Science.gov

Sample records for doe fire protection

  1. DOE Standard: Fire protection design criteria

    SciTech Connect

    Not Available

    1999-07-01

    The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  2. DOE Fire Protection Handbook, Volume I

    SciTech Connect

    1996-08-01

    The Department of Energy (DOE) Fire Protection Program is delineated in a number of source documents including; the Code of Federal Regulations (CFR), DOE Policy Statements and Orders, DOE and national consensus standards (such as those promulgated by the National Fire Protection Association), and supplementary guidance, This Handbook is intended to bring together in one location as much of this material as possible to facilitate understanding and ease of use. The applicability of any of these directives to individual Maintenance and Operating Contractors or to given facilities and operations is governed by existing contracts. Questions regarding applicability should be directed to the DOE Authority Having Jurisdiction for fire safety. The information provided within includes copies of those DOE directives that are directly applicable to the implementation of a comprehensive fire protection program. They are delineated in the Table of Contents. The items marked with an asterisk (*) are included on the disks in WordPerfect 5.1 format, with the filename noted below. The items marked with double asterisks are provided as hard copies as well as on the disk. For those using MAC disks, the files are in Wordperfect 2.1 for MAC.

  3. Fire protection research for DOE facilities: FY 83 year-end report

    SciTech Connect

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.; Stagge, K.

    1984-08-02

    We summarize our research in FY 83 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies of energy technology facilities in order to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are currently advancing three major task areas: (1) the identification of fire hazards unique to fusion energy facilities, (2) the evaluation of accepted fire-management measures to meet the negate hazards, and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  4. Fire-protection research for DOE facilities: FY 82 year-end report

    SciTech Connect

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Priante, S.J.; Foote, K.L.

    1983-09-02

    We summarize our research in FY 82 for the DOE-sponsored project, Fire Protection Research for DOE Facilities. This research program was initiated in 1977 to advance fire-protection strategies for energy technology facilities to keep abreast of the unique fire problems that develop along with energy technology research. Since 1977, the program has broadened its original scope, as reflected in previous year-end reports. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Using these experiments as models for methodology development, we are concurrently advancing three major task areas: (1) the identification of fire hazards unique to current fusion energy facilities; (2) the evaluation of accepted fire-management measures to meet and negate hazards; and (3) the performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  5. Fire Protection Program Manual

    SciTech Connect

    Sharry, J A

    2012-05-18

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  6. Fire protection design criteria

    SciTech Connect

    1997-03-01

    This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  7. DOE Fire Protection Handbook, Volume II. Fire effects and electrical and electronic equipment

    SciTech Connect

    1994-08-18

    Electrical and electronic equipment, including computers, are used at critical facilities throughout the Department of Energy (DOE). Hughes Associates, Inc. was tasked to evaluate the potential thermal and nonthermal effects of a fire on the electrical and electronic equipment and methods to analyze, evaluate, and assist in controlling the potential effects. This report is a result of a literature review and analysis on the effects of fire on electrical equipment. It is directed at three objectives: (1) Provide a state-of-the-art review and analysis of thermal and nonthermal damage to electrical and electronic equipment; (2) Develop a procedure for estimating thermal and nonthermal damage considerations using current knowledge; and (3) Develop an R&D/T&E program to fill gaps in the current knowledge needed to further perfect the procedure. The literature review was performed utilizing existing electronic databases. Sources searched included scientific and engineering databases including Dialog, NTIS, SciSearch and NIST BFRL literature. Incorporated in the analysis is unpublished literature and conversations with members of the ASTM E-5.21, Smoke Corrosivity, and researchers in the electronics field. This report does not consider the effects of fire suppression systems or efforts. Further analysis of the potential impact is required in the future.

  8. Fire Protection for Rural Communities.

    ERIC Educational Resources Information Center

    Hagevig, William A.

    Fire protection in rural Alaskan communities depends on individual home fire prevention and protection rather than on the services offered by a centralized fire department. Even when help is summoned to extinguish a blaze, aid does not come in the form of a cadre of highly trained firefighters; it comes instead from whomever happens to be in the…

  9. NASA Fire Protection

    NASA Technical Reports Server (NTRS)

    Clark, Theodore

    2001-01-01

    This viewgraph presentation provides information on fire protection operations and administration at Stennis Space Center (SSC). The presentation also lists innovative practices and recent improvements.

  10. Computer Room Fire Protection.

    ERIC Educational Resources Information Center

    Price, Bennett J.

    1990-01-01

    Notes that economic and service factors may dictate that special fire protection measures be given to computer rooms. The discussion covers emergency planning, various types of fire detection and suppression systems, and future options, with particular attention to halon and possible halon replacements. A list of suggested readings is provided.…

  11. School Fire Protection: Contents Count

    ERIC Educational Resources Information Center

    American School and University, 1976

    1976-01-01

    The heart of a fire protection system is the sprinkler system. National Fire Protection Association (NFPA) statistics show that automatic sprinklers dramatically reduce fire damage and loss of life. (Author)

  12. Fire Protection Jacket

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NERAC, Inc., Tolland, CT, aided Paul Monroe Engineering, Orange, CA, in the development of their PC1200 Series Fire Protection Jacket that protects the oil conduit system on an offshore drilling platform from the intense hydrocarbon fires that cause buckling and could cause structural failure of the platform. The flame-proof jacketing, which can withstand temperatures of 2000 degrees Fahrenheit for four hours or more, was developed from a combination of ceramic cloth (similar to the ceramic in Space Shuttle tiles), and laminates used in space suits.

  13. Fire Protection Materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Avco has drawn upon its heat shield experience to develop a number of widely-accepted commercial fire protection materials. Originating from NASA's space shuttle thermal protection system, one such material is Chartek 59 fireproofing, an intumescent epoxy coating specifically designed for outdoor use by industrial facilities dealing with highly flammable products such as oil refineries and chemical plants. The coating is applied usually by spray gun to exterior structural steel conduits, pipes and valves, offshore platforms and liquefied petroleum gas tanks. Fireproofing provides two types of protection: ablation or dissipation of heat by burn-off and "intumescence" or swelling; the coating swells to about five times its original size, forming a protective blanket of char which retards transfer of heat to the metal structure preventing loss of structural strength and possible collapse which would compound the fire fighting problem.

  14. Fire Protection in Educational Occupancies.

    ERIC Educational Resources Information Center

    Gervais, Romeo P.

    2000-01-01

    Discusses the origins of school fires and the components of the fire protection code called the Life Safety Code (LSC). Three of the following LSC requirements are described: means of egress; protection from hazards; and fire suppression and alarm systems. Information on who starts fires is highlighted along with preventive measures. (GR)

  15. Fire Protection for Buildings

    ERIC Educational Resources Information Center

    Edmunds, Jane

    1972-01-01

    Reviews attack on fire safety in high rise buildings made by a group of experts representing the iron and steel industry at a recent conference. According to one expert, fire problems are people oriented, which calls for emphasis on fire prevention rather than reliance on fire suppression and for fire pretection to be built into a structure.…

  16. Fire protection for inactive contaminated structures

    SciTech Connect

    Wyatt, D.M.

    1994-02-01

    In general industry and construction, destruction of an inactive/surplus facility by fire may be considered a blessing. However, in a decommissioned contaminated structure, where radiological and other hazardous materials exist, such a fire could be a major catastrophe. The losses from this type of fire are not only property (i.e., structure and its contents) but also the resulting environmental damage, required cleanup, offsite releases, and public relations and reactions. The purpose of this presentation is to (1) promote an awareness among the waste management community of fire protection engineering aspects that must be considered for inactive/surplus contaminated structures, and (2) present to the fire protection community an opportunity to become involved in the decommissioning process while promoting the DOE objectives to manage the risks associated with these structures.

  17. Fire Protection. Honeywell Planning Guide.

    ERIC Educational Resources Information Center

    Honeywell, Inc., Minneapolis, Minn.

    A general discussion of fire alarms and protection is provided by a manufacturer of automated monitoring and control systems. Background information describes old and new fire alarm systems, comparing system components, wage savings, and cost analysis. Different kinds of automatic systems are listed, including--(1) local system, (2) auxiliary…

  18. Fire Protection for Libraries.

    ERIC Educational Resources Information Center

    Fortson-James, Judith

    1981-01-01

    This overview of preventive measures that can be taken to help minimize damage to library materials from fire discusses the advantages, disadvantages, dangers, and comparative costs of several types of sprinkler systems, including high-expansion foam, total-flooding, dry- and wet-pipe systems, and on-off sprinkler heads. Five references are…

  19. Fire Protection for Libraries.

    ERIC Educational Resources Information Center

    Fortson-James, Judith

    1981-01-01

    This overview of preventive measures that can be taken to help minimize damage to library materials from fire discusses the advantages, disadvantages, dangers, and comparative costs of several types of sprinkler systems, including high-expansion foam, total-flooding, dry- and wet-pipe systems, and on-off sprinkler heads. Five references are…

  20. Fire Protection Informational Exchange

    DTIC Science & Technology

    2016-07-01

    pyrolysis products produced by the interaction, and future health and capabilities of the crew and equipment. In addition, there is a new push to...operate within an occupied space. Crew compartment systems must provide lower temperatures, pressures , and toxic gas concentrations and happen within a...evaluate the design of suppressant delivery systems, concentration of toxic byproducts, and pressure . 3.24 ARL The current status of the Fire Prediction

  1. 29 CFR 1926.150 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... each floor. (e) Fire alarm devices. (1) An alarm system, e.g., telephone system, siren, etc., shall be... 29 Labor 8 2014-07-01 2014-07-01 false Fire protection. 1926.150 Section 1926.150 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fire Protection and Prevention § 1926.150 Fire...

  2. 29 CFR 1926.150 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... each floor. (e) Fire alarm devices. (1) An alarm system, e.g., telephone system, siren, etc., shall be... 29 Labor 8 2010-07-01 2010-07-01 false Fire protection. 1926.150 Section 1926.150 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fire Protection and Prevention § 1926.150 Fire...

  3. 29 CFR 1926.150 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... each floor. (e) Fire alarm devices. (1) An alarm system, e.g., telephone system, siren, etc., shall be... 29 Labor 8 2013-07-01 2013-07-01 false Fire protection. 1926.150 Section 1926.150 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fire Protection and Prevention § 1926.150 Fire...

  4. 29 CFR 1926.150 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... each floor. (e) Fire alarm devices. (1) An alarm system, e.g., telephone system, siren, etc., shall be... 29 Labor 8 2012-07-01 2012-07-01 false Fire protection. 1926.150 Section 1926.150 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fire Protection and Prevention § 1926.150 Fire...

  5. 29 CFR 1926.150 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... each floor. (e) Fire alarm devices. (1) An alarm system, e.g., telephone system, siren, etc., shall be... 29 Labor 8 2011-07-01 2011-07-01 false Fire protection. 1926.150 Section 1926.150 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Fire Protection and Prevention § 1926.150 Fire...

  6. Site fire protection projects review board engineering evaluation

    SciTech Connect

    Fayfich, R.R.

    1992-12-31

    The Savannah River Site (SRS) has been safely operated since its beginning in the early 1950`s with an effective, highly successful program of fire prevention. However, in the mid 1980`s the Department of Energy directed the site to identify and install fire protection measure in addition to the reliance on prevention. To address the site needs, independent fire protection surveys were conducted by Factory Mutual Research Corporation and Professional Loss Control, Inc. in 1986 and 1987. The results of these surveys identified 1400 fire protection improvements needed in existing facilities to comply with DOE Orders and NFPA Codes and Standards.

  7. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Fire protection. 115.810 Section 115.810 Shipping COAST... Inspections § 115.810 Fire protection. (a) At each initial and subsequent inspection for certification, the... of its fire protection equipment, including the following: (1) Inspection of each hand portable...

  8. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire protection. 176.810 Section 176.810 Shipping COAST...) INSPECTION AND CERTIFICATION Material Inspections § 176.810 Fire protection. (a) At each initial and... and have the vessel ready for inspection of its fire protection equipment, including the following:...

  9. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Fire protection. 115.810 Section 115.810 Shipping COAST... Inspections § 115.810 Fire protection. (a) At each initial and subsequent inspection for certification, the... of its fire protection equipment, including the following: (1) Inspection of each hand portable...

  10. Fire protection of coal handling systems

    SciTech Connect

    Gese, R.A.

    1983-02-01

    Following an explosion and fire at Powerton Power Station in October, 1980, a comprehensive coal handling fire protection system was installed as part of an overall restoration plan. The restoration involved many fire-safety modifications, such as improved baghouse operations, dust prevention, vacuum and conveyor washdown systems, new explosion-isolating conveyor design, fire escapes and a comprehensive fire protection system for the coal handling system.

  11. Rx fire laws: tools to protect fire: the `ecological imperative?

    Treesearch

    Dale Wade; Steven Miller; Johnny Stowe; James Brenner

    2006-01-01

    The South is the birthplace of statutes and ordinances that both advocate and protect the cultural heritage of woods burning, which has been practiced in this region uninterrupted for more than 10,000 years. We present a brief overview of fire use in the South and discuss why most southern states recognized early on that periodic fire was necessary to sustain fire...

  12. Does pyrogenicity protect burning plants?

    PubMed

    Gagnon, Paul R; Passmore, Heather A; Platt, William J; Myers, Jonathan A; Paine, C E Timothy; Harms, Kyle E

    2010-12-01

    Pyrogenic plants dominate many fire-prone ecosystems. Their prevalence suggests some advantage to their enhanced flammability, but researchers have had difficulty tying pyrogenicity to individual-level advantages. Based on our review, we propose that enhanced flammability in fire-prone ecosystems should protect the belowground organs and nearby propagules of certain individual plants during fires. We base this hypothesis on five points: (1) organs and propagules by which many fire-adapted plants survive fires are vulnerable to elevated soil temperatures during fires; (2) the degree to which burning plant fuels heat the soil depends mainly on residence times of fires and on fuel location relative to the soil; (3) fires and fire effects are locally heterogeneous, meaning that individual plants can affect local soil heating via their fuels; (4) how a plant burns can thus affect its fitness; and (5) in many cases, natural selection in fire-prone habitats should therefore favor plants that burn rapidly and retain fuels off the ground. We predict an advantage of enhanced flammability for plants whose fuels influence local fire characteristics and whose regenerative tissues or propagules are affected by local variation in fires. Our "pyrogenicity as protection" hypothesis has the potential to apply to a range of life histories. We discuss implications for ecological and evolutionary theory and suggest considerations for testing the hypothesis.

  13. 46 CFR 169.311 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire protection. 169.311 Section 169.311 Shipping COAST... and Arrangement Hull Structure § 169.311 Fire protection. (a) The general construction of the vessel must be designed to minimize fire hazards. Each vessel which carries more than 100 persons or has...

  14. 46 CFR 169.311 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire protection. 169.311 Section 169.311 Shipping COAST... and Arrangement Hull Structure § 169.311 Fire protection. (a) The general construction of the vessel must be designed to minimize fire hazards. Each vessel which carries more than 100 persons or has...

  15. 46 CFR 169.311 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire protection. 169.311 Section 169.311 Shipping COAST... and Arrangement Hull Structure § 169.311 Fire protection. (a) The general construction of the vessel must be designed to minimize fire hazards. Each vessel which carries more than 100 persons or has...

  16. 46 CFR 169.311 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire protection. 169.311 Section 169.311 Shipping COAST... and Arrangement Hull Structure § 169.311 Fire protection. (a) The general construction of the vessel must be designed to minimize fire hazards. Each vessel which carries more than 100 persons or...

  17. 46 CFR 169.311 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fire protection. 169.311 Section 169.311 Shipping COAST... and Arrangement Hull Structure § 169.311 Fire protection. (a) The general construction of the vessel must be designed to minimize fire hazards. Each vessel which carries more than 100 persons or...

  18. Aging assessment for active fire protection systems

    SciTech Connect

    Ross, S.B.; Nowlen, S.P.; Tanaka, T.

    1995-06-01

    This study assessed the impact of aging on the performance and reliability of active fire protection systems including both fixed fire suppression and fixed fire detection systems. The experience base shows that most nuclear power plants have an aggressive maintenance and testing program and are finding degraded fire protection system components before a failure occurs. Also, from the data reviewed it is clear that the risk impact of fire protection system aging is low. However, it is assumed that a more aggressive maintenance and testing program involving preventive diagnostics may reduce the risk impact even further.

  19. Does Yellowstone need large fires

    SciTech Connect

    Romme, W.H. ); Turner, M.G.; Gardner, R.H.; Hargrove, W.W. )

    1994-06-01

    This paper synthesizes several studies initiated after the 1988 Yellowstone fires, to address the question whether the ecological effects of large fires differ qualitatively as well as quantitatively from small fires. Large burn patches had greater dominance and contagion of burn severity classes, and a higher proportion of crown fire. Burned aspen stands resprouted vigorously over an extensive area, but heavy ungulate browsing prevented establishment of new tree-sized stems. A burst of sexual reproduction occurred in forest herbs that usually reproduce vegetatively, and new aspen clones became established from seed - a rare event in this region. We conclude that the effects of large fires are qualitatively different, but less dramatically so than expected.

  20. NASA Fire Protection Coordinators' Conference

    NASA Technical Reports Server (NTRS)

    Clark, Theodore

    2001-01-01

    Fire prevention activities at NASA's Stennis Space Center are reviewed in this viewgraph presentation. The Fire Prevention Office of the Fire Department at NASA Stennis conducts inspections and issues small appliance permits, while the Operations Section responds to emergencies.

  1. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with...

  2. Conventional fire protection considerations in LMFBRs

    SciTech Connect

    1985-01-01

    In Liquid Metal Fast Breeder Reactors (LMFBRs) the presence of liquid alkali metals such as sodium or NaK precludes the utilization of conventional fire fighting agents in areas containing liquid metals. Also because of fundamental differences between an LMFBR plant layout and that of a Light Water Reactor (LWR) plant, special LMFBR fire protection guidelines were established. This report describes the design considerations for the Clinch River Breeder Reactor Plant (CRBRP) fire protection system. The report concludes with a description of the CRBRP fire protection design features major differences from LWRs.

  3. 10 CFR 36.27 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must...

  4. 10 CFR 36.27 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must...

  5. 10 CFR 36.27 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must...

  6. 10 CFR 36.27 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must...

  7. 10 CFR 36.27 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR IRRADIATORS Design and Performance Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must...

  8. Selection and maintenance key to fire protection

    SciTech Connect

    Briese, B.L.

    1996-11-01

    Petroleum product and chemical storage terminals, because of the combustible products they handle, face severe fire exposure potentials. A fire at a terminal can grow rapidly and release damaging and deadly heat, threatening personnel, facilities, the adjoining environment and revenue. To combat this danger, terminals employ several types of fire protection systems, both fixed and mobile. All adhere to consensus codes and standards. Following installation of automatic fire protection equipment, its acceptance (sometimes referred to as commissioning) testing, ongoing maintenance and periodic inspection is vitally important to assure that it reliably functions when required.

  9. Fire Protection Engineering Survey of Air Traffic Control Towers.

    DTIC Science & Technology

    1977-01-01

    tower fire water system. Fire water is supplied by the city distribution system. Hydrants are located along Fairfax Road. EXITING FACILITIES There are...Protection Water Supply There is no in tower fire water system. Fire water protection is apparently supplied off the city water distribution system...needed. Fire Protection Water Supply The tower has no fire water protection. There are no fire hydrants in the area. Well water supplies domestic

  10. Solution of Fire Protection in Historic Buildings

    NASA Astrophysics Data System (ADS)

    Iringová, Agnes; Idunk, Róbert

    2016-12-01

    The paper introduces optimization of the functional use of renovated spaces in historic buildings in terms of fire risk. It brings assessment of fire protection in the folk house Habánsky Dvor, situated in the village of Veľké Leváre, whose function was changed into the museum. It goes into static analysis of existing load-bearing structures and assessment of their fire resistance according to Eurocodes.

  11. Fire protection for launch facilities using machine vision fire detection

    NASA Astrophysics Data System (ADS)

    Schwartz, Douglas B.

    1993-02-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  12. Fire protection for launch facilities using machine vision fire detection

    NASA Technical Reports Server (NTRS)

    Schwartz, Douglas B.

    1993-01-01

    Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.

  13. 10 CFR 50.48 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... suppression systems; and (iii) The means to limit fire damage to structures, systems, or components important...) Standard 805, “Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating... pressurized-water reactors (PWRs) is not permitted. (iv) Uncertainty analysis. An uncertainty analysis...

  14. 10 CFR 50.48 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... suppression systems; and (iii) The means to limit fire damage to structures, systems, or components important...) Standard 805, “Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating... pressurized-water reactors (PWRs) is not permitted. (iv) Uncertainty analysis. An uncertainty analysis...

  15. 14 CFR 121.253 - Powerplant fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Powerplant fire protection. 121.253 Section... Powerplant fire protection. (a) Designated fire zones must be protected from fire by compliance with §§ 121.255 through 121.261. (b) Designated fire zones are— (1) Engine accessory sections; (2) Installations...

  16. 14 CFR 125.151 - Powerplant fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Powerplant fire protection. 125.151 Section... Requirements § 125.151 Powerplant fire protection. (a) Designated fire zones must be protected from fire by compliance with §§ 125.153 through 125.159. (b) Designated fire zones are— (1) Engine accessory sections; (2...

  17. 14 CFR 121.253 - Powerplant fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Powerplant fire protection. 121.253 Section... Powerplant fire protection. (a) Designated fire zones must be protected from fire by compliance with §§ 121.255 through 121.261. (b) Designated fire zones are— (1) Engine accessory sections; (2) Installations...

  18. 14 CFR 125.151 - Powerplant fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Powerplant fire protection. 125.151 Section... Requirements § 125.151 Powerplant fire protection. (a) Designated fire zones must be protected from fire by compliance with §§ 125.153 through 125.159. (b) Designated fire zones are— (1) Engine accessory sections; (2...

  19. 14 CFR 121.253 - Powerplant fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Powerplant fire protection. 121.253 Section... Powerplant fire protection. (a) Designated fire zones must be protected from fire by compliance with §§ 121.255 through 121.261. (b) Designated fire zones are— (1) Engine accessory sections; (2) Installations...

  20. 14 CFR 121.253 - Powerplant fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Powerplant fire protection. 121.253 Section... Powerplant fire protection. (a) Designated fire zones must be protected from fire by compliance with §§ 121.255 through 121.261. (b) Designated fire zones are— (1) Engine accessory sections; (2) Installations...

  1. Does browsing reduce shrub survival and vigor following summer fires?

    NASA Astrophysics Data System (ADS)

    Fulbright, Timothy E.; Dacy, Emily C.; Drawe, D. Lynn

    2011-01-01

    Periodic fire is widely hypothesized to limit woody plant encroachment in semiarid grasslands. In southern Texas, however, most of the woody plants that have invaded grasslands during the past two centuries are resistant to fire. We hypothesized that browsing by Odocoileus virginianus increases mortality of palatable shrubs and reduces vigor of shrubs following fire. We randomly selected ten pairs of each of three shrub species -Condalia hookeri, Acacia farnesiana, and Celtis ehrenbergiana - in each of three locations before prescribed burns during summer 2001. Following burns, we used a wire fence to protect one shrub of each pair from browsing. We estimated intensity of O. virginianus browsing and number and height of sprouts 4, 12, 20, 30, 38, and 47 weeks post-fire. We determined shrub height, survival, and biomass one year post-fire. Averaged across species, browsing intensity on unfenced shrubs was greater (LS Means, P < 0.05) than on fenced shrubs on all sampling dates except four and 30 weeks post-fire. Mortality of unfenced (11 ± 9%) (mean ± SE) and fenced (12 ± 7%, n = 9) shrubs was similar (P = 0.674) one year post-fire, averaged across shrub species. Number of sprouts, sprout height, total plant height, and biomass of protected and browsed plants were similar (P > 0.05) one year post-burn. Browsing by O. virginianus at the intensity in our study does not increase mortality or reduce vigor of C. hookeri, A. farnesiana, and Condalia ehrenbergiana producing new growth following destruction of aboveground tissues by a single fire compared to shrubs that are not browsed following fire.

  2. Stochastic representation of fire behavior in a wildland fire protection planning model for California.

    Treesearch

    J. Keith Gilless; Jeremy S. Fried

    1998-01-01

    A fire behavior module was developed for the California Fire Economics Simulator version 2 (CFES2), a stochastic simulation model of initial attack on wildland fire used by the California Department of Forestry and Fire Protection. Fire rate of spread (ROS) and fire dispatch level (FDL) for simulated fires "occurring" on the same day are determined by making...

  3. Loss prevention and fire protection for oil refineries. Technical report

    SciTech Connect

    Lockwood, N.R.

    1981-04-01

    The handling of large volumes of volatile, toxic, and flammable liquids at high pressures and high temperatures requires special fire protection to reduce fire risk. Fire water systems, fixed water-spray systems, monitors and hose reels, drainage, portable fire extinguishers, process safety and fire protection, control buildings, offsites, storage tank fire protection, fire trucks, utilities and training are methods of fire protection and loss prevention discussed to protect today's sophisticated, expensive oil refineries in the most cost-effective way. These methods are described and discussed individually.

  4. Fire protection countermeasures for containment ventilation systems

    SciTech Connect

    Alvares, N.J.; Beason, D.G.; Bergman, W.; Ford, H.W.; Lipska, A.E.

