Waste reduction plan for The Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, R.M.
1990-04-01
The Oak Ridge National Laboratory (ORNL) is a multipurpose Research and Development (R D) facility. These R D activities generate numerous small waste streams. Waste minimization is defined as any action that minimizes the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution, changes to processes, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction efforts. Federal regulations, DOE policies and guidelines, increased costs and liabilities associatedmore » with the management of wastes, limited disposal options and facility capacities, and public consciousness have been motivating factors for implementing comprehensive waste reduction programs. DOE Order 5820.2A, Section 3.c.2.4 requires DOE facilities to establish an auditable waste reduction program for all LLW generators. In addition, it further states that any new facilities, or changes to existing facilities, incorporate waste minimization into design considerations. A more recent DOE Order, 3400.1, Section 4.b, requires the preparation of a waste reduction program plan which must be reviewed annually and updated every three years. Implementation of a waste minimization program for hazardous and radioactive mixed wastes is sited in DOE Order 5400.3, Section 7.d.5. This document has been prepared to address these requirements. 6 refs., 1 fig., 2 tabs.« less
Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, V.
Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton,more » Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.« less
WASTE MINIMIZATION OPPORTUNITY ASSESSMENT: PHILADELPHIA NAVAL SHIPYARD
The Waste Reduction Evaluation at Federal Sites (WREAFS) Program consists of a series of demonstration and evaluation projects for waste reduction conducted cooperatively by EPA and various parts of the Department of Defense (DOD), Department of Energy (DOE), and other Federal ag...
1987 Oak Ridge model conference: Proceedings: Volume I, Part 3, Waste Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
A conference sponsored by the United States Department of Energy (DOE), was held on waste management. Topics of discussion were transuranic waste management, chemical and physical treatment technologies, waste minimization, land disposal technology and characterization and analysis. Individual projects are processed separately for the data bases. (CBS)
2013 Los Alamos National Laboratory Hazardous Waste Minimization Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzman, Sonja L.; English, Charles J.
2015-08-24
Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmentalmore » Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less
2016 Los Alamos National Laboratory Hazardous Waste Minimization Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzman, Sonja L.; English, Charles Joe
Waste minimization and pollution prevention are goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE), inclusive of the National Nuclear Security Administration (NNSA) and the Office of Environmental Management, and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program, whichmore » is a component of the overall Pollution Prevention (P2) Program, administered by the Environmental Stewardship Group (EPC-ES). This report also supports the waste minimization and P2 goals of the Associate Directorate of Environmental Management (ADEM) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. This report includes data for all waste shipped offsite from LANL during fiscal year (FY) 2016 (October 1, 2015 – September 30, 2016). LANS was active during FY2016 in waste minimization and P2 efforts. Multiple projects were funded that specifically related to reduction of hazardous waste. In FY2016, there was no hazardous, mixed-transuranic (MTRU), or mixed low-level (MLLW) remediation waste shipped offsite from the Laboratory. More non-remediation hazardous waste and MLLW was shipped offsite from the Laboratory in FY2016 compared to FY2015. Non-remediation MTRU waste was not shipped offsite during FY2016. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfred J. Karns
This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U. S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during CY06. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (No. NEV HW0021) and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the DOE, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume andmore » toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.« less
Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-12-31
The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.
DOE`s radioactively - contaminated metal recycling: The policy and its implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, S.; Rizkalla, E.
1997-02-01
In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that themore » Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirk Gombert; Jay Roach
The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilizationmore » and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.« less
System for decision analysis support on complex waste management issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shropshire, D.E.
1997-10-01
A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, N.
Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generationmore » of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.« less
Tanks Focus Area annual report FY2000
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2000-12-01
The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for overmore » 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.
On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and thenmore » dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.« less
Compaction of Space Mission Wastes
NASA Technical Reports Server (NTRS)
Fisher, John; Pisharody, Suresh; Wignarajah, K.
2004-01-01
The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.J. Orchard; L.A. Harvego; T.L. Carlson
The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.« less
DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
WASHENFELDER DJ
2008-01-22
The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control strategies to a nitrite-based control, where there is no constant depletion mechanism as with hydroxide, should greatly enhance tank lifetime, tank space availability, and reduce downstream reprocessing costs by reducing chemical addition to the tanks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, E.A.
1995-12-31
The Department of Energy (DOE), in response to the 1992 Federal Facility Compliance Act, has prepared Site Treatment Plans (STP) for the approximately 2,000 waste streams identified within its mixed waste inventory Concurrently, emerging mixed waste treatment technologies are in final development. This paper defines a three-phase process to identify and assess implementation opportunities for these emerging technologies within the STP. It highlights the first phase, functional matching of expected treatment capabilities with proposed treatment requirements. Matches are based on treatment type, regulated contaminant and waste matrix type, for both capabilities and requirements. Results identify specific waste streams and volumesmore » that could be treated by each emerging technology. A study for Plasma Hearth Process, Delphi DETOX{sup sm}, Supercritical Water Oxidation and Vitrification shows that about 200,000 ml of DOE`s mixed waste inventory can potentially be treated by one or more of these emerging technologies. Actual implementations are small fractions of the treatable inventory. Differences between potential and actual implementations must be minimized to accrue optimum benefit from implementation of emerging or alternative treatment technologies. Functional matching is the first phase in identifying and quantifying benefits, addressing technology system and treatment issues, and providing, in part, the basis for STP implementation decisions. DOE, through EM`s Office of Technology Development, has funded this work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, A.; Gordon, S.; Goldston, W.
2013-07-08
This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.
The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludgesmore » that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.« less
Electromagnetic mixed waste processing system for asbestos decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.; Vaux, W.; Ulerich, N.
The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less
Black, I; Seaton, R; Chackiath, S; Wagland, S T; Pollard, S J T; Longhurst, P J
2011-12-01
The identification of risk and its appropriate allocation to partners in project consortia is essential for minimizing overall project risks, ensuring timely delivery and maximizing benefit for money invested. Risk management guidance available from government bodies, especially in the UK, does not specify methodologies for quantitative risk assessment, nor does it offer a procedure for allocating risk among project partners. Here, a methodology to quantify project risk and potential approaches to allocating risk and their implications are discussed. Construction and operation of a waste management facility through a public-private finance contract are discussed. Public-private partnership contracts are special purpose vehicle (SPV) financing methods promoted by the UK government to boost private sector investment in facilities for public service enhancement. Our findings question the appropriateness of using standard deviation as a measure for project risk and confirm the concept of portfolio theory, suggesting the pooling of risk can reduce total risk and its impact.
Waste Characterization Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Patrick E.
2014-11-01
The purpose is to provide guidance to the Radiological Characterization Reviewer to complete the radiological characterization of waste items. This information is used for Department of Transportation (DOT) shipping and disposal, typically at the Nevada National Security Site (NNSS). Complete characterization ensures compliance with DOT shipping laws and NNSS Waste Acceptance Criteria (WAC). The fines for noncompliance can be extreme. This does not include possible bad press, and endangerment to the public, employees and the environment. A Radiological Characterization Reviewer has an important role in the organization. The scope is to outline the characterization process, but does not to includemore » every possible situation. The Radiological Characterization Reviewer position requires a strong background in Health Physics; therefore, these concepts are minimally addressed. The characterization process includes many Excel spreadsheets that were developed by Michael Enghauser known as the WCT software suite. New Excel spreadsheets developed as part of this project include the Ra- 226 Decider and the Density Calculator by Jesse Bland, MicroShield Density Calculator and Molecular Weight Calculator by Pat Lambert.« less
Cultural change and support of waste minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boylan, M.S.
1991-12-31
The process of bringing a subject like pollution prevention to top of mind awareness, where designed to prevent waste becomes part of business as usual, is called cultural change. With Department of Energy orders and management waste minimization commitment statements on file, the REAL work is just beginning at the Idaho National Engineering Laboratory (INEL); shaping the attitudes of 11,000+ employees. The difficulties of such a task are daunting. The 890 square mile INEL site and in-town support offices mean a huge diversity of employee jobs and waste streams; from cafeteria and auto maintenance wastes to high-level nuclear waste casks.more » INEL is pursuing a three component cultural change strategy: training, publicity, and public outreach. To meet the intent of DOE orders, all INEL employees are slated to receive pollution prevention orientation training. More technical training is given to targeted groups like purchasing and design engineering. To keep newly learned pollution prevention concepts top-of-mind, extensive site-wide publicity is being developed and conducted, culminating in the April Pollution Prevention Awareness Week coinciding with Earth Day 1992. Finally, news of INEL pollution prevention successes is shared with the public to increase their overall environmental awareness and their knowledge of INEL activities. An important added benefit is the sense of pride the program instills in INEL employees to have their successes displayed so publicly.« less
Mallak, Shadi Kafi; Bakri Ishak, Mohd; Mohamed, Ahmad Fariz
2016-09-13
Malaysia is facing an increasing trend in industrial solid waste generation due to industrial development.Thus there is a paramount need in taking a serious action to move toward sustainable industrial waste management. The main aim of this study is to assess practicing solid waste minimization by manufacturing firms in Shah Alam industrial state, Malaysia. This paper presents a series of descriptive and inferential statistical analysis regarding the level and effects of practicing waste minimization methods, and seriousness of barriers preventing industries from practicing waste minimization methods. For this purpose the survey questions were designed such that both quantitative (questionnaire) and qualitative (semi-structures interview) data were collected concurrently. Analysis showed that, the majority of firms (92%) dispose their wastes rather than practice other sustainable waste management options. Also waste minimization methods such as segregation of wastes, on-site recycle and reuse, improve housekeeping and equipment modification were found to have significant contribution in waste reduction (p<0.05). Lack of expertise (M=3.50), lack of enough information (M= 3.54), lack of equipment modification (M= 3.16) and lack of specific waste minimization guidelines (M=3.49) have higher mean scores comparing with other barriers in different categories. These data were interpreted for elaborating of SWOT and TOWS matrix to highlight strengths, weaknesses, threats and opportunities. Accordingly, ten policies were recommended for improvement of practicing waste minimization by manufacturing firms as the main aim of this research. Implications This manuscript critically analysis waste minimization practices by manufacturing firms in Malaysia. Both qualitative and quantitative data collection and analysis were conducted to formulate SWOT and TOWS matrix in order to recommend policies and strategies for improvement of solid waste minimization by manufacturing industries. The results contribute to the knowledge and the findings of this study provide a useful baseline information and data on industrial solid waste generation and waste minimization practice.
40 CFR 262.27 - Waste minimization certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste minimization certification. 262.27 Section 262.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization...
40 CFR 262.27 - Waste minimization certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste minimization certification. 262.27 Section 262.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization...
40 CFR 262.27 - Waste minimization certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste minimization certification. 262.27 Section 262.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization...
40 CFR 262.27 - Waste minimization certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Waste minimization certification. 262.27 Section 262.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization...
40 CFR 262.27 - Waste minimization certification.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Waste minimization certification. 262.27 Section 262.27 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.27 Waste minimization...
To promote waste minimization activities in accordance with the national policy objectives established under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act of 1976 (RCRA), the Hazardous Waste Engineering Research Laboratory (HWERL) of ...
De-Inventory Plan for Transuranic Waste Stored at Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth Marshall; Christensen, Davis V.; Shepard, Mark D.
This report describes the strategy and detailed work plan developed by Los Alamos National Laboratory (LANL) to disposition transuranic (TRU) waste stored at its Area G radioactive waste storage site. The focus at this time is on disposition of 3,706 m 3 of TRU waste stored above grade by June 30, 2014, which is one of the commitments within the Framework Agreement: Realignment of Environmental Priorities between the Department of Energy (DOE) National Nuclear Security Administration (NNSA) and the State of New Mexico Environment Department (NMED), Reference 1. A detailed project management schedule has been developed to manage this workmore » and better ensure that all required activities are aligned and integrated. The schedule was developed in conjunction with personnel from the NNSA Los Alamos Site Office (LASO), the DOE Carlsbad Field Office (CBFO), the Central Characterization Project (CCP), and Los Alamos National Security, LLC (LANS). A detailed project management schedule for the remainder of the above grade inventory and the below grade inventory will be developed and incorporated into the De-Inventory Plan by December 31, 2012. This schedule will also include all newly-generated TRU waste received at Area G in FYs 2012 and 2013, which must be removed by no later than December 31, 2014, under the Framework Agreement. The TRU waste stored above grade at Area G is considered to be one of the highest nuclear safety risks at LANL, and the Defense Nuclear Facility Safety Board has expressed concern for the radioactive material at risk (MAR) contained within the above grade TRU waste inventory and has formally requested that DOE reduce the MAR. A large wildfire called the Las Conchas Fire burned extensive areas west of LANL in late June and July 2011. Although there was minimal to no impact by the fire to LANL, the fire heightened public concern and news media attention on TRU waste storage at Area G. After the fire, New Mexico Governor Susana Martinez also requested that LANL accelerate disposition of TRU waste stored above grade at Area G. The 3,706 m 3 volume of TRU waste stored above grade consists of 4,495 containers that include all above grade non-cemented waste as well as above grade cemented waste that was ready for characterization on October 1, 2011. This volume includes all newly-generated TRU waste currently stored at Area G as of October 1, 2011. This volume does not include the Bolas Grandes spheres, mixed low level waste (MLLW) containers, empty containers, cemented waste that requires remediation, projected newly generated TRU waste from FY 2012 and later, or TRU waste stored below grade. The 3,706 m 3 volume represents about 86 per cent of the total volume of TRU waste stored above grade on October 1, 2011. The De-Inventory Plan supports the DOE Office of Environmental Management (EM) goal to disposition 90% of the Legacy TRU waste within the DOE complex by the end of 2015 as stated in its Roadmap for EM’s Journey to Excellence (Reference 2). The plan also addresses precursor actions for disposition of TRU waste that are necessary for compliance with the Compliance Order on Consent issued by the NMED in 2005 (Reference 3).« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... extended to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection... extended to install pollution prevention or waste minimization controls? (a) Applicability. You may request... pollution prevention or waste minimization measures will significantly reduce the amount and/or toxicity of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... extended to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection... extended to install pollution prevention or waste minimization controls? (a) Applicability. You may request... pollution prevention or waste minimization measures will significantly reduce the amount and/or toxicity of...
To promote waste minimization activities in accordance with the national policy objectives established under the 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act of 1976 (RCRA), the Hazardous Waste Engineering Research Laboratory (HWERL) of ...
1994-01-01
in the viscosity profile is observed. DAMAB induces strong intermolecular associations via hydrophobic interactions . When copolymers of comparable...techniques such as viscosity studies. The AM/DAMAB copolymer series also interacts with surfactants in an interesting manner.’ The surface tension of...in polymer dimensions as hydrophobe is added. The shape of the viscosity curves does not suggest intermolecular interactions , as in typical
1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, C.H.; Duncan, D.; Sanchez, R.
1997-08-01
Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiologicalmore » effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.« less
Elaboration d'une structure de collecte des matieres residuelles selon la Theorie Constructale
NASA Astrophysics Data System (ADS)
Al-Maalouf, George
Currently, more than 80% of the waste management costs are attributed to the waste collection phase. In order to reduce these costs, one current solution resides in the implementation of waste transfer stations. In these stations, at least 3 collection vehicles transfer their load into a larger hauling truck. This cost reduction is based on the principle of economy of scale applied to the transportation sector. This solution improves the efficiency of the system; nevertheless, it does not optimize it. Recent studies show that the compactor trucks used in the collection phase generate significant economic losses mainly due to the frequent stops and the transportation to transfer stations often far from the collection area. This study suggests the restructuring of the waste collection process by dividing it into two phases: the collection phase, and the transportation to the transfer station phase. To achieve this, a deterministic theory called: "the Constructal Theory" (CT) is used. The results show that starting a certain density threshold, the application of the CT minimizes energy losses in the system. In fact, the collection is optimal if it is done using a combination of low capacity vehicle to collect door to door and transfer their charge into high-capacity trucks. These trucks will then transport their load to the transfer station. To minimize the costs of labor, this study proposes the use of Cybernetic Transport System (CTS) as an automated collection vehicle to collect small amounts of waste. Finally, the optimization method proposed is part of a decentralized approach to the collection and treatment of waste. This allows the implementation of multi-process waste treatment facilities on a territory scale.
Waste Handeling Building Conceptual Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.W. Rowe
2000-11-06
The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable,more » and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.« less
Dielectric Properties of Low-Level Liquid Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. E. Lagos; M. A. Ebadian
1998-10-20
The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must bemore » minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS. These include the incineration of combustibles, the evaporation of combustibles, the evaporation of liquids, and the compaction of noncombustibles. The handling of radioactive liquid waste is generally carried out within closed systems consisting of highly corrosion-resistant, welded, leak-tight pipes, tanks, and other apparatus. High power microwave processing is a promising technology for reducing risks to the environment and human health, thereby supporting the DOE's decontamination and decommissioning (D&D) objectives.« less
The report results of a waste minimization audit carried out in 1987 at a tank reconditioning facility operated by the DOD. The audit team developed recommendations for reducing the generation FOO6 wastewater treatment sludge, and FOO2, and FOO4 solvent wastes. In addition to det...
Hanford Waste Physical and Rheological Properties: Data and Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.
2011-08-01
The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less
Radionuclide Migration through Sediment and Concrete: 16 Years of Investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovich, Elizabeth C.; Mattigod, Shas V.; Snyder, Michelle MV
The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the U.S. Department of Energy (DOE) complex. Part of these services includes safe disposal of low-level waste and mixed low-level waste at the Hanford Low-Level Waste Burial Grounds in accordance with the requirements of DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, performance assessment analyses were completed and approved. DOE Order 435.1 also requires continuing data collection to increase confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are reliedmore » on to satisfy the performance objectives identified in the order. Cement-based solidification and stabilization is considered for hazardous waste disposal because it is easily done and cost-efficient. One critical assumption is that concrete will be used as a waste form or container material at the Hanford Site to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The radionuclides iodine-129, selenium-75, technetium-99, and uranium-238 have been identified as long-term dose contributors (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, these constituents of potential concern may be released from the encased concrete by mass flow and/or diffusion and migrate into the surrounding subsurface environment (Serne et al. 1989; 1992; 1993a, b; 1995). Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. Each of the test methods performed throughout the lifetime of the project has focused on different aspects of the concrete waste form weathering process. Diffusion of different analytes [technetium-99 (Tc-99), iodine-125 (I-125), stable iodine (I), uranium (U), and rhenium (Re)] has been quantified from experiments under both saturated and unsaturated conditions. The water-saturated conditions provide a conservative estimate of the concrete’s performance in situ, and the unsaturated conditions provide a more accurate estimate of the diffusion of contaminants from the concrete.« less
Sasao, Toshiaki
2014-11-01
Waste taxes, such as landfill and incineration taxes, have emerged as a popular option in developed countries to promote the 3Rs (reduce, reuse, and recycle). However, few studies have examined the effectiveness of waste taxes. In addition, quite a few studies have considered both dynamic relationships among dependent variables and unobserved individual heterogeneity among the jurisdictions. If dependent variables are persistent, omitted variables cause a bias, or common characteristics exist across the jurisdictions that have introduced waste taxes, the standard fixed effects model may lead to biased estimation results and misunderstood causal relationships. In addition, most existing studies have examined waste in terms of total amounts rather than by categories. Even if significant reductions in total waste amounts are not observed, some reduction within each category may, nevertheless, become evident. Therefore, this study analyzes the effects of industrial waste taxation on quantities of waste in landfill in Japan by applying the bias-corrected least-squares dummy variable (LSDVC) estimators; the general method of moments (difference GMM); and the system GMM. In addition, the study investigates effect differences attributable to industrial waste categories and taxation types. This paper shows that industrial waste taxes in Japan have minimal, significant effects on the reduction of final disposal amounts thus far, considering dynamic relationships and waste categories. Copyright © 2014 Elsevier Ltd. All rights reserved.
WASTE OPPORTUNITY ASSESSMENT: A PHOTOFINISHING FACILITY
A waste minimization opportunity assessment was performed which identified areas for waste reduction at a photofinishing facility. The study followed procedures in the EPA Waste Minimization Opportunity Assessment Manual. The report identifies potential options to achieve further...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-01
The Office of Defense Programs (DP) was the first US Department of Energy (DOE) Cognizant Secretarial Office (CSO) to attempt to benchmark private industries for best-in-class practices in the field of pollution prevention. Defense Programs` intent in this effort is to identify and bring to DOE field offices strategic and technological tools that have helped private companies minimize waste and prevent pollution. Defense Programs` premier benchmarking study focused on business practices and process improvements used to implement exceptional pollution prevention programs in four privately owned companies. The current interest in implementing partnerships information exchange, and technology transfer with the privatemore » sector prompted DP to continue to seek best practices in the area of pollution prevention through a second benchmarking endeavor in May 1994. This report presents the results of that effort. The decision was made to select host facilities that own processes similar to those at DOE plants and laboratories, that have programs that have been recognized on a local or national level, that have an interest in partnering with the Department on an information-sharing basis, and that are located in proximity to each other. The DP benchmarking team assessed the pollution prevention programs of five companies in the Chicago area--GE Plastics, Navistar, Northrop Corporation, Sundstrand and Caterpillar. At all facilities visited, Ozone Depleting Compounds (ODCs), hazardous wastes, releases under the Superfund Amendments and Reauthorization Act (SARA), waste water and non-hazardous wastes are being eliminated, replaced, reduced, recycled and reused whenever practicable.« less
Waste minimization/pollution prevention study of high-priority waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogle, R.B.
1994-03-01
Although waste minimization has been practiced by the Metals and Ceramics (M&C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division`s pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broadmore » categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M&C staff members empowered by the Division Director to study specific waste streams.« less
DOE Waste Treatability Group Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, T.D.
1995-01-01
This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF PRINTED LABELS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
Annual Site Environmental Report Calendar Year 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Kayser-Ames Laboratory
This report summarizes the environmental status of Ames Laboratory for calendar year 2007. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies 11 buildings owned by the Department of Energy (DOE). See the Laboratory's Web page at www.external.ameslab.gov for locations and Laboratory overview. The Laboratory also leases space in ISU owned buildings. In 2007, the Laboratory accumulated andmore » disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Small Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2007. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2007. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2003. Included in these efforts were battery and CRT recycling, waste white paper and green computer paper-recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, styrofoam peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Self Assessment Report, on its Affirmative Procurement Performance Measure. A performance level of 'A' was achieved in 2007 for Integrated Safety, Health, and Environmental Protection. As reported in Site Environmental Reports for prior years, the Laboratory's Environmental Management System has been integrated into the Laboratory's Integrated Safety Management System since 2005. The integration of EMS into the way the Laboratory does business allows the Laboratory to systematically review, address and respond to the Laboratory's environmental impacts.« less
Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.
1994-08-01
This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65.more » The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices to minimize hazards to human health and safety and to the environment from event such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water.« less
Waste Minimization Assessment for Multilayered Printed Circuit Board Manufacturing
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium- size manu facturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at s...
ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION ASSESSMENT FOR A PAINT MANUFACTURING PLANT
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium- size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at se...
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF REFURBISHED RAILCAR ASSEMBLIES
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected ...
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF PROTOTYPE PRINTED CIRCUIT BOARDS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF SPEED REDUCTION EQUIPMENT
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CUSTOM MOLDED PLASTIC PRODUCTS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected ...
ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION ASSESSMENT FOR A BUMPER REFINISHING PLANT
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at se...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
Waste minimization for commercial radioactive materials users generating low-level radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, D.K.; Gitt, M.; Williams, G.A.
1991-07-01
The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium- size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at se...
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF SHEET METAL COMPONENTS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. n an effort to assist these manufacturers Waste Minimization ssessment Cente...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF ALUMINUM CANS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium- size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at se...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium- size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at se...
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF IRON CASTINGS AND FABRICATED SHEET METAL PARTS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected u...
ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION FOR A MANUFACTURER OF ALUMINUM AND STEEL PARTS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. n an effort to assist these manufacturers Waste Minimization Assessment Cent...
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF ALUMINUM AND STEEL PARTS
The U.S.Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-sized manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers, Waste Minimization Assessment Ce...
ENVIRONMENTAL RESEARCH BRIEF: WASTE MINIMIZATION ASSESSMENT FOR A METAL PARTS COATING PLANT
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CORN SYRUP AND CORN STARCH
The U.S.Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their geneation of waste but who lack the expertise to do so. In an effort to assist these manufacturers, Waste Minimization Assessment Cent...
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CUTTING AND WELDING EQUIPMENT
The U.S. Environmental Protection Agency (EPA) has funded a pilot program to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so in an effort to assist these manufacturers Waste Minimization Assessment Cent...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Ce...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium- size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at se...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established ...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Pollution Prevention (P2) has evolved into one of DOE`s sprime strategies to meet environmental, fiscal, and worker safety obligations. P2 program planning, opportunity identification, and implementation tools were developed under the direction of the Waste Minimization Division (EM-334). Forty experts from EM, DP, ER and DOE subcontractors attended this 2-day workshop to formulate the incentives to drive utilization of these tools. Plenary and small working group sessions were held both days. Working Group 1 identified incentives to overcoming barriers in the area of P2 program planning and resource allocation. Working Group 2 identified mechanisms to drive the completion of P2more » assessments and generation of opportunities. Working Group 3 compiled and documented a broad range of potential P2 incentives that address fundamental barriers to implementation of cost effective opportunities.« less
Ideas That Work! The Midnight Audit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Steven A.
The midnight audit provides valuable insight toward identifying opportunities to reduce energy consumption—insight that can be easily overlooked during the normal (daytime) energy auditing process. The purpose of the midnight audit is to observe after-hour operation with the mindset of seeking ways to further minimize energy consumption during the unoccupied mode and minimize energy waste by reducing unnecessary operation. The midnight audit should be used to verify that equipment is off when it is supposed to be, or operating in set-back mode when applicable. Even a facility that operates 2 shifts per day, 5 days per week experiences fewer annualmore » hours in occupied mode than it does during unoccupied mode. Minimizing energy loads during unoccupied hours can save significant energy, which is why the midnight audit is an Idea That Works.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, J.
2002-02-28
Weiss Associates (WA) performs a broad range of environmental restoration/waste management (ER/WM) activities for the U.S. Department of Energy (DOE) at the former Laboratory for Energy-Related Health Research (LEHR), University of California, Davis (UC Davis). Over the last three years, the LEHR ER/WM program transitioned from a baseline packaging system of steel, 2.7 cubic meter (3.5-cubic yard) B-25 boxes to a 7.0 cubic meter (9.1-cubic yard) soft-sided container (Lift Liner) system. The transition increased efficiencies in processing, packaging, and storage, and when combined with decreased procurement costs, achieved a $402,000 cost savings (Table I). Additional disposal costs between $128,600 andmore » $182,600 were avoided by minimizing void space. Future cost savings by the end of fiscal year 2003 are projected between $250,640 and $1,003,360.« less
EPA issues interim final waste minimization guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergeson, L.L.
1993-08-01
The U.S. Environmental Protection Agency (EPA) has released a new and detailed interim final guidance to assist hazardous waste generators in certifying they have a waste minimization program in place under the Resource Conservation and Recovery Act (RCRA). EPA's guidance identifies the basic elements of a waste minimization program in place that, if present, will allow people to certify they have implemented a program to reduce the volume and toxicity of hazardous waste to the extent economically practical. The guidance is directly applicable to generators of 1000 or more kilograms per month of hazardous waste, or large-quantity generators, and tomore » owners and operators of hazardous waste treatment, storage or disposal facilities who manage their own hazardous waste on site. Small-quantity generators that generate more than 100 kilograms, but less than 1,000 kilograms, per month of hazardous waste are not subject to the same program in place certification requirement. Rather, they must certify on their manifests that they have made a good faith effort to minimize their waste generation.« less
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
The Strategic WAste Minimization Initiative (SWAMI) Software, Version 2.0 is a tool for using process analysis for identifying waste minimization opportunities within an industrial setting. The software requires user-supplied information for process definition, as well as materia...
Code of Federal Regulations, 2010 CFR
2010-07-01
... to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection of... pollution prevention or waste minimization controls? (a) Applicability. You may request from the.... An extension may be granted if you can reasonably document that the installation of pollution...
Code of Federal Regulations, 2011 CFR
2011-07-01
... extended to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection... pollution prevention or waste minimization controls? (a) Applicability. You may request from the.... An extension may be granted if you can reasonably document that the installation of pollution...
Code of Federal Regulations, 2012 CFR
2012-07-01
... to install pollution prevention or waste minimization controls? 63.1213 Section 63.1213 Protection of... pollution prevention or waste minimization controls? (a) Applicability. You may request from the.... An extension may be granted if you can reasonably document that the installation of pollution...
Food waste minimization from a life-cycle perspective.
