with the host, and especially associate with human colorectal cancer. However, current composition identification methods are complicated and not timely without spatial distribution information. In this Letter, we explored the photoacoustic imaging (PAI) technique to characterize the composition and quantify the proportions of the gut microbes after optical probe labeling. Our experimental results demonstrated that PAI has the potential to identify different gut bacterial species on the spot.

  10. A novel copper-hydrogen peroxide formulation for prion decontamination.

    PubMed

    Solassol, Jerome; Pastore, Manuela; Crozet, Carole; Perrier, Veronique; Lehmann, Sylvain

    2006-09-15

    With the appearance of variant Creutzfeldt-Jakob disease (CJD) and the detection of infectious prions in the peripheral organs of persons with sporadic CJD, the development of decontamination methods that are compatible with medical equipment has become a major issue. Here, we show that a formulation of copper metal ions in combination with hydrogen peroxide dramatically reduces the level of prion protein (PrP)(Sc) (the scrapie isoform of PrP) present in homogenates of samples from prion-infected brains, including brain samples from humans with CJD. An animal bioassay confirmed the reduction in prion infectivity, indicating that this novel Cu(2+)-H(2)O(2) formulation has great potential for prion decontamination.

  11. Gut microbiome and dietary patterns in different Saudi populations and monkeys.

    PubMed

    Angelakis, Emmanouil; Yasir, Muhammad; Bachar, Dipankar; Azhar, Esam I; Lagier, Jean-Christophe; Bibi, Fehmida; Jiman-Fatani, Asif A; Alawi, Maha; Bakarman, Marwan A; Robert, Catherine; Raoult, Didier

    2016-08-31

    Host genetics, environment, lifestyle and proximity between hosts strongly influence the composition of the gut microbiome. To investigate the association of dietary variables with the gut microbiota, we used 16S rDNA sequencing to test the fecal microbiome of Bedouins and urban Saudis and we compared it to the gut microbiome of baboons living in close contact with Bedouins and eating their leftovers. We also analyzed fermented dairy products commonly consumed by Bedouins in order to investigate their impact on the gut microbiome of this population. We found that the gut microbiomes of westernized urban Saudis had significantly lower richness and biodiversity than the traditional Bedouin population. The gut microbiomes of baboons were more similar to that of Bedouins compared to urban Saudis, probably due the dietary overlap between baboons and Bedouins. Moreover, we found clusters that were compositionally similar to clusters identified in humans and baboons, characterized by differences in Acinetobacter, Turicibacter and Collinsella. The fermented food presented significantly more bacteria genera common to the gut microbiome of Bedouins compared to urban Saudis. These results support the hypothesis that dietary habits influence the composition of the gut microbiome.

  12. Preventive measures and lifestyle habits against exertional heat illness in radiation decontamination workers.

    PubMed

    Endo, Shota; Kakamu, Takeyasu; Sato, Sei; Hidaka, Tomoo; Kumagai, Tomohiro; Nakano, Shinichi; Koyama, Kikuo; Fukushima, Tetsuhito

    2017-09-28

    The aim of this study was to reveal the current state of preventive measures and lifestyle habits against heat illness in radiation decontamination workers and to examine whether young radiation decontamination workers take less preventive measures and have worse lifestyle habits than the elder workers. This was a cross-sectional study. Self-administered questionnaires were sent to 1,505 radiation decontamination workers in Fukushima, Japan. Five hundred fifty-eight men who replied and answered all questions were included in the statistical analysis. The questionnaire included age, duration of decontamination work, previous occupation, lifestyle habit, and preventive measures for heat illness. We classified age of the respondents into five groups: <30, 30-39, 40-49, 50-59, and ≥60 years and defined the workers under 30 years of age as young workers. Logistic regression analysis was used to reveal the factors associated with each lifestyle habit and preventive measures. In comparison with young workers, 50-59-year-old workers were significantly associated with refraining from drinking alcohol. Workers 40 years of age or older were significantly associated with cooling their bodies with refrigerant. Furthermore, 30-39-year-old workers and 40-49-year-old workers were significantly associated with adequate consumption of water compared to young workers. The results of our study suggests that young decontamination workers are more likely to have worse lifestyle habits and take insufficient preventive measures for heat illness. This may be the cause of higher incidence of heat illness among young workers.