    1980-01-01

    The goal of this project is to find countermeasures to protect HEPA filters in exit ventilation ducts from the heat and smoke generated by fire. Several methods for partially mitigating the smoke exposure to the HEPA filters were identified through testing and analysis. These independently involve controlling the fuel, controlling the fire, and intercepting the smoke aerosol prior to its sorption on the HEPA filter. Exit duct treatment of aerosols is not unusual in industrial applications and involves the use of scrubbers, prefilters, and inertial impaction, depending on the size, distribution, and concentration of the subject aerosol. However, when these unmodified techniques were applied to smoke aerosols from fires on materials, common to experimental laboratories of LLNL, it was found they offered minimal protection to the HEPA filters. Ultimately, a continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. This technique is capable of protecting HEPA filters over the total duration of the test fires. The reason for success involved the modificaton of the prefiltration media. Commercially available filter media has a particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, we laminated rolling filter media with the desired properties. It is not true that the use of rolling prefilters solely to protect HEPA filters from fire-generated smoke aerosols is cost effective in every type of containment system, especially if standard fire-protection systems are available in the space. But in areas of high fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified.

  5. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859 Section 23.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions...

  6. 30 CFR 77.1100 - Fire protection; training and organization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fire protection; training and organization. 77... UNDERGROUND COAL MINES Fire Protection § 77.1100 Fire protection; training and organization. Firefighting facilities and equipment shall be provided commensurate with the potential fire hazards at each structure...

  7. 30 CFR 77.1100 - Fire protection; training and organization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fire protection; training and organization. 77... UNDERGROUND COAL MINES Fire Protection § 77.1100 Fire protection; training and organization. Firefighting facilities and equipment shall be provided commensurate with the potential fire hazards at each structure...

  8. Fire protection countermeasures for containment ventilation systems

    SciTech Connect

    Alvares, N.; Beason, D.; Bergman, V.; Creighton, J.; Ford, H.; Lipska, A.

    1980-08-25

    The goal of this project is to find countermeasures to protect High Efficiency Particulate Air (HEPA) filters, in exit ventilation ducts, from the heat and smoke generated by fire. Initially, methods were developed to cool fire-heated air by fine water spray upstream of the filters. It was recognized that smoke aerosol exposure to HEPA filters could also cause disruption of the containment system. Through testing and analysis, several methods to partially mitigate the smoke exposure to the HEPA filters were identified. A continuous, movable, high-efficiency prefilter using modified commercial equipment was designed. The technique is capable of protecting HEPA filters over the total time duration of the test fires. The reason for success involved the modification of the prefiltration media. Commercially available filter media has particle sorption efficiency that is inversely proportional to media strength. To achieve properties of both efficiency and strength, rolling filter media were laminated with the desired properties. The approach was Edisonian, but truncation in short order to a combination of prefilters was effective. The application of this technique was qualified, since it is of use only to protect HEPA filters from fire-generated smoke aerosols. It is not believed that this technique is cost effective in the total spectrum of containment systems, especially if standard fire protection systems are available in the space. But in areas of high-fire risk, where the potential fuel load is large and ignition sources are plentiful, the complication of a rolling prefilter in exit ventilation ducts to protect HEPA filters from smoke aerosols is definitely justified.

  9. LLNL Fire Protection Engineering Standard 5.8 Facility Survey Program

    SciTech Connect

    Sharry, J A

    2012-01-04

    This standard describes the LLNL Fire Protection Facility Survey Program. The purpose of this standard is to describe the type of facility surveys required to fulfill the requirements of DOE Order 420.1B, Facility Safety. Nothing in this standard is intended to prevent the development of a FHA using alternative approaches. Alternate approaches, including formatting, will be by exception only, and approved by the Fire Marshal/Fire Protection Engineering Subject Matter Expert in advance of their use.

  10. WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect

    J. D. Bigbee

    2000-06-21

    The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

  11. Resistance after firing protected electric match

    DOEpatents

    Montoya, Arsenio P.

    1981-11-10

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  12. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Type system Test Carbon dioxide Weigh cylinders. Recharge cylinder if weight loss exceeds 10 percent of...) INSPECTION AND CERTIFICATION Material Inspections § 176.810 Fire protection. (a) At each initial and subsequent inspection for certification, the owner or managing operator shall be prepared to conduct...

  13. Halon Gas and Library Fire Protection.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Describes the operation of halon gas fire extinguishing systems, which have been installed in a number of libraries and archives across Canada where protection of special collections from water and mold damage resulting from operation of a standard water sprinkler system is paramount. The advantages and disadvantages of this type of system are…

  14. 49 CFR 193.2801 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... maintain fire protection at LNG plants according to sections 9.1 through 9.7 and section 9.9 of NFPA 59A (incorporated by reference, see § 193.2013). However, LNG plants existing on March 31, 2000, need not...

  15. 49 CFR 193.2801 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... maintain fire protection at LNG plants according to sections 9.1 through 9.7 and section 9.9 of NFPA 59A (incorporated by reference, see § 193.2013). However, LNG plants existing on March 31, 2000, need not...

  16. 49 CFR 193.2801 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... maintain fire protection at LNG plants according to sections 9.1 through 9.7 and section 9.9 of NFPA 59A (incorporated by reference, see § 193.2013). However, LNG plants existing on March 31, 2000, need not...

  17. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Fire protection. 193.2611 Section 193.2611 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  18. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Fire protection. 193.2611 Section 193.2611 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  19. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Fire protection. 193.2611 Section 193.2611 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  20. 49 CFR 193.2801 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Fire protection. 193.2801 Section 193.2801 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  1. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Fire protection. 193.2611 Section 193.2611 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  2. 49 CFR 193.2611 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Fire protection. 193.2611 Section 193.2611 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  3. 49 CFR 193.2801 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Fire protection. 193.2801 Section 193.2801 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES...

  4. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating...

  5. 46 CFR 194.15-7 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire protection. 194.15-7 Section 194.15-7 Shipping... § 194.15-7 Fire protection. (a) If a fixed or semiportable fire-fighting system is installed, it shall meet the applicable requirements in part 193 of this subchapter. Other fire-fighting systems will...

  6. 46 CFR 194.15-7 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire protection. 194.15-7 Section 194.15-7 Shipping... § 194.15-7 Fire protection. (a) If a fixed or semiportable fire-fighting system is installed, it shall meet the applicable requirements in part 193 of this subchapter. Other fire-fighting systems will...

  7. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-called “civilian” employees of a fire department, fire district, or forestry service who engage in such... 29 Labor 3 2014-07-01 2014-07-01 false Fire protection activities. 553.210 Section 553.210 Labor... OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law...

  8. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-called “civilian” employees of a fire department, fire district, or forestry service who engage in such... 29 Labor 3 2012-07-01 2012-07-01 false Fire protection activities. 553.210 Section 553.210 Labor... OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law...

  9. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-called “civilian” employees of a fire department, fire district, or forestry service who engage in such... 29 Labor 3 2011-07-01 2011-07-01 false Fire protection activities. 553.210 Section 553.210 Labor... OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law...

  10. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-called “civilian” employees of a fire department, fire district, or forestry service who engage in such... 29 Labor 3 2013-07-01 2013-07-01 false Fire protection activities. 553.210 Section 553.210 Labor... OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law...

  11. Fire Protection Review: Ross Aviation, Albuquerque, New Mexico

    SciTech Connect

    Ramsey, S.E.; Sharland, J.R.

    1991-02-01

    The purpose of this survey was to review the facility fire protection program and to make recommendations or to identify areas according to the following criteria established by the US Department of Energy: Recommendations which would be made as the result of a Highly Protected Risk (HPR) fire inspection of an industrial facility. (This would include human element'' recommendations.) Identification of areas where provision of automatic protection would limit a fire or explosion loss to $1,000,000. Identification of Maximum Foreseeable Loss (MFL) areas where loss potential exceeds $50,000,000 assuming a failure of automatic protection systems and subsequent reliance only on separation, fire walls, or value limitations. In private industry, the effect of insured losses on continuity of operations is referred to as Business Interruption and is usually expressed in monetary terms to cover continuing expense and loss of profit until such time as repairs are made and production is resumed. Loss of use of facility of this type does not lend itself to expression in monetary terms. Surveys of other facilities resulted in a classification system for buildings which provide an indication of the importance of the building to the fulfillment of the mission of the facility. Recommendations in this report reflect to some degree the relative importance of the facility and the time to restore it to useful condition in the event a loss were to occur.

  12. 29 CFR 1926.24 - Fire protection and prevention.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Fire protection and prevention. 1926.24 Section 1926.24... Provisions § 1926.24 Fire protection and prevention. The employer shall be responsible for the development and maintenance of an effective fire protection and prevention program at the job site throughout all...

  13. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182. (b...

  14. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182. (b...

  15. 46 CFR 194.20-7 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire protection. 194.20-7 Section 194.20-7 Shipping... Fire protection. (a) Each chemical storeroom shall be protected by a fixed automatic carbon dioxide... fire extinguishers are required in accordance with Table 193.50-10(a) of this subchapter. ...

  16. 14 CFR 25.854 - Lavatory fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Lavatory fire protection. 25.854 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.854 Lavatory fire protection. For airplanes with a passenger capacity of 20 or more: (a) Each lavatory must be...

  17. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  18. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  19. 14 CFR 23.1359 - Electrical system fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system fire protection. 23.1359... Electrical Systems and Equipment § 23.1359 Electrical system fire protection. (a) Each component of the electrical system must meet the applicable fire protection requirements of §§ 23.863 and 23.1182....

  20. 29 CFR 1926.24 - Fire protection and prevention.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Fire protection and prevention. 1926.24 Section 1926.24... Provisions § 1926.24 Fire protection and prevention. The employer shall be responsible for the development and maintenance of an effective fire protection and prevention program at the job site throughout all...

  1. 29 CFR 1926.24 - Fire protection and prevention.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Fire protection and prevention. 1926.24 Section 1926.24... Provisions § 1926.24 Fire protection and prevention. The employer shall be responsible for the development and maintenance of an effective fire protection and prevention program at the job site throughout all...

  2. 29 CFR 1926.24 - Fire protection and prevention.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Fire protection and prevention. 1926.24 Section 1926.24... Provisions § 1926.24 Fire protection and prevention. The employer shall be responsible for the development and maintenance of an effective fire protection and prevention program at the job site throughout...

  3. 46 CFR 72.15-5 - Structural fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Structural fire protection. 72.15-5 Section 72.15-5... ARRANGEMENT Ventilation § 72.15-5 Structural fire protection. See § 72.05-50 for ventilation requirements pertaining to structural fire protection....

  4. 46 CFR 194.20-7 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Fire protection. 194.20-7 Section 194.20-7 Shipping... Fire protection. (a) Each chemical storeroom must be protected by a fixed automatic extinguishing... with 46 CFR subpart 193.15. (b) Portable fire extinguishers are required in accordance with Table...

  5. 46 CFR 194.20-7 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fire protection. 194.20-7 Section 194.20-7 Shipping... Fire protection. (a) Each chemical storeroom shall be protected by a fixed automatic carbon dioxide... fire extinguishers are required in accordance with Table 193.50-10(a) of this subchapter....

  6. 46 CFR 194.20-7 - Fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Fire protection. 194.20-7 Section 194.20-7 Shipping... Fire protection. (a) Each chemical storeroom must be protected by a fixed automatic extinguishing... with 46 CFR subpart 193.15. (b) Portable fire extinguishers are required in accordance with Table...

  7. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 23.863... Construction Fire Protection § 23.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability...

  8. 46 CFR 127.225 - Structural fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Structural fire protection. 127.225 Section 127.225... ARRANGEMENTS Particular Construction and Arrangements § 127.225 Structural fire protection. (a) Each OSV of at...) All structural fire-protection materials must be approved by the Coast Guard in accordance with the...

  9. 46 CFR 72.15-5 - Structural fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Structural fire protection. 72.15-5 Section 72.15-5... ARRANGEMENT Ventilation § 72.15-5 Structural fire protection. See § 72.05-50 for ventilation requirements pertaining to structural fire protection. ...

  10. 46 CFR 72.15-5 - Structural fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Structural fire protection. 72.15-5 Section 72.15-5... ARRANGEMENT Ventilation § 72.15-5 Structural fire protection. See § 72.05-50 for ventilation requirements pertaining to structural fire protection. ...

  11. 46 CFR 72.15-5 - Structural fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Structural fire protection. 72.15-5 Section 72.15-5... ARRANGEMENT Ventilation § 72.15-5 Structural fire protection. See § 72.05-50 for ventilation requirements pertaining to structural fire protection. ...

  12. 46 CFR 72.15-5 - Structural fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Structural fire protection. 72.15-5 Section 72.15-5... ARRANGEMENT Ventilation § 72.15-5 Structural fire protection. See § 72.05-50 for ventilation requirements pertaining to structural fire protection. ...

  13. Calculation of Fire Severity Factors and Fire Non-Suppression Probabilities For A DOE Facility Fire PRA

    SciTech Connect

    Tom Elicson; Bentley Harwood; Jim Bouchard; Heather Lucek

    2011-03-01

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: • Development of time-dependent fire heat release rate profiles (required as input to CFAST), • Calculation of fire severity factors based on CFAST detailed fire modeling, and • Calculation of fire non-suppression probabilities.

  14. Remote monitoring of a Fire Protection System

    NASA Astrophysics Data System (ADS)

    Bauman, Steven; Vermeulen, Tom; Roberts, Larry; Matsushige, Grant; Gajadhar, Sarah; Taroma, Ralph; Elizares, Casey; Arruda, Tyson; Potter, Sharon; Hoffman, James

    2011-03-01

    Some years ago CFHT proposed developing a Remote Observing Environment aimed at producing Science Observations at their Observatory Facility on Mauna Kea from their Headquarters facility in Waimea, HI. This Remote Observing Project commonly referred to as OAP (Observatory Automation Project) was completed at the end of January 2011 and has been providing the majority of Science Data since. My poster will discuss the upgrades to the existing fire alarm protection system. With no one at the summit during nightly operations, the observatory facility required automated monitoring of the facility for safety to personnel and equipment in the case of a fire. An addressable analog fire panel was installed which utilizes digital communication protocol (DCP), intelligent communication with other devices, and an RS-232 interface which provides feedback and real-time monitoring of the system. Using the interface capabilities of the panel, it provides notifications when heat detectors, smoke sensors, manual pull stations, or the main observatory computer room fire suppression system has been activated. The notifications are sent out as alerts to staff in the form of test massages and emails and the observing control GUI interface alerts the remote telescope operator with a map showing the location of the fire occurrence and type of device that has been triggered. And all of this was accomplished without the need for an outside vendor to monitor the system and facilitate warnings or notifications regarding the system.

  15. Aviation Engine Test Facilities (AETF) Fire Protection Study

    DTIC Science & Technology

    1989-07-13

    Breen, D. E., "Hangar Fire Protection with Automatic AFFF Systems," Fire Technology , 92_), pp. 119-131, 1973. 17. Alger, R. S. et al, "Effectiveness...Response Time of Ceiling- Mounted Fire Detectors," Fire Technology , Vol. 8, p. 181, 1972. 51. Babrauskas, V., "Estimating Large Pool Burning Rates...34 Fire Technology , 1983. 52. Larson, T. E., "Detecting Fires with Ultraviolet and Infrared," Specifying Engineer, Vol. 53, No. 5, pp. 62- 65 (May 1985

  16. Modeling thermal protection outfits for fire exposures

    NASA Astrophysics Data System (ADS)

    Song, Guowen

    2002-01-01

    A numerical model has been developed that successfully predicts heat transfer through thermally protective clothing materials and garments exposed to intense heat. The model considers the effect of fire exposure to the thermophysical properties of materials as well as the air layers between the clothing material and skin surface. These experiments involved characterizing the flash fire surrounding the manikin by measuring the temperature of the flame above each thermal sensor in the manikin surface. An estimation method is used to calculate the heat transfer coefficient for each thermal sensor in a 4 second exposure to an average heat flux of 2.00cal/cm2sec. A parameter estimation method was used to estimate heat induced change in fabric thermophysical properties. The skin-clothe air gap distribution of different garments was determined using three-dimensional body scanning technology. Multi-layer skin model and a burn prediction method were used to predict second and third degree burns. The integrated generalized model developed was validated using the "Pyroman" Thermal Protective Clothing Analysis System with Kevlar/PBIRTM and NomexRTMIIIA coverall garments with different configuration and exposure time. A parametric study conducted using this numerical model indicated the influencing parameters on garment thermal protective performance in terms of skin burn damage subjected to 4 second flash fire exposure. The importance of these parameters is analyzed and distinguished. These parameters includes fabric thermophysical properties, PyromanRTM chamber flash fire characteristics, garment shrinkage and fit factors, as well as garment initial and test ambient temperature. Different skin models and their influence on burn prediction were also investigated using this model.

  17. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859 Section 29.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion...

  18. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859 Section 25.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion...

  19. 49 CFR 176.315 - Fire protection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fire hose fitted with an approved portable mechanical foam nozzle with pick-up tube and two 19 L (5... 49 Transportation 2 2012-10-01 2012-10-01 false Fire protection requirements. 176.315 Section 176... Detailed Requirements for Class 3 (Flammable) and Combustible Liquid Materials § 176.315 Fire protection...

  20. 46 CFR 127.220 - General fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false General fire protection. 127.220 Section 127.220... ARRANGEMENTS Particular Construction and Arrangements § 127.220 General fire protection. (a) Each vessel must be designed and constructed to minimize fire hazards, as far as reasonable and practicable. (b...

  1. 46 CFR 127.220 - General fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false General fire protection. 127.220 Section 127.220... ARRANGEMENTS Particular Construction and Arrangements § 127.220 General fire protection. (a) Each vessel must be designed and constructed to minimize fire hazards, as far as reasonable and practicable. (b...

  2. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not...

  3. 14 CFR 23.1451 - Fire protection for oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire protection for oxygen equipment. 23... Equipment Miscellaneous Equipment § 23.1451 Fire protection for oxygen equipment. Oxygen equipment and lines... in, or escape from, any designated fire zone. (c) Be installed so that escaping oxygen cannot come...

  4. 14 CFR 23.1451 - Fire protection for oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection for oxygen equipment. 23... Equipment Miscellaneous Equipment § 23.1451 Fire protection for oxygen equipment. Oxygen equipment and lines... in, or escape from, any designated fire zone. (c) Be installed so that escaping oxygen cannot come...

  5. 14 CFR 23.1451 - Fire protection for oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection for oxygen equipment. 23... Equipment Miscellaneous Equipment § 23.1451 Fire protection for oxygen equipment. Oxygen equipment and lines... in, or escape from, any designated fire zone. (c) Be installed so that escaping oxygen cannot come...

  6. 14 CFR 23.1451 - Fire protection for oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection for oxygen equipment. 23... Equipment Miscellaneous Equipment § 23.1451 Fire protection for oxygen equipment. Oxygen equipment and lines... in, or escape from, any designated fire zone. (c) Be installed so that escaping oxygen cannot come...

  7. 14 CFR 23.1451 - Fire protection for oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection for oxygen equipment. 23... Equipment Miscellaneous Equipment § 23.1451 Fire protection for oxygen equipment. Oxygen equipment and lines... in, or escape from, any designated fire zone. (c) Be installed so that escaping oxygen cannot come...

  8. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  9. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  10. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  11. 46 CFR 185.612 - Fire protection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... 46 Shipping 7 2011-10-01 2011-10-01 false Fire protection equipment. 185.612 Section 185.612... TONS) OPERATIONS Markings Required § 185.612 Fire protection equipment. (a) Complete but simple...

  12. 46 CFR 185.612 - Fire protection equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... 46 Shipping 7 2010-10-01 2010-10-01 false Fire protection equipment. 185.612 Section 185.612... TONS) OPERATIONS Markings Required § 185.612 Fire protection equipment. (a) Complete but simple...

  13. Applications of Living Fire PRA models to Fire Protection Significance Determination Process in Taiwan

    SciTech Connect

    De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin; Ching-Hui, Wu; Lin, James C.

    2004-07-01

    The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involve the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process. (authors)

  14. Does the Establishment of Sustainable Use Reserves Affect Fire Management in the Humid Tropics?

    PubMed

    Carmenta, Rachel; Blackburn, George Alan; Davies, Gemma; de Sassi, Claudio; Lima, André; Parry, Luke; Tych, Wlodek; Barlow, Jos

    2016-01-01

    Tropical forests are experiencing a growing fire problem driven by climatic change, agricultural expansion and forest degradation. Protected areas are an important feature of forest protection strategies, and sustainable use reserves (SURs) may be reducing fire prevalence since they promote sustainable livelihoods and resource management. However, the use of fire in swidden agriculture, and other forms of land management, may be undermining the effectiveness of SURs in meeting their conservation and sustainable development goals. We analyse MODIS derived hot pixels, TRMM rainfall data, Terra-Class land cover data, socio-ecological data from the Brazilian agro-census and the spatial extent of rivers and roads to evaluate whether the designation of SURs reduces fire occurrence in the Brazilian Amazon. Specifically, we ask (1) a. Is SUR location (i.e., de facto) or (1) b. designation (i.e. de jure) the driving factor affecting performance in terms of the spatial density of fires?, and (2), Does SUR creation affect fire management (i.e., the timing of fires in relation to previous rainfall)? We demonstrate that pre-protection baselines are crucial for understanding reserve performance. We show that reserve creation had no discernible impact on fire density, and that fires were less prevalent in SURs due to their characteristics of sparser human settlement and remoteness, rather than their status de jure. In addition, the timing of fires in relation to rainfall, indicative of local fire management and adherence to environmental law, did not improve following SUR creation. These results challenge the notion that SURs promote environmentally sensitive fire-management, and suggest that SURs in Amazonia will require special attention if they are to curtail future accidental wildfires, particularly as plans to expand the road infrastructure throughout the region are realised. Greater investment to support improved fire management by farmers living in reserves, in addition to

  15. Does the Establishment of Sustainable Use Reserves Affect Fire Management in the Humid Tropics?

    PubMed Central

    Carmenta, Rachel; Blackburn, George Alan; Davies, Gemma; de Sassi, Claudio; Lima, André; Parry, Luke; Tych, Wlodek; Barlow, Jos

    2016-01-01

    Tropical forests are experiencing a growing fire problem driven by climatic change, agricultural expansion and forest degradation. Protected areas are an important feature of forest protection strategies, and sustainable use reserves (SURs) may be reducing fire prevalence since they promote sustainable livelihoods and resource management. However, the use of fire in swidden agriculture, and other forms of land management, may be undermining the effectiveness of SURs in meeting their conservation and sustainable development goals. We analyse MODIS derived hot pixels, TRMM rainfall data, Terra-Class land cover data, socio-ecological data from the Brazilian agro-census and the spatial extent of rivers and roads to evaluate whether the designation of SURs reduces fire occurrence in the Brazilian Amazon. Specifically, we ask (1) a. Is SUR location (i.e., de facto) or (1) b. designation (i.e. de jure) the driving factor affecting performance in terms of the spatial density of fires?, and (2), Does SUR creation affect fire management (i.e., the timing of fires in relation to previous rainfall)? We demonstrate that pre-protection baselines are crucial for understanding reserve performance. We show that reserve creation had no discernible impact on fire density, and that fires were less prevalent in SURs due to their characteristics of sparser human settlement and remoteness, rather than their status de jure. In addition, the timing of fires in relation to rainfall, indicative of local fire management and adherence to environmental law, did not improve following SUR creation. These results challenge the notion that SURs promote environmentally sensitive fire-management, and suggest that SURs in Amazonia will require special attention if they are to curtail future accidental wildfires, particularly as plans to expand the road infrastructure throughout the region are realised. Greater investment to support improved fire management by farmers living in reserves, in addition to

  16. Detector recommendations for the CRBRP sodium fire protection system

    SciTech Connect

    Miles, E.

    1985-01-01

    This report recommends infrared fire detectors for the sodium fire protection system of the Reactor Containment Building (RCB) operating floor. The reasons for this selection are stated, and a suggested layout scheme is given.

  17. Summary of fire protection programs of the United States Department of Energy

    SciTech Connect

    Not Available

    1991-10-01

    This edition of the Annual Summary of DOE Fire Protection Programs continues the series started in 1972. Since May 1950, an annual report has been required from each field organization. The content has varied through the years and most of the accident data reporting requirements have been superseded by the Computerized Accident/Incident Reporting System administered by EG G, Idaho. However, this report is the sole source of information relating to fire protection programs, and to the actions of the field offices and to headquarters that are of general fire protection interest.

  18. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    SciTech Connect

    2009-06-01

    ; and, (2) A substantial portion of the uncorrected deficiencies, 86 (49 percent) were considered by the walk-down teams to be significant enough to warrant compensatory actions until the deficiency was corrected or was tracked to closure through implementation of corrective actions. Further, we found that 32 of the significant deficiencies had been closed by the previous Los Alamos contractor, prior to LANS assuming responsibility for operation of the Laboratory, even though the deficiencies had not been corrected. A fire protection expert provided technical support during the audit. As an example of uncorrected problems, LANS had not resolved, by performing periodic tests, a deficiency identified in 2006 regarding a kitchen hood fire suppression system in a facility located within the Los Alamos Neutron Science Center. Such systems are required to be tested twice a year by the National Fire Protection Association standard, a standard that had been adopted by Department of Energy under DOE Order 420.1B. Yet, in 2006, the LANS walk-down team recognized that this system had not been inspected since May 2004 and noted that deficient suppression systems could result in significantly high levels of property damage and loss. After we brought this issue to management's attention on February 6, 2009, LANS officials stated that the Laboratory would correct this deficiency. As with the problems involving the fire suppression system, we observed that LANS had not always corrected life safety deficiencies involving building exits at one of its primary facilities. This included providing a secondary emergency exit for a building with occupants on multiple floor levels. LANS had removed personnel from the third floor and improved the sprinkler system of the facility, but it had still not provided a secondary exit for personnel on the second floor by the time we completed our review. NNSA has since stated that this fire protection issue will be completely addressed by relocating

  19. Terrestrial EVA Suit = Fire Fighter's Protective Clothing

    NASA Technical Reports Server (NTRS)

    Foley, Tico; Brown, Robert G.; Burrell, Eddie; DelRosso, Dominic; Krishen, Kumar; Moffitt, Harold; Orndoff, Evelyne; Santos, Beatrice; Butzer, Melissa; Dasgupta, Rajib

    1999-01-01

    Firefighters want to go to work, do their job well, and go home alive and uninjured. For their most important job, saving lives, firefighters want protective equipment that will allow more extended and effective time at fire scenes in order to perform victim search and rescue. A team, including engineers at NASA JSC and firefighters from Houston, has developed a list of problem areas for which NASA technology and know-how can recommend improvements for firefighter suits and gear. Prototypes for solutions have been developed and are being evaluated. This effort will spin back to NASA as improvements for lunar and planetary suits.

