Science.gov

Sample records for dodecyl sulfate resolved

  1. Effects of sodium dodecyl sulfate of polyphenoloxidase

    SciTech Connect

    Moore, B.M.; Flurkey, W.H. )

    1989-04-01

    The effects of sodium dodecyl sulfate (SDS) on the enzymatic and physical characteristics of purified broad bean polyphenoloxidase (PPO) were examined. A sigmoidal increase in PPO activation was observed with increasing SDS concentrations. Half maximal activation occurred at .9 mM SDS well below the CMC of 3.5 mM. No apparent changes in the Km for catechol, pH optimum, of I{sub 50} for tropolone were observed in the presence vs absence of SDS. Thermal inactivation and binding of {sup 14}C dopa increased in the presence of SDS. Analytical ultracentrifugation and HPLC-SEC indicated that SDS did not change the apparent size of the PPO under nondenaturing conditions. Scanning fluorescence spectroscopy showed an increase in intrinsic trp/tyr fluorescence at approximately the same concentration in which SDS activation began. Further addition of SDS caused a large increase in intrinsic fluorescence. These results suggest the SDS causes an apparent conformational change induced by SDS binding which leads to enzyme activation.

  2. Comparison of microenvironments of aqueous sodium dodecyl sulfate micelles in the presence of inorganic and organic salts: a time-resolved fluorescence anisotropy approach.

    PubMed

    Dutt, G B

    2005-11-08

    Microenvironments of aqueous sodium dodecyl sulfate (SDS) micelles was examined in the presence of additives such as sodium chloride and p-toluidine hydrochloride (PTHC) by monitoring the fluorescence anisotropy decays of two hydrophobic probes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and coumarin 6 (C6). It has been well-established that SDS micelles undergo a sphere-to-rod transition and that their mean hydrodynamic radius increases from 19 to 100 A upon the addition of 0.0-0.7 M NaCl at 298 K. A similar size and shape transition is induced by PTHC at concentrations that are 20 times lower compared to that of NaCl. This study was undertaken to find out how the microviscosity of the micelles is influenced under these circumstances. It was noticed that the microviscosity of the SDS/NaCl system increased by approximately 45%, whereas there was a less than 10% variation in the microviscosity of the SDS/PTHC system. The large increase in the microviscosity of the former system with salt concentration has been rationalized on the basis of the high concentration of sodium ions in the headgroup region of the micelles and their ability to strongly coordinate with the water present in this region, which decreases the mobility of the probe molecules.

  3. Aggregates of human erythrocyte membrane sialoglycoproteins in the presence of deoxycholate and dodecyl sulfate.

    PubMed

    Liljas, L

    1978-02-15

    Gel electrophoresis in the presence of deoxycholate of human erythrocyte membranes solubilized with deoxycholate resolves four glycoprotein zones. Electrophoresis in dodecyl sulfate in a second dimension reveals several components, three of which migrate in the region of PAS-2. One of the zones in deoxycholate gel electrophoresis contains component PAS-3, and this glycoprotein seems to exist as a monomer in deoxycholate, but aggregates partially upon addition of dodecyl sulfate. The major sialoglycoprotein migrates as a diffuse zone in dodecyl sulfate. The major sialoglycoprotein migrates as a diffuse zone in deoxycholate gel electrophoresis, indicating association and dissociation during the electrophoresis. The use of deoxycholate followed by dodecyl sulfate in two-dimentional electrophoresis gave high resolution of membrane proteins and can be used for detection of complexes in one of the detergents.

  4. Ionic quenching of naphthalene fluorescence in sodium dodecyl sulfate micelles.

    PubMed

    Silva, Alessandra F; Fiedler, Haidi D; Nome, Faruk

    2011-03-31

    Micellar effects on luminescense of organic compounds or probes are well established, and here we show that quenching is highly favored in aqueous sodium dodecyl sulfate (SDS) micelles, which concentrate a naphthalene probe and cations of lanthanides, transition metals, and noble metals. Interactions have been studied by steady state and time-resolved fluorescence in examining the fluorescence suppression of naphthalene by metal ions in anionic SDS micelles. The quenching is collisional and correlated with the unit charge and the reduction potential of the metal ion. The rate constants, calculated in terms of local metal ion concentrations, are close to the diffusion control limit in the interior of SDS micelles, where the microscopic viscosity decreases the transfer rate, following the Stokes-Einstein relation.

  5. Transport Properties of Water and Sodium Dodecyl Sulfate (Postprint)

    DTIC Science & Technology

    2013-08-01

    the diffusion of SDS in water. We carry out classical molecular dynamics (MD) simulations [31], where the individual atoms are approximated by spheres... Molecular Dynamics Simulations ,” J. Chem. Phys., 108, pp. 4739–4755. [34] Guillot, J., 2002, “A Reappraisal of What We Have Learnt During Three Deca- des...Berkowitz, M. L., Perera, L., and Forbes, M. D. E., 2002, “ Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water: Micellar

  6. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.

    PubMed

    Tan, Anmin; Ziegler, André; Steinbauer, Bernhard; Seelig, Joachim

    2002-09-01

    The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at

  7. Complexation between dodecyl sulfate surfactant and zein protein in solution.

    PubMed

    Ruso, Juan M; Deo, Namita; Somasundaran, P

    2004-10-12

    Interactions between sodium dodecyl sulfate and zein protein, a model system for the understanding of the effect of surfactants on skin, were investigated using a range of techniques involving UV-vis spectroscopy, TOC (total organic carbon analysis), electrophoresis, and static and dynamic light scattering. Zein protein was solubilized by SDS. The adsorption of SDS onto insoluble protein fraction caused the zeta potential of the complex to become more negative. From these values, we calculated the Gibbs energy of absorption, which decreases when the SDS concentration is raised. Finally the structure of the complex, based on the analysis by static and dynamic light scattering, is proposed to be rod like. Copyright 2004 American Chemical Society

  8. Phospholipid containing mixed micelles. Characterization of diheptanoyl phosphatidylcholine (DHPC) and sodium dodecyl sulfate and DHPC and dodecyl trimethylammonium bromide.

    PubMed

    Ranganathan, Radha; Vautier-Giongo, Carolina; Bakshi, Mandeep Singh; Bales, Barney L; Hajdu, Joseph

    2005-05-01

    Mixed micelles of l,2-diheptanoyl-sn-grycero-3-phosphocholine (DHPC) with ionic detergents were prepared to develop well characterized substrates for the study of lipolytic enzymes. The aggregates that formed on mixing DHPC with the anionic surfactant sodium dodecyl sulfate (SDS) and with the positively charged dodecyl trimethylammonium bromide (DTAB) were investigated using time-resolved fluorescence quenching (TRFQ) to determine the aggregation numbers and bimolecular collision rates, and electron spin resonance (ESR) to measure the hydration index and microviscosity of the micelles at the micelle-water interface. Mixed micelles between the phospholipid and each of the detergents formed in all compositions, yielding interfaces with varying charge, hydration, and microviscosity. Both series of micelles were found to be globular up to 0.7 mole fraction of DHPC, while the aggregation numbers varied within the same concentration range of the components less than 15%. Addition of the zwitterionic phospholipid component increased the degree of counterion dissociation as measured by the quenching of the fluorescence of pyrene by the bromide ions bound to DHPC/DTAB micelles, showing that at 0.6 mole fraction of DHPC 80% of the bromide ions are dissociated from the micelles. The interface water concentration decreased significantly on addition of DHPC to each detergent. For combined phospholipid and detergent concentration of 50 mM the interface water concentration decreased, as measured by ESR of the spin-probes, from 38.5 M/L of interface volume in SDS alone to 9 M/L when the phospholipid was present at 0.7 mole fraction. Similar addition of DHPC to DTAB decreased the interfacial water concentration from 27 M/L to 11 M/L. Determination of the physicochemical parameters of the phospholipid containing mixed micelles here presented are likely to provide important insight into the design of assay systems for kinetic studies of phospholipid metabolizing enzymes.

  9. Dynamic surface tension analysis of dodecyl sulfate association complexes.

    PubMed

    Quigley, W W; Nabi, A; Prazen, B J; Lenghor, N; Grudpan, K; Synovec, R E

    2001-09-13

    First, a novel calibration method is used to expand the current understanding of spherical drop growth and elongation that occurs during on-line measurements of surface pressure using the dynamic surface tension detector (DSTD). Using a novel surface tension calibration method, the drop radius is calculated as a function of time from experimental drop pressure data and compared to the theoretical drop radius calculated from volumetric flow rate. From this comparison, the drop volume at which the drop shape starts to deviate ( approximately 4 mul) from a spherical shape is readily observed and deviates more significantly by approximately 6 mul drop volume (5% deviation in the ideal spherical drop radius) for the capillary sensing tip employed in the DSTD. From this assessment of drop shape, an experimental method for precise drop detachment referred to as pneumatic drop detachment is employed at a drop volume of 2 mul (two second drops at 60 mul/min) in order to provide rapid dynamic surface tension measurements via the novel on-line calibration methodology. Second, the DSTD is used to observe and study kinetic information for surface-active molecules and association complexes adsorbing to an air-liquid drop interface. Dynamic surface tension measurements are made for sodium dodecyl sulfate (SDS) in the absence and presence of either tetra butyl ammonium (TBA) or chromium (III). Sensitive, indirect detection of chromium and other multiply charged metals at low concentrations is also investigated. The DSTD is utilized in examining the dynamic nature of SDS: cation association at the air-liquid interface of a growing drop. Either TBA or Cr(III) were found to substantially enhance the surface tension lowering of dodecyl sulfate (DS), but the surface tension lowering is accompanied by a considerable kinetic dependence. Essentially, the surface tension lowering of these DS: cation complexes is found to be a fairly slow process in the context of the two second DSTD

  10. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin.

    PubMed

    Wu, Xilong; Hou, Jing; Li, Mingzhong; Wang, Jiangnan; Kaplan, David L; Lu, Shenzhou

    2012-07-01

    The in situ formation of injectable silk fibroin (SF) hydrogels have potential advantages over various other biomaterials due to the minimal invasiveness during application. Biomaterials need to gel rapidly under physiological conditions after injection. In the current paper, a novel way to accelerate SF gelation using an anionic surfactant, sodium dodecyl sulfate (SDS), as a gelling agent is reported. The mechanism of SDS-induced rapid gelation was determined. At low surfactant concentrations, hydrophobic interactions among the SF chains played a dominant role in the association, leading to decreased gelation time. At higher concentrations of surfactant, electrostatic repulsive forces among micellar aggregates gradually became dominant and gelation was hindered. Gel formation involves the connection of clusters formed by the accumulation of nanoparticles. This process is accompanied by the rapid formation of β-sheet structures due to hydrophobic and electrostatic interactions. It is expected that the silk hydrogel with short gelation time will be used as an injectable hydrogel in drug delivery or cartilage tissue engineering.

  11. Combined Quenching Mechanism of Anthracene Fluorescence by Cetylpyridinium Chloride in Sodium Dodecyl Sulfate Micelles.

    PubMed

    Soemo, Angela R; Pemberton, Jeanne E

    2014-03-01

    The Stern-Volmer quenching constant (KSV) for quenching of anthracene fluorescence in sodium dodecyl sulfate (SDS) micelles by pyridinium chloride has been reported previously to be 520 M(-1) based on steady state fluorescence measurements. However, such measurements cannot distinguish static versus dynamic contributions to the overall quenching. In the work reported here, the quenching dynamics of anthracene in SDS micelles by cetylpyridinium chloride (CPC), an analogue of pyridinium chloride, were investigated using both steady state and time resolved fluorescence quenching. Concurrent measurement of the decrease in fluorescence intensity and lifetime of anthracene provide a quantitative evaluation of collision induced (i.e. dynamic) versus complex formation (i.e. static) quenching of the anthracene fluorophore. The results reveal that a combined quenching mechanism is operative with approximately equal constants of 249 ± 6 M(-1) and 225 ± 12 M(-1) for dynamic and static quenching, respectively.

  12. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate.

    PubMed Central

    Ward, R L; Ashley, C S

    1980-01-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about 1.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodecyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks. PMID:6250474

  13. Dielectric constants and electrical conductivities of sodium dodecyl sulfate in aqueous solutions

    SciTech Connect

    Abe, M.; Ogino, K.

    1981-03-01

    Dielectric properties of sodium dodecyl sulfate in aqueous solution have been studied. The dielectric constant and ac electrical conductivity were measured in the frequency range 30 Hz to 6 MHz. At lower frequencies, with increasing concentrations of sodium dodecyl sulfate, dielectric properties were greatly affected by polarization on the surfaces of the electrode, the so-called space charge polarization. ac electrical conductivities were dependent on the concentration of sodium dodecyl sulfate at all frequencies. The activation energies of dc electrical conduction were much larger in the molecular state than in the aggregation state. The radius of a spherical particle with an electric double layer could be calculated through the measurement of dielectric constant and dc electrical conductivity. 18 references.

  14. Green synthesis of gold nanoparticles reduced and stabilized by sodium glutamate and sodium dodecyl sulfate.

    PubMed

    Cabrera, Gil Felicisimo S; Balbin, Michelle M; Eugenio, Paul John G; Zapanta, Charleo S; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2017-03-18

    The Turkevich method has been used for many years in the synthesis of gold nanoparticles. Lately, the use of plant extracts and amino acids has been reported, which is valuable in the field of biotechnology and biomedicine. The AuNPs was synthesized from the reduction of HAuCl4 3H2O by sodium glutamate and stabilized with sodium dodecyl sulfate. The optimum concentrations for sodium glutamate and sodium dodecyl sulfate in the synthesis process were determined. The characteristics of the synthesized AuNPs was analysed through UV-Vis Spectroscopy and SEM. The AuNPs have spherical shape with a mean diameter of approximately 21.62 ± 4.39 nm and is well dispersed. FTIR analysis of the AuNPs reflected that the sulfate head group of sodium dodecyl sulfate is adsorbed at the surface of the AuNPs. Thus, we report herein the synthesis of AuNPs using sodium glutamate and sodium dodecyl sulfate.

  15. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    SciTech Connect

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-06-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility.

  16. Specific effects of monovalent counterions on the structural and interfacial properties of dodecyl sulfate monolayers.

    PubMed

    Allen, Daniel T; Saaka, Yussif; Pardo, Luis Carlos; Lawrence, M Jayne; Lorenz, Christian D

    2016-11-09

    A series of molecular dynamics simulations have been conducted in order to study the specific ion effects of Li(+), Na(+), Cs(+) and NH4(+) cations on dodecyl sulfate (DS(-)) monolayers. Varying the counterion had no appreciable effect on the structure of the surfactant molecules within the different monolayers. However, the different counterions have a significant effect on the interfacial properties of the monolayer. In particular, we have investigated to what extent each of the counterions is dehydrated when interacting with the DS(-) headgroup, the specific interactions between the counterions and the headgroup and the salt bridging of the headgroups caused by each counterion. The NH4(+) ions are found to directly compete with water molecules to form hydrogen bonds with the DS(-) headgroup and as a result the ammonium dodecyl sulfate monolayer is the least hydrated of any of those studied. The Cs(+) ions are strongly bound to the headgroup and weakly hydrated, such that they would prefer to displace water in the DS(-) hydration shell to interact with the headgroups. In the case of the Li(+) ions, they interact almost as strongly with the DS(-) headgroups as the Na(+) ions, but are generally less hydrated than the Na(+) ions and consequently the lithium dodecyl sulfate monolayers are less hydrated than the sodium dodecyl sulfate monolayers. Therefore, by changing the counterion, one can modify the interfacial properties of the surfactant monolayer, and thus affect their ability to encapsulate poorly water soluble drug molecules, which we discuss further in the manuscript.

  17. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  18. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  19. Cytokine release and cytotoxicity in human keratinocytes and fibroblasts induced by phenols and sodium dodecyl sulfate.

    PubMed

    Newby, C S; Barr, R M; Greaves, M W; Mallet, A I

    2000-08-01

    Phenolic compounds used in pharmaceutical and industrial products can cause irritant contact dermatitis. We studied the effects of resorcinol, phenol, 3,5-xylenol, chloroxylenol, and 4-hexyl-resorcinol on normal human epidermal keratinocytes and dermal fibroblasts for cytotoxicity and cytokine release, determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide methodology and enzyme-linked immunosorbent assay, respectively. An inverse correlation between phenol concentrations causing a 50% reduction in keratinocyte and fibroblast viability at 24 h and their octanol water-partition coefficients (i.e., hydrophobicity) was observed. 3,5-xylenol, chloroxylenol, hexyl-resorcinol, and sodium dodecyl sulfate, but not resorcinol or phenol, induced release of interleukin-1alpha from keratinocytes at cytotoxic concentrations. Variable release of tumor necrosis factor-alpha and interleukin-8 from keratinocytes occurred only at toxic threshold concentrations of the phenols or sodium dodecyl sulfate. Subtoxic concentrations of phenols or sodium dodecyl sulfate did not induce cytokine release from keratinocytes. Neither the phenols nor sodium dodecyl sulfate induced release of the chemokines interleukin-8, growth-related oncogene-alpha or monocyte chemotactic protein-1 from fibroblasts. Conditioned media from keratinocytes treated with cytotoxic concentrations of 3,5-xylenol, chloroxylenol, hexyl-resorcinol, or sodium dodecyl sulfate stimulated further release of the chemokines from fibroblasts above that obtained with control media. Rabbit anti-interleukin-1alpha serum inhibited keratinocyte-conditioned media induction of chemokine release. We have shown a structure-cytotoxicity relationship for a series of phenols as well as an association of interleukin-1alpha release with a cytotoxic effect. We demonstrated a cytokine cascade amplification step by the actions of stimulated keratinocyte media on cultured dermal fibroblasts, identifying interleukin-1alpha as

  20. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    SciTech Connect

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  1. The Distribution of mixtures of dodecyl ether of poly(23)ethylene glycol with sodium dodecyl sulfate and dodecyltrimethylammonium bromide in the water/octane system

    NASA Astrophysics Data System (ADS)

    Soboleva, O. A.; Pronchenko, K. S.; Chernysheva, M. G.; Badun, G. A.

    2012-03-01

    The scintillation phase and tensiometry methods were used to study the mutual influence of dodecyl ether of poly(23)ethylene glycol (Brij-35) with sodium dodecyl sulfate and Brij-35 with dodecyltrimethylammonium bromide on the distribution in the water/octane system and adsorption at the liquid/liquid interface. The composition of mixed adsorption layers was determined and interaction parameters between molecules were calculated according to the Rosen model.

  2. Almost fooled again: new insights into cesium dodecyl sulfate micelle structures.

    PubMed

    Lee, Han Seung; Adhimoolam Arunagirinathan, Manickam; Vagias, Apostolos; Lee, Sangwoo; Bellare, Jayesh R; Davis, H Ted; Kaler, Eric W; McCormick, Alon V; Bates, Frank S

    2014-11-04

    Replacing sodium with cesium as the counterion for dodecyl sulfate in aqueous solution results in stronger complexation and charge shielding, which should lead to larger micelles and ultimately to a cylindrical structure (cf. spheres for sodium dodecyl sulfate), but small angle X-ray scattering (SAXS) and small angle neutron scattering patterns previously have been interpreted with ellipsoidal micelle models. We directly image CsDS micelles via cryo-transmission electron microscopy and report large core-shell spherical micelles at low concentrations (≤2 wt %) and cylindrical micelles at higher concentrations (5.0 and 8.1 wt %). These structures are shown to be consistent with SAXS patterns modeled using established form factors. These findings highlight the importance of combining real and reciprocal space imaging techniques in the characterization of self-assembled soft materials.

  3. Binding of lithium dodecyl sulfate to polyacrylamide gel at 4 degrees C perturbs electrophoresis of proteins.

    PubMed

    Kubo, K; Takagi, T

    1986-07-01

    Although polyacrylamide gel has no affinity to lithium dodecyl sulfate (LDS) at 25 degrees C, the gel maximally binds 17 mg of LDS per gram dry weight at 4 degrees C. When polyacrylamide gel electrophoresis is carried out at 4 degrees C in the presence of LDS instead of sodium dodecyl sulfate (SDS) using a continuous buffer system, migration of proteins with lower molecular weight is accelerated as a result of the deficiency of LDS in the frontal region of the gel. When the gel is saturated with LDS, electrophoresis in the presence of LDS at 4 degrees C shows a resolution higher than that of SDS-polyacrylamide gel electrophoresis at 25 degrees C.

  4. Solute-solvent interactions in micellar electrokinetic chromatography. Selectivity of lithium dodecyl sulfate-lithium perfluorooctanesulfonate mixed-micellar buffers.

    PubMed

    Fuguet, E; Ràfols, C; Bosch, E; Rosés, M; Abraham, M H

    2001-01-12

    The solvation parameter model has been applied to the characterization of micellar electrokinetic chromatographic (MEKC) systems with mixtures of lithium dodecyl sulfate and lithium perfluorooctanesulfonate as surfactant. The variation in MEKC surfactant composition results in changes in the coefficients of the correlation equation, which in turns leads to information on solute-solvent and solute-micelle interactions. Lithium perfluorooctanesulfonate is more dipolar and hydrogen bond acidic but less polarizable and hydrogen bond basic than lithium dodecyl sulfate. Therefore mixtures of lithium dodecyl sulfate and lithium perfluorooctanesulfonate cover a very wide range of polarity and hydrogen bond properties, which in turn results in important selectivity changes for analytes with different solute properties.

  5. Extraction of rotavirus from human feces by treatment with lithium dodecyl sulfate.

    PubMed

    Croxson, M C; Bellamy, A R

    1981-01-01

    A procedure has been developed for the isolation of rotavirus from human fecal specimens based on the resistance of the virus to treatment with cold 1% lithium dodecyl sulfate at neutral pH. A single detergent treatment of fecal material followed by low- and high-speed centrifugations yielded a virus suspension of sufficient purity for viral ribonucleic acid to be analyzed directly by electrophoresis on polyacrylamide gels.

  6. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate.

    PubMed

    Iyota, Hidemi; Krastev, Rumen

    2009-04-01

    The adsorption, micelle formation, and salting out of sodium dodecyl sulfate in the presence of sodium chloride were studied from the viewpoint of their mixed adsorption and aggregate formation. The surface tension of aqueous solutions of a sodium chloride-sodium dodecyl sulfate mixture was measured as a function of the total molality and composition of the mixture. Phase diagrams of adsorption and aggregate formation were obtained by applying thermodynamic equations to the surface tension. Judging from the phase diagrams, sodium chloride and sodium dodecyl sulfate are miscible in the adsorbed film at very large composition of sodium chloride and in the salted-out crystalline particle, while they are immiscible in the micelle. The miscibilities in the adsorbed film, micelle, and crystalline particle increase in the following order: particle > adsorbed film > micelle. The difference in miscibility among the oriented states was ascribed to the difference in geometry between the adsorbed film and micelle and to the interaction between bilayer surfaces in the particle.

  7. Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis.

    PubMed

    Broglie, R M; Hunter, C N; Delepelaire, P; Niederman, R A; Chua, N H; Clayton, R K

    1980-01-01

    When purified photosynthetic membranes from Rhodopseudomonas sphaeroides were treated with lithium dodecyl sulfate and subjected to polyacrylamide gel electrophoresis at 4 degrees C, up to 11 pigment-protein complexes were resolved. Absorption spectra revealed that the smallest complex contained reaction center pigments and the others contained the antenna components B850 and B875 in various proportions. Of these antenna complexes, the largest was almost entirely B850 and the smallest contained only B875. After solubilization at 100 degrees C and electrophoresis on polyacrylamide gradient gels, the B850 complex gave rise to two polypeptide components migrating with apparent Mr of 10,000 and 8000, whereas with the B875 complex, two components were observed with apparent Mr of 12,000 and 8000. The reaction center complex gave rise to only the 24 and 21 kilodalton polypeptide subunits. Fluorescence emission spectra showed maxima at 872 and 902 nm for B850 and B875, respectively. Analyses of bacteriochlorophyll a and carotenoids indicated that, in the B875 complex, two molecules of each of these pigments are associated with the two polypeptides. The associations of B850 and B875 in large and small complexes obtained by lithium dodecyl sulfate treatment are consistent with models of their organization within the membrane.

  8. Anionic-zwitterionic mixed micelles in micellar electrokinetic chromatography: sodium dodecyl sulfate-N-dodecyl-N,N-dimethylammonium-3-propane-1-sulfonic acid.

    PubMed

    Ahuja, E S; Preston, B P; Foley, J P

    1994-07-15

    A zwitterionic surfactant, N-dodecyl-N,N-dimethylammonium-3-propane-1- sulfonic acid (SB-12), was used in combination with an anionic surfactant, sodium dodecyl sulfate (SDS), to form a novel pseudostationary phase for use in micellar electrokinetic chromatography. This mixed micellar system was characterized in terms of analyte retention, selectivity, efficiency, elution range, and resolution; and compared to results obtained using only SDS. A typically used SDS concentration, 20 mM, was chosen as a reference to which comparisons could be drawn. With 20 mM SDS, the optimum concentration range of 10-20 mM SB-12 provided efficiencies that were 2-4 times greater than with SDS alone, with minimal (< 15%) changes in the elution range and electroosmotic flow. The addition of 40 and 60 mM SB-12 also resulted in efficiencies on average of 600,000-800,000 theoretical plates/m, but at a significant reduction in the elution range and peak capacity. Retention factors (k') for the various neutral analytes increased by 20% with addition of 10 mM SB-12 and by approximately 60% with addition of 40 and 60 mM SB-12, while operating currents remained constant as SB-12 was added. Geometrical isomers p-nitrotoluene and m-nitrotoluene, that co-eluted with 20 mM SDS, were baseline resolved with the addition of 10 mM SB-12; in addition, methylene selectivity was greatest at this composition. No capillary wall interactions or coating effects were observed with the SDS-SB-12 mixed micellar system, in contrast to previously studied anionic-non-ionic mixed micellar system, SDS-Brij 35. Consequently, migration times were very repeatable (< or = 1.2% R.S.D.).

  9. Sodium Dodecyl Sulfate Adsorption onto Positively Charged Surfaces: Monolayer Formation With Opposing Headgroup Orientations

    PubMed Central

    Song, Sang-Hun; Koelsch, Patrick; Weidner, Tobias; Wagner, Matthew S.; Castner, David G.

    2013-01-01

    The adsorption and structure of sodium dodecyl sulfate (SDS) layers onto positively charged films have been monitored in situ with vibrational sum-frequency-generation (SFG) spectroscopy and surface plasmon resonance (SPR) sensing. Substrates with different charge densities and polarities used in these studies include CaF2 at different pH values as well as allylamine and heptylamine films deposited onto CaF2 and Au substrates by radio frequency glow discharge deposition. The SDS films were adsorbed from aqueous solutions ranging in concentration from 0.067 to 20 mM. In general the SFG spectra exhibited well resolved CH and OH peaks. However, at SDS concentrations between 1–8 mM the SFG CH and OH intensities decreased close to background levels. Combined data sets from molecular conformation, orientation, and order sensitive SFG with mass sensitive SPR suggest that the observed changes in SFG intensities above 0.2 mM are related to structural arrangements in the SDS layer. A model is proposed where the SFG intensity minimum between 1–8 mM is associated with a monolayer containing two head group orientations, one pointing towards the substrate and one pointing towards the solution phase. The SFG peaks observed at concentrations below 0.2 mM are dominated by the presence of adsorbed contaminants such as fatty alcohols (e.g., dodecanol), which are more surface active than SDS. As SDS solution concentration is increased above 1 mM SDS molecules are incorporated in the surface layer, with dodecanol continuing to be present in the surface layer for solution concentrations up to at least critical micelle concentration. PMID:24024777

  10. Heme degradation upon production of endogenous hydrogen peroxide via interaction of hemoglobin with sodium dodecyl sulfate.

    PubMed

    Salehi, N; Moosavi-Movahedi, A A; Fotouhi, L; Yousefinejad, S; Shourian, M; Hosseinzadeh, R; Sheibani, N; Habibi-Rezaei, M

    2014-04-05

    In this study the hemoglobin heme degradation upon interaction with sodium dodecyl sulfate (SDS) was investigated using UV-vis and fluorescence spectroscopy, multivariate curve resolution analysis, and chemiluminescence method. Our results showed that heme degradation occurred during interaction of hemoglobin with SDS producing three fluorescent components. We showed that the hydrogen peroxide, produced during this interaction, caused heme degradation. In addition, the endogenous hydrogen peroxide was more effective in hemoglobin heme degradation compared to exogenously added hydrogen peroxide. The endogenous form of hydrogen peroxide altered oxyHb to aquamethemoglobin and hemichrome at low concentration. In contrast, the exogenous hydrogen peroxide lacked this ability under same conditions.

  11. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    SciTech Connect

    Ahmed, Abdullah Ahmed Ali; Talib, Zainal Abidin; Hussein, Mohd Zobir

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8. The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by

  12. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    SciTech Connect

    Liu, Renyu Bu, Weiming; Xi, Jin; Mortazavi, Shirin R.; Cheung-Lau, Jasmina C.; Dmochowski, Ivan J.; Loll, Patrick J.

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  13. Characteristics of the complexing of chitosan with sodium dodecyl sulfate, according to IR spectroscopy data and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Shilova, S. V.; Romanova, K. A.; Galyametdinov, Yu. G.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-06-01

    The complexing of protonated chitosan with dodecyl sulfate ions in water solutions is studied using IR spectroscopy data and quantum-chemical calculations. It is established that the electrostatic interaction between the protonated amino groups of chitosan and dodecyl sulfate ions is apparent in the IR spectrum as a band at 833 cm-1. The need to consider the effect the solvent has on the formation of hydrogen-bound ion pairs [CTS+ ṡ C12H25O 3 - ] is shown via a quantum-chemical simulation of the equilibrium geometry and the energy characteristics of complexing and hydration.

  14. DCl Transport through Dodecyl Sulfate Films on Salty Glycerol: Effects of Seawater Ions on Gas Entry.

    PubMed

    Shaloski, Michael A; Sobyra, Thomas B; Nathanson, Gilbert M

    2015-12-17

    Gas-liquid scattering experiments were employed to measure the entry and dissociation of the acidic gas DCl into salty glycerol coated with dodecyl sulfate ions (DS(-) = CH3(CH2)11OSO3(-)). Five sets of salty solutions were examined: 0.25 and 0.5 M NaCl, 0.25 M MgCl2, 0.25 M CaCl2, and artificial sea salt. DS(-) bulk concentrations were varied from 0 to 11 mM, generating DS(-) surface coverages of up to 34% of a compact monolayer, as determined by surface tension and argon scattering measurements. DS(-) surface segregation is enhanced by the dissolved salts in the order MgCl2 ≈ CaCl2 > sea salt > NaCl. We find that DCl penetration through the dodecyl chains decreases at first gradually and then sharply as more chains segregate to the surface, dropping from 70% entry on bare glycerol to 11% for DS(-) surface concentrations of 1.8 × 10(14) cm(-2). When plotted against DS(-) surface concentration, the DCl entry probabilities fall within a single band for all solutions. These observations imply that the monovalent Na(+) and divalent Ca(2+) and Mg(2+) ions do not bind differently enough to the ROSO3(-) headgroup to significantly alter the diffusive passage of DCl molecules through the dodecyl chains at the same DS(-) chain density. The chief difference among the salts is the greater propensity for the divalent salts to expel the soluble ionic surfactant to the surface.

  15. Use of nanoparticles to improve the performance of sodium dodecyl sulfate flooding in a sandstone reservoir

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mohammad Ali

    2016-12-01

    One of the prominent enhanced oil recovery (EOR) methods in oil reservoirs is surfactant flooding. The purpose of this research is to study the effect of nanoparticles on the surfactant adsorption. Real reservoir sandstone rock samples were implemented in adsorption tests. The ranges of the initial surfactant and nano silica concentrations were from 500 to 5000 ppm and 500 ppm to 2000 ppm, respectively. The commercial surfactant used is sodium dodecyl sulfate (SDS) as an ionic surfactant and two different types of nano silica were employed. The rate of surfactant losses extremely depends on the concentration of surfactant in the system, and it was found that the adsorption of surfactant decreased with increasing the concentration of nano silica. Also, it was found that hydrophobic nano silica is more effective than hydrophilic nanoparticles.

  16. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    PubMed Central

    Li, Li; Molin, Soeren; Yang, Liang; Ndoni, Sokol

    2013-01-01

    Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h) and significantly reduce biofilm formation in long-term (1 week) by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability. PMID:23377015

  17. Sand sorption process for the removal of sodium dodecyl sulfate (anionic surfactant) from water.

    PubMed

    Khan, M Nasiruddin; Zareen, Uzma

    2006-05-20

    Granite sand was used to adsorb anionic surfactant, sodium dodecyl sulfate (SDS) from water at natural pH 6.25. The effect of adsorbent size, pH, temperature and amount of adsorbent has been examined. The results indicate that the Langmuir model provides the best correlation of experimental data. Thermodynamic parameters like entropy, enthalpy and free energy of adsorption were evaluated. Decreasing the temperature accelerates the adsorption of SDS onto sand surface. The kinetic data were analyzed by using pseudo-first order Lagergren equation. Adsorption of SDS was exothermic and dominated by physisorption with activation energy (Ea) 33.65 kJ mol(-1). In addition, regeneration of granite sand by washing with Fenton likes reagent was examined. The results suggested that granite sand is suitable as a sorbent material for recovery and adsorption of SDS from aqueous solutions in view of its effectiveness and cheaper cost.

  18. Characterization of a Disordered Protein During Micellation: Interactions of α-Synuclein with Sodium Dodecyl Sulfate

    PubMed Central

    Tian, Jianhui; Sethi, Anurag; Anunciado, Divina; Vu, Dung M.

    2012-01-01

    To better understand the interaction of α-Synuclein (αSyn) with lipid membranes, we carried out self-assembly molecular dynamics simulations of αSyn with monomeric and micellar sodium dodecyl sulfate (SDS), a widely used membrane mimic. We find that both electrostatic and hydrophobic forces contribute to the interactions of αSyn with SDS. In the presence of αSyn, our simulations suggest that SDS aggregates along the protein chain and forms small size micelles at very early times. Aggregation is followed by formation of a collapsed protein-SDS micelle complex, which is consistent with experimental results. Finally, interaction of αSyn with preformed micelles induces alterations in the shape of the micelle, and the N-terminal helix (residues 3 through 37) tends to associate with micelles. Overall, our simulations provide an atomistic description of the early timescale αSyn-SDS interaction during the self-assembly of SDS into micelles. PMID:22439820

  19. Adsorption of sodium dodecyl sulfate on Ge substrate: the effect of a low-polarity solvent.

    PubMed

    Viana, Rommel B; da Silva, Albérico B F; Pimentel, André S

    2012-01-01

    This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 ± 0.3) × 10(14) molecules cm(-2) in CHCl(3), while with the use of CCl(4) as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.

  20. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate

    SciTech Connect

    Lacks, S.A.; Springhorn, S.S.

    1980-08-10

    A number of enzymes, including amylases, dehydrogenases, and proteases, were shown to be renaturable after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Enzyme activity was detected in situ by action on substrates introduced into the gel and subsequent staining of either the product or unreacted substrate. Enzymes appeared to recover activity as soon as the detergent diffused out of the gel. Renatured enzymes were retained in gels after electrophoresis longer than native enzymes which had been subjected to electrophoresis in the absence of detergent. Re-electrophoresis of the renatured enzymes showed that part of the retained activity was physically anchored to the gel, possibly by the folding of polypeptides around the gel matrix as the enzymes were renatured.

  1. Improved detection of amylase activity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with copolymerized starch.

    PubMed

    Martínez, T F; Alarcón, F J; Díaz-López, M; Moyano, F J

    2000-08-01

    An improved method, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for detection of amylase activity is described. This method will allow better characterization of certain amylases than that obtained by the Davis technique. The main features of the technique are: (i) identification of amylase bands and molecular mass determination are possible in the same gel; (ii) the hydrolysis of copolymerized substrate during electrophoretic separation is prevented using very low temperatures instead of inactivating agents such as chelating agents; and (iii) the technique is applicable to reveal amylase activity in a wide range of biological samples. The method is not useful for enzymes sensitive to SDS and for high molecular mass amylases.

  2. Adsorption of sodium dodecyl sulfate on kaolin from different alcohol-water mixtures

    SciTech Connect

    Blokhus, A.M.; Hoeiland, H.; Gjerde, M.I.; Ersland, E.K.

    1996-05-10

    The adsorption of surfactants on solid/liquid interfaces is a subject of great interest especially for enhanced oil recovery processes. The adsorption of sodium dodecyl sulfate (SDS) onto kaolin from different alcohol-water mixtures has been studied. The alcohols used were 1-propanol, 1-butanol, 1-pentanol, and 1-decanol containing 3.5 or 7 wt% water. In all cases the adsorption isotherms show a rather steep rise at low surfactant concentrations. Thereafter, there is a more or less continuous leveling off. The plateau adsorption of SDS on kaolin is found to increase with increasing chain length of the alcohol in the alcohol-water solvent. The adsorption properties are discussed in relation to the dielectric constant of the solvents; the aggregation properties of the surfactant in the bulk phase and the molecular packing of the surfactant in the adsorbed state are also considered.

  3. Adsorption of Sodium Dodecyl Sulfate on Ge Substrate: The Effect of a Low-Polarity Solvent

    PubMed Central

    Viana, Rommel B.; da Silva, Albérico B. F.; Pimentel, André S.

    2012-01-01

    This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 ± 0.3) × 1014 molecules cm−2 in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30–40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided. PMID:22942685

  4. Improving the performance of starch-based wood adhesive by using sodium dodecyl sulfate.

    PubMed

    Li, Zhaofeng; Wang, Jian; Cheng, Li; Gu, Zhengbiao; Hong, Yan; Kowalczyk, Agnieszka

    2014-01-01

    Sodium dodecyl sulfate (SDS) was used to improve the performance of starch-based wood adhesive. The effects of SDS on shear strength, viscosity and storage stability were investigated. It was shown that, although the addition of 1.5-2% (dry starch basis) SDS resulted in a slight decrease in shear strength, the mobility and storage stability of adhesive were significantly enhanced. Possible mechanisms regarding specific action of SDS were discussed. It was proved, using blue value or differential scanning calorimetry (DSC) analysis, that the amylose-SDS complexes were formed in the adhesive. The complex formation or simple adsorption of SDS with starch molecules might hinder the aggregation of latex particles, as shown by scanning electron microscopy images, and inhibit starch retrogradation, as observed by DSC analysis. As a result, in the presence of SDS, the adhesive had higher mobility and storage stability, indicating that SDS could be used to prepare starch-based wood adhesives with high performance.

  5. Removal of sodium dodecyl sulfate surfactant from aqueous dispersions of single-wall carbon nanotubes.

    PubMed

    Rossi, Jamie E; Soule, Karen J; Cleveland, Erin; Schmucker, Scott W; Cress, Cory D; Cox, Nathanael D; Merrill, Andrew; Landi, Brian J

    2017-06-01

    A reagent-based treatment method was developed for the removal of sodium dodecyl sulfate (SDS) from aqueous dispersions of single-wall carbon nanotubes (SWCNTs). Based on a survey of various reagents, organic solvents emerged as the most effective at interrupting the SDS:SWCNT interaction without producing deleterious side reactions or causing precipitation of the surfactant. Specifically, treatment with acetone or acetonitrile allows for the facile isolation of SWCNTs with near complete removal of SDS through vacuum filtration, resulting in a 100x reduction in processing time. These findings were validated via quantitative analysis using thermogravimetric analysis, Raman spectroscopy, 4-point probe electrical measurement, and X-ray photoelectron spectroscopy. Subsequent thermal oxidation further enhances the purity of the reagent treated samples and yields bulk SWCNT samples with >95% carbonaceous purity. The proposed reagent treatment method thus demonstrates potential for large volume SWCNT processing.

  6. Effect of sodium dodecyl sulfate surfactant on rheological properties of gellan gum hydrogels

    NASA Astrophysics Data System (ADS)

    Mithra, K.; Khandai, Santripti; Jena, Sidhartha S.

    2017-05-01

    Rheological measurements on gellan gum hydrogels were carried out to investigate the effect of an anionic surfactant, sodium dodecyl sulfate (SDS) on hydrogel structure. The gel strength was found to be strongly correlated to surfactant concentration. Below the Critical Micellar Concentration (CMC), we observed an increase in gel strength with rise in surfactant concentration and a reverse trend is observed for surfactant concentration above CMC. The gel network structure is found to be highly elastic below CMC, while an aggregated network is observed at higher concentration of surfactant. With the addition of surfactant, sol to gel transition temperature of Gellan Gum is shifted to higher temperature, suggesting addition of surfactant promotesas well as stabilizes the helix formation.

  7. A direct calorimetric determination of denaturation enthalpy for lysozyme in sodium dodecyl sulfate.

    PubMed

    Behbehani, G Rezaei; Saboury, A A; Taleshi, E

    2008-02-15

    Thermodynamics of the interaction between sodium dodecyl sulfate (SDS) with lysozyme were investigated at pH 7.0 and 27 degrees C in phosphate buffer by isothermal titration calorimetry. A new method to follow protein denaturation, and the effect of surfactants on the stability of proteins was introduced. The new solvation model was used to reproduce the enthalpies of lysozyme-SDS interaction over the whole range of SDS concentrations. The solvation parameters recovered from the new equation, attributed to the structural change of lysozyme and its biological activity. At low concentrations of SDS, the binding is mainly electrostatic, with some simultaneous interaction of the hydrophobic tail with nearby hydrophobic patches on the lysozyme. These initial interactions presumably cause some protein unfolding and expose additional hydrophobic sites. The enthalpy of denaturation is 160.81+/-0.02 kJ mol(-1) for SDS.

  8. Sodium dodecyl sulfate-agarose gel electrophoresis for the detection and isolation of amyloid curli fibers.

    PubMed

    Sitaras, Chris; Naghavi, Mahsa; Herrington, Muriel B

    2011-01-15

    Curli are amyloid-like fibers on the surface of some strains of Escherichia coli and Salmonella enteritidis. We tested the use of horizontal sodium dodecyl sulfate (SDS)-agarose gel electrophoresis to detect, isolate, and quantitate curli. Cell extracts fractionated in SDS-agarose gels and stained with Coomassie blue exhibited a soluble fraction that entered the gel and an insoluble fraction that remained in the well. Much more insoluble material was observed with curli-proficient strains than with strains that do not make curli. Both highly purified curli and the insoluble material isolated from an SDS-agarose gel could be dissociated into monomers when treated with formic acid. For quantitation, we immobilized samples in SDS-agarose prior to electrophoresis. This avoids losses during the staining of the gel. Our methods provide a rapid and simple fractionation of curli using equipment that is readily available.

  9. Flour sodium dodecyl sulfate (SDS)-extractable protein level as a cookie flour quality indicator.

    PubMed

    Pareyt, Bram; Bruneel, Charlotte; Brijs, Kristof; Goesaert, Hans; Delcour, Jan A

    2010-01-13

    Flour characteristics of laboratory-milled flour fractions of two wheat cultivars were related to their cookie-baking performance. Cultivar (cv.) Albatros wheat milling yielded fractions with lower damaged starch (DS) and arabinoxylan levels and higher sodium dodecyl sulfate-extractable protein (SDSEP) levels than did cv. Meunier wheat milling. During baking, cv. Albatros flour doughs spread faster and set later than their cv. Meunier counterparts and, hence, resulted in larger cookie diameters. DS levels negatively affected spread rate during both cv. Albatros (R2=0.68) and cv. Meunier (R2=0.51) cookie baking. SDSEP levels also influenced cookie quality. The use of flour heat-treated to reduce its SDSEP levels to different degrees led to reduction of the set time (R2=0.90). It was deduced that larger gluten polymer sizes limit dough spread time during baking and that, apart from DS level, the SDSEP level is an indicator for cookie flour quality.

  10. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neuropathogenic Clostridium botulinum

    USDA-ARS?s Scientific Manuscript database

    An acetone-sodium dodecyl sulfate (SDS) disruption method was used for the extraction of cellular proteins from neurotoxigenic Clostridium botulinum. The amount of protein extracted per gram of dry weight and the protein profile as revealed by polyacrylamide gel electrophoresis (PAGE) was comparabl...

  11. A study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and sodium (lithium) dodecyl sulfate by the small-angle neutron scattering method

    NASA Astrophysics Data System (ADS)

    Rajewska, A.; Medrzycka, K.; Hallmann, E.

    2007-09-01

    The micellization in mixed aqueous systems based on a new nonionic surfactant, namely, heptaethylene glycol monotetradecyl ether (C14E7), and an anionic surfactant, namely, sodium dodecyl sulfate, sodium decyl sulfate, or lithium dodecyl sulfate, is studied by small-angle neutron scattering. Preliminary results of the investigation into the behavior of C14E7 aqueous solutions (at two concentrations, 0.17 and 0.50%) upon addition of small amounts of three different classical anionic surfactants are reported.

  12. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    SciTech Connect

    Yilmaz, Ceren; Unal, Ugur; Yagci Acar, Havva

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures. The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.

  13. Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent.

    PubMed

    Pal, Mahi; Rai, Rewa; Yadav, Anita; Khanna, Rajesh; Baker, Gary A; Pandey, Siddharth

    2014-11-11

    Deep eutectic solvents (DESs) have shown tremendous promise as green solvents with low toxicity and cost. Understanding molecular aggregation processes within DESs will not only enhance the application potential of these solvents but also help alleviate some of the limitations associated with them. Among DESs, those comprising choline chloride and appropriate hydrogen-bond donors are inexpensive and easy to prepare. On the basis of fluorescence probe, electrical conductivity, and surface tension experiments, we present the first clear lines of evidence for self-aggregation of an anionic surfactant within a DES containing a small fraction of water. Namely, well-defined assemblies of sodium dodecyl sulfate (SDS) apparently form in the archetype DES Reline comprising a 1:2 molar mixture of choline chloride and urea. Significant enhancement in the solubility of organic solvents that are otherwise not miscible in choline chloride-based DESs is achieved within Reline in the presence of SDS. The remarkably improved solubility of cyclohexane within SDS-added Reline is attributed to the presence of spontaneously formed cyclohexane-in-Reline microemulsions by SDS under ambient conditions. Surface tension, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), density, and dynamic viscosity measurements along with responses from the fluorescence dipolarity and microfluidity probes of pyrene and 1,3-bis(1-pyrenyl)propane are employed to characterize these aggregates. Such water-free oil-in-DES microemulsions are appropriately sized to be considered as a new type of nanoreactor.

  14. Solvation dynamics of DCM in a polypeptide-surfactant aggregate: gelatin-sodium dodecyl sulfate.

    PubMed

    Halder, Arnab; Sen, Pratik; Burman, Anupam Das; Bhattacharyya, Kankan

    2004-02-03

    Solvation dynamics of 4-(dicyanomethylidene)-2-[p-(dimethylamino)styryl]-6-methyl-4H-pyran (DCM) is studied in a polypeptide-surfactant aggregate consisting of gelatin and sodium dodecyl sulfate (SDS) in potassium dihydrogen phosphate (KP) buffer. The average solvation time (tauS) in gelatin-SDS aggregate at 45 degrees C is found to be 1780 ps, which is about 13 times slower than that in 15 mM SDS in KP buffer at the same temperature. The fluorescence anisotropy decay in gelatin-SDS aggregate is also different from that in SDS micelles in KP buffer. DCM displays negligible emission in the presence of gelatin in aqueous solution. Thus the solvation dynamics in the presence of gelatin and SDS is exclusively due to the probe (DCM) molecules at the gelatin-micelle interface. The slow solvation dynamics is ascribed to the restrictions imposed on the water molecules trapped between the polypeptide chain and micellar aggregates. The critical association concentration (cac) of SDS for gelatin is determined to be 0.5 +/- 0.1 mM.

  15. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    PubMed Central

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at −330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s−1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  16. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles.

    PubMed

    Krishnamani, Venkatramanan; Lanyi, Janos K

    2012-02-14

    We report molecular dynamics simulations of the trends in the changes in secondary structure of the seven individual helices of bacteriorhodopsin when inserted into sodium dodecyl sulfate (SDS) micelles, and their dependence on the amino acid sequence. The results indicate that the partitioning of the helices in the micelles and their stability are dependent on the hydrophobicity of the transmembrane segments. Helices A, B, and E are stable and retain their initial secondary structure throughout the 100 ns simulation time. In contrast, helices C, D, F, and G show structural perturbations within the first 10 ns. The instabilities are localized near charged residues within the transmembrane segments. The overall structural instability of the helix is correlated with its partitioning to the surface of the micelle and its interaction with polar groups there. The in silico experiments were performed to complement the in vitro experiments that examined the partial denaturation of bacteriorhodopsin in SDS described in the preceding article (DOI 10.1021/bi201769z ). The simulations are consistent with the trends revealed by the experimental results but strongly underestimate the extent of helix to extended coil transformation. The reason may be either that the sampling time was not sufficiently long or, more interestingly, that interhelix residue interactions play a role in the unfolding of the helices.

  17. Interaction of poly(N-isopropylacrylamide) with sodium dodecyl sulfate below the critical aggregation concentration.

    PubMed

    Uehara, Nobuo; Ogawa, Minami

    2014-06-10

    Interaction between the thermoresponsive polymer poly(N-isopropylacrylamide) (P-NIP) and sodium dodecyl sulfate (SDS) both above and below its phase transition temperature was examined under dilute conditions. Above the lower critical solution temperature (LCST) of P-NIP (32 °C), 0.01 wt % P-NIP specifically interacted with 1.0 × 10(-5) mol/L SDS to form a precipitate. However, when SDS was added at concentrations above or below 1.0 × 10(-5) mol/L, the P-NIP solution remained clear above the LCST. A fluorometric probe, N-phenyl-naphthalene, indicated that the hydrophobicity of the aggregates composed of P-NIP and SDS changed at an SDS concentration of 1.0 × 10(-5) mol/L. Although the hydrophobicity of the precipitate was similar to that of P-NIP alone at less than 1.0 × 10(-5) mol/L, it approached that of SDS homomicelles as the SDS concentration increased above 1.0 × 10(-5) mol/L. Dynamic light scattering and turbidimetry studies showed no P-NIP phase transition above an SDS concentration of 1.0 × 10(-5) mol/L, which is much lower than the reported critical association concentration (CAC) of SDS with P-NIP. This indicates that P-NIP interacted with SDS above the LSCT at much lower SDS concentration than the reported CAC.

  18. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms.

    PubMed

    Haagensen, Janus A J; Klausen, Mikkel; Ernst, Robert K; Miller, Samuel I; Folkesson, Anders; Tolker-Nielsen, Tim; Molin, Søren

    2007-01-01

    During Pseudomonas aeruginosa flow cell biofilm development, the cell population differentiates into a nonmotile subpopulation which forms microcolonies and a migrating subpopulation which eventually colonizes the top of the microcolonies, resulting in the development of mushroom-shaped multicellular structures. The cap-forming subpopulation was found to develop tolerance to membrane-targeting antimicrobial agents, such as the cyclic cationic peptide colistin and the detergent sodium dodecyl sulfate. The stalk-forming subpopulation, on the other hand, was sensitive to the membrane-targeting antibacterial agents. All biofilm-associated cells were sensitive to the antibacterial agents when tested in standard plate assays. A mutation eliminating the production of type IV pili, and hence surface-associated motility, prevented the formation of regular mushroom-shaped structures in the flow cell biofilms, and the development of tolerance to the antimicrobial agents was found to be affected as well. Mutations in genes interfering with lipopolysaccharide modification (pmr) eliminated the biofilm-associated colistin tolerance phenotype. Experiments with a PAO1 strain harboring a pmr-gfp fusion showed that only the cap-forming subpopulation in biofilms treated with colistin expresses the pmr operon. These results suggest that increased antibiotic tolerance in biofilms may be a consequence of differentiation into distinct subpopulations with different phenotypic properties.

  19. Crystallisation of sodium dodecyl sulfate and the corresponding effect of 1-dodecanol addition

    NASA Astrophysics Data System (ADS)

    Summerton, Emily; Zimbitas, Georgina; Britton, Melanie; Bakalis, Serafim

    2016-12-01

    Sodium dodecyl sulfate (SDS) exhibits crystallisation upon exposure to low temperatures, which can pose a problem in terms of product stability. In this study, non-isothermal crystallisation of SDS is investigated via differential scanning calorimetry (DSC) at concentrations that are typical of those present in many industrial liquid detergents. At different low temperatures, the crystal structures are analysed with X-ray diffraction (XRD) and it is concluded that ice formation during the surfactant crystallisation process occurs below 0 °C. The capability of the alcohol precursor, 1-dodecanol, as a seeding material for SDS crystallisation is also investigated through the use of DSC and optical microscopy. These results show that 1-dodecanol can successfully act as a seed for SDS crystallisation. Upon cooling an SDS aqueous system, the crystallisation peak in the DSC thermogram shifts to a higher temperature in the presence of 1-dodecanol. Therefore, any remnant alcohol precursor in surfactant-based formulations could have a negative impact on the product stability upon exposure to cold climates.