Bernstad Saraiva Schott, A; Andersson, T
2015-01-01
This article investigates potentials and environmental impacts related to household food waste minimization, based on a case study in Southern Sweden. In the study, the amount of avoidable and unavoidable food waste currently being disposed of by households was assessed through waste composition analyses and the different types of avoidable food waste were classified. Currently, both avoidable and unavoidable food waste is either incinerated or treated through anaerobic digestion. A hypothetical scenario with no generation of avoidable food waste and either anaerobic digestion or incineration of unavoidable food waste was compared to the current situation using the life-cycle assessment method, limited to analysis of global warming potential (GWP). The results from the waste composition analyses indicate that an average of 35% of household food waste is avoidable. Minimization of this waste could result in reduction of greenhouse gas emissions of 800-1400 kg/tonne of avoidable food waste. Thus, a minimization strategy would result in increased avoidance of GWP compared to the current situation. The study clearly shows that although modern alternatives for food waste treatment can result in avoidance of GWP through nutrient and energy recovery, food waste prevention yields far greater benefits for GWP compared to both incineration and anaerobic digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Y P; Huang, G H
2010-09-15
Considerable public concerns have been raised in the past decades since a large amount of pollutant emissions from municipal solid waste (MSW) disposal of processes pose risks on surrounding environment and human health. Moreover, in MSW management, various uncertainties exist in the related costs, impact factors and objectives, which can affect the optimization processes and the decision schemes generated. In this study, an interval-based possibilistic programming (IBPP) method is developed for planning the MSW management with minimized system cost and environmental impact under uncertainty. The developed method can deal with uncertainties expressed as interval values and fuzzy sets in the left- and right-hand sides of constraints and objective function. An interactive algorithm is provided for solving the IBPP problem, which does not lead to more complicated intermediate submodels and has a relatively low computational requirement. The developed model is applied to a case study of planning a MSW management system, where mixed integer linear programming (MILP) technique is introduced into the IBPP framework to facilitate dynamic analysis for decisions of timing, sizing and siting in terms of capacity expansion for waste-management facilities. Three cases based on different waste-management policies are examined. The results obtained indicate that inclusion of environmental impacts in the optimization model can change the traditional waste-allocation pattern merely based on the economic-oriented planning approach. The results obtained can help identify desired alternatives for managing MSW, which has advantages in providing compromised schemes under an integrated consideration of economic efficiency and environmental impact under uncertainty. Copyright 2010 Elsevier B.V. All rights reserved.
Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, J.W.
1993-12-01
US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY)more » 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.« less
Minimally processed beetroot waste as an alternative source to obtain functional ingredients.
Costa, Anne Porto Dalla; Hermes, Vanessa Stahl; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann
2017-06-01
Large amounts of waste are generated by the minimally processed vegetables industry, such as those from beetroot processing. The aim of this study was to determine the best method to obtain flour from minimally processed beetroot waste dried at different temperatures, besides producing a colorant from such waste and assessing its stability along 45 days. Beetroot waste dried at 70 °C originates flour with significant antioxidant activity and higher betalain content than flour produced from waste dried at 60 and 80 °C, while chlorination had no impact on the process since microbiological results were consistent for its application. The colorant obtained from beetroot waste showed color stability for 20 days and potential antioxidant activity over the analysis period, thus it can be used as a functional additive to improve nutritional characteristics and appearance of food products. These results are promising since minimally processed beetroot waste can be used as an alternative source of natural and functional ingredients with high antioxidant activity and betalain content.
Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.; Benedict, Robert W.
The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technologymore » developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.« less
Technical area status report for waste destruction and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, J.D.; Harris, T.L.; DeWitt, L.M.
1993-08-01
The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less
Working towards a zero waste environment in Taiwan.
Young, Chea-Yuan; Ni, Shih-Piao; Fan, Kuo-Shuh
2010-03-01
It is essential to the achievement of zero waste that emphasis is concentrated on front-end preventions rather than end-of-pipe (EOP) treatment. Zero waste is primarily based on cleaner production, waste management, the reduction of unnecessary consumption and the effective utilization of waste materials. The aim of this study was to briefly review the tasks undertaken and future plans for achieving zero waste in Taiwan. Waste prevention, source reduction, waste to product, waste to energy, EOP treatment, and adequate disposal are the sequential principal procedures to achieve the goal of zero waste. Six strategies have been adopted to implement the zero waste policy in Taiwan. These are regulatory amendments, consumption education, financial incentives, technical support, public awareness, and tracking and reporting. Stepwise targets have been set for 2005, 2007, 2011, and 2020 for both the municipal solid waste (MSW) and industrial waste to reach the goal of zero waste. The eventual aim is to achieve 70% MSW minimization and 85% industrial waste minimization by 2020. Although tools and measures have been established, some key programmes have higher priority. These include the establishment of a waste recycling programme, promotion of cleaner production, a green procurement programme, and promotion of public awareness. Since the implementation of the zero waste policy started in 2003, the volume of MSW for landfill and incineration has declined dramatically. The recycling and/or minimization of MSW quantity in 2007 was 37%, which is much higher than the goal of 25%. Industrial waste reached almost 76% minimization by the end of 2006, which is 1 year before the target year.
Waste Information Management System with 2012-13 Waste Streams - 13095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, H.; Quintero, W.; Lagos, L.
2013-07-01
The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)« less
Schott, Anna Bernstad Saraiva; Vukicevic, Sanita; Bohn, Irene; Andersson, Tova
2013-08-01
Several treatment alternatives for food waste can result in both energy and nutrient recovery, and thereby potential environmental benefits. However, according to the European Union waste management hierarchy, waste prevention should be the prioritized strategy to decrease the environmental burdens from all solid waste management. The aim of the present study was therefore to investigate the potential for food waste minimization among Swedish households through an investigation of the amount of avoidable food waste currently disposed of. A further aim was to investigate the effect on the national biogas production potential through anaerobic digestion of food waste, considering minimization potentials. A method for waste composition analyses of household food waste, where a differentiation between avoidable and unavoidable food waste is made, was used in a total of 24 waste composition analyses of household waste from Swedish residential areas. The total household food waste generation reached 3.4 kg (household and week)(-1), on average, of which 34% is avoidable. The theoretical methane (CH4) potential in unavoidable food waste reached 442 Ndm(3) (kg VS)(-1) or 128 Nm(3) tonne(-1) wet waste, while the measured (mesophilic CH4 batch tests) CH4 production reached 399 Ndm(3) (kg VS)(-1), which is lower than several previous assessments of CH4 production from household food waste. According to this study the combination of a decrease in food waste generation-in case of successful minimization-and decreased CH4 production from unavoidable food waste will thus result in lower total potential energy recovery from household food waste through anaerobic digestion CH4 potential than previously stated.
Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Frank; Hwan Seo Park; Yung Zun Cho
This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration betweenmore » US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-01
US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC ormore » state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beauchesne, A.M.
1997-12-31
Topics explored through this project include: decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis; interstate waste and materials shipments; and reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes.more » The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE`s proposed National Dialogue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J.; Peeler, D.; Edwards, T.
2012-05-11
A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupledmore » operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the variability study has significantly added value to the DWPF's qualification strategy. The variability study has evolved to become the primary aspect of the DWPF's compliance strategy as it has been shown to be versatile and capable of adapting to the DWPF's various and diverse waste streams and blending strategies. The variability study, which aims to ensure durability requirements and the PCT and chemical composition correlations are valid for the compositional region to be processed at the DWPF, must continue to be performed. Due to the importance of the variability study and its place in the DWPF's qualification strategy, it will also be discussed in this report. An analysis of historical data and Production Records indicated that the recommendation of the Six Sigma team to eliminate all characterization of pour stream glass samples and the glass fabrication and PCT performed with the qualification glass does not compromise the DWPF's current compliance plan. Furthermore, the DWPF should continue to produce an acceptable waste form following the remaining elements of the Glass Product Control Program; regardless of a sludge-only or coupled operations strategy. If the DWPF does decide to eliminate the characterization of pour stream samples, pour stream samples should continue to be collected for archival reasons, which would allow testing to be performed should any issues arise or new repository test methods be developed.« less
Waste minimization charges up recycling of spent lead-acid batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queneau, P.B.; Troutman, A.L.
Substantial strides are being made to minimize waste generated form spent lead-acid battery recycling. The Center for Hazardous Materials Research (Pittsburgh) recently investigated the potential for secondary lead smelters to recover lead from battery cases and other materials found at hazardous waste sites. Primary and secondary lead smelters in the U.S. and Canada are processing substantial tons of lead wastes, and meeting regulatory safeguards. Typical lead wastes include contaminated soil, dross and dust by-products from industrial lead consumers, tetraethyl lead residues, chemical manufacturing by-products, leaded glass, china clay waste, munitions residues and pigments. The secondary lead industry also is developingmore » and installing systems to convert process inputs to products with minimum generation of liquid, solid and gaseous wastes. The industry recently has made substantial accomplishments that minimize waste generation during lead production from its bread and butter feedstock--spent lead-acid batteries.« less
EPA's Review of DOE's Inventory Tracking for TRU Wastes at Waste Control Specialists
On April 9, 2014, EPA's Waste Isolation Pilot Plant (WIPP) waste characterization team visited Waste Control Specialists (WCS) to determine whether DOE was meeting EPA's waste inventory tracking requirements at 40 CFR 194.24(c)(4).
INTELLIGENT DECISION SUPPORT FOR WASTE MINIMIZATION IN ELECTROPLATING PLANTS. (R824732)
Wastewater, spent solvent, spent process solutions, and sludge are the major waste streams generated in large volumes daily in electroplating plants. These waste streams can be significantly minimized through process modification and operational improvement. I...
Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.
1988-02-01
In 1970, the US Atomic Energy Commission established a transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containingmore » mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs.« less
Waste Information Management System-2012 - 12114
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, H.; Quintero, W.; Shoffner, P.
2012-07-01
The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that wouldmore » be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)« less
In this study, we introduced several modifications to the WAR (waste reduction) algorithm developed earlier. These modifications were made for systematically handling sensitivity analysis and various tasks of waste minimization. A design hierarchy was formulated to promote appro...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less
CO2-Triggered Switchable Solvents, Surfactants, and Other Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessop, Philip G.; Mercer, Sean; Heldebrant, David J.
2012-06-14
Waste CO2 at atmospheric pressure can be used to trigger dramatic changes in the properties of certain switchable materials. Compared to other triggers such as light, acids, oxidants, CO2 has the advantages that it is inexpensive, nonhazardous, non-accumulating in the system, easily removed, and it does not require the material to be transparent. Known CO2-triggered switchable materials 10 now include solvents, surfactants, solutes, catalysts, particles, polymers, and gels. The added flexibility of switchable materials represents a new strategy for minimizing energy and material consumption in process and product design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgans, D. L.; Lindberg, S. L.
The purpose of this technical approach document (TAD) is to document the assumptions, equations, and methods used to perform the groundwater pathway radiological dose calculations for the revised Hanford Site Composite Analysis (CA). DOE M 435.1-1, states, “The composite analysis results shall be used for planning, radiation protection activities, and future use commitments to minimize the likelihood that current low-level waste disposal activities will result in the need for future corrective or remedial actions to adequately protect the public and the environment.”
Adoption of waste minimization technology to benefit electroplaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ching, E.M.K.; Li, C.P.H.; Yu, C.M.K.
Because of increasingly stringent environmental legislation and enhanced environmental awareness, electroplaters in Hong Kong are paying more heed to protect the environment. To comply with the array of environmental controls, electroplaters can no longer rely solely on the end-of-pipe approach as a means for abating their pollution problems under the particular local industrial environment. The preferred approach is to adopt waste minimization measures that yield both economic and environmental benefits. This paper gives an overview of electroplating activities in Hong Kong, highlights their characteristics, and describes the pollution problems associated with conventional electroplating operations. The constraints of using pollution controlmore » measures to achieve regulatory compliance are also discussed. Examples and case studies are given on some low-cost waste minimization techniques readily available to electroplaters, including dragout minimization and water conservation techniques. Recommendations are given as to how electroplaters can adopt and exercise waste minimization techniques in their operations. 1 tab.« less
POLLUTION BALANCE: A NEW METHODOLOGY FOR MINIMIZING WASTE PRODUCTION IN MANUFACTURING PROCESSES.
A new methodolgy based on a generic pollution balance equation, has been developed for minimizing waste production in manufacturing processes. A "pollution index," defined as the mass of waste produced per unit mass of a product, has been introduced to provide a quantitative meas...
Waste information management system: a web-based system for DOE waste forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geisler, T.J.; Shoffner, P.A.; Upadhyay, U.
2007-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program has created significant potential technical impediments that must be overcome. The schedule compression will require close coordination and a comprehensive review and prioritization of the barriers that may impede treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal have now become potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE headquarters in Washington, D.C., need timely waste forecast information regarding the volumes andmore » types of waste that will be generated by DOE sites over the next 25 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needs a common application to allow interested parties to understand and view the complete complex-wide picture. A common application would allow identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the development of this web-based forecast system. (authors)« less
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF CAN-MANUFACTURING EQUIPMENT
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but who lack the expertise to do so. aste Minimization Assessment Centers (WMACs) were established at ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.
1995-03-01
This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance.more » Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.« less
NASA Astrophysics Data System (ADS)
Jamaludin, Amril Hadri; Karim, Nurulzatushima Abdul; Noor, Raja Nor Husna Raja Mohd; Othman, Nurulhidayah; Malik, Sulaiman Abdul
2017-08-01
Construction waste management (CWM) is the practice of minimizing and diverting construction waste, demolition debris, and land-clearing debris from disposal and redirecting recyclable resources back into the construction process. Best practice model means best choice from the collection of other practices that was built for purpose of construction waste management. The practice model can help the contractors in minimizing waste before the construction activities will be started. The importance of minimizing wastage will have direct impact on time, cost and quality of a construction project. This paper is focusing on the preliminary study to determine the factors of waste generation in the construction sites and identify the effectiveness of existing construction waste management practice conducted in Malaysia. The paper will also include the preliminary works of planned research location, data collection method, and analysis to be done by using the Analytical Hierarchy Process (AHP) to help in developing suitable waste management best practice model that can be used in the country.
Technology transfer into the solid propulsion industry
NASA Technical Reports Server (NTRS)
Campbell, Ralph L.; Thomson, Lawrence J.
1995-01-01
This paper is a survey of the waste minimization efforts of industries outside of aerospace for possible applications in the manufacture of solid rocket motors (SRM) for NASA. The Redesigned Solid Rocket Motor (RSRM) manufacturing plan was used as the model for processes involved in the production of an SRM. A literature search was conducted to determine the recycling, waste minimization, and waste treatment methods used in the commercial sector that might find application in SRM production. Manufacturers, trade organizations, and professional associations were also contacted. Waste minimization efforts for current processes and replacement technologies, which might reduce the amount or severity of the wastes generated in SRM production, were investigated. An overview of the results of this effort are presented in this paper.
WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF PENNY BLANKS AND ZINC PRODUCTS
The U.S. EnvIronmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. aste Minimization Assessment Centers (WMACs) were established at selected u...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Christopher; Kothari, Vijendra; Starr, Ken
2012-07-01
The U.S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collection adequatelymore » described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS and M) program: - Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. - DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. - DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators. After review of historical site documentation, DOE reports, and USACE radiological data, DOE concluded the following: - DOE had access to adequate documentation to evaluate site conditions at the former LOOW. This is important to confirm now, while institutional knowledge of early FUSRAP work remains available. - DOE remediated the completed VPs to conditions that are protective for unrestricted residential use. Sample and walkover gamma scan results indicate that no wastes remain that exceed cleanup criteria. - Process knowledge and field observations establish that Cs-137 is the predominant radionuclide in the KAPL waste stream. Cs-137, a strong gamma emitter, was used as an indicator for remediation of KAPL waste. Other radionuclides were present in much lower relative concentrations and were likely also removed during remediation of the VPs. - KAPL contaminants were removed during remedial activities at the former LOOW as either co-located or co-mingled with other radionuclides. - For the active VPs (VP-E, VP-E', and VP-G), results of DOE's cleanup of the accessible portions of these properties indicate that KAPL waste does not remain at concentrations greater than the DOE cleanup limit: - Inaccessible areas were not associated with historic KAPL waste handling. Therefore, it is unlikely that KAPL waste remains on the active VPs. - Because gamma activity was used by DOE during remediation/verification activities for excavation control, additional USACE cleanup of FUSRAP wastes on these properties will likely result in the remediation of any co-located residual KAPL wastes to acceptable levels or identification of KAPL waste that is not co-located. - Although USACE has not established a cleanup level for Cs-137 on the active NFSS VPs, DOE assessment and remediation data indicate that assessed Cs-137 was remediated and significant Cs-137 is unlikely to remain. Because of the low likelihood of encountering significant KAPL waste on the active NFSS VPs, additional remediation is not anticipated at these properties. - USACE assessment soil sampling results on the NFSS proper indicate that KAPL waste does not exceed the DOE cleanup level for Cs-137. USACE has not established a cleanup level for Cs-137 on NFSS proper. The USACE cleanup of FUSRAP wastes on the NFSS proper will likely result in the remediation of any co-located residual KAPL wastes or identification of KAPL waste that is not co-located. DOE is drafting a report of the investigation of KAPL waste at LOOW. The report will be released to the public for comment when the draft is complete. DOE responses to stakeholder inquiries resulted in a common understanding of site conditions and site risk. DOE expects additional interaction with stakeholders at the former LOOW as USACE completes remediation of the active VPs and the NFSS proper, and these relationships will hopefully have built trust between DOE and the stakeholders that DOE will perform its duties in an open and transparent manner that includes stakeholders as stewards for remediated FUSRAP sites. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Environmental Protection Agency (EPA) has developed a systematic approach to identify, select and implement options to reduce or eliminate hazardous waste. The report describes the application of the waste minimization assessment procedures to a torpedo maintenance facility at the Naval Undersea Warfare Engineering Station in Keyport, WA (NUWES Keyport).
Critical management practices influencing on-site waste minimization in construction projects.
Ajayi, Saheed O; Oyedele, Lukumon O; Bilal, Muhammad; Akinade, Olugbenga O; Alaka, Hafiz A; Owolabi, Hakeem A
2017-01-01
As a result of increasing recognition of effective site management as the strategic approach for achieving the required performance in construction projects, this study seeks to identify the key site management practices that are requisite for construction waste minimization. A mixed methods approach, involving field study and survey research were used as means of data collection. After confirmation of construct validity and reliability of scale, data analysis was carried out through a combination of Kruskal-Wallis test, descriptive statistics and exploratory factor analysis. The study suggests that site management functions could significantly reduce waste generation through strict adherence to project drawings, and by ensuring fewer or no design changes during construction process. Provision of waste skips for specific materials and maximisation of on-site reuse of materials are also found to be among the key factors for engendering waste minimization. The result of factor analysis suggests four factors underlying on-site waste management practices with 96.093% of total variance. These measures include contractual provisions for waste minimization, waste segregation, maximisation of materials reuse and effective logistic management. Strategies through which each of the underlying measures could be achieved are further discussed in the paper. Findings of this study would assist construction site managers and other site operatives in reducing waste generated by construction activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Utilization of biocatalysts in cellulose waste minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, J.; Evans, B.R.
1996-09-01
Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually,more » approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1999-09-01
Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m 3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmentalmore » Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.« less
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. aste Minimization Assessment Centers (WMACS) were established at selected un...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expense to do so. aste Minimization Assessment Centers (WMACS) were established at selected univ...
Microwave technology for waste management applications: Treatment of discarded electronic circuitry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wicks, G.G.; Clark, D.E.; Schulz, R.L.
1997-01-01
Significant quantities of hazardous wastes are generated from a multitude of processes and products in today`s society. This waste inventory is not only very large and diverse, but is also growing at an alarming rate. In order to minimize the dangers presented by constituents in these wastes, microwave technologies are being investigated to render harmless the hazardous components and ultimately, to minimize their impact to individuals and the surrounding environment.
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...
Capacitated arc routing problem and its extensions in waste collection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadzli, Mohammad; Najwa, Nurul; Luis, Martino
2015-05-15
Capacitated arc routing problem (CARP) is the youngest generation of graph theory that focuses on solving the edge/arc routing for optimality. Since many years, operational research devoted to CARP counterpart, known as vehicle routing problem (VRP), which does not fit to several real cases such like waste collection problem and road maintenance. In this paper, we highlighted several extensions of capacitated arc routing problem (CARP) that represents the real-life problem of vehicle operation in waste collection. By purpose, CARP is designed to find a set of routes for vehicles that satisfies all pre-setting constraints in such that all vehicles mustmore » start and end at a depot, service a set of demands on edges (or arcs) exactly once without exceeding the capacity, thus the total fleet cost is minimized. We also addressed the differentiation between CARP and VRP in waste collection. Several issues have been discussed including stochastic demands and time window problems in order to show the complexity and importance of CARP in the related industry. A mathematical model of CARP and its new version is presented by considering several factors such like delivery cost, lateness penalty and delivery time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-04-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, J.L.
1993-09-01
Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and wastemore » minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.« less
Minimization and management of wastes from biomedical research.
Rau, E H; Alaimo, R J; Ashbrook, P C; Austin, S M; Borenstein, N; Evans, M R; French, H M; Gilpin, R W; Hughes, J; Hummel, S J; Jacobsohn, A P; Lee, C Y; Merkle, S; Radzinski, T; Sloane, R; Wagner, K D; Weaner, L E
2000-01-01
Several committees were established by the National Association of Physicians for the Environment to investigate and report on various topics at the National Leadership Conference on Biomedical Research and the Environment held at the 1--2 November 1999 at the National Institutes of Health in Bethesda, Maryland. This is the report of the Committee on Minimization and Management of Wastes from Biomedical Research. Biomedical research facilities contribute a small fraction of the total amount of wastes generated in the United States, and the rate of generation appears to be decreasing. Significant reductions in generation of hazardous, radioactive, and mixed wastes have recently been reported, even at facilities with rapidly expanding research programs. Changes in the focus of research, improvements in laboratory techniques, and greater emphasis on waste minimization (volume and toxicity reduction) explain the declining trend in generation. The potential for uncontrolled releases of wastes from biomedical research facilities and adverse impacts on the general environment from these wastes appears to be low. Wastes are subject to numerous regulatory requirements and are contained and managed in a manner protective of the environment. Most biohazardous agents, chemicals, and radionuclides that find significant use in research are not likely to be persistent, bioaccumulative, or toxic if they are released. Today, the primary motivations for the ongoing efforts by facilities to improve minimization and management of wastes are regulatory compliance and avoidance of the high disposal costs and liabilities associated with generation of regulated wastes. The committee concluded that there was no evidence suggesting that the anticipated increases in biomedical research will significantly increase generation of hazardous wastes or have adverse impacts on the general environment. This conclusion assumes the positive, countervailing trends of enhanced pollution prevention efforts by facilities and reductions in waste generation resulting from improvements in research methods will continue. PMID:11121362
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The report describes the application of EPA's waste minimization assessment procedures to a torpedo maintenance facility at the Naval Undersea Warfare Engineering Station, Keyport, WA. The assessment focused on the Mark 48 shop and the Mark 46 shop. These shops service the Mark 48 torpedo and the Mark 46 torpedo respectively. The five waste minimization options presented are volume reduction of contaminated clothing, automated cleaning of parts, automated fuel tank draining, modification of the deep sink draining schedule and recycling of mineral spirits.
Drug waste minimization as an effective strategy of cost-containment in Oncology
2014-01-01
Background Sustainability of cancer care is a crucial issue for health care systems worldwide, even more during a time of economic recession. Low-cost measures are highly desirable to contain and reduce expenditures without impairing the quality of care. In this paper we aim to demonstrate the efficacy of drug waste minimization in reducing drug-related costs and its importance as a structural measure in health care management. Methods We first recorded intravenous cancer drugs prescription and amount of drug waste at the Oncology Department of Udine, Italy. Than we developed and applied a protocol for drug waste minimization based on per-pathology/per-drug scheduling of chemotherapies and pre-planned rounding of dosages. Results Before the protocol, drug wastage accounted for 8,3% of the Department annual drug expenditure. Over 70% of these costs were attributable to six drugs (cetuximab, docetaxel, gemcitabine, oxaliplatin, pemetrexed and trastuzumab) that we named ‘hot drugs’. Since the protocol introduction, we observed a 45% reduction in the drug waste expenditure. This benefit was confirmed in the following years and drug waste minimazion was able to limit the impact of new pricely drugs on the Department expenditures. Conclusions Facing current budgetary constraints, the application of a drug waste minimization model is effective in drug cost containment and may produce durable benefits. PMID:24507545
Environmental analysis of Acid/middle Pueblo Canyon, Los Alamos, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.
1982-08-01
The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distancemore » below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-07-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less
Preliminary hazards analysis -- vitrification process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coordes, D.; Ruggieri, M.; Russell, J.
1994-06-01
This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s constructionmore » and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.« less
Evaporative oxidation treatability test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatmentmore » Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradford, A.H.; Esh, D.W.; Ridge, A.C.
2006-07-01
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. Under the NDAA, NRC performs consultative technical reviews of DOE's waste determinations and monitors DOE's disposal actions for such waste, but the NRC does not have regulatory authority over DOE's waste disposal activities. The NDAA provides the criteria that must be met to determine that waste is not HLW. The criteria require that the waste does not need to be disposedmore » of in a geologic repository, that highly radioactive radionuclides be removed to the maximum extent practical, and that the performance objectives of 10 CFR 61, Subpart C, be met. The performance objectives contain criteria for protection of the public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. This paper describes NRC's approach to implementing its responsibilities under the NDAA, as well as similar activities being performed for sites not covered by the NDAA. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less
EPA WASTE MINIMIZATION RESEARCH PROGRAM: AN OVERVIEW
The US Environmental Protection Agency (EPA) has established a waste minimization research program within the Office of Research and Development's Risk Reduction Engineering Laboratory which is the primary contact for pollution prevention research efforts concentrating on source ...
ERIC Educational Resources Information Center
Hicks, Rodney
2013-01-01
The purpose of this study was to understand how lean thinking and inventory management technology minimize expired medical supply waste in healthcare organizations. This study was guided by Toyota's theory of lean and Mintzberg's theory of management development to explain why the problem of medical supply waste exists. Government…
MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION
In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Materials and Energy Corporation (M&EC) Sealed Source waste stream (PERM000000036, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the M&EC Sealed Source waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The M&EC Sealed Source waste stream is recommended for acceptance without conditions.
Waste Minimization Program. Air Force Plant 6.
1986-02-01
coolant’s life, it can cause the formation of gummy residues on machines and parts and cause corrosion of the machine and work tools . i 3-91e 0 _ b-4 LA...2-9 3.0 Waste Minimization Program, AFP 6 3-1 3.1 Machine Coolant Waste 3-1 3.2 Engine Oil and Hydraulic Fluid Waste 3-12 3.3 Paint Sludge 3-14 3.4...Incineration 3-54 LIST OF FIGURES Figure Page 3-1 Annual Machine Coolant Use 3-5 n 3-2 oily Industrial Waste Treatment System 3-7 3-3 Schematic of Paint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann M. Beauchesne
1999-07-30
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from May 1, 1999, through July 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and Secretary Richardson.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The module presents a general overview of the issues EPA has addressed in the hazardous waste minization and combustion strategy. It provides a detailed description of the history and goals of the strategy. It presents an in-depth discussion of hazardous waste minimization and combustion issues and includes a section on environmental justice.
Process Waste Assessment - Paint Shop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, N.M.
1993-06-01
This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are mademore » for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect thatmore » packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.« less
Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro
2015-03-01
This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flynn, Karen; McCormick, Matt
Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level,more » and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses Working Group, Tank Waste Task Force, Hanford Summits, and Hanford Advisory Board Exposure Scenario Workshops, as well as more than 200 advice letters issued by the Hanford Advisory Board (http://www.hanford.gov/page.cfm/hab). These goals help guide all aspects of Hanford Site cleanup. Cleanup activities at various areas of the site support the achievement of one or more of these goals. These goals help set priorities to apply resources and sequence cleanup efforts for the greatest benefit. These goals reflect DOE's recognition that the Columbia River is a critical resource for the people and ecology of the Pacific Northwest. The 50-mile stretch of the river known as the Hanford Reach is home to the last free-flowing section of the river in the U.S. As one of the largest rivers in North America, its waters support a multitude of uses that are vital to the economic and environmental well being of the region and it is particularly important in sustaining the culture of Native Americans. Cleanup actions must protect this river. (authors)« less
Idaho National Engineering Laboratory High-Level Waste Roadmap. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
The Idaho National Engineering Laboratory (INEL) High-Level Waste (HLW) Roadmap takes a strategic look at the entire HLW life-cycle starting with generation, through interim storage, treatment and processing, transportation, and on to final disposal. The roadmap is an issue-based planning approach that compares ``where we are now`` to ``where we want and need to be.`` The INEL has been effectively managing HLW for the last 30 years. Calcining operations are continuing to turn liquid HLW into a more manageable form. Although this document recognizes problems concerning HLW at the INEL, there is no imminent risk to the public or environment.more » By analyzing the INEL current business operations, pertinent laws and regulations, and committed milestones, the INEL HLW Roadmap has identified eight key issues existing at the INEL that must be resolved in order to reach long-term objectives. These issues are as follows: A. The US Department of Energy (DOE) needs a consistent policy for HLW generation, handling, treatment, storage, and disposal. B. The capability for final disposal of HLW does not exist. C. Adequate processes have not been developed or implemented for immobilization and disposal of INEL HLW. D. HLW storage at the INEL is not adequate in terms of capacity and regulatory requirements. E. Waste streams are generated with limited consideration for waste minimization. F. HLW is not adequately characterized for disposal nor, in some cases, for storage. G. Research and development of all process options for INEL HLW treatment and disposal are not being adequately pursued due to resource limitations. H. HLW transportation methods are not selected or implemented. A root-cause analysis uncovered the underlying causes of each of these issues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann M. Beauchesne
1999-04-30
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from February 1, 1999, through April 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann B. Beauchesne
1998-09-30
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect onmore » individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from June 1, 1998 through September 30, 1998, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann M. Beauchesne
1999-01-31
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect onmore » individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1998 through January 31, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less
Robotics for mixed waste operations, demonstration description
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.R.