  13. Gut microbiota composition modifies fecal metabolic profiles in mice.

    PubMed

    Zhao, Ying; Wu, Junfang; Li, Jia V; Zhou, Ning-Yi; Tang, Huiru; Wang, Yulan

    2013-06-07

    The gut microbiome is known to be extensively involved in human health and disease. In order to reveal the metabolic relationship between host and microbiome, we monitored recovery of the gut microbiota composition and fecal profiles of mice after gentamicin and/or ceftriaxone treatments. This was performed by employing (1)H nuclear magnetic resonance (NMR)-based metabonomics and denaturing gradient gel electrophoresis (DGGE) fingerprint of gut microbiota. The common features of fecal metabolites postantibiotic treatment include decreased levels of short chain fatty acids (SCFAs), amino acids and primary bile acids and increased oligosaccharides, d-pinitol, choline and secondary bile acids (deoxycholic acid). This suggests suppressed bacterial fermentation, protein degradation and enhanced gut microbial modification of bile acids. Barnesiella, Prevotella, and Alistipes levels were shown to decrease as a result of the antibiotic treatment, whereas levels of Bacteroides, Enterococcus and Erysipelotrichaceae incertae sedis, and Mycoplasma increased after gentamicin and ceftriaxone treatment. In addition, there was a strong correlation between fecal profiles and levels of Bacteroides, Barnesiella, Alistipes and Prevotella. The integration of metabonomics and gut microbiota profiling provides important information on the changes of gut microbiota and their impact on fecal profiles during the recovery after antibiotic treatment. The correlation between gut microbiota and fecal metabolites provides important information on the function of bacteria, which in turn could be important in optimizing therapeutic strategies, and developing potential microbiota-based disease preventions and therapeutic interventions.

  14. Polymers in the gut compress the colonic mucus hydrogel.

    PubMed

    Datta, Sujit S; Preska Steinberg, Asher; Ismagilov, Rustem F

    2016-06-28

    Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host-microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer-mucus interactions can be described using a thermodynamic model based on Flory-Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice-whose microbiota degrade gut polymers-did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes.

  15. Microbes vs. chemistry in the origin of the anaerobic gut lumen.

    PubMed

    Friedman, Elliot S; Bittinger, Kyle; Esipova, Tatiana V; Hou, Likai; Chau, Lillian; Jiang, Jack; Mesaros, Clementina; Lund, Peder J; Liang, Xue; FitzGerald, Garret A; Goulian, Mark; Lee, Daeyeon; Garcia, Benjamin A; Blair, Ian A; Vinogradov, Sergei A; Wu, Gary D

    2018-04-17

    The succession from aerobic and facultative anaerobic bacteria to obligate anaerobes in the infant gut along with the differences between the compositions of the mucosally adherent vs. luminal microbiota suggests that the gut microbes consume oxygen, which diffuses into the lumen from the intestinal tissue, maintaining the lumen in a deeply anaerobic state. Remarkably, measurements of luminal oxygen levels show nearly identical pO 2 (partial pressure of oxygen) profiles in conventional and germ-free mice, pointing to the existence of oxygen consumption mechanisms other than microbial respiration. In vitro experiments confirmed that the luminal contents of germ-free mice are able to chemically consume oxygen (e.g., via lipid oxidation reactions), although at rates significantly lower than those observed in the case of conventionally housed mice. For conventional mice, we also show that the taxonomic composition of the gut microbiota adherent to the gut mucosa and in the lumen throughout the length of the gut correlates with oxygen levels. At the same time, an increase in the biomass of the gut microbiota provides an explanation for the reduction of luminal oxygen in the distal vs. proximal gut. These results demonstrate how oxygen from the mammalian host is used by the gut microbiota, while both the microbes and the oxidative chemical reactions regulate luminal oxygen levels, shaping the composition of the microbial community throughout different regions of the gut.

  16. Conversion of transuranic waste to low level waste by decontamination: a technical and economic evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.P.; Hazelton, R.F.

    1984-12-01

    A study was conducted to evaluate the technical and economic feasibility of using in-situ decontamination techniques to convert glove boxes and other large TRU-contaminated components directly into LLW. The results of the technical evaluation indicate that in-situ decontamination of these types of components to non-TRU levels is technically feasible. Applicable decontamination techniques include electropolishing, hand scrubbing, chemical washes/sprays, strippable coatings and Freon spray-cleaning. The removal of contamination from crevices and other holdup areas remains a problem, but may be solved through further advances in decontamination technology. Also, the increase in the allowable maximum TRU level from 10 nCi/g to 100more » nCi/g as defined in DOE Order 5820.2 reduces the removal requirement and facilitates measurement of the remaining quantities. The major emphasis of the study was on a cost/benefit evaluation that included a review and update of previous analyses and evaluations of TRU-waste volume reduction and conversion options. The results of the economic evaluation show, for the assumptions used, that there is a definite cost incentive to size reduce large components, and that decontamination of sectioned material has become cost competitive with the size reduction options. In-situ decontamination appears to be the lowest cost option when based on routine-type operations conducted by well-trained and properly equipped personnel. 16 references, 1 figure, 7 tables.« less

  17. Homeostasis of the gut barrier and potential biomarkers

    PubMed Central

    Brummer, Robert J.; Derrien, Muriel; MacDonald, Thomas T.; Troost, Freddy; Cani, Patrice D.; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M.; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L.