  20. Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications

    SciTech Connect

    Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin; Wang, Lu; Gao, Xiaoli; Su, Dian; Nicora, Carrie D.; Shukla, Anil K.; Moore, Ronald J.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2012-03-10

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides. Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.

  1. Microfluidic integration of Western blotting is enabled by electrotransfer-assisted sodium dodecyl sulfate dilution.

    PubMed

    Hou, Chenlu; Herr, Amy E

    2013-01-07

    We integrate sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with subsequent antibody probing in a single, monolithic microdevice to realize microfluidic Western blotting. A hurdle to successful on-chip Western blotting lies in restoring antibody recognition of previously sized (denatured, reduced) proteins. To surmount this hurdle, we locally dilute free SDS from SDS-protein complexes using differential electromigration of the species during electrotransfer between SDS-PAGE and blotting regions of a microchamber. Local dilution of SDS minimizes re-association of SDS with proteins offering means to restore antibody binding affinity to proteins after SDS-PAGE. To achieve automated, programmable operation in a single instrument, we utilize a 1 × 2 mm(2) glass microchamber photopatterned with spatially distinct, contiguous polyacrylamide regions for SDS-PAGE, electrotransfer, and antibody blotting. Optimization of both the SDS-PAGE and electrotransfer conditions yields transfer distances of <1 mm (40 s). The Western blot is completed in 180 s, with fully automated assay operation using programmable voltage control. After SDS-PAGE and electrotransfer, we observe ~80% capture of protein band mass on the blotting region for a model protein, C-reactive protein. This novel microfluidic Western blot approach introduces fine transport control for in-transit protein handling to form the basis for an automated, rapid alternative to conventional slab-gel Western blotting.

  2. Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation

    NASA Astrophysics Data System (ADS)

    Romanelli, M. F.; Moraes, M. C. F.; Villavicencio, A. L. C. H.; Borrely, S. I.

    2004-09-01

    Surfactants, as detergent active substances, are an important source of pollution causing biological adverse effects to aquatic organisms. Several data have been showing ecological disturbance due to the high concentration of surfactants on receiving waters and on wastewater treatment plants. Ionizing radiation has been proved as an effective technology to decompose organic substances and few papers have included ecotoxicological aspects. This paper shows the reduction of acute toxicity of a specific surfactant, sodium dodecyl sulfate (SDS), when diluted in distilled water and submitted to electron beam radiation. The study included two test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. Radiation processing resulted in an important acute toxicity removal for both assays, which can be summarized between 70% and 96%, using 3.0, 6.0, 9.0 and 12.0 kGy as radiation doses. Nevertheless, lower doses demonstrated better effect than 9.0 and 12.0 kGy and the bacterium assay was more sensitive to SDS than crustacean assay.

  3. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    NASA Astrophysics Data System (ADS)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie; Jiang, Yanping

    2016-02-01

    Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm-2, which is near the highest value in the literature. The optimal parameters of the SDS/SiO2 ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO2 particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO2 reacted with SDS to give a carbocation which then formed a Si-O-C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a new modification route.

  4. Examination of surface adsorption of cetyltrimethylammonium bromide and sodium dodecyl sulfate.

    PubMed

    Nakahara, Hiromichi; Shibata, Osamu; Moroi, Yoshikiyo

    2011-07-28

    Several pieces of experimental evidence of condensation of soluble surfactant molecules, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), into the air/water surface region from the bulk solution are presented at different added salt concentrations in order to substantiate that the concentrated molecules do not locate just at the air/solution interface. The insoluble monolayer just at the air/subphase interface for the two surfactants could be studied by surface pressure (π) versus molecular surface area (A), surface potential (ΔV) versus the area (A), infrared absorption of the surface region, and BAM (Brewster angle microscope) image. From surface tension versus concentration curves for the two surfactant solutions, the apparent molecular surface area and the cmc values were determined at different added salt concentrations, and the degree of counterion binding to micelle was found to be 0.70 and 0.73 for CTAB and SDS, respectively. Further examination was made on infrared absorption from the surface region of the surfactant solutions and on BAM images of the surface planes in order to examine the difference between the insoluble monolayer and the condensation in the surface region. Finally, the new concept of bilayer or bilamellar aggregate for soluble surfactant solutions is presented together with the former experimental evidence, which is consistent with several interfacial phenomena of the surfactant solutions.

  5. Adsorption and Aggregation Activity of Sodium Dodecyl Sulfate and Rhamnolipid Mixture.

    PubMed

    Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław

    2017-01-01

    Measurements of the surface tension, density and viscosity of sodium dodecyl sulfate (SDS) and rhamnolipid (RL) mixtures were carried out in aqueous solution. From the obtained results, composition of mixed surface layer at the water-air interface, mixed micelles, parameter of intermolecular interactions, activity of SDS and RL in the surface layer and micelles, Gibbs standard free energy of adsorption and micellization as well as Gibbs free energy of SDS and RL mixing in the surface layer and micelles were established. These parameters were discussed in the light of independent adsorption of SDS and RL and the size of their molecules as well as the area in contact with water molecules. A correlation between the number of water molecules in contact with those of SDS and RL and standard free energy of adsorption as well as micellization of these surfactants was observed. A correlation between the apparent and partial molar volumes of RL and SDS in their mixture and size of surfactant molecules as well as the average distance between molecules was also found. The parameter of intermolecular interactions indicates that there is a synergetic effect in the reduction of water surface tension and micelle formation.

  6. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration.

    PubMed

    Leng, Ling; Wang, Jian; Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai; Shih, Kaimin; Zhou, Zhengyuan; Lee, Po-Heng

    2016-11-15

    This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C14TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C14HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C14TAB and C14HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization.

  7. Mg2+-induced vesicles of tetradecyldimethylamine oxide and magnesium dodecyl sulfate.

    PubMed

    Teng, Minmin; Song, Aixin; Hao, Jingcheng

    2009-10-15

    A Mg2+-induced vesicle phase was prepared from a mixture of tetradecyldimethylamine oxide (C14DMAO) and magnesium dodecyl sulfate [Mg(DS)2] in aqueous solution. Study of the phase behavior shows that at the appropriate mixing ratios, Mg2+-ligand coordination between C14DMAO and Mg(DS)2 results in the formation of molecular bilayers, in which Mg2+ can firmly bind to the head groups of the two surfactants. The area of the head group can be reduced because of the complexation. In this case, no counterions exist in aqueous solution because of the fixation of Mg2+ ions to the bilayer membranes. Therefore, the charges of the bilayer membranes are not shielded by salts. The birefringent solutions of Mg(DS)2 and C14DMAO mixtures consist of vesicles which were determined by transmission electron microscopy (TEM) images and rheological measurements. Magnesium oxide (MgO) nanoplates were obtained via the decomposition of Mg(OH)2 which were synthesized in Mg2+-induced vesicle phase which was used as the microreactor under the existence of ammonia hydroxide. The morphologies and structures of the obtained MgO nanoplates have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that the crystal growth is along the (111) direction which can be affected by the presence of a vesicle phase having a fixation of Mg2+ ions to the bilayer membranes.

  8. Microenvironment of tryptophan residues in beta-lactoglobulin derivative polypeptide-sodium dodecyl sulfate complexes.

    PubMed

    Imamura, T; Konishi, K

    1992-06-01

    The changes of microenvironment of tryptophan residues in beta-lactoglobulin A and its cyanogen bromide (CNBr) fragments with the binding of sodium dodecyl sulfate (SDS) were studied with measurements of the rates of N-bromosuccinimide (NBS) modification reactions by stopped-flow photometry. Two tryptophan residues of carboxyamidomethylated (RCM) beta-lactoglobulin A in the states of their complexes with SDS were clearly distinguishable by their differences in NBS modification rates. We confirmed by experiments with CNBr fragments containing trytophan residue. The modification rates of Trp 19 in RCM beta-lactoglobulin A-SDS complexes were about 10-fold smaller than those expected for tryptophan residues exposed entirely to the aqueous solvent. The Trp 61 was hardly changed. The change of rate constants for Trp 19 was virtually consistent with those observed when N-acetyl-L-trytophan ethylester was dissolved in SDS micelles. For various species of polypeptide-SDS complexes, all tryptophan residues were reactive to NBS and also, for some of them, the differences in NBS modification rates were observed between tryptophan residues on a common polypeptide chain. These results suggest micellar and heterogeneous bindings of SDS to polypeptides.

  9. Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis of freshwater photosynthetic sulfur bacteria.

    PubMed

    Osuna, M Begoña; Casamayor, Emilio O

    2011-01-01

    Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis (SDS-PAGE) was carried out using different bacterial strains of the photosynthetic sulfur bacteria Chlorobium, Thiocapsa, Thiocystis, and Chromatium cultured in the laboratory, and the natural blooms in two karstic lakes (Lake Cisó and Lake Vilar, NE Spain) where planktonic photosynthetic bacteria (purple and green sulfur bacteria) massively developed accounting for most of the microbial biomass. Several extraction, solubilization, and electrophoresis methods were tested to develop an optimal protocol for the best resolution of the SDS-PAGE. Protein composition from different water depths and at different times of the year was visualized within a molecular mass range between 100 and 15 kDa yielding up to 20 different protein bands. Protein banding patterns were reproducible and changed in time and with depth in agreement with changes in photosynthetic bacteria composition. When a taxonomically stable community was followed in time, differences were observed in the intensity but not in the composition of the SDS-PAGE banding pattern. Three environmental variables directly related to the activity of sulfur bacteria (light, oxygen, and sulfide concentrations) had a significant effect on protein banding patterns and explained 33% of the variance. Changes in natural protein profiles of the bacterial blooms agreed with changes in species composition and in the in situ metabolic state of the populations.

  10. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis.

    PubMed Central

    Flahaut, S; Frere, J; Boutibonnes, P; Auffray, Y

    1996-01-01

    The resistance to detergents and detergent-induced tolerance of a gastrointestinal organism, Enterococcus faecalis ATCC 19433, were examined. The most remarkable observation was the rapid response of cells in contact with bile salts and sodium dodecyl sulfate (SDS). The killing by high concentrations of detergents was nearly instantaneous. A 5-s adaptation with moderate sublethal concentrations of bile salts or SDS (0.08 or 0.01%, respectively) was sufficient to induce significant adaptation against homologous lethal conditions (0.3% bile salts or 0.017% SDS). However, resistance to a subsequent lethal challenge progressively increased further to a maximum reached after 30 min of adaptation. Furthermore, extremely strong cross-resistances were observed with bile salts- and SDS-adapted cells. However, no relationship seems to exist between levels of tolerance and de novo-synthesized proteins, since blockage of protein synthesis during adaptation had no effect on induction of resistance to bile salts and SDS. We conclude that this induced tolerance to detergent stress is independent of protein synthesis. Nevertheless, the stress-induced protein patterns of E. faecalis ATCC 19433 showed significant modifications. The rates of synthesis of 45 and 34 proteins were enhanced after treatments with bile salts and SDS, respectively. In spite of the overlap of 12 polypeptides, the protein profiles induced by the two detergents were different, suggesting that these detergents trigger different responses in E. faecalis. Therefore, bile salts cannot be substituted for SDS in biochemical detergent shock experiments with bacteria. PMID:8779581

  11. Monte carlo simulations of micellization in model ionic surfactants: application to sodium dodecyl sulfate.

    PubMed

    Cheong, Daniel W; Panagiotopoulos, Athanassios Z

    2006-04-25

    A lattice model for ionic surfactants with explicit counterions is proposed for which the micellization behavior can be accurately determined from grand canonical Monte Carlo simulations. The model is characterized by a few parameters that can be adjusted to represent various linear surfactants with ionic headgroups. The model parameters have a clear physical interpretation and can be obtained from experimental data unrelated to micellization, namely, geometric information and solubilities of tail segments. As a specific example, parameter values for sodium dodecyl sulfate were obtained by optimizing for the solubility of hydrocarbons in water and the structural properties of dodecane. The critical micelle concentration (cmc), average aggregation number, degree of counterion binding, and their dependence on temperature were determined from histogram reweighting grand canonical Monte Carlo simulations and were compared to experimental results. The model gives the correct trend and order of magnitude for all quantities but underpredicts the cmc and aggregation number. We suggest ways to modify the model that may improve agreement with experimental values.

  12. Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate.

    PubMed

    Nonaka, Paula N; Uriarte, Juan J; Campillo, Noelia; Melo, Esther; Navajas, Daniel; Farré, Ramon; Oliveira, Luis V F

    2014-08-15

    Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (R(L)) and elastance (E(L)) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.

  13. Competition of hydrophobic steroids with sodium dodecyl sulfate, dodecyltrimethylammonium bromide, or dodecyl β-D-maltoside for the dodecane/water interface.

    PubMed

    Feng, Shaoxin; Bummer, Paul M

    2012-12-11

    The surface tension lowering abilities of insoluble steroids, progesterone and testosterone, were examined at the dodecane/water interface in the presence and absence of surfactants, sodium dodecyl sulfate, dodecyltrimethylammonium bromide, and dodecyl maltoside. In the absence of these surfactants, the steroids significantly lowered the interfacial tension while exhibiting no activity at the air/water and air/dodecane surfaces. Further, in mixtures of surfactants and steroids, significant enhancement of interfacial tension lowering was observed. At a sufficiently high concentration of surfactant, no further lowering of tension was observed in the presence of the steroids. The synergistic effects on interfacial tension of steroids and surfactants were characterized by the free energy of transfer to the interface of each solute based on a two-dimensional solution equation of state. Assuming no significant interaction between the steroids and the surfactants in the interface, predictions of interfacial tensions were made based on the calculated free energies of transfer and interfacial area occupied. Good agreement was found between the predicted values and experimental values for interfacial tension. The results of these studies show that progesterone and testosterone, molecules not normally thought of as surface active, exhibit significant interfacial activity and can successfully compete with surfactants for the dodecane/water interface.

  14. Extraction of aflatoxins B1 and G1 from maize by using aqueous sodium dodecyl sulfate.

    PubMed

    Maragos, Chris M

    2008-01-01

    Aflatoxins are potent carcinogens produced by certain Aspergillus fungi. The aflatoxins were first discovered in the 1960s, and since then have been found to be distributed worldwide in a variety of commodities, foods, and feeds. Many of the early techniques for detecting aflatoxins involved extraction with halogenated solvents. With the increased availability and use of reversed-phase solid-phase extraction cartridges and the availability of immunoaffinity columns, aqueous mixtures of nonhalogenated solvents have been frequently used. To further reduce the need for solvents, we examined the effects of eliminating solvents during the extraction of maize, using aqueous mixtures of the detergent sodium dodecyl sulfate. After extraction and filtration, aflatoxins B1 (AFB1) and G1 (AFG1) were isolated by using commercially available immunoaffinity columns. The isolated AFB1 and AFG1 were derivatized with trifluoroacetic acid before separation by liquid chromatography with fluorescence detection. In spiked maize, the limits of detection were 0.5 and 1 ng/g for AFB1 and AFG1, respectively. Recoveries of AFB1 from maize spiked at 1-20 ng/g averaged 87.5% (range, 76.3-99.0%), with an average repeatability relative standard deviation (RSDr) of 4.0%. Recoveries of AFG1 from maize spiked at 2-20 ng/g averaged 80.4% (range, 70.3-85.8%), with an average RSDr of 3.5%. This is the first reported demonstration of an effective solvent-free extraction of aflatoxins from maize at ambient pressure, and this extraction procedure may serve to help reduce solvent consumption during aflatoxin analysis.

  15. Aggregation and adsorption properties of sodium dodecyl sulfate in water-acetamide mixtures.

    PubMed

    Das, D; Ismail, K

    2008-11-01

    The critical micelle concentration (cmc) of sodium dodecyl sulfate was determined in water + acetamide media from 0 to 70 wt% of acetamide and at temperatures in the range from 20 to 40 degrees C by using conductance, surface tension, and fluorescence methods. The cmc increases with increase in acetamide concentration and the reported [M.S. Akhter, Colloids Surf. A 121 (1997) 103] decrease in cmc was not observed. The limiting surface tension at the cmc does not have any dependence on the amount of acetamide added. The cmc data as a function of temperature were used to estimate the free energy, enthalpy, and entropy terms for micellization. Enthalpy-entropy compensation takes place during micellization. Counterion binding constant, surface excess, and aggregation number of SDS decrease with increasing acetamide concentration and become almost constant for weight percentages of acetamide greater or equal to 30. Pyrene appears to move from the interior of the SDS micelle to the micellar interface at about 30 wt% acetamide. The empirical relations reported by Aguiar et al. [J. Aguiar, P. Carpena, J.A. Molina-Bolivar, C. Carnero Ruiz, J. Colloid Interface Sci. 258 (2003) 116] between the parameters of a sigmoid-type expression for the ratio of fluorescence emission intensities of pyrene and surfactant properties are found to be applicable to SDS in water + acetamide medium below 20 wt% acetamide only. Standard free energy of micellization has linear correlations with reciprocal of dielectric constant and Gordon parameter of the solvent. The water + acetamide medium behaves similar to mixed solvents containing water and any polar liquid nonaqueous solvent and this study highlights the significance of solvophobicity.

  16. Affinity Labeling of the Acetylcholine Receptor in the Electroplax: Electrophoretic Separation in Sodium Dodecyl Sulfate

    PubMed Central

    Reiter, Michael J.; Cowburn, David A.; Prives, Joav M.; Karlin, Arthur

    1972-01-01

    Electroplax, single cells dissected from electric tissue of Electrophorus, are labeled in a two-step procedure: reduction by dithiothreitol followed by alkylation by the affinity label 4-(N-maleimido)-α-benzyltri-[methyl-3H]methylammonium iodide, either alone or in combination with [2,3-14C]N-ethylmaleimide. Electrophoresis in sodium dodecyl sulfate on polyacrylamide gel of an extract, prepared with this detergent, of single-labeled or of double-labeled cells results in a major peak of 3H activity, with a mobility corresponding to a polypeptide of molecular weight 42,000. In addition, in the double-labeled samples, there is a unique peak in the ratio of 3H to 14C that is coincident with the 3H peak. The electrophoretic patterns of extracts of cells in which affinity alkylation of the reduced receptor has been suppressed by dithiobischoline, an affinity oxidizing agent, by cobratoxin, an irreversible ligand, or by hexamethonium, a reversible ligand, show a considerably diminished peak of 3H activity in the region of molecular weight 42,000. This is the predominant difference between the electrophoretic patterns of extracts of unprotected and of protected cells. Furthermore, extracts of cells protected with dithiobischoline before labeling with both tritiated affinity label and [14C]N-ethylmaleimide do not show the peak in the 3H to 14C ratio seen in the absence of protection. Thus, by several diverse criteria, the peak of 3H activity corresponding to a molecular weight of 42,000 contains affinity-labeled acetylcholine receptor or receptor subunit. PMID:4504331

  17. Petite and sectored induction in Saccharomyces cerevisiae by propidium iodide: synergistic effect of sodium dodecyl sulfate.

    PubMed

    Iwamoto, Y; Yielding, K L

    1984-04-01

    Sodium dodecyl sulfate (SDS) was examined for its effect on petite and sectored colony induction in Saccharomyces cerevisiae by propidium iodide (PI) and ethidium bromide (EB). 4-h cultivation with 100 microM PI and 100 micrograms/ml SDS resulted in virtually all plated cells growing as sectored colonies with no decrease in viability. Sectored colonies are mixed colonies comprised of respiratory deficient and competent cells believed to be derived from an unstable respiratory deficient cell. Further cultivation with PI and SDS prior to plating led to induction of complete petite colonies with a rapid decrease in viable cells. PI alone at this concentration exhibited weak induction of sectored colonies (maximum 12.3% at 8 h) and petite colonies (maximum 10.8% at 12 h), but SDS alone caused induction of neither. 50 microM PI had almost the same activity as 100 microM except for a delay in the induction of sectored colonies in the initial stage, and a decreased rate of petite colony induction. The effects of 20 microM PI and SDS were much lower than that by 50 microM and no inhibition of growth was observed. 10 microM PI was quite inactive even in the presence of SDS. Under resting conditions, 10 approximately 100 microM PI and 100 micrograms/ml SDS induced about 60% sectored colonies at 12 h incubation and more than 60% petite colonies at 24 h. After 6 h incubation, decrease in survival was also observed.

  18. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.

    PubMed

    Quirino, Joselito P; Aranas, Agnes T

    2011-10-14

    The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes.

  19. Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus

    SciTech Connect

    Blumentals, I.I.; Robinson, A.S.; Kelly, R.M. )

    1990-07-01

    Cell extracts from Pyrococcus furiosus were found to contain five proteases, two of which (S66 and S102) are resistant to sodium dodecyl sulfate (SDS) denaturation. Cell extracts incubated at 98{degree}C in the presence of 1% SDS for 24 h exhibited substantial cellular proteolysis such that only four proteins could be visualized by amido black-Coomassie brilliant blue staining of SDS-polyacrylamide gels. The SDS-treated extract retained 19% of the initial proteolytic activity as represented by two proteases, S66 (66 kilodaltons (kDa)) and S102 (102 kDa). Immunoblot analysis with guinea pig sera containing antibodies against protease S66 indicated that S66 is related neither to S102 nor to the other proteases. The results of this analysis also suggest that S66 might be the hydrolysis product of a 200-kDa precursor which does not have proteolytic activity. The 24-h SDS-treated extract showed unusually thermostable proteolytic activity; the measured half-life at 98{degree}C was found to be 33 h. Proteases S66 and S102 were also resistant to denaturation by 8 M urea, 80 mM dithiothreitol, and 5% {beta}-mercaptoethanol. Purified protease S66 was inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate but not by EDTA, ethylene glycol-bis({beta}-aminoethyl ether)-N,N,N{prime},N{prime}-tetraacetic acid, or iodoacetic acid. These results indicate that S66 is a serine protease. Amino acid ester hydrolysis studies showed that protease S66 was hydrolytically active towards N-benzoyl-L-arginine ethyl ester.

  20. Preparation of Highly Immunogenic Ribosomal Fractions of Mycobacterium tuberculosis by Use of Sodium Dodecyl Sulfate

    PubMed Central

    Youmans, Anne S.; Youmans, Guy P.

    1966-01-01

    Youmans, Anne S. (Northwestern University Medical School, Chicago, Ill.), and Guy P. Youmans. Preparation of highly immunogenic ribosomal fractions of Mycobacterium tuberculosis by use of sodium dodecyl sulfate. J. Bacteriol. 91:2139–2145. 1966.—Ribosomal fractions of Mycobacterium tuberculosis, strain H37Ra, were prepared by treatment of the intracellular particulate fraction with 0.25 or 0.5% sodium dodecylsulfate (SDS) followed by centrifugation at 144,700 × g for 3 hr. This procedure has greatly simplified the preparation of ribosomal fractions and has given fractions composed of approximately 50% ribonucleic acid (RNA) and 15 to 20% protein. When incorporated into Freund's incomplete adjuvant and injected intraperitoneally into CF-1 mice, the SDS ribosomal fractions were more immunogenic than the particulate fractions from which they were prepared. They were as much as 100 times more immunogenic than ribosomal fractions prepared by differential centrifugation, 1 μg (dry weight) per mouse being sufficient for the induction of some immunity. However, none of these ribosomal preparations, in comparable doses, was as immunogenic as the living cells from which they were prepared. It was also shown that the addition of 10−4m MgCl2 to the final diluent increased immunogenic activity, whereas larger concentrations (10−3m) reduced immunogenic activity. Preparation of the ribosomal fraction from ruptured cells in one continuous process during the course of 1 day increased the activity. Two-week-old H37Ra cells contained more RNA and were more immunogenic than the older cultures which have been used in the past. PMID:4957609

  1. Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles.

    PubMed

    Fan, Yaxun; Tang, Haiqiu; Strand, Ross; Wang, Yilin

    2016-01-07

    The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P < 2.0) partially incorporate into the SDS micelles and do not lead to micelle swelling, whereas hydrophobic perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 < log P < 3.5). Besides, the molecular conformation of perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy.

  2. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate

    SciTech Connect

    Loginova, T. P. Timofeeva, G. I.; Lependina, O. L.; Shandintsev, V. A.; Matyushin, A. A.; Khotina, I. A.; Shtykova, E. V.

    2016-01-15

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  3. Small-angle neutron scattering study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and cesium dodecyl sulfate

    SciTech Connect

    Rajewska, A.; Medrzycka, K.; Hallmann, E.; Soloviov, D. V.

    2016-01-15

    The micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C{sub 14}E{sub 7} aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.

  4. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    SciTech Connect

    Zhang Xifeng; Yin Hengbo . E-mail: yin@ujs.edu.cn; Cheng Xiaonong; Hu Huifeng; Yu Qi; Wang Aili

    2006-11-09

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweens on Cu nanoparticles was different from those arising from the individuals.

  5. Simple, time-saving dye staining of proteins for sodium dodecyl sulfate-polyacrylamide gel electrophoresis using Coomassie blue.

    PubMed

    Dong, Wei-Hua; Wang, Tian-Yun; Wang, Fang; Zhang, Jun-He

    2011-01-01

    A fixation-free and fast protein-staining method for sodium dodecyl sulfate-polyacrylamide gel electrophoresis using Coomassie blue is described. The protocol comprises staining and quick washing steps, which can be completed in 0.5 h. It has a sensitivity of 10 ng, comparable with that of conventional Coomassie Brilliant Blue G staining with phosphoric acid in the staining solution. In addition, the dye stain does not contain any amount of acid and methanol, such as phosphoric acid. Considering the speed, simplicity, and low cost, the dye stain may be of more practical value than other dye-based protein stains in routine proteomic research.

  6. Electrochemical measurements on the binding of sodium dodecyl sulfate and dodecyltrimethylammonium bromide with {alpha}- and {beta}-cyclodextrins

    SciTech Connect

    Wan Yunus, W.M.Z.; Taylor, J.; Bloor, D.M.; Hall, D.G.; Wyn-Jones, E.

    1992-10-29

    The binding of ionic surfactants (S) to {alpha}- and {beta}-cyclodextrins (CD) has been investigated using surfactant-selective electrodes. These electrochemical measurements have shown that S(CD) and S(CD){sub 2} inclusion complexes are formed between sodium dodecyl sulfate and both {alpha}- and {beta}-cyclodextrins and also between dodecyltrimethylammonium bromide and {alpha}-cyclodextrin. On the other hand, the cationic surfactant only forms a 1:1 complex with {beta}-cyclodextrin. From the data the equilibrium binding constants for the formation of each of the complexes have been evaluated. 29 refs., 5 figs., 1 tab.

  7. Optimal concentrations of N-decanoyl-N-methylglucamine and sodium dodecyl sulfate allow the extraction and analysis of membrane proteins.

    PubMed

    Chuang, Jen-Hua; Kao, Yu-Jing; Ruderman, Neil B; Tung, Li-Chu; Lin, Yenshou

    2011-11-15

    We studied the extraction and analysis of integral membrane proteins possessing hydrophobic and hydrophilic domains and found that a nonionic detergent called MEGA-10, used in lysis buffers, had a superior extraction effect compared to most conventional detergents. A sodium dodecyl sulfate (SDS) concentration of >0.4% (w/v) in the sample buffer was crucial for those proteins to be clearly analyzed by electrophoresis and Western blotting. Furthermore, MEGA-10 had the tendency to maximally extract proteins around its critical micelle concentration (CMC) of 0.24% (w/v). These solutions can greatly assist functional investigations of membrane proteins in the proteomics era.

  8. Aggregation and micellization of sodium dodecyl sulfate in the presence of Ce(III) at different temperatures: a conductometric study.

    PubMed

    Valente, Artur J M; Burrows, Hugh D; Cruz, Sandra M A; Pereira, Rui F P; Ribeiro, Ana C F; Lobo, Victor M M

    2008-07-01

    Aggregation properties of sodium dodecyl sulfate (SDS) in the presence of cerium(III) chloride, at various temperatures (298.15-323.15 K) have been measured by the electrical conductance technique. The experimental data on aqueous solutions as a function of SDS concentration show the presence of two inflexion points indicating the presence of two distinct interaction mechanisms: the first, occurring at SDS concentrations below the critical micelle concentration of the pure surfactant, which can be explained by the formation of aggregates between dodecyl sulfate (DS-) and Ce(III), while the second one, at SDS concentrations around the critical micelle concentration (cmc) of the pure surfactant which is due to the SDS micellization. The aggregation between DS- and Ce(III) was confirmed by static light scattering. The binding ratio of DS-/Ce(III) changes from 6 to 4, shows a slight dependence on the Ce(III) concentration and is independent of the temperature. The thermodynamic micellization parameters, Gibbs energy, enthalpy and entropy of micellization were calculated on the basis of the experimental data for the aggregation concentration, and the degree of counterion dissociation of the micelles. The SDS micellization is energetically favoured by increasing either the concentration of CeCl3 or the temperature. Such behaviour is clearly dominated by a decrease of the micellization (exothermic) enthalpy. The entropy of micellization approaches zero as the cerium(III) chloride concentration and temperature increase.

  9. Use of sodium dodecyl sulfate and zinc sulfate as reference substances for toxicity tests with the mussel Perna perna (Linnaeus, 1758) (Mollusca: Bivalvia).

    PubMed

    Jorge, R A D L V C; Moreira, G S

    2005-06-01

    Effects of anthropogenic pollution have been observed at different trophic levels in the oceans, and toxicity tests constitute one way of monitoring these alterations. The present assay proposes the use of two reference substances, sodium dodecyl sulfate (SDS) and zinc sulfate, for Perna perna larvae. This common mussel on the Brazilian coast is used as a bioindicator and is of economic interest. The chronic static embryo-larval test of short duration (48 h) was employed to determine the NOEC, LOEC, and IC50 for SDS and zinc sulfate, as well as the coefficient of variation. Salinity, pH and un-ionized ammonia (NH3) and dissolved oxygen (DO) concentrations were measured to monitor water quality. The results demonstrated that the main alterations in veliger larvae are the development of only one shell, protruded mantle, malformed shell, formation of only part of a valve, clipped edges, uneven sizes and presence of a concave or convex hinge. NOEC values were lower than 0.25 mg L(-1) for zinc sulfate and 0.68 mg L(-1) for SDS. The coefficient of variation was 17.63% and 2.50% for zinc sulfate and SDS, respectively.

  10. Coupling sodium dodecyl sulfate-capillary polyacrylamide gel electrophoresis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry via a poly(tetrafluoroethylene) membrane.

    PubMed

    Lu, Joann J; Zhu, Zaifang; Wang, Wei; Liu, Shaorong

    2011-03-01

    Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) is a fundamental analytical technique for proteomic research, and SDS-capillary gel electrophoresis (CGE) is its miniaturized version. Compared to conventional slab-gel electrophoresis, SDS-CGE has many advantages such as increased separation efficiency, reduced separation time, and automated operation. SDS-CGE is not widely accepted in proteomic research primarily due to the difficulties in identifying the well-resolved proteins. MALDI-TOF-MS is an outstanding platform for protein identifications. Coupling the two would solve the problem but is extremely challenging because the MS detector has no access to the SDS-CGE-resolved proteins and the SDS interferes with MS detection. In this work we introduce an approach to address these issues. We discover that poly(tetrafluoroethylene) (PTFE) membranes are excellent materials for collecting SDS-CGE-separated proteins. We demonstrate that we can wash off the SDS bound to the collected proteins and identify these proteins on-membrane with MALDI-TOF-MS. We also show that we can immunoblot and Coomassie-stain the proteins collected on these membranes.

  11. Measuring the enthalpies of interaction between glycine, L-cysteine, glycylglycine, and sodium dodecyl sulfate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Mezhevoi, I. N.; Tyunina, E. Yu.

    2017-03-01

    Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg-1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.

  12. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    PubMed

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Adsorption of phenol molecules by sodium dodecyl sulfate (SDS) surfactants deposited on solid surfaces: A computer simulation study.

    PubMed

    Peredo-Mancilla, Deneb; Dominguez, Hector

    2016-04-01

    Adsorption studies of phenol molecules on a sodium dodecyl sulfate (SDS) micelle were investigated by molecular dynamics simulations. Simulations were carried out in bulk and on three distinct solid surfaces, silicon dioxide, titanium dioxide and graphite. It was observed that different surfactant micellar shapes were formed on the surfaces. For the silicon dioxide and titanium dioxide surfaces the surfactants were adsorbed by their headgroups whereas for the graphite surface they were adsorbed mainly by their tail groups. It was found that the amount of phenol adsorbed on the SDS micelle was altered by the surfactant shape deposited on the solid surface. However, the best phenol adsorption was obtained by the surfactant modified silicon dioxide surface. Moreover, in all cases, from structural investigations, it was determined that the phenol molecules were located inside the surfactant micelle with their hydroxyl groups close to the SDS headgroups. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Micelle enhanced and native spectrofluorimetric methods for determination of sertindole using sodium dodecyl sulfate as sensitizing agent

    NASA Astrophysics Data System (ADS)

    El-Kosasy, Amira M.; Hussein, Lobna A.; Sedki, Nehal G.; Salama, Nahla N.

    2016-01-01

    Two stability indicating spectrofluorimetric methods were developed and validated for the determination of sertindole (SER) in the presence of its acid and oxidative degradates at λex 257 nm and λem 335 nm. Method A was based on measuring the native fluorescence of SER using isopropanol as solvent. Method B was based on the enhancement of native fluorescence of SER quenched in aqueous media by using micellar microenvironment created by sodium dodecyl sulfate (SDS) anionic micelles using Britton Robinson Buffer (BRB) pH 3.29 as solvent. Different factors affecting fluorescence intensity; both native and enhanced, were carefully studied to reach the optimum conditions of measurements. The proposed spectrofluorimetric methods were validated in accordance with ICH guidelines and were successfully applied for the determination of SER in bulk powder and pharmaceutical preparation with high sensitivity and stability indicating power. They were also statistically compared to the manufacturer methods with no significant difference in performance.

  15. High-impact polystyrene/halloysite nanocomposites prepared by emulsion polymerization using sodium dodecyl sulfate as surfactant.

    PubMed

    Lin, Yong; Ng, Kai Mo; Chan, Chi-Ming; Sun, Guoxing; Wu, Jingshen

    2011-06-15

    High-impact polystyrene (PS) nanocomposites filled with individually dispersed halloysite nanotubes (HNTs) were prepared by emulsion polymerization of styrene in the presence of HNTs with sodium dodecyl sulfate (SDS) as the emulsifier. The SDS is a good dispersing agent for HNTs in aqueous solution. The emulsion polymerization resulted in the formation of polystyrene nanospheres separating individual HNTs. Transmission electron microscopy revealed that the HNTs were uniformly dispersed in the PS matrix. Differential scanning calorimetry, Fourier-transform infrared spectroscopy and thermogravimetry were used to characterize the PS/HNT nanocomposites. The impact strength of the PS/HNTs nanocomposites was 300% higher than that of the neat PS. This paper presents a simple yet feasible method for the preparation of high-impact PS/halloysite nanocomposites. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Influence of the albumin concentration and temperature on the lysis of human erythrocytes by sodium dodecyl sulfate.

    PubMed

    Fonseca, L C; Arvelos, L R; Netto, R C M; Lins, A B; Garrote-Filho, M S; Penha-Silva, N

    2010-10-01

    The stability of human erythrocytes to sodium dodecyl sulfate (SDS) was assessed spectrophotometrically in the presence of different concentrations of bovine serum albumin (BSA) and at different temperatures (27-45 °C). The absorbance at 540 nm (A₅₄₀) was correlated with the SDS concentration by sigmoidal regression based on the Boltzmann equation. Erythrocyte stability was characterized on the basis of the SDS concentration that induces hemolysis in 50% of the cells (D₅₀). Progressive increases in the albumin concentration led to increases in the D₅₀ value. The protective effect of BSA against SDS-induced hemolysis was attributed to the binding of the surfactant to the hydrophobic binding sites of this protein. The D₅₀ values decreased sigmoidally with an increase in the temperature. This trend, which could not be explained by changes in the spectral properties of hemoglobin, maybe due to heterogeneity in the erythrocyte population.

  17. Occurrence of photoluminescence and onion like structures decorating graphene oxide with europium using sodium dodecyl sulfate surfactant

    NASA Astrophysics Data System (ADS)

    Cedeño, V. J.; Rangel, R.; Cervantes, J. L.; Lara, J.; Alvarado, J. J.; Galván, D. H.

    2017-07-01

    Graphene oxide decoration with europium was carried out using SDS (sodium dodecyl sulfate) as the surfactant. The reaction was performed in a microwave oven and subsequently underwent thermal treatment under hydrogen flow. The results found in the present work demonstrate that through the use of SDS surfactant aggregates of hemi-cylindrical and onion-like structures could be obtained; which propitiate an enhanced synergistic photoluminescence located at the red wavelength. On the other hand, after thermal treatment the aggregates disappear providing a good dispersion of europium, however a decrease in the photoluminescence signal is observed. The graphene oxide decorated with europium was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier infrared transform spectroscopy (FTIR), RAMAN spectroscopy, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques, showing the characteristic features of graphene oxide and europium.

  18. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    PubMed

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Use of sodium dodecyl sulfate pretreatment and 2-stage curing for improved quality of salted duck eggs.

    PubMed

    Lian, Zixuan; Qiao, Longshan; Zhu, Guanghong; Deng, Yun; Qian, Bingjun; Yue, Jin; Zhao, Yanyun

    2014-03-01

    The effects of use of sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing on the microbial, physicochemical, and microstructural qualities of salted duck eggs were studied. After pretreatment in 0.5% (w/v) SDS solution at room conditions for 15 min, no discolorations were observed and no microorganisms were detected on the egg shells. In the 2-stage curing process, 25% (w/v) and 30% (w/v) saline solutions were evaluated in the 1st step (Stage I, approximately 18 d), whereas 4% (w/v) saline solution was applied in the 2nd step (Stage II, approximately 15 d). Along with increased curing time, water content decreased and NaCl content increased in the egg yolks from approximately 0.40% to 0.86%, whereas the water content of egg albumen remained at approximately 85% during the 2-stage curing. More importantly, the NaCl content of albumen maintained at approximately 4.0% at Stage II curing. Yolk index as a sign of maturity for salted duck eggs reached 1 at the end of Stage I (18 d) and retained the same value during Stage II curing regardless of the NaCl concentration in the Stage I saline solution. Oil exudation in egg yolks increased as the time of curing increased. As seen from scanning electron microscopy, oil was released from yolk granules. This study indicated that SDS pretreatment is effective to reduce microbial load on the shells of fresh duck eggs and the 2-stage curing can improve physicochemical qualities of the salted duck eggs and shortened curing time to about 7 to 17 d as compared to the traditional 1-step curing method. Spoiled saline solution and uneven distribution of salt are the 2 major problems in producing salted duck eggs. Sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing process have shown effective to solve these problems, respectively. The SDS pretreatment was able to remove microorganisms and soil from the surface of fresh egg shells, thus preventing the spoilage of the saline solution. The 2-stage curing process

  20. Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study

    NASA Astrophysics Data System (ADS)

    Patriati, Arum; Giri Rachman Putra, Edy; Seok Seong, Baek

    2010-01-01

    The effect of a different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH)10COOH or lauric acid and hexadecanoic acid, CH3(CH2)14COOH or palmitic acid as a co-surfactant in the 0.3 M sodium dedecyl sulfate, SDS micellar solution has been studied using small angle neutron scattering (SANS). The present of lauric acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 22.6 Å to 37.1 Å at a fixed minor axis of 16.7 Å in the present of 0.005 M to 0.1 M lauric acid. Nevertheless, this effect did not occur in the present of palmitic acid with the same concentration range. The present of palmitic acid molecules performed insignificant effect on the SDS micelles growth where the major axis of the micelle was elongated from 22.9 Å to 25.3 Å only. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules emerged as one of the determining factors in forming a mixed micelles structure.

  1. NMR study of the solution conformation of rat atrial natriuretic factor 7-23 in sodium dodecyl sulfate micelles

    SciTech Connect

    Olejniczak, E.T.; Gampe, R.T. Jr.; Rockway, T.W.; Fesik, S.W.

    1988-09-06

    The conformation of the cyclic portion (7-23) of naturally occurring rat atrial natriuretic factor, ANF(1-28), has been examined in sodium dodecyl sulfate (SDS) micelles using high-resolution NMR techniques. Evidence is presented which shows that ANF(7-23) has several regions of definable structure in SDS micelles which were not observed in earlier studies in bulk solvents. The /sup 1/H NMR resonances of ANF(7-23) in SDS micelles were assigned using sequential assignment techniques, and the conformational properties were analyzed primarily from proton-proton distances obtained from the quantitative analysis of two-dimensional nuclear Overhauser effect spectra. Three-dimensional structures consistent with the NMR data were generated by using distance geometry and constrained minimization/dynamics. Several similar but not identical structures were found which adequately satisfied the NMR constraints. Although none of the structures adopted a standard secondary structure, the conformations of three different sections of the peptide, 8-13, 14-17, and 18-21, were nearly identical in all of the predicted structures when individually superimposed.

  2. Effect of low concentration sodium dodecyl sulfate on the electromigration of palonosetron hydrochloride stereoisomers in micellar electrokinetic chromatography.

    PubMed

    Hu, Shao-Qiang; Wang, Gui-Xia; Guo, Wen-Bo; Guo, Xu-Ming; Zhao, Min

    2014-05-16

    The effect of low concentrations of sodium dodecyl sulfate (SDS) on the separation of palonosetron hydrochloride (PALO) stereoisomers by micellar electrokinetic chromatography (MEKC) has been investigated. It was found that the addition of SDS prolongs the migration time and the migration order of four stereoisomers changes regularly with the SDS concentration. Good separations for all the four stereoisomers were achieved at appropriate SDS concentration. The effect of SDS on the electromigration (mobilities) of PALO stereoisomers has been studied, in order to explain its effect on the separation by MEKC. It was found that low concentrations of SDS added into the separation media forms negatively charged complexes with PALO stereoisomers and hence reverses their electromigration direction. Furthermore, the migration order between two enantiomeric pairs is also reversed because the enantiomeric pair with a bigger positive mobility than that of another pair turns to have a bigger negative mobility when bound with SDS. Based on these results, the effect of SDS on the MEKC separation of PALO stereoisomers was elucidated reasonably. The performance of the developed chiral MEKC method was validated by the analysis of a real sample.

  3. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic method for assessing the quaternary state and comparative thermostability of avidin and streptavidin.

    PubMed

    Bayer, E A; Ehrlich-Rogozinski, S; Wilchek, M

    1996-08-01

    Avidin, a positively charged egg-white protein, aggregates extensively when mixed at ambient temperatures with anionic detergents, such as sodium dodecyl sulfate (SDS). The resultant aggregates fail to penetrate the stacking gel during polyacrylamide gel electrophoresis (PAGE). To prevent the formation of such aggregates, avidin was acetylated and the pI was thus reduced. Acetylated avidin was found to behave in a manner similar to that of streptavidin; under nondenaturing conditions (i.e., incubation of samples at room temperature), both proteins normally migrated mainly as tetramers with a tendency to form oligomers of the tetramer. When samples were boiled, both proteins migrated mainly as the monomer. The comparative stability properties of avidin and streptavidin were also examined using SDS-PAGE by heating samples and determining the extent of dissociation of tetramers to monomers as a function of temperature. A distinctive transition temperature could be defined for individual samples. Using this assay, it was determined that, in the absence of biotin, the quaternary structure of streptavidin is more stable than that of avidin. Biotin appears to stabilize structures of both avidin and streptavidin to a similar degree. Acetylation of avidin thus provides a simple means to analyze the quaternary structure of the molecule using SDS-PAGE.

  4. Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate.

    PubMed

    Chen, Dong; Zhao, Tong; Doyle, Michael P

    2015-08-17

    The efficacy of levulinic acid (LVA) plus sodium dodecyl sulfate (SDS) to remove or inactivate Listeria monocytogenes, Salmonella Typhimurium, and Shiga toxin-producing Escherichia coli (STEC) in biofilms on the surface of stainless steel coupons was evaluated. Five- or six-strain mixtures (ca. 9.0 log CFU/ml) of the three pathogens were separately inoculated on stainless steel coupons. After incubation at 21 °C for 72 h, the coupons were treated for 10 min by different concentrations of LVA plus SDS (0.5% LVA+0.05% SDS, 1% LVA+0.1% SDS, and 3% LVA+2% SDS) and other commonly used sanitizers, including a commercial quaternary ammonium-based sanitizer (150 ppm), lactic acid (3%), sodium hypochlorite (100 ppm), and hydrogen peroxide (2%). The pathogens grew in the biofilms to ca. 8.6 to 9.3 log CFU/coupon after 72 h of incubation. The combined activity of LVA with SDS was bactericidal in biofilms for cells of the three pathogens evaluated, with the highest concentrations (3% LVA+2% SDS) providing the greatest log reduction. Microscopic images indicated that the cells were detached from the biofilm matrix and the integrity of cell envelopes were decreased after the treatment of LVA plus SDS. This study is conducive to better understanding the antimicrobial behavior of LVA plus SDS to the foodborne pathogens within biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    PubMed Central

    Halmi, M. I. E.; Zuhainis, S. W.; Yusof, M. T.; Shaharuddin, N. A.; Helmi, W.; Shukor, Y.; Syed, M. A.; Ahmad, S. A.

    2013-01-01

    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant. PMID:24383052

  6. Viscosity measurements of CO2-in-water foam with dodecyl polypropoxy sulfate surfactants for enhanced oil recovery application

    NASA Astrophysics Data System (ADS)

    Pramudita, Ria Ayu; Ryoo, Won Sun

    2016-08-01

    Apparent viscosities of CO2-in-water foams were measured in a wide range of shear rate from 50 to 105 inverse second for enhanced oil recovery (EOR) application. The CO2-in-water dispersions, made of 50:50 weight proportions of CO2 and water with 1 wt.% surfactant concentration, were prepared in high-pressure recirculation apparatus under pressure where CO2 density becomes 0.7, 0.8, and 0.9 g/mL at each temperature of 35, 45, and 55°C. The surfactants used for the foam generation were sodium dodecyl polypropoxy sulfates with average propoxylation degrees of 4.7 and 6.2. The foam viscosity showed shear thinning behaviors with power-law indices ranging from 0.80 to 0.85, and approached a Newtonian regime in the lower shear rate range at several tens of inverse second. Zero-shear viscosity values projected from experimental data based on Ellis model were as high as 57.4 mPa·s and enough to control the mobility of water and CO2 in oil reservoirs.

  7. A comparative study of sodium dodecyl sulfate and freezing/thawing treatment on wheat starch: The role of water absorption.

    PubMed

    Tao, Han; Wang, Pei; Zhang, Bao; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-06-05

    The effect of freezing on functionality of native and sodium dodecyl sulfate (SDS)-treated wheat starches was investigated, with the aim of understanding the role of water absorption during freezing process. SDS is one of most efficient detergents to remove non-starch components (such as proteins and lipids) for starches but does not cause any apparent damage on granular structure. Slow swelling could be converted to rapid swelling by SDS washing, indicating higher water absorption. Freezing process induced slight roughness on starch granules but the non-starch components content was little affected. Combined SDS+freezing treatment significantly decreased both amylose and proteins non-starch components contents, which was accompanied with high gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from SDS+freezing-treated starches while the crumb firmness significantly increased (p<0.05). SDS mainly extracted the surface components from starch granules, leading to high water absorption and making granules sensitive to the freezing treatment.

  8. Interaction of poly(ethylene oxide) with the sodium dodecyl sulfate micelle interface studied with nitroxide spin probes

    SciTech Connect

    Kang, Y.S.; Kevan, L. )

    1994-08-04

    Electron spin resonance (ESR) line widths of 5-, 7-, 12-, and 16-doxylstearic acid (x-DSA) and tempo nitroxides versus the concentration of poly(ethylene oxide) (PEO) in sodium dodecyl sulfate (SDS) micelles show different trends. The ESR line widths of 5-, 7-, and 16-DSA increase with increasing concentration of PEO, which is interpreted as due to increasing viscosity in the environment of the nitroxide spin probe. The tempo and 12-DSA line widths were independent of the concentration of PEO. The line width showed the highest value for 5-DSA and the lowest value of tempo. The line width of x-DSA decreases from 5-DSA to a minimum value for 12-DSA and then increases somewhat for 16-DSA. This is interpreted as bending of the alkyl chain to provide different locations for the nitroxide moiety relative to the micelle interface. The relative distances of the nitroxide moiety of [chi]-DSA from deuterated water at the SDS micelle interface was measured by deuterium electron spin echo modulation. The distances increased from 5-DSA to 12-DSA and then decreased for 16-DSA. The interpretation of the DSR line width trend is supported by the deuterium modulation depth trend. 28 refs., 5 figs., 2 tabs.

  9. Molecular mechanism of catalase activity change under sodium dodecyl sulfate-induced oxidative stress in the mouse primary hepatocytes.

    PubMed

    Wang, Jing; Wang, Jiaxi; Xu, Chi; Liu, Rutao; Chen, Yadong

    2016-04-15

    Sodium dodecyl sulfate (SDS) contributes to adverse effects of organisms probably because of its ability to induce oxidative stress via changing the activity of antioxidant enzyme catalase (CAT). But the underlying molecular mechanisms still remain unclear. This study characterized the harmful effects of SDS-induced oxidative stress on the mouse primary hepatocytes as well as the structure and function of CAT molecule and investigated the underlying molecular mechanism. After 12h SDS (0.1μM to 0.2mM) exposure, no significant change was observed in CAT activity of the hepatocytes. After 0.5 and 0.8mM SDS exposure, the state of oxidative stress stimulated CAT production in the hepatocytes. The inhibition of CAT activity induced by directly interacting with SDS was unable to catch the synthesis of CAT and therefore resulted in the increased activity and elevated ROS level. Further molecular experiments showed that SDS prefers to bind to the interface with no direct effect on the active site and the structure of heme groups of CAT molecule. When the sites in the interface is saturated, SDS interacts with VAL 73, HIS 74, ASN 147 and PHE 152, the key residues of the enzyme activity, and leads to the decrease of CAT activity.

  10. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-04-01

    Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.

  11. Microemulsion formation and phase behavior of anionic and cationic surfactants with sodium dodecyl sulfate and cetyltrimethylammonium bromide

    SciTech Connect

    Li, X.; Lin, E.; Zhao, G.; Xiao, T.

    1996-12-01

    The phase behavior and solubilization of multiphase microemulsions in mixed anionic-cationic surfactant systems were studied for fixed ratio of water-to-oil and surfactant-to-alcohol. In the mixed surfactants (sodium dodecyl sulfate + cetyltrimethylammonium bromide)/heptane/alcohol/water systems, microemulsions and birefringement phases are formed by adjusting the surfactant ratio {epsilon} and the cationic weight fraction {delta}. The bicontinuous (or w/o microemulsion) {yields} birefringement o/w microemulsion transition takes place and microemulsion domain enlarges with increasing {epsilon}. The optimum surfactant concentration {gamma} increases and the corresponding optimum {delta} decreases with increasing {epsilon} and both of them decrease with increasing the alcohol chain length butanol to hexanol. The birefringent region shrinks rapidly with increasing alcohol and/or CTAB weight fractions in total surfactant concentration. Conductivity measurements have been performed in the single-phase region of the system containing mixed surfactants and alcohols at 25 C. The conductivity results indicate where a transition takes place and which of these different types of phase structures may be in the single-phase of the system containing anionic-cationic mixed surfactants.

  12. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release.

    PubMed

    Li, Zhuo; Li, Haiyan; Wang, Caifen; Xu, Jianghui; Singh, Vikramjeet; Chen, Dawei; Zhang, Jiwen

    2016-07-01

    In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate (SDS) and β-cyclodextrin (β-CD) embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated. The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different pH values were investigated. The insulin loaded vesicles-chitosan hydrogel (IVG) improved the dilution stability of the vesicles and provided pH-selective sustained release compared with insulin solution-chitosan hydrogel (ISG). In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin.

  13. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  14. Stepwise elusion method in micellar electrokinetic chromatography via sequential use of lithium perfluorooctadecyl sulfonate and lithium dodecyl sulfate.