  20. 33 CFR 127.1507 - Water systems for fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Water systems for fire protection... systems for fire protection. (a) Each waterfront facility handling LHG must have a supply of water and a means for distributing and applying the water to protect personnel; to cool storage tanks,...

  1. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    SciTech Connect

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-07-20

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  2. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... chapter; (6) Testing or renewal of flexible connections and discharge hoses on semiportable extinguishers... fire confining appliances (such as fire screen doors and fire dampers). (b) The owner, managing...

  3. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    PubMed

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  4. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    PubMed Central

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  5. Does prescribed fire benefit wetland vegetation?

    USGS Publications Warehouse

    Flores, C.; Bounds, D.L.; Ruby, D.E.

    2011-01-01

    The effects of fire on wetland vegetation in the mid-Atlantic region of the United States are poorly known, despite the historical use of fire by federal, state, and private landowners in the Chesapeake Bay Region. Prescribed fire is widely used by land managers to promote vegetation that is beneficial to migratory waterfowl, muskrats, and other native wildlife and to reduce competition from less desirable plant species. We compared vegetative response to two fire rotations, annual burns and 3-year burns, and two control sites, Control 1 and Control 2. We tested the effects of fire within six tidal marsh wetlands at Blackwater National Wildlife Refuge and Fishing Bay Wildlife Management Area in Maryland. We examined changes in total live biomass (all species), total stem density, litter, and changes in live biomass and stem density of four dominant wetland plant species (11 variables). Our results suggest that annual prescribed fires will decrease the accumulation of litter, increase the biomass and stem densities of some wetland plants generally considered less desirable for wildlife, and have little or no effect on other wetland plants previously thought to benefit from fire. ?? 2011 US Government.

  6. CFES--California Fire Economics Simulator: A Computerized System for Wildland Fire Protection Planning

    Treesearch

    Jeremy S. Fried; J. Keith Gilless; Robert E. Martin

    1987-01-01

    The University of California's Department of Forestry and Resource Management, under contract with the California Department of Forestry and Fire Protection, has developed and released the first version of the California Fire Economics Simulator (CFES). The current release is adapted from the Initial Action Assessment component of the USFS's National Fire...

  7. 29 CFR 553.210 - Fire protection activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Fire protection activities. 553.210 Section 553.210 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS APPLICATION OF THE FAIR LABOR STANDARDS ACT TO EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law Enforcement Employees of Public Agencies...

  8. DEVELOPMENT OF ALTERNATIVE, NON-HALOGEN FIRE PROTECTION SYSTEM

    EPA Science Inventory

    With the phaseout of halon production, two alternative technologies - water misting and low-residue particulates - have come to the fire protection forefront. These technologies use water or dry chemicals in reduced quantities to provide acceptable fire protection. A review and a...

  9. DEVELOPMENT OF ALTERNATIVE, NON-HALOGEN FIRE PROTECTION SYSTEM

    EPA Science Inventory

    With the phaseout of halon production, two alternative technologies - water misting and low-residue particulates - have come to the fire protection forefront. These technologies use water or dry chemicals in reduced quantities to provide acceptable fire protection. A review and a...

  10. 14 CFR 25.869 - Fire protection: systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....869 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.869 Fire protection: systems. (a) Electrical system components: (1) Components of the electrical system must meet the...

  11. 14 CFR 25.869 - Fire protection: systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....869 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.869 Fire protection: systems. (a) Electrical system components: (1) Components of the electrical system must meet the...

  12. 14 CFR 25.869 - Fire protection: systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....869 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.869 Fire protection: systems. (a) Electrical system components: (1) Components of the electrical system must meet the...

  13. 14 CFR 25.854 - Lavatory fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25.854 Lavatory fire protection. For airplanes with a passenger capacity of 20 or more: (a) Each lavatory must be... disposal receptacle for towels, paper, or waste, located within the lavatory. The extinguisher must be...

  14. 46 CFR 153.460 - Fire protection systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Fire protection systems. 153.460 Section 153.460... Requirements for Flammable Or Combustible Cargoes § 153.460 Fire protection systems. Each self-propelled ship... riser, each part of a cargo containment system exposed on the weatherdeck must be covered by the...

  15. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential ignition...

  16. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and...

  17. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and...

  18. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential ignition...

  19. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential ignition...

  20. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and...

  1. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the...

  2. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the...

  3. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential ignition...

  4. 14 CFR 25.1723 - Flammable fluid fire protection: EWIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flammable fluid fire protection: EWIS. 25... Systems (EWIS) § 25.1723 Flammable fluid fire protection: EWIS. EWIS components located in each area where flammable fluid or vapors might escape by leakage of a fluid system must be considered a potential ignition...

  5. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the...

  6. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 27.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and...

  7. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 29.863... § 29.863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the...

  8. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flammable fluid fire protection. 25.863....863 Flammable fluid fire protection. (a) In each area where flammable fluids or vapors might escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and...

  9. 33 CFR 127.1507 - Water systems for fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Water systems for fire protection... HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1507 Water systems for fire protection. (a) Each waterfront facility handling LHG must have a supply of water and a...

  10. 49 CFR 176.315 - Fire protection requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Fire protection requirements. 176.315 Section 176... Detailed Requirements for Class 3 (Flammable) and Combustible Liquid Materials § 176.315 Fire protection... combustible liquid being transported on board a vessel in a portable tank, rail tank car, or a motor...

  11. Fire protection program fiscal year 1997 site support program plan - Hanford fire department

    SciTech Connect

    Good, D.E., Westinghouse Hanford

    1996-07-01

    The mission of the Hanford Fires Department (HFD) is to support the safe and timely cleanup of the Hanford Site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. this includes response to surrounding fire department districts under mutual aids agreements and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site. the fire department also provides site fire marshal overview authority, fire system testing, and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention and education.

  12. Fire Protection Research Program at Sandia Laboratories. [BWR; PWR

    SciTech Connect

    Klamerus, L.J.

    1980-01-01

    Sandia Laboratories is executing a program for the Nuclear Regulatory Commission to provide data needed for confirmation of the suitability of current design standards and regulatory guides for fire protection and control in water reactor power plants. This paper summarizes the activities of this ongoing program through December 1979. Characterization of electrically initiated fires revealed a margin of safety in the separation criteria of Regulatory Guide 1.75 for such fires in IEEE-383 qualified cable. However, tests confirmed that these guidelines and standards are not sufficient, in themselves, to protect against exposure fires. This paper describes both small and full scale tests to assess the adequacy of fire retardant coatings and full scale tests on fire shields to determine their effectiveness. It also describes full scale tests to determine the effects of walls and ceilings on fire propagation between cable trays.

  13. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....65 in subchapter N of this chapter; and (7) Inspection and testing of all smoke and fire detection... inspection for certification, the marine inspector may require that a fire drill be held under...

  14. Fire protection research for energy technology projects; FY 79 year-end report

    SciTech Connect

    Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Beason, D.G.

    1981-01-01

    This report describes work performed in fiscal year 1979, on a DOE funded study entitled Fire Protection Research for Energy Technology Projects. The primary goal of this program is to ensure that fire protection measures for Fusion Energy Experiments (FEE) evolve concurrently with the complexity of FEE. Ultimately, it is planned that the detailed study of fusion experiments will provide an analytical methodology which can be applied to the full range of energy technology projects. We attempt to achieve this objective by coordinately advancing 3 (three) major task areas; (a) determine the fire hazards of current FEE facilities (b) assess the ability of accepted fire management strategies to meet and negate the hazard, (c) perform unique research into problem areas we have identified to provide input into analytical fire growth and damage assessment models.

  15. Varied ecosystems need different fire protection

    USGS Publications Warehouse

    Gutsell, Sheri L.; Johnson, Edward A.; Miyanishi, Kiyoko; Keeley, Jon E.; Dickinson, Matthew; Bridge, Simon R. J.

    2001-01-01

    Covington states in his Commentary1 that the open ponderosa pine forests of the western United States are "in widespread collapse" because fire suppression by humans has eliminated the low-intensity surface fire regime that maintained the open, park-like structure of these forests. He fears this will lead to an "unprecedented" crown fire regime that will eliminate forests.

  16. Fire Protection Research Program at Sandia National Laboratories

    SciTech Connect

    Klamerus, L. J.

    1980-01-01

    Sandia National Laboratories is executing a program for the Nuclear Regulatory Commission to provide data needed for confirmation of the suitability of current design standards and regulatory guides for fire protection and control in water reactor power plants. This paper summarizes the activities of this ongoing program through October 1980. Characterization of electrically initiated fires revealed a margin of safety in the separation criteria of Regulatory Guide 1.75 for such fires in IEEE-383 qualified cable. However, tests confirmed that these guidelines and standards are not sufficient, in themselves, to protect against exposure fires. This paper describes both small and full scale tests to assess the adequacy of fire retardant coatings and full scale tests on fire shields to determine their effectiveness. It also describes full scale tests to determine the effects of walls and ceilings on fire propagation between cable trays. Some small-scale scoping tests have been conducted to investigate the effects of varying the furnace pressure on cable penetration performance in the ASTM-E-119 Fire Test. The Sandia Fire Research Facility has been completed and a series of tests have been run to assess the effectiveness of Halon-1301 as a suppression system in extinguishing deep-seated cable-tray fires. It was found that given sufficient soak times Halon systems are effective in extinguishing such fires.

  17. Fire in the Shop!

    ERIC Educational Resources Information Center

    Campbell, Clifton P.; Buchanan, Joseph P.

    1977-01-01

    Fire emergency preparedness measures to take to prevent school fires and to protect against injury and minimize damage when fire does occur are presented. Includes fire safety practices, extinguishers for different classes of fires and their use, and the need for fire safety training in schools. (MF)

  18. Modelling Fire Frequency in a Cerrado Savanna Protected Area

    PubMed Central

    Pereira Júnior, Alfredo C.; Oliveira, Sofia L. J.; Pereira, José M. C.; Turkman, Maria Antónia Amaral

    2014-01-01

    Covering almost a quarter of Brazil, the Cerrado is the world’s most biologically rich tropical savanna. Fire is an integral part of the Cerrado but current land use and agricultural practices have been changing fire regimes, with undesirable consequences for the preservation of biodiversity. In this study, fire frequency and fire return intervals were modelled over a 12-year time series (1997–2008) for the Jalapão State Park, a protected area in the north of the Cerrado, based on burned area maps derived from Landsat imagery. Burned areas were classified using object based image analysis. Fire data were modelled with the discrete lognormal model and the estimated parameters were used to calculate fire interval, fire survival and hazard of burning distributions, for seven major land cover types. Over the study period, an area equivalent to four times the size of Jalapão State Park burned and the mean annual area burned was 34%. Median fire intervals were generally short, ranging from three to six years. Shrub savannas had the shortest fire intervals, and dense woodlands the longest. Because fires in the Cerrado are strongly responsive to fuel age in the first three to four years following a fire, early dry season patch mosaic burning may be used to reduce the extent of area burned and the severity of fire effects. PMID:25054540

  19. Modelling fire frequency in a Cerrado savanna protected area.

    PubMed

    Pereira Júnior, Alfredo C; Oliveira, Sofia L J; Pereira, José M C; Turkman, Maria Antónia Amaral

    2014-01-01

    Covering almost a quarter of Brazil, the Cerrado is the world's most biologically rich tropical savanna. Fire is an integral part of the Cerrado but current land use and agricultural practices have been changing fire regimes, with undesirable consequences for the preservation of biodiversity. In this study, fire frequency and fire return intervals were modelled over a 12-year time series (1997-2008) for the Jalapão State Park, a protected area in the north of the Cerrado, based on burned area maps derived from Landsat imagery. Burned areas were classified using object based image analysis. Fire data were modelled with the discrete lognormal model and the estimated parameters were used to calculate fire interval, fire survival and hazard of burning distributions, for seven major land cover types. Over the study period, an area equivalent to four times the size of Jalapão State Park burned and the mean annual area burned was 34%. Median fire intervals were generally short, ranging from three to six years. Shrub savannas had the shortest fire intervals, and dense woodlands the longest. Because fires in the Cerrado are strongly responsive to fuel age in the first three to four years following a fire, early dry season patch mosaic burning may be used to reduce the extent of area burned and the severity of fire effects.

  20. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Fire, explosion, and detonation... Systems § 154.820 Fire, explosion, and detonation protection. (a) A vapor control system with a single...: (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor...

  1. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Fire, explosion, and detonation... Systems § 154.820 Fire, explosion, and detonation protection. (a) A vapor control system with a single...: (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor...

  2. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fire, explosion, and detonation... Systems § 154.820 Fire, explosion, and detonation protection. (a) A vapor control system with a single...: (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor...

  3. 33 CFR 154.820 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fire, explosion, and detonation... Systems § 154.820 Fire, explosion, and detonation protection. (a) A vapor control system with a single...: (1) Have a detonation arrester located not more than 6 meters (19.7 ft.) from the facility vapor...

  4. 46 CFR 28.380 - General structural fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false General structural fire protection. 28.380 Section 28.380 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR..., 1991, and That Operate With More Than 16 Individuals on Board § 28.380 General structural fire...

  5. 46 CFR 28.380 - General structural fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false General structural fire protection. 28.380 Section 28.380 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR..., 1991, and That Operate With More Than 16 Individuals on Board § 28.380 General structural fire...

  6. 46 CFR 28.380 - General structural fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false General structural fire protection. 28.380 Section 28.380 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS FOR..., 1991, and That Operate With More Than 16 Individuals on Board § 28.380 General structural fire...

  7. Fire Protection Engineering Criteria - New Aircraft Facilities.

    DTIC Science & Technology

    1996-01-22

    any piping including the fire water service entrance into the building such that it is possible to pressurize the space below the floor slab...A3.1.6.4. Use flanged fittings to transition the fire water service entrance from horizontal to vertical as it enters the building. Do not use gasketed

  8. Protecting communities through the National Fire Plan

    Treesearch

    Michael T. Rains; Jim. Hubbard

    2002-01-01

    In August 2000, the Administration directed the Secretaries of Agriculture and the Interior to prepare a report that would recommend how best to respond to the year's severe wildland fires, reduce the impacts of fires on rural communities, and ensure sufficient firefighting resources in the future. The Secretaries were also asked to list actions that Federal...

  9. Reserves Protect against Deforestation Fires in the Amazon

    PubMed Central

    Adeney, J. Marion; Christensen, Norman L.; Pimm, Stuart L.

    2009-01-01

    Background Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Methodology/Principal Findings Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Conclusions/Significance Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon. PMID:19352423

  10. Reserves protect against deforestation fires in the Amazon.

    PubMed

    Adeney, J Marion; Christensen, Norman L; Pimm, Stuart L

    2009-01-01

    Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon.

  11. EXTERIOR NORTHEAST VIEW OF BUILDING 21B, AIRCRAFT FIRE PROTECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR NORTHEAST VIEW OF BUILDING 21B, AIRCRAFT FIRE PROTECTION - Wright-Patterson Air Force Base, Area B, Building 21, Old Armament Building, Southwest corner of Seventh & E Streets, Dayton, Montgomery County, OH

  12. 22. Fire Protection Water Pump (low pressure), view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Fire Protection Water Pump (low pressure), view to the southwest. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  13. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... fluids, including effects of any combustible or absorbing materials. (3) Possible ignition sources..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are...

  14. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... fluids, including effects of any combustible or absorbing materials. (3) Possible ignition sources..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are...

  15. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Fire Protection § 25... fluids, including effects of any combustible or absorbing materials. (3) Possible ignition sources..., fireproof containment, or use of extinguishing agents. (5) Ability of airplane components that are...

  16. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect

    SINGH, G.

    2000-04-25

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  17. 46 CFR 108.429 - Fire main system protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the fire main system located on an exposed deck must either be protected against freezing or be fitted with cutout valves and drain valves to shut off and drain the entire exposed system in freezing weather...

  18. 46 CFR 108.429 - Fire main system protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the fire main system located on an exposed deck must either be protected against freezing or be fitted with cutout valves and drain valves to shut off and drain the entire exposed system in freezing weather...

  19. 46 CFR 108.429 - Fire main system protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the fire main system located on an exposed deck must either be protected against freezing or be fitted with cutout valves and drain valves to shut off and drain the entire exposed system in freezing weather...

  20. 46 CFR 108.429 - Fire main system protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the fire main system located on an exposed deck must either be protected against freezing or be fitted with cutout valves and drain valves to shut off and drain the entire exposed system in freezing weather...

  1. 46 CFR 108.429 - Fire main system protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the fire main system located on an exposed deck must either be protected against freezing or be fitted with cutout valves and drain valves to shut off and drain the entire exposed system in freezing weather...

  2. 14. Generator Fire Protection for Unit 5 (low pressure), view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Generator Fire Protection for Unit 5 (low pressure), view to the southeast. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  3. 33 CFR 149.640 - What are the requirements for fire protection systems?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EQUIPMENT Design and Equipment Structural Fire Protection § 149.640 What are the requirements for fire... undergo major conversions, must comply with the requirements for structural fire protection outlined in...

  4. Fire protection system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1995-12-01

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  5. Study of aircraft crashworthiness for fire protection

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1981-01-01

    Impact-survivable postcrash fire accidents were surveyed. The data base developed includes foreign and domestic accidents involving airlines and jet aircraft. The emphasis was placed on domestic accidents, airlines, and jet aircraft due principally to availability of information. Only transport category aircraft in commercial service designed under FAR Part 25 were considered. A matrix was prepared to show the relationships between the accident characteristics and the fire fatalities. Typical postcrash fire scenaries were identified. Safety concepts were developed for three engineering categories: cabin interiors - cabin subsystems; power plant - engines and fuel systems; and structural mechanics - primary and secondary structures. The parameters identified for concept evaluation are cost, effectiveness, and societal concerns. Three concepts were selected for design definition and cost and effectiveness analysis: improved fire-resistant seat materials; anti-misting kerosene; and additional cabin emergency exits.

  6. CRBRP sodium fire protection system design

    SciTech Connect

    Buttrey, K. E.

    1984-09-10

    A passive catch pan fire suppression deck system was designed. A large-scale sodium spray fire test showed that the effects of spray burning were being underestimated. A modified computer code indicated that for a design basis IHTS leak in CRBRP, the design allowables would be exceeded. A modified pipe insulation design was developed and tested. The tests and analysis indicate that the concrete temperatures, structural steel temperatures, building pressures, and aerosol releases are now all reduced to acceptable levels. (DLC)

  7. 76 FR 40777 - Interim Enforcement Policy for Certain Fire Protection Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... 3150-AG48 Interim Enforcement Policy for Certain Fire Protection Issues AGENCY: Nuclear Regulatory... Commission) is revising its interim Enforcement Policy on enforcement discretion for certain fire protection... Fire Protection Association Standard 805, ``Performance-Based Standard for Fire Protection for...

  8. Fire protection review, Westinghouse Idaho Nuclear Company, Idaho Falls, Idaho

    SciTech Connect

    Dobson, P.H.

    1990-10-01

    A fire protection survey was conducted for the Department of Energy at the Westinghouse Idaho Nuclear Company, INC., Idaho Falls, Idaho, on April 24--27, April 30--May 4, June 4--8, and June 11--15, 1990. The purpose of the survey was to review the facility's fire protection program and to make recommendations according to the following criteria established by the Department of Energy: (1) Recommendations which would be made as the result of an improved risk or Highly Protected Risk (HPR) fire inspection of an industrial insured facility. (2) Identification of areas which are presently not protected or are inadequately protected where provision of automatic protection would reduce a fire or explosion loss to less than $1 million. (3) Identification of areas where loss potentials exceed $50 million assuming a failure of automatic protection systems and subsequent reliance only on separation and fire walls. (4) Evaluation of adequacy of compliance with recommendations made in prior surveys. Findings and recommendations in this report reflect to some degree the relative importance of the operation and the time to restore it to useful condition in the event that a loss were to occur.

  9. Installation and operation of the Plantwide Fire Protection Systems and related Domestic Water Supply Systems

    SciTech Connect

    Not Available

    1991-12-01

    A safe work environment is needed to support the Savannah River Site (SRS) mission of producing special nuclear material. This Environmental Assessment (EA) assesses the potential environmental impact(s) of adding to and upgrading the Plantwide Fire Protection System and selected related portions of the Domestic Water Supply System at SRS, Aiken, South Carolina. The following objectives are expected to be met by this action: Prevent undue threat to public health and welfare from fire at SRS; prevent undue hazard to employees at SRS from fire; prevent unacceptable delay to vital DOE programs as a result of fire at SRS; keep fire related property damage at SRS to a manageable level;, and provide an upgraded supply of domestic water for the Reactor Areas. The Reactor Areas' domestic water supplies do not meet current demand capacity due to the age and condition of the 30-year old iron piping. In addition, the water quality for these supplies is not consistent with current SCDHEC requirements. Therefore, DOE proposes to upgrade this Domestic Water Supply System to meet current demand and quality levels, as well as the needs of fire protection system improvement.

  10. Does research help to safeguard protected areas?

    PubMed

    Laurance, William F

    2013-05-01

    Although many protected areas are foci for scientific research, they also face growing threats from illegal encroachment and overharvesting. Does the presence of field researchers help to limit such threats? Although evidence is largely anecdotal, researchers do appear to provide some protective effects, both actively (such as by deterring poachers) and passively (such as by benefiting local communities economically and thereby generating support for protected areas). However, much remains unknown about the generality and impacts of such benefits. A key priority is to develop a better understanding of the advantages and limitations of field research for aiding protected areas and their biodiversity.

  11. 46 CFR 115.810 - Fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tests. Table 115.810(b)—Semiportable and Fixed Fire Extinguishing Systems Type system Test Carbon... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS INSPECTION AND CERTIFICATION Material... owner or managing operator shall be prepared to conduct tests and have the vessel ready for...

  12. 46 CFR 176.810 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., carbon dioxide and Halon portable fire extinguishers must be refilled when the net content weight loss... Extinguishing Systems Type System Test Carbon dioxide Weigh cylinders. Recharge if weight loss exceeds 10% of... nozzles to be sure they are clean. Halon Weigh cylinders. Recharge if weight loss exceeds 5% of weight of...

  13. 78 FR 45573 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... COMMISSION Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability; request for public comment.../CR-7135, ``Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire...

  14. Relationship of fire protection research to plant safety. [PWR; BWR

    SciTech Connect

    Berry, D.L.

    1983-01-01

    For several years, Sandia National Laboratories has been responsible for numerous tests of fire protection systems and concepts. Tests of fire retardant cables, cable coatings, cable tray covers, penetration seals, fire barriers, and spatial separation have been reported and summarized. Other tests involving the effectiveness of suppression systems and the vulnerability of electrical cabinets have been completed with reports in preparation. The following questions constitute the central theme of current fire research by Sandia and the NRC: under what conditions is spatial separation of redundant safety systems adequate; what are the temperature, smoke, humidity, or corrosive vapor damage thresholds of cable and safety equipment exposed to fire or suppression activities; what is the safety significance of fires involving control room cabinets or remote shutdown panels; and what is the relative importance of fire to nuclear power plant safety, as compared to other types of anticipated or postulated accidents. Evidence of why these questions seem important and a description of work being undertaken to address each question are reviewed in the following paragraphs.

  15. 14 CFR 33.17 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., constructed, and installed to act as a firewall must be: (1) Fireproof; (2) Constructed so that no hazardous quantity of air, fluid or flame can pass around or through the firewall; and, (3) Protected...

  16. 14 CFR 33.17 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., constructed, and installed to act as a firewall must be: (1) Fireproof; (2) Constructed so that no hazardous quantity of air, fluid or flame can pass around or through the firewall; and, (3) Protected...

  17. 29 CFR 1915.507 - Land-side fire protection systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Land-side fire protection systems. 1915.507 Section 1915... Protection in Shipyard Employment § 1915.507 Land-side fire protection systems. (a) Employer responsibilities... standard for employee safety or employee protection from fire hazards in land-side facilities,...

  18. Glutinous Water. Protecting Vertical and Overhead Surfaces from Fire Spread

    DTIC Science & Technology

    1994-02-28

    DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words ) Most of the water used in firefighting is not only...Naval Research Laboratory AD-A277 280 Washington, DC 20375-5320 NRL/MR/6180--94-7431 DTIC S ELECTE MAR 24 19941 Glutinous Water F Protecting Vertical...TYPE AND DATES COVERED February 28, 1994 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Glutinous Water Protecting Vertical and Overhead Surfaces From Fire

  19. Resistance after firing protected electric match. [Patent application

    DOEpatents

    Montoya, A.P.