The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less
WasteWise Resource Management: Innovative Solid Waste Contracting Methods
Resource management is an innovative contractual partnership between a waste-generating organization and a qualified contractor that changes the nature of current disposal services to support waste minimization and recycling.
Waste Information Management System: One Year After Web Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoffner, P.A.; Geisler, T.J.; Upadhyay, H.
2008-07-01
The implementation of the Department of Energy (DOE) mandated accelerated cleanup program created significant potential technical impediments. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast information regarding the volumes and types of waste that would be generated by DOEmore » sites over the next 30 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. A common application allows identification of total waste volumes, material classes, disposition sites, choke points, and technological or regulatory barriers to treatment and disposal. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has completed the deployment of this fully operational, web-based forecast system. New functional modules and annual waste forecast data updates have been added to ensure the long-term viability and value of this system. In conclusion: WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. WIMS has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different database and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made over the year since its web deployment include the addition of new DOE sites, an updated data set, and the ability to easily print the forecast data tables, the disposition maps, and the GIS maps. Future enhancements will include a high-level waste summary, a display of waste forecast by mode of transportation, and a user help module. The waste summary display module will provide a high-level summary view of the waste forecast data based on the selection of sites, facilities, material types, and forecast years. The waste summary report module will allow users to build custom filtered reports in a variety of formats, such as MS Excel, MS Word, and PDF. The user help module will provide a step-by-step explanation of various modules, using screen shots and general tutorials. The help module will also provide instructions for printing and margin/layout settings to assist users in using their local printers to print maps and reports. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ethan W. Brown
2001-09-01
Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.« less
Bader, M S H
2005-05-20
A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, A.K.; Sikdar, S.K.
In this study, the authors introduced several modifications to the WAR (waste reduction) algorithm developed earlier. These modifications were made for systematically handling sensitivity analysis and various tasks of waste minimization. A design hierarchy was formulated to promote appropriate waste reduction tasks at designated levels of the hierarchy. A sensitivity coefficient was used to measure the relative impacts of process variables on the pollution index of a process. The use of the WAR algorithm was demonstrated by a fermentation process for making penicillin.
Printed circuit boards: a review on the perspective of sustainability.
Canal Marques, André; Cabrera, José-María; Malfatti, Célia de Fraga
2013-12-15
Modern life increasingly requires newer equipments and more technology. In addition, the fact that society is highly consumerist makes the amount of discarded equipment as well as the amount of waste from the manufacture of new products increase at an alarming rate. Printed circuit boards, which form the basis of the electronics industry, are technological waste of difficult disposal whose recycling is complex and expensive due to the diversity of materials and components and their difficult separation. Currently, printed circuit boards have a fixing problem, which is migrating from traditional Pb-Sn alloys to lead-free alloys without definite choice. This replacement is an attempt to minimize the problem of Pb toxicity, but it does not change the problem of separation of the components for later reuse and/or recycling and leads to other problems, such as temperature rise, delamination, flaws, risks of mechanical shocks and the formation of "whiskers". This article presents a literature review on printed circuit boards, showing their structure and materials, the environmental problem related to the board, some the different alternatives for recycling, and some solutions that are being studied to reduce and/or replace the solder, in order to minimize the impact of solder on the printed circuit boards. Copyright © 2013 Elsevier Ltd. All rights reserved.
Annual Summary of the Integrated Disposal Facility Performance Assessment 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, L. L.
2012-03-12
An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1,2 DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste. More recently, a preliminary evaluation for the disposal of offsite low-level waste and mixed low-level waste was considered in RPP-1583.
A Survey of Recent Literature on Medical Waste.
ERIC Educational Resources Information Center
Burke, Ester L.
1994-01-01
Examines recent journal literature about medical wastes and examines definitions, risks, and methods of minimizing risks. The consensus in the recent articles on medical waste is that medical waste is no more dangerous than nonmedical waste. (Contains 23 references.) (Author/MDH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMonia, Brian; Dunning, Don; Hampshire John
2013-07-01
Department of Energy (DOE) requirements for the release of non-real property, including solid waste, containing low levels of residual radioactive materials are specified in DOE Order 458.1 and associated guidance. Authorized limits have been approved under the requirements of DOE Order 5400.5, predecessor to DOE Order 458.1, to permit disposal of solid waste containing low levels of residual radioactive materials at solid waste landfills located within the DOE Oak Ridge Reservation (ORR). Specifically, volumetric concentration limits for disposal of solid waste at Industrial Landfill V and at Construction/Demolition Landfill VII were established in 2003 and 2007, respectively, based on themore » requirements in effect at that time, which included: an evaluation to ensure that radiation doses to the public would not exceed 25 mrem/year and would be as low as reasonably achievable (ALARA), with a goal of a few mrem/year or less (in fact, these authorized limits actually were derived to meet a dose constraint of 1 mrem/year); an evaluation of compliance with groundwater protection requirements; and reasonable assurance that the proposed disposal is not likely to result in a future requirement for remediation of the landfill. Prior to approval as DOE authorized limits, these volumetric concentration limits were coordinated with the Tennessee Department of Environment and Conservation (TDEC) and documented in a Memorandum of Understanding (MOU) between the TDEC Division of Radiological Health and the TDEC Division of Solid Waste Management. These limits apply to the disposal of soil and debris waste generated from construction, maintenance, environmental restoration, and decontamination and decommissioning (D and D) activities on the DOE Oak Ridge Reservation. The approved site-specific authorized limits were incorporated in the URS/CH2M Oak Ridge LLC (UCOR) waste profile system that authorizes disposal of special wastes at either of the RCRA Subtitle D landfills. However, a recent DOE assessment found that implementation of the site-specific authorized limits for volumetrically contaminated waste was potentially limited due in part to confusion regarding the applicability of volumetric concentration limits and/or surface activity limits to specific wastes. This paper describes recent efforts to update the authorized limits for Industrial Landfill V and Construction/Demolition Landfill VII and to improve the procedures for implementation of these criteria. The approved authorized limits have been evaluated and confirmed to meet the current requirements of DOE Order 458.1, which superseded DOE Order 5400.5 in February 2011. In addition, volumetric concentration limits have been developed for additional radionuclides, and site-specific authorized limits for wastes with surface contamination have been developed. Implementing procedures have been revised to clarify the applicability of volumetric concentration limits and surface activity limits, and to allow the use of non-destructive waste characterization methods. These changes have been designed to promote improved utilization of available disposal capacity of the onsite disposal facilities within the DOE Oak Ridge Reservation. In addition, these changes serve to bring the waste acceptance requirements at these DOE onsite landfills into greater consistency with the requirements for commercial/ public landfills under the TDEC Bulk Survey for Release (BSFR) program, including two public RCRA Subtitle D landfills in close proximity to the DOE Oak Ridge Reservation. (authors)« less
Minimization of municipal solid waste transportation route in West Jakarta using Tabu Search method
NASA Astrophysics Data System (ADS)
Chaerul, M.; Mulananda, A. M.
2018-04-01
Indonesia still adopts the concept of collect-haul-dispose for municipal solid waste handling and it leads to the queue of the waste trucks at final disposal site (TPA). The study aims to minimize the total distance of waste transportation system by applying a Transshipment model. In this case, analogous of transshipment point is a compaction facility (SPA). Small capacity of trucks collects the waste from waste temporary collection points (TPS) to the compaction facility which located near the waste generator. After compacted, the waste is transported using big capacity of trucks to the final disposal site which is located far away from city. Problem related with the waste transportation can be solved using Vehicle Routing Problem (VRP). In this study, the shortest distance of route from truck pool to TPS, TPS to SPA, and SPA to TPA was determined by using meta-heuristic methods, namely Tabu Search 2 Phases. TPS studied is the container type with total 43 units throughout the West Jakarta City with 38 units of Armroll truck with capacity of 10 m3 each. The result determines the assignment of each truck from the pool to the selected TPS, SPA and TPA with the total minimum distance of 2,675.3 KM. The minimum distance causing the total cost for waste transportation to be spent by the government also becomes minimal.
Process Waste Assessment Machine and Fabrication Shop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, N.M.
1993-03-01
This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Machine and Fabrication Shop at Sandia National Laboratories, Bonding 913, Room 119. Spent machine coolant is the major hazardous chemical waste generated in this facility. The volume of spent coolant generated is approximately 150 gallons/month. It is sent off-site to a recycler, but a reclaiming system for on-site use is being investigated. The Shop`s line management considers hazardous waste minimization very important. A number of steps have already been taken to minimize wastes, including replacement of a hazardous solvent with biodegradable, non-caustic solution and filtration unit; wastemore » segregation; restriction of beryllium-copper alloy machining; and reduction of lead usage.« less
Tudor, Terry L; Woolridge, Anne C; Bates, Margaret P; Phillips, Paul S; Butler, Sharon; Jones, Keith
2008-06-01
Changes in environmental legislation and standards governing healthcare waste, such as the Hazardous Waste Regulations are expected to have a significant impact on healthcare waste quantities and costs in England and Wales. This paper presents findings from two award winning case study organizations, the Cardiff and Vale NHS Trust and the Cornwall NHS Trust on 'systems' they have employed for minimizing waste. The results suggest the need for the development and implementation of a holistic range of systems in order to develop best practice, including waste minimization strategies, key performance indicators, and staff training and awareness. The implications for the sharing of best practice from the two case studies are also discussed.
Waste treatability guidance program. User`s guide. Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, C.
1995-12-21
DOE sites across the country generate and manage radioactive, hazardous, mixed, and sanitary wastes. It is necessary for each site to find the technologies and associated capacities required to manage its waste. One role of DOE HQ Office of Environmental Restoration and Waste Management is to facilitate the integration of the site- specific plans into coherent national plans. DOE has developed a standard methodology for defining and categorizing waste streams into treatability groups based on characteristic parameters that influence waste management technology needs. This Waste Treatability Guidance Program automates the Guidance Document for the categorization of waste information into treatabilitymore » groups; this application provides a consistent implementation of the methodology across the National TRU Program. This User`s Guide provides instructions on how to use the program, including installations instructions and program operation. This document satisfies the requirements of the Software Quality Assurance Plan.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2014 CFR
2014-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2011 CFR
2011-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2012 CFR
2012-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
Code of Federal Regulations, 2010 CFR
2010-07-01
... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...
The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).
Goonan, Sarah; Mirosa, Miranda; Spence, Heather
2014-01-01
Foodservice organizations, particularly those in hospitals, are large producers of food waste. To date, research on waste in hospitals has focused primarily on plate waste and the affect of food waste on patient nutrition outcomes. Less focus has been placed on waste generation at the kitchen end of the hospital food system. We used a novel approach to understand reasons for hospital food waste before consumption and offer recommendations on waste minimization within foodservices. A mixed methods ethnographic research approach was adopted. Three New Zealand hospital foodservices were selected as research sites, all of which were contracted to an external foodservice provider. Data collection techniques included document analyses, observations, focus groups with kitchen staff, and one-on-one interviews with managers. Thematic analysis was conducted to generate common themes. Most food waste occurred during service and as a result of overproduction. Attitudes and habits of foodservice personnel were considered influential factors of waste generation. Implications of food waste were perceived differently by different levels of staff. Whereas managers raised discussion from a financial perspective, kitchen staff drew upon social implications. Organizational plans, controls, and use of pre-prepared ingredients assisted in waste minimization. An array of factors influenced waste generation in hospital foodservices. Exploring attitudes and practices of foodservice personnel allowed an understanding of reasons behind hospital food waste and ways in which it could be minimized. This study provides a foundation for further research on sustainable behavior within the wider foodservice sector and dietetics practice. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ann M. Beauchesne
2000-01-01
Through the National Governors Association (NGA) project ``Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from October 1, 1999 through January 31, 2000, under the NGA grant. The work accomplished by the NGA project team during the past three months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; convened and facilitated the October 6--8 NGA FFCA Task Force Meeting in Oak Ridge, Tennessee; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and the Department.« less
Waste Information Management System v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bustamante, David G.; Schade, A. Carl
WIMS is a functional interface to an Oracle database for managing the required regulatory information about the handling of Hazardous Waste. WIMS does not have a component to track Radiological Waste data. And it does not have the ability to manage sensitive information.
Department of Energy Operational Readiness Review for the Waste Isolation Pilot Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The U.S. Department of Energy (DOE) has completed an Operational Readiness Review (ORR) for the restart of Contact Handled (CH) waste emplacement at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The ORR team assessed the readiness of Nuclear Waste Partnership, LLC (NWP) to manage and perform receipt through CH waste emplacement, and associated waste handling and management activities, including the ability of the National TRU Program (NTP) to evaluate the waste currently stored at the WIPP site against the revised and enhanced Waste Acceptance Criteria (WAC). Field work for this review began on November 14, 2015more » and was completed on November 30, 2016. The DOE ORR was conducted in accordance with the Department of Energy Operational Readiness Review Implementation Plan for the Waste Isolation Pilot Plant, dated November 8, 2016, and DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. The review activities included personnel interviews, record reviews, direct observation of operations and maintenance demonstrations, and observation of multiple operational and emergency drills/exercises. The DOE ORR also evaluated the adequacy of the contractor’s ORR (CORR) and the readiness of the DOE Carlsbad field Office (CBFO) to oversee the startup and execution of CH waste emplacement activities at the WIPP facility. The WIPP facility is categorized as a Hazard Category 2 DOE Nonreactor Nuclear Facility for all surface and Underground (UG) operations per DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. In addition, the WIPP experienced two events in February, 2014 that resulted in Accident Investigations being performed in accordance with the requirements of DOE Order 225.1B, Accident Investigations. Based upon the results of the accident investigations and hazard categorization of the facility, the team placed significant emphasis on the following areas: fire protection, emergency preparedness, radiological protection, nuclear safety, and operations. The identification of specific focus areas was not intended to diminish the importance of other areas of the review, but to ensure that these areas received a particularly thorough and in-depth evaluation due to their significance with respect to the safe operation of the facility.« less
An evidence-based methodology was adopted in this research to establish strategies to increase lead recovery and recycling via a systematic review and critical appraisal of the published literature. In particular, the research examines pollution prevention and waste minimization...
POLLUTION PREVENTION ASSESSMENT FOR A MANUFACTURER OF LOCKING DEVICES (EPA/600/S-95/013)
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected u...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. n an effort to assist these manufacturers Waste Minimization Assessment Cent...
POLLUTION PREVENTION ASSESSMENT FOR A MANUFACTURER OF BOURBON WHISKEY (EPA/600/S-95/010
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected u...
POLLUTION PREVENTION ASSESSMENT FOR A MANUFACTURER OF POWER SUPPLIES (EPA/600/S-95/025)
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected u...
POLLUTION PREVENTION ASSESSMENT FOR A MANUFACTURER OF METAL FASTENERS (EPA/600/S-95/016)
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected u...
ENVIRONMENTAL RESEARCH BRIEF: POLLUTION PREVENTION FOR A MANUFACTURER OF METAL FASTENERS
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. n an effort to assist these manufacturers Waste Minimization Assessment Cent...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. n an effort to assist these manufacturers Waste Minimization Assessment Cent...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E.; Mehta, S.; Nell, R. M.
This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 East Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. The estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-SD-WM-TI-7301). The estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 1,2 and companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliance withmore » performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E; Nell, R. M.; Mehta, S.
This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. These estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-EP-06451). These estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 12 and its companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliancemore » with performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, L.H.
In its beginning, the U.S. Department of Energy (DOE) Office of Environmental Management (EM) viewed private industry as lacking adequate technology know-how to meet demands of hazardous and radioactive waste problems at the DOE`s laboratories and nuclear weapons production facilities. In November 1989, EM`s Office of Technology Development (recently renamed the Office of Science and Technology) embarked on a bold program of developing and demonstrating {open_quotes}innovative{close_quotes} waste cleanup technologies that would be safer, faster, more effective, and less expensive than the {open_quotes}baseline{close_quotes} commercial methods. This program has engaged DOE sites, national laboratories, and universities to produce preferred solutions to the problems of handling and treating DOE wastes. More recently, much of this work has shifted to joint efforts with private industry partners to accelerate the use of newly developed technologies and to enhance existing commercial methods. To date, the total funding allocation to the Office of Science and Technology program has been aboutmore » $2.8 billion. If the technology applications` projects of the EM Offices of Environmental Restoration and Waste Management are included, the total funding is closer to $$4 billion. Yet, the environmental industry generally has not been very receptive to EM`s innovative technology offerings. And, essentially the same can be said for DOE sites. According to the U.S. General Accounting Office in an August 1994 report, {open_quotes}Although DOE has spent a substantial amount to develop waste cleanup technologies, little new technology finds its way into the agency`s cleanup actions{close_quotes}. The DOE Baseline Environmental Management Report estimated cleanups of DOE`s Cold War legacy of wastes to require the considerable cost of $$226 billion over a period of 75 years. 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathy Wills
The Nevada Test Site Environmental Report 2006 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec). This Executive Summary presents the purpose of the document, the major programs conducted at the Nevada Test Site (NTS), NTS key environmental initiatives, radiological releases and potential doses to the public resulting from site operations, a summary of nonradiological releases, implementation status of the NTS Environmental Management System, a summary of compliance with environmental regulations, pollutionmore » prevention and waste minimization accomplishments, and significant environmental accomplishments. Much of the content of this Executive Summary is also presented in a separate stand-alone pamphlet titled Nevada Test Site Environmental Report Summary 2006 produced to be a more cost-effective means of distributing information contained in the NTSER to interested DOE stakeholders.« less
Cementitious Barriers Partnership - FY2015 End-Year Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, H. H.; Flach, G. P.; Langton, C. A.
2015-09-17
The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis)more » for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.« less
Innovative practices for treating waste streams containing heavy metals often involve technologies or systems that either reduce the amount of waste generated or recover reusable resources. With the land disposal of metal treatment residuals becoming less of an accepted waste man...
Waste Management Decision-Making Process During a Homeland Security Incident Response
A step-by-step guide on how to make waste management-related decisions including how waste can be minimized, collected and treated, as well as where waste can be sent for staging, storage and final disposal.
Under authority of the Hazardous and Solid Waste ...
Under authority of the Hazardous and Solid Waste Amendments (HSWA) of 1984 to the RCRA, EPA is proposing rules to minimize the presence of free liquids in containers holding hazardous waste that are disposed in hazardous waste landfills.
EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.
EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information.more » The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummins, G.D.
This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of thismore » waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.« less
Greater-than-Class C low-level waste characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piscitella, R.R.
1991-12-31
In 1985, Public Law 99-240 (Low-Level Radioactive Waste Policy Amendments Act of 1985) made the Department of Energy (DOE) responsible for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW). DOE strategies for storage and disposal of GTCC LLW required characterization of volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate characteristics, project volumes, and determine radionuclide activities to the years 2035 and 2055. Twenty-year life extensions for 70% of the operating nuclear reactors were assumed to calculate the GTCC LLW available in 2055. The following categories of GTCCmore » LLW were addressed: Nuclear Utilities Waste; Potential Sealed Sources GTCC LLW; DOE-Held Potential GTCC LLW; and Other Generator Waste. It was determined that the largest volume of these wastes, approximately 57%, is generated by nuclear utilities. The Other Generator Waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. DOE-Held Potential GTCC LLW accounts for nearly 33% of all waste projected to the year 2035. Potential Sealed Sources GTCC LLW is less than 0.2% of the total projected volume. The base case total projected volume of GTCC LLW for all categories was 3,250 cubic meters. This was substantially less than previous estimates.« less
Review of DOE Waste Package Program. Semiannual report, October 1984-March 1985. Volume 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, M.S.
1985-12-01
A large number of technical reports on waste package component performance were reviewed over the last year in support of the NRC`s review of the Department of Energy`s (DOE`s) Environmental Assessment reports. The intent was to assess in some detail the quantity and quality of the DOE data and their relevance to the high-level waste repository site selection process. A representative selection of the reviews is presented for the salt, basalt, and tuff repository projects. Areas for future research have been outlined. 141 refs.
300 Area dangerous waste tank management system: Compliance plan approach. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixedmore » waste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greg Shott, Vefa Yucel, Lloyd Desotell
2008-05-01
This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limitedmore » quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a reasonable expectation that the TRU in T04C can meet all the requirements of 40 CFR 191. Therefore, inadvertent disposal of a limited quantity of TRU in a shallow land burial trench at the Area 5 RWMS does not pose a significant risk to the public and the environment.« less
Mixed-waste treatment -- What about the residuals?. A compartive analysis of MSO and incineration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, T.; Carpenter, C.; Cummins, L.
1993-11-01
Incineration currently is the best demonstrated available technology for the large inventory of U.S. Department of Energy (DOE) mixed waste. However, molten salt oxidation (MSO) is an alternative thermal treatment technology with the potential to treat a number of these wastes. Of concern for both technologies is the final waste forms, or residuals, that are generated by the treatment process. An evaluation of the two technologies focuses on 10 existing DOE waste streams and current hazardous-waste regulations, specifically for the delisting of ``derived-from`` residuals. Major findings include that final disposal options are more significantly impacted by the type of wastemore » treated and existing regulations than by the type of treatment technology; typical DOE waste streams are not good candidates for delisting; and mass balance calculations indicate that MSO and incineration generate similar quantities (dry) and types of residuals.« less
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected u...
POLLUTION PREVENTION ASSESSMENT FOR A MANUFACTURER OF FOOD SERVICE EQUIPMENT (EPA/600/S-95/026)
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at selected u...
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. n an effort to assist these manufacturers Waste Minimization Assessment Cent...
Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Bruce Alan; Stevens, Patrice Ann
2015-12-17
This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permitmore » is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.« less
WIPP Remote-Handled TRU Waste Program Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Most, W.; Kehrman, B.
2006-07-01
There are two major regulatory approval milestones necessary in order to commence disposal operations for remote-handled transuranic (RH TRU) waste at the Waste Isolation Pilot Plant (WIPP)-the RH TRU hazardous waste permit modification request [1] and the radiological characterization plan [2]. One of those milestones has been achieved. The US Environmental Protection Agency (EPA) issued its final decision to approve the Department of Energy's (DOE) RH TRU radiological characterization plan along with the RH TRU Waste Characterization Program Implementation Plan [3], on March 26, 2004. The RH TRU hazardous waste permit modification request still awaits agency approval. In EPA's decisionmore » to approve the DOE's RH TRU radiological characterization plan, the EPA also set forth the process for approving site-specific RH TRU waste characterization programs. Included in the March 29, 2005, RH TRU second Notice of Deficiency [4] (NOD) on the Class 3 Permit Modification Request for RH TRU Waste, the New Mexico Environment Department (NMED) requested that the Permittees combine their responses for the RH TRU Waste NOD with the Section 311 permit modification request NOD. The Combined Response Document was submitted April 28, 2005 [5]. Another NOD [6] was issued by the NMED on September 1, 2005, to clarify the Permittees' proposal and submit these clarifications to the administrative record. Combining both the chap. 311 [7] and RH TRU waste permit modification requests allows for both the regulator and Permittees to expedite action on the modification requests. The Combined Response Document preserves human resources and costs by having only one administrative process for both modification requests. Facility readiness requirements of the RH TRU waste final permit [8] must be implemented to declare that the WIPP is ready to receive RH TRU waste for storage and disposal. To demonstrate readiness, the WIPP is preparing for an Operational Readiness Review (ORR) of the RH TRU waste management equipment, system, and procedures. Required by DOE Order, the ORR demonstrates the capability of managing RH TRU waste. The Management and Operating Contractor (MOC) for the WIPP must first perform a Line Management Assessment. Upon successful completion of the Line Management Assessment, the MOC performs the Contractor ORR and presents the results to the local DOE office. At that time, the local DOE office performs its own ORR to declare readiness to DOE Headquarters. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Cotthem, Alain; Van Humbeeck, Hughes; Biurrun, Enrique
The underground architecture and layout of the proposed Belgian high-level (HLW) and long-lived, intermediate-level radioactive wastes (ILW-LL) disposal system (repository) is mainly based on lessons learned during the development and 30-year-long operation of an underground research laboratory (URL) ('HADES') located adjacent to the city of Mol at a depth of 225 m in a 100-m-thick, Tertiary clay formation; the Boom clay. The following main operational and safety challenges are addressed in the proposed architecture and layout: 1. Following excavation, the underground openings needed to be promptly supported to minimize the extent of the excavation damaged zone (EDZ). 2. The sizemore » and unsupported stand-up time at tunnel crossings/intersections also needed to be minimized to minimize the extent of the related EDZ. 3. Steel components had to be minimized to limit the related long-term (post-closure) corrosion and hydrogen production. 4. The shafts and all equipment had to go down through a 180-m-thick aquifer and handle up to 65-Ton payloads. 5. The shaft seals had to be placed in the underlying clay layer. The currently proposed layout minimizes the excavated volume based on strict long-term-safety criteria and optimizes operational safety. Operational safety is further enhanced by a remote-controlled waste-package-handling system transporting the waste packages from their respective surface location down to their respective disposal location with no intermediate operation. The related on-site preparation and thenceforth use of cement-based, waste package- transportation containers are integral operational-safety components. In addition to strengthening the waste packages and providing radiation protection, these containers also provide long-term corrosion protection of the internal 'primary' steel packages. (authors)« less
Thiel, Cassandra L; Fiorin Carvalho, Rafaela; Hess, Lindsay; Tighe, Joelle; Laurence, Vincent; Bilec, Melissa M; Baratz, Mark
2017-11-01
The US health care sector has substantial financial and environmental footprints. As literature continues to study the differences between wide-awake hand surgery (WAHS) and the more traditional hand surgery with sedation & local anesthesia, we sought to explore the opportunities to enhance the sustainability of WAHS through analysis of the respective costs and waste generation of the 2 techniques. We created a "minimal" custom pack of disposable surgical supplies expressly for small hand surgery procedures and then measured the waste from 178 small hand surgeries performed using either the "minimal pack" or the "standard pack," depending on physician pack choice. Patients were also asked to complete a postoperative survey on their experience. Data were analyzed using 1- and 2-way ANOVAs, 2-sample t tests, and Fisher exact tests. As expected, WAHS with the minimal pack produced 0.3 kg (13%) less waste and cost $125 (55%) less in supplies per case than sedation & local with the standard pack. Pack size was found to be the driving factor in waste generation. Patients who underwent WAHS reported slightly greater pain and anxiety levels during their surgery, but also reported greater satisfaction with their anesthetic choice, which could be tied to the enthusiasm of the physician performing WAHS. Surgical waste and spending can be reduced by minimizing the materials brought into the operating room in disposable packs. WAHS, as a nascent technique, may provide an opportunity to drive sustainability by paring back what is considered necessary in these packs. Moreover, despite some initial anxiety, many patients report greater satisfaction with WAHS. All told, our study suggests a potentially broader role for WAHS, with its concomitant emphases on patient satisfaction and the efficient use of time and resources.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y
2016-09-01
Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Most, W. A.; Kehrman, R.; Gist, C.