    2017-01-01

    The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies

  18. Evidence-based patient decontamination: an integral component of mass exposure chemical incident planning and response.

    PubMed

    Leary, Adam D; Schwartz, Michael D; Kirk, Mark A; Ignacio, Joselito S; Wencil, Elaine B; Cibulsky, Susan M

    2014-06-01

    Decontaminating patients who have been exposed to hazardous chemicals can directly benefit the patients' health by saving lives and reducing the severity of toxicity. While the importance of decontaminating patients to prevent the spread of contamination has long been recognized, its role in improving patient health outcomes has not been as widely appreciated. Acute chemical toxicity may manifest rapidly-often minutes to hours after exposure. Patient decontamination and emergency medical treatment must be initiated as early as possible to terminate further exposure and treat the effects of the dose already absorbed. In a mass exposure chemical incident, responders and receivers are faced with the challenges of determining the type of care that each patient needs (including medical treatment, decontamination, and behavioral health support), providing that care within the effective window of time, and protecting themselves from harm. The US Department of Health and Human Services and Department of Homeland Security have led the development of national planning guidance for mass patient decontamination in a chemical incident to help local communities meet these multiple, time-sensitive health demands. This report summarizes the science on which the guidance is based and the principles that form the core of the updated approach.

  19. Development of haemostatic decontaminants for treatment of wounds contaminated with chemical warfare agents. 3: Evaluation of in vitro topical decontamination efficacy using damaged skin.

    PubMed

    Lydon, Helen L; Hall, Charlotte A; Dalton, Christopher H; Chipman, J Kevin; Graham, John S; Chilcott, Robert P

    2017-08-01

    Previous studies have demonstrated that haemostatic products with an absorptive mechanism of action retain their clotting efficiency in the presence of toxic materials and are effective in decontaminating chemical warfare (CW) agents when applied to normal, intact skin. The purpose of this in vitro study was to assess three candidate haemostatic products for effectiveness in the decontamination of superficially damaged porcine skin exposed to the radiolabelled CW agents, soman (GD), VX and sulphur mustard (HD). Controlled physical damage (removal of the upper 100 μm skin layer) resulted in a significant enhancement of the dermal absorption of all three CW agents. Of the haemostatic products assessed, WoundStat™ was consistently the most effective, being equivalent in performance to a standard military decontaminant (fuller's earth). These data suggest that judicious application of haemostatic products to wounds contaminated with CW agents may be a viable option for the clinical management of casualties presenting with contaminated, haemorrhaging injuries. Further studies using a relevant animal model are required to confirm the potential clinical efficacy of WoundStat™ for treating wounds contaminated with CW agents. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Changes in human gut flora with age: an Indian familial study.

    PubMed

    Marathe, Nachiket; Shetty, Sudarshan; Lanjekar, Vikram; Ranade, Dilip; Shouche, Yogesh

    2012-09-26

    The gut micro flora plays vital role in health status of the host. The majority of microbes residing in the gut have a profound influence on human physiology and nutrition. Different human ethnic groups vary in genetic makeup as well as the environmental conditions they live in. The gut flora changes with genetic makeup and environmental factors and hence it is necessary to understand the composition of gut flora of different ethnic groups. Indian population is different in physiology from western population (YY paradox) and thus the gut flora in Indian population is likely to differ from the extensively studied gut flora in western population. In this study we have investigated the gut flora of two Indian families, each with three individuals belonging to successive generations and living under the same roof. Denaturation gradient gel electrophoresis analysis showed age-dependant variation in gut microflora amongst the individuals within a family. Different bacterial genera were dominant in the individual of varying age in clone library analysis. Obligate anaerobes isolated from individuals within a family showed age related differences in isolation pattern, with 27% (6 out of 22) of the isolates being potential novel species based on 16S rRNA gene sequence. In qPCR a consistent decrease in Firmicutes number and increase in Bacteroidetes number with increasing age was observed in our subjects, this pattern of change in Firmicutes / Bacteroidetes ratio with age is different than previously reported in European population. There is change in gut flora with age amongst the individuals within a family. The isolation of high percent of novel bacterial species and the pattern of change in Firmicutes /Bacteroidetes ratio with age suggests that the composition of gut flora in Indian individuals may be different than the western population. Thus, further extensive study is needed to define the gut flora in Indian population.