    1980-03-20

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  20. 14 CFR 121.253 - Powerplant fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Powerplant fire protection. 121.253 Section 121.253 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... auxiliary power units, fuel-burning heaters, and other combustion equipment. ...

  1. 14 CFR 125.151 - Powerplant fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Powerplant fire protection. 125.151 Section 125.151 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... contain auxiliary power units, fuel-burning heaters, and other combustion equipment. ...

  2. 33 CFR 154.2204 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fire, explosion, and detonation... detonation protection. This section applies to tank barge cleaning facilities (TBCFs) collecting vapors of... detonation arrester located as close as practicable to the facility vapor connection. The total pipe length...

  3. 46 CFR 185.612 - Fire protection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... GAS CAN CAUSE INJURY OR DEATH. VENTILATE THE AREA BEFORE ENTERING. A HIGH CONCENTRATION CAN OCCUR IN THIS AREA AND CAN CAUSE SUFFOCATION.”. (2) Spaces protected by carbon dioxide—“CARBON DIOXIDE GAS...

  4. 46 CFR 185.612 - Fire protection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... a fixed gas fire extinguishing system must be clearly and conspicuously marked “WHEN ALARM SOUNDS... GAS CAN CAUSE INJURY OR DEATH. VENTILATE THE AREA BEFORE ENTERING. A HIGH CONCENTRATION CAN OCCUR IN THIS AREA AND CAN CAUSE SUFFOCATION.”. (2) Spaces protected by carbon dioxide—“CARBON DIOXIDE GAS...

  5. 6. Fire Protection (high pressure), view to the east. Located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Fire Protection (high pressure), view to the east. Located on the pipe floor between Unit 3 and Unit 4, the high pressure CO2 tanks are connected to the generator barrel of all four units. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  6. 46 CFR 194.20-7 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire protection. 194.20-7 Section 194.20-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE... system using carbon dioxide or a clean agent complying with 46 CFR subpart 95.16, installed in accordance...

  7. Fire Protection System for an Atrium Satisfies Code Intent

    ERIC Educational Resources Information Center

    Boehmer, Donald J.; Jensen, Rolf

    1975-01-01

    The Civic Center in Scarborough, Ontario, has an open interior design that incorporates an atrium. Fire protection elements include automatic sprinklers, provisions for efficient exiting of building occupants, and smoke evacuation by gravity exhaust. (Available from 1221 Avenue of the Americas, New York, NY 10020, $15.00 annually.) (Author/MLF)

  8. 46 CFR 194.15-7 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Fire protection. 194.15-7 Section 194.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory...

  9. Fire Protection System for an Atrium Satisfies Code Intent

    ERIC Educational Resources Information Center

    Boehmer, Donald J.; Jensen, Rolf

    1975-01-01

    The Civic Center in Scarborough, Ontario, has an open interior design that incorporates an atrium. Fire protection elements include automatic sprinklers, provisions for efficient exiting of building occupants, and smoke evacuation by gravity exhaust. (Available from 1221 Avenue of the Americas, New York, NY 10020, $15.00 annually.) (Author/MLF)

  10. 46 CFR 194.15-7 - Fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Fire protection. 194.15-7 Section 194.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory...

  11. 46 CFR 194.15-7 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Fire protection. 194.15-7 Section 194.15-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory...

  12. 49 CFR 193.2717 - Training: fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Training: fire protection. 193.2717 Section 193.2717 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL...

  13. 49 CFR 193.2717 - Training: fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Training: fire protection. 193.2717 Section 193.2717 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL...

  14. 49 CFR 193.2717 - Training: fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Training: fire protection. 193.2717 Section 193.2717 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL...

  15. 49 CFR 193.2717 - Training: fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Training: fire protection. 193.2717 Section 193.2717 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL...

  16. 49 CFR 193.2717 - Training: fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Training: fire protection. 193.2717 Section 193.2717 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL...

  17. Fire propagation performance of intumescent fire protective coatings using eggshells as a novel biofiller.

    PubMed

    Yew, M C; Ramli Sulong, N H; Yew, M K; Amalina, M A; Johan, M R

    2014-01-01

    This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength.

  18. Fire Propagation Performance of Intumescent Fire Protective Coatings Using Eggshells as a Novel Biofiller

    PubMed Central

    Yew, M. C.; Ramli Sulong, N. H.; Yew, M. K.; Amalina, M. A.; Johan, M. R.

    2014-01-01

    This paper aims to synthesize and characterize an effective intumescent fire protective coating that incorporates eggshell powder as a novel biofiller. The performances of thermal stability, char formation, fire propagation, water resistance, and adhesion strength of coatings have been evaluated. A few intumescent flame-retardant coatings based on these three ecofriendly fire retardant additives ammonium polyphosphate phase II, pentaerythritol and melamine mixed together with flame-retardant fillers, and acrylic binder have been prepared and designed for steel. The fire performance of the coatings has conducted employing BS 476: Part 6-Fire propagation test. The foam structures of the intumescent coatings have been observed using field emission scanning electron microscopy. On exposure, the coated specimens' B, C, and D had been certified to be Class 0 due to the fact that their fire propagation indexes were less than 12. Incorporation of ecofriendly eggshell, biofiller into formulation D led to excellent performance in fire stopping (index value, (I) = 4.3) and antioxidation of intumescent coating. The coating is also found to be quite effective in water repellency, uniform foam structure, and adhesion strength. PMID:25136687

  19. 78 FR 55765 - Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... COMMISSION Compensatory and Alternative Regulatory Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG/CR, reopening of comment period... Measures for Nuclear Power Plant Fire Protection (CARMEN-FIRE).'' In response to comments from members...

  20. Fire protection review revisit no. 2, Argonne National Laboratory, Argonne, Illinois

    NASA Astrophysics Data System (ADS)

    Dobson, P. H.; Earley, M. W.; Mattern, L. J.

    1985-05-01

    A fire protection survey was conducted at Argonne National Laboratory on April 1-5, 8-12, and April 29-May 2, 1985. The purpose was to review the facility fire protection program and to make recommendations or identify areas according to criteria established by the Department of Energy. There has been a substantial improvement in fire protection at this laboratory since the 1977 audit. Numerous areas which were previously provided with detection systems only have since been provided with automatic sprinkler protection. The following basic fire protection features are not properly controlled: (1) resealing wall and floor penetrations between fire areas after installation of services; (2) cutting and welding; and (3) housekeeping. The present Fire Department manpower level appears adequate to control a route fire. Their ability to adequately handle a high-challenge fire, or one involving injuries to personnel, or fire spread beyond the initial fire area is doubtful.

  1. Passive fire protection--a vital safety role.

    PubMed

    MacInnes, Callum; Rankin, Richard

    2012-06-01

    Callum Maclnnes BSc (Hons), AIFireE, an engineer at WSP UK--part of a global design engineering and management consultancy group specialising in property, transport and infrastructure, industry and environment projects--and his colleague, senior engineer, Richard Rankin CEng MEng (Hons) MIFireE, discuss the importance of passive fire protection in healthcare premises at a time when, due particularly to the difficult financial climate, many hospitals are undergoing upgrading and refurbishment, potentially affording an ideal opportunity to ensure that proper fire compartmentation measures are in place.

  2. 76 FR 70413 - National Fire Protection Association (NFPA): Request for Comments on NFPA's Codes and Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... National Institute of Standards and Technology National Fire Protection Association (NFPA): Request for... notice on behalf of the National Fire Protection Association (NFPA) to announce the availability of and...: Since 1896, the National Fire Protection Association (NFPA) has accomplished its mission by...

  3. 14 CFR 29.1359 - Electrical system fire and smoke protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electrical system fire and smoke protection... Equipment § 29.1359 Electrical system fire and smoke protection. (a) Components of the electrical system must meet the applicable fire and smoke protection provisions of §§ 29.831 and 29.863. (b) Electrical...

  4. 14 CFR 29.1359 - Electrical system fire and smoke protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electrical system fire and smoke protection... Equipment § 29.1359 Electrical system fire and smoke protection. (a) Components of the electrical system must meet the applicable fire and smoke protection provisions of §§ 29.831 and 29.863. (b) Electrical...

  5. 46 CFR 116.430 - Insulation other than for structural fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Insulation other than for structural fire protection... PASSENGERS CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.430 Insulation other than for structural fire protection. (a) Combustible insulation may be used for pipe and machinery covering or lagging within a...

  6. 46 CFR 116.430 - Insulation other than for structural fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Insulation other than for structural fire protection... PASSENGERS CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.430 Insulation other than for structural fire protection. (a) Combustible insulation may be used for pipe and machinery covering or lagging within a...

  7. 46 CFR 116.430 - Insulation other than for structural fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Insulation other than for structural fire protection... PASSENGERS CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.430 Insulation other than for structural fire protection. (a) Combustible insulation may be used for pipe and machinery covering or lagging within a...

  8. 46 CFR 116.430 - Insulation other than for structural fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Insulation other than for structural fire protection... PASSENGERS CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.430 Insulation other than for structural fire protection. (a) Combustible insulation may be used for pipe and machinery covering or lagging within a...

  9. 46 CFR 116.430 - Insulation other than for structural fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Insulation other than for structural fire protection... PASSENGERS CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.430 Insulation other than for structural fire protection. (a) Combustible insulation may be used for pipe and machinery covering or lagging within a...

  10. 14 CFR 29.1359 - Electrical system fire and smoke protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electrical system fire and smoke protection... Equipment § 29.1359 Electrical system fire and smoke protection. (a) Components of the electrical system must meet the applicable fire and smoke protection provisions of §§ 29.831 and 29.863. (b)...

  11. 14 CFR 29.1359 - Electrical system fire and smoke protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electrical system fire and smoke protection... Equipment § 29.1359 Electrical system fire and smoke protection. (a) Components of the electrical system must meet the applicable fire and smoke protection provisions of §§ 29.831 and 29.863. (b)...

  12. 14 CFR 29.1359 - Electrical system fire and smoke protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electrical system fire and smoke protection... Equipment § 29.1359 Electrical system fire and smoke protection. (a) Components of the electrical system must meet the applicable fire and smoke protection provisions of §§ 29.831 and 29.863. (b)...

  13. 46 CFR 28.825 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Excess fire detection and protection equipment. 28.825... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.825 Excess fire detection and protection... meet the following requirements: (a) Installation of fire detection and protection equipment in excess...

  14. 46 CFR 28.155 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Excess fire detection and protection equipment. 28.155... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for All Vessels § 28.155 Excess fire detection and protection equipment. Installation of fire detection and protection equipment in excess of that required by...

  15. 46 CFR 28.825 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Excess fire detection and protection equipment. 28.825... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.825 Excess fire detection and protection... meet the following requirements: (a) Installation of fire detection and protection equipment in excess...

  16. 46 CFR 28.155 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Excess fire detection and protection equipment. 28.155... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for All Vessels § 28.155 Excess fire detection and protection equipment. Installation of fire detection and protection equipment in excess of that required by...

  17. 46 CFR 28.825 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Excess fire detection and protection equipment. 28.825... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.825 Excess fire detection and protection... meet the following requirements: (a) Installation of fire detection and protection equipment in excess...

  18. 46 CFR 28.155 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Excess fire detection and protection equipment. 28.155... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for All Vessels § 28.155 Excess fire detection and protection equipment. Installation of fire detection and protection equipment in excess of that required by...

  19. 46 CFR 28.155 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Excess fire detection and protection equipment. 28.155... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for All Vessels § 28.155 Excess fire detection and protection equipment. Installation of fire detection and protection equipment in excess of that required by...

  20. 46 CFR 28.155 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Excess fire detection and protection equipment. 28.155... COMMERCIAL FISHING INDUSTRY VESSELS Requirements for All Vessels § 28.155 Excess fire detection and protection equipment. Installation of fire detection and protection equipment in excess of that required by...

  1. 46 CFR 28.825 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Excess fire detection and protection equipment. 28.825... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.825 Excess fire detection and protection... meet the following requirements: (a) Installation of fire detection and protection equipment in excess...

  2. Fire protection covering for small diameter missiles

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Sawko, P. M. (Inventor)

    1979-01-01

    Flexible intumescent protection sheeting of unusually uniform thickness were prepared from epoxy-polysulfide compositions, containing microfibers and the ammonium salt of 1,4-nitroaniline-2-sulfonic acid, as disclosed in U.S. Pat. No. 3,663,464, except that an ammonium salt particle size in the order of 5 to 8 microns and a fiber size of about 1/128th inch in length and 3 to 5 microns in diameter were found critical to obtain the required density of 1.46 to 1.50 g/cc. The insulation sheeting was prepared by a continuous process involving vacuum mixing, calendering, and curing under very strict conditions which depend to some extent upon the thickness of the sheet produced.

  3. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... helicopter deck fire protection system be part of a fire water system? 149.419 Section 149.419 Navigation and... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water... § 149.421 may be part of: (1) The fire water system, installed in accordance with Mineral...

  4. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... helicopter deck fire protection system be part of a fire water system? 149.419 Section 149.419 Navigation and... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water... § 149.421 may be part of: (1) The fire water system, installed in accordance with Mineral...

  5. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... helicopter deck fire protection system be part of a fire water system? 149.419 Section 149.419 Navigation and... § 149.419 Can the water supply for the helicopter deck fire protection system be part of a fire water... § 149.421 of this part may be part of: (1) The fire water system, installed in accordance with Bureau...

  6. Seek alternative to halon for gas-turbine fire protection

    SciTech Connect

    1996-02-01

    This article describes fine water-spray technology which recasts use of water for fixed fire-suppression systems. Technology differs from common sprinkler system. Since the 1987 Montreal Protocol governing use and production of chemicals that are suspected of depleting the upper atmospheric ozone layer, fire-protection manufacturers have explored alternatives to halon 1301, a chlorofluorocarbon (CFC) used extensively in powerplant applications. One particularly challenging application is the gas-turbine enclosure, because of its high operating temperature and range of potential fire hazards--pools of leaking lube oil, oil-soaked insulation, ruptured high-pressure natural-gas lines, and so on. One alternative racing toward commercialization is fine water spray produced by the so-called twin-fluid atomizing nozzle. The technology, developed and tested in Europe, combines water and compressed air--or nitrogen--to direct precisely sized water droplets to the base of a fire. According to david Kipley, Vectra Technologies Inc., Naperville, IL, the system can rapidly extinguish large, intense fires using limited quantities of water.

  7. GLOVEBOX WINDOWS, FIRE PROTECTION AND VOICES FROM THE PAST

    SciTech Connect

    Till, W

    2009-04-15

    'Study the past--what is past is prologue'. These words appear as the motto on a pair of statues at the National Archives Building in Washington DC. They are also the opening sentence in the preface of a document written in August of 1956 entitled 'A Summary of Accidents and Incidents Involving Radiation in Atomic Energy Activities--June 1945 thru December 1955'. This document, one of several written by D.F. Hayes of the Safety and Fire Protection Branch, Division of Organization and Personnel, U.S. Atomic Energy Commission in Washington DC, and many others are often forgotten even though they contain valuable glovebox fire protection lessons for us today.

  8. Engineering and Design: Fire Protection--Hydroelectric Power Plants

    DTIC Science & Technology

    2007-11-02

    Risk Insurers ( IRI ) National Fire Protection Association (NFPA) National Electrical Code (NEC) National Electrical Manufacturers Association (NEMA...smoke from the powerhouse. Smoke exhaust fans should be installed according to NFPA and IRI requirements and should have a 500 de~ree F ratinq... Dampers , valves and other power operated devices should be configured to provide operation in the smoke control mode in the case of a power outaqe. R

  9. 29 CFR 1915.507 - Land-side fire protection systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fire detection systems and emergency alarms according to NFPA 72-2002 National Fire Alarm Code... 29 Labor 7 2010-07-01 2010-07-01 false Land-side fire protection systems. 1915.507 Section 1915..., DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Fire...

  10. Protective Breathing Apparatus. Fire Service Certification Series. Unit FSCS-FF-6-80.

    ERIC Educational Resources Information Center

    Pribyl, Paul F.

    This training unit on protective breathing apparatus is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 10-hour unit is to enable the fire fighter to perform routine fire fighting and rescue…

  11. 77 FR 74381 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... Depleting Substances--Fire Suppression and Explosion Protection AGENCY: Environmental Protection Agency (EPA... published a direct final rule and a companion proposed rule issuing listings for three fire suppressants... three fire suppressants under EPA's Significant New Alternatives Policy program (77 FR 58035)....

  12. 76 FR 70414 - National Fire Protection Association (NFPA) Proposes To Revise Codes and Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... National Institute of Standards and Technology National Fire Protection Association (NFPA) Proposes To... behalf of the National Fire Protection Association (NFPA) to announce the NFPA's proposal to revise some of its fire safety codes and standards and requests proposals from the public to amend existing...

  13. 33 CFR 149.640 - What are the requirements for fire protection systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and Equipment Structural Fire Protection § 149.640 What are the requirements for fire... undergo major conversions must comply with the requirements for structural fire protection outlined in...

  14. 33 CFR 149.640 - What are the requirements for fire protection systems?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and Equipment Structural Fire Protection § 149.640 What are the requirements for fire... undergo major conversions, must comply with the requirements for structural fire protection outlined in...

  15. 33 CFR 149.640 - What are the requirements for fire protection systems?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and Equipment Structural Fire Protection § 149.640 What are the requirements for fire... undergo major conversions must comply with the requirements for structural fire protection outlined in...

  16. 33 CFR 149.640 - What are the requirements for fire protection systems?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and Equipment Structural Fire Protection § 149.640 What are the requirements for fire... undergo major conversions must comply with the requirements for structural fire protection outlined in...

  17. Fire protection at the Fast Flux Test Facility (a sodium cooled test reactor)

    SciTech Connect

    Bell, J.R.

    1980-09-19

    For purposes of this presentation, fire protection at the FFTF is subdivided into two catagories; protection for non-sodium areas and protection for areas containing sodium. Fire protection systems and philosophies for non-sodium areas at the FFTF are very similar to those used at conventional power plants being constructed throughout the country. They follow, essentially, the NRC rules and guidelines and ANSI 59.4 Generic Requirements for Light Water Nuclear Power Plant Fire Protection. The FFTF with its support facilities have their own water system comprised of a looped 8'' and 10'' underground distribution system, three 1500 GPM fire pumps and three ground level storage tanks totaling 736,000 gallons with 420,000 reserved for fire protection. Fire hydrants are enclosed with hose houses outfitted for use by the Emergency Response Team (ERT). Fire prevention systems for sodium areas of the FFTF are also described.

  18. 5 CFR 551.215 - Fire protection activities and 7(k) coverage for FLSA pay and exemption determinations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... similar employees involved in fire protection research or in the design and development of fire protection... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Fire protection activities and 7(k... ACT Exemptions and Exclusions § 551.215 Fire protection activities and 7(k) coverage for FLSA pay and...

  19. Behaviour of Passive Fire Protection K-Geopolymer under Successive Severe Fire Incidents

    PubMed Central

    Sakkas, Konstantinos; Sofianos, Alexandros; Nomikos, Pavlos; Panias, Dimitrios

    2015-01-01

    The performance of a fire resistant coating for tunnel passive fire protection under successive severe thermal loading is presented. The material falls under the class of potassium based geopolymers (K-geopolymer) and was prepared by mixing ferronickel (FeNi) slag, doped with pure alumina, with a highly alkaline potassium hydroxide aqueous phase. Its performance was assessed by subjecting a concrete slab with a five cm thick K-geopolymer coating layer into successive RijksWaterStaat (RWS) fire incidents. During the first test, the maximum measured temperature in the K-geopolymer/concrete interface was 250 °C, which is 130 °C lower than the RWS test requirement, while, during the second fire test, the maximum temperature was almost 370 °C, which is still lower than the RWS requirement proving the effectiveness of the material as a thermal barrier. In addition, the material retained its structural integrity, during and after the two tests, without showing any mechanical or thermal damages. PMID:28793554

  20. Installation and operation of the Plantwide Fire Protection Systems and related Domestic Water Supply Systems. Environmental Assessment

    SciTech Connect

    Not Available

    1991-12-01

    A safe work environment is needed to support the Savannah River Site (SRS) mission of producing special nuclear material. This Environmental Assessment (EA) assesses the potential environmental impact(s) of adding to and upgrading the Plantwide Fire Protection System and selected related portions of the Domestic Water Supply System at SRS, Aiken, South Carolina. The following objectives are expected to be met by this action: Prevent undue threat to public health and welfare from fire at SRS; prevent undue hazard to employees at SRS from fire; prevent unacceptable delay to vital DOE programs as a result of fire at SRS; keep fire related property damage at SRS to a manageable level;, and provide an upgraded supply of domestic water for the Reactor Areas. The Reactor Areas` domestic water supplies do not meet current demand capacity due to the age and condition of the 30-year old iron piping. In addition, the water quality for these supplies is not consistent with current SCDHEC requirements. Therefore, DOE proposes to upgrade this Domestic Water Supply System to meet current demand and quality levels, as well as the needs of fire protection system improvement.

  1. Perspectives on prescribed fire in the south: does ethnicity matter?

    Treesearch

    Siew Hoon Lim; J.M. Bowker; Cassandra Y. Johnson; H. Ken Cordell

    2009-01-01

    Using a household survey and regression methods, we assessed preferences for prescribed fire in the southern United States. We found that the majority of the respondents favored the use of prescribed fire. However, we observed pronounced racial variation in opinions on prescribed fire and its side effects. African Americans and Hispanics were less supportive and were...

  2. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect

    REMAIZE, J.A.

    2000-09-27

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  3. Aviation Engine Test Facilities (AETF) fire protection study

    NASA Astrophysics Data System (ADS)

    Beller, R. C.; Burns, R. E.; Leonard, J. T.

    1989-07-01

    An analysis is presented to the effectiveness of various types of fire fighting agents in extinguishing the kinds of fires anticipated in Aviation Engine Test Facilities (AETF), otherwise known as Hush Houses. The agents considered include Aqueous Film-Forming Foam, Halon 1301, Halon 1211 and water. Previous test work has shown the rapidity with which aircraft, especially high performance aircraft, can be damaged by fire. Based on this, tentative criteria for this evaluation included a maximum time of 20 s from fire detection to extinguishment and a period of 30 min in which the agent would prevent reignition. Other issues examined included: toxicity, corrosivity, ease of personnel egress, system reliability, and cost effectiveness. The agents were evaluated for their performance in several fire scenarios, including: under frame fire, major engine fire, engine disintegration fire, high-volume pool fire with simultaneous spill fire, internal electrical fire, and runaway engine fire.

  4. A Burning Question: Does Post-Fire Rehabilitation Alter the Likelihood of Future Fires?

    NASA Astrophysics Data System (ADS)

    Bowman-Prideaux, C.; Newingham, B. A.

    2013-12-01

    Historically, aridlands have had infrequent fire due to patchy plant distributions, which limit fire spread. However, aridland fire regimes have changed because invasive annual grasses have created continuous fuel beds, which have led to increasingly frequent fires and a greater area burned each decade since the 1970s. Climate change is predicted to further increase the number and size of fires. Post-fire rehabilitation is enacted in order to reestablish plant communities and has the potential to further alter fire regimes. Rehabilitation treatments include tilling seeds using a tractor and drill (drill seeding), dropping seed aerially with helicopters (aerial seeding), or both. Few studies examine the impact of post-fire rehabilitation on the likelihood of future fires in these aridland ecosystems. We examined the effects of post-fire rehabilitation treatments on the number of years before the next fire. Using GIS layers detailing fire history and post-fire rehabilitation treatments in the southern Idaho Great Basin, we extracted information from randomly selected sites and analyzed them with generalized linear models. Preliminary analysis on 43 sites suggests the number of years before the next fire tended to be less in seeded than unseeded sites (P=0.055). Further investigation revealed that the number of years until the next fire differed among seed application methods. Sites that were drill seeded burned approximately 12 years later while sites with combined aerial and drill seeding burned again after 6.5 years (P=0.05). The total number of burns at a site was inversely related to the time before the next fire (P=0.001). After the first fire, sites averaged 17.4 years before the next fire occurred; this decreased with each subsequent fire to 7.1 years after the fifth fire. The number of times a site burned and the rehabilitation treatment interacted to affect the number of years between fires. In sites that burned once, there was on average 27.75 years before

  5. 33 CFR 149.401 - What are the general requirements for firefighting and fire protection equipment?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Firefighting and Fire Protection Equipment § 149.401 What are the...

  6. 14 CFR 29.861 - Fire protection of structure, controls, and other parts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Fire... category A rotorcraft, fireproof; and (b) For Category B rotorcraft, fireproof or protected so that...

  7. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  8. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  9. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  10. 30 CFR 77.1916 - Welding, cutting, and soldering; fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Welding, cutting, and soldering; fire... OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1916 Welding, cutting, and soldering; fire protection. (a) One portable fire extinguisher shall be provided where welding, cutting, or soldering...

  11. Cost-benefit analysis of passive fire protections in road LPG transportation.

    PubMed

    Paltrinieri, Nicola; Bonvicini, Sarah; Spadoni, Gigliola; Cozzani, Valerio

    2012-02-01

    The cost-benefit evaluation of passive fire protection adoption in the road transport of liquefied petroleum gas (LPG) was investigated. In a previous study, mathematical simulations of real scale fire scenarios proved the effectiveness of passive fire protections in preventing the "fired" boiling liquid expanding vapor explosion (BLEVE), thus providing a significant risk reduction. In the present study the economical aspects of the adoption of fire protections are analyzed and an approach to cost-benefit analysis (CBA) is proposed. The CBA model is based on the comparison of the risk reduction due to fire protections (expressed in monetary terms by the value of a statistical life) and the cost of the application of fire protections to a fleet of tankers. Different types of fire protections were considered, as well as the possibility to apply protections to the entire fleet or only to a part of it. The application of the proposed model to a real-life case study is presented and discussed. Results demonstrate that the adoption of passive fire protections on road tankers, though not compulsory in Europe, can be economically feasible, thus representing a concrete measure to achieve control of the "major hazard accidents" cited by the European legislation.