2002-02-26
The U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) has developed draft documentation to present the proposed Waste Isolation Pilot Plant (WIPP) remote-handled (RH-) transuranic (TRU) waste characterization program to its regulators, the U.S. Environmental Protection Agency and the New Mexico Environment Department. Compliance with Title 40, Code of Federal Regulations, Parts 191 and 194; the WIPP Land Withdrawal Act (PL 102-579); and the WIPP Hazardous Waste Facility Permit, as well as the Certificates of Compliance for the 72-B and 10-160B Casks, requires that specific waste parameter limits be imposed on DOE sites disposing of TRU waste at WIPP. Themore » DOE-CBFO must control the sites' compliance with the limits by specifying allowable characterization methods. As with the established WIPP contact handled TRU waste characterization program, the DOE-CBFO has proposed a Remote-Handled TRU Waste Acceptance Criteria (RH-WAC) document consolidating the requirements from various regulatory drivers and proposed allowable characterization methods. These criteria are consistent with the recommendation of a recent National Academy Sciences/National Research Council to develop an RH-TRU waste characterization approach that removes current self imposed requirements that lack a legal or safety basis. As proposed in the draft RH-WAC and other preliminary documents, the DOE-CBFO RH-TRU waste characterization program proposes the use of acceptable knowledge (AK) as the primary method for obtaining required characterization information. The use of AK involves applying knowledge of the waste in light of the materials or processes used to generate the waste. Documentation, records, or processes providing information about various attributes of a waste stream, such as chemical, physical, and radiological properties, may be used as AK and may be applied to individual waste containers either independently or in conjunction with radiography, visual examination, assay, and other sampling and analytical data. RH-TRU waste cannot be shipped to WIPP on the basis of AK alone if documentation demonstrating that all of the prescribed limits in the RH-WAC are met is not available, discrepancies exist among AK source documents describing the same waste stream and the most conservative assumptions regarding those documents indicates that a limit will not be met, or all required data are not available for a given waste stream.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Heather; Flach, Greg; Smith, Frank
2015-01-27
The U.S. Department of Energy Environmental Management (DOE-EM) Office of Tank Waste Management-sponsored Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. DOE needs in this area include the following to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex: long-term performance predictions, flow sheet development and flow sheet enhancements, and conceptual designs for new disposal facilities. The DOE-EM Cementitious Barriers Partnership is producing software and experimental programs resulting in new methods andmore » data needed for end-users involved with environmental cleanup and waste disposal. Both the modeling tools and the experimental data have already benefited the DOE sites in the areas of performance assessments by increasing confidence backed up with modeling support, leaching methods, and transport properties developed for actual DOE materials. In 2014, the CBP Partnership released the CBP Software Toolbox –“Version 2.0” which provides concrete degradation models for 1) sulfate attack, 2) carbonation, and 3) chloride initiated rebar corrosion, and includes constituent leaching. These models are applicable and can be used by both DOE and the Nuclear Regulatory Commission (NRC) for service life and long-term performance evaluations and predictions of nuclear and radioactive waste containment structures across the DOE complex, including future SRS Saltstone and HLW tank performance assessments and special analyses, Hanford site HLW tank closure projects and other projects in which cementitious barriers are required, the Advanced Simulation Capability for Environmental Management (ASCEM) project which requires source terms from cementitious containment structures as input to their flow simulations, regulatory reviews of DOE performance assessments, and Nuclear Regulatory Commission reviews of commercial nuclear power plant (NPP) structures which are part of the overall US Energy Security program to extend the service life of NPPs. In addition, the CBP experimental programs have had a significant impact on the DOE complex by providing specific data unique to DOE sodium salt wastes at Hanford and SRS which are not readily available in the literature. Two recent experimental programs on cementitious phase characterization and on technetium (Tc) mobility have provided significant conclusions as follows: recent mineralogy characterization discussed in this paper illustrates that sodium salt waste form matrices are somewhat similar to but not the same as those found in blended cement matrices which to date have been used in long-term thermodynamic modeling and contaminant sequestration as a first approximation. Utilizing the CBP generated data in long-term performance predictions provides for a more defensible technical basis in performance evaluations. In addition, recent experimental studies related to technetium mobility indicate that conventional leaching protocols may not be conservative for direct disposal of Tc-containing waste forms in vadose zone environments. These results have the potential to influence the current Hanford supplemental waste treatment flow sheet and disposal conceptual design.« less
An analysis of UK waste minimization clubs: key requirements for future cost effective developments.
Phillips, P S; Pratt, R M; Pike, K
2001-01-01
The UK waste strategy is based upon use of the best practicable environmental option (BPEO), by those making waste management decisions. BPEO is supported by the use of the waste hierarchy, with its range of preferable options for dealing with waste, and the proximity principle, where waste is treated/disposed of as close to its point of origin as possible. The national waste strategy emphasizes the key role of waste minimization and encourages industry, commerce and the public to move towards sustainable waste management practice for economic and environmental reasons. Waste minimization clubs have been used, since the early 1990s, to demonstrate to industry/commerce that reducing waste production can lead to significant financial savings. There have been around 75 such clubs in the UK and they receive support from a wide range of agencies, including the Environmental Technology Best Practice Program. The early Demonstration Clubs had significant savings to cost ratios, e.g. Aire and Calder at 8.4, but had very high costs, e.g. Aire and Calder at 400,000 pounds. It is acknowledged that the number of clubs will have to be approximately doubled in the next few years so as to have an adequate coverage of the UK. There are at present, marked regional variations in club development and cognizance needs to be taken, by facilitators, of the need for extensive coverage of the UK. Future clubs will probably have to operate in a financially constrained climate and they need to be designed to deliver significant savings and waste reduction at low cost. To aid future club design, final reports of all projects should report in a standard manner so that cost benefit analysis can be used to inform facilitators about the most effective club type. rights reserved.
Environmental projects. Volume 16: Waste minimization assessment
NASA Technical Reports Server (NTRS)
1994-01-01
The Goldstone Deep Space Communications Complex (GDSCC), located in the MoJave Desert, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network (DSN), the world's largest and most sensitive scientific telecommunications and radio navigation network. The Goldstone Complex is operated for NASA by the Jet Propulsion Laboratory. At present, activities at the GDSCC support the operation of nine parabolic dish antennas situated at five separate locations known as 'sites.' Each of the five sites at the GDSCC has one or more antennas, called 'Deep Space Stations' (DSS's). In the course of operation of these DSS's, various hazardous and non-hazardous wastes are generated. In 1992, JPL retained Kleinfelder, Inc., San Diego, California, to quantify the various streams of hazardous and non-hazardous wastes generated at the GDSCC. In June 1992, Kleinfelder, Inc., submitted a report to JPL entitled 'Waste Minimization Assessment.' This present volume is a JPL-expanded version of the Kleinfelder, Inc. report. The 'Waste Minimization Assessment' report did not find any deficiencies in the various waste-management programs now practiced at the GDSCC, and it found that these programs are being carried out in accordance with environmental rules and regulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, R.; Pawlowicz, R.; Whitehead, L.
2002-02-25
In 2000, Bechtel Jacobs Company LLC (BJC) contracted Tetra Tech NUS, Inc. (TtNUS) and their sub-contractor, Texas World Operations, Inc. (TWO), to plug and abandon (P&A) 111 wells located in the Melton Valley area of Oak Ridge National Laboratory (ORNL). One hundred and seven of those wells were used to monitor fluid movement and subsurface containment of the low level radioactive liquid waste/grout slurry that was injected into the Pumpkin Valley Shale Formation, underlying ORNL. Four wells were used as hydrofracture injection wells to emplace the waste in the shale formation. Although the practice of hydrofracturing was and is consideredmore » by many to pose no threat to human health or the environment, the practice was halted in 1982 after the Federal Underground Injection Control regulations were enacted by United States Environmental Protection Agency (USEPA) making it necessary to properly close the wells. The work is being performed for the United States Department of Energy Oak Ridge Operations (DOE ORO). The project team is using the philosophy of minimum waste generation and the principles of ALARA (As Low As Reasonably Achievable) as key project goals to minimize personnel and equipment exposure, waste generation, and project costs. Achievement of these goals was demonstrated by the introduction of several new pieces of custom designed well plugging and abandonment equipment that were tested and used effectively during field operations. Highlights of the work performed and the equipment used are presented.« less
Annual Site Environmental Report: 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuckolls, H.; /SLAC
2008-02-22
This report provides information about environmental programs during the calendar year (CY) of 2006 at the Stanford Linear Accelerator Center (SLAC), Menlo Park, California. Activities that span the calendar year; i.e., stormwater monitoring covering the winter season of 2006/2007 (October 2006 through May 2007), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. SLAC continued to follow the path tomore » self-declare an environmental management system under DOE Order 450.1, 'Environmental Protection Program' and effectively applied environmental management in meeting the site's integrated safety and environmental management system goals. For normal daily activities, all SLAC managers and supervisors are responsible for ensuring that proper procedures are followed so that Worker safety and health are protected; The environment is protected; and Compliance is ensured. Throughout 2006, SLAC focused on these activities through the SLAC management systems. These systems were also the way SLAC approached implementing 'greening of the government' initiatives such as Executive Order 13148. The management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. The SLAC Office of Assurance was created during 2006 in response to DOE Order 226.1. During 2006, there were no reportable releases to the environment from SLAC operations, and there were no Notice of Violations issued to SLAC from any of the regulatory agencies that oversee SLAC. In addition, many improvements in waste minimization, recycling, stormwater drain system, groundwater restoration, and SLAC's chemical management system (CMS) were continued during 2006 to better manage chemical use. Program-specific details are discussed below. SLAC operates its air quality management program in compliance with its established permit conditions. The Bay Area Air Quality Management District (BAAQMD) did not conduct a facility inspection of SLAC during 2006, though it did visit the site on four different occasions. The BAAQMD did compliment SLAC for the overall configuration of SLAC's gasoline dispensing facility and of SLAC's asbestos/demolition notification program during two of the visits. DOE awarded SLAC the 2006 Best in Class for Pollution Prevention and Environmental Stewardship Accomplishment in recognition of SLAC's CMS program which manages the procurement and use of chemicals. As an example of the efficiency of the CMS, SLAC reviewed its use of gases and associated tanks and phased out numerous gas tanks that were no longer needed or were not acceptable for long-term storage, in turn, reducing SLAC's on-site chemical inventory. As part of SLAC's waste minimization and management efforts, more than one thousand tons of municipal solid waste was recycled by SLAC during 2006. SLAC operates its industrial and sanitary wastewater management program in compliance with established permit conditions. During 2006, SLAC obtained a new facility-wide wastewater discharge permit which replaced four separate permits that were previously issued to SLAC. In 2006, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. The Environmental Restoration Program continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) for the investigation and remediation of impacted soil and groundwater at SLAC. The new board order lists specific tasks and deadlines for groundwater and soil remedial investigation. All 2006 submittals to the board were completed on time.« less
The removal of precious metals by conductive polymer filtration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, M.E.
The growing demand for platinum-group metals (PGM) within the DOE complex and in industry, the need for modern and clean processes, and the increasing volume of low-grade material for secondary PGM recovery has a direct impact on the industrial practice of recovering and refining precious metals. There is a tremendous need for advanced metal ion recovery and waste minimization techniques, since the currently used method of precipitation-dissolution is inadequate. Los Alamos has an integrated program in ligand-design and separations chemistry which has developed and evaluated a series of water- soluble metal-binding polymers for recovering actinides and toxic metals from varietymore » of process streams. A natural extension of this work is to fabricate these metal-selective polymers into membrane based separation unites, i.e., hollow-fiber membranes. In the present investigation, the material for a novel hollow-fiber membrane is characterized and its selectivity for PGM reported. Energy and waste savings and economic competitiveness are also described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoesen, S.D.; Clark, C. Jr.; Burman, S.N.
1993-12-01
The Martin Marietta Energy Systems, Inc. (Energy Systems), policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at Waste Area Grouping (WAG) 6 at the Department of Energy (DOE) Oak Ridge National Laboratory are guided by an overall plan and consistent proactive approach to safety and health (S&H) issues. The plan is written to utilize past experience and best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactivemore » materials to air, soil, or surface water This plan explains additional site-specific health and safety requirements such as Site Specific Hazards Evaluation Addendums (SSHEAs) to the Site Safety and Health Plan which should be used in concert with this plan and existing established procedures.« less
Pollution Prevention Guideline for Academic Laboratories.
ERIC Educational Resources Information Center
Li, Edwin; Barnett, Stanley M.; Ray, Barbara
2003-01-01
Explains how to manage waste after a classroom laboratory experiment which generally has the potential to generate large amounts of waste. Focuses on pollution prevention and the selection processes to eliminate or minimize waste. (YDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feizollahi, F.; Shropshire, D.
This Waste Management Facility Cost Information (WMFCI) report for Greater-Than-Class C low-level waste (GTCC LLW) and DOE equivalent special case waste contains preconceptual designs and planning level life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities needed for management of GTCC LLW and DOE equivalent waste. The report contains information on 16 facilities (referred to as cost modules). These facilities are treatment facility front-end and back-end support functions (administration support, and receiving, preparation, and shipping cost modules); seven treatment concepts (incineration, metal melting, shredding/compaction, solidification, vitrification, metal sizing and decontamination, and wet/air oxidation cost modules); two storage concepts (enclosedmore » vault and silo); disposal facility front-end functions (disposal receiving and inspection cost module); and four disposal concepts (shallow-land, engineered shallow-land, intermediate depth, and deep geological cost modules). Data in this report allow the user to develop PLCC estimates for various waste management options. A procedure to guide the U.S. Department of Energy (DOE) and its contractor personnel in the use of estimating data is also included in this report.« less
A model to minimize joint total costs for industrial waste producers and waste management companies.
Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto
2004-12-01
The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation.
76 FR 77270 - Board Meeting; January 9, 2012, Arlington, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting; January 9, 2012, Arlington, VA The U.S. Nuclear Waste Technical Review Board will meet to discuss integration efforts undertaken by DOE-NE and DOE... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Arlington...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
IN 1989, Secretary of Energy James Watkins called for a fundamental change in the way US Department of Energy (DOE) meets its environmental responsibilities. Whereas DOE had long subordinated environmental concerns to the higher priority of weapons production, the Department`s mission was restructured to place less emphasis on defense-related production and much greater emphasis on sound environmental management and restoration of its weapons complex. To carry out this new mission, the Office of Environmental Restoration and Waste Management (EM) was created. Secretary Watkins further stressed that DOE`s new commitment to environmental values will be carried out under a new DOEmore » culture-one of openness, responsiveness, and accountability. The Environmental Restoration and Waste Management Five-Year Plan is the key planning document that embodies both the new DOE emphasis on environmental management and the Department`s commitment to involving the public in its planning process. Updated annually, the Five-Year Plan guides EM`s efforts to clean up DOE facilities and manage its waste -- its accomplishments, goals, and planned activities -- and reinforces DOE`s commitment to the culture change by involving the general public in its development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleischman, M.; Kirsch, F.W.; Maginn, J.C.
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. Waste Minimization Assessment Center (WMAC) at the University of Louisville performed an assessment at a plant manufacturing baseball bats and golf clubs -- approximately 1,500,000 bats/yr and 550,000 golf clubs/yr. To make the bats, wood billets are oven-dried and machined to a standard dimension. After sanding they are branded and finished. The golf clubs are made by finishing and assembling purchased heads and shafts. The team's reportmore » detailing findings and recommendations, indicated that the most waste, other than rinse water discharged to the publicly owned treatment works (POTW) and wood turnings which are sold, consists of scrap cardboard and paper from the shop and offices, and that the greatest savings, including new income, could be obtained by segregating the cardboard and paper wastes for sale to a local recycler.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E.; Mehta, Sunil
The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.
Innovative vitrification for soil remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetta, N.W.; Patten, J.S.; Hart, J.G.
1995-12-01
The objective of this DOE demonstration program is to validate the performance and operation of the Vortec Cyclone Melting System (CMS{trademark}) for the processing of LLW contaminated soils found at DOE sites. This DOE vitrification demonstration project has successfully progressed through the first two phases. Phase 1 consisted of pilot scale testing with surrogate wastes and the conceptual design of a process plant operating at a generic DOE site. The objective of Phase 2, which is scheduled to be completed the end of FY 95, is to develop a definitive process plant design for the treatment of wastes at amore » specific DOE facility. During Phase 2, a site specific design was developed for the processing of LLW soils and muds containing TSCA organics and RCRA metal contaminants. Phase 3 will consist of a full scale demonstration at the DOE gaseous diffusion plant located in Paducah, KY. Several DOE sites were evaluated for potential application of the technology. Paducah was selected for the demonstration program because of their urgent waste remediation needs as well as their strong management and cost sharing financial support for the project. During Phase 2, the basic nitrification process design was modified to meet the specific needs of the new waste streams available at Paducah. The system design developed for Paducah has significantly enhanced the processing capabilities of the Vortec vitrification process. The overall system design now includes the capability to shred entire drums and drum packs containing mud, concrete, plastics and PCB`s as well as bulk waste materials. This enhanced processing capability will substantially expand the total DOE waste remediation applications of the technology.« less
WASTE MINIZATION OPPORTUNITY ASSESSMENT: A CLASS 8 TRUCK ASSEMBLY PLANT
EPA has developed a systematic approach to identify and implement options to reduce or eliminate hazardous waste. he approach is presented in a report entitled, "Waste Minimization Opportunity Assessment Manual" (EPA/625/7-88/O03). his report describes the application of the wast...
New Mexicans debate nuclear waste disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepkowski, W.
1979-01-01
A brief survey of the background of the Waste Isolation Plant (WIPP) at Carlsbad, New Mexico and the forces at play around WIPP is presented. DOE has plans to establish by 1988 an underground repository for nuclear wastes in the salt formations near Carlsbad. Views of New Mexicans, both pro and con, are reviewed. It is concluded that DOE will have to practice public persuasion to receive approval for the burial of wastes in New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.
Waste separation: Does it influence municipal waste combustor emissions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, A.J.; Rigo, H.G.
1996-09-01
It has been suggested that MSW incinerator emissions show significant variations because of the heterogeneous nature of the waste fed to the furnace. This argument has even been used to propose banning certain materials from incinerators. However, data previously reported by the authors suggests that a large portion of the trace metals come from natural sources. Furthermore, full scale incinerator spiking experiments suggest that certain forms of trace metals have minimal effects on stack emissions. Similar studies with chlorinated plastics have failed to identify a significant effect on incinerator dioxin emissions. The implication of segregating the lawn and garden wastemore » and other fines from the furnace feed is explored using data from a 400 tpd mass burn facility equipped with a conditioning tower, dry reactor and fabric filter air pollution control system (APCS) preceded by an NRT separation system. The stack emissions have been tested periodically since commissioning to characterize emissions for various seasons using both processed fuel and raw MSW. Front end processing to remove selected portions of the waste stream based upon size or physical properties, i.e. fines, grass, or ferrous materials, did not result in a statistically significant difference in stack emissions. System operating regime, and in particular those that effect the effective air to cloth ratio in the fabric filter, appear to be the principal influence on emission levels.« less
Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenny, Stephen
2008-01-15
Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development ofmore » a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred thousand hours worked, on schedule and under budget despite some significant changes throughout the decommissioning phases. The actual cost to decommission this building will come in under 9 million dollars vs. an estimated 14.5 million dollars. This paper will cover some of the unique aspects of dismantling a radioactive building that has seen pretty much every element of the periodic table pass through it with the client requirement focused on minimization of radioactive waste volumes.« less
Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.
Use of waste glass in highway construction (update--1992).
DOT National Transportation Integrated Search
1993-01-01
Increasing pressures to recycle more wastes and minimize the amount of materials placed in landfills are forcing reconsideration of potential uses of waste glass in highway construction and maintenance operations. The federal government and many stat...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... SUPPLEMENTARY INFORMATION.) \\1\\ Transuranic (TRU) waste is waste that contains alpha particle-emitting... available on the DOE NEPA Web site at http://energy.gov/nepa . Additional information on the Final TC & WM... INFORMATION CONTACT: For further information on the Final TC & WM EIS, contact Ms. Burandt as listed in...
Based on the requirements presented in 40 CFR 194.24(c )(2) to (4) and 194.22(a)(1) and using experience gained as part of the CH waste characterization program, EPA examined the DOE's RH Waste Characterization Proposal as presented in the WCPIP.
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 265.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... contingency plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 265.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... contingency plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 265.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... contingency plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
40 CFR 264.51 - Purpose and implementation of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air...
A fundamental investigation is proposed to provide a technical basis for the development of a novel, liquid-fluidized bed classification (LFBC) technology for the continuous separation of complex waste plastic mixtures for in-process recycling and waste minimization. Although ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahl, Suzanne; Biyani, Rabindra; Holmes, Erika
The United States Department of Energy's (US DOE's) Hanford Nuclear Site has 177 underground waste storage tanks located 19 to 24 km (12 to 15 miles) from the Columbia River in south-central Washington State. Hanford's tanks now hold about 212,000 cu m (56 million gallons) of highly radioactive and chemically hazardous waste. Sixty-seven tanks have leaked an estimated 3,785 cu m (1 million gallons) of this waste into the surrounding soil. Further releases to soil, groundwater, and the Columbia River are the inevitable result of the tanks continuing to age. The risk from this waste is recognized as a threatmore » to the Northwest by both State and Federal governments. US DOE and Bechtel National, Inc., are building the Waste Treatment and Immobilization Plant (WTP) to treat and vitrify (immobilize in glass) the waste from Hanford's tanks. As is usual for any groundbreaking project, problems have arisen that must be resolved as they occur if treatment is to take place as specified in the court-enforceable Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) and the Consent Decree, entered into by US DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology (Ecology). At times, US DOE's approach to solving these critical issues seems to have caused undue wastes of time, energy, and, ultimately, public funds. Upon reviewing the history of Hanford's tank waste treatment project, Ecology hopes that constructive criticism of past failures and praise of successes will inspire US DOE to consider changing practices, be more transparent with regulatory agencies and the public, and take a 'lean production' approach to successfully completing this project. All three Tri-Party Agreement agencies share the goal of completing WTP on time, ensuring it is operational and in compliance with safety standards. To do this, Ecology believes US DOE should: - Maintain focus on the primary goal of completing the five major facilities of WTP. - Construct a supplemental low-activity waste (LAW) vitrification facility for the two-thirds balance of LAW that will not be treated by the vitrification facility under construction. - Prepare infrastructure for waste feed from the tanks and facilities to handle the WTP waste streams. To support this project track, Ecology expedites dangerous waste permitting by using a design-build approach to integrate WTP into the Resource Conservation and Recovery Act permit for Hanford. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohout, E.F.; Folga, S.; Mueller, C.
1996-03-01
This paper describes the Waste Management Facility Accident Analysis (WASTE{underscore}ACC) software, which was developed at Argonne National Laboratory (ANL) to support the US Department of Energy`s (DOE`s) Waste Management (WM) Programmatic Environmental Impact Statement (PEIS). WASTE{underscore}ACC is a decision support and database system that is compatible with Microsoft{reg_sign} Windows{trademark}. It assesses potential atmospheric releases from accidents at waste management facilities. The software provides the user with an easy-to-use tool to determine the risk-dominant accident sequences for the many possible combinations of process technologies, waste and facility types, and alternative cases described in the WM PEIS. In addition, its structure willmore » allow additional alternative cases and assumptions to be tested as part of the future DOE programmatic decision-making process. The WASTE{underscore}ACC system demonstrates one approach to performing a generic, systemwide evaluation of accident risks at waste management facilities. The advantages of WASTE{underscore}ACC are threefold. First, the software gets waste volume and radiological profile data that were used to perform other WM PEIS-related analyses directly from the WASTE{underscore}MGMT system. Second, the system allows for a consistent analysis across all sites and waste streams, which enables decision makers to understand more fully the trade-offs among various policy options and scenarios. Third, the system is easy to operate; even complex scenario runs are completed within minutes.« less
System analyses on advanced nuclear fuel cycle and waste management
NASA Astrophysics Data System (ADS)
Cheon, Myeongguk
To evaluate the impacts of accelerator-driven transmutation of waste (ATW) fuel cycle on a geological repository, two mathematical models are developed: a reactor system analysis model and a high-level waste (HLW) conditioning model. With the former, fission products and residual trans-uranium (TRU) contained in HLW generated from a reference ATW plant operations are quantified and the reduction of TRU inventory included in commercial spent-nuclear fuel (CSNF) is evaluated. With the latter, an optimized waste loading and composition in solidification of HLW are determined and the volume reduction of waste packages associated with CSNF is evaluated. WACOM, a reactor system analysis code developed in this study for burnup calculation, is validated by ORIGEN2.1 and MCNP. WACOM is used to perform multicycle analysis for the reference lead-bismuth eutectic (LBE) cooled transmuter. By applying the results of this analysis to the reference ATW deployment scenario considered in the ATW roadmap, the HLW generated from the ATW fuel cycle is quantified and the reduction of TRU inventory contained in CSNF is evaluated. A linear programming (LP) model has been developed for determination of an optimized waste loading and composition in solidification of HLW. The model has been applied to a US-defense HLW. The optimum waste loading evaluated by the LP model was compared with that estimated by the Defense Waste Processing Facility (DWPF) in the US and a good agreement was observed. The LP model was then applied to the volume reduction of waste packages associated with CSNF. Based on the obtained reduction factors, the expansion of Yucca Mountain Repository (YMR) capacity is evaluated. It is found that with the reference ATW system, the TRU contained in CSNF could be reduced by a factor of ˜170 in terms of inventory and by a factor of ˜40 in terms of toxicity under the assumed scenario. The number of waste packages related to CSNF could be reduced by a factor of ˜8 in terms of volume and by factor of ˜10 on the basis of electricity generation when a sufficient cooling time for discharged spent fuel and zero process chemicals in HLW are assumed. The expansion factor of Yucca Mountain Repository capacity is estimated to be a factor of 2.4, much smaller than the reduction factor of CSNF waste packages, due to the existence of DOE-owned spent fuel and HLW. The YMR, however, could support 10 times greater electricity generation as long as the statutory capacity of DOE-owned SNF and HLW remains unchanged. This study also showed that the reduction of the number of waste packages could strongly be subject to the heat generation rate of HLW and the amount of process chemicals contained in HLW. For a greater reduction of the number of waste packages, a sufficient cooling time for discharged fuel and efforts to minimize the amount of process chemicals contained in HLW are crucial.
NRC Perspectives on Waste Incidental to Reprocessing Consultations and Monitoring - 13398
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenney, Christepher A.; Suber, Gregory F.; Felsher, Harry D.
2013-07-01
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations to assess compliance with NRC regulations in 10 CFR Part 61, Subpart C. The NDAA applies to DOE activities that will remain within the States of South Carolina and Idaho. DOE has chosen to, under DOE Order 435.1, engage in consultation with NRC for similar activities inmore » the State of Washington and New York, however, the NRC has no monitoring responsibilities. In 2007, the NRC developed a draft Final Report for Interim Use entitled, NUREG-1854: NRC Staff Guidance for Activities Related to U.S. Department of Energy Waste Determinations. Since the law was enacted, the DOE and NRC have consulted on three waste determinations within the affected States: (1) the Saltstone Disposal Facility at the Savannah River Site (SRS) within the State of South Carolina in 2005, (2) the INTEC Tank Farm at the Idaho National Laboratory within the State of Idaho in 2006, and (3) the F Tank Farm at SRS in 2011. After the end of consultation and issuance by DOE of the final waste determination, monitoring began at each of these sites, including the development of monitoring plans. In addition to the NDAA sites, DOE has requested NRC consultation support on both individual tanks and the entire C Tank Farm at the Hanford Nuclear Reservation in the State of Washington. DOE also requested consultation of waste determinations performed on the melter and related feed tanks at the West Valley site in New York that would be disposed offsite. In the next few years, NRC and DOE will consult on the last of the NDAA waste determinations for a while, the H Tank Farm waste determination at SRS. DOE may identify other activities in the future but largely NRC's role will change from doing both consultation and monitoring to being focused on monitoring activities within NDAA. DOE has identified other activities at the Hanford Nuclear Reservation that would continue consultation activities but outside of the NDAA in the future. During the past seven years of consultations and monitoring a number of lessons learned about the process, communication issues, and technical guidance have been identified. With the change in focus from reviewing initial performance assessments and draft waste determinations to long-term monitoring (e.g., individual waste tank closure, at F Tank Farm or complete tank farm closure at INTEC expected in the near future), the NRC is going to revise and update its guidance over the next few years to reflect the lessons learned and the change in focus. In addition to the lessons learned, improvements in the guidance will have to account possible rule and guidance changes underway within Part 61. This paper will discuss the initial plans, approaches, and time lines to revise the guidance within NUREG-1854, including opportunities for public involvement. (authors)« less
A sustainable manufacturing system design: A fuzzy multi-objective optimization model.
Nujoom, Reda; Mohammed, Ahmed; Wang, Qian
2017-08-10
In the past decade, there has been a growing concern about the environmental protection in public society as governments almost all over the world have initiated certain rules and regulations to promote energy saving and minimize the production of carbon dioxide (CO 2 ) emissions in many manufacturing industries. The development of sustainable manufacturing systems is considered as one of the effective solutions to minimize the environmental impact. Lean approach is also considered as a proper method for achieving sustainability as it can reduce manufacturing wastes and increase the system efficiency and productivity. However, the lean approach does not include environmental waste of such as energy consumption and CO 2 emissions when designing a lean manufacturing system. This paper addresses these issues by evaluating a sustainable manufacturing system design considering a measurement of energy consumption and CO 2 emissions using different sources of energy (oil as direct energy source to generate thermal energy and oil or solar as indirect energy source to generate electricity). To this aim, a multi-objective mathematical model is developed incorporating the economic and ecological constraints aimed for minimization of the total cost, energy consumption, and CO 2 emissions for a manufacturing system design. For the real world scenario, the uncertainty in a number of input parameters was handled through the development of a fuzzy multi-objective model. The study also addresses decision-making in the number of machines, the number of air-conditioning units, and the number of bulbs involved in each process of a manufacturing system in conjunction with a quantity of material flow for processed products. A real case study was used for examining the validation and applicability of the developed sustainable manufacturing system model using the fuzzy multi-objective approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecastedmore » is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.« less
Environmental restoration and waste management: Five-year plan, Fiscal Years 1992--1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleman, L.I.