    PubMed

    Esaka, Yukihiro; Rin, Fumiaki; Kobayashi, Miki; Osako, Ryohei; Murakami, Hiroya; Uno, Bunji

    2014-09-05

    An effective stepwise micellar electrokinetic chromatography (MEKC) elution method was developed using lithium perfluorooctadecyl sulfonate (LPFOS) and lithium dodecyl sulfate (LDS). The hydrogen-bonding property of LPFOS micelles differs from that of LDS micelles, which leads to remarkably different selectivity in the transfer of solutes to the micelles. The present stepwise method is performed by replacing the inlet reservoir of a first running solution containing LPFOS with that of a second running solution containing LDS during a single separation run in the absence of electroosmotic flow under acidic conditions, where LPFOS micelles work as carriers in first and then LDS micelles turn over. Effective separation of 15 nonionic aromatic compounds was controlled well by adjusting the time in the inlet reservoir, which could not be accomplished with systems using only LPFOS or only LDS, with significant changes in the elution order where necessary. Furthermore, separations with the present stepwise method were easily simulated, and the replacement time was optimized for 3.1min from a 70.0mM LPFOS solution to a 67.5mM LDS solution with nearly complete separation within 15min using the simulated parameters.

  15. Inactivation of salmonella in biofilms and on chicken cages and preharvest poultry by levulinic Acid and sodium dodecyl sulfate.

    PubMed

    Zhao, Tong; Zhao, Ping; Cannon, Jennifer L; Doyle, Michael P

    2011-12-01

    Surface contamination (skin and feathers) of broilers with Salmonella occurs primarily during growth and transportation. Immediately after transporting chickens, chicken cage doors were sprayed with a foam containing 3% levulinic acid plus 2% sodium dodecyl sulfate (SDS). Samples were collected for Salmonella assay after 45 min. Salmonella on cage doors was reduced from 19% (19 of 100 doors) before treatment to 1% (1 of 100 doors) after treatment, coliform counts were reduced from 6 to 8 to 2 to 4 log CFU/9 cm(2), and aerobic plate counts were reduced from 7 to 9 to 4 to 6 log CFU/9 cm(2). Whole chicken carcasses with feathers were inoculated with 10(8) CFU of Salmonella Enteritidis, soaked for 5 min at 21°C in 72 liters of a treatment or control solution, and assayed for Salmonella. Salmonella counts on chickens treated with water were 6.8 to 8.5 log CFU/9 cm(2), those treated with 50 ppm of calcium hypochlorite were 7.6 to 8.9 log CFU/9 cm(2), and those treated with 3% levulinic acid plus 2% SDS were <1.7 to 2.8 CFU/9 cm(2) (>4-log reduction). Results of biofilm studies on surfaces of various materials revealed that a 3% levulinic acid plus 2% SDS treatment used as either a foam or liquid for 10 min effectively reduced Salmonella populations by 5 and >6 log CFU/cm(2), respectively.

  16. Adsorption of hydroxamate siderophores and EDTA on goethite in the presence of the surfactant sodium dodecyl sulfate

    PubMed Central

    2009-01-01

    Siderophore-promoted iron acquisition by microorganisms usually occurs in the presence of other organic molecules, including biosurfactants. We have investigated the influence of the anionic surfactant sodium dodecyl sulfate (SDS) on the adsorption of the siderophores DFOB (cationic) and DFOD (neutral) and the ligand EDTA (anionic) onto goethite (α-FeOOH) at pH 6. We also studied the adsorption of the corresponding 1:1 Fe(III)-ligand complexes, which are products of the dissolution process. Adsorption of the two free siderophores increased in a similar fashion with increasing SDS concentration, despite their difference in molecule charge. In contrast, SDS had little effect on the adsorption of EDTA. Adsorption of the Fe-DFOB and Fe-DFOD complexes also increased with increasing SDS concentrations, while adsorption of Fe-EDTA decreased. Our results suggest that hydrophobic interactions between adsorbed surfactants and siderophores are more important than electrostatic interactions. However, for strongly hydrophilic molecules, such as EDTA and its iron complex, the influence of SDS on their adsorption seems to depend on their tendency to form inner-sphere or outer-sphere surface complexes. Our results demonstrate that surfactants have a strong influence on the adsorption of siderophores to Fe oxides, which has important implications for siderophore-promoted dissolution of iron oxides and biological iron acquisition. PMID:19523232

  17. A solid-phase immunoassay of protease-resistant prion protein with filtration blotting involving sodium dodecyl sulfate.

    PubMed

    Kobayashi, Yoshiteru; Kohno, Naoyuki; Wanibe, Shoko; Hirayasu, Kazunari; Uemori, Hitoshi; Tagawa, Yuichi; Yokoyama, Takashi; Shinagawa, Morikazu

    2006-02-15

    The precise diagnosis for bovine spongiform encephalopathy (BSE) is crucial for preventing new transmission to humans. Several testing procedures are reported for determining protease-resistant prion protein in various tissues as a major hallmark of prion diseases such as BSE, scrapie, and Creutzfeldt-Jakob disease. However, contamination of materials from tissues or degradation of the specimens sometimes disturbs the accuracy of the assay. Here, we have developed a novel method for solid-phase immunoassay of the disease-specific conformational isoform, PrP(Sc), using filtration blotting of protein in the presence of sodium dodecyl sulfate (SDS) followed by a filtration-based immunoassay with a single anti-prion protein antibody, together with the improved fractionation procedure involving high concentrations of surfactant/detergent. The SDS/heat treatment renders unfolded PrP(Sc) quantitative retention on a polyvinylidene difluoride filter and allows enhancement of the analyte signal with immunodetection; thus, all of the tested specimens are determined with 100% accuracy. In addition, the immunoassay is completed in approximately 1h, indicating its usefulness not only for the screening of BSE specimens but probably also for the postmortem BSE diagnosis of fallen stock as the antibody recognizes the core part of PrP(Sc). The solid-phase immunoassay method, including the filtration blotting with SDS, would be applicable to determining even more sensitively proteins other than PrP(Sc), especially those having rigid conformations.

  18. Relative roles of acetic acid, dodecyl sulfate and benzotriazole in chemical mechanical and electrochemical mechanical planarization of copper

    NASA Astrophysics Data System (ADS)

    Goonetilleke, P. C.; Roy, D.

    2008-02-01

    The efficiency of chemical mechanical or electrochemical mechanical planarization (CMP or ECMP) carried out in the fabrication of integrated circuits is largely governed by the functional chemicals used in these processes. In this work, we study the individual and combined chemical and electrochemical effects of a selected set of such chemicals that can potentially support both CMP and ECMP of copper. These chemicals include acetic acid (HAc) as a complexing agent, H2O2 as an oxidizer, and ammonium dodecyl sulfate (ADS) as a dissolution inhibitor. Surface passivating effects of ADS under both CMP (open circuit) and ECMP (voltage activated) conditions are compared with those of a standard dissolution inhibitor for Cu, benzotriazole (BTAH), and the combined effects of a BTAH-ADS mixture also are explored. The experiments are performed in the absence of mechanical polishing using static and rotating Cu disc electrodes, and electro-dissolution of Cu for ECMP is activated using a voltage pulse modulation technique. A mechanism of surface reactions is proposed to describe the relative roles of HAc, H2O2, ADS and BTAH as electrolyte components for CMP and ECMP of Cu.

  19. Genetic diversity analysis of faba bean (Vicia faba L.) germplasms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Hou, W W; Zhang, X J; Shi, J B; Liu, Y J

    2015-10-30

    To investigate genetic diversity and relationships of 101 faba bean (Vicia faba L.), landraces and varieties from different provinces of China and abroad were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). A total of 2625 unambiguous and stable bands from 101 germplasms were detected, and 36 different bands were classified according to the electrophoretic mobility patterns of the proteins as determined by the SDS-PAGE analysis, of which 16 were polymorphic. Besides the common bands, the protein bands of 92, 75, 62, 40, 34, 17, and 13 kDa presented the highest frequencies of 92.08, 90.10, 99.01, 95.05, 95.05, 98.02, and 95.05%, respectively. The other 29 polymorphic protein bands showed higher polymorphism with 16.09 polymorphic bands in average. The genetic similarity of the 101 genotypes tested varied from 0.6111 to 0.9722, with an average of 0.7122. Cluster analysis divided the 101 genotypes into six major clusters, which was consistent with the systematic classification of faba bean done in previous studies. The overall results indicated that SDS-PAGE was a useful tool for genetic diversity analysis and laid a solid foundation for future faba bean breeding.

  20. Hexavalent molybdenum reduction to mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain DRY14.

    PubMed

    Halmi, M I E; Zuhainis, S W; Yusof, M T; Shaharuddin, N A; Helmi, W; Shukor, Y; Syed, M A; Ahmad, S A

    2013-01-01

    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.

  1. pH-dependent differential interacting mechanisms of sodium dodecyl sulfate with bovine serum fetuin: a biophysical insight.

    PubMed

    Zaidi, Nida; Nusrat, Saima; Zaidi, Fatima Kamal; Khan, Rizwan H

    2014-11-20

    Sodium dodecyl sulfate (SDS)-glycoprotein interaction serves as a model for a biological membrane. To get mechanistic insight into the interaction of SDS and glycoprotein, the effect of SDS on bovine serum fetuin (BSF) was studied in subcritical micellar concentrations at pH 7.4 and pH 2 using multiple approaches. SDS interacts electrostatically with BSF through its negatively charged head groups at pH 2 and hydrophobically via its alkyl chains at pH 7.4 up to a 1:20 molar ratio of BSF to SDS. However, at higher concentrations of SDS, BSF undergoes amyloid fibril formation at pH 2, as confirmed by enhanced ThT fluorescence, β-sheet formation, and TEM microscopy, whereas BSF undergoes induction of an α-helical structure in the presence of higher SDS concentration at pH 7.4. The increase in α-helical content with increasing SDS concentrations constrains the environment around tryptophan. As a consequence, the interconversion of tryptophan conformers decreases, resulting in a decrement of the fluorescence lifetime for BSF in the presence of SDS at pH 7.4.

  2. Electrosynthesis of polyaniline-mutilwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing

    NASA Astrophysics Data System (ADS)

    Huyen Le, Trong; Thang Trinh, Ngoc; Nguyen, Le Huy; Binh Nguyen, Hai; Nguyen, Van Anh; Tran, Dai Lam; Dung Nguyen, Tuan

    2013-06-01

    Polyaniline-mutilwalled carbon nanotube (PANi-MWCNT) nanocomposites were electropolymerized in the presence of sodium dodecyl sulfate (SDS) onto interdigitated platinum-film planar microelectrodes (IDμE). The MWCNTs were first dispersed in SDS solution then mixed with aniline and H2SO4. This mixture was used to electro-synthesize PANi-MWCNT films with potentiostatic method at E = + 0.90 V (versus SCE). The PANi-MWCNT films were characterized by cyclic voltammetry (CV) and scanning electron microscopy (SEM). The results show that the PANi-MWCNT films have a high electroactivity, and a porous and branched structure that can increase the specific surface area for biosensing application. In this work the PANi-MWCNT films were applied for covalent immobilization of glucose oxidase (GOx) via glutaraldehyde agent. The GOx/PANi-MWCNT/IDμE was studied using cyclic voltammetric and chronoamperometric techniques. The effect of several interferences, such as ascorbic acid (AA), uric acid (UA), and acetaminophen (AAP) on the glucosensing at +0.6 V (versus SCE) is not significant. The time required to reach 95% of the maximum steady-state current was less than 5 s. A linear range of the calibration curve for the glucose concentration lies between 1 and 12 mM which is a suitable level in the human body.

  3. Quantification of AAV particle titers by infrared fluorescence scanning of coomassie-stained sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Kohlbrenner, Erik; Henckaerts, Els; Rapti, Kleopatra; Gordon, Ronald E; Linden, R Michael; Hajjar, Roger J; Weber, Thomas

    2012-06-01

    Adeno-associated virus (AAV)-based vectors have gained increasing attention as gene delivery vehicles in basic and preclinical studies as well as in human gene therapy trials. Especially for the latter two-for both safety and therapeutic efficacy reasons-a detailed characterization of all relevant parameters of the vector preparation is essential. Two important parameters that are routinely used to analyze recombinant AAV vectors are (1) the titer of viral particles containing a (recombinant) viral genome and (2) the purity of the vector preparation, most commonly assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. An important, third parameter, the titer of total viral particles, that is, the combined titer of both genome-containing and empty viral capsids, is rarely determined. Here, we describe a simple and inexpensive method that allows the simultaneous assessment of both vector purity and the determination of the total viral particle titer. This method, which was validated by comparison with established methods to determine viral particle titers, is based on the fact that Coomassie Brilliant Blue, when bound to proteins, fluoresces in the infrared spectrum. Viral samples are separated by SDS-PAGE followed by Coomassie Brilliant Blue staining and gel analysis with an infrared laser-scanning device. In combination with a protein standard, our method allows the rapid and accurate determination of viral particle titers simultaneously with the assessment of vector purity.

  4. A Microfluidic Approach to Investigating a Synergistic Effect of Tobramycin and Sodium Dodecyl Sulfate on Pseudomonas aeruginosa Biofilms.

    PubMed

    Shin, Soojeong; Ahmed, Ishtiaq; Hwang, Jangsun; Seo, Youngmin; Lee, Eunwon; Choi, Jonghoon; Moon, Sangjun; Hong, Jong Wook

    2016-01-01

    In recent years, a microfluidic technology has contributed a significant role in biological research, specifically for the study of biofilms. Bacterial biofilms are a source of infections and contamination in the environment due to an extra polymeric matrix. Inadequate uses of antibiotics make the bacterial biofilms antibiotic resistant. Therefore, it is important to determine the effective concentration of antibiotics in order to eliminate bacterial biofilms. The present microfluidic study was carried out to analyze the activities of tobramycin and sodium dodecyl sulfate (SDS) against Pseudomonas aeruginosa biofilms with a continuous flow in order to achieve a greater delivery of the agents. The results show that a co-treatment of tobramycin and SDS significantly reduced the biomass of biofilms (by more than 99%) after 24 h. Tobramycin and SDS killed and detached bacteria in the cores of biofilms. Evidently, our data suggest that a microchannel would be effective for both quantitative and qualitative evaluations in order to test combinatorial effect of drugs and chemicals on a complexed biological system including biofilm.

  5. A systematic investigation into the recovery of radioactively labeled proteins from sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Zhou, Shaobo; Bailey, Matthew J; Dunn, Michael J; Preedy, Victor R; Emery, Peter W

    2004-01-01

    We report the results of a systematic investigation designed to optimize a method for quantifying radioactivity in proteins in sodium dodecyl sulfate-polyacrylamide gels. The method involves dissolving appropriately sized pieces of gel in hydrogen peroxide and heating to 70 degrees C overnight followed by liquid scintillation counting. H(2)O(2) had no effect on the count rates of [(14)C]bovine serum albumin (BSA) when counted in a conventional liquid scintillation system, and the count rates remained stable for several days. Temperatures below 70 degrees C resulted in incomplete extraction of radioactivity from gels containing [(14)C]BSA, but there was also a significant reduction in count rates in samples incubated at 80 degrees C. At 70 degrees C recovery was not affected by the amount of sample loaded onto the gel or by the staining procedure (Coomassie Brilliant Blue or SYPRO Ruby). Recoveries were in the range of 89-94%, and the coefficient of variation for five replicate samples was 5-10%. This method offers a reliable way of measuring the amount of radioactivity in proteins that have been separated by electrophoresis. It may be useful, for example, in quantitative metabolic labeling experiments when it is necessary to know precisely how much tracer has been incorporated into a particular protein.

  6. Influence of sodium dodecyl sulfate and static magnetic field on the properties of freshly precipitated calcium carbonate.

    PubMed

    Chibowski, Emil; Szczes, Aleksandra; Holysz, Lucyna

    2005-08-30

    Properties of calcium carbonate precipitated from aqueous solutions of CaCl(2) and Na(2)CO(3) in the presence of sodium dodecyl sulfate (SDS) and S-S 0.1 T magnetic field (MF) were studied. The nucleation and precipitation processes of CaCO(3) were investigated by pH and zeta potential measurements at 20 +/- 1 degrees C up to 2 h after mixing the solutions. Also the amounts of calcium carbonate deposited on the glass surfaces and its structure were examined. It was found that SDS influences the kinetics of precipitation, crystallographic forms, and crystal size of CaCO(3). The SDS effects are more pronounced in MF presence. A small amount of SDS accelerates transformation of vaterite into calcite, whereas increasing surfactant concentration moderates such a transformation. On the other hand, in all the systems, MF in the presence of SDS causes a slower transformation of vaterite into calcite. These effects are reflected in pH and zeta potential changes, although there is no clear dependence between the SDS amount present during the precipitation and changes of the parameters investigated. It seems that MF effect is most significant at a defined optimal SDS concentration. The results, however, do not allow suggestion of any detailed mechanism of the field interaction.

  7. Nonlinear response of a batch BZ oscillator to the addition of the anionic surfactant sodium dodecyl sulfate.

    PubMed

    Sciascia, Luciana; Lombardo, Renato; Turco Liveri, Maria Liria

    2007-02-15

    The response of the Belousov-Zhabotinsy (BZ) system to the addition of increasing amounts of the anionic surfactant sodium dodecyl sulfate (SDS) was monitored at 25.0 degrees C in stirred batch conditions. The presence of SDS in the reaction mixture influences the oscillatory parameters, i.e., induction period and oscillation period, to an extent that depends on the surfactant concentration. The experimental results have shown that the induction period increases slightly on increasing surfactant concentration and, then, a further increase in the [SDS] leads to an enhancement while the oscillation period increases monotonously on increasing SDS concentration. It has been proposed that the response of the oscillatory BZ system to the addition of SDS is due to the peculiar capability of the organized surfactant assemblies to affect the reactivity by selectively sequestering some key reacting species. Indeed, explanations of the experimental results have been given on the basis of the role played by the micellar shape, which in turn dictates the hydrophobic nature. The suggested perturbation effects have been supported by performing viscosity measurements on the aqueous SDS solutions and by the spectrophotometric estimation of the binding constant of the bromine species to the micellar aggregates. This study has indirectly corroborated the existence of two kind of micelles and unambiguously revealed that the bromine species show a different affinity toward the spherical and rod-like micelles.

  8. Photochemistry of "end-only" oligo-p-phenylene ethynylenes: complexation with sodium dodecyl sulfate reduces solvent accessibility.

    PubMed

    Hill, Eric H; Evans, Deborah G; Whitten, David G

    2013-08-06

    Cationic oligo-p-phenylene ethynylenes are very effective light-activated biocides and biosensors but degrade upon exposure to light. In this study, we explore the photochemistry of a class of "end-only" compounds from this series, which have cationic moieties on the ends of the backbone. Product characterization by mass spectrometry reveals that the photoreactivity of these molecules is higher than that of a previously studied oligomer and that the primary products of photolysis result from the addition of water or oxygen across the triple bond. In addition, a product suggesting the addition of peroxide or other reactive oxygen species across the triple bond was observed. To explore avenues by which the photodegradation of these compounds can be mitigated, the effects of complexation with sodium dodecyl sulfate micelles on their photochemistry was explored. Classical molecular dynamics simulations revealed that compounds that were protected from photolysis by SDS buried their phenylene ethynylene backbones into the interior of the micelle, protecting it from contact with water. This work has revealed a molecular basis for the protection of a novel class of light-activated biocides from irradiation that is consistent with the proposed photochemistry of these compounds. This information can be useful for developing photodegradation-resistant biocidal materials and applications for current compounds and leads to new molecular design.

  9. Carbon nanotube-modified sodium dodecyl sulfate-polyacrylamide gel electrophoresis for molecular weight determination of proteins.

    PubMed

    Parthasarathy, Meera; Debgupta, Joyashish; Kakade, Bhalchandra; Ansary, Abu A; Islam Khan, M; Pillai, Vijayamohanan K

    2011-02-15

    The effect of incorporating carbon nanotubes (CNTs) in the gel matrix on the electrophoretic mobility of proteins based on their molecular weight differences was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). More specifically, a reduction in standard deviation in the molecular weight calibration plots by 55% in the case of multiwalled carbon nanotubes (MWCNTs) and by 34% in the case of single-walled carbon nanotubes (SWCNTs) compared with that of pristine polyacrylamide gels was achieved after incorporating an insignificant amount of functionalized CNTs into the gel matrix. A mechanism based on a more uniform pore size distribution in CNT modified polyacrylamide gel matrix is proposed. Furthermore, the impact of SWCNTs and MWCNTs on the mobility of proteins in different molecular weight regimes at a given acrylamide concentration offers a tunable gel matrix in terms of the selection of molecular weight ranges of proteins. The robustness and excellent reproducibility of the CNT-PAGE protocol are expected to have a significant impact on the molecular weight determination of newly isolated proteins.

  10. Multiscale molecular dynamics simulations of sodium dodecyl sulfate micelles: from coarse-grained to all-atom resolution.

    PubMed

    Roussel, Guillaume; Michaux, Catherine; Perpète, Eric A

    2014-10-01

    Sodium dodecyl sulfate (SDS) is a well-known anionic detergent widely used in both experimental and theoretical investigations. Many molecular dynamics (MD) simulation have been performed on the SDS molecule at coarse-grained (CG), united-atom (UA), and all-atom (AA) resolutions. However, these simulations are usually based on general parameters determined from large sets of molecules, and as a result, peculiar molecular specificities are often poorly represented. In addition, the parameters (ideal bond lengths, angles, dihedrals and charge distribution) differ according to the resolution, highlighting a lack of coherence. We therefore propose a new set of parameters for CG, UA, and AA resolutions based on a high quantum mechanics (QM) level optimization of the detergent structure and the charge distribution. For the first time, QM-optimized parameters were directly applied to build the AA, UA, and CG model of the SDS molecule, leading to a more coherent description. As a test case, MD simulations were then performed on SDS preformed micelles as previous experimental and theoretical investigations allow direct comparison with our new sets of parameters. While all three models yield similar macromolecular properties (size, shape, and accessible surface) perfectly matching previous results, the attribution of more coherent parameters to SDS enables the description of the specific interactions inside and outside the micelle. These more consistent parameters can now be used to accurately describe new multi-scale systems involving the SDS molecule.

  11. Metachromatic staining patterns of basic proline-rich proteins from rat and human saliva in sodium dodecyl sulfate-polyacrylamide gels

    SciTech Connect

    Humphreys-Beher, M.G.; Wells, D.J.

    1984-10-01

    A series of basic proteins, rich in proline, were isolated from the salivary secretions of humans and rats. These proteins underwent metachromasia after staining with Coomassie brilliant blue R-250 in sodium dodecyl sulfate-polyacrylamide gels. The technique of destaining gels in several changes of 10% acetic acid after a 30-min staining period is a rapid method of general utility for the identification of proline-rich proteins from total cell lysates from other sources besides saliva.

  12. Polydiphenylamine-dodecyl sulfate films for the simultaneous amperometric determination of electroinactive anions and cations in ion-exclusion cation-exchange chromatography.

    PubMed

    Xu, Q; Xu, C; Wang, Y; Zhang, W; Jin, L; Tanaka, K; Haraguchi, H; Itoh, A

    2000-12-01

    An amperometric detector with two working electrodes both modified with polydiphenylamine-dodecyl sulfate (PDPA-DS) was successfully used for the simultaneous determination of electroinactive anions (SO42-, Cl-, NO3-) and cations (Na+, NH4+ and K+) in single-column ion-exclusion cation-exchange chromatography (IEC-CEC). The PDPA-DS chemical modified electrode (CME) was based on the incorporation of dodecyl sulfate (DS) into PDPA by electropolymerization of diphenylamine in the presence of sodium dodecyl sulfate. The electrochemical responses against the anions and cations at the PDPA-DS CME in differential pulse voltammetry were studied. A set of well-defined peaks of electroinactive anions and cations were obtained. The anions and cations were detected conveniently and reproducibly in a linear concentration range 0.01-5.0 mmol/L and their detection limits were in the range 5-9 micromol/L at a signal-to-noise ratio of 3 (S/N = 3). The proposed method was quick, sensitive and simple and was successfully applied to the analysis of lake water samples. The working electrode was stable over one week period of operation with no evidence of chemical and mechanical deterioration.

  13. Mg, Mn, and Co ions enhance the formation of Entamoeba histolytica cyst-like structures resistant to sodium dodecyl sulfate.

    PubMed

    Campos-Góngora, E; Viader-Salvadó, J M; Martínez-Rodríguez, H G; Zuñiga-Charles, M A; Galindo, J M; Said-Fernández, S

    2000-01-01

    Entamoeba histolytica forms cyst-like structures (CLS) in PEHPS but not in TYS-33 medium. Sodium dodecyl sulfate [(SDS (0.1%)] dissolves most of them in 10 min, but not natural cysts. Chitin is responsible mainly for cyst wall resistance. Its synthesis depends on Mg(2)+, Mn(2)+, or Co(2)+, whose action is interactive. With the aid of the Simplex method, we analyzed the effect of 20 blends of these cations to find the one that, when added to PEHPS, produced the highest proportion of CLS resistant to 1% SDS (RCLS). The concentration of Mg(2)+, Mn(2)+, and Co(2)+ was determined in PEHPS and TYI-S-33 with a flame atomic absorption spectrometer. The proportion of RCLS produced in PEHPS with each ion blend was tested. The CLS and RCLS affinity to fluorescein wheat germ agglutinin (WGA/FITC), which binds chitin, was determined. PEHPS contained a similar concentration of Co(2)+ (0.52 microM) and 3.4 and 1.6 times more Mg(2)+ (798 microM) and Mn(2)+ (3.15 microM) than TYI-S-33, respectively. The proportion of RCLS increased gradually in PEHPS until reaching 3.6 +/- 1.43% with MgCl(2) 1.22 mM, MnCl(2) 14.44 mM, and CoCl(2) 19.44 mM (ion blend No. 20). Both CLS and RCLS bound WGA/FITC. The RCLS formed in the presence of ion blend No. 20 appeared wrinkled. Mg(2)+, Mn(2)+, and Co(2)+ enhanced the ability of PEHPS to form RCLS, possibly because these ions stimulated their chitin synthesis. Although ion blend No. 20 produced the highest proportion of RCLS, this high ion concentration may be toxic for encysting amebas.

  14. Elucidating the mode of action of urea on mammalian serum albumins and protective effect of sodium dodecyl sulfate.

    PubMed

    Khan, Javed Masood; Chaturvedi, Sumit Kumar; Khan, Rizwan Hasan

    2013-11-22

    The effect of sodium dodecyl sulfate (SDS) on human, bovine, porcine, rabbit and sheep serum albumins were investigated at pH 3.5 by using various spectroscopic techniques like circular dichroism (CD), intrinsic fluorescence and dynamic light scattering (DLS). In the presence of 4.0mM SDS the secondary structure of all the albumins were not affected as measured by CD but fluorescence spectra revealed 8.0 nm blue shift in emission maxima. We further checked the stability of albumins in the absence and presence of 4.0mM SDS by urea and temperature at pH 3.5. In the absence of SDS, urea starts unfolding both secondary as well as tertiary structural elements of the all the albumins at approximately 2.0M urea but in the presence of 4.0mM SDS, urea was unable to unfold even up to 9.0M. The albumins were thermally less stable at pH 3.5 with decrease in Tm but in the presence of 4.0mM SDS, the Tm was increased. From this study, it was concluded that SDS is showing a protective effect against urea as well as thermal denaturation of albumins. This behavior may be due to electrostatic as well as the hydrophobic interaction of SDS with albumins. Further, we have proposed the mechanism of action of urea. It was found that urea interacted with proteins directly when proteins are in charged form. Indirect interaction may be taking place when the environment is more hydrophobic.

  15. Sodium dodecyl sulfate reduces bacterial contamination in goat colostrum without negative effects on immune passive transfer in goat kids.

    PubMed

    Morales-delaNuez, A; Moreno-Indias, I; Sánchez-Macías, D; Capote, J; Juste, M C; Castro, N; Hernández-Castellano, L E; Argüello, A

    2011-01-01

    To investigate the use of sodium dodecyl sulfate (SDS) as a biocide on goat colostrum, 2 experiments were performed. In the first, 20 goat colostrum samples were divided into 3 aliquots. A different treatment was performed on each aliquot: pasteurization (56°C, 30 min) or addition of SDS to a final concentration of either 0.1 or 1% (36°C, 10 min). Immunoglobulin G and colony-forming units were evaluated before and after treatment. Both pasteurization and treatment with 1% SDS significantly reduced the colony-forming units in colostrum. Treatment with 0.1% SDS was not effective at reducing the colony-forming units in colostrum. The IgG concentration of pasteurized colostrum was significantly lower than that of untreated colostrum, whereas treatment with 1% SDS did not affect the colostrum IgG concentration. In the second experiment, the effects of SDS colostrum treatment on immune passive transfer were evaluated. Forty goat kids were fed either refrigerated colostrum or colostrum treated with 1% SDS twice daily for 2 d. Blood samples were obtained at birth and every day for 5 d. IgG, IgM, and IgA were measured in blood serum to monitor the passive immune transfer process. Creatinine, glucose, total cholesterol, blood urea nitrogen, bilirubin, and aspartate transaminase were also monitored to evaluate the health of kids. No differences in serum IgG, IgM, IgA, creatinine, glucose, total cholesterol, blood urea nitrogen, bilirubin, or aspartate transaminase levels were observed between groups. Our findings indicate that SDS is an efficient colostrum biocide that, unlike pasteurization, does not affect immune passive transfer or goat kid health.

  16. Safety and efficacy of self-assembling bubble carriers stabilized with sodium dodecyl sulfate for oral delivery of therapeutic proteins.

    PubMed

    Lin, Po-Yen; Chuang, Er-Yuan; Chiu, Yi-Hsuan; Chen, Hsin-Lung; Lin, Kun-Ju; Juang, Jyuhn-Huarng; Chiang, Ching-Hua; Mi, Fwu-Long; Sung, Hsing-Wen

    2017-08-10

    Sodium dodecyl sulfate (SDS) is generally regarded as a potent permeability enhancer in oral formulations; however, one concern related to the use of any permeation enhancer is its possible absorption of unwanted toxins during the period of epithelial permeability enhancement. In this work, the safety and efficacy of an SDS-containing bubble carrier system that is developed from an orally administered enteric-coated capsule are evaluated. The bubble carriers comprise diethylene triamine pentaacetic acid (DTPA) dianhydride, sodium bicarbonate (SBC), SDS, and insulin. Upon exposure to the intestinal fluid, DTPA dianhydride hydrolyzes to yield acids, and SBC rapidly reacts with these acids to generate CO2, producing bubble carriers, each containing a self-assembling water film. The hydrophilic insulin is entrapped in the self-assembled water film, which is stabilized by SDS. The SDS in the bubble carrier system can act as a dissolution enhancer in the dispersion of insulin molecules, as a surfactant that stabilizes the bubble carriers, as a protease inhibitor that protects the protein drug, and as a permeation enhancer that augments its oral bioavailability. Hence, a significant increase in the plasma insulin level and an excellent blood glucose-lowering response in diabetic rats are effectively achieved. Moreover, the enhancement of epithelial permeation by this SDS-containing formulation does not promote the absorption of intestinal endotoxins. The above facts indicate that the bubble carrier system that is stabilized by SDS can be used as a safe and potent carrier in the oral delivery of therapeutic proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Interference in the Coomassie Brilliant Blue and Pyrogallol Red protein dye-binding assays is increased by the addition of sodium dodecyl sulfate to the dye reagents.

    PubMed

    Marshall, Thomas; Williams, Katherine M

    2004-08-15

    We have investigated the effect of sodium dodecyl sulfate (SDS) upon the response of the Coomassie Brilliant Blue (CBB) and Pyrogallol Red-molybdate (PRM) protein dye-binding assays to interference from aminoglycosides, ampholytes, detergents, phenothiazines, reducing agents, and miscellaneous substances previously reported to interfere with the assays. The CBB assay was less prone to interference than the PRM assay but gave positive interference with the detergents and the phenothiazines and negative interference with dextran sulfate. The PRM assay gave positive interference with the aminoglycosides, ampholytes, and phenothiazines and negative interference with SDS, citric acid, dextran sulfate, EDTA, oxalic acid, and tartaric acid. The level of interference varied in the presence of different proteins (albumin, gamma globulin, alpha1-acid glycoprotein, or lysozyme) and increased when SDS was added to the dye reagents.

  18. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    NASA Astrophysics Data System (ADS)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of

  19. The role of sodium dodecyl sulfate (SDS) micelles in inducing skin barrier perturbation in the presence of glycerol.

    PubMed

    Ghosh, Saswata; Blankschtein, Daniel

    2007-01-01

    The stratum corneum (SC) serves as the skin barrier between the body and the environment. When the skin is contacted with an aqueous solution of the surfactant sodium dodecyl sulfate (SDS), a well-known model skin irritant, SDS penetrates into the skin and disrupts this barrier. It is well established, both in vitro and in vivo, that the SDS skin penetration is dose-dependent, and that it increases with an increase in the total SDS concentration above the critical micelle concentration (CMC) of SDS. However, when we added the humectant glycerol at a concentration of 10 wt% to the aqueous SDS contacting solution, we observed, through in vitro quantitative skin radioactivity assays using (14)C-radiolabeled SDS, that the dose dependence in SDS skin penetration is almost completely eliminated. To rationalize this important observation, which may also be related to the well-known beneficial effects of glycerol on skin barrier perturbation in vivo, we hypothesize that the addition of 10 wt% glycerol may hinder the ability of the SDS micelles to penetrate into the skin barrier through aqueous pores that exist in the SC. To test this hypothesis, we conducted mannitol skin permeability as well as average skin electrical resistivity measurements in vitro upon exposure of the skin to an aqueous SDS contacting solution and to an aqueous SDS + 10 wt% glycerol contacting solution in the context of a hindered-transport aqueous porous pathway model of the SC. Our in vitro studies demonstrated that the addition of 10 wt% glycerol: (i) reduces the average aqueous pore radius resulting from exposure of the skin to the aqueous SDS contacting solution from 33 +/- 5 Angstrom to 20 +/- 5 Angstrom, such that a SDS micelle of radius 18.5 +/- 1 Angstrom (as determined using dynamic light-scattering measurements) experiences significant steric hindrance and cannot penetrate into the SC, and (ii) reduces the number density of aqueous pores in the SC by more than 50%, thereby further reducing

  20. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis.

    PubMed

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines.

  1. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis

    PubMed Central

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651

  2. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Protein Banding Patterns among Rhizobium leguminosarum biovar phaseoli Strains Isolated from the Mexican Bean Phaseolus coccineus

    PubMed Central

    Arredondo-Peter, R.; Escamilla, E.

    1993-01-01

    Several rhizobial strains were isolated from Phaseolus coccineus root nodules and were determined to be Rhizobium leguminosarum biovar phaseoli strains after reinfection of the same host plant. These strains were characterized by cultural procedures (growth on different carbon sources and intrinsic antibiotic resistance) and electrophoretic procedures (sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total proteins). Our results showed that these rhizobia are very similar to each other, especially in their electrophoretic protein banding patterns, suggesting that they might belong to isolated populations. Images PMID:16349098

  3. Direct determination of motional spectral densities for lithium dodecyl sulfate micellar dynamics from analysis of 13C 2H scalar relaxation

    NASA Astrophysics Data System (ADS)

    Stilbs, Peter; Söderman, Olle; Walderhaug, harald

    The motional spectral densities, J( ω0) and J(2 ω0) are extracted directly from a bandshape analysis of the 13C signal of a deuterated methylene group of a surfactant, Li dodecyl sulfate, residing in a micelle. The extracted spectral densities are then compared with spectral densities calculated using a motional model, the so-called "two-step model," for methylene segments of aggregated surfactants. The two sets of spectral densities agree within the experimental uncertainty. Thus, the two-step model is a reasonable description of NMR relaxation in micellar systems.

  4. Isoelectric focusing of human hair keratins: correlation with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and effect of cosmetic treatments.

    PubMed

    Rodriguez-Calvo, M S; Carracedo, A; Muñoz, I; Concheiro, L

    1992-03-01

    A new isoelectric focusing (IEF) technique in polyacrylamide gels with 6M urea and 1.5% Nonidet P40 has been developed to characterize human hair samples. The phenotypes demonstrated with this procedure has been correlated with the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns described by other authors. The method described can be applied in the forensic science analysis of a single human hair. Using the same IEF technique we have studied the changes in electrophoretic patterns of cosmetically treated hair. The characteristics of the modifications observed and its utility in forensic science work are also discussed in this paper.

  5. Adsorption of the anionic surfactant sodium dodecyl sulfate on a C18 column under micellar and high submicellar conditions in reversed-phase liquid chromatography.

    PubMed

    Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C

    2015-02-01

    Micellar liquid chromatography makes use of aqueous solutions or aqueous-organic solutions containing a surfactant, at a concentration above its critical micelle concentration. In the mobile phase, the surfactant monomers aggregate to form micelles, whereas on the surface of the nonpolar alkyl-bonded stationary phases they are significantly adsorbed. If the mobile phase contains a high concentration of organic solvent, micelles break down, and the amount of surfactant adsorbed on the stationary phase is reduced, giving rise to another chromatographic mode named high submicellar liquid chromatography. The presence of a thinner coating of surfactant enhances the selectivity and peak shape, especially for basic compounds. However, the risk of full desorption of surfactant is the main limitation in the high submicellar mode. This study examines the adsorption of the anionic surfactant sodium dodecyl sulfate under micellar and high submicellar conditions on a C18 column, applying two methods. One of them uses a refractive index detector to obtain direct measurements of the adsorbed amount of sodium dodecyl sulfate, whereas the second method is based on the retention and peak shape for a set of cationic basic compounds that indirectly reveal the presence of adsorbed monomers of surfactant on the stationary phase.

  6. Use of capillary electrophoresis-sodium dodecyl sulfate to monitor disulfide scrambled forms of an Fc fusion protein during purification process.

    PubMed

    Hapuarachchi, Suminda; Fodor, Szilan; Apostol, Izydor; Huang, Gang

    2011-07-15

    Overexpression of recombinant Fc fusion proteins in Escherichia coli frequently results in the production of inclusion bodies that are subsequently used to produce fully functional protein by an in vitro refolding process. During the refolding step, misfolded proteins such as disulfide scrambled forms can be formed, and purification steps are used to remove these product-related impurities to produce highly purified therapeutic proteins. A variety of analytical methods are commonly used to monitor protein variants throughout the purification process. Capillary electrophoresis (CE)-based techniques are gaining popularity for such applications. In this work, we used a nonreduced capillary electrophoresis-sodium dodecyl sulfate (nrCE-SDS) method for the analysis of disulfide scrambled forms in a fusion protein. Under denatured nonreduced conditions, an extra post-shoulder peak was observed at all purification steps. Detailed characterization revealed that the peak was related to the disulfide scrambled forms and was isobaric with the correctly folded product. In addition, when sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used during the CE-SDS peak characterization, we observed that the migration order of scrambled forms is reversed on CE-SDS versus SDS-PAGE. This illustrates the importance of establishing proper correlation of these two techniques when they are used interchangeably to guide the purification process and to characterize proteins. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effects of buffered vinegar and sodium dodecyl sulfate plus levulinic acid on Salmonella Typhimurium survival, shelf-life, and sensory characteristics of ground beef patties.

    PubMed

    Stelzleni, Alexander M; Ponrajan, Amudhan; Harrison, Mark A

    2013-09-01

    The inclusion of two sources of buffered vinegar and sodium dodecyl sulfate plus levulinic acid were studied as interventions for Salmonella Typhimurium and for their effect on shelf-life and sensory characteristics of ground beef. For the Salmonella challenge, beef trimmings (80/20) were inoculated then treated with 2% (w/v) liquid buffered vinegar (LVIN), 2.5% (w/w) powdered buffered vinegar (PVIN), a solution containing 1.0% levulinic acid plus 0.1% sodium dodecyl sulfate (SDLA) at 10% (w/v), or had no intervention applied (CNT). The same trim source and production methods were followed during production of patties for shelf-life and sensory testing without inoculation. SDLA patties had the largest reduction (P<0.05; 0.70 log CFU/g) of Salmonella. However, LVIN and PVIN had the least (P<0.05) psychrotrophic growth. SDLA patties had more purge (P<0.05) and lower (P<0.05) subjective color scores. There were not large differences in sensory characteristics, except PVIN exhibited stronger off-flavor (P<0.05).

  8. Phase and extraction equilibria in H2O-sulfonol-HCl (H2SO4) and H2O-sodium dodecyl sulfate-HCl (H2SO4) systems

    NASA Astrophysics Data System (ADS)

    Zabolotnykh, S. A.; Lesnov, A. E.; Denisova, S. A.

    2016-10-01

    Solubility isotherms of water-sulfonol-hydrochloric (or sulfuric) acid and water-sodium dodecyl sulfate-hydrochloric acid systems at 75°C and a water-sodium dodecyl sulfate-sulfuric acid system at 50°C are constructed. Regions of two-phase liquid equilibrium suitable for use in extraction are found. Concentration parameters for extraction are determined. The interfacial distribution of a series of metal ions with and without such additional complexing reagents as diantipyrylmethane and diantipyrylheptane is studied.

  9. Spontaneous formation of nanocubic particles and spherical vesicles in catanionic mixtures of ester-containing gemini surfactants and sodium dodecyl sulfate in the presence of electrolyte.

    PubMed

    Aghdastinat, Hasti; Javadian, Soheila; Tehrani-Bagha, Alireza; Gharibi, Hussein

    2014-03-20

    Self-assembly of pure ester-containing cationic gemini surfactants, dodecyl esterquat, and dodecyl betainate geminis, and cation-rich catanionic mixtures of them with sodium dodecyl sulfate (SDS) were investigated using surface tension, electrical conductivity, dynamic light scattering (DLS), transmission electron microscopy (TEM) and cyclic voltammetry (CV) measurements in the absence and presence of KCl. Different physicochemical properties such as the critical micelle concentration (CMC), degree of counterion dissociation (αdiss), interfacial properties, morphology of aggregates, and interparticle interaction parameters were determined. Both geminis formed micelles in the absence of KCl, and mixing with SDS did not change the morphology; just a growth in micelle size was observed. However, the aggregation behavior of these geminis with respect to the position of the ester bond in the alkyl chain appeared completely different in the presence of KCl. Esterquat gemini formed cubic nanoparticles (or cobosomes) in the presence of [KCl] = 0.05 M and transformed into spherical micelles upon increasing the surfactant concentration. By contrast, betainate gemini formed vesicles in the presence of [KCl] = 0.05 M and subsequently converted to micelles as the surfactant concentration increased. The morphology of esterquat gemini (in the presence of 0.05 M KCl) after mixing with SDS changed from cubic nanoparticles (or cobosomes) to cylindrical nanoparticles coexistent with cobosomes. Betainate gemini remained vesicular upon mixing with SDS, and no dramatic structural change of aggregates took place. The morphology changes of aggregates upon mixing with SDS were explained from calculating the interactions between two gemini surfactants and SDS on the basis of regular solution theory.

  10. Influence of age on the correlations of hematological and biochemical variables with the stability of erythrocyte membrane in relation to sodium dodecyl sulfate.

    PubMed

    de Freitas, Mariana V; Marquez-Bernardes, Liandra F; de Arvelos, Letícia R; Paraíso, Lara F; Gonçalves E Oliveira, Ana Flávia M; Mascarenhas Netto, Rita de C; Neto, Morun Bernardino; Garrote-Filho, Mario S; de Souza, Paulo César A; Penha-Silva, Nilson

    2014-10-01

    To evaluate the influence of age on the relationships between biochemical and hematological variables and stability of erythrocyte membrane in relation to the sodium dodecyl sulfate (SDS) in population of 105 female volunteers between 20 and 90 years. The stability of RBC membrane was determined by non-linear regression of the dependency of the absorbance of hemoglobin released as a function of SDS concentration, represented by the half-transition point of the curve (D50) and the variation in the concentration of the detergent to promote lysis (dD). There was an age-dependent increase in the membrane stability in relation to SDS. Analyses by multiple linear regression showed that this stability increase is significantly related to the hematological variable red cell distribution width (RDW) and the biochemical variables blood albumin and cholesterol. The positive association between erythrocyte stability and RDW may reflect one possible mechanism involved in the clinical meaning of this hematological index.

  11. The effects of sodium dodecyl sulfate and sodium saccharin on morphology, hardness and wear behavior of Cr-WC nano composite coatings

    NASA Astrophysics Data System (ADS)

    Rezaei-Sameti, M.; Nadali, S.; Falahatpisheh, A.; Rakhshi, M.

    2013-04-01

    The effects of sodium saccharin and sodium dodecyl sulfate (SDS) additives on the amount of incorporated tungsten carbide (WC) particles and morphology of the coatings are investigated. The structure and morphology of the coatings are determined by scanning electron microscopy techniques (SEM). The hardness and tribological behavior of the coatings are studied by micro hardness and pin on disk methods. The experimental results show that with the addition of sodium saccharin and SDS the amount of WC particles in the coating decreases and the size of WC agglomerates reduces. The average size of WC particles is 70 nm. On the other hand the wear resistances of the coatings increase and the optimum wear resistance is 1 g/L.

  12. Solute-solvent interactions in micellar electrokinetic chromatography. Characterization of sodium dodecyl sulfate-Brij 35 micellar systems for quantitative structure-activity relationship modelling.

    PubMed

    Rosés, M; Ràfols, C; Bosch, E; Martínez, A M; Abraham, M H

    1999-06-11

    The solvation parameter model has been applied to the characterization of micellar electrokinetic chromatographic (MEKC) systems with mixtures of sodium dodecyl sulfate and Brij 35 as surfactant. The variation in MEKC surfactant composition results in changes in the coefficients of the correlation equation, which in turns leads to information on solute-solvent and solute-micelle interactions. Since the same solvation model can be used to describe many biological processes, particular MEKC surfactant compositions can be selected that model the solute-solvent interactions of some of these processes. Two different MEKC systems have been selected to model the solute-solvent interactions of two processes of biological interest (octanol-water partition and tadpole narcosis).

  13. The effect of the presence of the metal prosthetic groups on the subunit structure of bovine superoxide dismutase in sodium dodecyl sulfate.

    PubMed

    Marmocchi, F; Caulini, G; Venardi, G; Cocco, D; Calabrese, L; Rotilio, G

    1975-01-01

    Dissociation into protomers of bovine superoxide dismutase by sodium dodecyl sulfate (SDS) depends on the metal prosthetic group and incubation time in the presence of detergent. The holoenzyme containing either copper and zinc or copper and cobalt is not dissociated. The fully metal-free apoenzyme is dissociated into protomers after short preincubation in SDS. The copper-free enzyme, still containing zinc or cobalt, is dissociated to a significant extent only after 24 hours preincubation in SDS. This effect is associated with a gradual alteration of the native zinc site, as followed by optical spectra of the homologous cobalt enzyme. Removal of SDS results in significant reassociation of protomers which is apparently independent of the presence of metals.

  14. High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution.

    PubMed

    Nagata, Hideya; Tabuchi, Mari; Hirano, Ken; Baba, Yoshinobu

    2005-07-01

    In this paper, we describe a method for size-based electrophoretic separation of sodium dodecyl sulfate (SDS)-protein complexes on a polymethyl methacrylate (PMMA) microchip, using a separation buffer solution containing SDS and linear polyacrylamide as a sieving matrix. We developed optimum conditions under which protein separations can be performed, using polyethylene glycol (PEG)-coated polymer microchips and electrokinetic sample injection. We studied the performance of protein separations on the PEG-coated PMMA microchip. The electrophoretic separation of proteins (21.5-116.0 kDa) was completed with separation lengths of 3 mm, achieved within 8 s on the PEG-coated microchip. This high-speed method may be applied to protein separations over a large range of molecular weight, making the PEG-coated microchip approach applicable to high-speed proteome analysis systems.

  15. Dielectric study of aqueous solutions of sodium dodecyl sulfate in the frequency span 20 Hz to 2 MHz

    NASA Astrophysics Data System (ADS)

    Kadve, A. M.; Vankar, H. P.; Rana, V. A.

    2017-05-01

    Dielectric measurements were carried out for aqueous solutions of Sodium Dodecyl Sulfate (SDS) in the frequency span of 20 Hz to 2 MHz at 300.15 K temperature using precision LCR meter. Also the refractive indices were measured for the solutions at 300.15 K temperature using Abbe's refractometer. The measurements were done for ten different concentrations of SDS in distilled water. Determined values of complex permittivity as a function of frequency were used to evaluate other parameters like loss tangent and electric modulus for the liquid samples. The permittivity at optical frequency were also calculated from the measured refractive indices for the aqueous solutions. The effect of concentration variation of SDS in the aqueous solutions on the determined parameters is discussed.

  16. Fast protein staining in sodium dodecyl sulfate polyacrylamide gel using counter ion-dyes, Coomassie brilliant blue R-250 and neutral red.

    PubMed

    Choi, Jung-Kap; Yoo, Gyurng-Soo

    2002-10-01

    A fast and sensitive protein staining method in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using both an acidic dye, Coomassie Brilliant Blue R-250 (CBBR) and a basic dye, Neutral Red (NR) is described. It is based on a counter ion-dye staining technique that employs oppositely charged two dyes to form an ion-pair complex. The selective binding of the free dye molecules to proteins in an acidic solution enhances the staining effect of CBBR on protein bands, and also reduces gel background. It is a rapid staining procedure, involving fixing and staining steps with short destaining that are completed in about 1 h. As the result, it showed two to fourfold increase in sensitivity comparing with CBBR staining. The stained protein bands can be visualized at the same time of staining.

  17. Removal of Adsorbed Toxin Fragments That Modify Bacillus thuringiensis CryIC δ-Endotoxin Iodination and Binding by Sodium Dodecyl Sulfate Treatment and Renaturation

    PubMed Central

    Luo, Ke; Adang, Michael J.

    1994-01-01

    We report that 10- and 25-kDa toxin fragments adhere to CryIC prepared from Bacillus thuringiensis insecticidal crystals, block iodination, and alter membrane binding. There is no apparent affect on CryIC toxicity against Spodoptera exigua. Associated peptides remained bound to CryIC in the presence of 50 mM dithiothreitol or 6 M urea. A novel detergent-renaturation procedure was developed for the purification of B. thuringiensis CryIC toxin. Sodium dodecyl sulfate (SDS) treatment followed by gel filtration chromatography yielded a homogeneous 62-kDa CryIC toxin. After removal of SDS and renaturation, the purified CryIC toxin was fully insecticidal to S. exigua larvae. 125I-labeled CryIC bound with high affinity to brush border membrane vesicles from S. exigua larvae. Images PMID:16349357

  18. Tissue engineering of the anterior cruciate ligament-sodium dodecyl sulfate-acellularized and revitalized tendons are inferior to native tendons.

    PubMed

    Tischer, Thomas; Aryee, Sebastian; Wexel, Gabriele; Steinhauser, Erwin; Adamczyk, Christopher; Eichhorn, Stefan; Milz, Stefan; Martinek, Vladimir; Gänsbacher, Bernd; Imhoff, Andreas B; Vogt, Stephan

    2010-03-01

    The acellularization of tendons using detergents (sodium dodecyl sulfate, Triton-X, tri-nitro-butyl-phosphate) is a new source of scaffolds for tissue engineering in anterior cruciate ligament (ACL) repair. In vitro testing demonstrated that acellular tendon scaffolds are biocompatible and show good biomechanical properties, but in vivo confirmation of these results is not yet available. Therefore, the aim of this study was to see in vivo if an acellular allogenic construct colonized with autologous fibroblasts improves the quality of ACL reconstruction. ACL replacement was performed in 31 New Zealand White rabbits using a standardized model. Fifteen animals received autologous semitendinosus tendon, whereas 16 animals were treated with a tissue-engineered construct. This construct was made by acellularization of allogenic semitendinosus tendons using sodium dodecyl sulfate and subsequent in vitro colonization with autologous fibroblasts. Eight weeks postoperatively, macroscopic, biomechanical (ultimate load to failure, elongation, stiffness; n = 8/9), and histological (n = 5) examinations were performed. Biomechanical testing showed decreasing strength of the constructs at 8 weeks after implantation compared with the direct postsurgical strength. However, tissue-engineered constructs (F = 19.7 +/- 20.3 N) were significantly weaker than autologous tendons (F = 61.2 +/- 31.2 N). Histologically, the autologous tendons showed signs of partial necrosis and tissue remodeling. The tissue-engineered constructs exhibited an inflammatory reaction and showed both repopulated and acellular regions. In conclusion, in vivo results were much more unfavorable than in vitro results had suggested. Further studies have to be performed to test if modifications of the acellularization process yield better results in vivo.

  19. Stability of nicotinate and dodecyl sulfate in a Lewis acidic ionic liquid for aluminum electroplating and characterization of their degradation products.

    PubMed

    Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela

    2016-04-01

    Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Elucidation of the binding sites of sodium dodecyl sulfate to β-lactoglobulin using hydrogen/deuterium exchange mass spectrometry combined with docking simulation.