  12. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    SciTech Connect

    SINGH, G.

    2000-10-17

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  13. 46 CFR 122.612 - Fire protection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... line must be marked to indicate the space served. (b) An alarm for a fixed gas fire extinguishing... fire alarm box must be conspicuously marked in clearly legible letters “IN CASE OF FIRE BREAK GLASS”. (e) An alarm for an automatic fire detecting system or a manual alarm system must be conspicuously...

  14. 46 CFR 122.612 - Fire protection equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... line must be marked to indicate the space served. (b) An alarm for a fixed gas fire extinguishing... fire alarm box must be conspicuously marked in clearly legible letters “IN CASE OF FIRE BREAK GLASS”. (e) An alarm for an automatic fire detecting system or a manual alarm system must be conspicuously...

  15. Fire-protection research program for the US Nuclear Regulatory Commission, 1975-1981. [PWR; BWR

    SciTech Connect

    Dube, D.A.

    1983-04-01

    Since early 1975, Sandia National Laboratories has been conducting fire-protection research for the US Nuclear Regulatory Commission. Testing has been done on grouped electrical-cable fires including electrical initiation, fire propagation, the effects of fire-retardant coatings and barriers, suppression, and characterization of the damage-ability of electrical cables. In addition, several studies of a more-generic nature such as fire detection, ventilation, and fire-hazards analysis methodologies were performed. This report condenses all of the test results, reports, papers, and research findings of the past seven years. Research conducted by contractors to Sandia National Laboratories is also summarized.

  16. F-200(TM): The new solution for fire protection

    NASA Technical Reports Server (NTRS)

    Thornton, Alfred J.; Walter, Gerald J.

    1995-01-01

    For more than two decades, halon 1301 has been protecting personnel and valuable aircraft and aerospace equipment from the hazards of fire. Only halon 1301 offered the advantages of being clean, odorless, colorless, electrically non-conductive and safe for occupied areas. However, concerns about the depletion of stratospheric ozone and the resulting Montreal Protocol mandated the production phase-out of halon 1301 on December 31, 1993. Prior to this phase-out, Great Lakes Chemical Corporation, the world's leading manufacturer of halon, directed substantial research efforts toward the rapid development of a safe, clean, and effective halon replacement. Some of the criteria for the development of a clean agent included: that it be an effective fire extinguisher; that it be safe for personnel; that it be safe for the environment; that it be safe for valuable assets; that it be cost effective; and that it be able to withstand the rigors of independent approvals. As the result of this research, Great Lakes developed FM-200(TM) is 1, 1, 1, 2, 3, 3, 3-hepta-fluoropropane. This paper discusses the physical properties of FM-200(TM) and its efficiency as an extinguishant.

  17. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  18. Synthesis and evaluation of borates derived from boric acid for fire and decay protections

    Treesearch

    George Chen

    1999-01-01

    The degradation of wood by decay, fire and UV constitutes the three major losses of wood products in use. Commercial wood preservatives including chromated copper arsenate(CCA) and pentachlorophenol(penta) can only protect wood from decay. Dual protections of wood against decay and fire or decay and UV if acheivable are more desirable. Many phosphorus and boron...

  19. 75 FR 66725 - National Fire Protection Association (NFPA) Proposes To Revise Codes and Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... National Institute of Standards and Technology National Fire Protection Association (NFPA) Proposes To...: Notice. SUMMARY: The National Fire Protection Association (NFPA) proposes to revise some of its safety... and publication of these Comments in the Report on Comments (ROC); the Association Technical Meeting...

  20. 29 CFR Appendix C to Subpart L of... - Fire Protection References For Further Information

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Practice for Respiratory Protection for the Fire Service; ANSI Z88.5; American National Standards Institute... 60601. C. § 1910.158. Standpipe and hose systems: 1. Standard for the Installation of Sprinkler Systems... the Installation of Standpipe and Hose Systems, ANSI/NFPA 14; National Fire Protection...

  1. 29 CFR Appendix C to Subpart L of... - Fire Protection References For Further Information

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Practice for Respiratory Protection for the Fire Service; ANSI Z88.5; American National Standards Institute... 60601. C. § 1910.158. Standpipe and hose systems: 1. Standard for the Installation of Sprinkler Systems... the Installation of Standpipe and Hose Systems, ANSI/NFPA 14; National Fire Protection...

  2. 46 CFR 72.05-40 - Insulation, other than for structural fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Incombustible Materials. This paragraph shall not apply to such insulation installed in cargo spaces... 46 Shipping 3 2012-10-01 2012-10-01 false Insulation, other than for structural fire protection... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than...

  3. 46 CFR 72.05-40 - Insulation, other than for structural fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Incombustible Materials. This paragraph shall not apply to such insulation installed in cargo spaces... 46 Shipping 3 2011-10-01 2011-10-01 false Insulation, other than for structural fire protection... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than...

  4. 46 CFR 72.05-40 - Insulation, other than for structural fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Incombustible Materials. This paragraph shall not apply to such insulation installed in cargo spaces... 46 Shipping 3 2013-10-01 2013-10-01 false Insulation, other than for structural fire protection... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than...

  5. 46 CFR 72.05-40 - Insulation, other than for structural fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Incombustible Materials. This paragraph shall not apply to such insulation installed in cargo spaces... 46 Shipping 3 2010-10-01 2010-10-01 false Insulation, other than for structural fire protection... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than...

  6. 46 CFR 72.05-40 - Insulation, other than for structural fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Incombustible Materials. This paragraph shall not apply to such insulation installed in cargo spaces... 46 Shipping 3 2014-10-01 2014-10-01 false Insulation, other than for structural fire protection... VESSELS CONSTRUCTION AND ARRANGEMENT Structural Fire Protection § 72.05-40 Insulation, other than...

  7. Laboratory investigation of fire protection coatings for creosote-treated timber railroad bridges

    Treesearch

    Carol A. Clausen; Robert H. White; James P. Wacker; Stan T. Lebow; Mark A. Dietenberger; Samuel L. Zelinka; Nicole M. Stark

    2014-01-01

    As the incidence of timber railroad bridge fires increases, so has the need to develop protective measures to reduce the risk from accidental ignitions primarily caused by hot metal objects. Of the six barrier treatments evaluated in the laboratory for their ability to protect timbers from fires sourced with ignition from hot metal objects only one intumescent coating...

  8. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under Table 149.409 of this part, each helicopter fueling facility must have a fire protection...

  9. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under table 149.409, each helicopter fueling facility must have a fire protection system complying...

  10. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under table 149.409, each helicopter fueling facility must have a fire protection system complying...

  11. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under Table 149.409 of this part, each helicopter fueling facility must have a fire protection...

  12. 33 CFR 149.418 - What fire protection system must a helicopter fueling facility have?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a helicopter fueling facility have? 149.418 Section 149.418 Navigation and Navigable Waters COAST... protection system must a helicopter fueling facility have? In addition to the portable fire extinguishers required under table 149.409, each helicopter fueling facility must have a fire protection system complying...

  13. 76 FR 3178 - Fire Protection in Shipyard Employment Standard; Extension of the Office of Management and Budget...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... written fire safety plan and written statements or policies that contain information about fire watches... Occupational Safety and Health Administration Fire Protection in Shipyard Employment Standard; Extension of the... collection requirements specified in its Fire Protection in Shipyard Employment Standard (29 CFR 1915.501...

  14. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    SciTech Connect

    Irving, J.S.

    2003-04-30

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  15. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    SciTech Connect

    Irving, John S

    2003-04-01

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  16. Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2

    SciTech Connect

    Good, D.E.

    1995-09-01

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline.

  17. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    SciTech Connect

    R. Longwell; J. Keifer; S. Goodin

    2001-01-22

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  18. Crew Exploration Vehicle Environmental Control and Life Support Fire Protection Approach

    NASA Technical Reports Server (NTRS)

    Lewis, John F.; Barido, Richard; Tuan, George C.

    2007-01-01

    As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station. Working with NASA fire and materials experts, this approach outlines the best requirements for both the closed out area of the vehicle, such as the avionics bay, and the crew cabin area to address the unique challenges due to the size and configuration of the CEV.

  19. Fire resistance of wood members with directly applied protection

    Treesearch

    Robert H. White

    2009-01-01

    Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National...

  20. Protection against fire in the mountainous forests of Greece case study: forest complex of W. Nestos

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Stergiadou, Anastasia; Karagiannis, Evaggelos; Doukas, Aristotelis-Kosmas G.

    2014-08-01

    Forest fires are an ancient phenomenon. Appear, however, with devastating frequency and intensity over the last 30 years. In our country, the climatic conditions in combination with the intense relief, favor their rapid spread. Considering the fact that environmental conditions provided for decades even worse (increased temperature, drought and vegetation), then the problem of forest fires in our country, is expected to become more intense. The work focuses on the optimization model of the opening up of the forest mountain areas taking into account the prevention and suppression of forest fires. Research area is the mountain forest complex of W. Nestos of Drama Prefecture. The percentage of forest protection area is examined under the light whether the total hose length corresponds to the actual operational capacity to reach a fire source. For this reason are decided to present a three case study concerning area of the forest being protected by fire extinguishing vehicles. The first one corresponds to a fire suppression bandwidth (buffer zone) with a capacity radius of 150m uphill and 250m downhill from the origin point where the fire extinguishing vehicle stands. The second one corresponds to a fire suppression capacity of 200m uphill and 400m downhill and the third one corresponds to a fire suppression capacity of 300m uphill and 500m downhill. The most important forest technical infrastructures to prevent fire are roads network (opening up) for fire protection and buffer zones. Patrols of small and agile 4 × 4 appropriately equipped (pipe length of 500 meters and putting pressure on uphill to 300 meters) for the first attack of the fire in the summer months coupled with early warning of fire observatories adequately cover the forest protection of W. Nestos complex. But spatial distribution needed improvements to a road density of the optimum economic Dec, both forest protection and for better management (skidding) of woody capital.

  1. Performance of a Protected Wireless Sensor Network in a Fire. Analysis of Fire Spread and Data Transmission

    PubMed Central

    Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic

    2009-01-01

    The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563

  2. Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR

    SciTech Connect

    Berry, D. L.

    1980-05-01

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

  3. Does post-fire plant regeneration mode affect the germination response to fire-related cues?

    PubMed

    Ne'eman, Gidi; Ne'eman, Rina; Keith, David A; Whelan, Rob J

    2009-03-01

    Vegetative resprouting, soil or canopy-stored seed banks, post-fire seed dispersal and germination are the major strategies by which plants regenerate after fires. Post-fire regeneration modes of plants are commonly based on the presence or absence of post-fire recruitment as well as the presence or absence of post-fire resprouting. High temperatures, smoke and ash are characteristics of fire and the post-fire environment. We hypothesized that heat, smoke, ash and pH will have differential effects on seed germination depending on species' post-fire regeneration strategies: serotinous vs. nonserotinous (which may have soil seed banks) and resprouters vs. nonresprouters (which may be obligate seeders). Here we examined the effects of these factors on the germination of 27 common east Australian species. Most serotinous species supported our hypothesis by showing no effect or reduced germination in response to heat. However, contrary to our prediction, all nonserotinous nonresprouting species also showed no effect or reduced germination in response to heat. Smoke, contrary to our hypothesis, had a negative or no effect on all serotinous and nonresprouting species, but no clear directional effect on serotinous and resprouting species. Supporting our hypotheses, ash and high pH showed positive or nonsignificant effects on the germination of all serotinous resprouting species, and a negative or no effect on nonserotinous resprouting species. However, contrary to our prediction, it had a negative or no effect on the serotinous nonresprouting species and no clear effect on nonserotinous nonresprouting species. We also discovered large differences in germination responses between conspecific populations that varied in their degree of resprouting. Although our data confirmed several of our predictions, the overall conclusion is that the responses of seeds to heat, smoke, ash and pH are not tightly associated with post-fire regeneration functional types.

  4. Fire Protection Specialist, Blocks I, II, & III, 17-2. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text contains the first three blocks of a five-block course for use in training fire protection specialists. Covered in the individual volumes are the following topics: fire protection objectives and responsibilities (fire protection and occupational safety, extinguishing agents, principles and theory of combustion, natural…

  5. DOE plan for UMTRA Project water protection standards

    SciTech Connect

    Not Available

    1986-07-01

    This plan was developed to define DOE's implementation of water protection standards for the UMTRA Project, on an interim basis, until the EPA promulgates revised standards in response to the September, 1985, decision by the Tenth Circuit Court of Appeals. This plan presents the historical background of the development of the Title I standards and the rationale for the DOE implementation approach.

  6. Risk Based Reliability Centered Maintenance of DOD Fire Protection Systems

    DTIC Science & Technology

    1999-01-01

    Interface Location In Fire water supply Dry pipe system control valve In Air supply system Air supply system compressor In Priming water Priming, water...outlet Table 2.18 Deluge, Water Spray, and Pre-action System Boundaries Interface Type Bounding System/Component Interface Location In Fire water supply... Fire water supply Foam/foam-water system control valve In Foam concentrate pump Pump motor starter In Foam concentrate pump Start signal to the pump

  7. Cold Vacuum Drying facility fire protection system design description (SYS 24)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings.

  8. Invited commentary: Does breastfeeding protect against "asthma"?

    PubMed

    Kramer, Michael S

    2014-05-15

    Dogaru et al. have provided the best systematic review and meta-analysis to date of published studies of the association between breastfeeding and childhood asthma. Despite careful analysis of the reviewed studies' designs and methodological quality features, the authors are unable to explain the enormous heterogeneity (I(2) = 71%-92%) among the reported findings. This heterogeneity likely stems from the fact that "asthma" is a term used to denote a highly variable phenotype. The reasons for the protective association between breastfeeding and such a heterogeneous phenotype remain unclear, but may reflect nonblinding of feeding histories among observers who assess the outcome, as well as residual confounding, particularly by daycare attendance. The absence of a dose-response relationship based on breastfeeding duration or exclusivity also raises questions about the causal nature of the observed association. Future epidemiologic studies of asthma will require better and finer phenotyping to understand its etiology, including the potential protective effect of breastfeeding.

  9. Does bilirubin protect against developing diabetes mellitus?

    PubMed

    Breimer, Lars H; Mikhailidis, Dimitri P

    2016-01-01

    After 25 years of evaluating bilirubin as a possible protective agent in neonatal and cardiovascular disease, interest has moved on to a exploring a possible protective role in diabetes mellitus (DM). This review finds conflicting prospective data for a protective relationship though there are retrospective, case-controlled data, that can only show association, which is not causality. Only prospective studies can show causality. Also, it would appear that the underlying biochemical assumptions do not readily translate from the animal to the human setting. Given that many factors impact on circulating bilirubin levels, it is not surprising that a clear-cut answer is not available; the jury is still out. Any relationship between DM and bilirubin might relate to intermediates in bilirubin metabolism, including relationships involving the genes for the enzymes participating in those steps. Nevertheless, the pursuit of bilirubin in disease causation is opening new avenues for research and if it is established that serum bilirubin can predict risks, much will have been achieved. The answer may have to come from molecular genetic analyses.

  10. Does biodiversity protect humans against infectious disease?

    PubMed

    Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M

    2014-04-01

    Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

  11. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  12. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  13. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  14. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire protection of flight controls, engine... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight... they are capable of withstanding the effects of a fire. Engine vibration isolators must incorporate...

  15. 33 CFR 154.2105 - Fire, explosion, and detonation protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Fire, explosion, and detonation... Control Systems Transfer Facilities-Vcs Design and Installation § 154.2105 Fire, explosion, and detonation... analyzer and the facility vapor connection must not exceed 6 meters (19.7 feet); or (2) Have a detonation...

  16. 14 CFR 121.308 - Lavatory fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operate a passenger-carrying airplane unless each lavatory in the airplane is equipped with a smoke...-carrying airplane unless each lavatory in the airplane is equipped with a built-in fire extinguisher for each disposal receptacle for towels, paper, or waste located within the lavatory. The built-in fire...

  17. Florida's Revised Prescribed Fire Law: Protection For Responsible Burners

    Treesearch

    Jim Brenner; Dale Wade

    2003-01-01

    In Florida, natural communities require periodic fires for maintenance of their ecological integrity. Because of public concerns, wildfires can no longer be allowed to perform this mandatory function so prescribed burning is essential to manage these plant and animal communities. We discuss the importance of prescribed fire in Florida, outline a history of the state...

  18. HOW TO PROVIDE AUTOMATIC FIRE PROTECTION FOR YOUR BUILDING.

    ERIC Educational Resources Information Center

    Honeywell, Inc., Minneapolis, Minn.

    THE ADVANTAGES OF PROMPT FIRE DETECTION IS DISCUSSED WITH RESPECT TO THE NATURE AND COST OF FIRES. EQUIPMENT IS DESCRIBED, AND DIAGRAMS OF INSTALLATIONS OF DETECTION AND ALARM SYSTEMS ARE GIVEN FOR SCHOOLS, HOSPITALS, COMMERICAL BUILDINGS, INDUSTRIAL PLANTS, AND CAMPUSES. (JT)

  19. 29 CFR Appendix A to Subpart L of... - Fire Protection

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... type of automatic sprinkler system. Further information on the control of metal fires with water can be... contributing to the improvement of the cardiovascular system. 5. Training and education. The paragraph on... in strategy and tactics, fire suppression and prevention techniques, leadership principles,...

  20. Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions

    NASA Astrophysics Data System (ADS)

    Reddy, C. Sudhakar; Padma Alekhya, V. V. L.; Saranya, K. R. L.; Athira, K.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2017-02-01

    Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.

  1. Application of Graph Theory to Cost-Effective Fire Protection of Chemical Plants During Domino Effects.

    PubMed

    Khakzad, Nima; Landucci, Gabriele; Reniers, Genserik

    2017-09-01

    In the present study, we have introduced a methodology based on graph theory and multicriteria decision analysis for cost-effective fire protection of chemical plants subject to fire-induced domino effects. By modeling domino effects in chemical plants as a directed graph, the graph centrality measures such as out-closeness and betweenness scores can be used to identify the installations playing a key role in initiating and propagating potential domino effects. It is demonstrated that active fire protection of installations with the highest out-closeness score and passive fire protection of installations with the highest betweenness score are the most effective strategies for reducing the vulnerability of chemical plants to fire-induced domino effects. We have employed a dynamic graph analysis to investigate the impact of both the availability and the degradation of fire protection measures over time on the vulnerability of chemical plants. The results obtained from the graph analysis can further be prioritized using multicriteria decision analysis techniques such as the method of reference point to find the most cost-effective fire protection strategy. © 2016 Society for Risk Analysis.

  2. Modeling the protection afforded by burrows, cavities, and roosts during wildland surface fires

    Treesearch

    Anthony Bova; Matthew Dickinson

    2009-01-01

    Wildland surface fires produce many toxic and irritating compounds, such as formaldehyde and acrolein, and harmful gases such as carbon monoxide. Several factors influence the degree of protection offered by animal shelters against combustion products and heat.

  3. Developing a model lifeline protection program for DOE facilities

    SciTech Connect

    Lowing, A.N.

    1996-11-01

    A National Lifeline Standard Development Program is currently being conducted by FEMA and NIST. The Department of Energy is following these developments and supplementing them to meet Life-Safety and mission requirements for all DOE facilities as part of the Natural Phenomena Hazards Mitigation Plan. The task will be overseen by a DOE management team with technical guidance provided by a Steering Group of management and operating contractor representatives. The DOE will participate in the federal program by conducting a workshop on lifeline protection issues, developing an overall plan, organizing a Steering Group, and conducting a pilot study at a DOE facility.

  4. Numerical estimation of fire resistance and a flexible design of fire protection for structures made of reinforced materials

    NASA Astrophysics Data System (ADS)

    Kaledin, Vl. O.; Mitkevich, A. B.; Strakhov, V. L.

    2012-07-01

    The basic principles of a progressive methodology for calculating the fire resistance of reinforced structures, meant for application to high-rise, multifunctional, and unique buildings, are presented. The methodology is universal with respect to materials, types of building structures with fire protection, and different force and heat loads acting on them under the conditions of fire. It permits one to take into account all particularities of the thermomechanical behavior of structures in the case of joint action of thermal and force loads. The solution procedure is based on using high-level mathematical models and universal methods of numerical analysis, i.e., the finite-element method (FEM) and the finite-difference method (FDM). To simplify and reduce the labor content of computational algorithms, a mathematical model of special beam finite element has been developed, which in a natural way takes into account the complex structure of buildings, spatial nonuniformity of temperature fields, and the nonlinear behavior of materials. This procedure allowed us to determine the limits of applicability of the known approximate approach, which is based on the use of the concept of "critical temperature," to the estimation of fire resistance and to the design of fire protection of concrete structures. The procedure has been used in designing a number of unique structures built in Moscow.

  5. Does professional autonomy protect medical futility judgments?

    PubMed

    Gampel, Eric

    2006-04-01

    Despite substantial controversy, the use of futility judgments in medicine is quite common, and has been backed by the implementation of hospital policies and professional guidelines on medical futility. The controversy arises when health care professionals (HCPs) consider a treatment futile which patients or families believe to be worthwhile: should HCPs be free to refuse treatments in such a case, or be required to provide them? Most physicians seem convinced that professional autonomy protects them from being forced to provide treatments they judge mentally futile, given the lack of patient benefit as well as the waste of medical resources involved. The argument from professional autonomy has been presented in a number of articles, but it has not been subjected to much critical scrutiny. In this paper I distinguish three versions of the argument: 1) that each physician should be free to exercise his or her own medical judgment; 2) that the medical profession as a whole may provide futility standards to govern the practice of its members; and 3) that the moral integrity of each physician serves as a limit to treatment demands. I maintain that none of these versions succeeds in overcoming the standard objection that futility determinations involve value judgments best left to the patients, their designated surrogates, or their families. Nor do resource considerations change this fact, since they should not influence the properly patient-centered judgment about futility.

  6. 14 CFR 25.869 - Fire protection: systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) EWIS components must meet the requirements of § 25.1713. (b) Each vacuum air system line and fitting on... requirements of § 25.1183 if the line or fitting is in a designated fire zone. Other vacuum air...

  7. 14 CFR 25.869 - Fire protection: systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) EWIS components must meet the requirements of § 25.1713. (b) Each vacuum air system line and fitting on... requirements of § 25.1183 if the line or fitting is in a designated fire zone. Other vacuum air...

  8. Polyimide foams provide thermal insulation and fire protection

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.

    1972-01-01

    Chemical reactions to produce polyimide foams for application as thermal insulation and fire prevention materials are discussed. Thermal and physical properties of the polyimides are described. Methods for improving basic formulations to produce desired qualitites are included.

  9. Does caffeine intake protect from Alzheimer's disease?

    PubMed

    Maia, L; de Mendonça, A

    2002-07-01

    Caffeine is the most widely consumed behaviourally active substance in the western world. Neuroprotective effects of caffeine in low doses, chronically administered, have been shown in different experimental models. If caffeine intake could protect against neurodegeneration in Alzheimer's disease (AD), then higher levels of caffeine consumption in normal subjects as compared with AD patients should be detectable in the presumably long period before diagnosis when insidious pathogenic changes are taking place. A case-control study was used: cases were 54 patients with probable AD fulfilling the National Institute of Neurologic and Communicative Disorders and Stroke and the AD and Related Disorders Association criteria, in a Dementia Clinics setting. Controls were 54 accompanying persons, cognitively normal, matched for age (+/-3 years) and sex. Patients with AD had an average daily caffeine intake of 73.9 +/- 97.9 mg during the 20 years that preceded diagnosis of AD, whereas the controls had an average daily caffeine intake of 198.7 +/- 135.7 mg during the corresponding 20 years of their lifetimes (P < 0.001, Wilcoxon signed ranks test). Using a logistic regression model, caffeine exposure during this period was found to be significantly inversely associated with AD (odds ratio=0.40, 95% confidence interval=0.25-0.67), whereas hypertension, diabetes, stroke, head trauma, smoking habits, alcohol consumption, non-steroid anti-inflammatory drugs, vitamin E, gastric disorders, heart disease, education and family history of dementia were not statistically significantly associated with AD. Caffeine intake was associated with a significantly lower risk for AD, independently of other possible confounding variables. These results, if confirmed with future prospective studies, may have a major impact on the prevention of AD.

  10. Evaluation of RF Anechoic Chamber Fire Protection Systems

    DTIC Science & Technology

    1980-07-01

    technician. Batteries, battery chargers, lamps, fuses, circuit breakers , etc., require periodic checking. The field wire between the control unit and the... overheating caused by soldering. Because of these fires, manufacturers have developed new fire resistant materials which show promise for reducing the...short circuit or an open circuit will produce such a reflection, the impedance required may be either very small or very large com- pared to the

  11. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    SciTech Connect

    Johnson, B.H.

    1994-12-14

    The K Basin were constructed in the early 1950`s with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405`s Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities` Irradiated Fuel Storage Basins (K Basins).