1990-06-01
This document reflects DOE's fulfillment of a major commitment of the Environmental Restoration and Waste Management Five-Year Plan: reorganization to create an Office of Environmental Restoration and Waste Management (EM) responsible for the consolidated environmental management of nuclear-related facilities and sites formerly under the Assistant Secretaries for Defense Programs and Nuclear Energy and the Director of the Office of Energy Research. The purposes of this Plan for FY 1992--1996 are to measure progress in meeting DOE's compliance, cleanup, and waste management agenda; to incorporate a revised and condensed version of the Draft Research Development, Demonstration, Testing, and Evaluation (RDDT E)more » Plan (November 1989) to describe DOE's process for developing the new technologies critically needed to solve its environmental problems; to show DOE's current strategy and planned activities through FY 1996, including reasons for changes required to meet compliance and cleanup commitments; and to increase the involvement of other agencies and the public in DOE's planning.« less
Annual waste reduction activities report. Issue 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-03-18
This report discusses the waste minimization activities for the Pinellas Plant. The Pinellas Plant deals with low-level radioactive wastes, solvents, scrap metals and various other hazardous materials. This program has realized cost savings through recycling and reuse of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peace, Gerald; Goering, Timothy James
2004-03-01
The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, themore » U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.« less
Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in themore » DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.« less
Hazardous Waste Minimization Assessment: Fort Campbell, Kentucky
1991-03-01
Used Oii - Better Operating Practices . Selective Segregation 97 Used Oil - Process Change - Fast Lube Oil Change System (FLOCS) 98 Caustic Wastes...Product Substitution 98 Caustic Wastes - Process Change - Hot Tank (Equipment) Modifications 98 Aqueous or Caustic Wastes - Process Change - Dry Ovens...Aqueous or Caustic Wastes - Equipment Leasiag 102 Dirty Rags/Uniforms • Onsite/Offsite Recycling - Laundry Service 103 Treatment 103 Used Oil - Onsite
DOE requests waiver on double containment for HLW canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobsenz, G.
1994-02-22
The Energy Department has asked the Nuclear Regulatory Commission to waive double containment requirements for vitrified high-level radioactive waste canisters, saying the additional protection is not necessary and too costly. NRC said it had received a petition from DOE contending that the vitrified waste canisters were durable enough without double containment to prevent any potential plutonium release during handling and shipping. DOE said testing had shown that the vitrified waste canisters were similar - even superior - in durability to spent reactor fuel shipments, which NRC specifically exempted from the double containment requirement.
USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL
NASA Technical Reports Server (NTRS)
Venuto, Charles
1987-01-01
In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.
Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, M.I.; Khaleel, R.; Rittmann, P.D.
1995-06-01
This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order inmore » September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro
Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste.« less
Idaho National Engineering Laboratory Waste Management Operations Roadmap Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, M.
1992-04-01
At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.
New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff
2003-12-05
This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature synthesis and phase identification, and thermodynamics. This renewal proposal is predicated on work completed in our current EMSP program: we have shown preliminary data of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionallymore » high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), in addition to novel silicotitanate phases which are also selective for divalent cations. Furthermore, these materials are easily converted by a high temperature in-situ heat treatment into a refractory ceramic waste form with low cation leachability. The new waste form is a perovskite phase, which is also a major component of Synroc, a titanate ceramic waste form used for sequestration of HLW wastes from reprocessed, spent nuclear fuel. These new niobate ion exchangers also shown orders of magnitude better selectivity for Sr2+ under acid conditions than any other material. The goal of the program is to reduce the costs associated with divalent cation waste removal and disposal, to minimize the risk of contamination to the environment during ion exchanger processing, and to provide DOE with materials for near-term lab-bench stimulant testing, and eventual deployment. The proposed work will provide information on the structure/property relationship between ion exchanger frameworks and selectivity for specific ions, allowing for the eventual ''tuning'' of framework for specific ion exchange needs. To date, DOE sites have become interested in on-site testing of these materials; ongoing discussions and initial experiments are occurring with Dr. Dean Peterman, Idaho National Engineering and Environmental Laboratory (INEEL) (location of the DOE/EM Waste Treatment Focus Area), and Dr. John Harbour, Savannah River Site (SRS). Yet the materials have not been optimized, and further research and development of the novel ion exchangers and testing conditions with simulants are needed. In addition, studies of the ion exchanger composition versus ion selectivity, ion exchange capacity and durability of final waste form are needed. This program will bring together three key institutions to address scientific hurdles of the separation process associated with metal niobate and silicotitanate ion exchangers, in particular for divalent cations (e.g., Sr2+). The program involves a joint effort between researchers at Pacific Northwest National Laboratory, who are leaders in structure/property relations in silicotitanates and in waste form development and performance assessment, Sandia National Laboratories, who discovered and developed crystalline silicotitanate ion exchangers (with Texas A&M and UOP) and also the novel class of divalent metal niobate ion exchangers, and the Thermochemistry Facility at UC Davis, who are world renowned experts in calorimetry and have already performed extensive thermodynamic studies on silicotitanate materials. In addition, Dr. Rodney Ewing of University of Michigan, an expert in radiation effects on materials, and Dr. Robert Roth of the National Institute of Standards and Technology and The Viper Group, a leader in phase equilibria development, will be consultants for radiation and phase studies. The research team will focus on three tasks that will provide both the basic research necessary for the development of highly selective ion exchange materials and also materials for short-term deployment within the DOE complex: (1) Structure/property relationships of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionally high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), (2) the role of ion exchanger structure change (both niobates and silicotitanates) on the exchange capacity (for elements such as Sr and actinide-surrogates) which results from exposure to DOE complex waste simulants, (3) thermodynamic stability of metal niobates and silicotitanate ion exchangers.« less
Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less
This study addressed three questions of interest in national-scale solid and hazardous waste management decision-making within the United States: 1) can we quantify the reduction in risk to human and ecological receptors resulting from the reduction of certain industrial waste s...
Facilitating Lasting Changes at an Elementary School
ERIC Educational Resources Information Center
James, Laurie
2016-01-01
The purpose of this study was to determine how to minimize waste in a school setting by reducing, reusing, recycling, and composting waste products. Specifically, the desire was to identify what steps could be taken to decrease waste practices at a Title I elementary school. Through the Washington Green Schools certification process, a Waste and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Christopher; Kothari, Vijendra; Starr, Ken
2012-02-26
The U. S. Department of Energy (DOE) methods and protocols allow evaluation of remediation and final site conditions to determine if remediated sites remain protective. Two case studies are presented that involve the Niagara Falls Storage Site (NFSS) and associated vicinity properties (VPs), which are being remediated under the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are a part of the former Lake Ontario Ordnance Works (LOOW). In response to stakeholders concerns about whether certain remediated NFSS VPs were putting them at risk, DOE met with stakeholders and agreed to evaluate protectiveness. Documentation in the DOE records collectionmore » adequately described assessed and final radiological conditions at the completed VPs. All FUSRAP wastes at the completed sites were cleaned up to meet DOE guidelines for unrestricted use. DOE compiled the results of the investigation in a report that was released for public comment. In conducting the review of site conditions, DOE found that stakeholders were also concerned about waste from the Separations Process Research Unit (SPRU) at the Knolls Atomic Power Laboratory (KAPL) that was handled at LOOW. DOE agreed to determine if SPRU waste remained at that needed to be remediated. DOE reviewed records of waste characterization, historical handling locations and methods, and assessment and remediation data. DOE concluded that the SPRU waste was remediated on the LOOW to levels that pose no unacceptable risk and allow unrestricted use and unlimited exposure. This work confirms the following points as tenets of an effective long-term surveillance and maintenance (LTS&M) program: Stakeholder interaction must be open and transparent, and DOE must respond promptly to stakeholder concerns. DOE, as the long-term custodian, must collect and preserve site records in order to demonstrate that remediated sites pose no unacceptable risk. DOE must continue to maintain constructive relationships with the U.S. Army Corps of Engineers and state and federal regulators.« less
Tank 19F Folding Crawler Final Evaluation, Rev. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, T.
2000-10-25
The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.
Affecting Factors on Local Waste Management in Penyangkringan Village, Weleri: an Identification
NASA Astrophysics Data System (ADS)
Puspita Adriyanti, Nadia; Candra Dewi, Ova; Gamal, Ahmad; Joko Romadhon, Mohammad; Raditya
2018-03-01
Villages in Indonesia usually does not have proper waste management and it is affecting the environmental and social condition in those places. Local governments have been trying to implement many kinds of solid waste management systems and yet many of them does not bear fruit. We argue that the failure of the waste management implementation in Indonesian villages is due to several aspects: the geographic condition of the villages, the social conditions, and the availability of facilities and infrastructures in those villages. Waste management should be modeled in accordance to those three aspects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release tomore » the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1985-12-31
In 1982, the Congress enacted the Nuclear Waste Policy Act (Public Law 97-425), which established a comprehensive national program directed toward siting, constructing, and operating geologic repositories for the permanent disposal of high-level radioactive waste. In February 1983, the United States Department of Energy (DOE) identified the nine referenced repository locations as potentially acceptable sites for a mined geologic repository. These sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. The DOE findings and determinations are based on the evaluations contained in the draft Environmental Assessments (EA). A finalmore » EA will be prepared after considering the comments received on the draft EA. The purpose of this document is to provide the public with specific site information on each potential repository location.« less
Final voluntary release assessment/corrective action report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-11-12
The US Department of Energy, Carlsbad Area Office (DOE-CAO) has completed a voluntary release assessment sampling program at selected Solid Waste Management Units (SWMUs) at the Waste Isolation Pilot Plant (WIPP). This Voluntary Release Assessment/Corrective Action (RA/CA) report has been prepared for final submittal to the Environmental protection Agency (EPA) Region 6, Hazardous Waste Management Division and the New Mexico Environment Department (NMED) Hazardous and Radioactive Materials Bureau to describe the results of voluntary release assessment sampling and proposed corrective actions at the SWMU sites. The Voluntary RA/CA Program is intended to be the first phase in implementing the Resourcemore » Conservation and Recovery Act (RCRA) Facility Investigation (RFI) and corrective action process at the WIPP. Data generated as part of this sampling program are intended to update the RCRA Facility Assessment (RFA) for the WIPP (Assessment of Solid Waste Management Units at the Waste Isolation Pilot Plant), NMED/DOE/AIP 94/1. This Final Voluntary RA/CA Report documents the results of release assessment sampling at 11 SWMUs identified in the RFA. With this submittal, DOE formally requests a No Further Action determination for these SWMUs. Additionally, this report provides information to support DOE`s request for No Further Action at the Brinderson and Construction landfill SWMUs, and to support DOE`s request for approval of proposed corrective actions at three other SWMUs (the Badger Unit Drill Pad, the Cotton Baby Drill Pad, and the DOE-1 Drill Pad). This information is provided to document the results of the Voluntary RA/CA activities submitted to the EPA and NMED in August 1995.« less
How technology transfer issues are managed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sink, C.H.; Easley, K.R.
1991-12-31
In 1989, Secretary of Energy James Watkins made a commitment to accelerate DOE compliance with all applicable laws and standards aimed at protecting human health and the environment. At a minimum, this pledge requires the remediation of the 1989 inventory of chemical, radioactive, and mixed wastes at DOE production sites by 2019. The 1989 Complex inventory consisted of more than 3,700 sites, encompassing more than 26,000 acres contaminated with radioactive, hazardous, and mixed wastes. In addition, over 500 surplus sites are awaiting decontamination and decommissioning (D and D), and approximately 5,000 peripheral properties have contaminated soils (e.g., uranium tailings). Moreover,more » these problems exist at both inactive sites, where the primary focus is on environmental restoration, and at active sites, where the major emphasis is on improved waste management techniques. Although some of DOE`s problems are considered unique due to radioactivity, most forms of contamination resident in the Complex are not; rather, contaminants such as waste chemicals (e.g., inorganics), organics (e.g., fuels and solvents), halogenated organics (e.g., PCBs) and heavy metals commonly result in conventional industrial processes. Although certain other forms of contamination are more unique to DOE operations (e.g., radioactive materials, explosives, and pyrophorics), they are not exclusive to DOE. As DOE develops innovative solutions to these and related waste problems, it is imperative that technology systems and lessons learned be transferred from DOE sites and its R and D laboratories to private industry to maximize the nation`s return on environmental management technology investments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori
Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Testimony by representatives of the Environmental Protection Agency, citizen environmental organizations, DOE, and universities on the Mixed Hazardous Waste Amendment Act of 1985 (H.R. 2009) and the Military Radioactive Emissions Control Act of 1985 (H.R. 2593) focused on safety aspects of mixed wastes at DOE facilities from the point of view of the general public and the implications for tourism and recreation in affected areas. H.R. 2593 calls for standards and continuous independent monitoring, while H.R. 2009 ensures that wastes the Solid Waste Management Act covers solid wastes containing radioactive material. The testimony covered definitions and interpretations by byproduct materialmore » and the problems associated with self-regulation. The testimony of the 10 witnesses follows the text of the two bills.« less
Merk, Bruno; Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J
2017-01-01
A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60's for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient.
Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J.
2017-01-01
A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60’s for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient. PMID:28749952
Waste Disposal in the Laboratory: Teaching Responsibility and Safety.
ERIC Educational Resources Information Center
Allen, Ralph O.
1983-01-01
Discusses the generation, collection, and disposal of hazardous and other wastes in the chemistry laboratory. Offers suggestions related to these three areas to provide a safe teaching environment, including minimizing amounts of reagents used (and potentially wasted) by scaling down experiments. (JN)
Environmental Compliance Assessment System (ECAS)
1993-09-01
hazardous waste onsite? How and where? 8. Do satellite/offpost facilitiesminstallations (i.e., USARCs) transport hazardous wastes to the installation...Contractor ? In-house personnel_ ? 3. Is waste transported off-installation for disposal: a. In landfills? b. In incinerators? c. Transfer stations? d...Does the installation dispose of PCBs or PCB items at the installation? 4. Does the facility transport PCBs? 5. Is there a working management system
Progress and future direction for the interim safe storage and disposal of Hanford high-level waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.
This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, HakSoo; Chung, SungHwan; Maeng, SungJun
2013-07-01
The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactivemore » waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpenau, Evan M.
2013-10-10
The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan formore » Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luey, J.; Brouns, T.M.; Elliott, M.L.
1990-11-01
The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable formore » the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.« less
On eco-efficient technologies to minimize industrial water consumption
NASA Astrophysics Data System (ADS)
Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem
2016-07-01
Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.
Plasma filtering techniques for nuclear waste remediation
Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.
2015-04-24
Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.
National profile on commercially generated low-level radioactive mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Mrochek, J.E.; Jolley, R.L.
1992-12-01
This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate themore » mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.« less
Who owns urban waste? Appropriation conflicts in emerging countries.
Cavé, Jérémie
2014-09-01
Managing solid waste in developing cities is not an easy task and many public policies have failed to bring the expected results. It is here argued that comprehending the solid waste handling in the South implies reconsidering the proper definition of waste. Where does the product end and where does rubbish begin? The answer to this question is far from being obvious. Solid waste appears as a blurred concept. Such a thorny issue is all the more relevant today, as municipal solid waste management approaches in the developing world are being reformulated: dumping sites are banned, sanitary landfills are imposed, and separate collection is being introduced. The current sector transformations are here analysed through a novel theoretical analysis combined with an original qualitative and quantitative empirical work. Through two case-studies of one-million inhabitant cities from emerging countries, it is shown that if appropriation conflicts arise that is because the urban solid waste deposit in Southern countries can be defined as an impure public good. This issue does not only involve private service operators and informal wastepickers; several other actors covet the urban solid waste deposit's cream, that is, recyclable items. In emerging countries, huge industrial groups are starting to target domestic recyclable waste as an alternative for raw materials, which costs are increasing ever more. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV
DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the manymore » problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review.« less
The mixed low-level waste problem in BE/NWN capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.C.
1999-07-01
The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less
40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
40 CFR 267.51 - What is the purpose of the contingency plan and how do I use it?
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE... facility. You must design the plan to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...
ERIC Educational Resources Information Center
Meikle, Teresa, Comp.
Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
IN 1989, Secretary of Energy James Watkins called for a fundamental change in the way US Department of Energy (DOE) meets its environmental responsibilities. Whereas DOE had long subordinated environmental concerns to the higher priority of weapons production, the Department's mission was restructured to place less emphasis on defense-related production and much greater emphasis on sound environmental management and restoration of its weapons complex. To carry out this new mission, the Office of Environmental Restoration and Waste Management (EM) was created. Secretary Watkins further stressed that DOE's new commitment to environmental values will be carried out under a new DOEmore » culture-one of openness, responsiveness, and accountability. The Environmental Restoration and Waste Management Five-Year Plan is the key planning document that embodies both the new DOE emphasis on environmental management and the Department's commitment to involving the public in its planning process. Updated annually, the Five-Year Plan guides EM's efforts to clean up DOE facilities and manage its waste -- its accomplishments, goals, and planned activities -- and reinforces DOE's commitment to the culture change by involving the general public in its development.« less
POLLUTION PREVENTION OPPORTUNITY ASSESSMENT HISTOLOGY LABORATORY XYLENE USE - FORT CARSON, COLORADO
Under the WREAFS program, RREL has performed a waste minimization opportunity assessment (WMOA) at the Evans Community Hospital Histopathology Laboratory on the Ft. Carson Army Base, Colorado, in the area of waste xylene and ethyl alcohol contaminated with human tissue. The waste...
40 CFR 35.918 - Individual systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... localized treatment and disposal of wastewater with minimal or no conveyance of untreated waste water... plant. (5) Alternative waste water treatment works. A waste water conveyance and/or treatment system... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.918...
40 CFR 266.220 - What does a storage and treatment conditional exemption do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage... exemption exempts your low-level mixed waste from the regulatory definition of hazardous waste in 40 CFR 261...
40 CFR 266.305 - What does the transportation and disposal conditional exemption do?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level... exemption exempts your waste from the regulatory definition of hazardous waste in 40 CFR 261.3 if your waste...
Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less
Municipal Solid Waste Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-06-01
Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.
Process Waste Assessment for the Diana Laser Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, N.M.
1993-12-01
This Process Waste Assessment was conducted to evaluate the Diana Laser Laboratory, located in the Combustion Research Facility. It documents the hazardous chemical waste streams generated by the laser process and establishes a baseline for future waste minimization efforts. This Process Waste Assessment will be reevaluated in approximately 18 to 24 months, after enough time has passed to implement recommendations and to compare results with the baseline established in this assessment.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
..., fission products, some plutonium-contaminated waste, and toxicological waste. The DOE intends to remediate... through 1967 and contains low- to high-activity waste, fission products, some plutonium-contaminated waste...
Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castiglioni, Andrew J.; Gelis, Artem V.
This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.
Geochemical Aspects of Radioactive Waste Disposal
NASA Astrophysics Data System (ADS)
Moody, Judith B.
1984-04-01
The author's stated purpose in writing this book is to summarize the large number of government-sponsored research reports on the geochemical aspects of high-level nuclear waste isolation. Although this book has a 1984 publication date, the majority of the cited documents were published before 1982. Unfortunately, passage of the Nuclear Waste Policy Act (NWPA) of 1982 and its signing into law by President Reagan (January 1983) [U.S. Congress, 1983] has significantly altered the U.S. Department of Energy (DOE) Civilian Radioactive Waste Management (CRWM) Program. Therefore this book does not accurately reflect the present U.S. program in geologic disposal of high-level nuclear waste. For example, chapter 2, “Radioactive Waste Management,” is almost 3 years out of date in a field that is changing rapidly (see U.S. DOE [1984a] for the current status of the CRWM Program). Additionally, the source material, which forms the input for this book, is chiefly grey literature, i.e., the referenced documents may or may not have undergone peer review and therefore do not represent the technical judgment of the scientific community. Also, this book only presents a selective sampling of information because the literature cited does not include a representative selection of the widespread available literature on this topic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Timothy; Nelson, Roger
The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes atmore » the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)« less
Proceedings of the First Hanford Separation Science Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
The First Hanford Separation Science Workshop, sponsored by PNL had two main objectives: (1) assess the applicability of available separation methods for environmental restoration and for minimization, recovery, and recycle of mixed and radioactive mutes; and (2) identify research needs that must be addressed to create new or improved technologies. The information gathered at this workshop not only applies to Hanford but could be adapted to DOE facilities throughout the nation as well. These proceedings have been divided into three components: Background and Introduction to the Problem gives an overview of the history of the Site and the cleanup mission,more » including waste management operations, past disposal practices, current operations, and plans for the future. Also included in this section is a discussion of specific problems concerning the chemistry of the Hanford wastes. Separation Methodologies contains the papers given at the workshop by national experts in the field of separation science regarding the state-of-the-art of various methods and their applicability/adaptability to Hanford. Research Needs identifies further research areas developed in working group sessions. Individual papers are indexed separately.« less
Nuclear reference materials to meet the changing needs of the global nuclear community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, H.R.; Gradle, C.G.; Narayanan, U.I.
New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... residential, commercial, institutional or industrial solid waste. This requirement does not apply to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... residential, commercial, institutional or industrial solid waste. This requirement does not apply to...
Economic and environmental optimization of waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Münster, M.; Ravn, H.; Hedegaard, K.
2015-04-15
Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectivesmore » given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.« less
WIPP waste characterization program sampling and analysis guidance manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The Waste Isolation Pilot Plant (WIPP) Waste Characterization Program Sampling and Analysis Guidance Manual (Guidance Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Quality Assurance Program Plan (QAPP) for the WIPP Experimental-Waste Characterization Program (the Program). This Guidance Manual includes all of the sampling and testing methodologies accepted by the WIPP Project Office (DOE/WPO) for use in implementing the Program requirements specified in the QAPP. This includes methods for characterizing representative samples of transuranic (TRU) wastesmore » at DOE generator sites with respect to the gas generation controlling variables defined in the WIPP bin-scale and alcove test plans, as well as waste container headspace gas sampling and analytical procedures to support waste characterization requirements under the WIPP test program and the Resource Conservation and Recovery Act (RCRA). The procedures in this Guidance Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site specific procedures. The use of these procedures is intended to provide the necessary sensitivity, specificity, precision, and comparability of analyses and test results. The solutions to achieving specific program objectives will depend upon facility constraints, compliance with DOE Orders and DOE facilities' operating contractor requirements, and the knowledge and experience of the TRU waste handlers and analysts. With some analytical methods, such as gas chromatography/mass spectrometry, the Guidance Manual procedures may be used directly. With other methods, such as nondestructive/destructive characterization, the Guidance Manual provides guidance rather than a step-by-step procedure.« less
Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Patrice Ann; Baumer, Andrew Ronald
Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less
48 CFR 904.7102 - Waiver by the Secretary.
Code of Federal Regulations, 2010 CFR
2010-10-01
... restoration, remediation or waste management contracts at a DOE facility if the Secretary determines that a waiver will advance the environmental restoration, remediation or waste management objectives of DOE... description of the control by a foreign government; (2) Description of the procurement and performance...
Mercury stabilization in chemically bonded phosphate ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagh, Arun S.; Jeong, Seung-Young; Singh, Dileep
1997-07-01
We have investigated mercury stabilization in chemically bonded phosphate ceramic (CBPC) using four surrogate waste streams that represent U.S. Department of Energy (DOE) ash, soil, and two secondary waste streams resulting from the destruction of DOE`s high-organic wastes by the DETOX{sup SM} Wet Oxidation Process. Hg content in the waste streams was 0.1 to 0.5 wt.% (added as soluble salts). Sulfidation of Hg and its concurrent stabilization in the CBPC matrix yielded highly nonleachable waste forms. The Toxicity Characteristic Leaching Procedure showed that leaching levels were well below the U.S. Environmental Protection Agency`s regulatory limits. The American Nuclear Society`s ANSmore » 16.1 immersion test also gave very high leaching indices, indicating excellent retention of the contaminants. In particular, leaching levels of Hg in the ash waste form were below the measurement detection limit in neutral and alkaline water, negligibly low but measureable in the first 72 h of leaching in acid water, and below the detection limit after that. These studies indicate that the waste forms are stable in a wide range of chemical environments during storage. 9 refs., 5 tabs.« less
Annual Site Environmental Report: 2008 (ASER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabba, D.
2009-11-09
This report provides information about environmental programs during the calendar year of 2008 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that span the calendar year, i.e., stormwater monitoring covering the winter season of 2008/2009 (October 2008 through May 2009), are also included. Production of an annual site environmental report (ASER) is a requirement established by the United States Department of Energy (DOE) for all management and operating (M&O) contractors throughout the DOE complex. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental,more » Energy, and Transportation Management, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2008, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423 and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. SLAC continues to demonstrate significant progress in implementing and integrating EMS into day-to-day operations and construction activities at SLAC. The annual management review and ranking of environmental aspects were completed this year by SLAC's EMS Steering Committee, the Environmental Safety Committee (ESC), and twelve objectives and targets were established for 2008. For each objective and target, a work plan, or Environmental Management Program (EMP) was completed and progress reports were routinely provided to SLAC senior management and the DOE SLAC Site Office (SSO). During 2008, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued during the year. The following are amongst SLAC's environmental accomplishments for 2008: a composting program at SLAC's onsite cafeteria was initiated, greater than 800 cubic feet of legacy radioactive waste were packaged and shipped from SLAC, a chemical redistribution program was developed, SLAC reduced the number of General Services Administration leased vehicles from 221 to 164, recycling of municipal waste was increased by approximately 140 tons during 2008, and site-wide releases of sulfur hexafluoride were reduced by 50 percent. In 2008, no radiological incidents occurred that increased radiation levels or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC has implemented programs and systems to ensure compliance with all radiological requirements related to the environment. Specifically, the Radiation Protection Radiological Waste Management Group developed a training course to certify Radioactive Waste Generators, conducted a training pilot, and developed a list of potential radioactive waste generators to train. Twenty eight generators were trained in 2008. As a best management practice, SLAC also reduced its tritium inventory by at least 95 percent by draining one of its accelerator cooling water systems; with the cooperation of the South Bayside System Authority, the West Bay Sanitary District and the DOE, SLAC discharged the cooling water to the sanitary sewer according to federal regulations and replenished the system with clean water. In 2008, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil. SLAC is regulated under a site cleanup requirements order (board order) issued by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region in May 2005 for the investigation and remediation of impacted soil and groundwater at SLAC. The board order lists specific tasks and deadlines for completion of groundwater and soil characterization and other remediation activities. All 2008 submittals to the RWQCB were completed and submitted on time.« less
Managing hazardous waste in the clinical laboratory.
Hoeltge, G A
1989-09-01
Clinical laboratories generate wastes that present chemical and biologic hazards. Ignitable, corrosive, reactive, toxic, and infectious potentials must be contained and minimized. A summary of these problems and an overview of the applicable regulations are presented. A checklist of activities to facilitate the annual review of the hazardous waste program is provided.
Guides to Pollution Prevention: Research and Educational Institutions.
ERIC Educational Resources Information Center
Environmental Protection Agency, Cincinnati, OH. Office of Research and Development.
This guide provides an overview of waste generating processes and operations that occur in educational or research institutions and presents options for minimizing waste generation through source reduction and recycling. A broad spectrum of waste chemicals in laboratories, art studios, print shops, maintenance, and other operations can be…
DOE Office of Scientific and Technical Information (OSTI.GOV)
LEHMAN LL
2008-01-23
Waste from a number of single-shell tanks (SST) at the U.S. Department of Energy's (DOE) Hanford Site has been retrieved by CH2M HILL Hanford Group to fulfill the requirements of the 'Hanford Federal Facility Agreement and Consent Order (HFFACO) [1]. Laboratory analyses of the Hanford tank residual wastes have provided concentration data which will be used to determine waste classification and disposal options for tank residuals. The closure of tank farm facilities remains one of the most challenging activities faced by the DOE. This is due in part to the complicated regulatory structures that have developed. These regulatory structures aremore » different at each of the DOE sites, making it difficult to apply lessons learned from one site to the next. During the past two years with the passage of the Section 3116 of the 'Ronald Reagan Defense Authorization Act of 2005' (NDAA) [2] some standardization has emerged for Savannah River Site and the Idaho National Laboratory tank residuals. Recently, with the issuance of 'NRC Staff Guidance for Activities Related to US. Department of Energy Waste Determinations' (NUREG-1854) [3] more explicit options may be considered for Hanford tank residuals than are presently available under DOE Orders. NUREG-1854, issued in August 2007, contains several key pieces of information that if utilized by the DOE in the tank closure process, could simplify waste classification and streamline the NRC review process by providing information to the NRC in their preferred format. Other provisions of this NUREG allow different methods to be applied in determining when waste retrieval is complete by incorporating actual project costs and health risks into the calculation of 'technically and economically practical'. Additionally, the NUREG requires a strong understanding of the uncertainties of the analyses, which given the desire of some NRC/DOE staff may increase the likelihood of using probabilistic approaches to uncertainty analysis. The purpose of this paper is to discuss implications of NUREG-1854 and to examine the feasibility and potential benefits of applying these provisions to waste determinations and supporting documents such as future performance assessments for tank residuals.« less
Plasma filtering techniques for nuclear waste remediation.
Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J
2015-10-30
Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.
This enclosure from a DOE letter to EPA regarding a waste container disposed at the WIPP from the Advanced Mixed Waste Treatment Project includes Table 5-2, Isotopic Compositions of Rocky Flats Plutonium and Uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, M.J.