    PubMed

    Hu, Wenbing; Liu, Jianan; Luo, Qun; Han, Yumiao; Wu, Kui; Lv, Shuang; Xiong, Shaoxiang; Wang, Fuyi

    2011-05-30

    Hydrogen/deuterium exchange mass spectrometry (H/DX MS) has become a powerful tool to investigate protein-protein and protein-ligand interactions, but it is still challenging to localize the interaction regions/sites of ligands with pepsin-resistant proteins such as lipocalins. β-Lactoglobulin (BLG), a member of the lipocalin family, can bind a variety of small hydrophobic molecules including retinols, retinoic acids, and long linear fatty acids. However, whether the binding site of linear molecules locates in the external groove or internal cavity of BLG is controversial. In this study we used H/DX MS combined with docking simulation to localize the interaction sites of a tested ligand, sodium dodecyl sulfate (SDS), binding to BLG. H/DX MS results indicated that SDS can bind to both the external and the internal sites in BLG. However, neither of the sites is saturated with SDS, allowing a dynamic ligand exchange to occur between the sites at equilibrium state. Docking studies revealed that SDS forms H-bonds with Lys69 in the internal site and Lys138 and Lys141 in the external site in BLG via the sulfate group, and interacts with the hydrophobic residues valine, leucine, isoleucine and methionine within both of the sites via its hydrocarbon tail, stabilizing the BLG-SDS complex.

  1. Synthesis and characterization of Cd-Cr and Zn-Cd-Cr layered double hydroxides intercalated with dodecyl sulfate

    SciTech Connect

    Guo Ying; Zhang He; Zhao Lan; Li Guodong; Chen Jiesheng . E-mail: chemcj@mail.jlu.edu.cn; Xu Lin

    2005-06-15

    Cd-Cr and Zn-Cd-Cr layered double hydroxides (CdCr-LDH and ZnCdCr-LDH) containing alkyl sulfate as the interlamellar anion have been prepared through a coprecipitation technique. The resulting compounds were characterized using X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. Magnetic property measurements indicate that antiferromagnetic interactions occur between the chromium ions in the two compounds at low temperatures. The introduction of zinc influences the ligand field of Cr{sup III} and the Cr{sup III}-Cr{sup III} interactions in the LDH compound. It is found that both CdCr-LDH and ZnCdCr-LDH can be delaminated by dispersion in formamide, leading to translucent and stable colloidal solutions.

  2. Free energy profiles for penetration of methane and water molecules into spherical sodium dodecyl sulfate micelles obtained using the thermodynamic integration method combined with molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Yoshii, N.; Okazaki, S.

    2012-01-01

    The free energy profiles, ΔG(r), for penetration of methane and water molecules into sodium dodecyl sulfate (SDS) micelles have been calculated as a function of distance r from the SDS micelle to the methane and water molecules, using the thermodynamic integration method combined with molecular dynamics calculations. The calculations showed that methane is about 6-12 kJ mol-1 more stable in the SDS micelle than in the water phase, and no ΔG(r) barrier is observed in the vicinity of the sulfate ions of the SDS micelle, implying that methane is easily drawn into the SDS micelle. Based on analysis of the contributions from hydrophobic groups, sulfate ions, sodium ions, and solvent water to ΔG(r), it is clear that methane in the SDS micelle is about 25 kJ mol-1 more stable than it is in the water phase because of the contribution from the solvent water itself. This can be understood by the hydrophobic effect. In contrast, methane is destabilized by 5-15 kJ mol-1 by the contribution from the hydrophobic groups of the SDS micelle because of the repulsive interactions between the methane and the crowded hydrophobic groups of the SDS. The large stabilizing effect of the solvent water is higher than the repulsion by the hydrophobic groups, driving methane to become solubilized into the SDS micelle. A good correlation was found between the distribution of cavities and the distribution of methane molecules in the micelle. The methane may move about in the SDS micelle by diffusing between cavities. In contrast, with respect to the water, ΔG(r) has a large positive value of 24-35 kJ mol-1, so water is not stabilized in the micelle. Analysis showed that the contributions change in complex ways as a function of r and cancel each other out. Reference calculations of the mean forces on a penetrating water molecule into a dodecane droplet clearly showed the same free energy behavior. The common feature is that water is less stable in the hydrophobic core than in the water phase

  3. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    NASA Astrophysics Data System (ADS)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  4. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    SciTech Connect

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  5. Influence of sodium dodecyl sulfate on swelling, erosion and release behavior of HPMC matrix tablets containing a poorly water-soluble drug.

    PubMed

    Zeng, Aiguo; Yuan, Bingxiang; Fu, Qiang; Wang, Changhe; Zhao, Guilan

    2009-01-01

    The effect of sodium dodecyl sulfate (SDS) on the swelling, erosion and release behavior of HPMC matrix tablets was examined. Swelling and erosion of HPMC matrix tablets were determined by measuring the wet and subsequent dry weights of matrices. The rate of uptake of the dissolution medium by the matrix was quantified using a square root relationship whilst the erosion of the polymer was described using the cube root law. The extent of swelling decreased with increasing SDS concentrations in the dissolution medium but the rate of erosion was found to follow a reverse trend. Such phenomena might have been caused by the attractive hydrophobic interaction between HPMC and SDS as demonstrated by the cloud points of the solutions containing both the surfactant and polymer. Release profiles of nimodipine from HPMC tablets in aqueous media containing different concentrations of SDS were finally studied. Increasing SDS concentrations in the medium was shown to accelerate the release of nimodipine from the tablets, possibly due to increasing nimodipine solubility and increasing rate of erosion by increasing SDS concentrations in the dissolution medium.

  6. Influence of low-molecular-weight glutenin subunit genes at Glu-A3 locus on wheat sodium dodecyl sulfate sedimentation volume and solvent retention capacity value.

    PubMed

    Li, Zhixia; Si, Hongqi; Xia, Yunxiang; Ma, Chuanxi

    2015-08-15

    To understand the effect of low-molecular-weight (LMW) glutenin alleles at the Glu-A3 locus on sodium dodecyl sulfate (SDS) sedimentation volume and solvent retention capacity (SRC) values, 244 accessions of Chinese wheat (Triticum aestivum L.) mini core collections were investigated. In this study the significant differences in wholemeal flour SDS sedimentation volume and SRC values associated with specific glutenin alleles at the Glu-A3 locus were explained. Seven glutenin alleles at the Glu-A3 locus were confirmed by locus-specific polymerase chain reaction (PCR). SDS sedimentation volume and lactic acid SRC value were significantly affected by alleles Glu-A3b and Glu-A3g. Based on total average values, 28 varieties carrying Glu-A3b had significantly higher means of SDS sedimentation volume and lactic acid SRC value, whereas 19 varieties carrying Glu-A3g had significantly lower means. Alleles Glu-A3d and Glu-A3f significantly increased only SDS sedimentation volume and sucrose SRC value respectively. Correlation analysis showed that SDS sedimentation volume was uncorrelated with lactic acid SRC and sucrose SRC values. The Glu-A3 LMW glutenin subunit could predict 12.8% of the variance in SDS sedimentation volume, 4.7% in lactic acid SRC and 6.4% in sucrose SRC. © 2014 Society of Chemical Industry.

  7. Effect of sodium dodecyl sulfate (SDS) on stress response in the Mediterranean mussel (Mytilus Galloprovincialis): regulatory volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress.

    PubMed

    Messina, Concetta Maria; Faggio, Caterina; Laudicella, Vincenzo Alessandro; Sanfilippo, Marilena; Trischitta, Francesca; Santulli, Andrea

    2014-12-01

    In this study the effects of an anionic surfactant, sodium dodecyl sulfate (SDS), are assessed on the Mediterranean mussel (Mytilus galloprovincialis), exposed for 18 days at a concentration ranging from 0.1 mg/l to 1 mg/l. The effects are monitored using biomarkers related to stress response, such as regulatory volume decrease (RVD), and to oxidative stress, such as reactive oxygen species (ROS), endogenous antioxidant systems and Hsp70 levels. The results demonstrate that cells from the digestive gland of M. galloprovincialis, exposed to SDS were not able to perform the RVD owing to osmotic stress. Further, SDS causes oxidative stress in treated organisms, as demonstrated by the increased ROS production, in comparison to the controls (p<0.05). Consequently, two enzymes involved in ROS scavenging, superoxide dismutase (SOD) and catalase (CAT) have higher activities and the proportion of oxidized glutathione (GSSG) is higher in hepatopancreas and mantle of treated animals, compared to untreated animals (p<0.05). Furthermore Hsp70 demonstrates an up-regulation in all the analyzed tissues of exposed animals, attesting the stress status induced by the surfactant with respect to the unexposed animals. The results highlight that SDS, under the tested concentrations, exerts a toxic effect in mussels in which the disruption of the osmotic balance follows the induction of oxidative stress.

  8. In-tube magnetic solid phase microextraction of some fluoroquinolones based on the use of sodium dodecyl sulfate coated Fe3O4 nanoparticles packed tube.

    PubMed

    Manbohi, Ahmad; Ahmadi, Seyyed Hamid

    2015-07-23

    In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett-Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box-Behnken design. Calibration curves were linear (R(2)>0.990) in the range of 0.1-1000μgL(-1) for ciprofloxacin (CIP) and 0.5-500μgL(-1) for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05μgL(-1). The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films

    PubMed Central

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2017-01-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 μm (m2 d bar)−1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 μm (m2 d)−1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient. PMID:28149835

  10. Molecular Insight into Human Lysozyme and Its Ability to Form Amyloid Fibrils in High Concentrations of Sodium Dodecyl Sulfate: A View from Molecular Dynamics Simulations

    PubMed Central

    Jafari, Majid; Mehrnejad, Faramarz

    2016-01-01

    Changes in the tertiary structure of proteins and the resultant fibrillary aggregation could result in fatal heredity diseases, such as lysozyme systemic amyloidosis. Human lysozyme is a globular protein with antimicrobial properties with tendencies to fibrillate and hence is known as a fibril-forming protein. Therefore, its behavior under different ambient conditions is of great importance. In this study, we conducted two 500000 ps molecular dynamics (MD) simulations of human lysozyme in sodium dodecyl sulfate (SDS) at two ambient temperatures. To achieve comparative results, we also performed two 500000 ps human lysozyme MD simulations in pure water as controls. The aim of this study was to provide further molecular insight into all interactions in the lysozyme-SDS complexes and to provide a perspective on the ability of human lysozyme to form amyloid fibrils in the presence of SDS surfactant molecules. SDS, which is an anionic detergent, contains a hydrophobic tail with 12 carbon atoms and a negatively charged head group. The SDS surfactant is known to be a stabilizer for helical structures above the critical micelle concentration (CMC) [1]. During the 500000 ps MD simulations, the helical structures were maintained by the SDS surfactant above its CMC at 300 K, while at 370 K, human lysozyme lost most of its helices and gained β-sheets. Therefore, we suggest that future studies investigate the β-amyloid formation of human lysozyme at SDS concentrations above the CMC and at high temperatures. PMID:27768744

  11. Temperature-dependent phase transition and desorption free energy of sodium dodecyl sulfate at the water/vapor interface: approaches from molecular dynamics simulations.

    PubMed

    Chen, Meng; Lu, Xiancai; Liu, Xiandong; Hou, Qingfeng; Zhu, Youyi; Zhou, Huiqun

    2014-09-09

    Adsorption of surfactants at the water/vapor interface depends upon their chemical potential at the interface, which is generally temperature-dependent. Molecular dynamics simulations have been performed to reveal temperature influences on the microstructure of sodium dodecyl sulfate (SDS) molecule adsorption layer. At room temperature, SDS molecules aggregate at the interface, being in a liquid-expanded phase, whereas they tend to spread out and probably transit to a gaseous phase as the temperature increases to above 318 K. This phase transition has been confirmed by the temperature-dependent changes in two-dimensional array, tilt angles, and immersion depths to the aqueous phase of SDS molecules. The aggregation of SDS molecules accompanies with larger immersion depths, more coordination of Na(+) ions, and less coordination of water. Desorption free energy profiles show that higher desorption free energy appears for SDS molecules at the aggregate state at low temperatures, but no energy barrier is observed. The shapes of desorption free energy profiles depend upon the distribution of SDS at the interface, which, in turn, is related to the phase state of SDS. Our study sheds light on the development of adsorption thermodynamics and kinetics theories.

  12. Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II).

    PubMed

    Li, Shu-Zhen; Wu, Ping-Xiao

    2010-01-15

    Anionic surfactant modified Fe-pillared montmorillonites were prepared by Fe-hydrate solution and sodium dodecyl sulfate (SDS) solution. These organo-inorgano complex montmorillonites were divided into three types (CM1, CM2 and CM3) depending on different intercalation processes. X-ray diffraction spectra, the Fourier transform infrared (FTIR) spectra were used to analyze the structure of the raw and modified montmorillonites. X-ray photoelectron spectra of the samples have been studied to determine spectral characteristics to allow the identification of Fe(III) hydroxide. The specific surface area of the host montmorillonite (M0) is 73.2m(2)/g, while for the modified montmorillonites it is 114.0m(2)/g, 117.2m(2)/g, and 115.8m(2)/g, respectively. The mesopore volumes of the montmorillonites decrease after modification. Ions of copper and cobalt were selected as adsorbates to evaluate the adsorption performance of each montmorillonite. The adsorption data was analyzed by both Freundlich and Langmuir isotherm models and the data was well fit by the Langmuir isotherm model. The adsorption was efficient and significantly influenced by metal speciation, metal concentration, contact time, and pH. Higher adsorption capacity of the modified montmorillonites were obtained at pH 5-6. The results of desorption indicated that the metal ions were covalently bound to the modified montmorillonites.

  13. Evaluation of DLVO theory with disjoining-pressure and film-conductance measurements of common-black films stabilized with sodium dodecyl sulfate.

    PubMed

    Yaros, Heather D; Newman, John; Radke, C J

    2003-06-15

    We develop a unique film holder combining a thin-film balance with AC impedance spectroscopy to measure disjoining pressure, film conductance, and film thickness simultaneously. Foam films stabilized by sodium dodecyl sulfate (SDS) are investigated with and without added sodium chloride (NaCl) electrolyte. Classical colloidal theory, Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, is tested rigorously over a wide range of solution conditions by comparing the surface charge densities fit to disjoining-pressure isotherms with those estimated independently from film-conductance and surface-tension data. Film-conductance measurements strongly suggest that the adsorbed anionic surfactant is partially complexed with counterions. Therefore, to reconcile the different values of charge densities calculated from surface tension and film conductance with those from disjoining pressure, we propose a simple ion-binding electrostatic model. The ion-complexation framework predicts increased ion complexing with increasing solution ionic strength, in agreement with surface-tension and film-conductance data. Unfortunately, it is not possible to describe similarly the trends of the measured disjoining-pressure isotherms because the diffuse-layer charge density increases, or equivalently, the ion complexation decreases with increasing ionic strength. Accordingly, the ion-binding extension of classical DLVO theory does not permit agreement between theory and independent experimental data from surface tension, disjoining pressure, and film conductance.

  14. The solution behavior of poly(vinylpyrrolidone): its clouding in salt solution, solvation by water and isopropanol, and interaction with sodium dodecyl sulfate.

    PubMed

    Dan, Abhijit; Ghosh, Soumen; Moulik, Satya P

    2008-03-27

    This article deals with the solution properties of poly(vinylpyrrolidone) (PVP) in salt and surfactant environment. The cloud point (CP) of PVP has been found to be induced by the salts NaCl, KCl, KBr, Na2SO4, MgSO4, and Na3PO4. On the basis of CP values for a salt at different [PVP], the energetics of the clouding process have been estimated. The effect of the surfactant, sodium dodecyl sulfate (SDS), on the salt-induced CP has also been studied, and reduction in CP at low [SDS] and increase in CP at high [SDS] have been observed. The water vapor adsorption of PVP has been determined by isopiestic method. The results display a BET Type III isotherm whose analysis has helped to obtain the monolayer capacity of PVP and formation of multilayer on it. The solvation of PVP in a solution of water and a water-isopropanol mixture has been determined by conductometry from which contribution of the individual components were estimated. The interaction of PVP with SDS in solution led to formation of a complex entity, which has been studied also by conductometry adopting a binding-equilibrium scheme. SDS has been found to undergo two types of binding as monomers in the pre- critical aggregation concentration (CAC) range and as small clusters in the post CAC region. The stoichiometries of binding and binding constant were evaluated.

  15. Electron spin echo modulation study of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions in the presence of urea: Evidence for urea interaction at the micellar surface

    SciTech Connect

    Baglioni, P. ); Ferroni, E. ); Kevan, L. )

    1990-05-17

    Electron spin echo studies have been carried out for a series of x-doxylstearic acid (x-DSA, x = 5,7,10,12,16) and 4-octanoyl-2,2,6,6-tetramethylpiperidine-1-oxy (C{sub 8}-TEMPO) spin probes in micellar solutions of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) in D{sub 2}O and in the presence of 2 or 6 M urea or urea-d{sub 4}. Modulation effects due to the interaction of the unpaired electron with urea and water deuteriums show that urea does not affect the bent conformation of the x-DSA probe in the micelle. The analysis of the deuterium modulation depth and the Fourier transformation of the two-pulse electron spin echo spectra show that urea interacts with the surfactant polar headgroups at the micelle surface. These results support recent molecular dynamics and Monte Carlo calculations of micellar systems and are in agreement with direct interaction of urea at micellar surfaces in which it replaces some water molecules in the surface region.

  16. Thermodynamic characteristics of the dissolution of glycine, glycylglycine, and glycylglycylglycine in aqueous solutions of sodium dodecyl sulfate at T = 298.15 K

    NASA Astrophysics Data System (ADS)

    Smirnov, V. I.; Badelin, V. G.

    2017-09-01

    the enthalpies of dissolution of glycine (Gly), glycylglycine (GlyGly), and glycylglycylglycine (GlyGlyGly) are measured in aqueous solutions of sodium dodecyl sulfate (SDS) at SDS concentrations m = 0-0.7 mol kg-1 and T = 298.15 K by means of calorimetry. The obtained data are used to calculate the standard values of enthalpies of dissolution (Δsol H m ) and enthalpies of transfer (Δtr H m ) of glycine and its oligomers from water to SDS aqueous solutions. The dependences of Δsol H m and Δtr H m on SDS concentration in an aqueous solution at a constant concentration of glycine and its oligomers are determined. A comparative analysis of the thermodynamic characteristics of Gly, GlyGly, and GlyGlyGly transfer within the studied range of SDS concentrations is performed. The results are interpreted in terms of ion-ion, ion-polar, and hydrophobic interactions between SDS and molecules of glycine and its oligomers.

  17. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.

    PubMed

    Vo, Minh D; Papavassiliou, Dimitrios V

    2016-04-15

    Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased.

  18. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    NASA Astrophysics Data System (ADS)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  19. Spatio-temporal perturbation of the dynamics of the ferroin catalyzed Belousov-Zhabotinsky reaction in a batch reactor caused by sodium dodecyl sulfate micelles.

    PubMed

    Rossi, Federico; Lombardo, Renato; Sciascia, Luciana; Sbriziolo, Carmelo; Liveri, Maria Liria Turco

    2008-06-19

    The effects of the anionic surfactant sodium dodecyl sulfate (SDS) on the spatio-temporal and temporal dynamics of the ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction have been studied over a wide surfactant concentration range. For the first time, investigations were performed also for unstirred systems. The presence of SDS in the reaction mixture influences the oscillatory parameters to an extent that significantly depends on the surfactant concentration. The trend of the wave speed v upon the increasing amount of SDS was found to have a maximum at [SDS] = 0.075 mol dm (-3) ( v = 0.071 mm s (-1)), after which the speed decreased to 0.043 mm s (-1) at [SDS] = 0.5 mol dm (-3), which is below the value found in the absence of the surfactant ( v = 0.055 mm s (-1)). The response of the oscillatory BZ system to the addition of SDS has been ascribed to two different causes: (a) the peculiar capability of the organized surfactant assemblies to affect the reactivity by selectively sequestering some key reacting species and (b) the modifications induced by SDS on the physical properties of the medium. These hypotheses have been corroborated by performing spectrophotometric investigations on the stirred BZ system. Complementary viscosity measurements gave useful hints for the clarification of the surfactant role.

  20. Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: Characterizations of two additional chlorophyll a-protein complexes.

    PubMed

    Delepelaire, P; Chua, N H

    1979-01-01

    Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of Chlamydomonas reinhardtii thylakoid membranes at room temperature gave two chlorophyll-protein complexes, CP I and CP II, as had been reported previously. However, when the electrophoresis was performed at 4 degrees C, there was an increase in the amount of chlorophyll associated with CP I and CP II, and in addition, three other chlorophyll-protein complexes appeared. Two of these complexes, designated CP III and CP IV, were characterized and found to be similar in their compositions. Each complex contains four to five molecules of chlorophyll a, one molecule of beta-carotene, and one polypeptide chain. The apoprotein of CP III is polypeptide 5 (M(r) 50,000) and that of CP IV is polypeptide 6 (M(r) 47,000); the two polypeptides are structurally unrelated. Chlorophyll-protein complexes similar to C. reinhardtii CP III and CP IV were also detected in higher plants (e.g., Pisum sativum). The apoproteins of the higher plant complexes are immunochemically related to those of the C. reinhardtii complexes, as shown by crossed immunoelectrophoresis. Absorption spectra of CP III and CP IV at -196 degrees C revealed a component at 682 nm. This observation, together with the previous results on photosystem II mutants [Chua, N.-H. & Bennoun, P. (1975) Proc. Natl. Acad. Sci. USA 72, 2175-2179], provides indirect evidence that CP III and CP IV may be involved in the primary photochemistry of photosystem II.

  1. Solute-solvent interactions in micellar electrokinetic chromatography. 6. Optimization of the selectivity of lithium dodecyl sulfate-lithium perfluorooctanesulfonate mixed micellar buffers.

    PubMed

    Fuguet, Elisabet; Ràfols, Clara; Torres-Lapasió, José Ramón; García-Alvarez-Coque, María Celia; Bosch, Elisabeth; Rosés, Martí

    2002-09-01

    The optimization of the composition of mixed surfactants used as micellar electrokinetic chromatography (MEKC) pseudostationary phases is proposed as an effective method for the separation of complex mixtures of analytes. The solvation parameter model is used to select two surfactants (lithium dodecyl sulfate, LDS, and lithium perfluorooctanesulfonate, LPFOS) with contrasting solvation properties. Combination of these two surfactants allows variations of the solvation properties of MEKC pseudostationary phase along a wide range. Thus, the convenient variation of the proportion of both surfactants allows an effective control of the selectivity in such systems. An algorithm that predicts the overall resolution of a given mixture of compounds is described and applied to optimize the composition of the mixed surfactant for the separation of the mixture. The algorithm is based on the calculation of peak purities on simulated chromatograms as a function of the composition of the mixed LDS/LPFOS micellar buffer from data at several micellar buffer compositions. Successful separations were achieved for mixtures containing up to 20 compounds, in less than 12 min.

  2. Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions.

    PubMed

    Djordjevic, Darinka; Cercaci, Luisito; Alamed, Jean; McClements, D Julian; Decker, Eric A

    2007-05-02

    Citral and limonene are the major flavor components of citrus oils. Both of these compounds can undergo chemical degradation leading to loss of flavor and the formation of undesirable off-flavors. Engineering the interface of emulsion droplets with emulsifiers that inhibit chemical reactions could provide a novel technique to stabilize citral and limonene. At present, emulsified flavor oils are usually stabilized by gum arabic (GA), which is a naturally occurring polysaccharide-protein complex. The objective of this study was to examine if citral and limonene were more stable in emulsions stabilized with a sodium dodecyl sulfate (SDS)-chitosan complex than GA. Citral degraded less in GA-stabilized than in SDS-chitosan-stabilized emulsions at pH 3.0. However, SDS-chitosan-stabilized emulsions were more effective at retarding the formation of the citral oxidation product, p-cymene, than GA-stabilized emulsions. Limonene degradation and the formation of limonene oxidation products, limonene oxide and carvone, were lower in the SDS-chitosan- than GA-stabilized emulsions at pH 3.0. The ability of an SDS-chitosan multilayer emulsifier system to inhibit the oxidative deterioration of citral and limonene could be due to the formation of a cationic and thick emulsion droplet interface that could repel prooxidative metals, thus decreasing prooxidant-lipid interactions.

  3. Micellar-enhanced ultrafiltration of copper ions using sodium dodecyl sulfate and its mixture with Brij 35, Tween 80 and Triton X-100.

    PubMed

    Zhao, Baowei; Li, Ruirui; Zhong, Jinkui; Zhang, Li

    2013-01-01

    The performance of copper ion removal using sodium dodecyl sulfate (SDS) and its mixtures with Brij 35, Tween 80 (TW80) and Triton X-100 (TX100) by micellar-enhanced ultrafiltration (MEUF) was investigated. The effects of the molar ratio of nonionic surfactant to SDS on the critical micelle concentration (CMC) of SDS/Brij 35, SDS/TW80 and SDS/TX100, the removal efficiency of Cu(2+), the residual concentration of SDS in the permeate solution and the permeate flux were tested. The results showed that the CMCs of the mixed surfactants were sharply less than that of pure SDS. The removal efficiencies of Cu(2+) were up to the maximum values 98.3 and 95.8% when the molar ratios of Brij 35 and TW80 to SDS were 0.3, and it was 93.5% given 0.7 molar ratio of TX100 to SDS. The concentration of SDS in the permeate decreased dramatically with the addition of nonionic surfactant, and the permeate flux decreased slightly as the molar ratio increased. Compared with the performance by single SDS, the mixed SDS/Brij 35, SDS/TW80 and SDS/TX100 at an optimum composition could result in not only higher rejection of Cu(2+) but also much less dosage of surfactant and concentration of SDS in the permeate.

  4. Solid phase extraction of trace amounts of cadmium(II) ions in water and food samples using iron magnetite nanoparticles modified by sodium dodecyl sulfate and 2-mercaptobenzothiazole.

    PubMed

    Abbasi, Shahriar; ShanbehDehbalai, Mehdi; Khani, Hossein

    2017-03-01

    A new, simple and rapid method for solid phase extraction and preconcentration of trace amounts of cadmium ions using 2-mercaptobenzothiazole/sodium dodecyl sulfate immobilized on magnetite nanoparticles (MBT-SDS-MNPs) was proposed. The method is based on the extraction of cadmium ions via complexation with MBT immobilized on SDS-coated MNPs and their determination by flame atomic absorption spectrometry. The effects of different parameters - pH; eluent type, concentration and volume; amounts of salt and adsorbent; contact time and interfering ions - on the adsorption of cadmium ions were studied. Under optimized conditions, the calibration curve was linear in the range of 10-5,000 μg L(-1). Detection limit and relative standard deviation of the proposed method were 0.009 μg L(-1) and 2.2%, respectively. The adsorption data were analyzed by Langmuir and Freundlich isotherm models and a maximum adsorption amount of 24.80 mg g(-1), a Langmuir adsorption equilibrium constant (b) of 4.62 and Freundlich constants Kf and n of 6.075 mg(1-1/n) L(1/n) g(-1) and 2.391, respectively, were obtained. Finally, this adsorbent was successfully used for extraction of cadmium from water and food samples.

  5. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    PubMed

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates.

  6. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate.

    PubMed

    Klebensberger, Janosch; Rui, Oliver; Fritz, Eva; Schink, Bernhard; Philipp, Bodo

    2006-06-01

    Pseudomonas aeruginosa strain PAO1 grew with the detergent sodium dodecyl sulfate (SDS). The growth started with the formation of macroscopic cell aggregates which consisted of respiring cells embedded in an extracellular matrix composed of acidic polysaccharides and DNA. Damaged and uncultivable cells accumulated in these aggregates compared to those cells that remained suspended. We investigated the response of suspended cells to SDS under different conditions. At high energy supply, the cells responded with a decrease in optical density and in viable counts, release of protein and DNA, and formation of macroscopic aggregates. This response was not observed if the energy supply was reduced by inhibiting respiration with KCN, or if cells not induced for SDS degradation were exposed to SDS. Exposure to SDS caused cell lysis without aggregation if cells were completely deprived of energy, either by applying anoxic conditions, by addition of CCCP, or by addition of KCN to a mutant defective in cyanide-insensitive respiration. Aggregated cells showed a more than 100-fold higher survival rate after exposure to SDS plus CCCP than suspended cells. Our results demonstrate that cell aggregation is an energy-dependent response of P. aeruginosa to detergent stress which might serve as a survival strategy during growth with SDS.

  7. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil.

    PubMed

    Deschênes, L; Lafrance, P; Villeneuve, J P; Samson, R

    1996-12-01

    The effect of two anionic surfactants was assessed during biodegradation of 13 of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAH) in a wood-preserving soil contaminated with creosote and pentacholorophenol for a period of at least 20 years. Sodium dodecyl sulfate (SDS) and biosurfactants from Pseudomonas aeruginosa UG2 were utilized at concentrations of 10, 100 and 500 micrograms/g soil. Because both surfactants are readily biodegradable, the microcosms received a fresh spike of surfactant every 2 weeks. Biodegradation of aged PAH residues was monitored by GC/MS for a period of 45 weeks. Results indicated that the biodegradation of the three-ring PAH was rapid and almost complete but was slowed by the addition of 100 micrograms/g and 500 micrograms/g chemical surfactant. Similarly, at the same concentrations, the two surfactants significantly decreased the biodegradation rate of the four-ring PAH. In this case, the inhibition was more pronounced with SDS. High-molecular-mass PAH (more than four rings) were not biodegraded under the test conditions. It was suggested that the preferential utilization of surfactants by PAH degraders was responsible for the inhibition observed in the biodegradation of the hydrocarbons. The high biodegradability and the inhibitory effect of these two surfactants would have a significant impact on the development of both above-ground and in situ site reclamation processes.

  8. Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium DT 104 on alfalfa seeds by levulinic acid and sodium dodecyl sulfate.

    PubMed

    Zhao, Tong; Zhao, Ping; Doyle, Michael P

    2010-11-01

    Studies were conducted to determine the best concentration and exposure time for treatment of alfalfa seeds with levulinic acid plus sodium dodecyl sulfate (SDS) to inactivate Escherichia coli O157:H7 and Salmonella without adversely affecting seed germination. Alfalfa seeds inoculated with a five-strain mixture of E. coli O157:H7 or Salmonella Typhimurium were dried in a laminar flow hood at 21°C for up to 72 h. Inoculated alfalfa seeds dried for 4 h then treated for 5 min at 21°C with 0.5% levulinic acid and 0.05% SDS reduced the population of E. coli O157:H7 and Salmonella Typhimurium by 5.6 and 6.4 log CFU/g, respectively. On seeds dried for 72 h, treatment with 0.5% levulinic acid and 0.05% SDS for 20 min at 21°C reduced E. coli O157:H7 and Salmonella Typhimurium populations by 4 log CFU/g. Germination rates of alfalfa seeds treated with 0.5% levulinic acid plus 0.05% SDS for up to 1 h at 21°C were compared with a treatment of 20,000 ppm of calcium hypochlorite or tap water only. Treatment of alfalfa seeds with 0.5% levulinic acid plus 0.05% SDS for 5 min at 21°C resulted in a >3.0-log inactivation of E. coli O157:H7 and Salmonella.

  9. Electron spin resonance and electron spin echo modulation studies of N,N,N',N'-tetramethylbenzidine photoionization in sodium dodecyl sulfate micelles: structural effects of alcohol addition

    SciTech Connect

    Baglioni, P.; Kevan, L.

    1987-04-09

    Electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N',N'-tetramethylbenzidine cation radical (TMB/sup +/) in frozen micellar solutions of sodium dodecyl sulfate containing 2-propanol, 1-propanol, 1-pentanol, 1-octanol, 2-propanol-d/sub 7/, and 1-octanol-d/sub 17/ in H/sub 2/O and D/sub 2/O have been studied as a function of the alcohol concentration from 0 to 200 mM. Modulation effects due to the TMB/sup +/ interactions with deuteriums in D/sub 2/O and in 2-propanol-d/sub 7/ or 1-octanol-d/sub 17/ give direct evidence that 2-propanol is mainly located at the micellar interface whereas the alkyl chain of 1-octanol is located deeper into the micelle. Alcohol addition leads to an increase of water penetration into the micellar interface in the order 1-propanol < 2-propanol approx.= 1-pentanol < 1-octanol. The initial efficiency of charge separation upon potoionization of TMB as a function of alcohol concentration correlates with the degree of water penetration into the micelle, but the maximum photoionization efficiency seems more related to the degree of water organization at the micellar surface due to specific perturbing effects on the micellar structure dependent on the alcohol structure.

  10. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  11. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples.

    PubMed

    Sobhanardakani, Soheil; Zandipak, Raziyeh

    2015-07-01

    2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20-35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir-Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g(-1) for Cd(II) ion and 319.6 mg g(-1) for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater).

  12. Electrophoretic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates: Application to proenkephalin processing enzymes

    SciTech Connect

    Irvine, J.W.; Roberts, S.F.; Lindberg, I. )

    1990-10-01

    A novel method is described for the zymographic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates such as ({sup 35}S)methionine-labeled proenkephalin or {sup 125}I-labeled proinsulin. After electrophoresis the enzyme is reactivated and cleaves the radiolabeled in situ substrate into smaller peptides. These small peptides are able to diffuse out of the gel, leaving clear areas against a dark background when visualized by autoradiography. The technique can be used to detect as little as 200 fg of trypsin using only 50 ng (1.25 microCi) of ({sup 35}S)proenkephalin. Soluble- and membrane-bound adrenal trypsin-like enzyme were isolated from bovine adrenal chromaffin granules. Both proteinases cleaved ({sup 35}S)methionine-labeled proenkephalin but not {sup 125}I-labeled proinsulin. Moreover, both had a Mr of approximately 30,000. The potential of this technique for general use is discussed. An additional method using the synthetic fluorogenic substrate t-butoxycarbonyl Glu-Lys-Lys aminomethylcoumarin is also described.

  13. A novel sensor of cysteine self-assembled monolayers over gold nanoparticles for the selective determination of epinephrine in presence of sodium dodecyl sulfate.

    PubMed

    Atta, Nada F; Galal, Ahmed; El-Ads, Ekram H

    2012-06-07

    A novel sensor of cysteine self-assembled monolayers over gold nanoparticles modified gold electrode has been constructed for the determination of epinephrine in presence of sodium dodecyl sulfate (Au/Au(nano)-CysSDS). Electrochemical investigation and characterization of the modified electrode are achieved using cyclic voltammetry, linear sweep voltammetry, and scanning electron microscopy. The Au/Au(nano)-CysSDS electrode current signal is remarkably stable via repeated cycles and long term stability, due to the strong Au-S bond, compared to the Au/Au(nano) electrode. The catalytic oxidation peak currents obtained from linear sweep voltammetry (LSV) increased linearly with increasing epinephrine concentrations in the range of 2 to 30 μmol L(-1) and 35 to 200 μmol L(-1) with correlation coefficients of 0.9981 and 0.9999 and a limit of detection of 0.294 nmol L(-1) and 1.49 nmol L(-1), respectively. The results showed that Au/Au(nano)-CysSDS can selectively determine epinephrine in the coexistence of a large amount of uric acid and glucose. In addition, a highly selective and simultaneous determination of tertiary mixture of ascorbic acid, epinephrine, and acetaminophen is explored at this modified electrode. Excellent recovery results were obtained for determination of epinephrine in spiked urine samples at the modified electrode. Au/Au(nano)-CysSDS can be used as a sensor with excellent reproducibility, sensitivity, and long term stability.

  14. Exposure of RML scrapie agent to a sodium percarbonate-based product and sodium dodecyl sulfate renders PrPSc protease sensitive but does not eliminate infectivity

    PubMed Central

    2013-01-01

    Background Prions, the causative agents of the transmissible spongiform encephalopathies, are notoriously difficult to inactivate. Current decontamination recommendations by the World Health Organization include prolonged exposure to 1 N sodium hydroxide or > 20,000 ppm sodium hypochlorite, or autoclaving. For decontamination of large stainless steel surfaces and equipment as in abattoirs, for example, these methods are harsh or unsuitable. The current study was designed to evaluate the effectiveness of a commercial product containing sodium percarbonate to inactivate prions. Samples of mouse brain infected with a mouse-adapted strain of the scrapie agent (RML) were exposed to a sodium percarbonate-based product (SPC-P). Treated samples were evaluated for abnormal prion protein (PrPSc)-immunoreactivity by western blot analysis, and residual infectivity by mouse bioassay. Results Exposure to a 21% solution of SPC-P or a solution containing either 2.1% or 21% SPC-P in combination with sodium dodecyl sulfate (SDS) resulted in increased proteinase K sensitivity of PrPSc. Limited reductions in infectivity were observed depending on treatment condition. A marginal effect on infectivity was observed with SPC-P alone, but an approximate 2–3 log10 reduction was observed with the addition of SDS, though exposure to SDS alone resulted in an approximate 2 log10 reduction. Conclusions This study demonstrates that exposure of a mouse-adapted scrapie strain to SPC-P does not eliminate infectivity, but does render PrPSc protease sensitive. PMID:23311930

  15. Highly sensitive and simple fluorescence staining of proteins in sodium dodecyl sulfate-polyacrylamide-based gels by using hydrophobic tail-mediated enhancement of fluorescein luminescence.

    PubMed

    Kang, Chulhun; Kim, Hyun Jung; Kang, Donghoon; Jung, Duk Young; Suh, Myungkoo

    2003-10-01

    Fluorescein has an extremely low luminescence intensity in acidic aqueous media. However, when it was bound to proteins, subsequent increase of luminescence intensity took place. Furthermore, when a hydrophobic tail, such as aliphatic hydrocarbons, was introduced to fluorescein, more dramatic increase of luminescence intensity was observed upon binding to proteins. In the present study, by utilizing this luminescence enhancement, three hydrophobic fluorescein dyes (5-dodecanoyl amino fluorescein, 5-hexadecanoyl amino fluorescein, and 5-octadecanoyl amino fluorescein) were examined as noncovalent fluorescent stains of protein bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Effective incorporation of the dyes to proteins in gels was accomplished either simply by adding dyes at the protein fixation step, or by treating gels with a staining solution after the fixation. The sensitivity of this staining method using the fluorescein derivatives was approximately 1 ng/band for most proteins. For some cases, protein bands containing as low as 0.1 ng were successfully visualized. In addition, the detection sensitivity showed much less protein-to-protein variation than silver staining. This new staining method was also successfully applied to two-dimensional electrophoresis of rat brain proteins. Its overall sensitivity was comparable to that of silver staining.

  16. Biopartitioning micellar chromatography with sodium dodecyl sulfate as a pseudo α(1)-acid glycoprotein to the prediction of protein-drug binding.

    PubMed

    Hadjmohammadi, Mohammadreza; Salary, Mina

    2013-01-01

    A simple and fast method is of urgent need to measure protein-drug binding affinity in order to meet the rapid development of new drugs. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography (MLC) using micellar mobile phases in adequate experimental conditions, can be useful as an in vitro system in mimicking the drug-protein interactions. In this study, sodium dodecyl sulfate-micellar liquid chromatography (SDS-MLC) was used for the prediction of protein-drug binding based on the similar property of SDS micelles to α(1)-acid glycoprotein (AGP). The relationships between the BMC retention data of a heterogeneous set of 14 basic and neutral drugs and their plasma protein binding parameter were studied and the predictive ability of models was evaluated. Modeling of logk(BMC) of these compounds was established by multiple linear regression (MLR) and second-order polynomial models obtained in two different concentrations (0.07 and 0.09M) of SDS. The developed MLR models were characterized by both the descriptive and predictive ability (R(2)=0.882, R(CV)(2)=0.832 and R(2)=0.840, R(CV)(2)=0.765 for 0.07 and 0.09M SDS, respectively). The p values <0.01 also indicated that the relationships between the protein-drug binding and the logk(BMC) values were statistically significant at the 99% confidence level. The standard error of estimation showed the standard deviation of the regression to be 11.89 and 13.87 for 0.07 and 0.09M, respectively. The application of the developed model to a prediction set demonstrated that the model was also reliable with good predictive accuracy. The external and internal validation results showed that the predicted values were in good agreement with the experimental value.

  17. Qualitative and quantitative changes in barley seed protein patterns during the malting process analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with respect to malting quality.

    PubMed

    Weiss, W; Postel, W; Görg, A

    1992-01-01

    Seeds of two barley cultivars, similar in total protein content and malt extract yield but different in their final attenuation values, were malted. Samples taken at daily intervals during the malting process were extracted sequentially with Tris-HCl buffer, aqueous 2-propanol, aqueous 2-propanol containing 0.5% dithiothreitol, and 4 M urea, containing 0.5% dithiothreitol and 1% Nonidet P-40. The protein composition of these extracts was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and computer densitometry to determine whether differences observed in the rate or extent of protein modification are related to the malting quality character final attenuation. It was found that, common to both cultivars, the albumin and globulin proteins were relatively resistant to proteolysis, whereas the hordeins suffered a dramatic breakdown during malting, with the D hordein being degraded most rapidly, followed by the B and C hordeins. Besides these similarities, differences between both cultivars were observed in the relative rates of D hordein degradation, as this rate was considerably higher in the cultivar with high malting quality. Similar, but much less distinct kinetics were seen with certain B hordeins. Since a possible relationship might exist between the rate of proteolysis of the D hordeins and the character final attenuation, we analyzed a larger number of barley cultivars with different final attenuation values with a simplified technique. For the ten cultivars examined, differences during germination were again seen in the rates of modification of the D hordeins. However, significant correlations between the D hordein breakdown and final attenuation values were not obtained, so that we propose that there exists at best a loose correlation between the relative rate of proteolysis of these proteins and the malting quality character final attenuation.

  18. Secondary structural change of bovine serum albumin in thermal denaturation up to 130 degrees C and protective effect of sodium dodecyl sulfate on the change.

    PubMed

    Moriyama, Yoshiko; Watanabe, Emi; Kobayashi, Kentaro; Harano, Hironori; Inui, Etsuo; Takeda, Kunio

    2008-12-25

    The secondary structure of bovine serum albumin (BSA) was first examined in the thermal denaturation up to 130 degrees C. The helicity (66%) of the protein decreased with rise of temperature. Half of the original helicity was lost at 80 degrees C, but the helicity of 16% was still maintained even at 130 degrees C. When the BSA solution was cooled down to 25 degrees C after heating at temperatures above 50 degrees C, the helicity was not completely recovered. The higher the thermal denaturation temperature was, the lower was the recovered helicity. On the other hand, upon the addition of sodium dodecyl sulfate (SDS), the secondary structure of BSA was partially protected against the thermal denaturation above 50 degrees C where the structural change became irreversible. A particular protective effect was observed below 85 degrees C upon the coexistence of SDS of extremely low concentrations. For example, the helicity was 34% at 80 degrees C in the absence of SDS, but it was maintained at 58% at the same temperature upon the coexistence of 0.75 mM SDS. Upon cooling down from 80 to 25 degrees C, the helicity of BSA was recovered to 62% in the presence of 0.75 mM SDS. Such a protective effect of SDS was not observed above 95 degrees C. In the interaction with the surfactant, this protein structure appeared likely to have a critical temperature between 90 and 100 degrees C in addition to the critical temperature in the vicinity of 50 degrees C. This protective effect of SDS, characterized by the specific amphiphilic nature of this anionic surfactant, is considered to be attained by building cross-linking bridges between particular nonpolar residues and particular positively charged residues in the protein molecule.

  19. Reductions of Salmonella enterica on chicken breast by thymol, acetic acid, sodium dodecyl sulfate or hydrogen peroxide combinations as compared to chlorine wash.

    PubMed

    Lu, Y; Wu, C

    2012-01-03

    Poultry products are important vehicles for Salmonella transmission to humans and have been incriminated in several Salmonella outbreaks. Thymol (THY) from thyme oil has wide inhibitory effects against foodborne pathogens including Salmonella, and has shown great potential as a natural alternative to chlorine. In order to improve the cost-effectiveness of thymol-based washing solutions, formulas of THY with combination of organic acid or surfactant were developed and their efficacies to reduce Salmonella on chicken breast were investigated in the current study. Surface-inoculated chicken breasts were washed with the two thymol-based washing solutions: 0.2 mg/mL THY+5% (w/v) sodium dodecyl sulfate (SDS)+2 mg/mL acetic acid (AA) or 0.2 mg/mL THY+2 mg/mL AA for 2 min. Both solutions achieved around 2.2 log reductions of Salmonella on chicken breast and their efficacy was comparable to log reduction obtained by 200 ppm chlorine washing. Addition of SDS did not result in more log reduction of Salmonella on chicken meat samples. More than 3.3 log reduction in the used THY washing solutions was determined and it was similar to log reduction from the spent chlorine solution. None of these antimicrobial agents changed the pH and texture values of chicken breasts. Therefore, 0.2 mg/mL THY+2 mg/mL AA has great potential to be a natural alternative to chlorine-based washing solution for reducing Salmonella contamination on chicken breast meat.

  20. Competitive adsorption of surfactants and polymers at the free water surface. A computer simulation study of the sodium dodecyl sulfate-poly(ethylene oxide) system.

    PubMed

    Darvas, Mária; Gilányi, Tibor; Jedlovszky, Pál

    2011-02-10

    Competitive adsorption of a neutral amphiphilic polymer, namely poly(ethylene oxide) (PEO) and an ionic surfactant, i.e., sodium dodecyl sulfate (SDS), is investigated at the free water surface by computer simulation methods at 298 K. The sampled equilibrium configurations are analyzed in terms of the novel identification of the truly interfacial molecules (ITIM) method, by which the intrinsic surface of the aqueous phase (i.e., its real surface corrugated by the capillary waves) instead of an ideally flat surface approximating its macroscopic surface plane, can be taken into account. In the simulations, the surface density of SDS is gradually increased from zero up to saturation, and the structural, dynamical, and energetic aspects of the gradual squeezing out of the PEO chains from the surface are analyzed in detail. The obtained results reveal that this squeezing out occurs in a rather intricate way. Thus, in the presence of a moderate amount of SDS the majority of the PEO monomer units, forming long bulk phase loops in the absence of SDS, are attracted to the surface of the solution. This synergistic effect of SDS of moderate surface density on the adsorption of PEO is explained by two factors, namely by the electrostatic attraction between the ionic groups of the surfactant and the moderately polar monomer units of the polymer, and by the increase of the conformational entropy of the polymer chain in the presence of the surfactant. This latter effect, thought to be the dominant one among the above two factors, also implies the formation of similar polymer/surfactant complexes at the interface than what are known to exist in the bulk phase of the solution. Finally, in the presence of a large amount of SDS the more surface active surfactant molecules gradually replace the PEO monomer units at the interfacial positions, and squeezing out the PEO molecules from the surface in a monomer unit by monomer unit manner.

  1. Cell adhesion to proteins separated by lithium dodecyl sulfate-polyacrylamide gel electrophoresis and blotted onto a polyvinylidene difluoride membrane: a new cell-blotting technique.

    PubMed

    Seshi, B

    1994-12-02

    Cell blotting, although conceptually simple, has failed to achieve wide practical application. Described here is a new cell-blotting technique which involves cell adhesion to protein bands after separation by lithium dodecyl sulfate-polyacrylamide gel electrophoresis (LDS-PAGE) and blotting onto polyvinylidene difluoride (PVDF) membrane at 4 degrees C. Cell bands adherent on PVDF are detected using hematoxylin, or propidium iodide (PI) staining followed by viewing under ultraviolet (UV) light. The technique allows quick microscopic visualization of adherent cells composing the bands, without requiring clearing of the membrane. Representative cell adhesion proteins from different sources, i.e., plant lectins (e.g., phytohemagglutinin, PHA; concanavalin A, ConA; and wheat germ agglutinin, WGA); extracellular matrix (ECM) proteins; and integral membrane proteins (e.g., recombinant soluble vascular cell adhesion molecule-1, rs VCAM-1) were tested for cell binding by the new cell-blotting technique using human lymphoid progenitor (NALM-6) and myeloid progenitor (KG1a) cell lines. Cell adhesion proteins retained their adhesion function in all cases tested. Specificity of cell binding on PVDF blot was demonstrated by inhibition of cell adhesion to WGA protein bands using an appropriate sugar, i.e., N-acetyl D-glucosamine. The cell blotting assay was comparable in sensitivity to Coomassie blue staining of protein bands. The ability to conduct protein extraction, separation and blotting at low temperature avoids thermal denaturation, thereby preserving the adhesion properties of the proteins. The electrophoretic/blotting system has unique detergent removal/protein renaturation properties and the ability to preserve functionally active adhesion protein complexes. The cell-blotting technique described is sufficiently robust for routine application in the investigation of novel cell adhesion proteins.

  2. Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.

    PubMed

    Hubbard, F Pierce; Abbott, Nicholas L

    2007-04-24

    We report light and small-angle neutron scattering measurements that characterize microstructures formed in aqueous surfactant solutions (up to 1.0 wt % surfactant) containing mixtures of sodium dodecyl sulfate (SDS) and the light-sensitive bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA) as a function of composition, equilibration time, and photostationary state (i.e., solutions rich in cis-BTHA or trans-BTHA). We observed formation of vesicles in both SDS-rich and trans-BTHA-rich regions of the microstructure diagram, with vesicles present over a particularly broad range of compositions for trans-BTHA-rich solutions. Illumination of mixtures of BTHA and SDS with a broadband UV light source leads to formation of photostationary states where the fraction of BTHA present as cis isomer (75-80% cis-BTHA) is largely independent of the mixing ratio of SDS and BTHA. For a relatively limited set of mixing ratios of SDS and BTHA, we observed UV illumination of SDS-rich vesicles to result in the reversible transformation of the vesicles to micellar aggregates and UV illumination of BTHA-rich vesicles to result in irreversible precipitation. Surprisingly, however, for many mixtures of trans-BTHA and SDS that formed solutions containing vesicles, illumination with UV light (which was confirmed to lead to photoisomerization of BTHA) resulted in only a small decrease in the number of vesicles in solution, relatively little change in the sizes of the remaining vesicles, and coexistance of the vesicles with micelles. These observations are consistent with a physical model in which the trans and cis isomers of BTHA present at the photostationary state tend to segregate between the different microstructures coexisting in solution (e.g., vesicles rich in trans-BTHA and SDS coexist with micelles rich in cis-BTHA and SDS). The results presented in this paper provide guidance for the design of light-tunable surfactants systems.

  3. Silver nanostructures from Ag(CN) 2 - reduction by citrate ions in the presence of dodecyl sulfate and Cu2+ ions. Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    López-Miranda, A.; Viramontes-Gamboa, G.; López-Valdivieso, A.

    2014-02-01

    The synthesis of silver nanoparticles has been investigated using Ag(CN) 2 - species as precursor, citrate ions as reducing agent, and dodecyl sulfate ions as stabilizer, at pH 11 and 97 °C, in a batch stirred glass reactor. The role of Cu2+ ions in the synthesis was also studied. Bird- of- paradise flower-type nanostructures composed of AgCN nanowires having inside Ag and AgCN nanoparticles were produced in the absence of Cu2+ ions. The nanostructures slowly grew and transformed to AgCN nanowires with embedded Ag and AgCN nanoparticles, having a mean size of 9.7 ± 3.6 nm. The presence of Cu2+ ions in the synthesis significantly enhanced the production of the nanostructures. Nanowires having a thickness of 63 ± 33 nm and length of up to 20 μm were produced. Cu2+ ions also simultaneously lead to the synthesis of ordinary free Ag nanoparticles with a bimodal size distribution (mean sizes of 9.9 ± 3.9 and 65.5 ± 27 nm) and a low experimental formation kinetic rate constant of 1.22 × 10-4 s-1. Feasible mechanisms are presented for the origin of the AgCN nanowires, Ag and AgCN nanoparticles inside the nanowires, and for the free Ag nanoparticles. UV/Vis spectrometry was used to measure the surface plasmon resonance of the nanoparticles and the synthesis kinetic rate constant of the free Ag nanoparticles. ATR-FTIR spectroscopy, EDS-SEM, EDS-TEM, and HRTEM were used to characterize the size, crystal structure, texture, and chemical composition of the synthesis products.

  4. Electrophoretic Extraction of Low Molecular Weight Cationic Analytes from Sodium Dodecyl Sulfate Containing Sample Matrices for Their Direct Electrospray Ionization Mass Spectrometry

    PubMed Central

    Kinde, Tristan F.; Lopez, Thomas D.; Dutta, Debashis

    2015-01-01

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 µg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis. PMID:25664891

  5. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry.

    PubMed

    Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis

    2015-03-03

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.

  6. Direct speciation analysis of thallium based on solid phase extraction and specific retention of a Tl(III) complex on alumina coated with sodium dodecyl sulfate.