  12. Risk reduction in road and rail LPG transportation by passive fire protection.

    PubMed

    Paltrinieri, Nicola; Landucci, Gabriele; Molag, Menso; Bonvicini, Sarah; Spadoni, Gigliola; Cozzani, Valerio

    2009-08-15

    The potential reduction of risk in LPG (Liquefied Petroleum Gas) road transport due to the adoption of passive fire protections was investigated. Experimental data available for small scale vessels fully engulfed by a fire were extended to real scale road and rail tankers through a finite elements model. The results of mathematical simulations of real scale fire engulfment scenarios that may follow accidents involving LPG tankers proved the effectiveness of the thermal protections in preventing the "fired" BLEVE (Boiling Liquid Expanding Vapour Explosion) scenario. The presence of a thermal coating greatly increases the "time to failure", providing a time lapse that in the European experience may be considered sufficient to allow the start of effective mitigation actions by fire brigades. The results obtained were used to calculate the expected reduction of individual and societal risk due to LPG transportation in real case scenarios. The analysis confirmed that the introduction of passive fire protections turns out in a significant reduction of risk, up to an order of magnitude in the case of individual risk and of about 50% if the expectation value is considered. Thus, the adoption of passive fire protections, not compulsory in European regulations, may be an effective technical measure for risk reduction, and may contribute to achieve the control of "major accidents hazards" cited by the European legislation.

  13. Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure

    SciTech Connect

    MYOTT, C.F.

    2000-02-03

    The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved.

  14. DOE/NETL's field tests of mercury control technologies for coal-fired power plants

    SciTech Connect

    Thomas Feeley; James Murphy; Lynn Brickett; Andrew O'Palko

    2005-08-01

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) is conducting a comprehensive research and development program directed at advancing the performance and economics of mercury control technologies for coal-fired power plants. This article presents results from ongoing full-scale and slipstream field tests of several mercury control technologies. 15 refs., 4 figs., 3 tabs.

  15. A study of the behaviour of a protected vessel containing LPG during pool fire engulfment.

    PubMed

    Shebeko, Y N; Bolodian, I A; Filippov, V N; Navzenya, V Y; Kostyuhin, A K; Tokarev, P M; Zamishevski, E D

    2000-10-02

    Theoretical and experimental investigations of various methods for protection against fires of vessels containing liquefied petroleum gases (LPG) (safety relief valves, intumescent fire retardant coatings, thermal isolation) have been carried out. A simple mathematical model has been proposed, which describes dependences of various parameters on time. These parameters are temperature, pressure and mass of LPG, temperatures of the vessel's walls and thermal protection layer. The case of total fire engulfment of the vessel with LPG was considered. Experiments have been executed, which were aimed on the investigation of the behaviour of vessels with LPG (50 l), equipped with protective devices during total fire engulfment. It was found out that the safety valve prevented an explosion of the vessels without any other protective measures. The presence of the intumescent fire retardant coating caused a significant delay in operation of the safety valve. A rather good agreement between the theoretical and experimental data was obtained. It has been revealed that the considered methods for protection of LPG vessels are promising in regard to prevention of explosions in these vessels at the fire engulfment.

  16. Fire protection guide for solid waste metal drum storage

    SciTech Connect

    Bucci, H.M.

    1996-09-16

    This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

  17. Fire Protection in Various Types of Wooden Structures

    NASA Astrophysics Data System (ADS)

    Gašpercová, Stanislava; Makovická Osvaldová, Linda

    2015-05-01

    Design of new modern systems for low energy efficient construction in a passive, zero standard or energy-autonomous buildings, as well as the increased popularity of solid wood construction means intervention into the very structure of its statics, building physics, but also fire properties. Some prototype design solutions are not verified whether the tests, by good computational analysis or verification of long-term use of the building. In the context of changing standards in building design, new approaches are needed. If in wooden buildings the potential risk of fire is higher than other buildings, we need special methods, materials and practical skills.

  18. Application of the NUREG/CR-6850 EPRI/NRC Fire PRA Methodology to a DOE Facility

    SciTech Connect

    Tom Elicson; Bentley Harwood; Richard Yorg; Heather Lucek; Jim Bouchard; Ray Jukkola; Duan Phan

    2011-03-01

    The application NUREG/CR-6850 EPRI/NRC fire PRA methodology to DOE facility presented several challenges. This paper documents the process and discusses several insights gained during development of the fire PRA. A brief review of the tasks performed is provided with particular focus on the following: • Tasks 5 and 14: Fire-induced risk model and fire risk quantification. A key lesson learned was to begin model development and quantification as early as possible in the project using screening values and simplified modeling if necessary. • Tasks 3 and 9: Fire PRA cable selection and detailed circuit failure analysis. In retrospect, it would have been beneficial to perform the model development and quantification in 2 phases with detailed circuit analysis applied during phase 2. This would have allowed for development of a robust model and quantification earlier in the project and would have provided insights into where to focus the detailed circuit analysis efforts. • Tasks 8 and 11: Scoping fire modeling and detailed fire modeling. More focus should be placed on detailed fire modeling and less focus on scoping fire modeling. This was the approach taken for the fire PRA. • Task 14: Fire risk quantification. Typically, multiple safe shutdown (SSD) components fail during a given fire scenario. Therefore dependent failure analysis is critical to obtaining a meaningful fire risk quantification. Dependent failure analysis for the fire PRA presented several challenges which will be discussed in the full paper.

  19. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on...

  20. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on...

  1. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided...

  2. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided...

  3. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on...

  4. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided...

  5. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on...

  6. 14 CFR 121.277 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Protection of other airplane components....277 Protection of other airplane components against fire. (a) Except as provided in paragraph (b) of this section, all airplane surfaces aft of the nacelles in the area of one nacelle diameter on...

  7. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided...

  8. 14 CFR 125.175 - Protection of other airplane components against fire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Protection of other airplane components... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Requirements § 125.175 Protection of other airplane components against fire. (a) Except as provided in...

  9. Effectiveness of protected areas in mitigating fire within their boundaries: case study of Chiapas, Mexico.

    PubMed

    Román-Cuesta, María Rosa; Martínez-Vilalta, Jordi

    2006-08-01

    Since the severe 1982-1983 El Niño drought, recurrent burning has been reported inside tropical protected areas (TPAs). Despite the key role of fire in habitat degradation, little is known about the effectiveness of TPAs in mitigating fire incidence and burned areas. We used a GPS fire database (1995-2005) (n=3590 forest fires) obtained from the National Forest Commission to compare fire incidence (number of fires) and burned areas inside TPAs and their surrounding adjacent buffer areas in Southern Mexico (Chiapas). Burned areas inside parks ranged from 2% (Palenque) to 45% (Lagunas de Montebello) of a park's area, and the amount burned was influenced by two severe El Niño events (1998 and 2003). These two years together resulted in 67% and 46% of the total area burned in TPAs and buffers, respectively during the period under analysis. Larger burned areas in TPAs than in their buffers were exclusively related to the extent of natural habitats (flammable area excluding agrarian and pasture lands). Higher fuel loads together with access and extinction difficulties were likely behind this trend. A higher incidence of fire in TPAs than in their buffers was exclusively related to anthropogenic factors such as higher road densities and agrarian extensions. Our results suggest that TPAs are failing to mitigate fire impacts, with both fire incidence and total burned areas being significantly higher in the reserves than in adjacent buffer areas. Management plans should consider those factors that facilitate fires in TPAs: anthropogenic origin of fires, sensitivity of TPAs to El Niñio-droughts, large fuel loads and fuel continuity inside parks, and limited financial resources. Consideration of these factors favors lines of action such as alternatives to the use of fire (e.g., mucuna-maize system), climatic prediction to follow the evolution of El Niño, fuel management strategies that favor extinction practices, and the strengthening of local communities and ecotourism.

  10. 46 CFR 177.410 - Structural fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .../MSC. (c) Use of general purpose resin. General purpose resins may be used instead of fire retardant... or heating appliances. (b) Composite materials. When the hull, bulkheads, decks, deckhouse, or superstructure of a vessel is partially or completely constructed of a composite material, including...

  11. 46 CFR 177.410 - Structural fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .../MSC. (c) Use of general purpose resin. General purpose resins may be used instead of fire retardant... or heating appliances. (b) Composite materials. When the hull, bulkheads, decks, deckhouse, or superstructure of a vessel is partially or completely constructed of a composite material, including...

  12. Living with wildfire in Telluride Fire Protection District, Colorado

    Treesearch

    James R. Meldrum; Lilia C. Falk; Jamie Gomez; Christopher M. Barth; Hannah Brenkert-Smith; Travis Warziniack; Patricia A. Champ

    2017-01-01

    Residents in the wildland-urban interface can play an important role in reducing wildfires’ negative effects by performing wildfire risk mitigation on their properties. This report offers insight into the wildfire risk mitigation activities and related considerations such as attitudes, experiences, and concern about wildfire, for residents of the Telluride Fire...

  13. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... through 25.1191 and §§ 25.1195 through 25.1203; (1) The region surrounding the heater, if this region... leakage. (2) The region surrounding the heater, if the heater fuel system has fittings that, if they... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating...

  14. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and...) Flammability characteristics of fluids, including effects of any combustible or absorbing materials. (3... airplane components that are critical to safety of flight to withstand fire and heat. (c) If action by...

  15. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and...) Flammability characteristics of fluids, including effects of any combustible or absorbing materials. (3... airplane components that are critical to safety of flight to withstand fire and heat. (c) If action by...

  16. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and...) Flammability characteristics of fluids, including effects of any combustible or absorbing materials. (3... airplane components that are critical to safety of flight to withstand fire and heat. (c) If action by...

  17. Evaluation of Insulation Materials and Combinations for Bulkhead Fire Protection

    DTIC Science & Technology

    1982-01-20

    fire. (This evaluation condition was suggested by Mr. J. Morris to Mr. R. C. Manahan of Johns - Manville during a visit by Mr. Manahan to the Naval Ship...and Concord Pike Wilmington, Delaware 19897 Telephone: (302) 575-3000 5. Johns - Manville Corporation CERAFELT, CERABLANKET P. 0. Box 5108 Flexible MIN

  18. The Influence of Management on the Cost of Fire Protection

    ERIC Educational Resources Information Center

    Donahue, Amy K.

    2004-01-01

    An important and unresolved issue central to the study of government performance is how the actions of managers and the nature of organizations affect the cost of public services. This paper presents an empirical analysis of fire departments that estimates the influence of managerial choices on per capita spending within a simultaneous public…

  19. 49 CFR 176.315 - Fire protection requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CFR 95.50), dry chemical (45.4 kg (100 pounds) minimum capacity) or equivalent fire extinguisher, or a... hand portable dry chemical or two portable 10 L (2.6 gallons) foam-type extinguishers must be... CFR part 98 or 46 CFR part 64. [Amdt. 176-30, 55 FR 52705, Dec. 21, 1990, as amended at 56 FR...

  20. Emergency escape system protects personnel from explosion and fire

    NASA Technical Reports Server (NTRS)

    Offik, W. G.

    1966-01-01

    Elevator-type emergency escape system evacuates personnel from tall structures, especially when the possibility of explosion or fire exists. The system consists of a spike shaped rescue cabin which descends along a vertical guide cable, penetrates the dome shaped roof of an underground blast shelter and stops in a deceleration bed of granular material.

  1. 46 CFR 177.410 - Structural fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or heating appliances. (b) Composite materials. When the hull, bulkheads, decks, deckhouse, or superstructure of a vessel is partially or completely constructed of a composite material, including fiber reinforced plastic, the resin used must be fire retardant and meet as accepted by the Commandant as meeting...

  2. 49 CFR 176.315 - Fire protection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... combustible liquid being transported on board a vessel in a portable tank, rail tank car, or a motor vehicle cargo tank, there must be provided at least one B-V semiportable foam (152 L/40 gallon capacity) (see 46 CFR 95.50), dry chemical (45.4 kg (100 pounds) minimum capacity) or equivalent fire extinguisher, or...

  3. 49 CFR 176.315 - Fire protection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... combustible liquid being transported on board a vessel in a portable tank, rail tank car, or a motor vehicle cargo tank, there must be provided at least one B-V semiportable foam (152 L/40 gallon capacity) (see 46 CFR 95.50), dry chemical (45.4 kg (100 pounds) minimum capacity) or equivalent fire extinguisher, or...

  4. Survey of fire-protection systems at LNG facilities. Topical report, July-November 1990

    SciTech Connect

    Atallah, S.; Borows, K.A.

    1991-04-05

    The objectives of the study were to collect and analyze data relating to the types, costs, and operational problems of gas leak and fire detection devices and of fire prevention and suppression systems used at LNG facilities operating in the United States. Data from 39 LNG facilities, which accounted for 45% of the total U.S. storage capacity, were collected. The report provides information relating to equipment manufacturers, site applications, operational problems, initial installation costs, annual operational costs, and equipment lifetime. Equipment of interest included fixed gas leak, fire and cryogenic detection systems, water deluge and barrier systems, thermal radiation walls and protective coatings, and fixed high expansion foam, dry chemical, carbon dioxide and halon fire suppression systems. In addition, internal fire fighting capabilities were reviewed.

  5. Fire!

    ERIC Educational Resources Information Center

    Jones, Rebecca

    1996-01-01

    The number of school fires is up nationwide. This article describes unsafe school conditions, problems with new fire codes, and the factors that contribute to school fires. Installation of sprinkler systems is recommended. A fire-safety checklist is included. (LMI)

  6. Passive fire protection for ELf`s N`Kossa floating production barge

    SciTech Connect

    Petit, P.

    1996-06-01

    The project to develop Elf`s N`Kossa offshore field called for an original design which included a floating production barge, 220 m long by 46 m wide, supporting six large modules, to provide both production facilities and living quarters. At sea, fire is a major concern and many different systems, both active and passive, have been used on offshore platforms. To provide passive fire protection of five of the six modules on this massive structure, a new high solubility glass fiber product called Insulfrax was used. This product is manufactured in Europe by the Carborundum Co. and is used in chimneys and domestic appliances, as well as for onshore and offshore fire protection. This paper reviews the sound and fire resistant qualities of this material.

  7. Fire activity inside and outside protected areas in Sub-Saharan Africa: a continental analysis of fire and its implications for biodiversity and management

    NASA Astrophysics Data System (ADS)

    Palumbo, Ilaria; Gregoire, Jean-Marie; Simonetti, Dario; Punga, Mihkel; Dubois, Gregoire

    2010-05-01

    Fire is an important ecological factor in many natural ecosystems. Without doubt one of the biomes with the highest fire activity in the world is the African savannah. Savannahs have evolved with fires since climate in these regions is characterized by definite dry and wet seasons that create the conditions for burning. During the wet months the herbaceous vegetation shows a quick growth, followed by a long dry period during which the abundant build-up of fine materials becomes highly flammable and most of fires occur. Animals and plants are adapted to these conditions and their lives depend on recurrent fires. In this context fire becomes an essential element to promote biodiversity and nature conservation. Park managers are using programmed fires as a tool to maintain the habitats and favorable conditions to the animal communities. Satellite products like burned areas and active fire maps are a valuable mean to analyze the fire activity and provide support to experts working for conservation and natural resource management. In the framework of the Digital Observatory for Protected Areas (DOPA), the MONDE group (Monitoring Natural Resources for Development) of the Joint Research Centre of the European Commission is using satellite products to analyze the fire occurrence and its effects on protected areas located in sub-Saharan Africa. Information on the fire activity was derived from the MODIS fire products (active fires and burned areas) and allows the DOPA to provide support to park managers as well as to experts working for conservation and natural resource management. We assessed 741 protected areas classified by the IUCN (International Union for Conservation of Nature) with a level of protection between class I and IV. The MODIS datasets are available since the year 2000 and were used to characterize the spatio-temporal distribution of fires over a period of 10 years. Information on fire activity was extracted for the protected areas and a 25km buffer zone

  8. Fire activity inside and outside protected areas in Sub-Saharan Africa: a continental analysis of fire and its implications for biodiversity and land management

    NASA Astrophysics Data System (ADS)

    Palumbo, Ilaria; Gregoire, Jean-Marie; Simonetti, Dario; Punga, Mihkel; Dubois, Gregoire

    2010-05-01

    Fire is an important ecological factor in many natural ecosystems. Without doubt one of the biomes with the highest fire activity in the world is the African savannah. Savannahs have evolved with fires since climate in these regions is characterized by definite dry and wet seasons that create the conditions for burning. During the wet months the herbaceous vegetation shows a quick growth, followed by a long dry period during which the abundant build-up of fine materials becomes highly flammable and most of fires occur. Animals and plants are adapted to these conditions and their lives depend on recurrent fires. In this context fire becomes an essential element to promote biodiversity and nature conservation. Park managers are using programmed fires as a tool to maintain the habitats and favorable conditions to the animal communities. Satellite products like burned areas and active fire maps are a valuable mean to analyze the fire activity and provide support to experts working for conservation and natural resource management. In the framework of the Digital Observatory for Protected Areas (DOPA), the MONDE group (Monitoring Natural Resources for Development) of the Joint Research Centre of the European Commission is using satellite products to analyze the fire occurrence and its effects on protected areas located in sub-Saharan Africa. Information on the fire activity was derived from the MODIS fire products (active fires and burned areas) and allows the DOPA to provide support to park managers as well as to experts working for conservation and natural resource management. We assessed 741 protected areas classified by the IUCN (International Union for Conservation of Nature) with a level of protection between class I and IV. The MODIS datasets are available since the year 2000 and were used to characterize the spatio-temporal distribution of fires over a period of 10 years. Information on fire activity was extracted for the protected areas and a 25km buffer zone

  9. Risk and Protective Factors for Fires, Burns, and Carbon Monoxide Poisoning in U.S. Households

    PubMed Central

    Runyan, Carol W.; Johnson, Renee M.; Yang, Jingzhen; Waller, Anna E.; Perkis, David; Marshall, Stephen W.; Coyne-Beasley, Tamera; McGee, Kara S.

    2011-01-01

    Background More needs to be known about the prevalence of risk and protective factors for fires, burns, and carbon monoxide poisoning in U.S. households. Methods A random-digit-dial survey was conducted about home safety with 1003 respondents representing households in the continental United States. Descriptive statistics assess the prevalence of risk and protective factors for fires, burns, and carbon monoxide overall, and by demographic characteristics, household structure, region, and residential tenure. The data were weighted to adjust for nonresponse and to reflect the U.S. population. Results Although most respondents reported having a smoke alarm (97%), and 80% reported having one on each level of their home, <20% reported checking the alarm at least every 3 months. Seventy-one percent reported having a fire extinguisher, 29% had a carbon monoxide detector, and 51% of those living with at least one other person had a fire escape plan. Few could report the temperature of their hot water at the tap (9%), or the setting on the hot water heater (25%). Only 6% had an antiscald device. Conclusions Results suggest that there is much room for improvement regarding adoption of measures to prevent fires, burns, and carbon monoxide poisoning. Further investigations of the efficacy of carbon monoxide detectors, fire extinguishers, and escape plans, as well as effectiveness studies of fire and burn-prevention efforts are needed. PMID:15626564

  10. Risk and protective factors for fires, burns, and carbon monoxide poisoning in U.S. households.

    PubMed

    Runyan, Carol W; Johnson, Renee M; Yang, Jingzhen; Waller, Anna E; Perkis, David; Marshall, Stephen W; Coyne-Beasley, Tamera; McGee, Kara S

    2005-01-01

    More needs to be known about the prevalence of risk and protective factors for fires, burns, and carbon monoxide poisoning in U.S. households. A random-digit-dial survey was conducted about home safety with 1003 respondents representing households in the continental United States. Descriptive statistics assess the prevalence of risk and protective factors for fires, burns, and carbon monoxide overall, and by demographic characteristics, household structure, region, and residential tenure. The data were weighted to adjust for nonresponse and to reflect the U.S. population. Although most respondents reported having a smoke alarm (97%), and 80% reported having one on each level of their home, <20% reported checking the alarm at least every 3 months. Seventy-one percent reported having a fire extinguisher, 29% had a carbon monoxide detector, and 51% of those living with at least one other person had a fire escape plan. Few could report the temperature of their hot water at the tap (9%), or the setting on the hot water heater (25%). Only 6% had an antiscald device. Results suggest that there is much room for improvement regarding adoption of measures to prevent fires, burns, and carbon monoxide poisoning. Further investigations of the efficacy of carbon monoxide detectors, fire extinguishers, and escape plans, as well as effectiveness studies of fire and burn-prevention efforts are needed.

  11. Forest construction infrastructures for the prevision, suppression, and protection before and after forest fires

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Giannoulas, Vasileios J.; Daoutis, Christodoulos

    2014-08-01

    Climatic changes cause temperature rise and thus increase the risk of forest fires. In Greece the forests with the greatest risk to fire are usually those located near residential and tourist areas where there are major pressures on land use changes, while there are no currently guaranteed cadastral maps and defined title deeds because of the lack of National and Forest Cadastre. In these areas the deliberate causes of forest fires are at a percentage more than 50%. This study focuses on the forest opening up model concerning both the prevention and suppression of forest fires. The most urgent interventions that can be done after the fire destructions is also studied in relation to soil protection constructions, in order to minimize the erosion and the torrential conditions. Digital orthophotos were used in order to produce and analyze spatial data using Geographical Information Systems (GIS). Initially, Digital Elevation Models were generated, based on photogrammetry and forest areas as well as the forest road network were mapped. Road density, road distance, skidding distance and the opening up percentage were accurately measured for a forest complex. Finally, conclusions and suggestions have been drawn about the environmental compatibility of forest protection and wood harvesting works. In particular the contribution of modern technologies such as digital photogrammetry, remote sensing and Geographical Information Systems is very important, allowing reliable, effective and fast process of spatial analysis contributing to a successful planning of opening up works and fire protection.

  12. 77 FR 58035 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... use; therefore, the ozone depletion potential (ODP), global warming potential (GWP), and atmospheric... available fire protection options including new, improved technology for early warning and smoke detection...

  13. A Combined Water-Bromotrifluoromethane Crash-Fire Protection System for a T-56 Turbopropeller Engine

    NASA Technical Reports Server (NTRS)

    Campbell, John A.; Busch, Arthur M.

    1959-01-01

    A crash-fire protection system is described which will suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbo-propeller engine. This system includes means for rapidly extinguishing the combustor flame, means for cooling and inerting with water the hot engine parts likely to ignite engine ingested fuel, and means for blanketing with bromotrifluoromethane massive metal parts that may reheat after the engine stops rotating. Combustion-chamber flames were rapidly extinguished at the engine fuel nozzles by a fuel shutoff and drain valve. Hot engine parts were inerted and cooled by 42 pounds of water discharged at seven engine stations. Massive metal parts that could reheat were inerted with 10 pounds of bromotrifluoromethane discharged at two engine stations. Performance trials of the crash-fire protection system were conducted by bringing the engine up to takeoff temperature, actuating the crash-fire protection system, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.

  14. Finite element analysis of various methods for protection of concrete structures against spalling during fire

    NASA Astrophysics Data System (ADS)

    Witek, A.; Gawin, D.; Pesavento, F.; Schrefler, B. A.

    2007-02-01

    A mathematical model of hygro-thermo-mechanical phenomena in heated concrete, treated as multiphase porous material is briefly presented. Some modifications necessary to analyse high-temperature performance of a concrete containing the PP-fibres have been introduced, experimentally validated and applied for analysis of performance of a concrete tunnel lining during a 10-MW fire and the ISO standard fire. Three methods for protecting concrete structures against excessive degradation in fire conditions have been numerically analysed by means of the computer model. The analysed protection methods are based either upon application on a structure surface of a reflective layer, or covering it with a protective layer made of a very porous concrete or an addition of the PP fibres to the concrete mix. Efficiency of these methods has been numerically analysed in thermal conditions corresponding to the ISO-834 standard fire. The results obtained show that even relatively simple methods, like application a protective layer or increasing the surface reflectance, can retard to some extent concrete degradation during a fire.

  15. 33 CFR 149.641 - What are the structural fire protection requirements for accommodation spaces and modules?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and Equipment Structural Fire Protection § 149.641 What are... central alarm panel; and (3) Independent fire walls are constructed and installed so as to be of size and... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false What are the structural fire...

  16. 33 CFR 149.641 - What are the structural fire protection requirements for accommodation spaces and modules?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...: DESIGN, CONSTRUCTION, AND EQUIPMENT Design and Equipment Structural Fire Protection § 149.641 What are...: (1) All such spaces and modules on manned ports are provided with automatic fire detection and alarm... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false What are the structural fire...

  17. 29 CFR Appendix A to Subpart L of... - Fire Protection

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... contributing to the improvement of the cardiovascular system. 5. Training and education. The paragraph on... of the paragraph on hand protection may be met by protective gloves or a glove system. A glove system consists of a combination of different gloves. The usual components of a glove system consist of a pair...

  18. 29 CFR Appendix A to Subpart L of... - Fire Protection

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contributing to the improvement of the cardiovascular system. 5. Training and education. The paragraph on... of the paragraph on hand protection may be met by protective gloves or a glove system. A glove system consists of a combination of different gloves. The usual components of a glove system consist of a pair...

  19. Fire

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    In some areas, many aspen stands are all the same age, dating from a single great fire or a year of widespread fires (fig. 1). The 1879 fire in the Jackson Hole region of Wyoming (Loope and Gruell 1973) and the 1904 fires in Arizona's White Mountains (Kallander 1969) are examples. Choate (1966) found that almost all aspen stands in New Mexico were even-aged, many...

  20. FIRE

    Atmospheric Science Data Center

    2017-03-16

    Projects:  FIRE Definition/Description:  The F irst I SCCP R egional E xperiments (FIRE) have been designed to improve data products and cloud/radiation ... circulation models (GCMs). Specifically, the goals of FIRE are (1) to improve basic understanding of the interaction of physical ...