2005-12-20
This report summarizes the results of environmental surveys conducted within the corridor of a temporary haul road (''Haul Road'') to be constructed from East Tennessee Technology Park (ETTP) to the Environmental Management Waste Management Facility (EMWMF) located just west of the Y-12 National Security Complex (Y-12). Environmental surveys were conducted by natural resource experts at Oak Ridge National Laboratory who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). ORNL assistance to the Haul Road Project included environmental assessments necessary to determine the best route for minimizing impacts to sensitive resources such as wetlands ormore » rare plants. Once the final route was chosen, environmental surveys were conducted within the corridor to evaluate the impacts to sensitive resources that could not be avoided. The final Haul Road route follows established roads and a power-line corridor to the extent possible (Fig. 1). Detailed explanation regarding the purpose of the Haul Road and the regulatory context associated with its construction is provided in at least two major documents and consequently is not presented here: (1) Explanation of Significant Differences for the Record of Decision for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee (January 2005, DOE/OR/01-2194&D2), and (2) Environmental Monitoring Plan for The ETTP to EMWMF Haul Road for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee (April 2005, BJC/OR-2152). The focus of this report is a description of the sensitive resources to be impacted by Haul Road construction. Following a short description of the methods used for the environmental surveys, results and observations are presented in the following subsections: (1) General description of the affected environment; (2) Rare plants and vegetation assemblages; (3) Rare wildlife and their habitat; (4) Rare aquatic species; and (5) Wetlands/Floodplains. A summary of project actions taken or planned in order to avoid, minimize, or mitigate the environmental impacts associated with this project are summarized in the conclusion section of this report.« less
An Innovative Partnership Approach for Environmental Management and Pollution Prevention.
ERIC Educational Resources Information Center
Erten-Unal, Mujde; Aydlett, Guy M.
1997-01-01
A partnership between a university and a government regulatory agency sought to assist industries with pollution prevention and waste management. Economic incentives were developed to promote waste minimization. (SK)
NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.
2013-07-01
As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staffmore » concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)« less
40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.
Code of Federal Regulations, 2011 CFR
2011-07-01
... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260... waste category (e.g., hazardous waste batteries).) Thus, only the portion of the waste stream that does...) to recycling, treatment, or disposal in compliance with Subtitle C of RCRA. (g) Regulation of the...
40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.
Code of Federal Regulations, 2010 CFR
2010-07-01
... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260... waste category (e.g., hazardous waste batteries).) Thus, only the portion of the waste stream that does...) to recycling, treatment, or disposal in compliance with Subtitle C of RCRA. (g) Regulation of the...
40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.
Code of Federal Regulations, 2014 CFR
2014-07-01
... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260... waste category (e.g., hazardous waste batteries).) Thus, only the portion of the waste stream that does...) to recycling, treatment, or disposal in compliance with Subtitle C of RCRA. (g) Regulation of the...
40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.
Code of Federal Regulations, 2013 CFR
2013-07-01
... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260... waste category (e.g., hazardous waste batteries).) Thus, only the portion of the waste stream that does...) to recycling, treatment, or disposal in compliance with Subtitle C of RCRA. (g) Regulation of the...
40 CFR 273.81 - Factors for petitions to include other wastes under 40 CFR part 273.
Code of Federal Regulations, 2012 CFR
2012-07-01
... generic name to identify the waste category (e.g., batteries), the definition of universal waste in § 260... waste category (e.g., hazardous waste batteries).) Thus, only the portion of the waste stream that does... group of industries, is commonly generated by a wide variety of types of establishments (including, for...
Technology Readiness Assessment of a Large DOE Waste Processing Facility
2007-09-12
Waste Generation at Hanford – Waste Treatment and Immobilization Plant ( WTP ) Project • Motivation to Conduct TRA • TRA Approach • Actions to ensure...Hanford’s WTP will be the world’s largest radioactive waste treatment plant to treat Hanford’s underground tank waste Waste Treatment Plant ( WTP ) Major...Mass Maximize Activity WTP Flow Sheet – Key Process Flows Hanford Tank Waste 10 How is the Vitrified Waste Dispositioned? High Level Waste Canisters
Recommended HSE-7 documents hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R.B.; Jennrich, E.A.; Lund, D.M.
1990-12-12
This report recommends a hierarchy of waste management documents at Los Alamos National Laboratory (LANL or Laboratory''). The hierarchy addresses documents that are required to plan, implement, and document waste management programs at Los Alamos. These documents will enable the waste management group and the six sections contained within that group to satisfy requirements that are imposed upon them by the US Department of Energy (DOE), DOE Albuquerque Operations, US Environmental Protection Agency, various State of New Mexico agencies, and Laboratory management.
Recommended HSE-7 documents hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, R.B.; Jennrich, E.A.; Lund, D.M.
1990-12-12
This report recommends a hierarchy of waste management documents at Los Alamos National Laboratory (LANL or ``Laboratory``). The hierarchy addresses documents that are required to plan, implement, and document waste management programs at Los Alamos. These documents will enable the waste management group and the six sections contained within that group to satisfy requirements that are imposed upon them by the US Department of Energy (DOE), DOE Albuquerque Operations, US Environmental Protection Agency, various State of New Mexico agencies, and Laboratory management.
Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.
Characterization, monitoring, and sensor technology catalogue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.
1995-12-01
This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community.more » Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.« less
Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar
2017-03-01
Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO 2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO 2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Levis, James W; Barlaz, Morton A; Decarolis, Joseph F; Ranjithan, S Ranji
2014-04-01
Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.
Trash-to-Gas: Using Waste Products to Minimize Logistical Mass During Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Caraccio, A. J.; Anthony, S. M.; Tsoras, A. N.; Devor, Robert; Captain, James G.; Nur, Mononita
2013-01-01
Just as waste-to-energy processes utilizing municipal landftll and biomass wastes are finding increased terrestrial uses, the Trash-to-Gas (TtG) project seeks to convert waste generated during spaceflight into high value commodities. These include methane for propulsion and water for life support in addition to a variety of other gasses. TtG is part of the Logistic Reduction and Repurposing (LRR) project under the NASA Advanced Exploration Systems Program. The LRR project will enable a largely mission-independent approach to minimize logistics contributions to total mission architecture mass. LRR includes technologies that reduce the amount of consumables that need to be sent to space, repurpose items sent to space, or convert wastes to commodities. Currently, waste generated on the International Space Station is stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The waste consists of food packaging, food, clothing and other items. This paper will discuss current results on incineration as a waste processing method. Incineration is part of a two step process to produce methane from waste: first the waste is converted to carbon oxides; second, the carbon oxides are fed to a Sabatier reactor where they are converted to methane. The quantities of carbon dioxide, carbon monoxide, methane and water were measured under the different thermal degradation conditions. The overall carbon conversion efficiency and water recovery are discussed
Trash-to-Gas: Using Waste Products to Minimize Logistical Mass During Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Hintze, Paul. E.; Caraccio, Anne J.; Anthony, Stephen M.; Tsoras, Alexandra N.; Nur, Monoita; Devor, Robert; Captain, James G.
2013-01-01
Just as waste-to-energy processes utilizing municipal landftll and biomass wastes are finding increased terrestrial uses, the Trash-to-Gas (TtG) project seeks to convert waste generated during spaceflight into high value commodities. These include methane for propulsion and water for life support in addition to a variety of other gasses. TtG is part of the Logistic Reduction and Repurposing (LRR) project under the NASA Advanced Exploration Systems Program. The LRR project will enable a largely mission-independent approach to minimize logistics contributions to total mission architecture mass. LRR includes technologies that reduce the amount of consumables that need to be sent to space, repurpose items sent to space, or convert wastes to commodities. Currently, waste generated on the International Space Station is stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The waste consists of food packaging, food, clothing and other items. This paper will discuss current results on incineration as a waste processing method. Incineration is part of a two step process to produce methane from waste: first the waste is converted to carbon oxides; second, the carbon oxides are fed to a Sabatier reactor where they are converted to methane. The quantities of carbon dioxide, carbon monoxide, methane and water were measured under the different thermal degradation conditions. The overall carbon conversion efficiency and water recovery are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherry, Mark; Lojek, Dave; Murphy, Con
2003-02-23
Remediation of eight waste pits at the Department of Energy (DOE) Fernald site, located northwest of Cincinnati, Ohio, involves excavating approximately one million tonnes in-situ of low-level waste which were placed in pits during Fernald's production era. This unique project, one of the largest in the history of CERCLA/Superfund, includes uranium and thorium contaminated waste, soils and sludges. These wet soils and sludges are thermally dried in a processing facility to meet Department of Transportation (DOT) transportation and disposal facility waste acceptance criteria, loaded into railcars and shipped to the Envirocare waste disposal facility at Clive, Utah. This project ismore » now approximately 60% complete with more than 415,000 tonnes (460,000 tons) of waste material safely shipped in 74 unit trains to Envirocare. Work is scheduled to be completed in early 2005. Success to date demonstrates that a major DOE site remediation project can be safely and successfully executed in partnership with private industry, utilizing proven commercial best practices, existing site labor resources and support of local stakeholders. In 1997 under the DOE's privatization initiative, Fluor Fernald, Inc. (Fluor Fernald) solicited the services of the remediation industry to design, engineer, procure, construct, own and operate a facility that would undertake the remediation of the waste pits. The resulting procurement was awarded to IT Corporation, currently Shaw Environmental and Infrastructure, Inc. (Shaw). The contractor was required to finance the procurement and construction of its facilities and infrastructure. The contract was performance-based and payment would be made on the successful loadout of the waste from the facility on a per-ton basis meeting the Envirocare waste acceptance criteria. This paper details the performance to date, the challenges encountered, and the seamless partnering between DOE, the Environmental Protection Agency (EPA), Fluor Fernald, Shaw, labor un ions, and the local community in creating and executing a successful project.« less
Annual Site Environmental Report Calendar Year 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayser, Dan
This report summarizes the environmental status of Ames Laboratory for calendar year 2010. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring activities. In 2010, the Laboratory accumulated and disposed of waste under U.S. Environmental Protection Agency (EPA) issued generator numbers. All waste is handled according to all applicable EPA, State, Local regulations and DOE Orders. In 2006 the Laboratory reduced its generator status from a Large Quantity Generator (LQG) to a Smallmore » Quantity Generator (SQG). EPA Region VII was notified of this change. The Laboratory's RCRA hazardous waste management program was inspected by EPA Region VII in April 2006. There were no notices of violations. The inspector was impressed with the improvements of the Laboratory's waste management program over the past ten years. The Laboratory was in compliance with all applicable federal, state, local and DOE regulations and orders in 2010. There were no radiological air emissions or exposures to the general public due to Laboratory activities in 2010. See U.S. Department of Energy Air Emissions Annual Report in Appendix B. As indicated in prior SERs, pollution awareness, waste minimization and recycling programs have been in practice since 1990, with improvements implemented most recently in 2010. Included in these efforts were battery and CRT recycling, miscellaneous electronic office equipment, waste white paper and green computer paper-recycling and corrugated cardboard recycling. Ames Laboratory also recycles/reuses salvageable metal, used oil, foamed polystyrene peanuts, batteries, fluorescent lamps and telephone books. Ames Laboratory reported to DOE-Ames Site Office (AMSO), through the Laboratory's Performance Evaluation Measurement Plan, on its Affirmative Procurement Performance Measure. A performance level of 'A-' was achieved in 2010 for Integrated Safety, Health and Environmental Protection. As reported in Site Environmental Reports for prior years, the Laboratory's Environmental Management System (EMS) has been integrated into the Laboratory's Integrated Safety Management System since 2005. The integration of EMS into the way the Laboratory does business allows the Laboratory to systematically review, address and respond to the Laboratory's environmental impacts. The Laboratory's EMS was audited in April 2009 by DOE-CH. There were four 'Sufficiently in Conformity' findings as a result of the audit. All four findings were tracked in the Laboratory's corrective action database for completion. Beryllium was used routinely at Ames Laboratory in the 1940's and 1950's in processes developed for the production of highly pure uranium and thorium in support of the historic Manhattan Project. Laboratory metallurgists also worked on a process to produce pure beryllium metal from beryllium fluoride. In the early 1950's, beryllium oxide powder was used to produce shaped beryllium and crucibles. As a result of that work, beryllium contamination now exists in many interstitial spaces (e.g., utility chases) and ventilation systems in Wilhelm, Spedding and Metals Development buildings. Extensive characterization and remediation efforts have occurred in 2009 and 2010 in order to better understand the extent of the contamination. Analysis of extensive sampling data suggests that a fairly wide dispersion of beryllium occurred (most likely in the 1950's and 60's) in Wilhelm Hall and in certain areas of Spedding Hall and Metals Development. Area air-sampling results and work-area surface characterizations indicate the exposure potential to current workers, building visitors and the public remains extremely low. This information is now used to guide cleaning efforts and to provide worker protection during remodeling and maintenance activities. Results were shared with the DOE's Former Worker Program to support former worker medical testing and compensation programs. A complete discussion of the Laboratory's beryllium characterization and remediation efforts can be found at: http://www.ameslab.gov/operations/esha/beryllium-information.« less
Introduction to Exide Corporations`s high temperature metals recovery system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.L.; Baranski, J.P.; Bitler, J.A.
1995-12-31
Environmental strategies concerning the processing and ultimate fate of wastes and byproducts are of ever increasing importance to the public and business sectors in the world today. Recycling materials and reusing energy from wastes and byproducts results in a reduction of environmental impacts and the cost of disposal. These are the key steps in reaching the ultimate goal of waste minimization. In response to these needs, Exide Corporation, in its vision to develop waste minimization programs, has developed the Exide High Temperature Metals Recovery (EHTMR) process. This process can treat a variety of wastes and byproducts where metals contents aremore » an issue, recover the metal values for reuse, and produce a metals-depleted slag that can be marketable under the most stringent proposed EPA regulations for leachability of contaminants. The central feature of the EHTMR process is the exposure of treated materials to a transferred arc plasma generated in an electric furnace. The process achieves a reduction in costs and liability by recovering portions of a waste that can be recycled or reclaimed and produces a slag that has beneficial use to society.« less
Development of consistent hazard controls for DOE transuranic waste operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woody, W.J.
2007-07-01
This paper describes the results of a re-engineering initiative undertaken with the Department of Energy's (DOE) Office of Environmental Management (EM) in order to standardize hazard analysis assumptions and methods and resulting safety controls applied to multiple transuranic (TRU) waste operations located across the United States. A wide range of safety controls are historically applied to transuranic waste operations, in spite of the fact that these operations have similar operational characteristics and hazard/accident potential. The re-engineering effort supported the development of a DOE technical standard with specific safety controls designated for accidents postulated during waste container retrieval, staging/storage, venting, onsitemore » movements, and characterization activities. Controls cover preventive and mitigative measures; include both hardware and specific administrative controls; and provide protection to the facility worker, onsite co-located workers and the general public located outside of facility boundaries. The Standard development involved participation from all major DOE sites conducting TRU waste operations. Both safety analysts and operations personnel contributed to the re-engineering effort. Acknowledgment is given in particular to the following individuals who formed a core working group: Brenda Hawks, (DOE Oak Ridge Office), Patrice McEahern (CWI-Idaho), Jofu Mishima (Consultant), Louis Restrepo (Omicron), Jay Mullis (DOE-ORO), Mike Hitchler (WSMS), John Menna (WSMS), Jackie East (WSMS), Terry Foppe (CTAC), Carla Mewhinney (WIPP-SNL), Stephie Jennings (WIPP-LANL), Michael Mikolanis (DOESRS), Kraig Wendt (BBWI-Idaho), Lee Roberts (Fluor Hanford), and Jim Blankenhorn (WSRC). Additional acknowledgment is given to Dae Chung (EM) and Ines Triay (EM) for leadership and management of the re-engineering effort. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, David M.; Hayes, Timothy A.; Pope, Howard L.
In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards aremore » being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for {sup 238}Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)« less
Developing an institutional strategy for transporting defense transuranic waste materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, J.V.; Kresny, H.S.
In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key tomore » the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.L.
2002-08-14
Under the Science and Technology Implementing Arrangement for Cooperation on Radioactive and Mixed Waste Management (JCCRM), the Department of Energy (DOE) is helping to transfer waste treatment technology to international atomic energy commissions. In 1996, as part of the JCCRM, DOE established a collaborative research agreement with Argentina's Comision Nacional de Energia Atomica (CNEA). A primary mission of the CNEA is to direct waste management activities for Argentina's nuclear industry.
STATUS OF EPA/DOE MOU TECHNICAL WORKGROUP ACTIVITIES: HG WASTE TREATMENT
EPA's Land Disposal Restrictions program currently has technology-specific treatment standards for hazardous wastes containing greater than or equal to 260ppm total mercury (Hg) (i.e., high Hg subcategory wastes). The treatment standards specify RMERC for high Hg subcategory wast...
Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)
The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.
DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan
Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.
9 CFR 94.5 - Regulation of certain garbage.
Code of Federal Regulations, 2011 CFR
2011-01-01
... dispose of regulated garbage in landfills at Alaskan ports only, if and only if the cruise ship does not... solid waste. (i) Industrial process wastes, mining wastes, sewage sludge, incinerator ash, or other...
Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-08-01
This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
...With this document, the Environmental Protection Agency (EPA) recertifies that the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) continues to comply with the ``Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High- Level and Transuranic (TRU) Radioactive Waste.'' EPA initially certified that WIPP met applicable regulatory requirements on May 18, 1998, and the first shipment of waste was received at WIPP on March 26, 1999. The first Compliance Recertification Application (CRA) was submitted by DOE to EPA on March 26, 2004, and the Agency's first recertification decision was issued on March 29, 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-10-01
The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT andmore » E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1999-09-01
Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U. S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U. S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not beenmore » tested (Tyson 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scaleable equipment is needed that can: produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-hour worker exposure limit (50 mg/m3) for mercury, and perform the above economically.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANN, F.M.
2000-08-01
The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2000-04-18
The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediationmore » under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.« less
DOE Chair of Excellence Professorship in Environmental Disciplines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoou-Yuh Chang
2013-01-31
The United States (US) nuclear weapons program during the Cold War left a legacy of radioactive, hazardous, chemical wastes and facilities that may seriously harm the environment and people even today. Widespread public concern about the environmental pollution has created an extraordinary demand for the treatment and disposal of wastes in a manner to protect the public health and safety. The pollution abatement and environmental protection require an understanding of technical, regulatory, economic, permitting, institutional, and public policy issues. Scientists and engineers have a major role in this national effort to clean our environment, especially in developing alternative solutions andmore » evaluation criteria and designing the necessary facilities to implement the solutions. The objective of the DOE Chair of Excellence project is to develop a high quality educational and research program in environmental engineering at North Carolina A&T State University (A&T). This project aims to increase the number of graduate and undergraduate students trained in environmental areas while developing a faculty concentrated in environmental education and research. Although A&T had a well developed environmental program prior to the Massie Chair grant, A&T's goal is to become a model of excellence in environmental engineering through the program's support. The program will provide a catalyst to enhance collaboration of faculty and students among various engineering departments to work together in a focus research area. The collaboration will be expanded to other programs at A&T. The past research focus areas include: hazardous and radioactive waste treatment and disposal fate and transport of hazardous chemicals in the environment innovative technologies for hazardous waste site remediation pollution prevention Starting from 2005, the new research focus was in the improvement of accuracy for radioactive contaminant transport models by ensemble based data assimilation. The specific objectives are to: 1). improve model accuracy for use in minimizing health and environmental risk, and 2). improve the decision making process in the selection and application of available technologies for long-term monitoring and safeguard operation at NNSA sites.« less
Exploration on the technology for ozone reduction in urban sewage treatment
NASA Astrophysics Data System (ADS)
Yang, Min; Sun, Yi; Han, Zhicheng; Liu, Jun
2017-05-01
With the rapid development of China’s economy, urban water consumption is increasing. However, sewage treatment plants will produce large amounts of sludge after treatment of sewage. Generally, and the sludge treatment costs are relatively high. Therefore, the problem about how to deal with the sewage sludge becomes the hot issues. Municipal waste water treatment plant produces a lot of sludge. This paper summarized the abroad study of ozonation minimization technology. Introduction and discussion were made on the principle of ozonated efficiency of sludge minimization, the efficiency of sludge minimization and the relationship between efficiency and ozone dosage, as well the effect of return sludge ozonated on waste water treatment running and the sludge setting and the dewatering characteristic. The economic estimation was also made on this technology. It’s showed that sludge minimization technology exhibits extensive application foreground.
International development workshops. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-06
The US Department of Energy (DOE) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) began to act on their recognition of the importance of education in nuclear literacy, specifically in radioactive waste management (RWM), several years ago. To address this Goal for nuclear literacy, the US DOE; through the Information and Education Division of the Office of Civilian Radioactive Waste Management (OCRWM) and in cooperation with the OECD/NEA, organized an ``International Workshop on Education in the Field of Radioactive Waste Management`` in Engelberg, Switzerland in June of 1991. To this end, amore » grant to support nuclear literacy and RWM was written and funded by the OCRWM and the education division of the DOE Yucca Mountain Office in 1990. The over-riding Goal of that workshop and the DOE grant was to find ways of raising the level of nuclear literacy in the general public through educational programs in radioactive waste management (RWM). The two Main Objectives of the workshop were: first, to contribute to an information base for education systems, on global aspects of radioactive waste management; and second, to achieve international consensus on the basic tools and methods required to develop the information base. These two objectives also became the principal objectives of the DOE International Workshops grant. In other words, the global and local (Nevada) objectives were one and the same. Workshop overviews and accomplishments are summarized in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crolley, R.; Thompson, M.
There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges andmore » in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.« less
INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Hnat; L.M. Bartone; M. Pineda
2001-07-13
This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLWmore » and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suber, Gregory
2012-07-01
In 2005 the U.S. Nuclear Regulatory Commission (NRC) began to implement a new set of responsibilities under the Ronald W. Reagan National Defense Authorization Act (NDAA) of Fiscal Year 2005. Section 3116 of the NDAA requires the U.S. Department of Energy (DOE) to consult with the NRC for certain non-high level waste determinations and also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2005, the NRC staff began consulting with DOE and completed reviews of draft waste determinations for salt waste at the Savannah River Site. In 2006, a second review was completed onmore » tank waste residuals including sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center Tank Farm at the Idaho National Laboratory. Monitoring Plans were developed for these activities and the NRC is actively monitoring disposal actions at both sites. NRC is currently in consultation with DOE on the F-Area Tank Farm closure and anticipates entering consultation on the H-Area Tank Farm at the Savannah River Site. This paper presents, from the NRC perspective, an overview of how the consultation and monitoring process has evolved since its conception in 2005. It addresses changes in methods and procedures used to collect and develop information used by the NRC in developing the technical evaluation report and monitoring plan under consultation and the implementation the plan under monitoring. It will address lessons learned and best practices developed throughout the process. The NDAA has presented significant challenges for the NRC and DOE. Past and current successes demonstrate that the NDAA can achieve its intended goal of facilitating tank closure at DOE legacy defense waste sites. The NRC believes many of the challenges in performing the WD reviews have been identified and addressed. Lessons learned have been collected and documented throughout the review process. Future success will be contingent on each agencies commitment to consistently apply the lessons learned and continue to create an open and collaborative work environment to maintain the process of continuous improvement. (authors)« less
WASTE REDUCTION USING COMPUTER-AIDED DESIGN TOOLS
Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized.
Process simulators can be effective tools i...
Development of an atmospheric monitoring plan for space station
NASA Technical Reports Server (NTRS)
Casserly, Dennis M.
1989-01-01
An environmental health monitoring plan for Space Station will ensure crew health during prolonged habitation. The Space Station, Freedom, will operate for extended periods, 90+ days, without resupply. A regenerative, closed loop life support system will be utilized in order to minimize resupply logistics and costs. Overboard disposal of wastes and venting of gases to space will be minimal. All waste material will be treated and recycled. The concentrated wastes will be stabilized and stored for ground disposal. The expected useful life of the station (decades) and the diversity of materials brought aboard for experimental or manufacturing purposes, increases the likelihood of cabin contamination. Processes by which cabin contamination can occur include: biological waste production, material off-gassing, process leakage, accidental containment breach, and accumulation due to poor removal efficiencies of the purification units. An industrial hygiene approach was taken to rationalize monitoring needs and to identify the substances likely to be present, the amount, and their hazard.
40 CFR 60.1915 - What is yard waste?
Code of Federal Regulations, 2010 CFR
2010-07-01
... lands. Yard waste does not include two items: (a) Construction, renovation, and demolition wastes that are exempt from the definition of “municipal solid waste” in § 60.1940. (b) Clean wood that is exempt...
40 CFR 62.15370 - What is yard waste?
Code of Federal Regulations, 2010 CFR
2010-07-01
... lands. Yard waste does not include two items: (a) Construction, renovation, and demolition wastes that are exempt from the definition of “municipal solid waste” in § 62.15410. (b) Clean wood that is exempt...
Disaster waste management: a review article.
Brown, Charlotte; Milke, Mark; Seville, Erica
2011-06-01
Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Disaster waste management: A review article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz; Milke, Mark, E-mail: mark.milke@canterbury.ac.nz; Seville, Erica, E-mail: erica.seville@canterbury.ac.nz
2011-06-15
Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.;more » however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayberry, J.; Stelle, S.; O`Brien, M.
The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste generator site will be conveyed in a letter from the Administrator's authorized representative to... transmittal to the WIPP Waste Information System database of waste characterization data, in accordance with... will be conveyed in a letter from the Administrator's authorized representative to DOE. EPA will not...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-04-01
The equivalent dose rate to populations potentially exposed to wastes shipped to Rollins Environmental Services, Baton Rouge, LA from Oak Ridge and Savannah River Operations of the Department of Energy was estimated. Where definitive information necessary to the estimation of a dose rate was unavailable, bounding assumptions were employed to ensure an overestimate of the actual dose rate experienced by the potentially exposed population. On this basis, it was estimated that a total of about 3.85 million pounds of waste was shipped from these DOE operations to Rollins with a maximum combined total activity of about 0.048 Curies. Populations nearmore » the Rollins site could potentially be exposed to the radionuclides in the DOE wastes via the air pathway after incineration of the DOE wastes or by migration from the soil after landfill disposal. AIRDOS was used to estimate the dose rate after incineration. RESRAD was used to estimate the dose rate after landfill disposal. Calculations were conducted with the estimated radioactive specie distribution in the wastes and, as a test of the sensitivity of the results to the estimated distribution, with the entire activity associated with individual radioactive species such as Cs-137, Ba-137, Sr-90, Co-60, U-234, U-235 and U-238. With a given total activity, the dose rates to nearby individuals were dominated by the uranium species.« less
Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Kim, Dong Sang
2015-01-14
A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the nationalmore » geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (~9 × 10E2 TBq or ~2.5 × 104 Ci or ~1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as groundwater. Long-term corrosion of glass waste forms is an area of current interest to the DOE, but attention to the release of Tc from glass has been little explored. It is expected that the release of Tc from glass should be highly dependent on the local glass structure as well as the chemistry of the surrounding environment, including groundwater pH. Though the speciation of Tc in glass has been previously studied, and the Tc species present in waste glass have been previously reported, environmental Tc release mechanisms are poorly understood. The recent advances in Tc chemistry that have given rise to an understanding of incorporation in the glass giving rise to significantly higher single-pass retention during vitrification are presented. Additionally, possible changes to the baseline flowsheet that allow for relatively minor volumes of Tc reporting to secondary waste treatment will be discussed.« less
Medication Waste Reduction in Pediatric Pharmacy Batch Processes
Veltri, Michael A.; Hamrock, Eric; Mollenkopf, Nicole L.; Holt, Kristen; Levin, Scott
2014-01-01
OBJECTIVES: To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. METHODS: A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. RESULTS: Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. CONCLUSIONS: The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste. PMID:25024671
Medication waste reduction in pediatric pharmacy batch processes.
Toerper, Matthew F; Veltri, Michael A; Hamrock, Eric; Mollenkopf, Nicole L; Holt, Kristen; Levin, Scott
2014-04-01
To inform pediatric cart-fill batch scheduling for reductions in pharmaceutical waste using a case study and simulation analysis. A pre and post intervention and simulation analysis was conducted during 3 months at a 205-bed children's center. An algorithm was developed to detect wasted medication based on time-stamped computerized provider order entry information. The algorithm was used to quantify pharmaceutical waste and associated costs for both preintervention (1 batch per day) and postintervention (3 batches per day) schedules. Further, simulation was used to systematically test 108 batch schedules outlining general characteristics that have an impact on the likelihood for waste. Switching from a 1-batch-per-day to a 3-batch-per-day schedule resulted in a 31.3% decrease in pharmaceutical waste (28.7% to 19.7%) and annual cost savings of $183,380. Simulation results demonstrate how increasing batch frequency facilitates a more just-in-time process that reduces waste. The most substantial gains are realized by shifting from a schedule of 1 batch per day to at least 2 batches per day. The simulation exhibits how waste reduction is also achievable by avoiding batch preparation during daily time periods where medication administration or medication discontinuations are frequent. Last, the simulation was used to show how reducing batch preparation time per batch provides some, albeit minimal, opportunity to decrease waste. The case study and simulation analysis demonstrate characteristics of batch scheduling that may support pediatric pharmacy managers in redesign toward minimizing pharmaceutical waste.
40 CFR 436.31 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and ground water seepage. However, if a mine is also used for treatment of process generated waste... other facility used for treatment of such waste water. The term does not include waste water used for... waste water. (c) The term “10-year 24-hour precipitation event” shall mean the maximum 24 hour...