    PubMed

    Biaduń, Ewa; Sadowska, Monika; Ospina-Alvarez, Natalia; Krasnodębska-Ostręga, Beata

    Alumina (Al2O3) with an average particle size of 63 μm was modified with the anionic surfactant sodium dodecyl sulfate (SDS) and then applied to (i) solid phase extraction and separation of both thallium(I) and thallium(III), and (ii) preconcentration of Tl(III) from waste water samples. Only Tl(III), in the form of its complex with diethylenetriaminepentaacetate (DTPA), was retained on the sorbent, from where it can be eluted with 40 % nitric acid. Thallium species were then quantified by ICP MS. The method was characterized by a LOD of 25 pg of Tl(I) and 160 pg of Tl(III) in 10 mL samples. A large excesses of Tl(I) over Tl(III) was tolerated, and relatively high levels of other metal ions, such as a 500-fold excess of Pb(II) and Cd(II), and a 2000-fold excess of Zn(II), respectively, do not interfere. The sorbent was easily prepared and possesses a high loading capacity, and these properties make it an attractive material for rapid and efficient extraction and speciation of Tl. Graphical abstract:Schematic of the SPE procedure for separation (with preconcentration) of Tl(III) from Tl(I) was developed and applied to direct speciation analysis of thallium in wastewater. Self-made columns packed with alumina coated with SDS were used. The method is resistant to interferences from Pb, Cd, Zn and tolerates a large excess of Tl(I) over Tl(III).

  7. Effects of aggregates on mixed adsorption layers of poly(ethylene imine) and sodium dodecyl sulfate at the air/liquid interface.

    PubMed

    Tonigold, Katrin; Varga, Imre; Nylander, Tommy; Campbell, Richard A

    2009-04-07

    We have exploited the spatial and kinetic resolution of ellipsometry to monitor the lateral movement of inhomogeneous patches of material in mixed adsorption layers of poly(ethylene imine) and sodium dodecyl sulfate at the air/liquid interface. We show that the choice of sample preparation methods can have a profound effect on the state of the interface for chemically equivalent samples. The extent of aggregation in the bulk solution on relevant time scales is affected by specific details of the polymer/surfactant mixing process, which produces varying numbers of aggregates that can become trapped in the interfacial layer, resulting in an enhanced and fluctuating ellipsometry signal. It can be beneficial to apply the surface-cleaning method of aspiration prior to physical measurements to remove trapped aggregates through the creation of a fresh interface. At low pH, the ellipsometry signal of samples prepared with surface cleaning is remarkably constant over a factor of >500 in the bulk composition below charge equivalence, which is discussed in terms of possible adsorption mechanisms. At high pH, through observing temporal fluctuations in the ellipsometry signal of samples prepared with surface cleaning, we reveal two important processes: there is the spontaneous adsorption of aggregates > 0.2 microm in diameter into the interfacial layer, and with time there is the fusion of smaller aggregates to generate new large surface aggregates. We attribute the favorability of the adsorption and fusion processes at high pH to reduced electrostatic barriers resulting from the low surface charge density of the aggregates. It is inappropriate in this case to consider the interface to comprise a homogeneous adsorption layer that is in dynamic equilibrium with the bulk solution. Our work shows that it can be helpful to consider whether there are macroscopic particles embedded in molecular layers at the air/liquid interface for systems where there is prior knowledge of

  8. Electrokinetic capillary chromatography in a polar continuous-phase water-in-oil microemulsion constituted by water, sodium dodecyl sulfate, and n-pentanol.

    PubMed

    Mendonça, Carla R B; Bica, Clara I D; Piatnicki, Clarisse M S; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo

    2005-02-01

    A water-in-oil (w/o) microemulsion (ME) constituted by 15% Tris buffer, pH 8.4, in water and 85% sodium dodecyl sulfate (SDS)/n-pentanol 1:4 mixture, capable of dissolving up to 30% vegetable oils and lard, was used as background electrolyte in reverse microemulsion electrokinetic capillary chromatography (RMEEKC). Owing to the free SDS ions in the continuous phase and some degree of percolation, the ME showed a high conductivity (0.65 mS. cm(-1) at 25 degrees C) and sustained a very stable capillary current. Previous rinsing of the capillary with a quaternary ammonium salt for electroosmotic flow (EOF) reduction, a series of nonionic and anionic solutes dissolved either in the ME or in fat samples diluted with the ME (1:4 ratio), were injected. Using -20 kV, fair separations of the solutes in the migration time order singly charged anions < nonionic solutes < doubly charged anions approximately pyromellitate were obtained, salicylate (I) showing by far the shortest migration time, and phthalate (II) and pyromellitate the longest. Separation was attributed to partition between the aqueous droplets, where pyromellitate and II were assumed to be trapped, and the n-pentanol continuous phase, where the mobilitites could be also modified by association of the solutes with SDS ions. Adequate EOF markers were not found, thus the relative mobility of any solute with respect to the mobility of the droplets, mu(r), was expressed as a fraction of the mobility of I with respect to that of the droplets, being mu(r) = (t(II) - t(R)) t(I) / [(t(II) - t(I)) t(R)], where t(R), t(I), and t(II) are the migration times of the solutes I and II, respectively. The application of RMEEKC to the analysis of both hydrophilic and hydrophobic samples, including edible fats, was demonstrated.

  9. Complexes of native Ubiquitin and dodecyl sulfate illustrate the nature of hydrophobic and electrostatic interactions in the binding of proteins and surfactants

    PubMed Central

    Shaw, Bryan F.; Schneider, Grégory F.; Arthanari, Haribabu; Narovlyansky, Max; Moustakas, Demetri; Durazo, Armando; Wagner, Gerhard; Whitesides, George M.

    2011-01-01

    A previous study, using capillary electrophoresis (CE), reported that six discrete complexes of ubiquitin (UBI) and sodium dodecyl sulfate (SDS) form at different concentrations of SDS along the pathway to unfolding of UBI in solutions of SDS. One complex (which formed between 0.8 and 1.8 mM SDS) consisted of native UBI associated with approximately 11 molecules of SDS. The current study used CE and 15N/13C-1H heteronuclear single quantum coherence (HSQC) NMR spectroscopy to identify residues in folded UBI that associate specifically with SDS at 0.8-1.8 mM SDS, and to correlate these associations with established biophysical and structural properties of this well-characterized protein. The ability of the surface charge and hydrophobicity of folded UBI to affect the association with SDS (at concentrations below the CMC) was studied, using CE, by converting lys-ε-NH3+ to lys-ε-NHCOCH3 groups. According to CE, the acetylation of lysine residues inhibited the binding of 11 SDS ([SDS] < 2 mM) and decreased the number of complexes of composition UBI-(NHAc)8·SDSn that formed on the pathway of unfolding of UBI-(NHAc)8 in SDS. A comparison of 15N-1H HSQC spectra at 0 mM and 1 mM SDS with calculated electrostatic surface potentials of folded UBI (e.g., solutions to the non-linear Poisson-Boltzmann (PB) equation) suggested, however, that SDS binds preferentially to native UBI at hydrophobic residues that are formally neutral (i.e., Leu and Ile), but that have positive electrostatic surface potential (as predicted from solutions to non-linear Poisson-Boltzmann equations); SDS did not uniformly interact with residues that have formal positive charge (e.g., Lys or Arg). Cationic functional groups, therefore, promote the binding of SDS to folded UBI because these groups exert long-range effects on the positive electrostatic surface potential (which extend beyond their own van der Waal’s radii, as predicted from PB theory), and not because cationic groups are necessarily the

  10. Reductions of Shiga toxin-producing Escherichia coli and Salmonella typhimurium on beef trim by lactic acid, levulinic acid, and sodium dodecyl sulfate treatments.

    PubMed

    Zhao, Tong; Zhao, Ping; Chen, Dong; Jadeja, Ravirajsinh; Hung, Yen-Con; Doyle, Michael P

    2014-04-01

    Studies were done at 21 °C to determine the bactericidal activity of lactic acid, levulinic acid, and sodium dodecyl sulfate (SDS) applied individually and in combination on Shiga toxin-producing Escherichia coli (STEC) in pure culture and to compare the efficacy of lactic acid and levulinic acid plus SDS treatments applied by spray or immersion to inactivate STEC and Salmonella (10(7) CFU/cm2) on beef trim pieces (10 by 10 by 7.5 cm). Application of 3% lactic acid for 2 min to pure cultures was shown to reduce E. coli O26:H11, O45:H2, O111:H8, O103:H2, O121:H2, O145:NM, and O157:H7 populations by 2.1, 0.4, 0.3, 1.4, 0.3, 2.1, and 1.7 log CFU/ml, respectively. Treatment with 0.5% levulinic acid plus 0.05% SDS for <1 min reduced the populations of all STEC strains to undetectable levels (>6 log/ml reduction). Beef surface temperature was found to affect the bactericidal activity of treatment with 3 % levulinic acid plus 2% SDS (LV-SDS). Treating cold (4 °C) beef trim with LV-SDS at 21, 62, or 81 °C for 30 s reduced E. coli O157:H7 by 1.0, 1.1, or 1.4 log CFU/cm2, respectively, whereas treating beef trim at 8 °C with LV-SDS at 12 °C for 0.1, 1, 3, or 5 min reduced E. coli O157:H7 by 1.4, 2.4, 2.5, or 3.3 log CFU/cm(2), respectively. Spray treatment of beef trim at 4 °C with 5 % lactic acid only reduced the E. coli O157:H7 population by 1.3 log CFU/cm2. Treating beef trim at 8 °C with LV-SDS for 1, 2, or 3 min reduced Salmonella Typhimurium by 2.1, 2.6, and >5.0 log CFU/cm2, respectively. Hand massaging the treated beef trim substantially reduced contamination of both pathogens, with no detectable E. coli O157:H7 or Salmonella Typhimurium (<5 CFU/cm2) on beef trim pieces treated with LV-SDS. Reduction of E. coli O157:H7 and Salmonella Typhimurium populations was enhanced, but bactericidal activity was affected by the meat temperature.

  11. Separation and determination of anesthetics by capillary electrophoresis with mixed micelles of sodium dodecyl sulfate and Tween 20 using electrochemiluminescence detection.

    PubMed

    Liu, Yan-Ming; Li, Jie; Yang, Yang; Du, Jun-Jun

    2013-01-01

    A simple and new method for the simultaneous determination of procaine (Pro), lidocaine (Lid), ropivacaine (Rop) and bupivacaine (Bup) was developed using capillary electrophoresis separation with mixed micelles and electrochemiluminescence detection. The use of mixed micelles of 2.0 × 10(-3)  mol/L sodium dodecyl sulfate (SDS) and 8.0 × 10(-3)  mol/L Tween 20 greatly improved separation selectivity. The detection sensitivities of four drugs with a Pt working electrode were increased by modification of the Pt electrode with europium(III)-doped Prussian Blue analog (Eu-PB). Under optimal conditions, the four local anesthetics were well separated and detected. The limits of detection (LOD, S/N = 3) of Pro, Lid, Rop and Bup in standard solution are 2.5 × 10(-8) , 1.3 × 10(-8) , 3.0 × 10(-8) and 4.1 × 10(-8)  mol/L, respectively. The limits of quantitation (LOQ, S/N = 10) of Pro, Lid, Rop and Bup are 2.3 × 10(-7) , 1.2 × 10(-7) , 3.7 × 10(-7) and 5.6 × 10(-7)  mol/L in a human urine sample, and 8.5 × 10(-7) , 6.9 × 10(-7) , 2.8 × 10(-6) and 1.1 × 10(-6)  mol/L in a human serum sample, respectively. The recoveries of four drugs at different spiked concentrations in human urine and serum samples were between 86.5 and 107.6%. The proposed method has been successfully applied to determine local anesthetics in biofluids.

  12. A preliminary technical study on sodium dodecyl sulfate-induced changes of the nano-structural and macro-mechanical properties in human iliotibial tract specimens.

    PubMed

    Hammer, Niels; Huster, Daniel; Boldt, Andreas; Hädrich, Carsten; Koch, Holger; Möbius, Robert; Schulze-Tanzil, Gundula; Scheidt, Holger A

    2016-08-01

    Acellular scaffolds are frequently used for the surgical repair of ligaments and tendons. Even though data on the macro-mechanical properties related to the acellularization process exist, corresponding data on the nano-structural properties are still lacking. Such data would help identify target proteins of the formed extracellular matrix that are chemically altered by the acellularization. In this study we examined the altered structure by comparing molecular properties of collagens from native and acellular iliotibial tract samples to the macroscopic stress-strain behavior of tract samples. Matched pairs of five human iliotibial tract samples were obtained from five donors (mean age 28.2±4.7 years). One of each pair was acellularized using 1vol% sodium dodecyl sulfate (SDS) for 7 days. (13)C magic angle spinning nuclear magnetic resonance spectroscopy ((13)C CP MAS NMR) was utilized to compare the collagen overall secondary structure and internal dynamics of collagen-typical amino acid proteins. The resulting data was compared to age-matched stress-strain data of tract samples obtained in an uniaxial tensile setup and histologically. Typical and nearly identical collagen (13)C CP MAS NMR spectra were found in the tract samples before and after acellularization with SDS. The characteristic collagen backbone remained intact in the native and acellular samples. Collagen molecular composition was largely unaltered in both conditions. Furthermore, a similar dynamic behavior was found for the amino acids Hyp γ, Pro α/Hyp α, Ala α, Gly α and Ala β. These minute alterations in the collagens' molecular properties related to acellularization with SDS were in line with the similarly minute changes in the macro-mechanical tensile behavior, such as the elastic modulus and ultimate stress. Histology showed intact type I collagens, minute amounts of elastins before and after acellularization and evidence for acellularization-induced reductions of proteoglycans. Nano

  13. Implementation of USP antibody standard for system suitability in capillary electrophoresis sodium dodecyl sulfate (CE-SDS) for release and stability methods.

    PubMed

    Esterman, Abbie L; Katiyar, Amit; Krishnamurthy, Girija

    2016-09-05

    Capillary electrophoresis sodium dodecyl sulfate (CE-SDS) is widely used for purity analysis of monoclonal antibody therapeutics for release and stability to demonstrate product consistency and shelf life during the manufacturing and life cycle of the product. CE-SDS method development is focused on exploring the method capability to provide the information about the product purity and product related degradants (fragmentation, aggregation etc.). In order to establish the functionality of the instrumentation, software, and sample preparation; system suitability criteria need to be defined for analytical methods using a well characterized reference standard run under the same protocol and analysis as the test articles. Typically the reference standard is produced using a manufacturing process representative of the clinical material. The qualification, control, and maintenance of in-house reference standards are established through rigorous quality and regulatory guidelines. The U.S. Pharmacopeia (USP) has developed a monoclonal IgG System Suitability Reference Standard to be utilized for assessment of system suitability in CE-SDS methods. In this communication, we evaluate the system suitability acceptance criteria performance of the USP IgG standard using two methods, the recommended USP protocol provided in monograph <129> and a molecule specific Bristol-Myers Squibb (BMS) CE-SDS method. The results from USP IgG standard were compared with two in-house monoclonal antibody reference standards. The data suggest that the USP CE-SDS method may not be suitable for CE-SDS analysis for release and stability of monoclonal antibody therapeutics due to the high level of method induced partial reduction observed for all molecules tested. This high level of fragmentation observed utilizing the USP method will result in reporting lower purity levels, which will impact the overall quality assessment of the molecule. The system suitability criteria recommended by the USP method

  14. Oral Decontamination of Orthodontic Patients Using Photodynamic Therapy Mediated by Blue-Light Irradiation and Curcumin Associated with Sodium Dodecyl Sulfate.

    PubMed

    Panhóca, Vitor Hugo; Esteban Florez, Fernando Luis; Corrêa, Thaila Quatrini; Paolillo, Fernanda Rossi; de Souza, Clovis Wesley Oliveira; Bagnato, Vanderlei Salvador

    2016-09-01

    The aim of this study was to investigate the effects of the antimicrobial photodynamic therapy (aPDT) using the association of curcumin with the surfactant sodium dodecyl sulfate (SDS) for oral decontamination in orthodontic patients. The installation of the orthodontic appliances promotes an increase in the retentive area that is available for microbial aggregation and makes difficult the oral health promotion. However, aPDT is one possible approach that is used for the reduction of oral microbial load. Twenty-four patients (n = 24) were randomly distributed into four groups: Light group: which was treated only with the blue light, no drug; PDT group, which was treated with curcumin and blue light; PDT + S group, which was treated with curcumin plus surfactant and irradiated with blue light; and Chlorhex group, which was treated with chlorhexidine. The photosensitizer agent was prepared by adding 0.1% of SDS to a curcumin solution of 1 g/L. Two distinct LED devices emitting blue light (450 ± 10 nm) were used as follows: extra-oral irradiation (200 mW, 80 mW/cm(2), 36 J and 14 J/cm(2)) and intra-oral irradiation (1200 mW, 472 mW/cm(2), 216 J and 85 J/cm(2)).The collection of nonstimulated saliva (n = 3; 3 mL/collection) was performed at the following steps: (1) immediately before swishing (curcumin, chlorhexidine, or water); (2) after swishing; and (3) after performing aPDT treatments. The colony-forming units (CFU) were counted visually, and the values were adjusted to CFU/mL. There was significant Log reduction for PDT (from 6.33 ± 0.92 to 5.78 ± 0.96, p < 0.05), PDT + S (from 5.44 ± 0.94 to 3.83 ± 0.71, p < 0.01), and Chlorhex (from 5.89 ± 0.97 to 2.55 ± 1.80, p < 0.01) groups. The survival rate was significantly reduced in both PDT + S and Chlorhex groups compared with all situations (p < 0.05). However, there was no significant difference between PDT + S and

  15. Synthesis of layered zinc hydroxide intercalated with dodecyl sulfate organic-inorganic hybrid nanocomposite as a fiber coating for the headspace solid-phase microextraction of aromatic hydrocarbons from water.

    PubMed

    Yousefi, Vahid; Parastari, Sheyda; Gorji, Mohsen; Foroutani, Reza; Mahdavi, Mehri; Hazizadeh, Behzad

    2016-12-01

    We describe the synthesis of a layered zinc hydroxide-dodecyl sulfate organic-inorganic hybrid nanocomposite as a new solid-phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide-dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69-3.2 ng/L and 10-500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o-, p-, and m-xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2-7.3% and 4.2-11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Physicochemistry of interaction between the cationic polymer poly(diallyldimethylammonium chloride) and the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate in water and isopropyl alcohol-water media.

    PubMed

    Mukherjee, Suvasree; Dan, Abhijit; Bhattacharya, Subhash C; Panda, Amiya K; Moulik, Satya P

    2011-05-03

    The physicochemistry of interaction of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) with the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate was studied in detail using tensiometry, turbidimetry, calorimetry, viscometry, dynamic light scattering (DLS), and scanning electron microscopy (SEM). Fair interaction initially formed induced small micelles of the surfactants and later on produced free normal micelles in solution. The interaction process yielded coacervates that initially grew by aggregation in the aqueous medium and disintegrated into smaller species at higher surfactant concentration. The phenomena observed were affected by the presence of isopropyl alcohol (IP) in the medium. The hydrodynamic sizes of the dispersed polymer and its surfactant-interacted species were determined by DLS measurements. The surface morphologies of the solvent-removed PDADMAC and its surfactant-interacted complexes from water and IP-water media were examined by the SEM technique. The morphologies witnessed different patterns depending on the composition and the solvent environment. The head groups of the dodecyl chain containing surfactants made differences in the interaction process.

  17. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    PubMed

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  18. Halide (Cl(super -)) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Gutow, Jonathan H.

    2005-01-01

    The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…

  19. Halide (Cl(super -)) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Gutow, Jonathan H.

    2005-01-01

    The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…

  20. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    PubMed

    Qi, Ping; Liang, Zhi-an; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-qiong; Zheng, Chun-hao; Luo, Li-Ni; Lin, Zi-hao; Zhu, Fang; Zhang, Xue-wu

    2016-03-11

    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix.

  1. Electroelution without gel sectioning of proteins from sodium dodecyl sulfate-polyacrylamide gel electrophoresis: fluorescent detection, recovery, isoelectric focusing and matrix assisted laser desorption/ionization-time of flight of the electroeluate.

    PubMed

    Radko, Sergey P; Chang, Huan-Tsung; Zakharov, Sergey F; Bezrukov, Ludmila; Yergey, Alfred L; Vieira, Nancy E; Chrambach, Andreas; Chen, Huan-Tsung

    2002-04-01

    A method of direct electroelution of intact proteins, without gel sectioning and orthogonal to the orientation of electrophoretic migration, was developed in application to Novex gels, using a simple home-made experimental setup. Six model proteins covering the molecular mass range of 14-120 kDa were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), stained with an aqueous solution of the fluorescent dye, SYPRO-red, and electroeluted from the intact gel. The sensitivity of visual detection was 0.1-0.2 microg upon illumination by a green laser and 0.5-1 microg of protein on side-ways UV-illumination. Duration (for each protein) and field strength were optimized to render protein electroelution from the gel near-quantitative (above 80%) and relatively fast (1-12 min at 1 kV). At a given field strength, the optimal duration was found to be inversely proportional to the mobility of proteins in SDS-PAGE. Sequential ultrafiltration was evaluated as a simple approach to concentrate electroeluted proteins and deplete SDS to a level compatible with mass spectrometry of proteins: protein yields in the electroeluate were 25-33% (depending on the protein used) after three steps of ultrafiltration with water. The analysis of the electroeluate by isoelectric focusing in an immobilized pH gradient, to reveal protein heterogeneity under a single SDS-PAGE band (prior, e.g., to mass spectrometric analysis), was demonstrated.

  2. India ink staining after sodium dodecyl sulfate polyacrylamide gel electrophoresis and in conjunction with Western blots for peptide mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Klarskov, Klaus; Naylor, Stephen

    2002-01-01

    We present an approach that allows matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) peptide mapping of proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted onto nitrocellulose (NC). After blocking the nitrocellulose membrane with polyvinylpyrrolidone-40 the immobilized proteins are visualized using India Ink staining which allows the detection of low nanogram amounts of protein. The utilization of a low concentration of Tween 20 (0.05%) in the India Ink staining solution does not negatively impair the quality of the mass spectra. Due to the virtual nondestructive nature of the stain proteolytic peptides could be recovered from the NC membrane. Taking into account minor precautions during the sample manipulation and concentration and by loading the sample onto a pre-crystallized matrix layer, high quality mass spectral data were obtained on <100 femtomoles of protein loaded onto the gel. Finally, the use of India Ink in conjunction with Western blot analysis is also demonstrated. A rat plasma protein, characterized by Western blot as a covalently modified protein-drug compound, was subjected to peptide mapping and post source decay (PSD) sequencing of peptides. The zomepirac-modified protein was identified as the alpha-subunit of fibrinogen. Copyright 2001 John Wiley & Sons, Ltd.

  3. The amino-terminal fusion domain peptide of human immunodeficiency virus type 1 gp41 inserts into the sodium dodecyl sulfate micelle primarily as a helix with a conserved glycine at the micelle-water interface.

    PubMed Central

    Chang, D K; Cheng, S F; Chien, W J

    1997-01-01

    A peptide based on the N-terminal fusion domain of gp41 of human immunodeficiency virus type 1 (HIV-1) and its tryptophan analog were synthesized to examine the secondary structure in the micellar environment. Nuclear magnetic resonance (NMR), circular dichroism and electron paramagnetic resonance experiments indicated that the gp41 fusion peptide inserted into the micelle primarily as a helix (59%), with substantial beta-structure (26.7%). Deep penetration of the peptide into the apolar hydrocarbon core was supported by the results of fluorescence experiments in which the tryptophan analog exhibited a blue shift of about 30 nm in the presence of a sodium dodecyl sulfate micelle, in 1,2-dimyristoyl-rac-glycero-3-phosphocholine, and in 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine vesicular solutions. The results of spin label-attenuated 1H resonance experiments show that the region C-terminal to G16, which contains a turn structure, exhibited substantial interaction with the micelle, suggesting that it lies on the surface of micelle. Molecular simulation based on data from NMR experiments revealed a flexible hinge at residues 15 and 16 (alanine and glycine, respectively) from the N terminus of the peptide located at the micelle-solution interface. The highly conserved A15-G16 dipeptide may play a role in the function of fusion domain of HIV-1 envelope glycoprotein. PMID:9261381

  4. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  5. Mixed Hemi/Ad-Micelle Sodium Dodecyl Sulfate-Coated Magnetic Iron Oxide Nanoparticles for the Efficient Removal and Trace Determination of Rhodamine-B and Rhodamine-6G.

    PubMed

    Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien

    2015-08-04

    Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.

  6. Retinoic acid-dependent stimulation of 2,2'-azobis(2-amidinopropane)-initiated autoxidation of linoleic acid in sodium dodecyl sulfate micelles: a novel prooxidant effect of retinoic acid.

    PubMed

    Freyaldenhoven, M A; Lehman, P A; Franz, T J; Lloyd, R V; Samokyszyn, V M

    1998-02-01

    (E)-Retinoic acid (RA) was shown to stimulate the rate of 2,2'-azobis(2-amidinopropane) (AAPH)-initiated autoxidation of linoleic acid (18:2) in sodium dodecyl sulfate (SDS) micelles. RA-dependent stimulation of 18:2 autoxidation was characterized by enhanced rates of dioxygen uptake which were linear with retinoid concentration. In contrast, 5,6-epoxy-RA, a major oxidation product of RA, failed to affect the rate of dioxygen consumption at all concentrations tested. RA was also shown to stimulate peroxyl radical-dependent oxidation of styrene to the corresponding oxirane when styrene was included in the micellar system as a molecular probe. Furthermore, unequivocal evidence of RA-dependent stimulation of 18:2 autoxidation was obtained by relative quantitation of 13-hydroxy-(9Z, 11E)-octadecadienoic acid (13-HODE) plus 9-hydroxy-(10E,12Z)-octadecadienoic acid (9-HODE) production. In addition, enhanced carbon-centered radical formation was demonstrated in the presence of RA by EPR spectroscopy using alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone (4-POBN) as a spin trap. Analysis and quantitation of RA oxidation products indicated that RA was oxidized to one primary product, 5,6-epoxy-RA, which was identified on the basis of cochromatography with synthetic standard (in a reverse-phase HPLC system), electronic absorption spectroscopy, and positive chemical ionization mass spectrometry of the corresponding methyl ester. Other minor oxidation products were also detected but not characterized. In contrast, reaction mixtures devoid of 18:2 failed to demonstrate significant retinoid oxidation. Mechanisms are proposed to account for the prooxidant effects of RA in this system.

  7. Identification and In Silico Analysis of Major Redox Modulated Proteins from Brassica juncea Seedlings Using 2D Redox SDS PAGE (2-Dimensional Diagonal Redox Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis).

    PubMed

    Chaurasia, Satya Prakash; Deswal, Renu

    2017-02-01

    The thiol-disulphide exchange regulates the activity of proteins by redox modulation. Many studies to analyze reactive oxygen species (ROS), particularly, hydrogen peroxide (H2O2) induced changes in the gene expression have been reported, but efforts to detect H2O2 modified proteins are comparatively few. Two-dimensional diagonal redox sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was used to detect polypeptides which undergo thiol-disulphide exchange in Brassica juncea seedlings following H2O2 (10 mM) treatment for 30 min. Eleven redox responsive polypeptides were identified which included cruciferin, NLI [Nuclear LIM (Lin11, Isl-1 & Mec-3 domains)] interacting protein phosphatase, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) large subunit, and myrosinase. Redox modulation of RuBisCO large subunit was further confirmed by western blotting. However, the small subunit of RuBisCO was not affected by these redox changes. All redox modulated targets except NLI interacting protein (although it contains two cysteines) showed oxidation sensitive cysteines by in silico analysis. Interestingly, interactome of cruciferin and myrosinase indicated that they may have additional function(s) beside their well-known roles in the seedling development and abiotic stress respectively. Cruciferin showed interactions with stress associated proteins like defensing-like protein 192 and 2-cys peroxiredoxin. Similarly, myrosinase showed interactions with nitrilase and cytochrome p450 which are involved in nitrogen metabolism and/or hormone biosynthesis. This simple procedure can be used to detect major stress mediated redox changes in other plants.

  8. Secondary Structural Changes of Intact and Disulfide Bridges-Cleaved Human Serum Albumins in Thermal Denaturation up to 130°C - Additive Effects of Sodium Dodecyl Sulfate on the Changes.

    PubMed

    Moriyama, Yoshiko; Takeda, Kunio

    2017-05-01

    The secondary structural changes of human serum albumin with the intact 17 disulfide bridges (HSA) and the disulfide bridges-cleaved human serum albumin (RCM-HSA) in thermal denaturation were examined. Most of the helical structures of HSA, whose original helicity was 66%, were sharply disrupted between 50 and 100°C. However, 14% helicity remained even at 130°C. The temperature dependence of the degree of disrupted helical structures of HSA was discussed in connection with questions about a general protein denaturation model. When HSA lost the disulfide bridges, about two-thirds of the original helices were disrupted. Although the helices of RCM-HSA remaining after the cleavage of the disulfide bridges were relatively resistant against the heat treatment, the helicity changed from 22% at 25°C to 14% at 130℃. The helicity of RCM-HSA at 130°C agreed with the helicity of HSA at the same temperature, indicating that the same helical moieties of the polypeptides remained unaffected at this high temperature. The additive effects of sodium dodecyl sulfate (SDS) on the structural changes of HSA and RCM-HSA in thermal denaturation were also examined. A slight amount of SDS protected the helical structures of HSA from thermal denaturation below 80°C. Upon cooling to 25°C after heat treatment at temperatures below 70°C with the coexistence of SDS of low concentrations, the helical structures of HSA were reformed to the original level at 25°C before heating. A similar tendency was also observed after heat treatment at 80°C. In contrast, the helical structures of the RCM-HSA complexes with SDS are completely recovered upon cooling to 25°C even after heat treatment up to 100°C. Similar investigations were also carried out on bovine serum albumins which had the intact 17 disulfide bridges and lost all of the bridges.

  9. Evaluation of a Porcine Gastric Mucin and RNase A Assay for the Discrimination of Infectious and Non-infectious GI.1 and GII.4 Norovirus Following Thermal, Ethanol, or Levulinic Acid Plus Sodium Dodecyl Sulfate Treatments.

    PubMed

    Afolayan, Olamide T; Webb, Cathy C; Cannon, Jennifer L

    2016-03-01

    Human noroviruses (NoVs) are a major source of foodborne illnesses worldwide. Since human NoVs cannot be cultured in vitro, methods that discriminate infectious from non-infectious NoVs are needed. The purpose of this study was to evaluate binding of NoV genotypes GI.1 and GII.4 to histo-blood group antigens expressed in porcine gastric mucin (PGM) as a surrogate for detecting infectious virus following thermal (99 °C/5 min), 70% ethanol or 0.5% levulinic acid (LV) plus 0.01 or 0.1% sodium dodecyl sulfate (SDS) sanitizer treatments and to determine the limit of detection of GI.1 and GII.4 binding to PGM. Treated and control virus samples were applied to 96-well plates coated with 1 µg/ml PGM followed by RNase A (5 ng/µl) treatment for degradation of exposed RNA. Average log genome copies per ml (gc/ml) reductions and relative differences (RD) in quantification cycle (Cq) values after thermal treatment were 1.77/5.62 and 1.71/7.25 (RNase A) and 1.73/5.50 and 1.56/6.58 (no RNase A) for GI.1 and GII.4, respectively. Treatment of NoVs with 70% EtOH resulted in 0.05/0.16 (GI.1) and 3.54/10.19 (GII.4) log reductions in gc/ml and average RD in Cq value, respectively. LV (0.5%) combined with 0.1 % SDS provided a greater decrease of GI.1 and GII.4 NoVs with 8.97 and 8.13 average RD in Cq values obtained, respectively than 0.5% LV/0.01 % SDS. Virus recovery after PGM binding was variable with GII.4 > GI.1. PGM binding is a promising surrogate for identifying infectious and non-infectious NoVs after capsid destruction, however, results vary depending on virus strain and inactivation method.

  10. Studies of muscle proteins in embryonic myocardial cells of cardiac lethal mutant mexican axolotls (Ambystoma mexicanum) by use of heavy meromyosin binding and sodium dodecyl sulfate polyacrylamide gel electrophoresis

    PubMed Central

    1976-01-01

    In the Mexican axolotl Ambystoma mexicanum recessive mutant gene c, by way of abnormal inductive processes from surrounding tissues, results in an absence of embryonic heart function. The lack of contractions in mutant heart cells apparently results from their inability to form normally organized myofibrils, even though a few actin-like (60-A) and myosin-like (150-A) filaments are present. Amorphous "proteinaceous" collections are often visible. In the present study, heavy meromyosin (HMM) treatment of mutant heart tissue greatly increases the number of thin filaments and decorates them in the usual fashion, confirming that they are actin. The amorphous collections disappear with the addition of HMM. In addition, an analysis of the constituent proteins of normal and mutant embryonic hearts and other tissues is made by sodium dodecyl sulfate (SDS) gel electrophoresis. These experiments are in full agreement with the morphological and HMM binding studies. The gels show distinct 42,000-dalton bands for both normal and mutant hearts, supporting the presence of normal actin. During early developmental stages (Harrison's stage 34) the cardiac tissues in normal and mutant siblings have indistinguishable banding patterns, but with increasing development several differences appear. Myosin heavy chain (200,000 daltons) increases substantially in normal hearts during development but very little in mutants. Even so the quantity of 200,000-dalton protein in mutant hearts is significantly more than in any of the nonmuscle tissues studied (i.e. gut, liver, brain). Unlike normal hearts, the mutant hearts lack a prominent 34,000-dalton band, indicating that if mutants contain muscle tropomyosin at all, it is present in drastically reduced amounts. Also, mutant hearts retain large amounts of yolk proteins at stages when the platelets have virtually disappeared from normal hearts. The morphologies and electrophoresis patterns of skeletal muscle from normal and mutant siblings are

  11. New insights into the transformation of calcium sulfate hemihydrate to gypsum using time-resolved cryogenic transmission electron microscopy.

    PubMed

    Saha, Amitesh; Lee, Jinkee; Pancera, Sabrina M; Bräeu, Michael F; Kempter, Andreas; Tripathi, Anubhav; Bose, Arijit

    2012-07-31

    We use time-resolved cryogenic transmission electron microscopy (TR-cryo-TEM) on a supersaturated solution of calcium sulfate hemihydrate to examine the early stages of particle formation during the hydration of the hemihydrate. As hydration proceeds, we observe nanoscale amorphous clusters that evolve to amorphous particles and then reorganize to crystalline gypsum within tens of seconds. Our results indicate that a multistep particle formation model, where an amorphous phase forms first, followed by the transformation into a crystalline product, is applicable even at time scales of the order of tens of seconds for this system. The addition of a small amount of citric acid significantly delays the reorganization to gypsum crystals. We hypothesize that available calcium ions form complexes with the acid by binding to the carboxylic groups. Their incorporation into a growing particle produces disorder and extends the time over which the amorphous phase exists. We see evidence of patches of "trapped" amorphous phase within the growing gypsum crystals at time scales of the order of 24 h. This is confirmed by complementary X-ray diffraction experiments. Direct imaging of nanoscale samples by TR-cryo-TEM is a powerful technique for a fundamental understanding of crystallization and many other evolving systems.

  12. Comparison of calculated sulfate scattering efficiencies as estimated from size resolved particle mesurements at three national parks

    SciTech Connect

    Malm, W.C.

    1995-12-31

    Optical properties of aerosols are very dependent on composition and morphology as a function of particle size. To investigate sulfur optical properties at a number of national parks, both in the East and West a Davis Rotating-drum Universal-size-cut (DRUM) impactor was employed to measure size resolved sulfur concentrations during three intensive monitoring periods at Grand Canyon and Meadview, Arizona and at Shenandoah National Park. Eighty-eight measurements at Grand Canyon were made during January and February, 1988, 83 at Meadview during July, August, and September, 1992, and 315 at Shenandoah during the summer of 1990. The DRUM impactor is designed to collect aerosols between 0.07 and 15.0 PM in eight size ranges. The sampler is designed to allow impaction of particles onto drums that rotate at a rate of one revolution per month. Focused beam PIXE analysis of the aerosol deposits results in a time history of size resolved elemental composition of varied temporal resolution. As part of the quality assurance protocol a standard 0-2.5 {mu}m particle monitor was operated simultaneously alongside the DRUM sampler. It consisted of a size selective inlet, a cyclone to provide a particle size cutoff, a Teflon collection substrate, and a critical orifice for flow control. The samples were also submitted to PIXE analysis. Summing the sulfur mass concentration derived from the five DRUM stages that are below 2.5 {mu}m and comparing these values to the 0-2.5 {mu}m sampler showed little deviation between the two samplers. On the average the DRUM and 0-2.5 {mu}m sampler compared to within 1% for the Grand Canyon and Meadview data sets while at Shenandoah the DRUM was approximately 15% lower than the cyclone sampler. The average sulfur mass interpreted as ammonium sulfate was 0.67, 2.3, and 11.1 {mu}g/m{sup 3} at Grand Canyon, Meadview, and Shenandoah respectively.

  13. Comparison of calculated sulfate scattering efficiencies as estimated from size-resolved particle measurements at three national locations

    NASA Astrophysics Data System (ADS)

    Malm, William C.; Pitchford, Marc L.

    Size distributions and resulting optical properties of sulfur aerosols were investigated at three national parks by a Davis Rotating-drum Universal-size-cut Monitoring (DRUM) impactor. Sulfur size distribution measurements for 88, 177, and 315 consecutive time periods were made at Grand Canyon National Park during January and February 1988, Meadview, AZ during July, August, and September 1992, and at Shenandoah National Park during summer, 1990, respectively. The DRUM impactor is designed to collect aerosols with an aerodynamic diameter between 0.07 and 15.0 μm in eight size ranges. Focused beam particle-induced X-ray emission (PIXE) analysis of the aerosol deposits produces a time history of size-resolved elemental composition of varied temporal resolution. As part of the quality assurance protocol, an interagency monitoring of protected visual environments (IMPROVE) channel A sampler collecting 0-2.5 μm diameter particles was operated simultaneously alongside the DRUM sampler. During these sampling periods, the average sulfur mass, interpreted as ammonium sulfate, is 0.49, 2.30, and 10.36 μg m -3 at Grand Canyon, Meadview, and Shenandoah, respectively. The five drum stages were "inverted" using the Twomey (1975) scheme to give 486 size distributions, each made up of 72 discreet pairs of d C/dlog( D) and diameter ( D). From these distributions mass mean diameters ( Dg), geometric standard deviations ( σg), and mass scattering efficiencies ( em)) were calculated. The geometric mass mean diameters in ascending order were 0.21 μm at Meadview, 0.32 μm at Grand Canyon, and 0.42 μm at Shenandoah corresponding σg were 2.1, 2.3, and 1.9. Mie theory mass scattering efficiencies calculated from d C/dlog( D) distributions for the three locations were 2.05, 2.59, and 3.81 m 2 g -1, respectively. At Shenandoah, mass scattering efficiencies approached five but only when the mass median diameters were approximately 0.4 μm and σg were about 1.5. σg near 1.5 were

  14. Evaluation of the Sequential Spot Sampler (S3) for time-resolved measurement of PM2.5 sulfate and nitrate through lab and field measurements

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Evanoski-Cole, A.; Eiguren-Fernandez, A.; Sullivan, A. P.; Lewis, G. S.; Hering, S. V.; Collett, J. L., Jr.

    2016-02-01

    The Sequential Spot Sampler (S3), a newly developed instrument to collect aerosols for time-resolved chemical composition measurements, was evaluated in the laboratory and field for the measurement of particulate sulfate and nitrate. The S3 uses a multi-temperature condensation growth tube to grow individual aerosols to droplets which are then deposited as a ˜ 1 mm diameter dry spot at the end of the growth tube in a 100 µL well of a multi-well plate. The well plate advances automatically to provide a sequence of time-resolved samples. The collected aerosols are subsequently analyzed in the laboratory. The sample is concentrated during the collection process, and the laboratory extraction and analysis steps can be automated. The well plate, as received from the field, is placed onto a needle-based autosampler that adds liquid for sample extraction and injects sample extract from each well onto an ion chromatograph for analysis. Laboratory evaluation for sulfate and nitrate ions showed that poly ether ether ketone (PEEK) used as well plate material does not contribute any artifacts; a 60 min extraction procedure leads to the recovery of sulfate and nitrate from the dry spots at above 95 % extraction efficiency; and samples stored frozen and analyzed up to 23 months later show less than a 10 % change in sulfate and nitrate concentrations. The limit of detection was 0.5 µg m-3 for sulfate and 0.2 µg m-3 for nitrate for a 1 h sampling period. In a month-long field study conducted in southern California, two S3s were deployed alongside a URG denuder-filter-pack and a Particle-Into-Liquid Sampler combined with an Ion Chromatograph (PILS-IC). Collocated S3 sampler concentrations compared by linear regression show good agreement, with r2 = 0.99 and slope = 0.99 (±0.004) µg m-3 for sulfate and r2 = 0.99 and slope = 1.0 (±0.006) µg m-3 for nitrate. When compared to the URG denuder-filter-pack and the PILS-IC, the S3 sulfate and nitrate concentrations yielded

  15. Evaluation of a Sequential Spot Sampler (S3) for time-resolved measurement of PM2.5 sulfate and nitrate through lab and field measurements

    NASA Astrophysics Data System (ADS)

    Hecobian, A.; Evanoski-Cole, A.; Eiguren-Fernandez, A.; Sullivan, A. P.; Lewis, G. S.; Hering, S. V.; Collett, J. L., Jr.

    2015-10-01

    The Sequential Spot Sampler (S3), a newly developed instrument to collect aerosols for time resolved chemical composition measurements, was evaluated in the laboratory and field for the measurement of particulate sulfate and nitrate. The S3 uses a multi-temperature condensation growth tube to grow individual aerosols to droplets which are then deposited as a ~ 1 mm diameter dry spot at the end of the growth tube on a 100 μL well of a multi-well plate. The well plate advances automatically to provide a sequence of time-resolved samples. The collected aerosols are subsequently analyzed in the laboratory. The sample is concentrated during the collection process and the laboratory extraction and analysis steps can be automated. The well plate, as received from the field, is placed onto a needle-based autosampler that adds liquid for sample extraction and injects sample extract from each well onto an ion chromatograph for analysis. Laboratory evaluation for sulfate and nitrate ions showed that PEEK used as well plate material does not contribute any artifacts; a 60 min extraction procedure leads to the recovery of sulfate and nitrate from the dry spots at above 95 % extraction efficiency; and samples stored frozen and analyzed up to 23 months later show less than a 10 % change in sulfate and nitrate concentrations. In a month long field study conducted in Southern California, two S3s were deployed alongside a URG denuder/filter-pack and a Particle-Into-Liquid Sampler combined with an Ion Chromatograph (PILS-IC). Collocated S3 sampler concentrations compared by linear regression show good agreement with r2 = 0.99 and slope = 0.99 (±0.004) μg m-3 for sulfate and r2 = 0.99 and slope =1.0 (±0.006) μg m-3 for nitrate. When compared to the URG denuder/filter-pack and the PILS-IC, the S3 sulfate and nitrate concentrations yielded correlations above 0.84 for the square of the correlation coefficient and regression slopes close to one.

  16. Denaturation of proteins by SDS and tetraalkylammonium dodecyl sulfates.

    PubMed

    Lee, Andrew; Tang, Sindy K Y; Mace, Charles R; Whitesides, George M

    2011-09-20

    This article describes the use of capillary electrophoresis (CE) to examine the influence of different cations (C(+); C(+) = Na(+) and tetra-n-alkylammonium, NR(4)(+), where R = Me, Et, Pr, and Bu) on the rates of denaturation of bovine carbonic anhydrase II (BCA) in the presence of anionic surfactant dodecylsulfate (DS(-)). An analysis of the denaturation of BCA in solutions of Na(+)DS(-) and NR(4)(+)DS(-) (in Tris-Gly buffer) indicated that the rates of formation of complexes of denatured BCA with DS(-) (BCA(D)-DS(-)(n,sat)) are indistinguishable and independent of the cation below the critical micellar concentration (cmc) and independent of the total concentration of DS(-) above the cmc. At concentrations of C(+)DS(-) above the cmc, BCA denatured at rates that depended on the cation; the rates decreased by a factor >10(4) in the order of Na(+) ≈ NMe(4)(+) > NEt(4)(+) > NPr(4)(+) > NBu(4)(+), which is the same order as the values of the cmc (which decrease from 4.0 mM for Na(+)DS(-) to 0.9 mM for NBu(4)(+)DS(-) in Tris-Gly buffer). The relationship between the cmc values and the rates of formation of BCA(D)-DS(-)(n,sat()) suggested that the kinetics of denaturation of BCA involve the association of this protein with monomeric DS(-) rather than with micelles of (C(+)DS(-))(n). A less-detailed survey of seven other proteins (α-lactalbumin, β-lactoglobulin A, β-lactoglobulin B, carboxypeptidase B, creatine phosphokinase, myoglobin, and ubiquitin) showed that the difference between Na(+)DS(-) and NR(4)(+)DS(-) observed with BCA was not general. Instead, the influence of NR(4)(+) on the association of DS(-) with these proteins depended on the protein. The selection of the cation contributed to the properties (including the composition, electrophoretic mobility, and partitioning behavior in aqueous two-phase systems) of aggregates of denatured protein and DS(-). These results suggest that the variation in the behavior of NR(4)(+)DS(-) with changes in R may be exploited in methods used to analyze and separate mixtures of proteins.

  17. Glucosamine sulfate

    MedlinePlus

    ... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...

  18. Bone sialoprotein II synthesized by cultured osteoblasts contains tyrosine sulfate

    SciTech Connect

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C. )

    1989-11-25

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoprotein II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.

  19. Metabolic profile of sodium dodecyl sulphate (SDS) biodegradation by Pseudomonas aeruginosa (MTCC 10311).

    PubMed

    Ambily, P S; Jisha, M S

    2014-09-01

    Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has received greater attention. Pseudomonas aeruginosa MTCC 10311 was isolated from detergent contaminated soil which had degraded 96% of SDS in 48 hrs. Attempts were made to study the metabolic byproducts of SDS degradation using GC-MS analysis. Analysis of ether extracts of surfactant established the sequential production of Dodecanol, Dodecanal and Decanoic acid. At this point, the pathway diverged into the formation of acid residues through beta oxidation. This SDS degrading isolate, Pseudomonas aeruginosa can be exploited for decontamination of detergent contaminated waste water.

  20. The binding of sodium dodecyl sulphate to various proteins

    PubMed Central

    Pitt-Rivers, Rosalind; Impiombato, F. S. Ambesi

    1968-01-01

    1. The binding of sodium dodecyl sulphate to proteins by equilibrium dialysis was investigated. 2. Most of the proteins studied bound 90–100% of their weight of sodium dodecyl sulphate. 3. The glycoproteins studied bound 70–100% of their weight of sodium dodecyl sulphate, calculated in terms of the polypeptide moiety of the molecule. 4. Proteins not containing S·S groups bound about 140% of their weight of sodium dodecyl sulphate. 5. Reduction of four proteins containing S·S groups caused a rise in sodium dodecyl sulphate binding to 140% of the weight of protein. 6. The apparent micellar molecular weights of the protein–sodium dodecyl sulphate complexes were measured by the dye-solubilization method; they were all found to have approximately the same micellar molecular weight (34000–41000) irrespective of the molecular weight of the protein to which they were attached. PMID:4177067

  1. Chondroitin sulfate

    MedlinePlus

    ... Kashin-Beck disease, and itchy and scaly skin (psoriasis). Chondroitin sulfate is also used in a complex ... or recurrent heart attack. Skin redness and irritation (psoriasis). Early research suggests that taking chondroitin sulfate for ...

  2. 1-Dodecyl-3-methylimidazolium chloride-assisted sample preparation method for efficient integral membrane proteome analysis.

    PubMed

    Zhao, Qun; Fang, Fei; Liang, Yu; Yuan, Huiming; Yang, Kaiguang; Wu, Qi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2014-08-05

    Due to their extremely hydrophobic nature, the analysis of integral membrane proteins (IMPs) is of great challenge. Although various additives have been applied to improve the solubility of IMPs, they still suffer from low solubilization efficiency, incompatibility with trypsin digestion, or interference with MS detection. Herein, the systematic study on the effect of ionic liquid structure on membrane protein solubilization and trypsin biocompatibility was performed, based on which 1-dodecyl-3-methylimidazolium chloride (C12Im-Cl) was selected for the sample preparation of IMPs. Compared with other commonly used additives, such as sodium dodecyl sulfate (SDS), Rapigest, and methanol, C12Im-Cl showed the best performance. In addition, with a strong cation exchange trap column, it could be easily removed after trypsin digestion, which not only was beneficial to avoid protein precipitation during digestion but also had no adverse effect on LC-MS-based separation and detection. Such a C12Im-Cl-assisted sample preparation method was further applied to the membrane proteome analysis of rat brain. Compared with the SDS-assisted method, 1.4 and 3.5 times improvement on the identified IMP and hydrophobic peptide number were achieved (251 vs 178, and 982 vs 279). All these results demonstrated that the C12Im-Cl-assisted sample preparation method is of great promise to promote the large-scale membrane proteome profiling.

  3. Rotational diffusion of coumarin 153 in nanoscopic micellar environments of n-dodecyl-β-D-maltoside and n-dodecyl-hexaethylene-glycol mixtures.

    PubMed

    Hierrezuelo, J M; Ruiz, C Carnero

    2012-12-27

    The microstructure of mixed micelles containing n-dodecyl-β-D-maltoside and n-dodecyl-hexaethylene-glycol, two nonionic surfactants belonging to the alkyl polyglucoside and polyoxyethyelene alkyl ether families, respectively, has been investigated. With the aim of understanding how the micellar composition affects the microenvironmental properties of micelles, we have examined the photophysics and dynamics of the neutral probe coumarin 153 in the binary mixtures of the surfactants across the entire composition range. We present data on the steady-state absorption and emission spectra of the probe, as well as fluorescence lifetimes and both steady-state and time-resolved fluorescence anisotropies. These data indicate that the participation of the ethoxylated surfactant in the mixed micelle induces an increasing hydration in the palisade layer of the micelle, which forces the probe to migrate toward the inner micellar region, where it senses a slightly less polar environment. The time-resolved fluorescence anisotropy data were analyzed on the basis of the two-step and wobbling-in-cone model. The average reorientation time of the probe molecule was found to decrease with the presence of the ethoxylated surfactant, in good agreement with steady-state fluorescence anisotropy data, suggesting a reduction of the microviscosity in the solubilization site of the probe. The behavior of all diffusion reorientation parameters was analyzed on the basis of two factors: the micellar hydration and the headgroup flexibility of both surfactants. It was concluded that the increasing participation of the ethoxylated surfactant induces a greater hydration in the micellar palisade layer, producing the formation of a less compact microenvironment where the probe experiences a faster rotational reorientation.

  4. Performing isoelectric focusing and simultaneous fractionation of proteins on a rotary valve followed by sodium dodecyl-polyacrylamide gel electrophoresis.

    PubMed

    Wang, Wei; Lu, Joann J; Gu, Congying; Zhou, Lei; Liu, Shaorong

    2013-07-16

    In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl-polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE, the second-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed.

  5. Structure analyses of dodecylated single-walled carbon nanotubes.

    PubMed

    Liang, Feng; Alemany, Lawrence B; Beach, Jonathan M; Billups, W Edward

    2005-10-12

    Alkylation of nanotube salts prepared using either lithium, sodium, or potassium in liquid ammonia yields sidewall-functionalized nanotubes that are soluble in organic solvents. Atomic force microscopy and transmission electron microscopy studies of dodecylated SWNTs prepared from HiPco nanotubes and 1-iodododecane show that extensive debundling results from intercalation of the alkali metal into the SWNT ropes. TGA-FTIR analyses of samples prepared from the different metals revealed radically different thermal behavior during detachment of the dodecyl groups. The SWNTs prepared using lithium can be converted into the pristine SWNTs at 180-330 degrees C, whereas the dodecylated SWNTs prepared using sodium require a much higher temperature (380-530 degrees C) for dealkylation. SWNTs prepared using potassium behave differently, leading to detachment of the alkyl groups over the temperature range 180-500 degrees C. These differences can be observed by analysis of the solid-state 13C NMR spectra of the dodecylated SWNTs that have been prepared using the different alkali metals and may indicate differences in the relative amounts of 1,2- and 1,4-addition of the alkyl groups.

  6. Preparation of microcapsules with multi-layers structure stabilized by chitosan and sodium dodecyl sulfate.

    PubMed

    Chatterjee, Sudipta; Salaün, Fabien; Campagne, Christine; Vaupre, Suzy; Beirão, Alexandre

    2012-10-01

    The microcapsules with oil core and multi-layers shell were developed from poly-cationic chitosan (CS) and anionic SDS in multistep electrostatic layer by layer deposition technique combined with oil in water emulsification process. The net charge of microcapsules determined by zeta potential indicated that microcapsules are highly positive charged because of poly-cationic nature of CS, and charge neutralization of microcapsules occurred after alkali treatment. The granulometry measurement showed increase in average diameter of microcapsules by alkali treatment suggesting swelling or formation of small aggregates. The morphology analysis of microcapsules by optical microscopy corroborated the results of granulometry, and diameter of microcapsules was found to be decreased in multistep process due to tight packing of layers in outer shell of microcapsules. The alkali treatment of microcapsules to solidify outer shell was optimized with 0.02 N NaOH to reduce microcapsules aggregation and gel formation by CS chains as found in optical micrographs.

  7. Poliovirus sampling by using sodium dodecyl sulfate/EDTA-pretreated chromatography paper strips.

    PubMed

    Maes, Piet; Van Doren, Els; Denys, Barbara; Thoelen, Inge; Rahman, Mustafizur; Vijgen, Leen; Van Ranst, Marc

    2004-12-17

    To achieve the goal of poliovirus eradication, surveillance of endemic areas is a crucial step in the poliovirus eradication program. Currently, six countries still have endemic poliovirus. We have tested a novel method which uses SDS/EDTA-treated chromatography paper strips to collect and transport poliovirus-containing stool samples. The SDS/EDTA-treated paper strips were soaked with different dilutions of poliovirus-containing feces and stored at different temperatures. After storing the SDS/EDTA paper strips for 5 months at 37 degrees C, poliovirus RNA could be successfully amplified using RT-PCR. Infectivity of wild-type poliovirus type 1, 2, and 3 was lost upon contact with the SDS/EDTA-treated strips. This easy, inexpensive, and biosafe chromatography paper strip method for the collection and transportation of poliovirus samples can be of use in poliovirus surveillance and polio vaccination programs.

  8. Methods for purifying and detoxifying sodium dodecyl sulfate-stabilized polyacrylate nanoparticles.

    PubMed

    Garay-Jimenez, Julio C; Young, Ashley; Gergeres, Danielle; Greenhalgh, Kerriann; Turos, Edward

    2008-06-01

    Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus. For this intended application it is necessary to ensure that the biological activity of the emulsion is due only to the drug attached to the polymeric chain and not to any extraneous components. To investigate this we evaluated cytotoxicity and microbiological activity of the nanoparticle emulsions before and after purification by centrifugation, dialysis, and gel filtration. Depending on the amount of surfactant used, all or most of the microbial and cellular toxicity can be removed by a simple purification procedure.

  9. Methods for Purifying and Detoxifying Sodium Dodecyl Sulfate-Stabilized Polyacrylate Nanoparticles

    PubMed Central

    Garay-Jimenez, Julio C.; Young, Ashley; Gergeres, Danielle; Greenhalgh, Kerriann; Turos, Edward

    2008-01-01

    Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus (MRSA). For this intended application, it is necessary to ensure that the biological activity of the emulsion is due only to the drug attached to the polymeric chain, rather than to any extraneous components. To investigate this, we evaluated cytotoxicity and microbiological activity of the nanoparticle emulsions before and after purification by centrifugation, dialysis, and gel filtration. Depending on the amount of surfactant used, all or most of the microbial and cellular toxicity can be removed by a simple purification procedure. PMID:18472305

  10. Adhesion of sodium dodecyl sulfate surfactant monolayers with TiO2 (rutile and anatase) surfaces

    SciTech Connect

    Darkins, Robert; Sushko, Maria L.; Liu, Jun; Duffy, Dorothy M.

    2013-09-17

    Surfactants are widely used as templates to control the nucleation and growth of nanostructured metal oxides such as titania. To gain insight into the origin of surfactant-titania interactions responsible for polymorph and orientation selection, we simulate the self-assembly of an anionic surfactant monolayer on various low-index titania surfaces and for a range of densities. We characterize the binding in each case and compute the adhesion energies, finding anatase (100) and rutile (110) to be the strongest-binding surfaces. The sodium counterions in the monolayer are found to dominate the adhesion. It is also observed that the assembly is directed predominantly by surface-monolayer electrostatic complementarity.

  11. Effect of Added Brine on the Physico Chemical Studies of Sodium Dodecyl Sulfate and Aqueous Gelatin

    NASA Astrophysics Data System (ADS)

    George, Jinu; Sreejith, Lisa

    2011-10-01

    Effect of added brine on the structural transitions of SDS, in different compositions of gelatin has been investigated by viscosity, circular dichroism, TGA and DSC. The slow and steady growth of the normal spherical micelles to the higher order aggregates were predicted by viscosity and conductivity measurements. The large negative value for ellipticity observed from CD measurements indicated absence of any conformational change for gelatin. Other measurements were used to study the molecular packing in the micellar aggregates. The complex formed exhibits fantastic properties to be explored in the field of smart gels.

  12. Diffusion-controlled evaporation of sodium dodecyl sulfate solution drops placed on a hydrophobic substrate.

    PubMed

    Doganci, Merve Dandan; Sesli, Belma Uyar; Erbil, H Yildirim

    2011-10-15

    In this work, the effect of SDS anionic surfactant on the diffusion-controlled evaporation rate of aqueous solution drops placed on TEFLON-FEP substrate was investigated with 11 different SDS concentrations. Drop evaporation was monitored in a closed chamber having a constant RH of 54-57% by a video camera. The initial contact angle, θ(i) decreased from 104±2° down to 68±1° due to the adsorption of SDS both at the water-air and the solid-water interfaces. The adsorption of SDS on the solid surface was found to be 76% of that of its adsorption at the water-air interface by applying Lucassen-Reynders approach. An equation was developed for the comparison of the evaporation rates of drops having different θ(i) on the same substrate. It was found that the addition of SDS did not alter the drop evaporation rate considerably for the first 1200 s for all the SDS concentrations. The main difference was found to be the change of the mode of drop evaporation by varying the SDS concentration. The constant θ mode was operative up to 80 mM SDS concentration, whereas constant contact area mode was operative after 200 mM SDS concentrations due to rapid drop pining on the substrate. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Preparation of Plasmid DNA by Alkaline Lysis with Sodium Dodecyl Sulfate: Minipreps.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2016-10-03

    In this protocol, plasmid DNA is isolated from small-scale (1-2 mL) bacterial cultures. Yields vary between 100 and 5 µg of DNA, depending on the copy number of the plasmid. Miniprep DNA is sufficiently pure for use as a substrate or template in many in vitro enzymatic reactions. However, further purification is required if the plasmid DNA is used as the substrate in sequencing reactions.

  14. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  15. Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Lin, Wen-Qiang; Wang, Xiao-Gang; Zeng, Song-wei; Zhou, Guo-Quan; Chen, Jun-Lang

    2017-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61575178 and 11574272), Zhejiang Provincial Natural Science Foundation of China (Grant No. LY16A040014), and the Scientific Research and Developed Fund of Zhejiang A & F University, China (Grant No. 2015FR022).

  16. NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate.

    PubMed

    MacRaild, C A; Hatters, D M; Howlett, G J; Gooley, P R

    2001-05-08

    The structure and protein-detergent interactions of apolipoprotein C-II (apoC-II) in the presence of SDS micelles have been investigated using circular dichroism and heteronuclear NMR techniques applied to (15)N-labeled protein. Micellar SDS, a commonly used mimetic of the lipoprotein surface, inhibits the aggregation of apoC-II and induces a stable structure containing approximately 60% alpha-helix as determined by circular dichroism. NMR reveals the first 12 residues of apoC-II to be structurally heterogeneous and largely disordered, with the rest of the protein forming a predominantly helical structure. Three regions of helical conformation, residues 16-36, 50-56, and 63-77, are well-defined by NMR-derived constraints, with the intervening regions showing more loosely defined helical conformation. The structure of apoC-II is compared to that determined for other apolipoproteins in a similar environment. Our results shed light on the lipid interactions of apoC-II and its mechanism of lipoprotein lipase activation.

  17. Denaturation of Proteins by SDS and by Tetra-alkylammonium Dodecyl Sulfates

    PubMed Central

    Lee, Andrew; Tang, Sindy K. Y.; Mace, Charles R.

    2011-01-01

    This paper describes the use of capillary electrophoresis (CE) to examine the influence of different cations (C+; C+ = Na+ and tetra-n-alkylammonium, NR4 +, where R = Me, Et, Pr, Bu) on the rates of denaturation of bovine carbonic anhydrase II (BCA) in the presence of the anionic surfactant dodecylsulfate (DS−). Analysis of the denaturation of BCA in solutions of Na+DS− and NR4 +DS− (in Tris-Gly buffer) indicated that the rates of formation of complexes of denatured BCA with DS− (BCAD-DS−n,sat) are indistinguishable and independent of the cation below the critical micellar concentration (cmc), and independent of the total concentration of DS− above the cmc. At concentrations of C+DS− above the cmc, BCA denatured with rates that depended on the cation; the rates decreased by a factor > 104, in the order Na+ ~ NMe4 + > NEt4 + > NPr4 + > NBu4 + – the same order as the values of cmc (which decrease from 4.0 mM for Na+DS− to 0.9 mM for NBu4 +DS− in Tris-Gly buffer). The relationship between values of cmc and rates of formation of BCAD-DS−n,sat suggested that the kinetics of denaturation of BCA involve the association of this protein with monomeric DS−, rather than with micelles of (C+DS−)n. A less-detailed survey of seven other proteins (α-lactalbumin, β-lactoglobulin A, β-lactoglobulin B, carboxypeptidase B, creatine phosphokinase, myoglobin, and ubiquitin) showed that the difference between Na+DS− and NR4 +DS− observed with BCA was not general. Instead, the influence of NR4 + on the association of DS− with these proteins depended on the protein. The selection of cation contributed to the properties (including composition, electrophoretic mobility, and partitioning behavior in aqueous two-phase systems) of aggregates of denatured protein and DS−. These results suggest that variation in the behavior of NR4 +DS− with changes in R may be exploited in methods for analyzing and separating mixtures of proteins. PMID:21834533

  18. Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate: effect of critical micelle concentration.

    PubMed

    Huang, H L; Lee, W M

    2001-08-01

    Surfactants can increase the solubility of non-polar compounds, and have been applied in areas such as soil washing and treatment of non-aqueous phase liquids (NAPLs). This investigation explored the feasibility of removing vapor phase polycyclic aromatic hydrocarbon (PAH) from gases using an anionic surfactant. The solubility of vapor phase naphthalene was measured herein using gas chromatograph (GC) with a photon ionization detector (PID). The measurement results indicated that surfactant molecules were not favorable to micelle formation when temperatures increased from 25 degrees C to 50 degrees C. Regardless of whether solutions were quiescent or agitated, equilibrium naphthalene apparent solubility increased linearly with surfactant concentrations exceeding critical micelle concentration (CMC). The pH effects on naphthalene apparent solubility were small. Agitation increased naphthalene apparent solubility and lumped mass transfer coefficients. Furthermore, lumped mass transfer coefficients decreased with increasing surfactant concentration owing to increase in interfacial resistance and viscosity and decreased spherical micelle diffusion coefficients. Finally, the net absorption rate increased because the solubilization effects of micelles exceeded the reduction effects of mass transfer coefficient above the CMC. The enhanced naphthalene apparent solubility from the addition of surfactant can be expressed by an enrichment factor (EF). The EF value of naphthalene for the surfactant solution at 0.1 M with agitation at 270 rpm relative to quiescent water could reach 18.6. This work confirms that anionic surfactant can improve the removal efficiency of hydrophobic organic compound (HOC) from the gas phase.

  19. Prestaining of glycoproteins in sodium dodecyl sulfate polyacrylamide gels by dansylhydrazine.

    PubMed

    Wang, Yang; Zhou, Xuan; Yu, Qing; Duan, Yuanmeng; Huang, Binbin; Hong, Guoying; Zhou, Ayi; Jin, Litai

    2014-06-01

    A new fluorescent prestaining method for gel-separated glycoproteins in 1D and 2D SDS-PAGE was developed by using dansylhydrazine in this study. The prestained gels could be easily imaged after electrophoresis without any time-consuming steps needed for poststains. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be selectively detected, which is comparable to that of Pro-Q Emerald 488, one of the most commonly used glycoprotein stain. In addition, a subsequent study of deglycosylation, glycoprotein affinity isolation, and LC-MS/MS analysis was performed to confirm the specificity of the newly developed method.

  20. Inactivation of brain Na+,K(+)-ATPase catalytic subunit isoforms by sodium dodecyl sulfate.

    PubMed

    Kaplya, A; Kravtsova, V V; Kravtsov, A V

    1997-01-01

    Persistence of the brain and kidney Na+,K(+)-ATPase isozymes to SDS inactivation under different time and temperature conditions of microsome extraction with the detergent was compared. In contrast to enzyme preparations from medulla oblongata the higher sensitivity of the Na+,K(+)-ATPase alpha-isoform (in comparison to alpha +) to SDS inactivation accompanied by its, at least, partial removal from the membrane was found in the preparations from cerebral cortex. This difference in the sensitivity to SDS was eliminated after extraction of microsomes with the detergent at 37 degrees C. The interpretation of the results is based on the assumed differences in the structural organization of the boundary lipids of the neuronal Na+,K(+)-ATPase catalytic subunit isoforms.

  1. Microdisc gel electrophoresis in sodium dodecyl sulfate of organic material from rat otoconial complexes

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Pote, K. G.; Rarey, K. E.; Verma, L. M.

    1981-01-01

    The gravity receptors of all vertebrates utilize a 'test mass' consisting of a complex arrangement of mineral and organic substance that lies over the sensory receptor areas. In most vertebrates, the mineral is a polymorph of calcium carbonate in the form of minute, single crystals called otoconia. An investigation is conducted to determine the number of proteins in otoconial complexes and their molecular weights. The investigation makes use of a microdisk gel electrophoresis method reported by Gainer (1971). The most important finding of the reported research is that analysis of the proteins of the organic material of the otoconial complexes is possible when sensitive microanalytical methods are employed. Further modification of the basic technique employed and the inclusion of other sensitive staining methods should mean that, in the future, protein separation by molecular weight will be possible in sample pools containing only two otoconial masses.

  2. Highly sensitive fluorescent stain for detecting lipopolysaccharides in sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Wang, Xu; Zhou, Ayi; Cai, Wanhui; Yu, Dongdong; Zhu, Zhongxin; Jiang, Chengxi; Jin, Litai

    2015-08-01

    A sensitive and simple technique was developed for the visualization of gel-separated lipopolysaccharides by using a hydrazide derivative, UGF202. As low as 0.5-1 ng total LPS could be detected by UGF202 stain, which is 2- and 16-fold more sensitive than that of the commonly used Pro-Q Emerald 300 and Keenan et al. developed silver stain, respectively. The results indicated that UGF202 stain could be a good choice for LPS determination in polyacrylamide gels.

  3. Dielectric properties of solutions of oil materials solubilized by sodium dodecyl sulfate in aqueous solutions

    SciTech Connect

    Abe, M.; Shimizu, A.; Ogino, K.

    1982-08-01

    One of the most important properties of micellar systems is their ability to solubilize a variety of species. For aqueous micelles, solubilization is related closely to the hydrophobic and hydrophilic properties of the solubilizate. Different sites of solubilization and orientations may be involved, depending on the structure of the solubilizate. A number of studies on solubilization have been performed experimentally and theoretically. Dielectric constant measurement has proved to be a powerful tool for the investigation of permanent dipole moments of various molecules and of the behavior in solution of various substances, and has been applied in various fields. This technique has been used to determine the chemical structure of surfactants, but not to investigate the solubilization of oily materials in aqueous solution. The dielectric constants and ac electric conductivities observed when a solubilizate is added to an aqueous solution of an anionic surfactant and the differences in the solubilizing behavior due to different kinds of polar groups are discussed. 30 references.

  4. Diethyl sulfate

    Integrated Risk Information System (IRIS)

    Diethyl sulfate ; CASRN 64 - 67 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  5. Dimethyl sulfate

    Integrated Risk Information System (IRIS)

    Dimethyl sulfate ; CASRN 77 - 78 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  6. Novel Alkylsulfatases Required for Biodegradation of the Branched Primary Alkyl Sulfate Surfactant 2-Butyloctyl Sulfate

    PubMed Central

    Ellis, Andrew J.; Hales, Stephen G.; Ur-Rehman, Naheed G. A.; White, Graham F.

    2002-01-01

    Recent reports show that contrary to common perception, branched alkyl sulfate surfactants are readily biodegradable in standard biodegradability tests. We report here the isolation of bacteria capable of biodegrading 2-butyloctyl sulfate and the identification of novel enzymes that initiate the process. Enrichment culturing from activated sewage sludge yielded several strains capable of growth on 2-butyloctyl sulfate. Of these, two were selected for further study and identified as members of the genus Pseudomonas. Strain AE-A was able to utilize either sodium dodecyl sulfate (SDS) or 2-butyloctyl sulfate as a carbon and energy source for growth, but strain AE-D utilized only the latter. Depending on growth conditions, strain AE-A produced up to three alkylsulfatases, as shown by polyacrylamide gel electrophoresis zymography. Growth on either SDS or 2-butyloctyl sulfate or in nutrient broth produced an apparently constitutive, nonspecific primary alkylsulfatase, AP1, weakly active on SDS and on 2-butyloctyl sulfate. Growth on 2-butyloctyl sulfate produced a second enzyme, AP2, active on 2-butyloctyl sulfate but not on SDS, and growth on SDS produced a third enzyme, AP3, active on SDS but not on 2-butyloctyl sulfate. In contrast, strain AE-D, when grown on 2-butyloctyl sulfate (no growth on SDS), produced a single enzyme, DP1, active on 2-butyloctyl sulfate but not on SDS. DP1 was not produced in broth cultures. DP1 was induced when residual 2-butyloctyl sulfate was present in the growth medium, but the enzyme disappeared when the substrate was exhausted. Gas chromatographic analysis of products of incubating 2-butyloctyl sulfate with DP1 in gels revealed the formation of 2-butyloctanol, showing the enzyme to be a true sulfatase. In contrast, Pseudomonas sp. strain C12B, well known for its ability to degrade linear SDS, was unable to grow on 2-butyloctyl sulfate, and its alkylsulfatases responsible for initiating the degradation of SDS by releasing the parent

  7. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Glycine, N-(carboxymethyl)-N-dodecyl... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject to...

  8. Collagen fibril formation in the presence of sodium dodecyl sulphate.

    PubMed Central

    Dombi, G W; Halsall, H B

    1985-01-01

    Sodium dodecyl sulphate (SDS) was used to weaken both the electrostatic and the hydrophobic interactions during collagen fibrillogenesis in vitro. The rate and extent of fibril formation as well as fibril morphology were affected by SDS concentration. Both the formation of large fibrils at 0.3 mM-SDS and the complete cessation of fibril formation at 0.5 mM-SDS were considered to be the result of SDS-induced conformational changes in the non-helical telopeptides. A possible mechanism of SDS interaction with the N-terminal and the distal region of the C-terminal telopeptides is offered. Images Fig. 5. PMID:4026797

  9. Thermodynamics of Micellization of n-Alkyl Sulfates in an Alkaline Medium at Different Temperatures.

    PubMed

    Ruso; Taboada; Mosquera; Sarmiento

    1999-06-15

    Critical micelle concentrations (cmc) have been calculated from conductivity measurements at 293.15, 298.15, 303.15, 308.15, and 313.15 K for sodium n-decyl sulfate (SDES), sodium n-undecyl sulfate (SUNDS), and sodium n-dodecyl sulfate (SDS) in a medium of pH 10.0 and ionic strength 0.0312. Thermodynamic parameters of micellization, standard Gibbs energies (), standard enthalpies (), and standard entropies (), have been obtained by application of the model of Evans and Ninham in terms of hydrophobic and surface contributions. Copyright 1999 Academic Press.

  10. Sulfation of intrinsic glycoproteins of the rabbit vitreous.

    PubMed

    Góes, R M; Laicine, E M; Mendes, M L; Nader, H B; Haddad, A

    1998-09-01

    The experiments reported here were designed to characterize the intrinsic vitreous glycoproteins and to understand the process of their sulfation. Rabbits were injected intravitreally with 35S-sodium sulfate and killed at several time intervals after injection. In another series of experiments, rabbits were injected either with 35S-sodium sulfate, 3H-fucose or 3H-tyrosine, associated or not associated with tunicamycin administration. Vitreous from the control eyes was also digested with N-glycosidase. Furthermore, ciliary bodies, the putative source of the intrinsic vitreous glycoproteins, were incubated with 35S-sodium sulfate in the presence or absence of the protein synthesis inhibitor cycloheximide, and the culture media recovered for analysis. These and the vitreous samples of the other experiments were processed for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography. Except for serum albumin, practically all polypeptide bands of the vitreous and culture media were labeled with radioactive sulfate and were shown to undergo renewal. The experiments using tunicamycin or enzyme treatment suggest that radioactive sulfate was incorporated not only into the carbohydrate side chains of the glycoproteins but also into the amino acid tyrosine of the polypeptide backbone of these glycoproteins. Copyright 1998 Academic Press.

  11. Sulfate adsorption on goethite

    SciTech Connect

    Rietra, R.P.J.J.; Hiemstra, T.; Riemsdijk, W.H. van

    1999-10-15

    Recent spectroscopic work has suggested that only one surface species of sulfate is dominant on hematite. Sulfate is therefore a very suitable anion to test and develop adsorption models for variable charge minerals. The authors have studied sulfate adsorption on goethite covering a large range of sulfate concentrations, surface coverages, pH values, and electrolyte concentrations. Four different techniques were used to cover the entire range of conditions. For characterization at low sulfate concentrations, below the detection limit of sulfate with ICP-AES, the authors used proton-sulfate titrations at constant pH. Adsorption isotherms were studied for the intermediate sulfate concentration range. Acid-base titrations in sodium sulfate and electromobility were used for high sulfate concentrations. All the data can be modeled with one adsorbed species if it is assumed that the charge of adsorbed sulfate is spatially distributed in the interface. The charge distribution of sulfate follows directly from modeling the proton-sulfate adsorption stoichoimemtry sine this stoichiometry is independent of the intrinsic affinity constant of sulfate. The charge distribution can be related to the structure of the surface complex by use of the Pauling bond valence concept and is in accordance with the microscopic structure found by spectroscopy. The intrinsic affinity constant follows from the other measurements. Modeling of the proton-ion stoichoimetry with the commonly used 2-pK models, where adsorbed ions are treated as point charges, is possible only if at least two surface species for sulfate are used.

  12. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  13. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  14. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  15. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  16. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN).

    PubMed

    Souto, E B; Anselmi, C; Centini, M; Müller, R H

    2005-05-13

    Solid lipid nanoparticles (SLN) containing a novel potential sunscreen n-dodecyl-ferulate (ester of ferulic acid) were developed. The preparation and stability parameters of n-dodecyl-ferulate-loaded SLN have been investigated concerning particle size, surface electrical charge (zeta potential) and matrix crystallinity. The chemical stability of n-dodecyl-ferulate at high temperatures was also assessed by thermal gravimetry analysis. For the selection of the appropriated lipid matrix, chemically different lipids were melted with 4% (m/m) of active and lipid nanoparticles were prepared by the so-called high pressure homogenization technique. n-Dodecyl-ferulate-loaded SLN prepared with cetyl palmitate showed the lowest mean particle size and polydispersity index, as well as the highest physical stability during storage time of 21 days at 4, 20 and 40 degrees C. These colloidal dispersions containing the sunscreen also exhibited the common melting behaviour of aqueous SLN dispersions.

  17. Dodecyl creatine ester and lipid nanocapsule: a double strategy for the treatment of creatine transporter deficiency.

    PubMed

    Trotier-Faurion, Alexandra; Passirani, Catherine; Béjaud, Jérôme; Dézard, Sophie; Valayannopoulos, Vassili; Taran, Fréderic; de Lonlay, Pascale; Benoit, Jean-Pierre; Mabondzo, Aloïse

    2015-01-01

    Creatine transporter (CT) deficiency is characterized by mutations in the gene encoding CT, leading to impaired transport of creatine at the cell membrane. Patients with this disease would thus benefit from replenishment of creatine inside the brain cells. We report a therapeutic strategy based on the use of dodecyl creatine ester incorporated into lipid nanocapsules (LNCs). The dodecyl creatine ester was incorporated in the shells of LNCs using Transcutol(®) (Gattefossé SAS, Saint-Priest, France). The interactions of dodecyl creatine ester encapsulated in LNCs with an in vitro cell-based blood-brain barrier model was studied. The entry of the dodecyl creatine ester encapsulated in LNCs and the conversion of dodecyl creatine ester to creatine in the cells were also studied in the pathological context of CT deficiency. We showed that these LNCs can cross the blood-brain barrier and enter brain endothelial cells. In human fibroblasts lacking functional CT, all or part of the dodecyl creatine ester was released from the LNCs and biotransformed to creatine, thus indicating the value of this strategy in this therapeutic context.

  18. Sulfate in fetal development.

    PubMed

    Dawson, Paul A

    2011-08-01

    Sulfate (SO(4)(2-)) is an important nutrient for human growth and development, and is obtained from the diet and the intra-cellular metabolism of sulfur-containing amino acids, including methionine and cysteine. During pregnancy, fetal tissues have a limited capacity to produce sulfate, and rely on sulfate obtained from the maternal circulation. Sulfate enters and exits placental and fetal cells via transporters on the plasma membrane, which maintain a sufficient intracellular supply of sulfate and its universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) for sulfate conjugation (sulfonation) reactions to function effectively. Sulfotransferases mediate sulfonation of numerous endogenous compounds, including proteins and steroids, which biotransforms their biological activities. In addition, sulfonation of proteoglycans is important for maintaining normal structure and development of tissues, as shown for reduced sulfonation of cartilage proteoglycans that leads to developmental dwarfism disorders and four different osteochondrodysplasias (diastrophic dysplasia, atelosteogenesis type II, achondrogenesis type IB and multiple epiphyseal dysplasia). The removal of sulfate via sulfatases is an important step in proteoglycan degradation, and defects in several sulfatases are linked to perturbed fetal bone development, including mesomelia-synostoses syndrome and chondrodysplasia punctata 1. In recent years, interest in sulfate and its role in developmental biology has expanded following the characterisation of sulfate transporters, sulfotransferases and sulfatases and their involvement in fetal growth. This review will focus on the physiological roles of sulfate in fetal development, with links to human and animal pathophysiologies.

  19. Electronic spectral behavior of bromophenol blue in oil in water microemulsions stabilized by sodium dodecyl sulfate and n-butanol

    NASA Astrophysics Data System (ADS)

    Sarma, Surashree; Dutta, Robin K.

    2006-06-01

    The visible spectra of bromophenol blue (BPB) in benzene-water-SDS-butanol oil in water microemulsions show an unusual behavior on increasing the concentration of the surfactant, at different fixed water pH and oil fractions. The dye shows absorption bands at 436 and 591 nm corresponding to the mono-negative (DH -) and doubly negative (D 2-) form in water at experimental pH 3.21 and 4.41. The DH - band initially increased with increase in [SDS] at the cost of the D 2- band as expected. But on increase in [SDS] above 0.128 M, the D 2- band, which is now red shifted to 600 nm, recovers at the cost of the DH - band, a behavior so far observed only for BPB. This unusual effect is augmented at higher pH, lower surfactant-cosurfactant ratio and higher oil fraction. The spectral behavior has been attributed to partition of formic acid, a buffer component between different pseudophases. Passage of undissociated formic acid away from aqueous pseudophase to oil pseudophase or oil-water interface increases the pH of the aqueous pseudophase where the D 2- form of the dye is more stable.

  20. Electronic spectral behavior of bromophenol blue in oil in water microemulsions stabilized by sodium dodecyl sulfate and n-butanol.

    PubMed

    Sarma, Surashree; Dutta, Robin K

    2006-06-01

    The visible spectra of bromophenol blue (BPB) in benzene-water-SDS-butanol oil in water microemulsions show an unusual behavior on increasing the concentration of the surfactant, at different fixed water pH and oil fractions. The dye shows absorption bands at 436 and 591 nm corresponding to the mono-negative (DH-) and doubly negative (D2-) form in water at experimental pH 3.21 and 4.41. The DH- band initially increased with increase in [SDS] at the cost of the D2- band as expected. But on increase in [SDS] above 0.128 M, the D2- band, which is now red shifted to 600 nm, recovers at the cost of the DH- band, a behavior so far observed only for BPB. This unusual effect is augmented at higher pH, lower surfactant-cosurfactant ratio and higher oil fraction. The spectral behavior has been attributed to partition of formic acid, a buffer component between different pseudophases. Passage of undissociated formic acid away from aqueous pseudophase to oil pseudophase or oil-water interface increases the pH of the aqueous pseudophase where the D2- form of the dye is more stable.

  1. Pulsed field electrophoresis for the separation of protein-sodium dodecyl sulfate-complexes in polyacrylamide gels.

    PubMed

    Houri, A; Starita-Geribaldi, M

    1994-01-01

    Polyacrylamide gel electrophoresis of proteins was studied using a pulsed-current mode. A new "local field" distribution was used to correct the gel patterns and optimize migration. A corrective field was applied at fixed 2 s intervals to a constant field, inducing a complex relaxation mechanism. Calculated variations in the local field directions decreased the electric strain on the gel during the run, with resultant optimum gel structure. The relaxation mechanism was found to enhance the absolute mobility of proteins with shorter running times compared to constant field gel electrophoresis (CFGE) and other pulsed field techniques. The enhancement of molecular mobility was explored by transverse pore gradient gel electrophoresis. Ferguson curves which exhibited a convex shape in CFGE were linearized by the new pulsed-field method named pulsed oscillatory high-performance electrophoresis (POPE).

  2. TiO2-promoted mineralization of organic sunscreens in water suspension and sodium dodecyl sulfate micelles.

    PubMed

    Ricci, Andrea; Chrétien, Michelle N; Maretti, Luca; Scaiano, J C

    2003-05-01

    The photostability of the widely used UVB sunscreen agents 2'-ethylhexyl-2-cyano-3-phenylcinnamate (1), 2-hydroxy-4-methoxybenzophenone (2), octyl salicilate (3), and 2'-ethylhexyl-4-methoxycinnamate (4) has been investigated under UVA irradiation in the absence and presence of TiO2, an inorganic filter commonly employed in combination with organic filters in sunscreen preparations. In the absence of TiO2, 1-3 are photostable and 4 undergoes the expected E-Z isomerization; the presence of TiO2 caused mineralization of the organic filters and, surprisingly, the process is noticeably faster in the presence of surfactant than in sunscreen and water suspensions. The results indicate that in water suspension, mineralization is likely to occur on or near the TiO2 particle surface; when the organic sunscreens are segregated in the micelle core, reactive radicals, produced during TiO2-promoted degradation of the micellar system, may participate in sunscreen degradation. In addition, a pre-fluorescent probe for carbon-centered radical detection, 4-(3-hydroxy-2-methyl-4-quinolineoxy)-2,2,6,6-tetramethylpiperidine-1-oxyl free radical or QT (5), was employed to demonstrate that carbon-centered radicals are evolved during micelle degradation and may participate in the mineralization of sunscreens.

  3. Glossoscolex paulistus extracellular hemoglobin (HbGp) oligomeric dissociation upon interaction with sodium dodecyl sulfate: Isothermal titration calorimetry (ITC).

    PubMed

    Alves, Fernanda Rosa; Carvalho, Francisco Adriano O; Carvalho, José Wilson P; Tabak, Marcel

    2014-10-01

    Annelid erythrocruorins are respiratory proteins with high cooperativity and low autoxidation rates. The giant extracellular hemoglobin of the earthworm, Glossoscolex paulistus (HbGp), has a molecular mass of 3.6 MDa. In this work, isothermal titration calorimetry (ITC), together with DLS and fluorescence emission have been used to investigate the interaction of SDS with the HbGp in the oxy-form, at pH 7.0. Our ITC and DLS results show that addition of SDS induces oxy-HbGp oligomeric dissociation, while a small amount of protein aggregation is observed only by DLS. Moreover, the oligomeric dissociation process is favored at lower protein concentrations. The temperature effect does not influence significantly the interaction of SDS with the hemoglobin, due to the similarities presented by the critical aggregation concentration (cac) and critical micelle concentration (cmc') for the mixtures. The increase of oxy-HbGp concentration leads to a slight variation of the cac values for the SDS-oxy-HbGp mixture, attributed mainly to the noncooperative electrostatic binding of surfactant to protein. However, the cmc' values increase considerably, associated to a more cooperative hydrophobic binding. Complementary pyrene fluorescence emission studies show formation of pre-micellar structures of the mixture already at lower SDS concentrations. This study opens the possibility of the evaluation of the surfactant effect on the hemoglobin stability by ITC, which is made for the first time with this extracellular hemoglobin.

  4. Sulfation pathways in plants.

    PubMed

    Koprivova, Anna; Kopriva, Stanislav

    2016-11-25

    Plants take up sulfur in the form of sulfate. Sulfate is activated to adenosine 5'-phosphosulfate (APS) and reduced to sulfite and then to sulfide when it is assimilated into amino acid cysteine. Alternatively, APS is phosphorylated to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), and sulfate from PAPS is transferred onto diverse metabolites in its oxidized form. Traditionally, these pathways are referred to as primary and secondary sulfate metabolism, respectively. However, the synthesis of PAPS is essential for plants and even its reduced provision leads to dwarfism. Here the current knowledge of enzymes involved in sulfation pathways of plants will be summarized, the similarities and differences between different kingdoms will be highlighted, and major open questions in the research of plant sulfation will be formulated.

  5. Heparan Sulfate Proteoglycans

    PubMed Central

    Sarrazin, Stephane; Lamanna, William C.; Esko, Jeffrey D.

    2011-01-01

    Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of ligands. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions. Here, we discuss changing views on the specificity of protein–heparan sulfate binding and the activity of HSPGs as receptors and coreceptors. Although few in number, heparan sulfate proteoglycans have profound effects at the cellular, tissue, and organismal level. PMID:21690215

  6. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  7. Synthesis and characterization of europium(III) nanoparticles for time-resolved fluoroimmunoassay of prostate-specific antigen

    NASA Astrophysics Data System (ADS)

    Härmä, Harri; Keränen, Anne-Maria; Lövgren, Timo

    2007-02-01

    Recent advances in the fabrication and bioconjugation of nanometre-sized lanthanide(III) chelate particles have led to robust high specific activity labels. This paper describes the synthesis and characterization of lanthanide(III) nanoparticle labels and the use of a nanoparticle in a bioaffinity assay system. Two europium(III) nanoparticles were prepared using an extremely simple, inexpensive and fast agglomeration strategy. A silica-stabilized nanoparticle was synthesized from hydrophobic tris(dibenzoylmethane)-mono(phenanthroline) and tris(dibenzoylmethane)-mono(5-aminophenanthroline) europium(III) chelates in aqueous solution. In addition, a naphthoyl trifluoroacetone:tri-n-octylphosphineoxide:sodium dodecyl sulfate europium(III) complex was agglomerated in water. The particle sizes ranged from 62 to 140 nm in diameter. The silica-stabilized particle was further coated with a monoclonal antibody. The analytical performance of the bioconjugated nanoparticle label was evaluated in a model sandwich immunoassay of prostate-specific antigen. The detection limit of human prostate-specific antigen was 28 ng l-1, 850 fM, in a microtiter plate format using time-resolved fluorometry. The coefficient of variation ranged from 1 to 9%. The novel nanoparticle label improves the specific activity of existing lanthanide(III) nanoparticle labels and simplifies the preparation route. In addition, prepared high-density nanoparticle labels using lanthanide(III) chelates or other specific fluorochromes have potential applications in a number of other fields.

  8. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    PubMed

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  9. Automotive sulfate emission data.

    PubMed Central

    Somers, J H

    1975-01-01

    This paper discusses automotive sulfate emission results obtained by the Office of Mobile Source Air Pollution Control of EPA, General Motors, Ford, Chrysler, and Esso. This work has been directed towards obtaining sulfate emission factors for cars with and without catalyst. While the EPA and Chrysler investigations have found significant sulfate formation in noncatalyst cars, GM, Ford, and Esso have found only trace levels from noncatalyst cars. All of these investigators agree that much higher quantities of sulfate are emitted from catalyst cars. The work done to date shows pelleted catalysts to have much lower sulfate emissions over the low speed-EPA Federal Test Procedures than monolith catalysts. This is probably due to temporary storage of sulfates on the catalyst due to chemical interaction with the alumina pellets. The sulfate compounds are, to a large degree, emitted later under higher speed conditions which result in higher catalyst temperatures which decompose the alumina salt. Future work will be directed towards further elucidation of this storage mechanism as well as determining in detail how factors such as air injection rate and catalyst location affect sulfate emissions. PMID:50932

  10. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to

  11. Secretion of sulfated and nonsulfated forms of parathyroid chromogranin A (secretory protein-I)

    SciTech Connect

    Gorr, S.U.; Cohn, D.V. )

    1990-02-25

    Chromogranin A (secretory protein-I) is an acidic, sulfated glycoprotein found in secretory granules of most endocrine cells but not in exocrine or epithelial cells. Parathyroid chromogranin A is sulfated on tyrosine residues, whereas adrenal chromogranin A appears to be sulfated mainly on oligosaccharide residues. Chromogranin B, on the other hand, is tyrosine-sulfated in the bovine adrenal whereas this protein is absent from the parathyroid. The role of this tissue- or species-specific sulfation of chromogranin is not known. Tyrosine sulfation is a common post-translational modification of proteins in the exocytotic pathway and has been suggested to play a role in the sorting or intracellular transport of secretory proteins. To test this, porcine parathyroid tissue slices were metabolically labeled with 35SO4 and (3H)Lys, and the tissue and incubation medium analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting, and immunoprecipitation with chromogranin A-specific antiserum or by radioimmunoassay for parathormone. Secretion of total and 3H-labeled chromogranin A was about 3- and 7-fold higher, respectively, at 0.5 mM than at 3.0 mM Ca2+, and secretion of 35SO4-labeled chromogranin A was 67-fold higher. This indicates that either sulfated chromogranin A is directed primarily to the Ca2+-regulated pathway or that sulfation occurs following sorting to this pathway. Sodium chlorate (1-10 mM) inhibited sulfation in a dose-dependent manner by up to 95% but it had no effect on the onset or rate of chromogranin A secretion. These data indicate that regulated secretion of parathyroid chromogranin A does not require sulfation of tyrosine residues.

  12. Dodecyl Maltopyranoside Enabled Purification of Active Human GABA Type A Receptors for Deep and Direct Proteomic Sequencing*

    PubMed Central

    Zhang, Xi; Miller, Keith W.

    2015-01-01

    The challenge in high-quality membrane proteomics is all about sample preparation prior to HPLC, and the cell-to-protein step poses a long-standing bottleneck. Traditional protein extraction methods apply ionic or poly-disperse detergents, harsh denaturation, and repeated protein/peptide precipitation/resolubilization afterward, but suffer low yield, low reproducibility, and low sequence coverage. Contrary to attempts to subdue, we resolved this challenge by providing proteins nature-and-activity-promoting conditions throughout preparation. Using 285-kDa hetero-pentameric human GABA type A receptor overexpressed in HEK293 as a model, we describe a n-dodecyl-β-d-maltopyranoside/cholesteryl hemisuccinate (DDM/CHS)-based affinity purification method, that produced active receptors, supported protease activity, and allowed high performance with both in-gel and direct gel-free proteomic analyses—without detergent removal. Unlike conventional belief that detergents must be removed before HPLC MS, the high-purity low-dose nonionic detergent DDM did not interfere with peptides, and obviated removal or desalting. Sonication or dropwise addition of detergent robustly solubilized over 90% of membrane pellets. The purification conditions were comparable to those applied in successful crystallizations of most membrane proteins. These results enabled streamlined proteomics of human synaptic membrane proteins, and more importantly, allowed directly coupling proteomics with crystallography to characterize both static and dynamic structures of membrane proteins in crystallization pipelines. PMID:25473089

  13. [Allergic contact dermatitis due to methoxy PEG-22 dodecyl glycol present in a cosmetic cold cream].

    PubMed

    Lasek-Duriez, A; Castelain, M-C; Modiano, P

    2013-01-01

    We report the case of a girl presenting acute allergic contact dermatitis due to methoxy PEG 22 dodecyl glycol contained in Mustela Cold Cream Nutriprotecteur®. A 6-year-old girl was referred with acute eczema of the face occurring within 12h of applying a new moisturizing cream, Mustela Cold Cream Nutriprotecteur®. Patch tests were performed on the upper back using the Finn Chamber technique with the European standard series and the patient's own cream. Readings were performed after 2 days and the sole positive ++ reaction was associated with Mustela Cold Cream®. Additional patch testing was carried out with the ingredients of the cream, with the sole positive ++ reaction again being to methoxy PEG 22 dodecyl glycol copolymer. The other ingredients were negative. Methoxy PEG 22 dodecyl glycol is a copolymer used in cosmetics as an emulsion stabilizer and viscosity-increasing agent. It is found in 20 cosmetics currently on the market, most of which are prescribed for children. Although it is rare, doctors must be aware of allergic contact dermatitis due to methoxy PEG 22 dodecyl glycol because of the extent of clinical reactions and because it chiefly affects the paediatric population. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Sulfate attack expansion mechanisms

    SciTech Connect

    Müllauer, Wolfram Beddoe, Robin E.; Heinz, Detlef

    2013-10-15

    A specially constructed stress cell was used to measure the stress generated in thin-walled Portland cement mortar cylinders caused by external sulfate attack. The effects of sulfate concentration of the storage solution and C{sub 3}A content of the cement were studied. Changes in mineralogical composition and pore size distribution were investigated by X-ray diffraction and mercury intrusion porosimetry, respectively. Damage is due to the formation of ettringite in small pores (10–50 nm) which generates stresses up to 8 MPa exceeding the tensile strength of the binder matrix. Higher sulfate concentrations and C{sub 3}A contents result in higher stresses. The results can be understood in terms of the effect of crystal surface energy and size on supersaturation and crystal growth pressure.

  15. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  16. Hydrazine/Hydrazine sulfate

    Integrated Risk Information System (IRIS)

    Hydrazine / Hydrazine sulfate ; CASRN 302 - 01 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  17. Aluminum Sulfate 18 Hydrate

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  18. Complexation between Sodium Poly(styrenesulfonate) and Alkyltrimethylammonium Bromides in the Presence of Dodecyl Maltoside.

    PubMed

    Fegyver, Edit; Mészáros, Róbert

    2015-04-23

    In the present paper, the impact of dodecyl maltoside (C12G2) on the association of sodium poly(styrenesulfonate) (PSS) with dodecyl- and hexadecyltrimethylammonium bromides (DTAB and CTAB) was studied. A low amount of nonionic surfactant enhances the binding of the investigated cationic amphiphiles on PSS, reducing the cationic surfactant-to-polyanion ratio needed for charge neutralization and precipitation. This effect is more pronounced for DTAB than for CTAB due to the considerably higher free surfactant concentration of the former cationic amphiphile. The synergistic surfactant binding also affects the nonequilibrium features of PSS/CTAB association via enhancing the kinetically stable concentration range of overcharged polyion/surfactant nanoparticle dispersions. With increasing C12G2 concentration, however, an opposite effect of the uncharged additive dominates. Namely, the CTAB molecules are solubilized excessively into mixed surfactant micelles, which reduces the surface charge of the PSS/CTAB/C12G2 nanoparticles and thus destabilizes their dispersion. At appropriately large nonionic surfactant concentrations, the binding of CTAB is largely reduced, resulting in the redissolution of the precipitate. In contrast, neither the destabilization nor the resolubilization effects of the added dodecyl maltoside were observed for the PSS/DTAB system due to the much lower driving force of DTAB binding compared to CTAB. Our results clearly demonstrate that the alkyl chain length of the ionic amphiphile has a pronounced effect on both the equilibrium and nonequilibrium aspects of polyion/mixed surfactant complexation which might be further exploited in various next generation applications.

  19. Synthesis and properties of dodecyl trehaloside detergents for membrane protein studies.

    PubMed

    Tao, Houchao; Fu, Yu; Thompson, Aaron; Lee, Sung Chang; Mahoney, Nicholas; Stevens, Raymond C; Zhang, Qinghai

    2012-07-31

    Sugar-based detergents, mostly derived from maltose or glucose, prevail in the extraction, solubilization, stabilization, and crystallization of membrane proteins. Inspired by the broad use of trehalose for protecting biological macromolecules and lipid bilayer structures, we synthesized new trehaloside detergents for potential applications in membrane protein research. We devised an efficient synthesis of four dodecyl trehalosides, each with the 12-carbon alkyl chain attached to different hydroxyl groups of trehalose, thus presenting a structurally diverse but related family of detergents. The detergent physical properties, including solubility, hydrophobicity, critical micelle concentration (CMC), and size of micelles, were evaluated and compared with the most popular maltoside analogue, β-D-dodecyl maltoside (DDM), which varied from each other due to distinct molecular geometries and possible polar group interactions in resulting micelles. Crystals of 2-dodecyl trehaloside (2-DDTre) were also obtained in methanol, and the crystal packing revealed multiple H-bonded interactions among adjacent trehalose groups. The few trehaloside detergents were tested for the solubilization and stabilization of the nociceptin/orphanin FQ peptide receptor (ORL1) and MsbA, which belong to the G-protein coupled receptor (GPCR) and ATP-binding cassette transporter families, respectively. Our results demonstrated the utility of trehaloside detergents as membrane protein solubilization reagents with the optimal detergents being protein dependent. Continuing development and investigations of trehaloside detergents are attractive, given their interesting and unique chemical-physical properties and potential interactions with membrane lipids.

  20. Interactions between dodecyl phosphates and hydroxyapatite or tooth enamel: relevance to inhibition of dental erosion.

    PubMed

    Jones, Siân B; Barbour, Michele E; Shellis, R Peter; Rees, Gareth D

    2014-05-01

    Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva.

  1. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    SciTech Connect

    Dallam, R.D.

    1987-03-23

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H/sub 2//sup 35/SO/sub 4/) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables.

  2. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide...

  3. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    SciTech Connect

    Sugumaran, G.; Silbert, J.E.

    1988-04-05

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-(14C)glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo(14C)chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo(14C)chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo(14C) chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo(14C)chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo(14C)chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo(14C)chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo(14C)chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent.

  4. Off limits: sulfate below the sulfate-methane transition

    NASA Astrophysics Data System (ADS)

    Brunner, Benjamin; Arnold, Gail; Røy, Hans; Müller, Inigo; Jørgensen, Bo

    2016-07-01

    One of the most intriguing recent discoveries in biogeochemistry is the ubiquity of cryptic sulfur cycling. From subglacial lakes to marine oxygen minimum zones, and in marine sediments, cryptic sulfur cycling - the simultaneous sulfate consumption and production - has been observed. Though this process does not leave an imprint in the sulfur budget of the ambient environment - thus the term cryptic - it may have a massive impact on other element cycles and fundamentally change our understanding of biogeochemical processes in the subsurface. Classically, the sulfate-methane transition (SMT) in marine sediments is considered to be the boundary that delimits sulfate reduction from methanogenesis as the predominant terminal pathway of organic matter mineralization. Two sediment cores from Aarhus Bay, Denmark reveal the constant presence of sulfate (generally 0.1 to 0.2 mM) below the SMT. The sulfur and oxygen isotope signature of this deep sulfate (34S = 18.9‰, 18O = 7.7‰) was close to the isotope signature of bottom-seawater collected from the sampling site (34S = 19.8‰, 18O = 7.3‰). In one of the cores, oxygen isotope values of sulfate at the transition from the base of the SMT to the deep sulfate pool (18O = 4.5‰ to 6.8‰) were distinctly lighter than the deep sulfate pool. Our findings are consistent with a scenario where sulfate enriched in 34S and 18O is removed at the base of the SMT and replaced with isotopically light sulfate below. Here, we explore scenarios that explain this observation, ranging from sampling artifacts, such as contamination with seawater or auto-oxidation of sulfide - to the potential of sulfate generation in a section of the sediment column where sulfate is expected to be absent which enables reductive sulfur cycling, creating the conditions under which sulfate respiration can persist in the methanic zone.

  5. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    SciTech Connect

    Edwards, I.J.; Wagner, W.D.; Owens, R.T. )

    1990-03-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with (35S)sulfate and (3H)serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in (35S)sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of (3H)serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion.

  6. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells.

    PubMed Central

    Edwards, I. J.; Wagner, W. D.; Owens, R. T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion. Images Figure 6 PMID:2316626

  7. Cooperative alpha-helix formation of beta-lactoglobulin induced by sodium n-alkyl sulfates.

    PubMed

    Chamani, J; Moosavi-Movahedi, A A; Rajabi, O; Gharanfoli, M; Momen-Heravi, M; Hakimelahi, G H; Neamati-Baghsiah, A; Varasteh, A R

    2006-01-01

    It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. beta-Lactoglobulin is a predominantly beta-sheet protein, although it has a markedly high intrinsic preference for alpha-helical structure. The formation of non-native alpha-helical intermediate of beta-lactoglobulin was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS at special condition. The effect of n-alkyl sulfates on the structure of native beta-lactoglobulin at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of non-native alpha-helical intermediate. The addition of various concentrations of n-alkyl sulfates to the native state of beta-lactoglobulin (pH 2) appears to support the stabilized form of non-native alpha-helical intermediate at pH 2. The m values of the intermediate state of beta-lactoglobulin by SOS, SDeS, SDS and STS showed substantial variation. The enhancement of m values as the stability criterion of non-native alpha-helical intermediate state corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the folding reaction of beta-lactoglobulin follows a non-hierarchical mechanism and hydrophobic interactions play important roles in stabilizing the non-native alpha-helical intermediate state.

  8. Preparation of sodium dodecyl sulphate-functionalized activated carbon from Gnetum gnemon shell for dye adsorption

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Yahya, Amri; Sasti, Rilis Akista Tria

    2017-03-01

    Preparation of functionalized activated carbon from Gnetum gnemon shell was investigated. This work aimed to prepare highly active adsorbent for dye adsorption process by carbonization of Gnetum gnemon shell followed by functionalization using sodium dodecyl sulphate (SDS) to form SDS-modified activated carbon (SDS-AC). The study of physicochemical character change was performed by SEM and FTIR analysis while the adsorptivity of the materials was tested in methylene blue adsorption. According to the results, it is found that SDS-AC exhibits the greater adsorptivity compared to AC.

  9. A "liver" antigen associated with avian erythroblastosis: binding by bentonite and precipitation with sodium dodecyl sulphate.

    PubMed Central

    Darcel, C L

    1982-01-01

    The properties of a complement fixing antigen, EbAg, extracted from erythroblastosis-affected chicken livers are described. The antigen in extracts freed of structural protein is strongly bound by bentonite, but not by barium sulphate. Strongly alkaline solutions of sodium dodecyl sulphate are required to release the antigen from bentonite. Acidification of the detergent solution precipitates the active solution precipitates the active protein. Extraction of heme from the acidified detergent precipitate by methyl-ethyl ketone further purifies the antigen. This acid detergent treatment eliminates the need to use bentonite as a purification step. PMID:6280825

  10. Crystal structure of tris-(piperidinium) hydrogen sulfate sulfate.

    PubMed

    Lukianova, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-12-01

    In the title molecular salt, 3C5H12N(+)·HSO4 (-)·SO4 (2-), each cation adopts a chair conformation. In the crystal, the hydrogen sulfate ion is connected to the sulfate ion by a strong O-H⋯O hydrogen bond. The packing also features a number of N-H⋯O hydrogen bonds, which lead to a three-dimensional network structure. The hydrogen sulfate anion accepts four hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to five separate piperidinium cations, forming seven hydrogen bonds.

  11. Quantifying global atmospheric sulfate formation pathways utilizing observations and modeling of the oxygen isotopic composition (Δ17O) of sulfate aerosol (Invited)

    NASA Astrophysics Data System (ADS)

    Alexander, B.

    2010-12-01

    Sulfate is a major component of the atmospheric aerosol and drives the formation of new aerosol particles through nucleation. The implications for scattering of solar radiation and for cloud microphysics represent one of the largest uncertainties in current assessments of climate change. The specific formation pathway of secondary sulfate in the atmosphere has implications for climate, as only sulfate formed through gas-phase oxidation can nucleate new particles under favorable conditions, increasing aerosol number density. Sulfate produced in the aqueous phase is present in larger particles and does not lead to nucleation of new particles. The oxygen isotopic composition (Δ17O = δ17O - 0.52 x δ18O) of sulfate aerosol can be used as a means to quantify various sulfate production mechanisms in the atmosphere. Large-scale models of the atmosphere typically include sulfate production in the gas-phase by the hydroxyl radical (OH) and in cloud droplet by hydrogen peroxide (H2O2) and ozone (O3). Additional reaction pathways are considered minor and therefore neglected. While these models typically reproduce observations of sulfate aerosol concentration to within 20%, SO2 concentrations are overestimated by a factor of two or more. Here, I compare observations of the oxygen isotopic composition of sulfate aerosol collected at the surface at various locations around the world to calculated sulfate Δ17O in a global model. This model-measurement comparison is used to assess the global importance of sulfate production on alkaline sea-salt and dust aerosol, metal catalyzed oxidation by O2 in cloud droplets, and oxidation by halogen oxidizes. I will show how these additional sulfur oxidation pathways influence the global sulfur budget, to what degree they resolve the global model’s bias in SO2 concentrations, and how they influence the contribution of atmospheric sulfate produced in the gas-phase.

  12. Substitution of bovine dentine sialoprotein with chondroitin sulfate glycosaminoglycan chains.

    PubMed

    Sugars, Rachael V; Olsson, Marie-Louise; Waddington, Rachel; Wendel, Mikael

    2006-02-01

    Dentine sialoprotein (DSP) represents 5-8% of all non-collagenous proteins present in the tooth, but, together with dentine phosphoprotein, has been shown to be vital for correct tooth formation. Recently, the existence of a highly glycosylated form of porcine DSP has been reported and it was shown to possess glycosaminoglycan (GAG) chains. The current investigation confirms that this is also the case for bovine DSP and has further characterized these carbohydrates. Dentine sialoprotein was purified from bovine dentine extracts by anion exchange chromatography and identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting, and mass spectroscopy. An increase in molecular mass was observed, from 120 kDa to greater than 250 kDa, with a corresponding rise in anionic strength. Cellulose acetate electrophoresis and western blotting indicated the presence of chondroitin sulfate GAG chains within these dentine fractions. Further examination using sequential digestion with chondroitinase AC and N-glycosidase cleaved the samples first to 95 kDa and then to 80 kDa, respectively, confirming a high level of glycosylation. These results support the classification of bovine DSP as a proteoglycan, and that the carbohydrate substitutions may contribute to the functional properties of DSP.

  13. Ferric sulfates on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1987-01-01

    Evidence is presented for the possible existence of ferric sulfato complexes and hydroxo ferric sulfate minerals in the permafrost of Mars. A sequential combination of ten unique conditions during the cooling history of Mars is suggested which is believed to have generated an environment within Martian permafrost that has stabilized Fe(3+)-SO4(2-)-bearing species. It is argued that minerals belonging to the jarosite and copiapite groups could be present in Martian regolith analyzed in the Viking XRF measurements at Chryse and Utopia, and that maghemite suspected to be coating the Viking magnet arrays is a hydrolysate of dissolved ferric sulfato complexes from exposed Martian permafrost.

  14. Glucosamine and chondroitin sulfate.

    PubMed

    Miller, Karla L; Clegg, Daniel O

    2011-02-01

    Glucosamine and chondroitin sulfate, components of normal cartilage that are marketed as dietary supplements in the United States, have been evaluated for their potential role in the treatment of osteoarthritis. Due to claims of efficacy, increased prevalence of osteoarthritis, and a lack of other effective therapies, there has been substantial interest in using these dietary supplements as therapeutic agents for osteoarthritis. Though pharmacokinetic and bioavailability data are limited, use of these supplements has been evaluated for management of osteoarthritis symptoms and modification of disease progression. Relevant clinical trial efficacy and safety data are reviewed and summarized.

  15. Sulfate scale dissolution

    SciTech Connect

    Morris, R.L.; Paul, J.M.

    1992-01-28

    This patent describes a method for removing barium sulfate scale. It comprises contacting the scale with an aqueous solution having a pH of about 8 to about 14 and consisting essentially of a chelating agent comprising a polyaminopolycarboxylic acid or salt of such an acid in a concentration of 0.1 to 1.0 M, and anions of a monocarboxylic acid selected form mercaptoacetic acid, hydroxyacetic acid, aminoacetic acid, or salicyclic acid in a concentration of 0.1 to 1.0 M and which is soluble in the solution under the selected pH conditions, to dissolve the scale.

  16. Synthesis and Properties of Dodecyl Trehaloside Detergents for Membrane Protein Studies

    PubMed Central

    Tao, Houchao; Fu, Yu; Thompson, Aaron; Lee, Sung Chang; Mahoney, Nicholas; Stevens, Raymond C.; Zhang, Qinghai

    2012-01-01

    Sugar-based detergents, mostly derived from maltose or glucose, prevail in the extraction, solubilization, stabilization and crystallization of membrane proteins. Inspired by the broad use of trehalose for protecting biological macromolecules and lipid bilayer structures, we synthesized new trehaloside detergents for potential applications in membrane protein research. We devised an efficient synthesis of four dodecyl trehalosides, each with the 12-carboned alkyl chain attached to different hydroxyl groups of trehalose, thus presenting a structurally diverse but related family of detergents. The detergent physical properties, including solubility, hydrophobicity, critical micelle concentration (CMC) and size of micelles, were evaluated and compared with the most popular maltoside analog, β- D-dodecylmaltoside (DDM), which varied from each other due to distinct molecular geometries and possible polar group interactions in resulting micelles. Crystals of 2-dodecyl trehaloside (2-DDTre) were also obtained in methanol, and the crystal packing revealed multiple H-bonded interactions among adjacent trehalose groups. The few trehaloside detergents were tested for the solubilization and stabilization of the nociceptin/orphanin FQ peptide receptor (ORL1) and MsbA, which belong to the G-protein coupled receptor (GPCR) and ATP-binding cassette transporter families, respectively. Our results demonstrated the utility of trehaloside detergents as membrane protein solubilization reagents with the optimal detergents being protein dependent. Continuing development and investigations of trehaloside detergents are attractive given their interesting and unique chemical-physical properties and potential interactions with membrane lipids. PMID:22780816

  17. Resolving the Pericenter

    NASA Astrophysics Data System (ADS)

    Wisdom, Jack

    2015-10-01

    The Wisdom-Holman mapping method and its variations have become a mainstay of research in solar system dynamics. But the method is not without its limitations. Rauch & Holman noted that at large eccentricities sufficiently small steps must be taken to resolve the pericenter. In this paper, I explore in more detail what it means to resolve the pericenter.

  18. Chemical analysis of simulated high level waste glasses to support stage III sulfate solubility modeling

    SciTech Connect

    Fox, K. M.

    2016-03-17

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been a limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.

  19. Urinary chondroitin sulfates, heparan sulfate and total sulfated glycosaminoglycans in interstitial cystitis.

    PubMed

    Erickson, D R; Ordille, S; Martin, A; Bhavanandan, V P

    1997-01-01

    We compared urinary glycosaminoglycan levels in patients with interstitial cystitis and healthy controls. Total sulfated glycosaminoglycans assayed by dimethylmethylene blue binding and individual glycosaminoglycans analyzed by cellulose acetate electrophoresis were compared in patients with interstitial cystitis and healthy controls. Also, multiple urine samples were obtained from healthy female controls for 2 months to assess the relationship of urinary glycosaminoglycan and creatinine concentrations, and to determine whether glycosaminoglycan excretion changes during the menstrual cycle. Total sulfated glycosaminoglycan and creatinine concentrations correlated well in random voided samples. Menstrual cycle day did not affect total sulfated glycosaminoglycan levels. Cellulose acetate electrophoresis revealed 3 bands corresponding to chondroitin sulfates, heparan sulfate and acidic glycoprotein. Patients with interstitial cystitis had decreased urinary concentrations of each of these individual components and total sulfated glycosaminoglycans. However, glycosaminoglycan-to-creatinine ratios were similar in interstitial cystitis and control urine. Using these assays total and individual urinary glycosaminoglycan levels normalized to creatinine were not altered in interstitial cystitis.

  20. Sulfated polysaccharides (chondroitin sulfate and carrageenan) plus glucosamine sulfate are potent inhibitors of HIV.

    PubMed

    Konlee, M

    1998-01-01

    Chondroitin sulfate, a fusion inhibitor found in human milk, appears to work by blocking the ability of a virus, such as HIV, to infect a cell. There are questions about whether cow or goat milk can offer the same fusion-inhibiting benefits. One sulfated monosaccharide, glucosamine 6-sulfate, appears to have significant anti-HIV activity. Carrageenan, a seaweed derivative, shows promise as a vaginal microbicide, and should be tested further to determine its effectiveness against HIV transmission.

  1. 21 CFR 184.1315 - Ferrous sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferrous sulfate. 184.1315 Section 184.1315 Food and... Substances Affirmed as GRAS § 184.1315 Ferrous sulfate. (a) Ferrous sulfate heptahydrate (iron (II) sulfate... as pale, bluish-green crystals or granules. Progressive heating of ferrous sulfate heptahydrate...

  2. [Hypothyroidism as the result of drug interaction between ferrous sulfate and levothyroxine].

    PubMed

    Fiaux, E; Kadri, K; Levasseur, C; Le Guillou, C; Chassagne, P

    2010-10-01

    We report a case of drug-drug interaction between ferrous sulfate and l-thyroxin. A 95-year-old woman treated successfully with l-thyroxin for many years received ferrous sulfate for anemia. This association led rapidly to recurrence of hypothyroidism with elevated serum than TSH level which completely resolved after withdrawal of iron therapy. Interaction was confirmed after both drugs were daily administrated separately without recurrence of hypothyroidism.

  3. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS... treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a...

  4. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS... treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a...

  5. Sulfation of von Willebrand factor

    SciTech Connect

    Carew, J.A.; Browning, P.J.; Lynch, D.C. )

    1990-12-15

    von Willebrand factor (vWF) is a multimeric adhesive glycoprotein essential for normal hemostasis. We have discovered that cultured human umbilical vein endothelial cells incorporate inorganic sulfate into vWF. Following immunoisolation and analysis by polyacrylamide or agarose gel electrophoresis, metabolically labeled vWF was found to have incorporated (35S)-sulfate into all secreted multimer species. The time course of incorporation shows that sulfation occurs late in the biosynthesis of vWF, near the point at which multimerization occurs. Quantitative analysis suggests the presence, on average, of one molecule of sulfate per mature vWF subunit. Virtually all the detectable sulfate is released from the mature vWF subunit by treatment with endoglycosidases that remove asparagine-linked carbohydrates. Sulfated carbohydrate was localized first to the N-terminal half of the mature subunit (amino acids 1 through 1,365) by partial proteolytic digestion with protease V8; and subsequently to a smaller fragment within this region (amino acids 273 through 511) by sequential digestions with protease V8 and trypsin. Thus, the carbohydrate at asparagine 384 and/or 468 appears to be the site of sulfate modification. Sodium chlorate, an inhibitor of adenosine triphosphate-sulfurylase, blocks sulfation of vWF without affecting either the ability of vWF to assemble into high molecular weight multimers or the ability of vWF multimers to enter Weible-Palade bodies. The stability of vWF multimers in the presence of an endothelial cell monolayer also was unaffected by the sulfation state. Additionally, we have found that the cleaved propeptide of vWF is sulfated on asparagine-linked carbohydrate.

  6. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Li, Mengmeng; Zhu, Tong; Zhang, Qiang; Zhang, Xiaoye

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO₂) per year. SO₂ is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 μg m⁻³ in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 μg m⁻³ and 7.3 μg m⁻³, respectively. Mineral aerosols led to faster SO₂ oxidation through three pathways. First, more SO₂ was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO₂ reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.

  7. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is

  8. Residual keratan sulfate in chondroitin sulfate formulations for oral administration.

    PubMed

    Pomin, Vitor H; Piquet, Adriana A; Pereira, Mariana S; Mourão, Paulo A S

    2012-10-01

    Chondroitin sulfate is a biomedical glycosaminoglycan (GAG) mostly used as a dietary supplement. We undertook analysis on some formulations of chondroitin sulfates available for oral administration. The analysis was based on agarose-gel electrophoresis, strong anion-exchange chromatography, digestibility with specific GAG lyases, uronic acid content, NMR spectroscopy, and size-exclusion chromatography. Keratan sulfate was detected in batches from shark cartilage, averaging ∼16% of the total GAG. Keratan sulfate is an inert material, and hazardous effects due to its presence in these formulations are unlikely to occur. However, its unexpected high percentage compromises the desired amounts of the real ingredient specified on the label claims, and forewarns the pharmacopeias to update their monographs. The techniques they recommended, especially cellulose acetate electrophoresis, are inefficient in detecting keratan sulfate in chondroitin sulfate formulations. In addition, this finding also alerts the manufacturers for improved isolation procedures as well as the supervisory agencies for better audits. Analysis based on strong anion-exchange chromatography is shown to be more reliable than the methods presently suggested by standard pharmacopeias.

  9. p-Cresyl Sulfate

    PubMed Central

    Gryp, Tessa; Vanholder, Raymond; Vaneechoutte, Mario; Glorieux, Griet

    2017-01-01

    If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden. PMID:28146081

  10. Final report on the safety assessment of sodium cetearyl sulfate and related alkyl sulfates as used in cosmetics.

    PubMed

    Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2010-05-01

    Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.

  11. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS[S

    PubMed Central

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.

    2015-01-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050

  12. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS.

    PubMed

    Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A

    2015-09-01

    Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Influence of 2'-deoxy sugar moiety on excited-state protonation equilibrium of adenine and adenosine with acridine inside SDS micelles: a time-resolved study with quantum chemical calculations.

    PubMed

    Sarangi, Manas Kumar; Bhattacharyya, Dhananjay; Basu, Samita

    2012-02-01

    The protonation dynamics of the DNA base adenine (Ade) and its nucleoside 2'-deoxyadenosine (d-Ade) are investigated by monitoring the deprotonation kinetics of an N-heterocyclic DNA intercalator, acridine (Acr), in the confined environment of sodium dodecyl sulfate (SDS) micelles. Protonation of acridine (AcrH(+)) occurs at the hydrophilic interface and this species remains in dynamic equilibrium with its deprotonated counterpart (Acr) inside the hydrophobic core of SDS micelles. Quenching of the fluorescence of AcrH(+)* at 478 nm is observed after addition of Ade and d-Ade with Stern-Volmer constant (K(SV)) 298 and 75 M(-1), respectively, with a concomitant increment in Acr* at 425 nm. Time-resolved fluorescence studies reveal quenching in the lifetime of AcrH(+)*. The relative amplitude of AcrH(+)* decreases from 0.97 to 0.51 and 0.97 to 0.89 with equimolar addition of Ade and d-Ade, respectively. These observations are explained by excited-state proton transfer (ESPT) from AcrH(+)* to the bases. The reduced K(SV) value and negligible change in the relative amplitudes of AcrH(+)* with d-Ade infer that ESPT is hindered substantially by the presence of a 2'-deoxy sugar unit. Transient time-resolved absorption spectra of Acr reflect that Ade reduces the absorbance of (3)AcrH(+)*; however, d-Ade keeps it unaltered for more than a time delay of 2 μs. The optimized geometries calculated by quantum chemical methods reflect deprotonation of AcrH(+)* with protonation at the N1 position of Ade, while it remains protonated with d-Ade. The hindered ESPT between AcrH(+)* and d-Ade singles out the significance of the 2'-deoxy sugar moiety in controlling the deprotonation kinetics.

  14. Cement composition and sulfate attack

    SciTech Connect

    Shanahan, Natalya; Zayed, Abla . E-mail: zayed@eng.usf.edu

    2007-04-15

    Four cements were used to address the effect of tricalcium silicate content of cement on external sulfate attack in sodium sulfate solution. The selected cements had similar fineness and Bogue-calculated tricalcium aluminate content but variable tricalcium silicates. Durability was assessed using linear expansion and compressive strength. Phases associated with deterioration were examined using scanning electron microscopy and X-ray diffraction. Mineralogical phase content of the as-received cements was studied by X-ray diffraction using two methods: internal standard and Rietveld analysis. The results indicate that phase content of cements determined by X-ray mineralogical analysis correlates better with the mortar performance in sulfate environment than Bogue content. Additionally, it was found that in cements containing triclacium aluminate only in the cubic form, the observed deterioration is affected by tricalcium silicate content. Morphological similarities between hydration products of high tricalcium aluminate and high tricalcium silicate cements exposed to sodium sulfate environment were also observed.

  15. Characterization of cytochrome c3 from the thermophilic sulfate reducer Thermodesulfobacterium commune.

    PubMed Central

    Hatchikian, E C; Papavassiliou, P; Bianco, P; Haladjian, J

    1984-01-01

    A c3 type cytochrome has been purified from the thermophilic, non-spore-forming, sulfate-reducing bacterium Thermodesulfobacterium commune. The purified protein was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A pI of 6.83 was observed. The molecular weight of the cytochrome was estimated to be ca. 13,000 from both gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hemoprotein exhibited absorption maxima at 530, 408.5, and 351 nm in the oxidized form and 551.5 (alpha band), 522.5 (beta band), and 418.5 nm (gamma band) in the reduced form. The extinction coefficients of T. commune cytochrome c3 were 130,000, 74,120, and 975,000 M-1 cm-1 at 551.5, 522.5, and 418.5 nm, respectively. It contains four hemes per molecule, on the basis of both the iron estimation and the extinction coefficient value of its pyridine hemochrome. The amino acid composition showed the presence of eight cysteine residues involved in heme binding. T. commune cytochrome c3 had low threonine, serine, and glycine contents and high glutamic acid and hydrophobic residue contents. The electrochemical study of T. commune cytochrome c3 by cyclic voltammetry and differential pulse polarography has shown that the cytochrome system behaves like a reversible system. Four redox potential values at Eh1 = -0.140 +/- 0.010 V, Eh2 = Eh3 = Eh4 = -0.280 +/- 0.010 V have been determined. T. commune cytochrome c3, which acts as the physiological electron carrier of hydrogenase, is similar in most respects to the multiheme low-potential cytochrome c3 which is characteristic of the genus Desulfovibrio. PMID:6090384

  16. Indoxyl sulfate induces nephrovascular senescence.

    PubMed

    Niwa, Toshimitsu; Shimizu, Hidehisa

    2012-01-01

    Indoxyl sulfate is markedly accumulated in the serum of chronic kidney disease (CKD) patients. The oral sorbent AST-120 reduces serum levels of indoxyl sulfate in CKD patients by adsorbing indole, a precursor of indoxyl sulfate, in the intestine. Indoxyl sulfate is taken up by proximal tubular cells through organic anion transporters (OAT1, OAT3), and it induces reactive oxygen species (ROS) with impairment of cellular antioxidative system. Indoxyl sulfate stimulates progression of CKD by increasing renal expression of profibrotic cytokines such as transforming growth factor beta 1. Further, it promotes the expression of p53 by ROS-induced activation of nuclear factor kappa B, thereby accelerating senescence of proximal tubular cells with progression of CKD. Administration of indoxyl sulfate to hypertensive rats reduces renal expression of Klotho and promotes cell senescence, with expression of senescence-associated beta-galactosidase, p53, p21, p16, and retinoblastoma protein, accompanied by kidney fibrosis. Indoxyl sulfate downregulates Klotho expression in the kidneys through production of ROS and activation of nuclear factor kappa B in proximal tubular cells. It promotes cell senescence, with expression of senescence-associated beta-galactosidase, p53, p21, p16, and retinoblastoma protein, in the aorta of hypertensive rats. It also promotes aortic calcification and aortic wall thickening in hypertensive rats with expression of osteoblast-specific proteins, induces ROS in vascular smooth muscle cells and vascular endothelial cells, stimulates proliferation and osteoblastic transdifferentiation of vascular smooth muscle cells, and inhibits viability and nitric oxide production of vascular endothelial cells. Thus, indoxyl sulfate accelerates the progression of not only CKD but also of cardiovascular disease by inducing nephrovascular cell senescence. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  17. In defense of magnesium sulfate.

    PubMed

    Elliott, John P; Lewis, David F; Morrison, John C; Garite, Thomas J

    2009-06-01

    Magnesium sulfate has been used by obstetricians for more than 25 years to treat preterm labor. Magnesium sulfate is effective in delaying delivery for at least 48 hours in patients with preterm labor when used in higher dosages. There do not seem to be any harmful effects of the drug on the fetus, and indeed there is a neuroprotective effect in reducing the incidence of cerebral palsy in premature newborns weighing less than 1,500 g.

  18. Evaluation of antioxidant activities and chemical analysis of sulfated chitosan from Sepia prashadi.

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annaian

    2017-06-01

    The chitin and chitosan of S. prashadi was prepared through demineralization, deproteinzation, deacetylation process and sulfation were carried by chlorosulfonic acid in N,N-dimethylformamide. The sulfate content in chitosan was found to be 18.9%. The carbon, hydrogen and nitrogen composition of the sulfated chitosan were recorded 39.09%, 6.95% and 6.58% respectively. The structural analysis was done by using FT-IR and NMR spectroscopy technique. The DSC curves of sulfated chitosan showed a large endothermic peak resolved with To value of 54.57°C and TP value of 97.46°C. The morphology of sulfated chitin and sulfated chitosan were studied by SEM. The Further in vitro antioxidant activity of sulfated chitosan was screened by scavenging activity of superoxide radical assay, hydroxyl radical scavenging assay, metal-ion chelating effect and reducing power. Its anticoagulant activity was tested for human plasma with respect to Activated Partial Thromboplastin Time (APTT) and Prothrombin Time (PT). Results prove that sulfated chitosan has potent antioxidant and anticoagulant activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library.

    PubMed

    Xu, Chongxin; Liu, Xiaoqin; Zhang, Cunzheng; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Hu, Xiaodan; Lin, Manman; Liu, Xianjin

    2017-02-01

    Cry1Ie toxin was an insect-resistant protein used in genetically modified crops (GMC). In this study, a large human VH gene nanobodies phage displayed library was employed to select anti-Cry1Ie toxin antibody by affinity panning. After 5 rounds of panning, total 12 positive monoclonal phage particles were obtained. One of the identified positive phage nanobody was expressed in E.coli BL21 and the purified protein was indicated as a molecular mass of approximately 20 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Then a sensitive indirect competitive time-resolved fluoroimmunoassay (IC-TRFIA) was established for detection of Cry1Ie toxin by the purified protein. The working range of detection for Cry1Ie toxin standards in the IC-TRFIA were 0.08-6.44 ng mL(-1) and the medium inhibition of control (IC50) was 0.73 ng mL(-1). It showed a weak cross-reactivity with Cry1Ab toxin (at 5.6%), but did not recognize Cry1B, Cry1C, Cry1F, and Cry2A toxins (were <0.1%). The average recoveries of Cry1Ie toxin from respectively spiked in rice, corn and soil samples were in the range of 83.5%-96.6% and with a coefficient of variation (CV) among 2.0%-8.6%. These results showed the IC-TRFIA was promising for detection of Cry1Ie toxin in agricultural and environmental samples.

  20. Sulfate decomposition by bacterial leaching

    SciTech Connect

    Deveci, N.; Delaloglu, C.G.

    1995-04-01

    Sulfate disposal is the main problem of many industrial effluents, such as excess sulfuric acid, gypsum, coal desulfurization byproducts, acid-mine waters, and general metallurgical effluents. It has been established that sulfate present in wastes can be converted to elemental sulfur by bacterial mutualism. This study presents the results of an investigation of the industrial feasibility of utilizing a biological system capable of converting hydrous calcium sulfate (gypsum) to elemental sulfur. Gypsum, which was used in this study, is a byproduct of the fertilizer industry. The biological system is referred to as a bacterial mutualism, and involves Desulfovibrio desulfuricans for sulfate conversion and Chlorobium thiosulfatophilum for hydrogen sulfide conversion. Bacterial mutualism and utilization of sulfate were investigated by means of a two-stage anaerobic system. In the first stage, a gas purge system was used for sulfate conversion to sulfide, and it was found that maximum conversion is 34%. In the second stage, a static culture system was used for sulfide conversion to sulfur with a conversion of 92%. 14 refs., 5 tabs.

  1. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a purity...

  2. 21 CFR 184.1307 - Ferric sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Substances Affirmed as GRAS § 184.1307 Ferric sulfate. (a) Ferric sulfate (iron (III) sulfate, Fe2(SO4)3 CAS Reg. No. 10028-22-5) is a yellow substance that may be prepared by oxidizing iron (II) sulfate or by treating ferric oxide or ferric hydroxide with sulfuric acid. (b) The ingredient must be of a purity...

  3. Application of microchip electrophoresis sodium dodecyl sulfate for the evaluation of change of degradation species of therapeutic antibodies in stability testing.

    PubMed

    Yagi, Yuki; Kakehi, Kazuaki; Hayakawa, Takao; Suzuki, Shigeo

    2014-01-01

    We evaluated the performance of a commercial microchip electrophoresis instrument (LabChip(®) GXII) for the evaluation of change of degradation species of therapeutic antibodies in stability testing. This system requires a sample volume of only 5 μg, and indicates fine resolution of size variant species such as light chain, heavy chain, non-glycosylated heavy chain and various degradation species. Precision and accuracy were high; the intermediate precision of 18 determinations was only 2.1% or less as RSD and recoveries ranged from 97.8 to 103.0% for major species as heavy chain, light chain and intact molecule of a therapeutic antibody. The applicability of this method was demonstrated by applying the method for the analysis of heat-degraded products of three pharmaceutical antibodies. Though some fragment peaks commonly appeared and increased according to temperature regardless of the source of preparations, one of them indicated specific peaks implying the cleavage of the peptide chain of the heavy chain. We also compared the performance of the method with those using conventional capillary-based SDS electrophoresis. Although the absolute purity values expressed as peak area % were different for the two methods, probably due to the difference in the detection methods, similar quality profiles were obtained within 40 s by microchip-based SDS electrophoresis. In addition, the degradation manner of three marketed antibodies depending on temperature was almost the same for the two methods. At the first stage in the development of manufacturing antibody pharmaceuticals, various factors including cell selection, cell cultivation, and formulation development should be evaluated using limited sample amounts. The stability testing using microchip-based electrophoresis seems suitable for these purposes.

  4. Phosphohydrolase activity of the isolated, brush-border membrane of Hymenolepis diminuta (Cestoda) following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis.

    PubMed

    Pappas, P W

    1980-12-01

    Following electrophoresis of isolated, brush-border membranes of Hymenolepis diminuta on SDS-polyacrylamide gels, three distinct areas of alpha-naphthyl phosphate (NP) hydrolysis were detected; these corresponded to proteins with molecular weights of 106,800, 172,700, and greater than 340,000 Daltons. Hydrolysis of NP was inhibited by adenosine triphosphate, adenosine;5'-monophosphate, p-nitrophenyl-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-diphosphate, molybdate, ethylenediaminetetraacetate (EDTA), and ethyleneglycol-bis-(beta-amino-ethyl)-N,N'-tetraacetate (EGTA), but not by fluoride. Inhibition of NP hydrolysis by EDTA was relieved in the presence of Mg++ or Ca++. Heating the isolated, brush-border membrane in the presence of SDS for 5 min at 95 C destroyed all enzymatic activity. These characteristics indicated that the enzyme(s) responsible for NP hydrolysis (following separation of membrane proteins by SDS-polyacrylamide gel electrophoresis) were the same enzymes responsible for the phosphohydrolase activity associated with intact and solubilized, brush-border membrane preparations of H. diminuta.

  5. Interfacial and Micellization Behaviors of Binary and Ternary Mixtures of Amphiphiles (Tween-20, Brij-35, and Sodium Dodecyl Sulfate) in Aqueous Medium.

    PubMed

    Ghosh; Moulik

    1998-12-15

    The formation of micelles of Tween-20 and Brij-35 as well as of SDS, Tween-20, and Brij-35 mixed in different proportions in aqueous medium has been physicochemically investigated. The critical micellar concentration (CMC), micellar aggregation number, counterion binding by micelles, micellar polarity, free energies of micellization and interfacial adsorption, and entropy of micellization have been evaluated by conductometric, tensiometric, and fluorimetric measurements. The solution composition has been found to have a complex say on the measured physicochemical parameters. The enthalpies of micellization of both Tween-20 + Brij-35 and SDS + Tween-20 + Brij-35 mixed surfactant systems have been found to be negligibly small. Attempts to understand the properties of mixed micelles (composition, mutual synergism, component activity coefficients, and CMC) have been made with the help of the propositions of Clint, Rubingh, and Rubingh and Holland. The mixed binary and ternary systems can be adequately described by these theories. Copyright 1998 Academic Press.

  6. Human Salivary Aldehyde Dehydrogenase: Purification, Kinetic Characterization and Effect of Ethanol, Hydrogen Peroxide and Sodium Dodecyl Sulfate on the Activity of the Enzyme.

    PubMed

    Alam, Md Fazle; Laskar, Amaj Ahmed; Choudhary, Hadi Hasan; Younus, Hina

    2016-09-01

    Human salivary aldehyde dehydrogenase (hsALDH) enzyme appears to be the first line of defense in the body against exogenous toxic aldehydes. However till date much work has not been done on this important member of the ALDH family. In this study, we have purified hsALDH to homogeneity by diethylaminoethyl-cellulose (DEAE-cellulose) ion-exchange chromatography in a single step. The molecular mass of the homodimeric enzyme was determined to be approximately 108 kDa. Four aromatic substrates; benzaldehyde, cinnamaldehyde, 2-naphthaldehyde and 6-methoxy-2-naphthaldehyde were used for determining the activity of pure hsALDH. K m values for these substrates were calculated to be 147.7, 5.31, 0.71 and 3.31 μM, respectively. The best substrates were found to be cinnamaldehyde and 2-naphthaldehyde since they exhibited high V max /K m values. 6-methoxy-2-naphthaldehyde substrate was used for further kinetic characterization of pure hsALDH. The pH and temperature optima of hsALDH were measured to be pH 8 and 45 °C, respectively. The pure enzyme is highly unstable at high temperatures. Ethanol, hydrogen peroxide and SDS activate hsALDH, therefore it is safe and beneficial to include them in mouthwashes and toothpastes in low concentrations.

  7. Fluorescent staining of glycoproteins in sodium dodecyl sulfate polyacrylamide gels by 4H-[1]-benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide.

    PubMed

    Zhu, Zhongxin; Zhou, Xuan; Wang, Yang; Chi, Lisha; Ruan, Dandan; Xuan, Yuanhu; Cong, Weitao; Jin, Litai

    2014-06-07

    A fluorescent detection method for glycoproteins in SDS-PAGE by using 4H-[1]-benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide (BH) was developed in this study. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be specifically detected by the BH staining method, which is twofold more sensitive than that of the most commonly used Pro-Q Emerald 488 glycoprotein stain. Furthermore, the specificity of the newly developed stain for glycoproteins was demonstrated by 1-D and 2-D SDS-PAGE, deglycosylation, glycoprotein affinity enrichment and LC-MS/MS, respectively. According to the results, it is concluded that BH stain may provide new choices for convenient, sensitive, specific and economic visualization of gel-separated glycoproteins.

  8. Sodium dodecyl benzene sulfonate-assisted synthesis through a hydrothermal reaction

    SciTech Connect

    Sobhani, Azam; Salavati-Niasari, Masoud

    2012-08-15

    Graphical abstract: Reaction of a SeCl{sub 4} aqueous solution with a NiCl{sub 2}·6H{sub 2}O aqueous solution in presence of sodium dodecyl benzene sulfonate (SDBS) as capping agent and hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant, produces nanosized nickel selenide through a hydrothermal method. The effect of temperature, reaction time and amounts of reductant on the morphology, particle sizes of NiSe nanostructures has been investigated. Highlights: ► NiSe nanostructures were synthesized by hydrothermal method. ► A novel Se source was used to synthesize NiSe. ► SDBS as capping agent plays a crucial role on the morphology of products. ► A mixture of Ni{sub 3}Se{sub 2} and NiSe was prepared in the presence of 2 ml hydrazine. ► A pure phase of NiSe was prepared in the presence of 4 or 6 ml hydrazine. -- Abstract: The effects of the anionic surfactant on the morphology, size and crystallization of NiSe precipitated from NiCl{sub 2}·6H{sub 2}O and SeCl{sub 4} in presence of hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant were investigated. The products have been successfully synthesized in presence of sodium dodecyl benzene sulfonate (SDBS) as surfactant via an improved hydrothermal route. A variety of synthesis parameters, such as reaction time and temperature, capping agent and amount of reducing agent have a significant effect on the particle size, phase purity and morphology of the obtained products. The sample size became bigger with decreasing reaction temperature and increasing reaction time. In the presence of 2 ml hydrazine, the samples were found to be the mixture of Ni{sub 3}Se{sub 2} and NiSe. With increasing the reaction time and amount of hydrazine a pure phase of hexagonal NiSe was obtained. X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images indicate phase, particle size and morphology of the products. Chemical composition and purity of the products were

  9. Stability of sulfate complexes of electronically excited uranyl

    SciTech Connect

    Ostakhov, S.S.; Kazakov, V.P.; Afonichev, D.D.

    1995-11-01

    The complex formation of electronically excited uranyl ions with SO{sub 4}{sup 2-}anions in 0.1 M aqueous HClO{sub 4} has been studied by time-resolved luminescence spectroscopy. The stability constants of uranyl sulfate complexes (UO{sub 2}SO{sub 4}) (K=870 1 mol{sup -1}) and [UO{sub 2}(SO{sub 4}){sub 2}{sup 2-}](K=47000 1 mol{sup -1}) in excited state have been determined; they are more than an order of magnitude greater than those reported for complex formation of uranyl ions in the ground state. The complex formation of uranyl with sulfate ions is accompanied by the increase of the quantum yield of the uranyl lumenescence. The maxima of luminescence and absorption bands of uranyl ions are shifted with increasing the total concentration of SO{sub 4}{sup 2-} in solution, which supports the data obtained. The shift of the maxima of luminescence bands is observed at a sulfate concentration that is considerably lower than that causing the same shift of the maxima of the absorption bands. Such effect is consistent with the calculated stability constants of sulfate complexes of excited uranyl ions.

  10. Study of protein-probe interaction and protective action of surfactant sodium dodecyl sulphate in urea-denatured HSA using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid.

    PubMed

    Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil

    2009-03-01

    We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M.

  11. Infrared spectroscopic studies of sodium dodecyl sulphate permeation and interaction with stratum corneum lipids in skin.

    PubMed

    Saad, P; Flach, C R; Walters, R M; Mendelsohn, R

    2012-02-01

    The barrier function of skin is primarily provided by the lamellar lipid matrix of the stratum corneum (SC), which has been shown in previous infrared (IR) and related studies to consist predominantly of ordered lipids packed in orthorhombic and hexagonal domains. In the current work, we investigate the effects of the anionic surfactant, sodium dodecyl sulphate (SDS), on SC lipid packing and phase behaviour, using FT-IR spectroscopy. The use of acyl chain perdeuterated SDS allows unequivocal spectroscopic detection of both endogenous lipid and exogenous material in intact tissue. IR spectra were acquired as a function of temperature from isolated human SC exposed to SDS for various incubation periods at 34°C. SDS is found to enter the SC and is observed to be in a more ordered state in the SC than in solution, indicating that the SDS interacts with the ordered SC lipids. The results reveal that SDS reduces the amount of orthorhombic phase in the SC and increases the amount of hexagonally packed lipid at physiologically relevant temperatures. In addition, a small decrease in the lipid T(m) (acyl chain melting temperature) is observed. Furthermore, these SDS-induced changes were found to be strongly dependent on the time of exposure. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Characterization of a sodium dodecyl sulphate-degrading Pseudomonas sp. strain DRY15 from Antarctic soil.

    PubMed

    Halmi, M I E; Hussin, W S W; Aqlima, A; Syed, M A; Ruberto, L; MacCormack, W P; Shukor, M Y

    2013-11-01

    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.

  13. Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite.

    PubMed

    Bouraada, Mohamed; Lafjah, Mama; Ouali, Mohand Said; de Menorval, Louis Charles

    2008-05-30

    Dodecylsulfate- and dodecyl benzene sulfonate-hydrotalcites were prepared by calcination-rehydratation method. The surfactants intercalation in the interlayer space of hydrotalcite were checked by PXRD and FTIR spectroscopy where the resulting materials were found to be similar to those reported in the literature and were used to remove a basic dye (safranine) from aqueous solutions. The sorption kinetics data fitted the pseudo second order model. The isotherms were established and the parameters calculated. The sorption data fitted the Langmuir model with good values of the determination coefficient. The thermodynamic parameters calculated from Van't Hoff plots gave a low value of Delta G degrees (<-20 kJ mol(-1)) indicating a spontaneous physisorption process. Two regeneration cycles were processed by acetone extraction leading to the same removal capacity of the obtained materials as the original surfactant-intercalated hydrotalcites. The UV-vis spectra of the recovered extracts were similar to the spectrum of safranine, which means that the dye was recovered without any modification.

  14. Denaturation and intermediates study of two sturgeon hemoglobins by n-dodecyl trimethylammonium bromide

    PubMed Central

    Ariaeenejad, Shohreh; Habibi-Rezaei, Mehran; Kavousi, Kaveh; Jamili, Shahla; Fatemi, Mohammad Reza; Hong, Jun; Poursasan, Najmeh; Sheibani, Nader; Moosavi-Movahedi, Ali. A.

    2013-01-01

    Varieties of hemoglobin (Hb) forms exist in fish, which are usually well adapted to the different ecological conditions or various habitats. In the current study, Hbs from two Sturgeon species of the Southern Caspian Sea Basin were purified and studied upon interaction with n-dodecyl trimethylammonium bromide (DTAB; as a cationic surfactant) by various methods including UV-visible absorption, dynamic light scattering (DLS), and ANS fluorescence spectrophotometry. The chemometric analysis of Hbs was investigated upon interaction with DTAB under titration, using UV-visible absorption spectra. The chemometric resolution techniques were used to determine the number of the components and mole fraction of the oxidized Hbs. These results provided the evidence for the existence of three different molecular components including native (N), intermediate (I) and denatured (D) in sturgeon Hbs. According to the distribution of intermediates, which were broadened in a range of DTAB concentration, the aggregation states, DLS experiments, and thermal stability (Tm obtained by differential scanning calorimetry (DSC)), the Acipenser stellatus Hb was more stable compared to Acipenser persicus Hb. These results demonstrate a significant relationship between the stability of fish Hbs and the habitat depth requirements. PMID:23142155

  15. In vitro metabolism of the mammalian soluble epoxide hydrolase inhibitor, 1-cyclohexyl-3-dodecyl-urea.

    PubMed

    Watanabe, Takaho; Morisseau, Christophe; Newman, John W; Hammock, Bruce D

    2003-07-01

    The metabolism of the soluble epoxide hydrolase (sEH) inhibitor, 1-cyclohexyl-3-dodecyl-urea (CDU), was studied in rat and human hepatic microsomes. The microsomal metabolism of CDU enhanced sEH inhibition potency of the reaction mixture and resulted in the formation of several metabolites. During the course of this study, a sensitive and specific high-performance liquid chromatography with tandem mass spectrometry analytical method was developed to investigate simultaneously the production of these metabolites. In both rat and human hepatic microsomes, CDU was ultimately transformed into the corresponding omega-carboxylate; however, the rodent tissue appeared to perform this transformation more rapidly. After a 60-min incubation in rat hepatic microsomes, the percentage of residual CDU, the omega-carboxylate, and the intermediary omega-hydroxyl were about 20%, 20%, and 50%, respectively. Carbon monoxide inhibited the metabolism of CDU by rat hepatic microsomes, suggesting that the initial step is catalyzed by cytochrome P450. Further metabolism was enhanced by the addition of NAD, suggesting that dehydrogenases are associated with intermediate metabolic steps. Regardless, the ultimate product of microsomal metabolism, 12-(3-cyclohexyl-ureido)-dodecanoic acid, is also an excellent sEH inhibitor with several hundred-fold higher solubility, supporting the hypothesis that CDU has prodrug characteristics. These findings will facilitate the rational design and optimization of sEH inhibitors with better physical properties and improved metabolic stability.

  16. Sensitive detection of protein-lipid interaction change on bacteriorhodopsin using dodecyl β-D-maltoside.

    PubMed

    Sasaki, Takanori; Demura, Makoto; Kato, Noritaka; Mukai, Yuri

    2011-03-29

    A light-driven proton pump bacteriorhodopsin (bR) forms a two-dimensional hexagonal lattice with about 10 archaeal lipids per monomer bR on purple membrane (PM) of Halobacterium salinarum. In this study, we found that the weakening of the bR-lipid interaction on PM by addition of alcohol can be detected as the significant increase of protein solubility in a nonionic detergent, dodecyl β-D-maltoside (DDM). The protein solubility in DDM was also increased by bR-lipid interaction change accompanied by structural change of the apoprotein after retinal removal and was about 7 times higher in the case of completely bleached membrane than that of intact PM. Interestingly, the cyclic and milliseconds order of structural change of bR under light irradiation also led to increasing the protein solubility and had a characteristic light intensity dependence with a phase transition. These results indicate that there is a photointermediate in which bR-lipid interaction has been changed by its dynamic structural change. Because partial delipidation of PM by CHAPS gave minor influence for the change of the protein solubility compared to intact PM in both dark and light conditions, it is suggested that specific interactions of bR with some lipids which remain on PM even after delipidation treatment have a key role for the change of solubility in DDM induced by alcohol binding, ligand release, and photon absorption on bR.

  17. Interaction of 1-dodecyl-azacycloheptan-2-one with mouse stratum corneum.

    PubMed

    Zhou, Xueqin; Xu, Jing; Yao, Kangde; Liu, Dongzhi; Wang, Lei; Wang, Xueyan; Yang, Xinjian; Liu, Yun; Fang, Yaqin

    2005-01-01

    The interactions of 1-dodecyl-azacycloheptan-2-one (Azone), a penetration enhancer, with mouse skin were analyzed by fluorescence microscopy, solid-state 13C-CP/MAS-NMR spectroscopy and Attenuated Total Reflectance Fourier-transform infrared (ATR-FT-IR) spectroscopy. Ferulic acid was employed as fluorescent probe to observe the delivery pathway in the stratum corneum (SC) after treatment with Azone. Results suggested that the interaction between Azone and the SC occurs in the lipid domains as well as the protein domains. FT-IR measurements show that treatment with Azone results in significant shifts toward larger wavenumbers at v(as)CH2 and v(s)CH2, indicating an increased gauche conformational isomer content of lipid CH2. Further, a decrease of (13C)T1 values and a shift of the SC protein amide-II band to a short wavenumber were found when the SC was pretreated with Azone. It is concluded that Azone can partially convert the SC protein from an alpha-helix conformation to a beta-sheet conformation and loosen the aggregating SC keratins at room temperature.

  18. Development and characterisation of a low-concentration sodium dodecyl sulphate decellularised porcine dermis.

    PubMed

    Helliwell, Jack A; Thomas, Daniel S; Papathanasiou, Vaia; Homer-Vanniasinkam, Shervanthi; Desai, Amisha; Jennings, Louise M; Rooney, Paul; Kearney, John N; Ingham, Eileen

    2017-01-01

    The aim of this study was to adapt a proprietary decellularisation process for human dermis for use with porcine skin. Porcine skin was subject to: sodium chloride (1 M) to detach the epidermis, trypsin paste to remove hair follicles, peracetic acid (0.1% v/v) disinfection, washed in hypotonic buffer and 0.1% (w/v) sodium dodecyl sulphate in the presence of proteinase inhibitors followed by nuclease treatment. Cellular porcine skin, decellularised porcine and human dermis were compared using histology, immunohistochemistry, GSL-1 lectin (alpha-gal epitope) staining, biochemical assays, uniaxial tensile and in vitro cytotoxicity tests. There was no microscopic evidence of cells in decellularised porcine dermis. DNA content was reduced by 98.2% compared to cellular porcine skin. There were no significant differences in the biomechanical parameters studied or evidence of cytotoxicity. The decellularised porcine dermis retained residual alpha-gal epitope. Basement membrane collagen IV immunostaining was lost following decellularisation; however, laminin staining was retained.

  19. Sodium dodecyl sulphate (SDS) induced changes in propensity and kinetics of α-lactalbumin fibrillation.

    PubMed

    Kumar, E Kiran; Qumar, Shamsul; Prabhu, N Prakash

    2015-11-01

    Understanding surfactants induced changes on protein folding, aggregation, and fibrillation has a lot of implications in their laboratory and industrial applications. The effect of an anionic surfactant, sodium dodecyl sulphate (SDS), on fibrillation of an acidic protein α-lactalbumin (α-LA) at neutral pH condition was investigated. SDS at lower concentrations increased the lag time by nearly two-fold whereas the fibril elongation rate was not significantly altered. At the concentrations above 0.2mM, SDS lengthened the lag time by many-fold (∼60), but fibril elongation was accelerated by 3-6 fold. At the concentrations above 2mM, SDS inhibited α-LA fibrillation and led it to the formation of amorphous aggregates. These results were compared with the effect of SDS on the fibrillation of lysozyme, a basic protein. Though fibril inhibition was observed on both the proteins at the micellar concentrations of SDS, there were differences in the effect on lag time and elongation rate at the lower concentrations of SDS. This suggests that the inhibition of protein fibrillation by SDS-micelles might be a common mechanism irrespective of the surface charges on protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING

    SciTech Connect

    Fox, K.; Marra, J.

    2014-08-14

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations

  1. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.

    PubMed

    Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan

    2016-12-01

    Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.

  2. Characterization of physiochemical and biological properties of an insulin/lauryl sulfate complex formed by hydrophobic ion pairing.

    PubMed

    Dai, Wei-Guo; Dong, Liang C

    2007-05-04

    An insulin/lauryl sulfate complex was prepared by hydrophobic ion pairing (HIP). The physiochemical and biological properties of the HIP complex were characterized using octanol/water partition measurement, isothermal titration calorimetry (ITC), ultraviolet-circular dichroism (UV-CD) and Fourier transform infrared spectroscopy (FTIR). Sodium dodecyl sulfate (SDS) bound to the insulin in a stoichiometric manner. The formed complex exhibited lipophilicity, and its insulin retained its native structure integrity. The in vivo bioactivity of the complex insulin was evaluated in rats by monitoring the plasma glucose level after intravenous (i.v.) injection, and the glucose level was compared with that for free insulin. The pharmacodynamic study result in rats showed that the complex insulin had in vivo bioactivity comparable to free insulin.

  3. Sulfate-rich Archean Oceans

    NASA Astrophysics Data System (ADS)

    Brainard, J. L.; Choney, A. P.; Ohmoto, H.

    2012-12-01

    There is a widely held belief that prior to 2.4 Ga, the Archean oceans and atmosphere were reducing, and therefore sulfate poor (concentrations <0.1 mmol). However, there is mounting evidence from diverse rock types of Archean ages that sulfate concentrations were likely similar to those in the modern ocean (~28 mmol). In this study we demonstrate that in different lithologies, representing a wide range of marine environments, there is ubiquitous evidence for abundant seawater sulfate. One of the more apparent lines of evidence for sulfate rich Archean waters are bedded barite (BaSO4) deposits, such as those in the ~3.4 Ga Fig Tree Group, South Africa and ~3.5 Ga Dresser Formation, Western Australia (WA). These deposits are thick (>100 m), widely distributed (> km2), and contain only minor amounts of sulfides. These barite beds may have developed from reactions between Ba-rich hydrothermal fluids and evaporate bodies. Simple mass balance calculations suggest that the sulfate contents of the pre-evaporitic seawater must have been greater than ~1 mM. Some researchers have suggested that the SO4 for these beds was derived from the hydrolysis of SO2-rich magmatic fluids. However, this was unlikely as the reaction, 4SO2 + 4H2O → 3H2SO4 + H2S would have produced large amounts of sulfide, as well as sulfate minerals. Many Archean-aged volcanogenic massive sulfide (VMS) deposits, much like those of the younger ages, record evidence for abundant seawater sulfate. As VMS deposits are most likely formed by submarine hydrothermal fluids that developed from seawater circulating through the seafloor rock, much of the seawater sulfate is reduced to from sulfides at depths. However, some residual sulfate in the hydrothermal fluids, with or without the addition of sulfate from the local seawater, can form sulfate minerals such as barite at near the seafloor. The d34S relationships between barites and pyrites in the Archean VMS deposits are similar to those of the younger VMS

  4. Methods of producing sulfate salts of cations from heteroatomic compounds and dialkyl sulfates and uses thereof

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-09-29

    Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.

  5. Bioengineered heparins and heparan sulfates.

    PubMed

    Fu, Li; Suflita, Matthew; Linhardt, Robert J

    2016-02-01

    Heparin and heparan sulfates are closely related linear anionic polysaccharides, called glycosaminoglycans, which exhibit a number of important biological and pharmacological activities. These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of animal cells. While heparan sulfate is a widely distributed membrane and extracellular glycosaminoglycan, heparin is found primarily intracellularly in the granules of mast cells. While heparin has historically received most of the scientific attention for its anticoagulant activity, interest has steadily grown in the multi-faceted role heparan sulfate plays in normal and pathophysiology. The chemical synthesis of these glycosaminoglycans is largely precluded by their structural complexity. Today, we depend on livestock animal tissues for the isolation and the annual commercial production of hundred ton quantities of heparin used in the manufacture of anticoagulant drugs and medical device coatings. The variability of animal-sourced heparin and heparan sulfates, their inherent impurities, the limited availability of source tissues, the poor control of these source materials and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans, driven by both therapeutic applications and as probes to study their natural functions. This review focuses on the complex biology of these glycosaminoglycans in human health and disease, and the use of recombinant technology in the chemoenzymatic synthesis and metabolic engineering of heparin and heparan sulfates. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Resolving writer's block.

    PubMed Central

    Huston, P.

    1998-01-01

    PROBLEM BEING ADDRESSED: Writer's block, or a distinctly uncomfortable inability to write, can interfere with professional productivity. OBJECTIVE OF PROGRAM: To identify writer's block and to outline suggestions for its early diagnosis, treatment, and prevention. MAIN COMPONENTS OF PROGRAM: Once the diagnosis has been established, a stepwise approach to care is recommended. Mild blockage can be resolved by evaluating and revising expectations, conducting a task analysis, and giving oneself positive feedback. Moderate blockage can be addressed by creative exercises, such as brainstorming and role-playing. Recalcitrant blockage can be resolved with therapy. Writer's block can be prevented by taking opportunities to write at the beginning of projects, working with a supportive group of people, and cultivating an ongoing interest in writing. CONCLUSIONS: Writer's block is a highly treatable condition. A systematic approach can help to alleviate anxiety, build confidence, and give people the information they need to work productively. PMID:9481467

  7. Operation Inherent Resolve

    DTIC Science & Technology

    2015-04-01

    model. OIR is a military mission included within a wider, complex, whole-of-government effort to counter ISIL and address the ongoing refugee crisis...DoS OIG made recom- mendations to improve the administration and monitoring of activi- ties with the Bureau of Population, Refugees and Migration (PRM...operations against ISIL in Iraq and Syria had been named Operation Inherent Resolve (OIR). OIR applied retroactively to all military airstrikes that had been

  8. Sulfate deposition to surface waters

    SciTech Connect

    Henriksen, A.; Brakke, D.F.

    1988-01-01

    Critical loads are the highest deposition of strong acid anions in surface waters that will not cause harmful biological effects on populations, such as declines in or extinctions of fish. Our analysis focuses on sulfate deposition because in glaciated regions sulfate is conservative in soils, whereas nitrate in biologically cycled. Sulfate also is the dominant anion in acidic deposition and in most acidic lakes. This analysis, represents the first evaluation of certain data available from Norway and the eastern United States, with an emphasis on the data from Scandinavia. The concept of dose-response is widely used in connection with water pollution. Any lake system subjected to an external dose of pollutants will have an internal resistance (or buffer capacity) to the change. The response of the lake system will depend on the relative magnitudes of the dose and the resistance parameters.

  9. Early Triassic seawater sulfate drawdown

    NASA Astrophysics Data System (ADS)

    Song, Huyue; Tong, Jinnan; Algeo, Thomas J.; Song, Haijun; Qiu, Haiou; Zhu, Yuanyuan; Tian, Li; Bates, Steven; Lyons, Timothy W.; Luo, Genming; Kump, Lee R.