  1. 33 CFR 149.419 - Can the water supply for the helicopter deck fire protection system be part of a fire water system?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Can the water supply for the helicopter deck fire protection system be part of a fire water system? 149.419 Section 149.419 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT...

  2. Spray booth with energy saving and fire protection systems

    SciTech Connect

    Napadow, S.C.

    1980-09-23

    This invention teaches an improved exhaust system to be used with a paint spray booth and having a continuously operating power exhaust fan. The exhaust system has a damper that is opened when spraying actively is taking place in the spray booth and that is closed when there is no spraying actively taking place in the spray booth. A control switch is mounted in any of several locations to determine when the spray gun is in use or is not in use. Thus, the control switch is actuated when the spray gun is hung up thus indicating a nonuse condition of the spray system; whereupon use of the spray gun lifts the gun from the hook to indicate spraying activity. A motor drives the damper to the opened position; and a spring biases the damper to the closed position. A timer is also used to delay the closing of the damper until between twenty and possibly two hundred seconds have lapsed after spraying activity has terminated. This purges the spray booth while yet allows for automatic damper control under normal spraying sequences of use and nonuse. A fire sensing switch is used to deenergize the damper motor to allow the damper to be closed in the event of a fire.

  3. Effective protection of open space: does planning matter?

    PubMed

    Steelman, Toddi A; Hess, George R

    2009-07-01

    High quality plans are considered a crucial part of good land use planning and often used as a proxy measure for success in plan implementation and goal attainment. We explored the relationship of open space plan quality to the implementation of open space plans and attainment of open space protection goals in Research Triangle, North Carolina, USA. To measure plan quality, we used a standard plan evaluation matrix that we modified to focus on open space plans. We evaluated all open space plans in the region that contained a natural resource protection element. To measure plan implementation and open space protection, we developed an online survey and administered it to open space planners charged with implementing the plans. The survey elicited each planner's perspective on aspects of open space protection in his or her organization. The empirical results (1) indicate that success in implementation and attaining goals are not related to plan quality, (2) highlight the importance of when and how stakeholders are involved in planning and implementation processes, and (3) raise questions about the relationship of planning to implementation. These results suggest that a technically excellent plan does not guarantee the long-term relationships among local land owners, political and appointed officials, and other organizations that are crucial to meeting land protection goals. A greater balance of attention to the entire decision process and building relationships might lead to more success in protecting open space.

  4. Effective Protection of Open Space: Does Planning Matter?

    NASA Astrophysics Data System (ADS)

    Steelman, Toddi A.; Hess, George R.

    2009-07-01

    High quality plans are considered a crucial part of good land use planning and often used as a proxy measure for success in plan implementation and goal attainment. We explored the relationship of open space plan quality to the implementation of open space plans and attainment of open space protection goals in Research Triangle, North Carolina, USA. To measure plan quality, we used a standard plan evaluation matrix that we modified to focus on open space plans. We evaluated all open space plans in the region that contained a natural resource protection element. To measure plan implementation and open space protection, we developed an online survey and administered it to open space planners charged with implementing the plans. The survey elicited each planner’s perspective on aspects of open space protection in his or her organization. The empirical results (1) indicate that success in implementation and attaining goals are not related to plan quality, (2) highlight the importance of when and how stakeholders are involved in planning and implementation processes, and (3) raise questions about the relationship of planning to implementation. These results suggest that a technically excellent plan does not guarantee the long-term relationships among local landowners, political and appointed officials, and other organizations that are crucial to meeting land protection goals. A greater balance of attention to the entire decision process and building relationships might lead to more success in protecting open space.

  5. 33 CFR 127.1507 - Water systems for fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1507 Water... means for distributing and applying the water to protect personnel; to cool storage tanks,...

  6. 33 CFR 127.1507 - Water systems for fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1507 Water... means for distributing and applying the water to protect personnel; to cool storage tanks,...

  7. 33 CFR 127.1507 - Water systems for fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Firefighting Equipment § 127.1507 Water... means for distributing and applying the water to protect personnel; to cool storage tanks,...

  8. In situ thermal condensation of glucose-diammonium phosphate in wood for fire and fungal decay protection

    Treesearch

    George Chen

    2009-01-01

    Thermal condensation of glucose-diammonium phosphate in wood at 160 and 190[degrees]C will protect wood against fire and decay in one treatment using an aqueous system. For fire protection, treatments at 160 or 190[degrees]C led to low flammability as evidenced by fire-tube tests. For nonleached wood, weight losses were 1.9, 2.0, and 2.0% with chemical retentions of 56...

  9. 29 CFR 553.213 - Public agency employees engaged in both fire protection and law enforcement activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... law enforcement activities. 553.213 Section 553.213 Labor Regulations Relating to Labor (Continued... EMPLOYEES OF STATE AND LOCAL GOVERNMENTS Fire Protection and Law Enforcement Employees of Public Agencies Exemption Requirements § 553.213 Public agency employees engaged in both fire protection and law enforcement...

  10. 46 CFR 28.385 - Structural fire protection for vessels that operate with more than 49 individuals on board.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Structural fire protection for vessels that operate with... Individuals on Board § 28.385 Structural fire protection for vessels that operate with more than 49...) Construction. The hull, structural bulkheads, columns and stanchions must be composed of steel. Superstructures...

  11. 46 CFR 28.385 - Structural fire protection for vessels that operate with more than 49 individuals on board.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Structural fire protection for vessels that operate with... Individuals on Board § 28.385 Structural fire protection for vessels that operate with more than 49...) Construction. The hull, structural bulkheads, columns and stanchions must be composed of steel. Superstructures...

  12. 46 CFR 28.385 - Structural fire protection for vessels that operate with more than 49 individuals on board.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Structural fire protection for vessels that operate with... Individuals on Board § 28.385 Structural fire protection for vessels that operate with more than 49...) Construction. The hull, structural bulkheads, columns and stanchions must be composed of steel. Superstructures...

  13. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions.

    PubMed

    Song, Guowen; Chitrphiromsri, Patirop; Ding, Dan

    2008-01-01

    A numerical model of heat and moisture transport in thermal protective clothing during exposure to a flash fire was introduced. The model was developed with the assumption that textiles are treated as porous media. The numerical model predictions were compared with experimental data from different fabric systems and configurations. Additionally, with the introduction of a skin model, the parameters that affect the performance of thermal protective clothing were investigated.

  14. Shrapnel protection testing in support of the proposed Site 300 Contained Firing Facility

    SciTech Connect

    Pastrnak, J W; Baker, C F; Simmons, L F

    1992-08-04

    In preparation for the planned Contained Firing Facility at LLNL's Site 300, various multi-layered shrapnel protection schemes were investigated with the intent of minimizing the amount of material used in the shielding. As a result of testing, it was found that two pieces of 1-in.-thick mild steel plate provide adequate general-purpose protection from shrapnel generated by normal hydrodynamic and cylinder shots at Bunker 801. 8 refs.

  15. 14 CFR 25.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and vapors, and the resultant hazards if ignition does occur. (b) Compliance with paragraph (a) of this section must be shown by analysis or tests, and the following factors must be considered: (1) Possible...

  16. 14 CFR 23.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of ignition of the fluids and vapors, and the resultant hazard if ignition does occur. (b) Compliance with paragraph (a) of this section must be shown by analysis or tests, and the following factors must...) Possible ignition sources, including electrical faults, overheating of equipment, and malfunctioning of...

  17. 14 CFR 29.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... escape by leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and vapors, and the resultant hazards if ignition does occur. (b) Compliance with paragraph (a) of this section must be shown by analysis or tests, and the following factors must be considered: (1...

  18. 14 CFR 27.863 - Flammable fluid fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... leakage of a fluid system, there must be means to minimize the probability of ignition of the fluids and vapors, and the resultant hazards if ignition does occur. (b) Compliance with paragraph (a) of this section must be shown by analysis or tests, and the following factors must be considered: (1) Possible...

  19. 46 CFR 28.825 - Excess fire detection and protection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.825 Excess fire detection and protection... accordance with an appropriate industry standard for design, installation, testing, and maintenance. (b) An... is to be locked, a key to the space or enclosure shall be in a break-glass-type box...

  20. Flexible fire retardant polyisocyanate modified neoprene foam. [for thermal protective devices

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; Riccitiello, S. R. (Inventor)

    1973-01-01

    Lightweight, fire resistant foams have been developed through the modification of conventional neoprene-isocyanate foams by the addition of an alkyl halide polymer. Extensive tests have shown that the modified/neoprene-isocyanate foams are much superior in heat protection properties than the foams heretofore employed both for ballistic and ablative purposes.

  1. 48 CFR 2052.235-71 - Safety, health, and fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Safety, health, and fire protection. 2052.235-71 Section 2052.235-71 Federal Acquisition Regulations System NUCLEAR REGULATORY... by private contractors and universities and for other technical services as appropriate:...

  2. 48 CFR 2052.235-71 - Safety, health, and fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Safety, health, and fire protection. 2052.235-71 Section 2052.235-71 Federal Acquisition Regulations System NUCLEAR REGULATORY... by private contractors and universities and for other technical services as appropriate:...

  3. 48 CFR 2052.235-71 - Safety, health, and fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Safety, health, and fire protection. 2052.235-71 Section 2052.235-71 Federal Acquisition Regulations System NUCLEAR REGULATORY... by private contractors and universities and for other technical services as appropriate:...

  4. 48 CFR 2052.235-71 - Safety, health, and fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Safety, health, and fire protection. 2052.235-71 Section 2052.235-71 Federal Acquisition Regulations System NUCLEAR REGULATORY... by private contractors and universities and for other technical services as appropriate:...

  5. 48 CFR 2052.235-71 - Safety, health, and fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Safety, health, and fire protection. 2052.235-71 Section 2052.235-71 Federal Acquisition Regulations System NUCLEAR REGULATORY... by private contractors and universities and for other technical services as appropriate:...

  6. 41 CFR 102-80.135 - Who is a qualified fire protection engineer?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Who is a qualified fire protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND...

  7. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Flame spread limitations and fire protection requirements. 3280.203 Section 3280.203 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL...

  8. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Flame spread limitations and fire protection requirements. 3280.203 Section 3280.203 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL...

  9. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Flame spread limitations and fire protection requirements. 3280.203 Section 3280.203 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL...

  10. 24 CFR 3280.203 - Flame spread limitations and fire protection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Flame spread limitations and fire protection requirements. 3280.203 Section 3280.203 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL...

  11. Military Curriculum Materials for Vocational and Technical Education. Fire Protection Specialist, CDC 57150, 17-12.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This five-volume course is designed to provide the student with information about fire protection, first aid and rescue, and special situation firefighting techniques. The course is one of number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in civilian setting. The course…

  12. 77 FR 58170 - Proposed Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... (Underground Coal Mines) AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for public... (facsimile). SUPPLEMENTARY INFORMATION: I. Background Fire protection standards for underground coal mines....1100 requires that each coal mine be provided with suitable firefighting equipment adapted for the...

  13. 41 CFR 102-80.135 - Who is a qualified fire protection engineer?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Who is a qualified fire protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY...

  14. 41 CFR 102-80.135 - Who is a qualified fire protection engineer?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Who is a qualified fire protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY...

  15. 41 CFR 102-80.135 - Who is a qualified fire protection engineer?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Who is a qualified fire protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY...

  16. 14 CFR 27.861 - Fire protection of structure, controls, and other parts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of structure, controls, and other parts. 27.861 Section 27.861 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction...

  17. 46 CFR 122.612 - Fire protection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... system must be clearly and conspicuously marked “WHEN ALARM SOUNDS—VACATE AT ONCE. CARBON DIOXIDE BEING... storing carbon dioxide—“CARBON DIOXIDE GAS CAN CAUSE INJURY OR DEATH. VENTILATE THE AREA BEFORE ENTERING. A HIGH CONCENTRATION CAN OCCUR IN THIS AREA AND CAN CAUSE SUFFOCATION.”. (2) Spaces protected...

  18. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Provision must be made to prevent the hazardous accumulation of water or ice on or in any heater control... surrounding equipment or structure; (3) Ignition of flammable fluids by the exhaust, if the exhaust is in a... exhausts; and (2) Each drain must be protected from hazardous ice accumulation under any...

  19. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Provision must be made to prevent the hazardous accumulation of water or ice on or in any heater control... surrounding equipment or structure; (3) Ignition of flammable fluids by the exhaust, if the exhaust is in a... exhausts; and (2) Each drain must be protected from hazardous ice accumulation under any...

  20. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hazardous accumulation of water or ice on or in any heater control component, control system tubing, or... or structure; (3) Ignition of flammable fluids by the exhaust, if the exhaust is in a compartment...) Each drain must be protected from hazardous ice accumulation under any operating condition....

  1. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hazardous accumulation of water or ice on or in any heater control component, control system tubing, or... or structure; (3) Ignition of flammable fluids by the exhaust, if the exhaust is in a compartment...) Each drain must be protected from hazardous ice accumulation under any operating condition....

  2. 14 CFR 25.1713 - Fire protection: EWIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1713... electrical cable, and materials used to provide additional protection for the wire and cable, installed in any area of the airplane, must be self-extinguishing when tested in accordance with the...

  3. 14 CFR 25.1713 - Fire protection: EWIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1713... electrical cable, and materials used to provide additional protection for the wire and cable, installed in any area of the airplane, must be self-extinguishing when tested in accordance with the...

  4. 14 CFR 25.1713 - Fire protection: EWIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1713... electrical cable, and materials used to provide additional protection for the wire and cable, installed in any area of the airplane, must be self-extinguishing when tested in accordance with the...

  5. 14 CFR 25.1713 - Fire protection: EWIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1713... electrical cable, and materials used to provide additional protection for the wire and cable, installed in any area of the airplane, must be self-extinguishing when tested in accordance with the...

  6. 14 CFR 25.1713 - Fire protection: EWIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Electrical Wiring Interconnection Systems (EWIS) § 25.1713... electrical cable, and materials used to provide additional protection for the wire and cable, installed in any area of the airplane, must be self-extinguishing when tested in accordance with the...

  7. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire.

    PubMed

    Clarke, P J; Lawes, M J; Midgley, J J; Lamont, B B; Ojeda, F; Burrows, G E; Enright, N J; Knox, K J E

    2013-01-01

    Resprouting as a response to disturbance is now widely recognized as a key functional trait among woody plants and as the basis for the persistence niche. However, the underlying mechanisms that define resprouting responses to disturbance are poorly conceptualized. Resprouting ability is constrained by the interaction of the disturbance regime that depletes the buds and resources needed to fund resprouting, and the environment that drives growth and resource allocation. We develop a buds-protection-resources (BPR) framework for understanding resprouting in fire-prone ecosystems, based on bud bank location, bud protection, and how buds are resourced. Using this framework we go beyond earlier emphases on basal resprouting and highlight the importance of apical, epicormic and below-ground resprouting to the persistence niche. The BPR framework provides insights into: resprouting typologies that include both fire resisters (i.e. survive fire but do not resprout) and fire resprouters; the methods by which buds escape fire effects, such as thick bark; and the predictability of community assembly of resprouting types in relation to site productivity, disturbance regime and competition. Furthermore, predicting the consequences of global change is enhanced by the BPR framework because it potentially forecasts the retention or loss of above-ground biomass.

  8. Numerical Analysis of Heat Transfer in Fire-Protective Coatings Deformable upon Heating

    NASA Astrophysics Data System (ADS)

    Rudzinsky, V. P.; Garashchenko, A. N.

    2016-02-01

    Numerical studies of heat transfer in fire-protective coatings deformable (intumescent) upon heating have been conducted. The optimum combination of the computation-scheme parameters providing stability, convergence and satisfactory accuracy of solutions has been determined. An effect of basic characteristics of materials in real range of their change that made it possible to estimate the degree of influence of properties on the fire-protective efficiency of coatings and the level of warm-up (flame resistance) of structures to be protected with them has been studied. The possibility of using developed models and techniques to estimate and provide the required level of fire safety of polymer-based materials (in particular, elastomers and structures and products on their basis) is considered. The results of estimating the mass rate of evolving gaseous thermal-decomposition products that determine, in a considerable extent, the material combustibility have been presented. The numerical analysis results have demonstrated the potentiality of reducing the combustibility of such materials and increasing limits of their fire resistance at the expense of organizing the intumescence of a material upon heating by means of modification of their initial formulations as well as with the aid of an additional layer made of the intumescent coating compatible with an elastomer.

  9. Significance analysis of the regional differences on icing time of water onto fire protective clothing

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Jing, L. S.; Zhang, X. Z.; Xia, J. J.; Chen, Y.; Chen, T.; Hu, C.; Bao, Z. M.; Fu, X. C.; Wang, R. J.; Wang, Y.; Wang, Y. J.

    2017-09-01

    The object of this work was to determine the icing temperature in icing experiment. Firstly, a questionnaire investigation was carried out on 38 fire detachments in different regions. These Statistical percentage results were divided into northern east group and northern west group. Secondly, a significance analysis between these two results was made using Mann-Whitney U test. Then the icing temperature was determined in different regions. Thirdly, the icing experiment was made in the environment of -20°C in Daxing’an Mountain. The anti-icing effect of new fire protective clothing was verified in this icing.

  10. An effective and practical fire-protection system. [for aircraft fuel storage and transport

    NASA Technical Reports Server (NTRS)

    Mansfield, J. A.; Riccitiello, S. R.; Fewell, L. L.

    1975-01-01

    A high-performance sandwich-type fire protection system comprising a steel outer sheath and insulation combined in various configurations is described. An inherent advantage of the sheath system over coatings is that it eliminates problems of weatherability, materials strength, adhesion, and chemical attack. An experimental comparison between the protection performance of state-of-the-art coatings and the sheath system is presented, with emphasis on the protection of certain types of steel tanks for fuel storage and transport. Sheath systems are thought to be more expensive than coatings in initial implementation, although they are less expensive per year for sufficiently long applications.

  11. Fire hazards evaluation for light duty utility arm system

    SciTech Connect

    HUCKFELDT, R.A.

    1999-02-24

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

  12. A parametric study on the use of passive fire protection in FPSO topside module

    NASA Astrophysics Data System (ADS)

    Friebe, Martin; Jang, Beom-Seon; Jim, Yanlin

    2014-12-01

    Fire is a continuous threat to FPSO topside modules as large amounts of oil and gas are passing through the modules. As a conventional measure to mitigate structural failure under fire, passive fire protection (PFP) coatings are widely used on main structural members. However, an excessive use of PFP coatings can cause considerable cost for material purchase, installation, inspection and maintenance. Long installation time can be a risk since the work should be done nearly at the last fabrication stage. Thus, the minimal use of PFP can be beneficial to the reduction of construction cost and the avoidance of schedule delay. This paper presents a few case studies on how different applications of PFP have influence on collapse time of a FPSO module structure. A series of heat analysis and thermal elasto-plastic FE analysis are performed for different PFP coatings and the resultant collapse time and the amount of PFP coatings are compared with each other.

  13. Fire Protection of Weapon Storage and Water Mist Redundancy Philosophies

    DTIC Science & Technology

    2012-11-01

    dans un espace moins bien aéré avec deux (2) fois moins d’eau. De plus, si le système est alimenté en eau à une pression moindre, par exemple la...deuxième objectif des mises à l’essai était d’étudier la pertinence des exigences en matière d’alimentation en eau pour protection incendie des...résistante ont été analysées. Le deuxième objectif des mises à l’essai était d’étudier la pertinence des exigences en matière d’alimentation en eau pour

  14. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    SciTech Connect

    LaFleur, Angela Christine; Muna, Alice Baca; Groth, Katrina M.

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  15. Remotely-sensed active fire data for protected area management: eight-year patterns in the Manas National Park, India.

    PubMed

    Takahata, Chihiro; Amin, Rajan; Sarma, Pranjit; Banerjee, Gitanjali; Oliver, William; Fa, John E

    2010-02-01

    The Terai-Duar savanna and grasslands, which once extended along most of the Himalayan foothills, now only remain in a number of protected areas. Within these localities, grassland burning is a major issue, but data on frequency and distribution of fires are limited. Here, we analysed the incidence of active fires, which only occur during the dry season (Nov.-Mar.), within a significant area of Terai grasslands: the Manas National Park (MNP), India. We obtained locations of 781 fires during the 2000-2008 dry seasons, from the Fire Information for Resource Management System (FIRMS) that delivers global MODIS hotspot/fire locations using remote sensing and GIS technologies. Annual number of fires rose significantly from around 20 at the start of the study period to over 90 after 2002, with most (85%) detected between December and January. Over half of the fires occurred in tall grasslands, but fire density was highest in wetland and riverine vegetation, dry at the time. Most burning took place near rivers, roads and the park boundary, suggesting anthropogenic origins. A kernel density map of all recorded fires indicated three heavily burnt areas in the MNP, all within the tall grasslands. Our study demonstrates, despite some technical caveats linked to fire detection technology, which is improving, that remote fire data can be a practical tool in understanding fire concentration and burning temporal patterns in highly vulnerable habitats, useful in guiding management.

  16. Remotely-Sensed Active Fire Data for Protected Area Management: Eight-Year Patterns in the Manas National Park, India

    NASA Astrophysics Data System (ADS)

    Takahata, Chihiro; Amin, Rajan; Sarma, Pranjit; Banerjee, Gitanjali; Oliver, William; Fa, John E.

    2010-02-01

    The Terai-Duar savanna and grasslands, which once extended along most of the Himalayan foothills, now only remain in a number of protected areas. Within these localities, grassland burning is a major issue, but data on frequency and distribution of fires are limited. Here, we analysed the incidence of active fires, which only occur during the dry season (Nov.-Mar.), within a significant area of Terai grasslands: the Manas National Park (MNP), India. We obtained locations of 781 fires during the 2000-2008 dry seasons, from the Fire Information for Resource Management System (FIRMS) that delivers global MODIS hotspot/fire locations using remote sensing and GIS technologies. Annual number of fires rose significantly from around 20 at the start of the study period to over 90 after 2002, with most (85%) detected between December and January. Over half of the fires occurred in tall grasslands, but fire density was highest in wetland and riverine vegetation, dry at the time. Most burning took place near rivers, roads and the park boundary, suggesting anthropogenic origins. A kernel density map of all recorded fires indicated three heavily burnt areas in the MNP, all within the tall grasslands. Our study demonstrates, despite some technical caveats linked to fire detection technology, which is improving, that remote fire data can be a practical tool in understanding fire concentration and burning temporal patterns in highly vulnerable habitats, useful in guiding management.

  17. Fire hazards analysis for W030 tank farm ventilation upgrade

    SciTech Connect

    Huckfeldt, R.A.

    1996-07-17

    This Fire Hazard Analysis (FHA) was prepared according to the requirements of U.S. Department of Energy (DOE) Order 5480.7A,FIRE PROTECTION, 2-17-93. The purpose of this FHA is to ascertain whether the objectives of DOE 5480.7A are being met. This purpose is accomplished through a conservative comprehensive assessment of the risk from fire and other perils within individual fire areas of a DOE facility in relation to proposed fire protection. This FHA is based on conditions set forth within this document and is valid only under these conditions.

  18. Treatment of wood with glucose-diammonium phosphate for fire and fungal decay protection

    Treesearch

    George C. Chen

    2002-01-01

    This study describes a method for dual protection of wood against fungal and fire degradation in one treatment. The method consists of impregnating wood with aqueous solution of glucose-diammonium phosphate at pH 9, followed by heating the treated wood at temperatures of 160 °C and 190 °C for various lengths of time to form water insoluble products in wood.

  19. 33 CFR 149.641 - What are the structural fire protection requirements for accommodation spaces and modules?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., excess heat, or blast effects caused by fires and explosions; and to provide safe refuge from fires and... into zones to limit the area covered by a particular alarm signal; (2) Sleeping quarters are fitted... sufficient to protect the exterior surfaces of the spaces or modules from extreme radiant heat flux...

  20. Wildland Fire Management Plan for Brookhaven National Laboratory

    SciTech Connect

    Schwager, K.; Green, T. M.

    2014-10-01

    The DOE policy for managing wildland fires requires that all areas managed by DOE and/or Its various contractors which can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wildland fire, operational, and prescribed fires. FMPs provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. The plan will be reviewed periodically to ensure fire program advances and will evolve with the missions of DOE and BNL.

  1. Summary report, California Department of Forestry and Fire Protection evaluation of full-face air-purifying respirators for wildland fire fighting use

    SciTech Connect

    Beason, D.G.; Johnson, J.S.; Foote, K.L.; Weaver, W.A.

    1996-02-01

    Wildland fire suppression personnel employed by the CDF do not currently have the equipment to protect themselves from the short-term acute affects of smoke from wildland fires. In addition, no regulations exist that specify appropriate respiratory protection and the current air-purifying respirator technology and carbon monoxide monitoring has not been adapted to fit wildland fire suppression requirements. This three-year limited study evaluated the ability of wildland fire fighters to perform their normal job function while wearing full-face air-purifying respirators. In the first two years of this study we designed, developed and field tested a prototype ``smart`` air-purifying respirator which incorporated a real-time carbon monoxide monitor into a commercial full-face respirator.` Data on carbon monoxide exposure while fighting wildland fires was collected. During the third year of this study we evaluated eight different commercially available full-face air-purifying respirators equipped with a variety of cartridges. Apparatus to aid the fire fighter in carrying the respirator and carbon monoxide personal monitor was designed and fabricated. A smoke exposure test method was developed and a laboratory study on the penetration of smoke through respirator cartridges was conducted.

  2. Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.