40 CFR 264.551 - Grandfathered Corrective Action Management Units (CAMUs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE... remediation wastes into or within a CAMU does not constitute creation of a unit subject to minimum technology... wastes for implementing corrective action or cleanup at the facility. A CAMU must be located within the...
TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
BURBANK, D.A.
This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as themore » basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.« less
DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Radulesscu; J.S. Tang
The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.« less
INVESTIGATION OF CLEANER TECHNOLOGIES TO MINIMIZE AUTOMOTIVE COOLANT WASTES
The US Environmental Protection Agency in cooperation with the State of New Jersey evaluated chemical filtration and distillation technologies designed to recycle automotive and heavy-duty engine coolants. These evaluations addressed the product quality, waste reduction and econo...
Hanford Site Composite Analysis Technical Approach Description: Vadose Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, M. D.; Nichols, W. E.; Ali, A.
2017-10-30
The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, and DOE M 435.1 Chg 1, Radioactive Waste Management Manual, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems;more » or, to determine management alternatives, corrective actions, or assessment needs, if potential problems are identified.« less
A REVIEW OF STUDIES OF ECONOMIES IN SCHOOLHOUSE CONSTRUCTION.
ERIC Educational Resources Information Center
DOHERTY, LEO D.; WHEATLEY, ARTRELLE
ECONOMIES IN PLANNING AND DESIGNING BEGIN WITH THE WISE CHOICE OF AN ARCHITECT. COMPLETE INFORMATION ON BUILDING NEEDS, ENROLLMENT PROJECTIONS, AND PROGRAM MUST BE AVAILABLE. INCLUSION OF MULTIPLE-USE ROOMS, MINIMAL PERIMETER WALLS, LOWERED CEILINGS, MINIMAL WASTE SPACE, MINIMAL USE OF GLASS, AND USE OF STOCK PLANS ARE CONCEPTS WHICH CAN EFFECT…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridge, A. Christianne; Barr, Cynthia S.; Pinkston, Karen E.
Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste determinations. The NDAA also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2011, the NRC staff reviewed DOE performance assessments for tank closure at the F-Tank Farm (FTF) Facility and salt waste disposal at the Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) as part of consultation and monitoring, respectively. Differences in inventories, waste forms,more » and key barriers led to different areas of focus in the NRC reviews of these two activities at the SRS. Because of the key role of chemically reducing grouts in both applications, the evaluation of chemical barriers was significant to both reviews. However, radionuclide solubility in precipitated metal oxides is expected to play a significant role in FTF performance whereas release of several key radionuclides from the SDF is controlled by sorption or precipitation within the cementitious wasteform itself. Similarly, both reviews included an evaluation of physical barriers to flow, but differences in the physical configurations of the waste led to differences in the reviews. For example, NRC's review of the FTF focused on the modeled degradation of carbon steel tank liners while the staff's review of the SDF performance included a detailed evaluation of the physical degradation of the saltstone wasteform and infiltration-limiting closure cap. Because of the long time periods considered (i.e., tens of thousands of years), the NRC reviews of both facilities included detailed evaluation of the engineered chemical and physical barriers. The NRC staff reviews of residual waste disposal in the FTF and salt waste disposal in the SDF focused on physical barriers to flow and chemical barriers to radionuclide release from the waste. Because the waste inventory and concentration at both sites is sufficient to generate unacceptable doses to an off-site member of the public or inadvertent intruder in the absence of engineered barriers, the NRC staff review focused on the engineering features DOE plans to put in place to limit radionuclide release. At the FTF, DOE expects that peak doses are delayed beyond a 10,000 year performance period by a combination of (1) the flow-limiting effect of the steel tank liner and (2) chemical conditions created by the stabilizing grout overlying the waste that limit the solubility of key radionuclides for tens of thousands of years. At the SDF, DOE expects that flow will be significantly limited by water shedding along the closure cap lower drainage layer and that radionuclide release will be further limited by radionuclide precipitation or sorption within the high pH, chemically reducing conditions created within the saltstone waste form. Because the performance of both facilities depends on the performance of engineered barriers for thousands of years, the reviews included a detailed evaluation of the expected long-term behavior of these barriers. As previously discussed, NRC staff reviews of DOE waste determinations during consultation are designed to evaluate the three NDAA criteria, whereas the review of an updated PA during monitoring only addresses whether the NRC staff has reasonable assurance that the planned disposal action will meet the performance objectives of 10 CFR Part 61. The NRC staff review of the Waste Determination for the FTF did not include conclusions about whether the planned disposal of residual waste at the FTF would meet the NDAA criteria because of the substantial uncertainties in the degree of waste removal DOE would achieve and other technical uncertainties. The main product of the NRC staff review of the planned FTF disposal action is the recommendation that DOE should conduct waste release experiments to increase support for key modeling assumptions related to: (1) the evolution of pH and Eh in the grouted tank system over time; (2) identification of HRR association with solid phases comprising the residual wastes; and (3) expected solubility of HRRs under a range of environmental or service conditions that the residual wastes in the contaminated zone are expected to be exposed to over time. Implementation of this recommendation is deemed crucial for NRC staff to have reasonable assurance that the performance objectives in 10 CFR Part 61, Subpart C can be met. Given the risk-significance of Tank 18 to the overall PA and the short timeline for closure of this tank, the NRC staff recommended that DOE should initiate discussions with NRC staff regarding implementation of this recommendation for Tank 18 as soon as practical. The NRC staff also recommended that experiments to address this recommendation should be conducted prior to final closure of Tank 18. Results of the Tank 18 residual waste experiments, if conducted, will be evaluated by NRC staff to determine the need for additional data collection, experiments, and modeling for Tank 18, as well as other FTF tanks. Additional information regarding the NRC staff's recommendations in this area, including details on the suggested implementation of other recommendations will be provided in the NRC staff's plan for monitoring the FTF later in FY 2012, after DOE makes a final decision on the waste determination. The NRC staff's review of waste disposal at the SDF is ongoing. When complete, the SDF TER will indicate whether the NRC staff continues to have reasonable assurance that waste disposal at the SDF will meet the performance objectives of 10 CFR Part 61 (NDAA Criterion 3). The TER also will include risk insights that will form the basis of the NRC staff's revised monitoring plan for the SDF. The NRC staff will publish an updated monitoring plan for the SDF later in FY 2012. (authors)« less
Department of Energy's first waste determinations under section 3116: how did the process work?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picha Jr, K.G.; Kaltreider, R.; Suttora, L.
2007-07-01
Congress passed the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005 on October 9, 2004, and the President signed it into law on October 28, 2004. Section 3116(a) of the NDAA allows the Department of Energy (DOE) to, in consultation with the Nuclear Regulatory Commission (NRC), determine whether certain radioactive waste resulting from reprocessing of spent nuclear fuel at two DOE sites is not high-level radioactive waste, and dispose of that waste in compliance with the performance objectives set out in subpart C of 10 CFR part 61 for low-level waste. On January 17, 2006, themore » Department issued its first waste determination under the NDAA for salt waste disposal at the Savannah River Site. On November 19, 2006, the Department issued its second waste determination for closure of tanks at the Idaho Nuclear Technology and Engineering Center Tank Farm Facility. These two determinations and a third draft determination illustrate the range of issues that may be encountered in preparing a waste determination in accordance with NDAA Section 3116. This paper discusses the experiences associated with these first two completed waste determinations and an in-progress third waste determination, and discusses lessons learned from the projects that can be applied to future waste determinations. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: February 16, 2011--Las Vegas, NV, the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Activities Related to Managing Spent Nuclear...-203, Nuclear Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... delist? B. How does IBM generate the waste? C. How did IBM sample and analyze the petitioned waste? D..., thickened/conditioned, and pressed to generate the F006 waste stream. C. How did IBM sample and analyze the... the volatiles and semi-volatiles samples were non- detect. E. How did EPA evaluate the risk of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, J. P.; Pastor, R. S.
2002-02-28
The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, whichmore » Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.« less
Mixed waste focus area alternative technologies workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.
1995-05-24
This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), themore » Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.« less
Solidification Technologies for Restoration of Sites Contaminated with Hazardous Wastes
1998-01-01
OR1 -5- 10-0 1 to DOE, Office of Technology Development. Kalb, P., J. Heiser, and P. Colombo, 1991. “ Modified Sulfur Cement Encapsulation of Mixed...Incinerator Ash Waste Encapsulated in Modified Sulfur Cement,” Brookhaven National Laboratory for US DOE Contract No DE-AC02-76CD000 16. Lin, S...wastes, 2 modified sulfur cement, 22,72 47,49,5 I , 53,55,57,59,61,63,65 obsidian, 35,36,38,39,40,32,43 organic binders, 7,25 organic polymer binders
ERIC Educational Resources Information Center
Institute for Environmental Education, Chagrin Falls, OH.
Increased human population has led to more frequent interactions with the environment. The results of those interactions have affected the Earth's ecosystem. This manual contains hands-on, problem-centered activities to help students develop an environmental ethic and stewardship regarding waste management. The activities are grouped under three…
Current trends of tropical fruit waste utilization.
Cheok, Choon Yoong; Mohd Adzahan, Noranizan; Abdul Rahman, Russly; Zainal Abedin, Nur Hanani; Hussain, Norhayati; Sulaiman, Rabiha; Chong, Gun Hean
2018-02-11
Recent rapid growth of the world's population has increased food demands. This phenomenon poses a great challenge for food manufacturers in maximizing the existing food or plant resources. Nowadays, the recovery of health benefit bioactive compounds from fruit wastes is a research trend not only to help minimize the waste burden, but also to meet the intensive demand from the public for phenolic compounds which are believed to have protective effects against chronic diseases. This review is focused on polyphenolic compounds recovery from tropical fruit wastes and its current trend of utilization. The tropical fruit wastes include in discussion are durian (Durio zibethinus), mangosteen (Garcinia mangostana L.), rambutan (Nephelium lappaceum), mango (Mangifera indica L.), jackfruit (Artocarpus heterophyllus), papaya (Carica papaya), passion fruit (Passiflora edulis), dragon fruit (Hylocereus spp), and pineapple (Ananas comosus). Highlights of bioactive compounds in different parts of a tropical fruit are targeted primarily for food industries as pragmatic references to create novel innovative health enhancement food products. This information is intended to inspire further research ideas in areas that are still under-explored and for food processing manufacturers who would like to minimize wastes as the norm of present day industry (design) objective.
Code of Federal Regulations, 2013 CFR
2013-07-01
... agents, radioactive materials, chemicals, biological and laboratory waste, wreck or discarded equipment, rock, sand, excavation debris, industrial, municipal, agricultural, and other waste, but such term does... matter of any kind or description, including, but not limited to, dredged material, solid waste...
Trash-to-Gas: Converting Space Trash into Useful Products
NASA Technical Reports Server (NTRS)
Caraccio, Anne J.; Hintze, Paul E.
2013-01-01
NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of CO2, CO, CH4, and H2O were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.
Trash to Gas: Converting Space Trash into Useful Products
NASA Technical Reports Server (NTRS)
Nur, Mononita
2013-01-01
NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of C02, CO, CH4, and H20 were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.
40 CFR 265.111 - Closure performance standard.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 265.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...) Controls, minimizes or eliminates, to the extent necessary to protect human health and the environment...
40 CFR 265.111 - Closure performance standard.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 265.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...) Controls, minimizes or eliminates, to the extent necessary to protect human health and the environment...
SITE DEMONSTRATION CAPSULE --MATCON MODIFIED ASPHALT FOR WASTE CONTAINMENT
MatCon is a polymer modified asphalt material designed specifically for waste contaminment applications. The modifications to the material differentiate it from conventional paving asphalt by minimizing the damaging effects of environmental exposure that could detract from the d...
40 CFR 265.223 - Containment system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 265.223 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL..., such as grass, shale, or rock, to minimize wind and water erosion and to preserve their structural...
Site maps and facilities listings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-01
In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used formore » production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.« less
75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level... Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will meet in Dulles... of Energy on technical issues and to review the technical validity of DOE activities related to...
Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)
The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.
Lee, Carson O; Howe, Kerry J; Thomson, Bruce M
2012-03-15
This pilot-scale research project investigated and compared the removal of pharmaceuticals and personal care products (PPCPs) and other micropollutants from treated wastewater by ozone/biofiltration and reverse osmosis (RO). The reduction in UV254 absorbance as a function of ozone dose correlated well with the reduction in nonbiodegradable dissolved organic carbon and simultaneous production of biodegradable dissolved organic carbon (BDOC). BDOC analyses demonstrated that ozone does not mineralize organics in treated wastewater and that biofiltration can remove the organic oxidation products of ozonation. Biofiltration is recommended for treatment of ozone contactor effluent to minimize the presence of unknown micropollutant oxidation products in the treated water. Ozone/biofiltration and RO were compared on the basis of micropollutant removal efficiency, energy consumption, and waste production. Ozone doses of 4-8 mg/L were nearly as effective as RO for removing micropollutants. When wider environmental impacts such as energy consumption, water recovery, and waste production are considered, ozone/biofiltration may be a more desirable process than RO for removing PPCPs and other trace organics from treated wastewater. Copyright © 2011 Elsevier Ltd. All rights reserved.
Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
National Energy Technology Laboratory
2001-08-31
The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of themore » project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitratemore » waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.« less
In-plant management of hazardous waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, M.W.; Howell, W.L. Jr.
1995-12-31
One of the earliest sustainable technologies for the management of hazardous industrial wastes, and one of the most successful, is {open_quotes}In-Plant Control{close_quotes} Waste elimination, reuse and/or minimization can encourage improved utilization of resources, decreased environmental degradation and increased profits at individual industrial product ion sites, or within an industry. For new facilities and industries, putting such programs in place is relatively easy. Experience has shown, however, that this may be more difficult to initiate in existing facilities, especially in older and heavier industries. This task can be made easier by promoting a mutually respectful partnership between production and environmental interestsmore » within the facility or industry. This permits {open_quotes}common sense{close_quotes} thinking and a cooperative, proactive strategy for securing an appropriate balance between economic growth, environmental protection and social responsibility. Case studies are presented wherein a phased, incremental in-plant system for waste management was developed and employed to good effect, using a model that entailed {open_quotes}Consciousness, Commitment, Training, Recognition, Re-engineering and Continuous Improvement{close_quotes} to promote waste minimization or elimination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year (CY) 2007. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (number NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process tomore » reduce the volume and toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC, for the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2009. This report was developed in accordance with the requirements of the Nevada Test Site Resource Conservation and Recovery Act Permit (No. NEV HW0021), and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the U.S. Department of Energy, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volumemore » and toxicity of waste generated by NNSA/NSO activities and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by NNSA/NSO.« less
Transuranic Waste Program Framework Agreement - December Deliverable July 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Patricia
Framework agreement deliverables are: (1) 'DOE/NNSA commits to complete removal of all non-cemented above-ground EM Legacy TRU and newly generated TRU currently-stored at Area G as of October 1, 2011, by no later than June 30, 2014. This inventory of above-ground TRU is defined as 3706 cubic meters of material.' (2) 'DOE commits to the complete removal of all newly generated TRU received in Area G during FY 2012 and 2013 by no later than December 31, 2014.' (3) 'Based on projected funding profiles, DOE/NNSA will develop by December 31, 2012, a schedule, including pacing milestones, for disposition of themore » below-ground TRU requiring retrieval at Area G.' Objectives are to: (1) restore the 'Core Team' to develop the December, 2012 deliverable; (2) obtain agreement on the strategy for below ground water disposition; and (3) establish timeline for completion of the deliverable. Below Grade Waste Strategy is to: (1) Perform an evaluation on below grade waste currently considered retrievable TRU; (2) Only commit to retrieve waste that must be retrieved; (3) Develop the Deliverable including Pacing Milestones based on planned commitments; (4) Align all Regulatory Documents for Consistency; and (5) answer these 3 primary questions, is the waste TRU; is the waste retrievable, can retrieval cause more harm than benefit?« less
Impact assessment of waste management options in Singapore.
Tan, Reginald B H; Khoo, Hsien H
2006-03-01
This paper describes the application of life cycle assessment for evaluating various waste management options in Singapore, a small-island city state. The impact assessment method by SimaPro is carried out for comparing the potential environmental impacts of waste treatment options including landfilling, incineration, recycling, and composting. The inventory data include gases and leachate from landfills, air emissions and energy recovery from incinerators, energy (and emission) savings from recycling, composting gases, and transport pollution. The impact assessment results for climate change, acidification, and ecotoxicity show that the incineration of materials imposes considerable harm to both human health and the environment, especially for the burning of plastics, paper/cardboard, and ferrous metals. The results also show that, although some amount of energy can be derived from the incineration of wastes, these benefits are outweighed by the air pollution (heavy metals and dioxins/furans) that incinerators produce. For Singapore, landfill gases and leachate generate minimal environmental damage because of the nation's policy to landfill only 10% of the total disposed wastes. Land transportation and separation of waste materials also pose minimal environmental damage. However, sea transportation to the landfill could contribute significantly to acidification because of the emissions of sulfur oxides and nitrogen oxides from barges. The composting of horticultural wastes hardly imposes any environmental damage. Out of all the waste strategies, the recycling of wastes offers the best solution for environmental protection and improved human health for the nation. Significant emission savings can be realized through recycling.
Exergy analysis of integrated waste management in the recovery and recycling of used cooking oils.
Talens Peiró, Laura; Villalba Méndez, Gara; Gabarrell i Durany, Xavier
2008-07-01
Used cooking oil (UCO) is a domestic waste generated daily by food industries, restaurants, and households. It is estimated that in Europe 5 kg of UCO are generated per inhabitant, totalling 2.5 million metric tons per year. Recovering UCO for the production of biodiesel offers a way of minimizing and avoiding this waste and related pollution. An exergy analysis of the integrated waste management (IWM) scheme for UCO is used to evaluate such a possibility by accounting for inputs and outputs in each stage, calculating the exergy loss and the resource input and quantifying the possible improvements. The IWM includes the collection, pretreatment, and delivery of UCO and the production of biodiesel. The results show that the greatest exergy loss occurs during the transport stages (57%). Such exergy loss can be minimized to 20% by exploiting the full capacity of collecting vans and using biodiesel in the transport stages. Further, the cumulative exergy consumption helps study how the exergy consumption of biodiesel can be further reduced by using methanol obtained from biogas in the transesterification stage. Finally, the paper discusses how increasing the collection of UCO helps minimize uncontrolled used oil disposal and consequently provides a sustainable process for biodiesel production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, K.M.; Bilyard, G.R.; Davidson, S.A.
1993-06-01
The US Department of Energy (DOE) is now engaged in a program of environmental restoration nationwide across its 45 sites. It is also bringing its facilities into compliance with environmental regulations, decontaminating and decommissioning unwanted facilities, and constructing new waste management facilities. One of the most difficult questions that DOE must face in successfully remediating its inactive waste sites, decontaminating and decommissioning its inactive facilities, and operating its waste management facilities is: ``What criteria and standards should be met?`` Acceptable standards or procedures for determining standards will assist DOE in its conduct of ongoing waste management and pending cleanup activitiesmore » by helping to ensure that those activities are conducted in compliance with applicable laws and regulations and are accepted by the regulatory community and the public. This document reports on the second of three baseline activities that are being conducted as prerequisites to either the development of quantitative standards that could be used by DOE, or consistent procedures for developing such standards. The first and third baseline activities are also briefly discussed in conjunction with the second of the three activities.« less
Environmental analysis burial of offsite low-level waste at SRP
NASA Astrophysics Data System (ADS)
Poe, W. L.; Moyer, R. A.
1980-12-01
The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.
Frequent Questions on International Agreements on Transboundary Shipments of Waste
Answers FAQs such as How does the OECD control the shipment of hazardous waste between Member countries? Where do I find the green and amber lists of waste? Why hasn't the United States ratified the Basel Convention?
Moving from recycling to waste prevention: A review of barriers and enables.
Bartl, Andreas
2014-09-01
Current European waste policy does not mainly aim to treat waste streams but rather place in the foreground of interest the complete supply chain of a product. Waste prevention and re-use do have the highest priority and they take effect before the end-of-life phase of a product or a material is reached. Recycling only takes the third place whereas recovery and disposal represent the least favourable options. Recycling can help to decrease the consumption of primary resources but it does not tackle the causes but only the symptoms. In principle, recycling processes require energy and will generate side streams (i.e. waste). Furthermore, there are insuperable barriers and the practice is far from 100% recycling. The philosophy of waste prevention and re-use is completely different since they really tackle the causes. It is self-evident that a decrease of waste will also decrease the consumption of resources, energy and money to process the waste. However, even if European legislation is proceeding in the right direction, a clear decrease in waste generation did not occur up to now. Unfortunately, waste generation represents a positive factor of economic growth. Basically, waste generation is a huge business and numerous stakeholders are not interested to reduce waste. More sophisticated incentives are required to decouple economic growth from waste generation. © The Author(s) 2014.
Configuration management at an environmental restoration DOE facility (Fernald)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckett, C.; Pasko, W.; Kupinski, T.
This report contains information about a meeting held to discuss the decontamination and decommissioning of the Fernald site in Ohio. This site contains two major types of waste. First is the legacy waste. This waste consists of the wastes which were left over from production which is stored in various drums and containers across the site. Second is the waste generated from the remedial activities.
RESULTS OF THE ENVIRONMENTAL MANAGEMENT (EM) CORPORATE PROJECT TEAM DISPOSING WASTE & REDUCING RISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHRADER, T.A.; KNERR, R.
2005-01-31
In 2002, the US Department of Energy's (DOE) Office of Environmental Management (EM) released the Top-To-Bottom Review of cognizant clean-up activities around the DOE Complex. The review contained a number of recommendations for changing the way EM operates in order to reduce environmental risk by significantly accelerating clean-up at the DOE-EM sites. In order to develop and implement these recommendations, a number of corporate project teams were formed to identify, evaluate, and initiate implementation of alternatives for the different aspects of clean-up. In August 2002, a corporate team was formed to review all aspects of the management, treatment, and disposalmore » of low level radioactive waste (LLW), mixed low level radioactive waste (MLLW), transuranic waste (TRU), and hazardous waste (HW). Over the next 21 months, the Corporate Project Team: Disposing Waste, Reducing Risk, developed a number of alternatives for implementing the recommendations of the Top-To-Bottom Review based on information developed during numerous site visits and interviews with complex and industry personnel. With input from over a dozen EM sites at various stages of clean-up, the team identified the barriers to the treatment and disposal of low level waste, mixed low level waste, and transuranic waste. Once identified, preliminary design alternatives were developed and presented to the Acquisition Authority (for this project, the Assistant Secretary for Environmental Management) for review and approval. Once the preliminary design was approved, the team down selected to seven key alternatives which were subsequently fully developed in the Project Execution Plan. The seven most viable alternatives were: (1) creation of an Executive Waste Disposal Board; (2) projectizing the disposal of low level waste and mixed low level waste; (3) creation of a National Consolidation and Acceleration Facility for waste; (4) improvements to the Broad Spectrum contract; (5) improvements to the Toxic Substance Control Act (TSCA) Incinerator contract and operations; (6) development of a policy for load management of waste shipments to the Waste Isolation Pilot Plant (WIPP); and (7) development of a complex-wide fee incentive for transuranic waste disposal. The alternatives were further refined and a plan developed for institutionalizing the alternatives in various site contracts. In order to focus the team's efforts, all team activities were conducted per the principles of DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Although the Order was developed for construction projects, the principles were adapted for use on this ''soft'' project in which the deliverables were alternatives for the way work was performed. The results of the team's investigation and the steps taken during the project are presented along with lessons learned.« less
MINIMIZATION OF TRANSIENT EMISSIONS FROM ROTARY KILN INCINERATORS
Transient emissions of organics can occur from rotary kiln incinerators when drums containing liquid wastes bound on sorbents are introduced in a batch-wise fashion. Physical processes controlling the release of waste from the sorbent material are greatly affected by the rotation...
Six Strategies for Chemical Waste Minimization in Laboratories.
ERIC Educational Resources Information Center
Matteson, Gary C.; Hadley, Cheri R.
1991-01-01
Guidelines are offered to research administrators for reducing the volume of hazardous laboratory waste. Suggestions include a chemical location inventory, a chemical reuse facility, progressive contracts with chemical suppliers, internal or external chemical recycling mechanisms, a "chemical conservation" campaign, and laboratory fees for…
40 CFR 63.1210 - What are the notification requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
...; (E) Waste minimization and emission control technique(s) effectiveness; (F) A description of the... National Emission Standards for Hazardous Air Pollutants from Hazardous Waste Combustors Notification...)(v) Notification of excessive particulate matter detection system exceedances. 63.1207(e), 63.9(e) 63...
Aqueous Electrochemical Mechanisms in Actinide Residue Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, David E.; Burns, Carol J.; Smith, Wayne H.
2000-12-31
Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclearmore » Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such as the Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) process pioneered by workers at Pacific Northwest National Laboratory in the mid-1970s [2]. The basis for most of these mediated electrochemical oxidation/reduction (MEO/R) processes is the generation of a dissolved electrochemical catalyst, such as Ag2+, which is capable of oxidizing or reducing solid-phase actinide species or actinide sorbates via 7 heterogeneous electron transfer to oxidation states that have significantly greater solubilities (e.g., PuO2(s) to PuO2 2+ (dissolved)). The solubilized actinide can then be recovered by ion exchange or other mechanisms. These aqueous electrochemical methods for residue treatment have been considered in many of the ''trade studies'' to evaluate options for stabilization of the various categories of residue materials. While some concerns generally arise (e.g., large secondary waste volumes could results since the process stream normally goes th rough anion exchange or precipitation steps to remove the actinide), the real utility and versatility of these methods should not be overlooked. They are low temperature, ambient pressure processes that operate in a non-corrosive environment. In principle, they can be designed to be highly selective for the actinides (i.e., no substrate degradation occurs), they can be utilized for many categories of residue materials with little or no modification in hardware or operating conditions, and they can conceivably be engineered to minimize secondary waste stream volume. However, some fundamental questions remain concerning the mechanisms through which these processes act, and how the processes might be optimized to maximize efficiency while minimizing secondary waste. In addition, given the success achieved to date on the limited set of residues, further research is merited to extend the range of applicability of these electrochemical methods to other residue and waste streams. The principal goal of the work described here is to develop a fundamental understanding of the heterogeneous electron transfer thermodynamics and kinetics that lie at the heart of the MEO/R processes for actinide solids and actinide species entrained in or surface-bound to residue substrates. This has been accomplished as described in detail below through spectroscopic characterization of actinide-bearing substrates and electrochemical investigations of electron transfer reactions between uranium- and plutonium- (or surrogates) bearing solids (dispersed actinide solid phases and actinides sorbed to inorganic and organic colloids) and polarizable electrode materials. In general, the actinide solids or substrate-supported species were chosen to represent relevant residue materials (e.g., incinerator ash, sand/slag/crucible, and combustibles).« less
NASA Astrophysics Data System (ADS)
Ali, N. E.; Sion, H. C.
2014-02-01
The amount of solid-waste generated in Asian countries has increased tremendously, mainly due to the improvement in living standards, rapid developments in technology, growth in economy and population in the cities. Solid waste management is a global issue and major challenge facing Asian countries and neglecting its management may have negative consequences on the environment. Waste composition data proves the developed countries to have generated more recyclable materials while developing countries produce more organic and less recyclable waste such as paper, plastic and aluminium. In this regard, increase in number of landfills and disposal sites, will have an impact on GHG (greenhouse gas) emissions and pollutants to air and water. Alternative methods should therefore be taken to reduce the volume of waste. Most Asian countries have adopted the 3R (reduce, reuse, recycle) concept in order to reduce solid waste and their governments have implemented laws and regulations in order to support this. Implementation of 3R is the major contributor to the solid waste minimization and it can improve the quality of environmental sustainability and reduction of carbon dioxide emission in to the atmosphere. Based on our review, most of the countries practicing the 3R concept in tandem with laws and regulations perform better than those that just practice the 3R concept without any laws and regulations. The paper suggests that every country must focus on the laws and regulations relating to solid waste minimization so that it could be easily implemented as outlined.
Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofoworola, O.F.
The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods cleanmore » have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested.« less
Internship - practical education
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porell, A.L.; Bauman, H.F.
1989-01-01
The current emphasis on regulatory compliance with environmental laws has depleted the availability of experienced environmental scientists and engineers needed to initiate critical environmental projects. Further, projects of short duration and long-term commitments to employment situations are considered a high risk for both the employer and the employee. Martin Marietta Energy Systems, Inc., has met this challenge for federal agencies through the US Department of Energy's (DOE's) Hazardous Waste Remedial Actions Program (HAZWRAP). Through unique interdepartmental agency agreements between the DOE and the Department of Defense (DOD) and contractual arrangements between Energy Systems, DOE, and the University of Tennessee's (UT's)more » Waste Management Institute (WMI), an intern program was formulated. HAZWRAP is a DOE headquarters' program for addressing hazardous-waste issues at all DOE facilities. Energy Systems is the support contractor office responsible for developing policies and implementing plans for this program. Under this charter, HAZWRAP assembled a large staff of experienced project managers for developing remedial actions plans, while providing other federal agencies assistance in implementing their remedial actions programs. HAZWRAP project managers are currently managing remedial investigations and feasibility studies at 130 federal facilities located throughout the DOD.« less
ERIC Educational Resources Information Center
Mutungwe, Edlight; Tsvere, Maria; Dondo, Beauty; Munikwa, Simbarashe
2011-01-01
Waste management is a major challenge facing urban councils in Zimbabwe and Chinhoyi Municipality is no exception. Lack of resources and technical and administrative know-how is hindering proper waste management. Raw sewage and industrial waste flow into streams and rivers and uncollected rubbish bins and strewn litter is a common feature in the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawless, W.F.
2013-07-01
Citizen involvement in DOE's decision-making for the environmental cleanup from DOE's management of its nuclear wastes across the DOE complex has had a positive effect on the cleanup of its SRS site, characterized by an acceleration of cleanup not only for the Transuranic wastes at SRS, but also for DOE's first two closures of HLW tanks, both of which occurred at SRS. The Citizens around SRS had pushed successfully for the closures of Tanks 17 and 20 in 1997, becoming the first closures of HLW tanks under regulatory guidance in the USA. However, since then, HLW tank closures ceased duemore » to a lawsuit, the application of new tank clean-up technology, interagency squabbling between DOE and NRC over tank closure criteria, and finally and almost fatally, from budget pressures. Despite an agreement with its regulators for the closure of Tanks 18 and 19 by the end of calendar year 2012, the outlook in Fall 2011 to close these two tanks had dimmed. It was at this point that the citizens around SRS became reengaged with tank closures, helping DOE to reach its agreed upon milestone. (authors)« less
SPECIAL ANALYSIS OF OPERATIONAL STORMWATER RUNOFF COVERS OVER SLIT TRENCHES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collard, L; Luther Hamm, L
2008-12-18
Solid Waste Management (SWM) commissioned this Special Analysis (SA) to determine the effects of placing operational stormwater runoff covers (referred to as covers in the remainder of this document) over slit trench (ST) disposal units ST1 through ST7 (the center set of slit trenches). Previously the United States Department of Energy (DOE) entered into an agreement with the United States Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC) to place covers over Slit Trenches 1 and 2 to be able to continue disposing Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) solid wastemore » (see USDOE 2008). Because the covers changed the operating conditions, DOE Order 435.1 (DOE 1999) required that an SA be performed to assess the impact. This Special Analysis has been prepared to determine the effects of placing covers over slit trenches at about years 5, 10 and 15 of the 30-year operational period. Because some slit trenches have already been operational for about 15 years, results from analyzing covers at 5 years and 10 years provide trend analysis information only. This SA also examined alternatives of covering Slit Trenches 1 and 2 with one cover and Slit Trenches 3 and 4 with a second cover versus covering them all with a single cover. Based on modeling results, minimal differences exist between covering Slit Trench groups 1-2 and 3-4 with two covers or one large cover. This SA demonstrates that placement of covers over slit trenches will slow the subsequent release and transport of radionuclides in the vadose zone in the early time periods (from time of placement until about 100 years). Release and transport of some radionuclides in the vadose zone beyond 100 years were somewhat higher than for the case without covers. The sums-of-fractions (SOFs) were examined for the current waste inventory in ST1 and ST2 and for estimated inventories at closure for ST3 through ST7. In all cases SOFs were less than one (except for one SOF for ST5 that remained at one), indicating that there should be no unacceptable impacts on operations from placing covers for the cover alternatives that were analyzed. Minimal operational limits provided in Table 4 should be used as the new set of limits for Slit Trenches 1 through 7. ST1 and ST2 are expected to be covered about 15 years after the first disposal in ST1. Because the time of actual placement of covers over the other slit trenches is unknown, this SA did not consider limit increases, only limit decreases. Thus, each minimal operational limit is the minimum of the Performance Assessment (PA) final limit and the limit calculated in this SA if covers were placed at about 5, 10 or 15 years. If other cover times are desired, further analysis will be required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.
This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminatedmore » wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.« less
Solid waste treatment processes for space station
NASA Technical Reports Server (NTRS)
Marrero, T. R.
1983-01-01
The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.M. Frank
Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.« less
Economic and employment potential in textile waste management of Faisalabad.
Noman, Muhammad; Batool, Syeda Adila; Chaudhary, Muhammad Nawaz
2013-05-01
The aim of this study is to characterize the waste from the textile industry, to identify the sources and types of waste generation and to find out the economic and employment potential in this sector. Textile waste, its management, and the economic and employment potential in this sector are unrevealed facts in developing countries such as Pakistan. The textile industry is ranked first in export earning in Pakistan. Textile export of yarn and cloth from Faisalabad is US$3 billion per year. On average 161 325 people are employed in the textile sector in Faisalabad, of which 11 860 are involved in solid waste handling and management. The textile industries generate solid wastes such as fibre, metal, plastic and paper waste. A total of 794 209 kg day(-1) (289 886 285 kg year(-1)) solid waste is produced from this sector and purchased by cotton waste junkshop owners at US$125 027 day(-1) (US$45 634 855 year(-1)). Only pre-consumer textile waste is considered. Interestingly no waste is sent to landfill. The waste is first segregated into different categories/ types by hand and then weighed. Cotton waste is sold to brick kilns where it is used as an alternative fuel as it is cheaper than wood/coal. Iron scrap is sold in the junk market from where it is resold to recycling industries. Paper waste is recycled, minimizing the virgin material used for producing new paper products. Iron and plastic drums are returned to the chemical industries for refilling, thus decreasing the cost of dyes and decreasing the demand for new drums. Cutting rags are used for making different things such as ropes and underlay, it is also shredded and used as fillings for pillows and mattresses, thus improving waste management, reducing cost and minimizing the need for virgin material. As no system of quality control and no monitoring of subsequent products exist there is a need to carry out quality control and monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevougian, S. David; Stein, Emily; Gross, Michael B
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) is conducting research and development (R&D) on generic deep geologic disposal systems (i.e., repositories). This report describes specific activities in FY 2016 associated with the development of a Defense Waste Repository (DWR)a for the permanent disposal of a portion of the HLW and SNF derived from national defense and research and development (R&D) activities of the DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
1999-09-01
Through efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of bulk elemental mercury contaminated with radionuclides stored at various U.S. Department of Energy (DOE) sites is thought to be approximately 16 m3 (Conley et al. 1998). At least 19 different DOE sites have this type of mixed low-level waste in their storage facilities. The U.S. Environmental Protection Agency (EPA) specifies amalgamation as the treatment method for radioactively contaminated elemental mercury. Although the chemistry of amalgamation is well known, the practical engineering of a sizable amalgamation process has not been tested (Tysonmore » 1993). To eliminate the existing DOE inventory in a reasonable timeframe, scalable equipment is needed that can produce waste forms that meet the EPA definition of amalgamation, produce waste forms that pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) limit of 0.20 mg/L, limit mercury vapor concentrations during processing to below the Occupational Safety and Health Administration’s (OSHA) 8-h worker exposure limit (50 mg/m3) for mercury, and perform the above economically.« less
Office of Industrial Technologies research in progress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffsmore » of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Alison; Barkley, Michelle; Poppiti, James
This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).
1999-01-05
used in each chapter to define the techniques of waste minimization are: improved operation management , material substitution, process substitution...1994 – Reduce Quantity & Toxicity of Waste • Improved Operation Management • Material & Process Substitution • Recycling • Treatment Advantages
WASTE-TO-RESOURCE: NOVEL MEMBRANE SYSTEMS FOR SAFE AND SUSTAINABLE BRINE MANAGEMENT
Decentralized waste-to-reuse systems will be optimized to maximize resource and energy recovery and minimize chemicals and energy use. This research will enhance fundamental knowledge on simultaneous heat and mass transport through membranes, lower process costs, and furthe...
PROCESS SIMULATION TOOLS FOR POLLUTION PREVENTION: NEW METHODS REDUCE THE MAGNITUDE OF WASTE STREAMS
Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized. Process simulators can be effective tools in a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.T.
DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Jacobs, Raymer J.E.
2008-06-12
In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden pallets, contaminated equipment, decontamination materials, etc.).« less
The road to Yucca Mountain—Evolution of nuclear waste disposal in the United States
Stuckless, John S.; Levich, Robert A.
2016-01-01
The generation of electricity by nuclear power and the manufacturing of atomic weapons have created a large amount of spent nuclear fuel and high-level radioactive waste. There is a world-wide consensus that the best way to protect mankind and the environment is to dispose of this waste in a deep geologic repository. Initial efforts focused on salt as the best medium for disposal, but the heat generated by the radioactive waste led many earth scientists to examine other rock types. In 1976, the director of the U.S. Geological Survey (USGS) wrote to the U.S. Energy Research and Development Administration (ERDA), predecessor agency of the U.S. Department of Energy (DOE), suggesting that there were several favorable environments at the Nevada Test Site (NTS), and that the USGS already had extensive background information on the NTS. Later, in a series of communications and one publication, the USGS espoused the favorability of the thick unsaturated zone. After the passage of the Nuclear Waste Policy Act (1982), the DOE compiled a list of nine favorable sites and settled on three to be characterized. In 1987, as the costs of characterizing three sites ballooned, Congress amended the Nuclear Waste Policy Act directing the DOE to focus only on Yucca Mountain in Nevada, with the proviso that if anything unfavorable was discovered, work would stop immediately. The U.S. DOE, the U.S. DOE national laboratories, and the USGS developed more than 100 detailed plans to study various earth-science aspects of Yucca Mountain and the surrounding area, as well as materials studies and engineering projects needed for a mined geologic repository. The work, which cost more than 10 billion dollars and required hundreds of man-years of work, culminated in a license application submitted to the U.S. Nuclear Regulatory Commission (NRC) in 2008.
A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.A. Robbins; R.A. Winschel; S.D. Brandes
This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made tomore » ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.« less
DC graphite arc furnace, a simple system to reduce mixed waste volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittle, J.K.; Hamilton, R.A.; Trescot, J.
1995-12-31
The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less
Localized chemistry of 99Tc in simulated low activity waste glass
NASA Astrophysics Data System (ADS)
Weaver, Jamie L.
A priority of the United States Department of Energy (DOE) is to dispose of the nuclear waste accumulated in the underground tanks at the Hanford Nuclear Reservation in Richland, WA. Incorporation and stabilization of technetium (99Tc) from these tanks into vitrified waste forms is a concern to the waste glass community and DOE due to 99Tc's long half-life ( 2.13˙105 y), and its high mobility in the subsurface environment under oxidizing conditions. Working in collaboration with researchers at Pacific Northwest National Laboratory (PNNL) and other national laboratories, plans were formulated to obtain first-of-a-kind chemical structure determination of poorly understood and environmentally relevant technetium compounds that relate to the chemistry of the Tc in nuclear waste glasses. Knowledge of the structure and spectral signature of these compounds aid in refining the understanding of 99Tc incorporation into and release from oxide based waste glass. In this research a first-of-its kind mechanism for the behavior of 99Tc during vitrification is presented, and the structural role of Tc(VII) and (IV) in borosilicate waste glasses is readdressed.
Vieira, C D; de Carvalho, M A R; de Resende, M A; de Menezes Cussiol, N A; Alvarez-Leite, M E; dos Santos, S G; de Oliveira, M B; de Magalhães, T F F; Silva, M X; Nicoli, J R; de Macêdo Farias, L
2010-10-01
This study was undertaken to detect, identify and determine antifungal susceptibility of yeast strains isolated from dental solid waste and to evaluate airborne fungi in the Brazilian dental health care environment and in the waste storage room. A group of 17 yeast strains were identified by macroscopic and microscopic characteristics, API 20C Aux system and Multiplex PCR. All 104 airborne fungal colonies were identified by macroscopic and microscopic morphology. The CLSI broth microdilution method was utilized as the susceptibility test. Candida parapsilosis was the prevailing yeast species recovered from waste, followed by Rhodotorula glutinis. Three strains of Candida guilliermondii presented minimal inhibitory concentration values considered to be susceptible dose dependent (2 μg ml(-1)) to voriconazole. Of all airborne fungal species, 69% were recovered from the waste storage room and 31% were recovered from the clinical/surgical environment. Most of them were identified as Cladosporium spp. These findings reinforce the potential risk of waste handling and point out the need for safe management to minimize the spread of these agents to the environment. Filamentous fungi isolation in almost all sampled environments indicates that a periodic monitoring of airborne microbiota in the dental health care service environment is required. The survival of yeast strains for 48 h suggests that dental waste should be carefully controlled and monitored. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.
The 100-C-7 Remediation Project. An Overview of One of DOE's Largest Remediation Projects - 13260
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, Thomas C.; Strom, Dean; Beulow, Laura
The U.S. Department of Energy Richland Operations Office (RL), U.S. Environmental Protection Agency (EPA) and Washington Closure Hanford LLC (WCH) completed remediation of one of the largest waste sites in the U.S. Department of Energy complex. The waste site, 100-C-7, covers approximately 15 football fields and was excavated to a depth of 85 feet (groundwater). The project team removed a total of 2.3 million tons of clean and contaminated soil, concrete debris, and scrap metal. 100-C-7 lies in Hanford's 100 B/C Area, home to historic B and C Reactors. The waste site was excavated in two parts as 100-C-7 andmore » 100-C-7:1. The pair of excavations appear like pit mines. Mining engineers were hired to design their tiered sides, with safety benches every 17 feet and service ramps which allowed equipment access to the bottom of the excavations. The overall cleanup project was conducted over a span of almost 10 years. A variety of site characterization, excavation, load-out and sampling methodologies were employed at various stages of remediation. Alternative technologies were screened and evaluated during the project. A new method for cost effectively treating soils was implemented - resulting in significant cost savings. Additional opportunities for minimizing waste streams and recycling were identified and effectively implemented by the project team. During the final phase of cleanup the project team applied lessons learned throughout the entire project to address the final, remaining source of chromium contamination. The C-7 cleanup now serves as a model for remediating extensive deep zone contamination sites at Hanford. (authors)« less
The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-01
The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavymore » metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.« less
Systematic process synthesis and design methods for cost effective waste minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegler, L.T.; Grossman, I.E.; Westerberg, A.W.
We present progress on our work to develop synthesis methods to aid in the design of cost effective approaches to waste minimization. Work continues to combine the approaches of Douglas and coworkers and of Grossmann and coworkers on a hierarchical approach where bounding information allows it to fit within a mixed integer programming approach. We continue work on the synthesis of reactors and of flexible separation processes. In the first instance, we strive for methods we can use to reduce the production of potential pollutants, while in the second we look for ways to recover and recycle solvents.
A comparison of costs associated with utility management options for dry active waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornibrook, C.
1995-12-31
The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, allmore » utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.« less
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.F.A. Deng; M. Saglam; L.J. Gratton
2001-05-23
In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{submore » eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.« less
The Waste Reduction Innovative Technology Evaluation Program (WRITE) was a pilot program with six (6) states and one (1) local government, to identify priority needs at the respective governmental level, find promising waste minimization technologies and perform an evaluation to ...
Under the Waste Reduction Evaluations at Federal Sites (WREAFS) program, RREL has taken the initiative to merge the experience and resources of the EPA with other Federal agencies. At the Fitzsimmons Army Medical Center (FAMC) in Aurora, Colorado, the Army and the EPA cooperated ...
WASTE MINIMIZATION EFFORTS - AN OVERVIEW OF THE U.S. EPA POLLUTIONPREVENTION RESEARCH PROGRAM
This paper is to be presented at the Governmental Refuse,Collection, and Disposal Association's 28th Annual InternationalSolid Waste Exposition in Vancouver, B.C., Canada, August 20-24,1990. he paper's purpose is to describe the current pollutionprevention research program assign...
WASTE MINIZATION OPPORTUNITY ASSESSMENT: NAVAL UNDERSEA WARFARE ENGINEERING STATION - KEYPORT, WA
This report describes the application of EPA's waste minimization assessment procedures to a torpedo maintenance facility at the Naval Undersea Warfare Engineering Station, Keyport, WA. he assessment focused on the Mark 48 shop and the Mark 46 shop. hese shops service the Mark 48...
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Nevada Test Site Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Kinyoki, Damaris K; Berkley, James A; Moloney, Grainne M; Odundo, Elijah O; Kandala, Ngianga-Bakwin; Noor, Abdisalan M
2016-02-01
To determine the sub-national seasonal prevalence and trends in wasting from 2007 to 2010 among children aged 6-59 months in Somalia using remote sensing and household survey data from nutritional surveys. Bayesian hierarchical space-time model was implemented using a stochastic partial differential equation (SPDE) approach in integrated nested Laplace approximations (INLA) to produce risk maps of wasting at 1 × 1 km(2) spatial resolution and predict to seasons in each year of study from 2007 to 2010. The prevalence of wasting was generally at critical levels throughout the country, with most of the areas remaining in the upper classes of critical and very critical levels. There was minimal variation in wasting from year-to-year, but a well-defined seasonal variation was observed. The mean difference of the prevalence of wasting between the dry and wet season ranges from 0% to 5%. The risks of wasting in the South Central zone were highest in the Gedo (37%) and Bay (32%) regions. In North East zone the risk was highest in Nugaal (25%) and in the North West zone the risk was high in Awdal and Woqooyi Galbeed regions with 23%. There was a clear seasonal variation in wasting with minimal year-to-year variability from 2007 to 2010 in Somalia. The prevalence was high during the long dry season, which affects the prevalence in the preceding long rainy season. Understanding the seasonal fluctuations of wasting in different locations and at different times is important to inform timely interventions. Copyright © 2016. Published by Elsevier Ltd.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General... owns or generates spent nuclear fuel or high-level radioactive waste, of domestic origin, generated in... part will commit DOE to accept title to, transport, and dispose of such spent fuel and waste. In...
The EPA is announcing an administrative stay of a portion of the hazardous waste listing K069 so that the listing does not apply to slurries generated from air pollution control devices that are intended to capture acid gases.
75 FR 29786 - Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... plans for managing spent nuclear fuel and high-level radioactive waste. Pursuant to its authority under... of Energy (DOE) plans for managing spent nuclear fuel (SNF) and high-level radioactive waste (HLW... the packaging and movement of the waste, how the recent decision to terminate the Yucca Mountain...
Stock flow diagram analysis on solid waste management in Malaysia
NASA Astrophysics Data System (ADS)
Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack
2016-10-01
The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.
Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.
This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigsby V.P.
2009-02-12
In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitatemore » the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement slab], roofing, structural steel supports, interior walls, and exterior walls) and support system components including the recirculation cooling water (RCW); electrical; communication; fire protection; ventilation; process coolant; process lube oil; utilities such as steam, water and drain lines; (2) Process Piping; (3) Seal Exhaust Headers; (4) Seal Exhaust Traps; (5) Process Valves; (6) Differential Blind Multipliers (DBM)/Partial Blind Multipliers (PBM); and (7) Aftercoolers (also known as Intercell coolers). Converters and compressors while components of the process gas system, are not included in this commingled waste lot. On January 6, 2009, a meeting was held with EPA, TDEC, DOE and the team for the sole purpose of finalizing the objectives, format, and content of WPXL 6.999. The objective of WPXL 6.999 was to provide a crosswalk to the building structure and the PGE components profiles. This was accomplished by providing tables with references to the specific section of the individual profiles for each of the WLs. There are two building profiles and eight PGE profiles. All of the waste identified in the individual profiles will be commingled, shipped, and disposed exclusively under WPXL 6.999. The individual profiles were provided to the EPA and Tennessee Department of Environment and Conservation (TDEC) for information purposes only. This summary WPXL 6.999 will be submitted to EPA, TDEC, and DOE for review and approval. The format agreed upon by the regulators and DOE form the basis for WPXL 6.999. The agreed format is found on pages v and vi of the CONTENTS section of this profile. The disposal of this waste will be executed in accordance with the Action Memorandum for the Decontamination and Decommissioning of the K-25 and K-27 Buildings, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2002), Removal Action Work Plan for the K-25 and K-27 Buildings, Process Equipment Removal and Demolition, K-25/K-27 Project, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008a); Waste Handling Plan for Demolition of the K-25 and K-27 Building Structures and Remaining Components Located at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005); and Waste Handling Plan for Building K-25 West Wing Process Equipment and Piping at the East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008b).« less
Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, P.H.
The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.
Regulatory decision with EPA/NRC/DOE/State Session (Panel)
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Donnell, E.
1995-12-31
This panel will cover the Nuclear Regulatory Commission`s (NRC) proposed radiation limits in the Branch Technical Position on Low-Level Radioactive Waste Performance Assessment and the Environmental Protection Agency`s (EPA) draft regulation in Part 193. Representatives from NRC and EPA will discuss the inconsistencies in these two regulations. DOE and state representatives will discuss their perspective on how these regulations will affect low-level radioactive waste performance assessments.
Hanford facility dangerous waste permit application, PUREX storage tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, C. R.
1997-09-08
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).
A performance goal-based seismic design philosophy for waste repository facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Q.A.
1994-12-31
A performance goal-based seismic design philosophy, compatible with DOE`s present natural phenomena hazards mitigation and {open_quotes}graded approach{close_quotes} philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed.
Water Reuse and Wastewater Recycling at U.S. Army Installations: Policy Implications
2011-06-01
Definition Blackwater Water captured from toilets and urinals along with kitchen waste. Direct potable reuse The introduction of highly treated reclaimed...reused. It does not include water from kitchen sinks or dishwashers. Indirect potable reuse The planned incorporation of reclaimed water into a raw...industrial cooling. * Some organizations do accept a definition of “graywater” that does include kitchen and dishwasher waste- water along with wastewater
Process Waste Assessment, Mechanics Shop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, N.M.
1993-05-01
This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags andmore » spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.« less
Towards sets of hazardous waste indicators. Essential tools for modern industrial management.
Peterson, Peter J; Granados, Asa
2002-01-01
Decision-makers require useful tools, such as indicators, to help them make environmentally sound decisions leading to effective management of hazardous wastes. Four hazardous waste indicators are being tested for such a purpose by several countries within the Sustainable Development Indicator Programme of the United Nations Commission for Sustainable Development. However, these indicators only address the 'down-stream' end-of-pipe industrial situation. More creative thinking is clearly needed to develop a wider range of indicators that not only reflects all aspects of industrial production that generates hazardous waste but considers socio-economic implications of the waste as well. Sets of useful and innovative indicators are proposed that could be applied to the emerging paradigm shift away from conventional end-of-pipe management actions and towards preventive strategies that are being increasingly adopted by industry often in association with local and national governments. A methodological and conceptual framework for the development of a core-set of hazardous waste indicators has been developed. Some of the indicator sets outlined quantify preventive waste management strategies (including indicators for cleaner production, hazardous waste reduction/minimization and life cycle analysis), whilst other sets address proactive strategies (including changes in production and consumption patterns, eco-efficiency, eco-intensity and resource productivity). Indicators for quantifying transport of hazardous wastes are also described. It was concluded that a number of the indicators proposed could now be usefully implemented as management tools using existing industrial and economic data. As cleaner production technologies and waste minimization approaches are more widely deployed, and industry integrates environmental concerns at all levels of decision-making, it is expected that the necessary data for construction of the remaining indicators will soon become available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toy-Chen, D.; Joyce, M.M.
1994-12-31
The City of Los Angeles faces a challenge to assist industrial facilities to minimize and manage hazardous materials in order to sustain the local economy and natural environment. Industrial facilities in Los Angeles County released into the environment or transferred off-site 103,442,074 tons of hazardous materials and waste in 1988. This enormous quantity of hazardous waste requires generators to be in compliance with several environmental regulatory agencies. The City of Los Angeles Hazardous and Toxic Materials (HTM) Office has increased the awareness, commitments, and implementation of hazardous waste at the source, the amount of toxic pollutants discharged into the City`smore » publicly owned treatment works, surface and groundwaters, soils and atmosphere can be substantially reduced. Quantifying hazardous waste minimization progress is extremely difficult and complex. However, the HTM Office anticipates that if the challenge of pollution prevention is successful, more businesses will decide to remain in the region and Los Angeles residents will feel convinced that industry is making good faith efforts to protect the environment. Pollution prevention is a long term solution for the hazardous waste crisis that society has only recently recognized.« less
A multi-objective approach to solid waste management.
Galante, Giacomo; Aiello, Giuseppe; Enea, Mario; Panascia, Enrico
2010-01-01
The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached in a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy). 2010 Elsevier Ltd. All rights reserved.
A multi-objective approach to solid waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galante, Giacomo, E-mail: galante@dtpm.unipa.i; Aiello, Giuseppe; Enea, Mario
2010-08-15
The issue addressed in this paper consists in the localization and dimensioning of transfer stations, which constitute a necessary intermediate level in the logistic chain of the solid waste stream, from municipalities to the incinerator. Contextually, the determination of the number and type of vehicles involved is carried out in an integrated optimization approach. The model considers both initial investment and operative costs related to transportation and transfer stations. Two conflicting objectives are evaluated, the minimization of total cost and the minimization of environmental impact, measured by pollution. The design of the integrated waste management system is hence approached inmore » a multi-objective optimization framework. To determine the best means of compromise, goal programming, weighted sum and fuzzy multi-objective techniques have been employed. The proposed analysis highlights how different attitudes of the decision maker towards the logic and structure of the problem result in the employment of different methodologies and the obtaining of different results. The novel aspect of the paper lies in the proposal of an effective decision support system for operative waste management, rather than a further contribution to the transportation problem. The model was applied to the waste management of optimal territorial ambit (OTA) of Palermo (Italy).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podonsky, Glenn S.
The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED increased by 3% from 2011 to 2012. Additional analyses show that the dose distribution in 2012 was similar to the distribution in 2011. In 2012, 13% of the monitored workers received a measurable TED and the average measurable TED, 0.069 rem, was less than 2% of the DOE limit. From 2011 to 2012, the collective TED and the number of individuals with measurable TED decreased 17.1% and 19%, respectively. These decreases were mainly due to an overall reduction of D&D activities at the PFP and TRU retrieval activities at Hanford; a 78% decrease in the number of targeted waste drums that were processed at the Idaho Site’s Accelerated Retrieval Project (ARP) from 5,566 drums in 2011 to a total of 1,211 drums processed in 2012; and ALARA initiatives employed site wide at SRS. In addition, the decreases were the result of decreased American Recovery and Reinvestment Act (ARRA) activities and continuing D&D, particularly at the DOE sites that comprise the majority of DOE collective dose. Over the past 5 years, the size of the monitored workforce has remained at a fairly stable level (within 12%), while the collective dose has varied up to 37%. No reported doses exceeded the DOE occupational limit of 5 rems TED in 2012 and no reported doses exceeded the DOE ACL of 2 rems TED.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... on- site in the pickle acid and low level radioactive wastewater treatment systems. Support... water production waste treatment system. Once- through non-contact cooling water does not require... production (deionized and make- up non-contact cooling water) treatment system and once through non- contact...
Environmental Sciences Division annual progress report for period ending September 30, 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auerbach, S.I.; Reichle, D.E.
1982-04-01
Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.
Ethanol production from food waste at high solid contents with vacuum recovery technology
USDA-ARS?s Scientific Manuscript database
Ethanol production from food wastes does not only solve the environmental issues but also provide renewable biofuel to partially substitute fossil fuels. This study investigated the feasibility of utilization of food wastes for producing ethanol at high solid contents (35%, w/w). Vacuum recovery sys...
40 CFR 60.1005 - When does this subpart become effective?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...
40 CFR 60.1005 - When does this subpart become effective?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...
40 CFR 60.1005 - When does this subpart become effective?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999 or for Which... to municipal waste combustion unit planning and must be completed before construction is commenced on the municipal waste combustion unit. In particular, the preconstruction requirements in §§ 60.1050...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of the...
The Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small to medium sized businesses in the state of New Jersey. One of the sites...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of the...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...
Schantz, A. Benjamin; Xiong, Boya; Dees, Elizabeth; ...
2018-01-01
If challenges such as mechanical stability, scaling, biofouling and concentration polarization at high pressures are addressed, high-pressure RO could be used to efficiently remove water from high-salinity waste brines as part of a zero-liquid-discharge disposal process.
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the State of New Jersey. One of th...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...
Test Standards for Contingency Base Waste-to-Energy Technologies
2015-08-01
test runs are preferred to allow a more comprehensive statistical evaluation of the results. In 8 • Minimize the complexity , difficulty, and...with water or, in the case of cyanide - or sulfide-bearing wastes, when exposed to mild acidic or basic conditions; 4) explode when subjected to a
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of the...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small to medium sized businesses in the state of New Jersey. One of the...
POLLUTION PREVENTION STRATEGIES FOR THE MINIMIZING OF INDUSTRIAL WASTES IN THE VCM-PVC INDUSTRY
In many U.S. companies, pollution prevention strategies coincide with economic interests. Typically a company strives to be the lowest-cost producer, to be competitive, and to reduce wastes. In this paper, the author reviews pollution prevention strategies in the vinyl chloride m...
Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drin...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of the...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. ne of the ...
The U.S. Environmental Protection Agency (EPA) funded a project with the New Jersey Department of Environmental Protection and Energy (NJDEPE) to assist in conducting waste minimization assessments at thirty small- to medium-sized businesses in the state of New Jersey. One of th...
Rodent toxicity studies typically use water bottles to administer test chemicals via drinking water. However, water bottles provide inconsistent exposure of volatile chemicals due to varying headspace, as well as lead to excessive waste of test material. In order to refine drinki...