    2014-03-01

    The marine sulfur cycle is intimately linked to global carbon fluxes, atmospheric composition, and climate, yet relatively little is known about how it responded to the end-Permian biocrisis, the largest mass extinction of the Phanerozoic. Here, we analyze carbonate-associated-sulfate (CAS) from three Permo-Triassic sections in South China in order to document the behavior of the C-S cycle and its relationship to marine environmental changes during the mass extinction and its aftermath. We find that δ34SCAS varied from +9‰ to +44‰ at rates up to 100‰ Myr-1 during the Griesbachian-Smithian substages of the Early Triassic. We model the marine sulfur cycle to demonstrate that such rapid variation required drawdown of seawater sulfate concentrations to ⩽4 mM and a reduction in its residence time to ⩽200 kyr. This shorter residence time resulted in positive covariation with δ13Ccarb due to strong coupling of the organic carbon and pyrite burial fluxes. Carbon and sulfur isotopic shifts were associated with contemporaneous changes in climate, marine productivity, and microbial sulfate reduction rates, with negative shifts in δ13Ccarb and δ34SCAS linked to warming, decreased productivity, and reduced sulfate reduction. Sustained cooling during the Spathian re-invigorated oceanic overturning circulation, reduced marine anoxia, and limited pyrite burial. As seawater sulfate built to higher concentrations during the Spathian, the coupling of the marine C and S cycles came to an end and a general amelioration of marine environmental conditions set the stage for a recovery of invertebrate faunas. Variation in seawater sulfate during the Early Triassic was probably controlled by climate change, possibly linked to major eruptive phases of the Siberian Traps.

  10. Wastewater treatment using ferrous sulfate

    SciTech Connect

    Boetskaya, K.P.; Ioffe, E.M.

    1980-01-01

    Treatment of industrial wastewater with coagulants is used extensively in the thorough removal of emulsified tars and oils. The central plant laboratory at the Zhdanov Coke Works conducted investigations of the treatment of wastewater, subsequently used for quenching coke, with ferrous sulfate. Laboratory tests and subsequent industrial tests demonstrated the efficiency of the method. In order to further intensify the wastewater treatment process we conducted laboratory tests with the addition of certain quantities of other coagulation reagents, for example polyacrylamide (PAA) and caustic soda, in addition to the ferrous sulfate. The combined use of polyacrylamide and ferrous sulfate permits instant coagulation of the sludge and very rapid (5 to 10 min) clarification of the water. In addition, in this case the degree of purification of the water is less dependent on the initial concentration of impurities. The purification is also improved when caustic soda is added, raising the pH. From the data it is apparent that an identical degree of purification of the water may be achieved either by increasing the consumption of ferrous sulfate, or by adding PAA or NaOH. During industrial tests of the purification of wastewater with ferrous sulfate, we also investigated the resulting sludge. The use of ferrous sulfate causes a significant increase in its quantity (by a factor of 1.5 to 1.8) and in its oil content (by a factor of 2 to 2.5). The water content in the sludge decreases. The sludge (in the quantity of 0.6% of the charge) may be added to the coking charge.

  11. Acid Sulfate Alteration on Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  12. A sulfate conundrum: Dissolved sulfates of deep-saline brines and carbonate-associated sulfates

    NASA Astrophysics Data System (ADS)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.

    2016-10-01

    Sulfates in deeply circulating brines and carbonate-associated sulfates (CAS) within sedimentary units of the Cambrian strata in the Illinois Basin record a complex history. Dissolved sulfate within the Mt. Simon Sandstone brines exhibits average δ34SSO4 values of 35.4‰ and δ18OSO4 values of 14.6‰ and appears to be related to Cambrian seawater sulfate, either original seawater or sourced from evaporite deposits such as those in the Michigan Basin. Theoretical and empirical relationships based on stable oxygen isotope fractionation suggest that sulfate within the lower depths of the Mt. Simon brines has experienced a long period of isolation, possibly several tens of millions of years. Comparison with brines from other stratigraphic units shows the Mt. Simon brines are geochemically unique. Dissolved sulfate from brines within the Ironton-Galesville Sandstone averages 22.7‰ for δ34SSO4 values and 13.0‰ for δ18OSO4 values. The Ironton-Galesville brine has mixed with younger groundwater, possibly of Ordovician to Devonian age and younger. The Eau Claire Formation lies between the Mt. Simon and Ironton-Galesville Sandstones. The carbonate units of the Eau Claire and stratigraphically equivalent Bonneterre Formation contain CAS that appears isotopically related to the Late Pennsylvanian-Early Permian Mississippi Valley-type ore pulses that deposited large sulfide minerals in the Viburnum Trend/Old Lead Belt ore districts. The δ34SCAS values range from 21.3‰ to 9.3‰, and δ18OCAS values range from +1.4‰ to -2.6‰ and show a strong covariance (R2 = 0.94). The largely wholesale replacement of Cambrian seawater sulfate signatures in these dolomites does not appear to have affected the sulfate signatures in the Mt. Simon brines even though these sulfide deposits are found in the stratigraphically equivalent Lamotte Sandstone to the southwest. On the basis of this and previous studies, greater fluid densities of the Mt. Simon brines may have prevented the

  13. Resource Prospector: The RESOLVE Payload

    NASA Astrophysics Data System (ADS)

    Quinn, J.; Smith, J.; J., Captain; Paz, A.; Colaprete, A.; Elphic, R.; Zacny, K.

    2015-10-01

    NASA has been developing a lunar volatiles exploration payload named RESOLVE. Now the primary science payload on-board the Resource Prospector (RP) mission, RESOLVE, consists of several instruments that evaluate lunar volatiles.

  14. Chiral Crystallization of Ethylenediamine Sulfate

    ERIC Educational Resources Information Center

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  15. Chiral Crystallization of Ethylenediamine Sulfate

    ERIC Educational Resources Information Center

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  16. Resolve at CEBAF

    SciTech Connect

    Yunn, B C; Li, R; Simrock, S

    1995-01-01

    M. Lee's program RESOLVE has recently been in extensive use at CEBAF to help identify and correct optics problems in recirculation arcs and in linac beamlines encountered during the commissioning of the 4-GeV accelerator. The authors describe the integration of the program with their machine applications software package. A significant vertical focusing error in one of the recirculation arcs, which is attributed to edge focusing of dipole magnets, was found from the analysis of difference orbit measurement data. A corrective measure has been successfully implemented. Optics checks in the spreader and recombiner regions are discussed along with linac optics and 60Hz jitter. 7 refs., 4 figs.

  17. Resolve at CEBAF

    SciTech Connect

    Yunn, B. C.; Li, R.; Simrock, S.

    1995-12-31

    M. Lee`s program RESOLVE has recently been in extensive use at CEBAF to help identify and correct optics problems in recirculation arcs and in linac beamlines encountered during the commissioning of the 4- GeV accelerator. We describe the integration of the program with our machine applications software package. A significant vertical focusing error in one of the recirculation arcs, which is attributed to edge focusing of dipole magnets, was found from the analysis of difference orbit measurement data. A corrective measure has been successfully implemented. Optics checks in the spreader and recombiner regions are discussed along with linac optics and 60Hz jitter. 7 refs., 4 figs.

  18. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or feeding practice. ...

  19. Characterization of sulfated quercetin and epicatechin metabolites.

    PubMed

    Dueñas, Montserrat; González-Manzano, Susana; Surco-Laos, Felipe; González-Paramas, Ana; Santos-Buelga, Celestino

    2012-04-11

    Different monosulfates of quercetin and epicatechin with metabolic interest were obtained by hemisynthesis and characterized regarding their chromatographic behavior and absorption and mass spectra. Three of these compounds were further isolated, and their structures were elucidated by mass spectrometry and (1)H and (13)C nuclear magnetic resonance using one- and two-dimensional techniques (heteronuclear single-quantum coherence and heteronuclear multiple-bond correlation). The calculation of the proton and carbon shifts caused by sulfation allowed for the assignment of the position of the sulfate group in the flavonoids, so that the compounds were identified as quercetin-3'-O-sulfate, quercetin 4'-O-sulfate, and epicatechin 4'-O-sulfate. It was found that sulfation at position 3' induced a large upfield shift in the carbon bearing the sulfate group and downfield displacements of the adjacent carbons, whereas no significant upfield or downfield shifts were observed with respect to the parent flavonoid when sulfation was produced at position 4'.

  20. Dual Brushless Resolver Rate Sensor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor)

    1997-01-01

    A resolver rate sensor is disclosed in which dual brushless resolvers are mechanically coupled to the same output shaft. Diverse inputs are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. In one embodiment of the invention the outputs of the first resolver are directly inputted into two separate multipliers and the outputs of the second resolver are inputted into the two separate multipliers, after being demodulated in a pair of demodulator circuits. The multiplied signals are then added in an adder circuit to provide a directional sensitive output. In another embodiment the outputs from the first resolver is modulated in separate modulator circuits and the output from the modulator circuits are used to excite the second resolver. The outputs from the second resolver are demodulated in separate demodulator circuit and added in an adder circuit to provide a direction sensitive rate output.

  1. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  2. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5 H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  3. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and....1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5 H2O, CAS Reg. No. 7758-99-8) usually... sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a purity suitable...

  4. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  5. 21 CFR 184.1261 - Copper sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5 H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of...

  6. Brief resolved unexplained event

    PubMed Central

    Arane, Karen; Claudius, Ilene; Goldman, Ran D.

    2017-01-01

    Abstract Question For many years, the term apparent life-threatening event (ALTE) was associated with sudden infant death syndrome, and parents who described an acute event in their infants were sent to the hospital for admission. I understand that for infants new terminology is recommended. What is the current approach to a near-death experience of an infant? Answer A recent clinical practice guideline revised the name and definition of an ALTE to a brief resolved unexplained event (BRUE). The diagnosis of BRUE in infants younger than 1 year of age is made when infants experience 1 of the following BRUE symptoms: a brief episode (ie, less than 1 minute and usually less than 20 to 30 seconds) that is entirely resolved (infant is at baseline), which remains unexplained after the history and physical examination are completed, and includes an event characterized by cyanosis or pallor; absent, decreased, or irregular breathing; hypertonia or hypotonia; or altered responsiveness. Low-risk infants should not be admitted to the hospital and overtesting is discouraged. PMID:28115439

  7. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  8. RESOLVE 2010 Field Test

    NASA Technical Reports Server (NTRS)

    Captain, J.; Quinn, J.; Moss, T.; Weis, K.

    2010-01-01

    This slide presentation reviews the field tests conducted in 2010 of the Regolith Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE). The Resolve program consist of several mechanism: (1) Excavation and Bulk Regolith Characterization (EBRC) which is designed to act as a drill and crusher, (2) Regolith Volatiles Characterization (RVC) which is a reactor and does gas analysis,(3) Lunar Water Resources Demonstration (LWRD) which is a fluid system, water and hydrogen capture device and (4) the Rover. The scientific goal of this test is to demonstrate evolution of low levels of hydrogen and water as a function of temperature. The Engineering goals of this test are to demonstrate:(1) Integration onto new rover (2) Miniaturization of electronics rack (3) Operation from battery packs (elimination of generator) (4) Remote command/control and (5) Operation while roving. Views of the 2008 and the 2010 mechanisms, a overhead view of the mission path, a view of the terrain, the two drill sites, and a graphic of the Master Events Controller Graphical User Interface (MEC GUI) are shown. There are descriptions of the Gas chromatography (GC), the operational procedure, water and hydrogen doping of tephra. There is also a review of some of the results, and future direction for research and tests.

  9. Time-resolved mixing and flow-field measurements during droplet formation in a flow-focusing junction

    NASA Astrophysics Data System (ADS)

    Carrier, Odile; Gökhan Ergin, F.; Li, Huai-Zhi; Watz, Bo B.; Funfschilling, Denis

    2015-08-01

    Highly monodispersed emulsions can be produced in microfluidic flow-focusing junctions (Anna et al 2003 Appl. Phys. Lett. 82 364-6, Baroud et al 2010 Lab Chip 10 2032-45). This is the reason why many industrial processes in the medical industry among others are based on droplet manipulation and involve at some point a step of dripping within a junction. However, only a few studies have focused on the flow field inside and outside the droplet, even though it is a necessary step for understanding the physical mechanism involved and for modeling the droplet formation process. Water-in-oil emulsions are produced in flow-focusing junctions of square cross sections. The fluids constituting the emulsion are (i) a 5.0 mPa·s silicon oil for the oil phase and (ii) distilled water containing 2.0 wt% of sodium dodecyl sulfate surfactant for the aqueous phase. Time-resolved shadow particle images are acquired using a microscale particle image velocimetry (µPIV) system and flow fields are calculated using an adaptive PIV algorithm in combination with dynamic masking. Inside the microchannel and in the permanent regime, the droplet has an internal circulation that has been well established by Sarrazin et al (AICHE J. 52 4061-70). But during the formation of a droplet in a flow-focusing junction, the flow field is not so well known, and the circulation in the finger flows forward along the sides and returns along the center. The mechanism can be described in terms of four distinct steps: droplet growth, necking, rupture, and recoil. The liquid expelled from the neck just before rupture is also well observed. The flow field and mixing are measured in detail during a complete cycle of formation of a main droplet and satellite droplets using high-speed imaging. This allows us to develop a better understanding of the different forces that are present and of the physical mechanism of droplet formation.

  10. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  11. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  12. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  13. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  14. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  15. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  16. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  17. 21 CFR 582.5997 - Zinc sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Zinc sulfate. 582.5997 Section 582.5997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is...

  18. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  19. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of...

  20. 21 CFR 182.8997 - Zinc sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Zinc sulfate. 182.8997 Section 182.8997 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8997 Zinc sulfate. (a) Product. Zinc sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  1. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium carbonate...

  2. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  3. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  4. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  5. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  6. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  7. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  8. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use. This...

  9. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  10. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with potassium...

  11. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  12. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture of...

  13. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  14. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture of...

  15. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  16. 21 CFR 184.1461 - Manganese sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... dioxide in sulfuric acid, and the roasting of pyrolusite (MnO2) ore with solid ferrous sulfate and coal...

  17. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  18. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  19. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  20. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  1. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  2. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  3. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  4. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum sulfate. 182.1125 Section 182.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  5. 21 CFR 582.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum sulfate. 582.1125 Section 582.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance...

  6. 21 CFR 182.1125 - Aluminum sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum sulfate. 182.1125 Section 182.1125 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1125 Aluminum sulfate. (a) Product. Aluminum sulfate. (b) Conditions of use. This substance is generally recognized as safe when used in...

  7. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  8. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  9. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  10. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  11. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  12. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  13. 21 CFR 184.1443 - Magnesium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  14. Low sulfate seawater mitigates barite scale

    SciTech Connect

    Hardy, J.A.; Simm, I.

    1996-12-09

    Low-sulfate seawater (LSSW) technology provides operational and economic benefits for desulfating seawater to control barium sulfate (BaSO{sub 4}) and strontium sulfate (SrSO{sub 4}) scale. This concluding article in a three part series describes, from a scale control perspective, the membrane technology deployed in the North Sea Brae fields.

  15. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  16. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  17. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  18. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  19. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and....1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6), also known as Glauber's salt... by the neutralization of sulfuric acid with sodium hydroxide. (b) The ingredient is used as...

  20. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS...

  1. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  2. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  3. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS Reg. No. 7783-20-2)...

  4. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS...

  5. 21 CFR 184.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ammonium sulfate. 184.1143 Section 184.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1143 Ammonium sulfate. (a) Ammonium sulfate ((NH4)2SO4, CAS...

  6. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  7. 21 CFR 582.1143 - Ammonium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium sulfate. 582.1143 Section 582.1143 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1143 Ammonium sulfate. (a) Product. Ammonium sulfate. (b) Conditions of use. This...

  8. Sulfate transport in Penicillium chrysogenum plasma membranes.

    PubMed Central

    Hillenga, D J; Versantvoort, H J; Driessen, A J; Konings, W N

    1996-01-01

    Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion. PMID:8682803

  9. Modeling and minimization of barium sulfate scale

    Treesearch

    Alan W. Rudie; Peter W. Hart

    2006-01-01

    The majority of the barium present in the pulping process exits the digester as barium carbonate. Barium carbonate dissolves in the bleach plant when the pH drops below 7 and, if barium and sulfate concentrations are too high, begins to precipitate as barium sulfate. Barium is difficult to control because a mill cannot avoid this carbonate-to-sulfate transition using...

  10. 21 CFR 582.5461 - Manganese sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Manganese sulfate. 582.5461 Section 582.5461 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5461 Manganese sulfate. (a) Product. Manganese sulfate. (b) Conditions of use. This...

  11. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  12. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  13. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  14. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  15. 21 CFR 582.5443 - Magnesium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  16. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  17. 21 CFR 582.5230 - Calcium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium sulfate. 582.5230 Section 582.5230 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5230 Calcium sulfate. (a) Product. Calcium sulfate. (b) Conditions of use. This substance...

  18. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  19. 21 CFR 582.5315 - Ferrous sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferrous sulfate. 582.5315 Section 582.5315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5315 Ferrous sulfate. (a) Product. Ferrous sulfate. (b) Conditions of use. This substance...

  20. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    NASA Astrophysics Data System (ADS)

    Manktelow, P. T.; Carslaw, K. S.; Mann, G. W.; Spracklen, D. V.

    2010-01-01

    A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modeled mass concentrations of fine sulfate (Dp<1.3 μm) decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp>1.0 μm) by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations (condensation nuclei, CN) modeled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei (CCN). Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  1. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    NASA Astrophysics Data System (ADS)

    Manktelow, P. T.; Carslaw, K. S.; Mann, G. W.; Spracklen, D. V.

    2009-07-01

    A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modelled mass concentrations of fine sulfate (Dp<1.3 μm) decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp<1.0 μm) by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations modelled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei. Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  2. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  3. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  4. Method for magnesium sulfate recovery

    DOEpatents

    Gay, Richard L.; Grantham, LeRoy F.

    1987-01-01

    A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  5. Method for magnesium sulfate recovery

    DOEpatents

    Gay, R.L.; Grantham, L.F.

    1987-08-25

    A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.

  6. Sulfates on Mars: Indicators of Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  7. Mixtures of Sulfates in Melas Chasma

    NASA Image and Video Library

    2017-09-04

    In this image from NASA's Mars Reconnaissance Orbiter, layering within the light-toned sulfate deposit is the result of different states of hydration. Some of the layers have sulfates with little water (known as monohydrated sulfates) whereas other layers have higher amounts of water (called polyhydrated sulfates). The different amounts of water within the sulfates may reflect changes in the water chemistry during deposition of the sulfates, or may have occurred after the sulfates were laid down when heat or pressure forced the water out of some layers, causing a decrease in the hydration state. Many locations on Mars have sulfates, which are sedimentary rocks formed in water. Within Valles Marineris, the large canyon system that cuts across the planet, there are big and thick sequences of sulfates. The CRISM instrument on MRO is crucial for telling scientists which type of sulfate is associated with each layer, because each hydration state will produce a spectrum with absorptions at specific wavelengths depending upon the amount of water contained within the sulfate. https://photojournal.jpl.nasa.gov/catalog/PIA21935

  8. Sulfates on Mars: Indicators of Aqueous Processes

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  9. Toxicology of ammonium sulfate in the lung

    SciTech Connect

    Pepelko, W.E.; Mattox, J.K.; Cohen, A.L.

    1980-01-01

    Despite the relatively low toxicity of ammonium sulfate in experimental animals, it cannot be concluded that increased sulfuric acid production is harmless to human health. Many other pollutants are present in ambient air with possible synergistic effects. Sulfuric acid undoubtedly reacts to produce other sulfates in ambient air which are often much more toxic. For example zinc sulfate and zinc ammonium sulfate are much more irritating to the lung than ammonium sulfate. In order to assess with more certainty the health effects of increased sulfuric acid production, it will be necessary to determine accurately that proportion inhaled as free sulfuric acid compared with ammonium sulfate as well as the proportion and kinds of other sulfates present in the atmosphere.

  10. Simple, Time-Saving Dye Staining of Proteins for Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis Using Coomassie Blue

    PubMed Central

    Dong, Wei-Hua; Wang, Tian-Yun; Wang, Fang; Zhang, Jun-He

    2011-01-01

    A fixation-free and fast protein-staining method for sodium dodecyl sulfate–polyacrylamide gel electrophoresis using Coomassie blue is described. The protocol comprises staining and quick washing steps, which can be completed in 0.5 h. It has a sensitivity of 10 ng, comparable with that of conventional Coomassie Brilliant Blue G staining with phosphoric acid in the staining solution. In addition, the dye stain does not contain any amount of acid and methanol, such as phosphoric acid. Considering the speed, simplicity, and low cost, the dye stain may be of more practical value than other dye-based protein stains in routine proteomic research. PMID:21850222

  11. Pseudo-ternary phase diagrams in the system water/sodium chloride/heptane/1-butanol/sodium dodecyl sulphate

    SciTech Connect

    Gilje, E.; Maledal, T. )

    1992-01-01

    An entirely empirical model for estimating the pseudo-components in quarternary microemulsion systems has been adopted. Data for the system water/NaCl/ heptane/1-butanol/sodium dodecyl sulphate (SDS) are used in the empirical model. In this paper calculated phase volumes and interfacial tensions are compared with experimental data. Further, a calculated pseudo-ternary phase diagram is compared with the data obtained from an experimental phase diagram where the pseudo-components are determined from the model. The results show a good agreement between calculated and experimental data.

  12. Structural analysis of aqueous ferrofluids with cobalt ferrite particles stabilized with lauric acid and sodium n-dodecyl sulphate

    NASA Astrophysics Data System (ADS)

    Balasoiu-Gaina, A.-M.; Balasoiu, M.; Ivankov, O.; Soloviov, D.; Lysenko, S.; Stan, C.; Lupu, N.; Creanga, D.; Kuklin, A.

    2017-05-01

    Small angle neutron scattering (SANS) experiment on CoFe2O4/lauric acid/sodium dodecyl sulphate/H2O ferrofluid was performed at the time-of-flight YuMO spectrometer. Concentration effects on the structure variation of the investigated ferrofluid are presented. Using the zero concentration approximation, the structure factors of samples with different concentration were determined. It was shown that the structure factor of values higher than 1 is present in samples with particle volume concentration equal and greater than 0.5%.

  13. Mutual influence of Tweens and dodecyl pyridinium chloride upon their joint adsorption on a surface of paraffin

    NASA Astrophysics Data System (ADS)

    Streltsova, E. A.; Mazuryk, A. A.

    2015-05-01

    The mutual influence of Tweens (Tween-20, Tween-40, Tween-60, Tween-80) and dodecyl pyridinium chloride (DDPC) upon their joint adsorption on the paraffin surface is studied using different molar ratios of components in a bulk aqueous solution. It is shown that both synergistic and antagonistic effects are observed upon the adsorption of cationic and nonionic surfactants from the mixed solutions. The compositions of mixed adsorption layers and the parameters of intermolecular interaction between surfactants of different natures are calculated. A possible mechanism is proposed for the adsorption process.

  14. Sulfation and biological activities of konjac glucomannan.

    PubMed

    Bo, Surina; Muschin, Tegshi; Kanamoto, Taisei; Nakashima, Hideki; Yoshida, Takashi

    2013-05-15

    The sulfation of konjac glucomannan and its anti-HIV and blood anticoagulant activities were investigated. Konjac glucomannan is a polysaccharide occurring naturally in konjac plant tubers and has high molecular weights. Solubility in water is very low, and the aqueous solutions at low concentrations have high viscosity. Before sulfation, hydrolysis by diluted sulfuric acid was carried out to decrease the molecular weights of M¯n=19.2 × 10(4)-0.2 × 10(4). Sulfation with piperidine-N-sulfonic acid or SO3-pyridine complex gave sulfated konjac glucomannans with molecular weights of M¯n=1.0 × 10(4)-0.4 × 10(4) and degrees of sulfation (DS) of 1.3-1.4. It was found that the sulfated konjac glucomannans had potent anti-HIV activity at a 50% effective concentration, (EC50) of 1.2-1.3 μg/ml, which was almost as high as that of an AIDS drug, ddC, whose EC50=3.2 μg/ml, and moderate blood anticoagulant activity, AA=0.8-22.7 units/mg, compared to those of standard sulfated polysaccharides, curdlan (10 units/mg) and dextran (22.7 units/mg) sulfates. Structural analysis of sulfated konjac glucomannans with negatively charged sulfated groups was performed by high resolution NMR, and the interaction between poly-l-lysine with positively charged amino groups as a model compound of proteins and peptides was measured by surface plasmon resonance measurement, suggesting that the sulfated konjac glucomannans had a high binding stability on immobilized poly-l-lysine. The binding of sulfated konjac glucomannan was concentration-dependent, and the biological activity of the sulfated konjac glucomannans may be due to electrostatic interaction between the sulfate and amino groups. Copyright © 2013. Published by Elsevier Ltd.

  15. Monohydrated Sulfates in Aurorae Chaos

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of sulfate-containing deposits in Aurorae Chaos was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0653 UTC (2:53 a.m. EDT) on June 10, 2007, near 7.5 degrees south latitude, 327.25 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 12 kilometers (7.5 miles) wide at its narrowest point.

    Aurorae Chaos lies east of the Valles Marineris canyon system. Its western edge extends toward Capri and Eos Chasmata, while its eastern edge connects with Aureum Chaos. Some 750 kilometers (466 miles) wide, Aurorae Chaos is most likely the result of collapsed surface material that settled when subsurface ice or water was released.

    The top panel in the montage above shows the location of the CRISM image on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data covers an area featuring several knobs of erosion-resistant material at one end of what appears to be a large teardrop shaped plateau. Similar plateaus occur throughout the interior of Valles Marineris, and they are formed of younger, typically layered rocks that post-date formation of the canyon system. Many of the deposits contain sulfate-rich layers, hinting at ancient saltwater.

    The center left image, an infrared false color image, reveals a swath of light-colored material draped over the knobs. The center right image unveils the mineralogical composition of the area, with yellow representing monohydrated sulfates (sulfates with one water molecule incorporated into each molecule of the mineral).

    The lower two images are renderings of data draped over topography with 5 times vertical exaggeration. These images provide a view of the topography and reveal how the monohydrated sulfate-containing deposits drape over the knobs and also an outcrop in lower-elevation parts of the

  16. Effect of topography on sulfate redistribution in Cumulonimbus cloud development.

    PubMed

    Vujović, Dragana; Vučković, Vladan; Curić, Mlađen

    2014-03-01

    An aqueous chemical module is created and included into a complex three-dimensional atmospheric cloud-resolving mesoscale model. In the chemical module, oxidation of S(IV) by ozone and hydrogen peroxide in cloud-water and rainwater, as important process of the sulfate production is included. To examine the impact of topography on the sulfate redistribution in a clean and a polluted environment, the complex topography of Serbia is included in the model. Numerical simulations of an isolated summer Cumulonimbus cloud shows that thunderstorms generate very strong vertical sulfate redistribution from the planetary boundary layer to the upper troposphere. This redistribution is sensitive to cloud dynamics, while cloud microphysics and precipitation determine wet removal of the chemical species. In simulations with realistic topography, the chemical species are transported over larger distances close to the surface, while in the upper atmosphere, there is no difference compared to the simulations without topography. The sensitivity tests of cloud chemistry to the physical processes are made. Omission of nucleation and impact scavenging of aerosols in the model simulations shows that 75.8 and 62.5 % of total sulfur mass deposited in the base experiment for the clean and the polluted environment, respectively, is the result of other processes. Exclusion of oxidation accounted for 19.2 and 37.7 % of total sulfur deposited for clean and polluted environment. Ignoring the ice phase almost not change mass of deposited sulfur: there is an increase of 2.9 and 1.5 % for clean and polluted atmosphere, respectively. Real topography conditions affect the sulfate redistribution in the sense of greater possibilities of transport. Numerical simulations without real topography give an artificial increase of deposited sulfur mass of about 25-30 %.

  17. Dual Brushless Resolver Rate Sensor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor)

    1996-01-01

    This invention relates to dual analog angular rate sensors which are implemented without the use of mechanical brushes. A resolver rate sensor which includes two brushless resolvers which are mechanically coupled to the same output shaft is provided with inputs which are provided to each resolver by providing the first resolver with a DC input and the second resolver with an AC sinusoidal input. A trigonometric identity in which the sum of the squares of the sin and cosine components equal one is used to advantage in providing a sensor of increased accuracy. The first resolver may have a fixed or variable DC input to permit dynamic adjustment of resolver sensitivity thus permitting a wide range of coverage. Novelty and advantages of the invention reside in the excitation of a resolver with a DC signal and in the utilization of two resolvers and the trigonometric identity of cos(exp 2)(theta) + sin(exp 2)(theta) = 1 to provide an accurate rate sensor which is sensitive to direction and accurate through zero rate.

  18. Inhibition of synthesis of heparan sulfate by selenate: Possible dependence on sulfation for chain polymerization

    SciTech Connect

    Dietrich, C.P.; Nader, H.B. ); Buonassisi, V.; Colburn, P. )

    1988-01-01

    Selenate, a sulfation inhibitor, blocks the synthesis of heparan sulfate and chondroitin sulfate by cultured endothelial cells. In contrast, selenate does not affect the production of hyaluronic acid, a nonsulfated glycosaminoglycan. No differences in molecular weight, ({sup 3}H)glucosamine/({sup 35}S)sulfuric acid ratios, or disaccharide composition were observed when the heparan sulfate synthesized by selenate-treated cells was compared with that of control cells. The absence of undersulfated chains in preparations from cultures exposed to selenate supports the concept that, in the intact cell, the polymerization of heparan sulfate might be dependent on the sulfation of the saccharide units added to the growing glycosaminoglycan chain.

  19. Simultaneous determination of ofloxacin and gatifloxacin on cysteic acid modified electrode in the presence of sodium dodecyl benzene sulfonate.

    PubMed

    Zhang, Fenfen; Gu, Shuqing; Ding, Yaping; Li, Li; Liu, Xiao

    2013-02-01

    A novel cysteic acid modified carbon paste electrode (cysteic acid/CPE) based on electrochemical oxidation of L-cysteine was developed to simultaneously determine ofloxacin and gatifloxacin in the presence of sodium dodecyl benzene sulfonate (SDBS). Fourier transform infrared spectra (FTIR) indicated that L-cysteine was oxidated to cysteic acid. Electrochemical impedance spectroscopy (EIS) and cyclic voltammograms (CV) indicated that cysteic acid was successfully modified on electrode. The large peak separation (116 mV) between ofloxacin and gatifloxacin was obtained on cysteic acid/CPE while only one oxidation peak was found on bare electrode. And the peak currents increased 5 times compared to bare electrode. Moreover, the current could be further enhanced in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate. The differential pulse voltammograms (DPV) exhibited that the oxidation peak currents were linearly proportional to their concentrations in the range of 0.06-10 μM for ofloxacin and 0.02-200 μM for gatifloxacin, and the detection limits of ofloxacin and gatifloxacin were 0.02 μM and 0.01 μM (S/N=3), respectively. This proposed method was successfully applied to determine ofloxacin and gatifloxacin in pharmaceutical formulations and human serum samples. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  20. Allergic contact stomatitis to dodecyl gallate? A review of the relevance of positive patch test results to gallates.

    PubMed

    Gamboni, Sarah E; Palmer, Amanda M; Nixon, Rosemary L

    2013-08-01

    Gallic acid esters or gallates are antioxidants used as preservatives in food and cosmetics. Few cases of gallates causing allergic contact dermatitis (ACD) have been reported in the literature. We present a case report of a 42-year-old beauty therapist who presented with a swollen tongue. Patch testing was positive to dodecyl gallate, commonly reported as being present in edible oil and oily foods such as margarine. Our patient avoided foods presumed to contain gallates and at the 6-week review reported a substantial improvement in her tongue symptoms. We reviewed our database and found 16 (7%) definitely or possibly relevant reactions to dodecyl gallate, seven (15%) definitely or possibly relevant reactions to propyl gallate and six (3%) definitely or possibly relevant reactions to octyl gallate. Most reactions were attributed to margarine, moisturising cream and lipstick. These products are often mentioned in the literature as containing gallates; however, ingredient labelling and discussions with manufacturers made it difficult to establish whether they are currently present in foods. Ascertaining relevance for these reactions is not always possible.

  1. Erythrocyte membrane protein analysis by sodium dodecyl sulphate-capillary gel electrophoresis in the diagnosis of hereditary spherocytosis.

    PubMed

    Debaugnies, France; Cotton, Frédéric; Boutique, Charles; Gulbis, Béatrice

    2011-03-01

    Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is currently the reference method for detecting protein deficiencies related to hereditary spherocytosis. The aim of the study was to evaluate an automated capillary gel electrophoresis system, the Experion instrument from BioRad, for its ability to separate and quantify the erythrocyte membrane proteins. The major erythrocyte membrane proteins (actin, protein 4.2, protein 4.1, band 3, ankyrin, α- and β-spectrin) were extracted and purified from membrane ghosts by centrifugation, immunoprecipitation and electroelution. Analyses were performed using SDS-PAGE and sodium dodecyl sulphate capillary gel electrophoresis (SDS-CGE) to establish a separation profile of the total ghosts. Then, the samples from patients received for investigations of erythrocyte membrane defects were analysed. Five of the seven expected erythrocyte membrane proteins were finally separated and identified. In the 20 studied cases, taking into account the screening test results and the clinical and family histories, the SDS-CGE method allowed us to achieve the same conclusion as with SDS-PAGE, except for the patient with elliptocytosis. The new SDS-CGE method presents interesting features that could make this instrument a powerful diagnostic tool for detection of erythrocyte membrane protein abnormalities, and can be proposed as an automated alternative method to the labour intensive SDS-PAGE analysis.

  2. Microbial cycling, oxidative weathering, and the triple oxygen isotope consequences for marine sulfate

    NASA Astrophysics Data System (ADS)

    Johnston, D. T.; Cowie, B.; Turchyn, A. V.; Antler, G.; Gill, B. C.; Berelson, W.

    2015-12-01

    Microorganisms are responsible for most geochemical sulfur cycling in the ocean. On both modern and geological time scales, stable isotope ratios often serve as a mechanism to track conspicuous or coupled microbial processes, which in turn inform burial fluxes. The most common example of this approach is the use of sulfur isotopes in sulfate and sulfide (both aqueous and in mineral form) to track everything from rates of microbial processes through to the presence/absence of certain metabolic processes in a given environment. The use of oxygen isotope ratios in sulfate has developed in a similar fashion, providing complementary information to that of sulfur isotopes. Through our current work, we will extend the application of oxygen isotopes to include the trace stable oxygen isotope, 17O. These data are facilitated by a new laser F2 fluorination technique running at Harvard, and accompanied by the calibration of a suite of common sulfate standards. At first blush, 16O - 17O - 18O systematics should carry mass-dependent microbial fractionations with process-specific mass laws that are resolvable at the level of our analytical precision. We look to calibrate these biogeochemical effects through the integrated picture captured in marine pore water sulfate profiles, where the 18O/16O is known to evolve. In compliment, riverine sulfate (the sulfate input to the ocean) is an oxidative weathering product and is posited to carry a memory effect of tropospheric O2. Interestingly, the 17O/16O of that O2 carries a mass-independent signal reflecting the balance between stratospheric reactions and Earth surface biospheric fluxes. Through this presentation, we look to calibrate the controls on the balance between biospheric and atmospheric contributions to the marine sulfate reservoir. This is enabled by a series of isotope mass-balance models and with the ultimate goal of developing the geological triple oxygen isotope records of sulfate as a new environmental proxy for paleo

  3. Multi-sulfate and Iron Oxide Assemblages Within the Valles Marineris Interior Layered Deposits

    NASA Astrophysics Data System (ADS)

    Roach, L. H.; Mustard, J. F.; Murchie, S. L.; Bishop, J. L.; Arvidson, R. E.; Morris, R. V.; Milliken, R. E.; Lichtenberg, K. A.

    2007-12-01

    MarsExpress OMEGA showed that many of the Interior Layered Deposits (ILDs) in Valles Marineris contain sulfates and proposed the sulfates as indicators of past aqueous activity in the Theiikian period (Gendrin etal, 2005; Bibring etal, 2005; Bibring etal, 2006). Better discrimination of the sulfate assemblages present and the stratigraphic relationships within the ILD is critical to understanding the environment during and since their formation. We present a method for identifying classes of sulfates present in a multi-sulfate exposure with MRO CRISM data. Multiple mineral phases can be defined by diagnostic absorptions in spatially distinct wavelength regions. Combinations of minerals phases is more complicated but can be resolved by identifying superposed absorption feature and assuming linear mixing. We focus on four wavelength regions: (a) 2.4 and 2.1 μm, (b) 2.2 μm, (c) 1.9 and 1.4 μm, and (d) 0.9 μm, in a methodical classification of possible sulfate types present. While there is some overlap in the wavelength regions, absorptions are sufficiently separate to be recognizable. Additionally, care must be taken to select geologically feasible minerals assemblages. (a) Hydrated sulfates have an absorption near 2.4 um due to probable interactions between the H2O and SO3 molecules (Cloutis etal, 2006). Monohydrated sulfates have a distinct absorption near 2.1 μm due to combinations of H2O stretch and rotation vibrations of the single water molecule in a sulfate structure (Cloutis etal, 2006) which shifts with cation. Thus minerals such as kieserite (MgSO4 H2O) and szomolnokite (Fe2+SO4 H2O) can be distinguished in CRISM data. (b) The 2.21-2.26 μm region is generally convex in sulfates, but gypsum (CaSO4 2H2O ) and jarosite group members (MFe3(SO4)2(OH)6) have absorptions there. The minimum within this wavelength region depends on the mineral present. (c)The ~1.9 μm is due to the OH stretch and H2O bend combination tone and the ~1.4 μm absorption is due to

  4. Classification of chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride and glucosamine 6 sulfate using chemometric techniques.

    PubMed

    Foot, M; Mulholland, M

    2005-07-01

    Chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride and glucosamine sulfate are natural products that are becoming increasingly popular in the treatment of arthritis. They belong to a class of compounds known as glycosaminoglycans (GAGs). They are available over the counter as nutritional supplements. However, increasing use has led to increasing scrutiny of the quality of products on the market. There is also interest in the pharmacological properties of these compounds. To facilitate this, there is a need for better qualitative and quantitative methods of analysis. This paper describes methods for achieving the qualitative identification of chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride or glucosamine sulfate. Fourier transform infrared spectroscopy coupled with a variety of chemometric methods successfully classified these compounds. Using soft independent modeling of class analogies (SIMCA), hierarchical cluster analysis (HCA) and principal components analysis (PCA) samples were classified as either chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride or glucosamine sulfate. This work also examined the discriminating ability of different sections of the spectrum. It was found that for the classification of these compounds that using the finger print region of the spectrum (below 2000 cm(-1)) gave the best discrimination.

  5. Significant role of organic sulfur in supporting sedimentary sulfate reduction in low-sulfate environments

    NASA Astrophysics Data System (ADS)

    Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei

    2017-09-01

    Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (<500 μM) the in-sediment production of sulfate can support a substantial portion (>50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.

  6. Sulfate reduction in freshwater wetland soils and the effects of sulfate and substrate loading

    SciTech Connect

    Feng, J.; Hsieh, Y.P.

    1998-07-01

    Elevated sulfate and organic C loadings in freshwater wetlands could stimulate dissimilatory sulfate reduction that oxidizes organic C, produces hydrogen sulfide and alkalinity, and sequesters trace metals. The authors determined the extent of sulfate reduction in two freshwater wetland soils, that is black gum (Nyssa biflona) swamp soils and titi (Cliftonia monophylla) swamp soils, in northern Florida. They also investigated the potential of sulfate reduction in the wetland soils by adding sulfate, organic substrate, and lime. Sulfate reduction was found to be an active process in both swamp soils without any amendment, where the pore water pH was as low as 3.6 and sulfate concentration was as low as 5 mg L{sup {minus}1}. Without amendment, 11 to 14% of organic C was oxidized through sulfate reduction in the swamp soils. Sulfate loading, liming, and substrate addition significantly increased sulfate reduction in the black gum swamp soil, but none of those treatments increase sulfate reduction in the titi swamp soil. The limiting factor for sulfate reduction in the titi swamp soil were likely texture and soil aggregate related properties. The results suggested that wastewater loading may increase sulfate reduction in some freshwater wetlands such as the black swamps while it has no stimulating effect on other wetlands such as the titi swamps.

  7. Ca2+-mediated association of human serum amyloid P component with heparan sulfate and dermatan sulfate.

    PubMed

    Hamazaki, H

    1987-02-05

    The serum amyloid P component (SAP) is a precursor glycoprotein of amyloid P component found in all types of amyloid deposits. The binding of human SAP to heparan sulfate and dermatan sulfate was studied using Sepharose-immobilized SAP. The apparent dissociation constants of heparan sulfate and dermatan sulfate for immobilized-SAP were estimated to be approximately 2 X 10(-7) M in the presence of 2 mM CaCl2 at neutral pH and physiological ionic strength. Both the binding affinity of SAP for these glycosaminoglycans and the numbers of binding sites of SAP depended on calcium concentration. Cadmium partially substituted for calcium as an activator of glycosaminoglycan binding to SAP. No binding occurs in the absence of added metal, or in the presence of barium, copper, magnesium, manganese, and strontium. The calcium-dependent binding of [3H]heparan sulfate and [3H]dermatan sulfate to SAP was strongly inhibited by heparan sulfate, heparin, and dermatan sulfate. Chondroitin 6-sulfate was a moderate inhibitor, whereas hyaluronic acid, chondroitin 4-sulfate, and keratan sulfate were not potent inhibitors. The calcium-dependent binding of amyloid P component to heparan sulfate and/or dermatan sulfate may be a cause of the coexistence of the particular glycoprotein and these glycosaminoglycans in amyloid tissues.

  8. Grafting Sulfated Zirconia on Mesoporous Silica

    SciTech Connect

    Wang, Yong; Lee, Kwan Young; Choi, Saemin; Liu, Jun; Wang, Li Q.; Peden, Charles HF

    2007-06-01

    Sulfated zirconia has received considerable attention as a potential solid acid catalyst in recent years. In this paper, the preparation and properties of acid catalysts obtained by grafting ziconia with atomic precision on MCM-41 mesoporous silica were studied. TEM and potential titration characterizations revealed that ZrO2/MCM-41 with monolayer coverage can be obtained using this grafting technique. Sulfated ZrO2/MCM-41 exhibits improved thermal stability than that of bulk sulfated zirconia, as evidenced by temperature programmed characterizations and XRD analysis. Temperature programmed reaction of isopropanol was used to evaluate the acidity of sulfated ZrO2/MCM-41. It was found that the acid strength of sulfated ZrO2/MCM-41 with monolayer coverage is weaker than bulk sulfated zirconia but stronger than SiO2-Al2O3, a common strong acid catalyst.

  9. Study examines sulfate-reducing bacteria activity

    SciTech Connect

    McElhiney, J.E.; Hardy, J.A.; Rizk, T.Y.; Stott, J.F.D.; Eden, R.D.

    1996-12-09

    Low-sulfate seawater injection can reduce the potential of an oil reservoir turning sour because of sulfate-reducing bacteria. Sulfate-reducing bacteria (SRB) convert sulfate ions in seawater used in waterflooding into sulfide with the concomitant oxidation of a carbon source. A recent study at Capcis investigated the efficiency of SRB under various conditions of sulfate limitation. This study was conducted in a flowing bioreactor at 2,000 psia with different temperature zones (mesophilic 35 C and thermophilic 60--80 C). The study mixed microfloral populations derived from real North Sea-produced fluids, and included an active population of marine methanogenic bacteria present to provide competition for the available carbon sources. In general, results showed that SRB continue to convert sulfate to sulfide in stoichiometric quantities without regard to absolute concentrations. The paper discusses the results and recommends nanofiltration of seawater for ``sweet`` reservoirs.

  10. Technology of streptomycin sulfate separation by two-stage foam separation.

    PubMed

    Li, Juan; Wu, Zhaoliang; Li, Rui

    2012-01-01

    Industrial discharges from manufacturing streptomycin sulfate (SS) are inhibitory to biological wastewater treatment and need to be stripped of residual SS. For effective SS recovery from the wastewater, a two-stage foam separation technology was investigated using a column with a vertical ellipsoid-shaped channel (VEC) and a conventional one, and sodium dodecyl sulfate (SDS) served as the collector. The mechanism of enhancing foam drainage by VEC was theoretically analyzed. In the first stage, the column with VEC was used and under the optimal conditions of the liquid-loading volume 300 mL, volumetric airflow rate 100 mL/min, the initial pH 7.0 and the molar ratio of SDS to SS 8.0, an improved SS enrichment ratio of 16.7 was obtained. In the second stage, a conventional column was used and with a volumetric airflow rate of 450 mL/min, the foamate had a SS concentration of about 0.5 g/L, so it was used as the feed solution of the first stage. By the two-stage technology, the total SS recovery percentage reached as high as 99.7%. Thus, it was significantly effective for the two-stage foam separation technology to recover SS from the simulative wastewater.

  11. Influence of alkyl sulfates on waste activated sludge fermentation at ambient temperature.

    PubMed

    Jiang, Su; Chen, Yinguang; Zhou, Qi

    2007-09-05

    Alkyl sulfates (AS), such as sodium dodecyl sulfate (SDS), are widely used in household and industrial products, and can be found in some wastewater and waste activated sludge (WAS). The effect of SDS on the fermentation of WAS at ambient temperature was investigated in this paper. Experimental results showed that the concentrations of protein and carbohydrate in aqueous phase increased with the amount of SDS. The concentrations of both NH(4)(+)-N and PO(4)(3-)-P in fermentation liquor also increased in the presence of SDS. In addition, it was observed that the fermentative short-chain fatty acids (SCFAs) concentration was affected by SDS. With the increase of SDS dosage, the maximum SCFAs concentration increased, and the fermentation time before reaching the maximum SCFAs concentration also increased. Further investigation showed that the produced SCFAs consisted of acetic, propionic, n-butyric, iso-butyric, n-valeric and iso-valeric acids, and acetic, iso-valeric and propionic acids were the three main products. The influence of SDS on methanogenesis was also investigated, and the inhibitory effect of SDS on methanogens activity was observed.

  12. Integrated Spectroscopic Studies of Hydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.; Lane, M. D.; Bishop, J. L.; OConnor, V.; Cloutis, E.; Hiroi, T.

    2005-01-01

    Sulfate minerals have been identified in Martian meteorites and on Mars using a suite of instruments aboard the MER rovers. These results have confirmed previous groundbased observations and orbital measurements that suggested their presence. The orbiting OMEGA instrument on Mars Express is also finding evidence for sulfate. In order to better interpret remote-sensing data, we present here the results of a coordinated visible/near infrared (VNIR) reflectance, Moussbauer (MB), and thermal emittance study of wellcharacterized hydrous sulfate minerals.

  13. Analytical techniques for ambient sulfate aerosols

    SciTech Connect

    Johnson, S.A.; Graczyk, D.G.; Kumar, R.; Cunningham, P.T.

    1981-06-01

    Work done to further develop the infrared spectroscopic analytical method for the analysis of atmospheric aerosol particles, as well as some exploratory work on a new procedure for determining proton acidity in aerosol samples is described. Earlier work had led to the successful use of infrared (ir) spectrophotometry for the analysis of nitrate, ammonium, and neutral and acidic sulfates in aerosol samples collected by an impactor on a Mylar-film substrate. In this work, a filter-extraction method was developed to prepare filter-collected aerosol samples for ir analysis. A study was made comparing the ir analytical results on filter-collected samples with impactor-collected samples. Also, the infrared analytical technique was compared in field studies with light-scattering techniques for aerosol analysis. A highly sensitive instrument for aerosol analysis using attenuated total internal reflection (ATR) infrared spectroscopy was designed, built, and tested. This instrument provides a measurement sensitivity much greater (by a factor of 6 for SO/sub 4//sup 2 -/) than that obtainable using the KBr-pellet method. This instrument collect size- and time-resolved samples and is potentially capable of providing automated, near real-time aerosol analysis. Exploratory work on a novel approach to the determination of proton acidity in filter- or impactor-collected aerosol samples is also described. In this technique, the acidic sample is reacted with an access of a tagged, vapor-phase base. The unreacted base is flushed off and the amount of the tag retained by the sample is a direct measure of the proton acidity of the sample. The base was tagged with Ge, which can be conveniently determined by the x-ray fluorescence technique.

  14. Sulfated triterpene derivatives from Fagonia arabica.

    PubMed

    Perrone, Angela; Masullo, Milena; Bassarello, Carla; Hamed, Arafa I; Belisario, Maria Antonietta; Pizza, Cosimo; Piacente, Sonia

    2007-04-01

    Two new sulfated triterpenes (1, 6) and four new sulfated triterpene glycosides (2-5) have been isolated from the aerial parts of Fagonia arabica. Their structures were established by spectroscopic data analysis. Compounds 1/2 and 3/4 are sulfated derivatives of the rare sapogenins 3beta,27-dihydroxyolean-12-en-28-oic acid and 3beta,27-dihydroxyurs-12-en-28-oic acid, respectively. Compound 5 is an unusual disulfated oleanene derivative characterized by the occurrence of a 13,18-double bond, while compound 6 is the first reported naturally occurring saturated and sulfated pentacyclic triterpene of the taraxastane series with a C-20,28 lactone unit.

  15. A modified sulfate process to lunar oxygen

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.

  16. A modified sulfate process to lunar oxygen

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.

    1992-01-01

    A modified sulfate process which produces oxygen from iron oxide-bearing minerals in lunar soil is under development. Reaction rates of ilmenite in varying strength sulfuric acid have been determined. Quantitative conversion of ilmenite to ferrous sulfate was observed over a range of temperatures and concentrations. Data has also been developed on the calcination of by-product sulfates. System engineering for overall operability and simplicity has begun, suggesting that a process separating the digestion and sulfate dissolution steps may offer an optimum process.

  17. Influence of Dispersion in Composites of Chopped PAN-Based Carbon Fiber Modified by Dodecyl Ether Carboxylate

    NASA Astrophysics Data System (ADS)

    Wu, B.; Zheng, G.; Liu, Y. J.; Sun, Y.; Wang, L.

    2016-03-01

    In this article, dodecyl ether carboxylate (AECNa) was prepared by dodecanol polyoxyethylene, sodium chloroacetate, and sodium hydroxide and employed as a treatment agent for PAN-based carbon fiber (CF) surface. The results show that the optimum adsorption amount of AECNa modifying CF was determined to be 4.0 mg/g. In addition, the equivalent variation regularity is obtained the CF surface charge properties and its dispersion behavior. The optimal dispersion effect of the short CFs in epoxy matrix is achieved when the surface charges reach the maximum by quantitative measurement using Faraday cup; the surface morphology and wettability are improved depending on the field emission scanning electron microscopy, Thermogravimetry, x-ray photoelectron spectroscopy, and monofilament contact angle testing. Furthermore, the flexural strength and modulus of the treated CF composite were proven to advance by flexural tests.

  18. Sub-Micellar Concentration of Sodium Dodecyl Sulphate Prevents Thermal Denaturation Induced Aggregation of Plant Lectin, Jacalin.

    PubMed

    Lavanya, V; Anil Kumar, B; Jamal, Shazia; Khan, Md Khurshid Alam; Ahmed, Neesar

    2017-02-01

    The irreversible thermal unfolding of jacalin, the lectin purified from jackfruit seeds was accompanied by aggregation, where intermolecular interactions among the subunits are favoured over intramolecular interactions. The extent of aggregation increased as a function of temperature, time and protein concentration. The anionic surfactant, sodium dodecyl sulphate (SDS) significantly suppressed the formation of aggregates as observed by turbidity measurements and Rayleigh scattering assay. Moreover, far UV-CD spectra indicate that the protein β sheet transforms into α helical structure, when denatured in the presence of 3 mM SDS. Further, jacalin when heated in the presence of SDS partially retained the hemagglutination activity when jacalin-SDS mixture was diluted to 1:8 factor since 3 mM SDS was found to lyse the red blood cells. Thus, SDS only altered the aggregation behaviour of jacalin by preventing intermolecular hydrogen bonding among the exposed residues but did not completely stabilize the native conformation.

  19. Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps.

    PubMed

    Clausen, S K; Sobhani, S; Poulsen, O M; Poulsen, L K; Nielsen, G D

    2000-11-01

    The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice. The surfactants were injected subcutaneously (sc) in concentrations of 1000, 100, 10 or 1 mg/l, respectively, together with 1 microg of ovalbumin (OVA). In addition, groups of mice received OVA in saline (control group) or in Al(OH)(3) (positive adjuvant control group). After the primary immunization the mice were boosted up to three times with OVA (0.1 microg sc) in saline. OVA-specific IgE antibodies were determined by the heterologous mouse rat passive cutaneous anaphylaxis test. The results were confirmed by a specific ELISA method. After the first booster, the Al(OH)(3) group and the 10 mg/l SDS group showed a statistically significant increase in OVA specific IgE levels. After two boosters, a statistically significant suppression in OVA-specific IgE production occurred with SDS (1000 mg/l), SDBS (1000 and 100 mg/l), coconut soap (1000 mg/l) and the alcohol ethoxylate (10 mg/l). This study suggests that a limited number of surfactants possess an adjuvant effect whereas all surfactants at certain levels can suppress specific IgE production.

  20. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.