    PubMed

    Carosio, F; Kochumalayil, J; Cuttica, F; Camino, G; Berglund, L

    2015-03-18

    The toxicity of the most efficient fire retardant additives is a major problem for polymeric materials. Cellulose nanofiber (CNF)/clay nanocomposites, with unique brick-and-mortar structure and prepared by simple filtration, are characterized from the morphological point of view by scanning electron microscopy and X-ray diffraction. These nanocomposites have superior fire protection properties to other clay nanocomposites and fiber composites. The corresponding mechanisms are evaluated in terms of flammability (reaction to a flame) and cone calorimetry (exposure to heat flux). These two tests provide a wide spectrum characterization of fire protection properties in CNF/montmorrilonite (MTM) materials. The morphology of the collected residues after flammability testing is investigated. In addition, thermal and thermo-oxidative stability are evaluated by thermogravimetric analyses performed in inert (nitrogen) and oxidative (air) atmospheres. Physical and chemical mechanisms are identified and related to the unique nanostructure and its low thermal conductivity, high gas barrier properties and CNF/MTM interactions for char formation.

  3. Fire

    Treesearch

    John A. Stanturf; Scott L. Goodrick

    2013-01-01

    Key FindingsClimate forecasts indicate that the South’s spring and fall wildfire seasons will be extended.Prescribed fires, currently conducted on roughly a 3 to 5 year rotation across much of the South, would need to become more frequent if conditions become drier.Major wildfire events, such as the 2007...

  4. Frequent fire protects shortleaf pine (Pinus echinata) from introgression by loblolly pine (P. taeda).

    Treesearch

    John F Stewart; Rodney E Will; Kevin M Robertson; Dana Nelson

    2014-01-01

    Across much of the globe, fire is a major disturbance agent of forest and grassland communities. The removal of fire from previously fire-maintained ecosystems, which has occurred in many areas, changes species composition, favoring later less fire tolerant species over fire-adapted ones. A recent measured increase in the rate of hybridization between the fire-adapted...

  5. New Technology for the Fire Attire

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Although little can be done to reduce the risks of firefighting, something can be done to curb the injuries and fatalities. This is the goal of Project FIRES, a program jointly sponsored by NASA and the Federal Emergency Management Agency's U.S. Fire Administration with technical management provided by Marshall Space Flight Center. Project FIRES (Firefighter's Integrated Response Equipment System) involves applications of advanced materials and design concepts, derived from Apollo to update existing gear which does not adequately protect against many of the hazards encountered in fire suppression activities. A major focus of the effort involves application to the FIRES ensemble of lightweight, fire-resistant, heat-protective materials originally developed for use in astronauts' space suits or in spacecraft components which require thermal protection. Data from the fourteen municipal fire departments participating in the field evaluation will form a basis for development of new nationwide protective ensemble students.

  6. Does antioxidant vitamin supplementation protect against muscle damage?

    PubMed

    McGinley, Cian; Shafat, Amir; Donnelly, Alan E

    2009-01-01

    The high forces undergone during repetitive eccentric, or lengthening, contractions place skeletal muscle under considerable stress, in particular if unaccustomed. Although muscle is highly adaptive, the responses to stress may not be optimally regulated by the body. Reactive oxygen species (ROS) are one component of the stress response that may contribute to muscle damage after eccentric exercise. Antioxidants may in turn scavenge ROS, thereby preventing or attenuating muscle damage. The antioxidant vitamins C (ascorbic acid) and E (tocopherol) are among the most commonly used sport supplements, and are often taken in large doses by athletes and other sportspersons because of their potential protective effect against muscle damage. This review assesses studies that have investigated the effects of these two antioxidants, alone or in combination, on muscle damage and oxidative stress. Studies have used a variety of supplementation strategies, with variations in dosage, timing and duration of supplementation. Although there is some evidence to show that both antioxidants can reduce indices of oxidative stress, there is little evidence to support a role for vitamin C and/or vitamin E in protecting against muscle damage. Indeed, antioxidant supplementation may actually interfere with the cellular signalling functions of ROS, thereby adversely affecting muscle performance. Furthermore, recent studies have cast doubt on the benign effects of long-term, high-dosage antioxidant supplementation. High doses of vitamin E, in particular, may increase all-cause mortality. Although some equivocation remains in the extant literature regarding the beneficial effects of antioxidant vitamin supplementation on muscle damage, there is little evidence to support such a role. Since the potential for long-term harm does exist, the casual use of high doses of antioxidants by athletes and others should perhaps be curtailed.

  7. Protection forest resilience after a fire event: a case study in Vallis, Switzerland

    NASA Astrophysics Data System (ADS)

    Vergani, Chiara; Werlen, Mario; Schwarz, Massimiliano

    2016-04-01

    Forests are well known to protect against natural hazards such as landslides, rockfall and floods. Nevertheless, they are dynamic ecosystems which are exposed to a variety of disturbances such as windstorms, fires, bark beetle and pathogen outbreaks. Catastrophic disturbances like windstorms and fires usually remove large portions of the canopy, starting a succession process which lead to a complete stand regeneration. Disturbances belong to the natural dynamic of forests, however they are highly undesirable in the case where forest protect infrastructure or settlements. Quantifying the decay and recovery of the protection effect of forests after disturbances is therefore important to evaluate risks and implement appropriate management techniques, when needed. This work analyzes the dynamic of a Scots Pine (Pinus silvestris) protection forests near Visp (Vallis) after a fire event, focusing on root reinforcement, which is the key factor in preventing shallow landslides. Forest cover, root distribution and root mechanical properties were analyzed 4 years after the fire event, and the root reinforcement has been quantified. Furthermore, the contribution of natural regeneration has been evaluated. Results show that the root reinforcement of Scots pine has declined massively in the forest fire area. At a distance of 1.5 m from the tree stem there is a reduction of 60% compared with the live stand. With increasing distance from the stem, the reduction in the reinforcement is even bigger. At a distance of 2.5 meters it is 12% and at 3.5 meters, only 5% of the original root reinforcement. This decrease is due to the decomposition of roots and associated change in the mechanical properties of the wood. The reinforcement of the dead roots in the forest area is estimated between 0.36 kPa and 2.64 kPa. The contribution of the emerging regeneration is estimated on average 0.01 kPa. Overall the stand provides a reinforcement between 0.37 kPa and 2.65 kPa. From the results it

  8. Alternative approach for fire suppression of class A, B and C fires in gloveboxes

    SciTech Connect

    Rosenberger, Mark S; Tsiagkouris, James A

    2011-02-10

    Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

  9. Numerical simulation of the influence of fabric's motion on protective clothing performance during flash fire exposure

    NASA Astrophysics Data System (ADS)

    Ghazy, Ahmed; Bergstrom, Donald J.

    2013-06-01

    The motion of a person wearing protective clothing induces the clothing to move periodically towards the skin causing a cyclic variation in the air gap between the fabric and the skin. At the same time, the clothing movement causes cooling air to periodically flow into the air gap between the fabric and the skin. This paper uses a finite volume model to investigate these two effects and the resultant effect of the protective clothing movement on its performance during flash fire exposure. Special attention is drawn to the air gap model since it responds directly to the clothing movement. A parametric study is carried out to investigate the influence of a wider range of clothing movement. Specifically, the effect of the variation in the periodic movement frequency and amplitude on the clothing performance was investigated. The results show that increasing the movement frequency improves the clothing protective performance, while increasing the movement amplitude worsens the clothing performance.

  10. Maximal physical work performance with European standard based fire-protective clothing system and equipment in relation to individual characteristics.

    PubMed

    Louhevaara, V; Ilmarinen, R; Griefahn, B; Künemund, C; Mäkinen, H

    1995-01-01

    Every fire fighter needs to wear fire-protective clothing and a self-contained breathing apparatus (SCBA) several times a year while carrying out various fire-fighting and rescue operations in hazardous work environments. The aim of the present study was to quantify the effects of a multilayer turnout suit designed to fulfil European standard EN 469 used over standardized (Nordic) clothing and with SCBA (total mass 25.9 kg) on maximal physical work performance, and to evaluate the relationship between individual characteristics and power output with the fire-protective clothing system and SCBA. The subjects were 12 healthy firemen aged 26-46 years. The range of their body mass, body fat and maximal oxygen consumption was 69-101 kg, 10-20% and 2.70-5.86 l.min-1, respectively. The maximal tests without (control) and with the fire-protective clothing system and SCBA were carried out on a treadmill in a thermoneutral environment. When compared to the control test, the decrease in the maximal power output in terms of maximal working time and walking speed averaged 25% (P < 0.001) varying from 18% to 34% with the fire-protective clothing system and SCBA. At maximum, no significant differences were found in pulmonary ventilation, absolute oxygen consumption, the respiratory exchange ratio, heart rate, systolic blood pressure, the rate-pressure product, mechanical efficiency, and the rating of perceived exertion between the tests with and without the fire-protective clothing system and SCBA. The reduction of the power output was related to the extra mass of the fire protective clothing and SCBA.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. GIS Fuzzy Expert System for the assessment of ecosystems vulnerability to fire in managing Mediterranean natural protected areas.

    PubMed

    Semeraro, Teodoro; Mastroleo, Giovanni; Aretano, Roberta; Facchinetti, Gisella; Zurlini, Giovanni; Petrosillo, Irene

    2016-03-01

    A significant threat to the natural and cultural heritage of Mediterranean natural protected areas (NPAs) is related to uncontrolled fires that can cause potential damages related to the loss or a reduction of ecosystems. The assessment and mapping of the vulnerability to fire can be useful to reduce landscape damages and to establish priority areas where it is necessary to plan measures to reduce the fire vulnerability. To this aim, a methodology based on an interactive computer-based system has been proposed in order to support NPA's management authority for the identification of vulnerable hotspots to fire through the selection of suitable indicators that allow discriminating different levels of sensitivity (e.g. Habitat relevance, Fragmentation, Fire behavior, Ecosystem Services, Vegetation recovery after fire) and stresses (agriculture, tourism, urbanization). In particular, a multi-criteria analysis based on Fuzzy Expert System (FES) integrated in a GIS environment has been developed in order to identify and map potential "hotspots" of fire vulnerability, where fire protection measures can be undertaken in advance. In order to test the effectiveness of this approach, this approach has been applied to the NPA of Torre Guaceto (Apulia Region, southern Italy). The most fire vulnerable areas are the patch of century-old forest characterized by high sensitivity and stress, and the wetlands and century-old olive groves due to their high sensitivity. The GIS fuzzy expert system provides evidence of its potential usefulness for the effective management of natural protected areas and can help conservation managers to plan and intervene in order to mitigate the fire vulnerability in accordance with conservation goals.

  12. A feasibility study: California Department of Forestry and Fire Protection utilization of infrared technologies for wildland fire suppression and management

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Britten, R. A.; Parks, G. S.; Voss, J. M.

    1990-01-01

    NASA's JPL has completed a feasibility study using infrared technologies for wildland fire suppression and management. The study surveyed user needs, examined available technologies, matched the user needs with technologies, and defined an integrated infrared wildland fire mapping concept system configuration. System component trade-offs were presented for evaluation in the concept system configuration. The economic benefits of using infrared technologies in fire suppression and management were examined. Follow-on concept system configuration development and implementation were proposed.

  13. What does it take to start an oropharyngeal fire? Oxygen requirements to start fires in the operating room.

    PubMed

    Roy, Soham; Smith, Lee P

    2011-02-01

    Airway fires are a well-described and potentially devastating complication of oropharyngeal surgery. However, the actual factors required to ignite the fire have never been well-delineated in the medical literature. In this study, we used a mechanical model to assess the oxygen parameters necessary to cause an oropharyngeal fire. An electrosurgical unit (Bovie) was grounded to a whole raw chicken and a 6.0 endotracheal tube (ETT) was inserted into the cranial end of the degutted central cavity. Oxygen (O(2)) was then titrated through the ETT tube at varying concentrations, with flow rates varying from 10 to 15L/min. Electrocautery (at a setting of 15W) was performed on tissue in the central cavity of the chicken near the ETT. All trials were repeated twice to ensure accuracy. Positive test results were quantified by the time required to obtain ignition of any part of the mechanical setup and time required to produce a sustained flame. A test was considered negative if no ignition could be obtained after four minutes of direct electrocautery. At an O(2) concentration of 100% and a flow rate of 15L/min, ignition with a sustained flame was obtained between 15 and 30s after initiation of electrocautery. At 100% O(2) at 10L/min, ignition was obtained at 70s with immediate sustained flame. At an O(2) concentration of 60%, ignition occurred at 25s and sustained fire after 60s. At an O(2) concentration of 50% ignition with a sustained flame occurred between 128 and 184s. At an O(2) concentration of 45%, neither ignition nor sustained flames could be obtained in any trial. Operating room fires remain a genuine danger when performing oropharyngeal surgery where electrocautery is performed in an oxygen-enriched environment. In our study, higher O(2) flow rates with higher FiO(2) correlated with quicker ignition in the chicken cavity. A fire was easily obtained when using 100% O(2); as the O(2) concentration decreases, longer exposure to electrocautery is required for ignition

  14. Clinch River breeder reactor sodium fire protection system design and development

    SciTech Connect

    Foster, K.W.; Boasso, C.J.; Kaushal, N.N.

    1984-04-13

    To assure the protection of the public and plant equipment, improbable accidents were hypothesized to form the basis for the design of safety systems. One such accident is the postulated failure of the Intermediate Heat Transfer System (IHTS) piping within the Steam Generator Building (SGB), resulting in a large-scale sodium fire. This paper discusses the design and development of plant features to reduce the consequences of the accident to acceptable levels. Additional design solutions were made to mitigate the sodium spray contribution to the accident scenario. Sodium spill tests demonstrated that large sodium leaks can be safely controlled in a sodium-cooled nuclear power plant.

  15. 78 FR 24997 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone-Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... stratospheric ozone layer. This action will provide users that need specialized fire protection applications... information on SNAP, refer to EPA's Ozone Layer Protection Web site at www.epa.gov/ozone/snap/index.html . For... impact on the ozone layer or climate. The physicochemical properties of the majority of halon...

  16. Telemetry system for evaluation of burn protection in full-scale fuel fire manikin exposures

    NASA Astrophysics Data System (ADS)

    Piergallini, J. R.; Stoll, A. M.

    1980-05-01

    An eighteen channel PAM/FM (Pulse Amplitude Modulated/Frequency Modulated) telemetry system was developed for measuring temperature rise on the surface of a manikin beneath protective clothing for full-scale fuel fire exposures in completely enveloping flames. Thermistors are used as temperature sensors at various locations on a manikin surface and backed by material of known thermal properties in order to correlate temperature rise with skin burn damage. The transmitted signals are recorded on analog magnetic tape and converted to a digital format for computer analysis. The clothed manikin is passed through an aviation gasoline fire for three seconds with the telemetry system recording data during this period. Temperatures are analyzed at 0, 1, 2 and 3-second intervals with voltage outputs from the thermistors being converted to resistance readings and temperature readings by equations developed from curves of thermistor characteristics. Experimental results with respect to burn prediction are in agreement with data obtained by analysis of vesicant papers calibrated radiometrically to correlate with temperature-time effects productive of burns in living tissue. To date, 12 full-scale fuel fire tests have been conducted using the telemetry system and the performance of this system has exceeded original expectations in many respects such as sensitivity, accuracy and freedom from interference by ionizing gases within the flames.

  17. 46 CFR 161.002-2 - Types of fire-protective systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample... unit, fire detectors, smoke detectors, and audible and visual alarms distinct in both respects from the alarms of any other system not indicating fire. (c) Manual fire alarm systems. For the purpose of this...

  18. 46 CFR 161.002-2 - Types of fire-protective systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample... unit, fire detectors, smoke detectors, and audible and visual alarms distinct in both respects from the alarms of any other system not indicating fire. (c) Manual fire alarm systems. For the purpose of this...

  19. Does fire affect amphibians and reptiles in eastern U.S. oak forests?

    Treesearch

    Rochelle B. Renken

    2006-01-01

    Current information about the effect of fire on amphibians and reptiles in oak forests of the Eastern and Central United States is reviewed. Current data suggest that fire results in little direct mortality of amphibians and reptiles. Fire has no effect on overall amphibian abundance, diversity, and number of species in comparisons of burned and unburned plots, though...

  20. Crash-Fire Protection System for T-56 Turbopropeller Engine Using Water as Cooling and Inerting Agent

    NASA Technical Reports Server (NTRS)

    Busch, Arthur M.; Campbell, John A.

    1959-01-01

    A crash-fire protection system to suppress the ignition of crash-spilled fuel that may be ingested by a T-56 turbopropeller engine is described. This system includes means for rapidly extinguishing the combustor flame and means for cooling and inerting with water the hot engine parts likely to ignite engine-ingested fuel. Combustion-chamber flames were extinguished in 0.07 second at the engine fuel manifold. Hot engine parts were inerted and cooled by 52 pounds of water discharged at ten engine stations. Performance trials of the crash-fire prevention system were conducted by bringing the engine up to takeoff temperature, stopping the normal fuel flow to the engine, starting the water discharge, and then spraying fuel into the engine to simulate crash-ingested fuel. No fires occurred during these trials, although fuel was sprayed into the engine from 0.3 second to 15 minutes after actuating the crash-fire protection system.

  1. 30 CFR 1206.108 - Does ONRR protect information I provide?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Does ONRR protect information I provide? 1206.108 Section 1206.108 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Oil § 1206.108 Does ONRR protect information I...

  2. 30 CFR 1206.62 - Does ONRR protect information I provide?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Does ONRR protect information I provide? 1206.62 Section 1206.62 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Oil § 1206.62 Does ONRR protect information I...

  3. 30 CFR 1206.62 - Does ONRR protect information I provide?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Does ONRR protect information I provide? 1206.62 Section 1206.62 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Oil § 1206.62 Does ONRR protect information I...

  4. 30 CFR 1206.108 - Does ONRR protect information I provide?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Does ONRR protect information I provide? 1206.108 Section 1206.108 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Oil § 1206.108 Does ONRR protect information I...

  5. 30 CFR 1206.365 - Does ONRR protect information I provide?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Does ONRR protect information I provide? 1206.365 Section 1206.365 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Geothermal Resources § 1206.365 Does ONRR protect...

  6. 30 CFR 1206.365 - Does ONRR protect information I provide?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Does ONRR protect information I provide? 1206.365 Section 1206.365 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Geothermal Resources § 1206.365 Does ONRR protect...

  7. 30 CFR 1206.365 - Does ONRR protect information I provide?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Does ONRR protect information I provide? 1206.365 Section 1206.365 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Geothermal Resources § 1206.365 Does ONRR protect...

  8. 30 CFR 1206.108 - Does ONRR protect information I provide?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Does ONRR protect information I provide? 1206.108 Section 1206.108 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Oil § 1206.108 Does ONRR protect information I...

  9. 30 CFR 1206.62 - Does ONRR protect information I provide?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Does ONRR protect information I provide? 1206.62 Section 1206.62 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Oil § 1206.62 Does ONRR protect information I...

  10. 30 CFR 206.62 - Does MMS protect information I provide?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Does MMS protect information I provide? 206.62 Section 206.62 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Indian Oil § 206.62 Does MMS protect information I provide? The MMS will...

  11. 30 CFR 206.365 - Does MMS protect information I provide?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Does MMS protect information I provide? 206.365 Section 206.365 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Geothermal Resources § 206.365 Does MMS protect information I provide? Certain...

  12. 30 CFR 206.108 - Does MMS protect information I provide?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Does MMS protect information I provide? 206.108 Section 206.108 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Federal Oil § 206.108 Does MMS protect information I provide? Certain...

  13. Standard on fire protection for self-propelled and mobile surface mining equipment. 2001 ed.

    SciTech Connect

    2001-07-01

    Safeguard life and property against fire and related hazards in mines with the latest requirements in NFPA 121. This 2001 edition covers fire detection, suppression, ignition sources, fire risk assessment and maintenance of mining equipment systems. 4 apps.

  14. Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.

    SciTech Connect

    2005-07-01

    The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

  15. Model example of natural ventilation for protected escape route type Ap in the fire of a block of flats

    NASA Astrophysics Data System (ADS)

    Tkáč, J.

    2011-03-01

    Ventilation methods for protected escape route type Ap are defined and given technically and by typology in current legislation [1] and [5]. The simulation of the growth of a fire and movement of smoke was modelled on a stairway in a block of flats with 9 aboveground storeys and one underground storey (the most used type of stairway in blocks of flats in the Slovak Republic). The initiation, dynamics and movement of smoke are influenced by the efficiency of the natural ventilation. The dangerous products of fire, smoke, visibility and temperature influence safe evacuations and human behaviour. The selected model was verified by an actual fire.

  16. Fire hazards analysis for the uranium oxide (UO{sub 3}) facility

    SciTech Connect

    Wyatt, D.M.

    1994-12-06

    The Fire Hazards Analysis (FHA) documents the deactivation end-point status of the UO{sub 3} complex fire hazards, fire protection and life safety systems. This FHA has been prepared for the Uranium Oxide Facility by Westinghouse Hanford Company in accordance with the criteria established in DOE 5480.7A, Fire Protection and RLID 5480.7, Fire Protection. The purpose of the Fire Hazards Analysis is to comprehensively and quantitatively assess the risk from a fire within individual fire areas in a Department of Energy facility so as to ascertain whether the objectives stated in DOE Order 5480.7, paragraph 4 are met. Particular attention has been paid to RLID 5480.7, Section 8.3, which specifies the criteria for deactivating fire protection in decommission and demolition facilities.

  17. Studying the Post-Fire Response of Vegetation in California Protected Areas with NDVI-based Pheno-Metrics

    NASA Astrophysics Data System (ADS)

    Jia, S.; Gillespie, T. W.

    2016-12-01

    Post-fire response from vegetation is determined by the intensity and timing of fires as well as the nature of local biomes. Though the field-based studies focusing on selected study sites helped to understand the mechanisms of post-fire response, there is a need to extend the analysis to a broader spatial extent with the assistance of remotely sensed imagery of fires and vegetation. Pheno-metrics, a series of variables on the growing cycle extracted from basic satellite measurements of vegetation coverage, translate the basic remote sensing measurements such as NDVI to the language of phenology and fire ecology in a quantitative form. In this study, we analyzed the rate of biomass removal after ignition and the speed of post-fire recovery in California protected areas from 2000 to 2014 with USGS MTBS fire data and USGS eMODIS pheno-metrics. NDVI drop caused by fire showed the aboveground biomass of evergreen forest was removed much slower than shrubland because of higher moisture level and greater density of fuel. In addition, the above two major land cover types experienced a greatly weakened immediate post-fire growing season, featuring a later start and peak of season, a shorter length of season, and a lower start and peak of NDVI. Such weakening was highly correlated with burn severity, and also influenced by the season of fire and the land cover type, according to our modeling between the anomalies of pheno-metrics and the difference of normalized burn ratio (dNBR). The influence generally decayed over time, but can remain high within the first 5 years after fire, mostly because of the introduction of exotic species when the native species were missing. Local-specific variables are necessary to better address the variance within the same fire and improve the outcomes of models. This study can help ecologists in validating the theories of post-fire vegetation response mechanisms and assist local fire managers in post-fire vegetation recovery.

  18. Does protective measurement imply the reality of the quantum state?

    NASA Astrophysics Data System (ADS)

    Leifer, Matthew; Combes, Joshua; Ferrie, Chris; Pusey, Matthew

    2015-03-01

    In 1993, Aharonov and Vaidman claimed that the quantum state of a single system could be measured in a scheme they called ``protective measurement'' and hence that the quantum state must be a real property of a single system. Despite attracting considerable controversy, we do not think that the existing criticisms have put their finger on precisely what is wrong with this claim. We explain why we think that, in the protective measurement scheme, the vast majority of the information about the quantum state comes from the protection operation rather than from the state itself. We also give simple toy models of protective measurement which show that the protection operation effectively reprepares the system in an independent copy of the initial state. Thus determining the quantum state by protective measurement is conceptually no different from performing state tomography on an ensemble of independently prepared systems.

  19. Effects of weathering on performance of intumescent coatings for structure fire protection in the wildland-urban interface

    NASA Astrophysics Data System (ADS)

    Bahrani, Babak

    The objective of this study was to investigate the effects of weathering on the performance of intumescent fire-retardant coatings on wooden products. The weathering effects included primary (solar irradiation, moisture, and temperature) and secondary (environmental contaminants) parameters at various time intervals. Wildland urban interface (WUI) fires have been an increasing threat to lives and properties. Existing solutions to mitigate the damages caused by WUI fires include protecting the structures from ignition and minimizing the fire spread from one structure to another. These solutions can be divided into two general categories: active fire protection systems and passive fire protection systems. Passive systems are either using pre-applied wetting agents (water, gel, or foam) or adding an extra layer (composite wraps or coatings). Fire-retardant coating treatment methods can be divided into impregnated (penetrant) and intumescent categories. Intumescent coatings are easy to apply, economical, and have a better appearance in comparison to other passive fire protection methods, and are the main focus of this study. There have been limited studies conducted on the application of intumescent coatings on wooden structures and their performance after long-term weathering exposure. The main concerns of weathering effects are: 1) the reduction of ignition resistance of the coating layer after weathering; and 2) the fire properties of coatings after weathering since coatings might contribute as a combustible fuel and assist the fire growth after ignition. Three intumescent coatings were selected and exposed to natural weathering conditions in three different time intervals. Two types of tests were performed on the specimens: a combustibility test consisted of a bench-scale performance evaluation using a Cone Calorimeter, and a thermal decomposition test using Simultaneous Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) method (also known

  20. 'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle.

    PubMed

    Ennos, Antony Roland; Chan, Tak Lok

    2016-05-01

    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose.